src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Fri, 29 Aug 2014 13:12:21 +0200

author
mgerdin
date
Fri, 29 Aug 2014 13:12:21 +0200
changeset 7208
7baf47cb97cb
parent 7160
c10b463abc6e
child 7257
e7d0505c8a30
permissions
-rw-r--r--

8048268: G1 Code Root Migration performs poorly
Summary: Replace G1CodeRootSet with a Hashtable based implementation, merge Code Root Migration phase into Code Root Scanning
Reviewed-by: jmasa, brutisso, tschatzl

     1   /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/g1AllocationContext.hpp"
    29 #include "gc_implementation/g1/g1Allocator.hpp"
    30 #include "gc_implementation/g1/concurrentMark.hpp"
    31 #include "gc_implementation/g1/evacuationInfo.hpp"
    32 #include "gc_implementation/g1/g1AllocRegion.hpp"
    33 #include "gc_implementation/g1/g1BiasedArray.hpp"
    34 #include "gc_implementation/g1/g1HRPrinter.hpp"
    35 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    36 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    37 #include "gc_implementation/g1/g1YCTypes.hpp"
    38 #include "gc_implementation/g1/heapRegionManager.hpp"
    39 #include "gc_implementation/g1/heapRegionSet.hpp"
    40 #include "gc_implementation/shared/hSpaceCounters.hpp"
    41 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
    42 #include "memory/barrierSet.hpp"
    43 #include "memory/memRegion.hpp"
    44 #include "memory/sharedHeap.hpp"
    45 #include "utilities/stack.hpp"
    47 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    48 // It uses the "Garbage First" heap organization and algorithm, which
    49 // may combine concurrent marking with parallel, incremental compaction of
    50 // heap subsets that will yield large amounts of garbage.
    52 // Forward declarations
    53 class HeapRegion;
    54 class HRRSCleanupTask;
    55 class GenerationSpec;
    56 class OopsInHeapRegionClosure;
    57 class G1KlassScanClosure;
    58 class G1ScanHeapEvacClosure;
    59 class ObjectClosure;
    60 class SpaceClosure;
    61 class CompactibleSpaceClosure;
    62 class Space;
    63 class G1CollectorPolicy;
    64 class GenRemSet;
    65 class G1RemSet;
    66 class HeapRegionRemSetIterator;
    67 class ConcurrentMark;
    68 class ConcurrentMarkThread;
    69 class ConcurrentG1Refine;
    70 class ConcurrentGCTimer;
    71 class GenerationCounters;
    72 class STWGCTimer;
    73 class G1NewTracer;
    74 class G1OldTracer;
    75 class EvacuationFailedInfo;
    76 class nmethod;
    77 class Ticks;
    79 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
    80 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
    82 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    83 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    85 class YoungList : public CHeapObj<mtGC> {
    86 private:
    87   G1CollectedHeap* _g1h;
    89   HeapRegion* _head;
    91   HeapRegion* _survivor_head;
    92   HeapRegion* _survivor_tail;
    94   HeapRegion* _curr;
    96   uint        _length;
    97   uint        _survivor_length;
    99   size_t      _last_sampled_rs_lengths;
   100   size_t      _sampled_rs_lengths;
   102   void         empty_list(HeapRegion* list);
   104 public:
   105   YoungList(G1CollectedHeap* g1h);
   107   void         push_region(HeapRegion* hr);
   108   void         add_survivor_region(HeapRegion* hr);
   110   void         empty_list();
   111   bool         is_empty() { return _length == 0; }
   112   uint         length() { return _length; }
   113   uint         survivor_length() { return _survivor_length; }
   115   // Currently we do not keep track of the used byte sum for the
   116   // young list and the survivors and it'd be quite a lot of work to
   117   // do so. When we'll eventually replace the young list with
   118   // instances of HeapRegionLinkedList we'll get that for free. So,
   119   // we'll report the more accurate information then.
   120   size_t       eden_used_bytes() {
   121     assert(length() >= survivor_length(), "invariant");
   122     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
   123   }
   124   size_t       survivor_used_bytes() {
   125     return (size_t) survivor_length() * HeapRegion::GrainBytes;
   126   }
   128   void rs_length_sampling_init();
   129   bool rs_length_sampling_more();
   130   void rs_length_sampling_next();
   132   void reset_sampled_info() {
   133     _last_sampled_rs_lengths =   0;
   134   }
   135   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   137   // for development purposes
   138   void reset_auxilary_lists();
   139   void clear() { _head = NULL; _length = 0; }
   141   void clear_survivors() {
   142     _survivor_head    = NULL;
   143     _survivor_tail    = NULL;
   144     _survivor_length  = 0;
   145   }
   147   HeapRegion* first_region() { return _head; }
   148   HeapRegion* first_survivor_region() { return _survivor_head; }
   149   HeapRegion* last_survivor_region() { return _survivor_tail; }
   151   // debugging
   152   bool          check_list_well_formed();
   153   bool          check_list_empty(bool check_sample = true);
   154   void          print();
   155 };
   157 // The G1 STW is alive closure.
   158 // An instance is embedded into the G1CH and used as the
   159 // (optional) _is_alive_non_header closure in the STW
   160 // reference processor. It is also extensively used during
   161 // reference processing during STW evacuation pauses.
   162 class G1STWIsAliveClosure: public BoolObjectClosure {
   163   G1CollectedHeap* _g1;
   164 public:
   165   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
   166   bool do_object_b(oop p);
   167 };
   169 class RefineCardTableEntryClosure;
   171 class G1RegionMappingChangedListener : public G1MappingChangedListener {
   172  private:
   173   void reset_from_card_cache(uint start_idx, size_t num_regions);
   174  public:
   175   virtual void on_commit(uint start_idx, size_t num_regions);
   176 };
   178 class G1CollectedHeap : public SharedHeap {
   179   friend class VM_CollectForMetadataAllocation;
   180   friend class VM_G1CollectForAllocation;
   181   friend class VM_G1CollectFull;
   182   friend class VM_G1IncCollectionPause;
   183   friend class VMStructs;
   184   friend class MutatorAllocRegion;
   185   friend class SurvivorGCAllocRegion;
   186   friend class OldGCAllocRegion;
   187   friend class G1Allocator;
   188   friend class G1DefaultAllocator;
   189   friend class G1ResManAllocator;
   191   // Closures used in implementation.
   192   template <G1Barrier barrier, G1Mark do_mark_object>
   193   friend class G1ParCopyClosure;
   194   friend class G1IsAliveClosure;
   195   friend class G1EvacuateFollowersClosure;
   196   friend class G1ParScanThreadState;
   197   friend class G1ParScanClosureSuper;
   198   friend class G1ParEvacuateFollowersClosure;
   199   friend class G1ParTask;
   200   friend class G1ParGCAllocator;
   201   friend class G1DefaultParGCAllocator;
   202   friend class G1FreeGarbageRegionClosure;
   203   friend class RefineCardTableEntryClosure;
   204   friend class G1PrepareCompactClosure;
   205   friend class RegionSorter;
   206   friend class RegionResetter;
   207   friend class CountRCClosure;
   208   friend class EvacPopObjClosure;
   209   friend class G1ParCleanupCTTask;
   211   friend class G1FreeHumongousRegionClosure;
   212   // Other related classes.
   213   friend class G1MarkSweep;
   215 private:
   216   // The one and only G1CollectedHeap, so static functions can find it.
   217   static G1CollectedHeap* _g1h;
   219   static size_t _humongous_object_threshold_in_words;
   221   // The secondary free list which contains regions that have been
   222   // freed up during the cleanup process. This will be appended to
   223   // the master free list when appropriate.
   224   FreeRegionList _secondary_free_list;
   226   // It keeps track of the old regions.
   227   HeapRegionSet _old_set;
   229   // It keeps track of the humongous regions.
   230   HeapRegionSet _humongous_set;
   232   void clear_humongous_is_live_table();
   233   void eagerly_reclaim_humongous_regions();
   235   // The number of regions we could create by expansion.
   236   uint _expansion_regions;
   238   // The block offset table for the G1 heap.
   239   G1BlockOffsetSharedArray* _bot_shared;
   241   // Tears down the region sets / lists so that they are empty and the
   242   // regions on the heap do not belong to a region set / list. The
   243   // only exception is the humongous set which we leave unaltered. If
   244   // free_list_only is true, it will only tear down the master free
   245   // list. It is called before a Full GC (free_list_only == false) or
   246   // before heap shrinking (free_list_only == true).
   247   void tear_down_region_sets(bool free_list_only);
   249   // Rebuilds the region sets / lists so that they are repopulated to
   250   // reflect the contents of the heap. The only exception is the
   251   // humongous set which was not torn down in the first place. If
   252   // free_list_only is true, it will only rebuild the master free
   253   // list. It is called after a Full GC (free_list_only == false) or
   254   // after heap shrinking (free_list_only == true).
   255   void rebuild_region_sets(bool free_list_only);
   257   // Callback for region mapping changed events.
   258   G1RegionMappingChangedListener _listener;
   260   // The sequence of all heap regions in the heap.
   261   HeapRegionManager _hrm;
   263   // Class that handles the different kinds of allocations.
   264   G1Allocator* _allocator;
   266   // Statistics for each allocation context
   267   AllocationContextStats _allocation_context_stats;
   269   // PLAB sizing policy for survivors.
   270   PLABStats _survivor_plab_stats;
   272   // PLAB sizing policy for tenured objects.
   273   PLABStats _old_plab_stats;
   275   // It specifies whether we should attempt to expand the heap after a
   276   // region allocation failure. If heap expansion fails we set this to
   277   // false so that we don't re-attempt the heap expansion (it's likely
   278   // that subsequent expansion attempts will also fail if one fails).
   279   // Currently, it is only consulted during GC and it's reset at the
   280   // start of each GC.
   281   bool _expand_heap_after_alloc_failure;
   283   // It resets the mutator alloc region before new allocations can take place.
   284   void init_mutator_alloc_region();
   286   // It releases the mutator alloc region.
   287   void release_mutator_alloc_region();
   289   // It initializes the GC alloc regions at the start of a GC.
   290   void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
   292   // It releases the GC alloc regions at the end of a GC.
   293   void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
   295   // It does any cleanup that needs to be done on the GC alloc regions
   296   // before a Full GC.
   297   void abandon_gc_alloc_regions();
   299   // Helper for monitoring and management support.
   300   G1MonitoringSupport* _g1mm;
   302   // Records whether the region at the given index is kept live by roots or
   303   // references from the young generation.
   304   class HumongousIsLiveBiasedMappedArray : public G1BiasedMappedArray<bool> {
   305    protected:
   306     bool default_value() const { return false; }
   307    public:
   308     void clear() { G1BiasedMappedArray<bool>::clear(); }
   309     void set_live(uint region) {
   310       set_by_index(region, true);
   311     }
   312     bool is_live(uint region) {
   313       return get_by_index(region);
   314     }
   315   };
   317   HumongousIsLiveBiasedMappedArray _humongous_is_live;
   318   // Stores whether during humongous object registration we found candidate regions.
   319   // If not, we can skip a few steps.
   320   bool _has_humongous_reclaim_candidates;
   322   volatile unsigned _gc_time_stamp;
   324   size_t* _surviving_young_words;
   326   G1HRPrinter _hr_printer;
   328   void setup_surviving_young_words();
   329   void update_surviving_young_words(size_t* surv_young_words);
   330   void cleanup_surviving_young_words();
   332   // It decides whether an explicit GC should start a concurrent cycle
   333   // instead of doing a STW GC. Currently, a concurrent cycle is
   334   // explicitly started if:
   335   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   336   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   337   // (c) cause == _g1_humongous_allocation
   338   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   340   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   341   // concurrent cycles) we have started.
   342   volatile unsigned int _old_marking_cycles_started;
   344   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   345   // concurrent cycles) we have completed.
   346   volatile unsigned int _old_marking_cycles_completed;
   348   bool _concurrent_cycle_started;
   350   // This is a non-product method that is helpful for testing. It is
   351   // called at the end of a GC and artificially expands the heap by
   352   // allocating a number of dead regions. This way we can induce very
   353   // frequent marking cycles and stress the cleanup / concurrent
   354   // cleanup code more (as all the regions that will be allocated by
   355   // this method will be found dead by the marking cycle).
   356   void allocate_dummy_regions() PRODUCT_RETURN;
   358   // Clear RSets after a compaction. It also resets the GC time stamps.
   359   void clear_rsets_post_compaction();
   361   // If the HR printer is active, dump the state of the regions in the
   362   // heap after a compaction.
   363   void print_hrm_post_compaction();
   365   double verify(bool guard, const char* msg);
   366   void verify_before_gc();
   367   void verify_after_gc();
   369   void log_gc_header();
   370   void log_gc_footer(double pause_time_sec);
   372   // These are macros so that, if the assert fires, we get the correct
   373   // line number, file, etc.
   375 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   376   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   377           (_extra_message_),                                                  \
   378           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   379           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   380           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   382 #define assert_heap_locked()                                                  \
   383   do {                                                                        \
   384     assert(Heap_lock->owned_by_self(),                                        \
   385            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   386   } while (0)
   388 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   389   do {                                                                        \
   390     assert(Heap_lock->owned_by_self() ||                                      \
   391            (SafepointSynchronize::is_at_safepoint() &&                        \
   392              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   393            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   394                                         "should be at a safepoint"));         \
   395   } while (0)
   397 #define assert_heap_locked_and_not_at_safepoint()                             \
   398   do {                                                                        \
   399     assert(Heap_lock->owned_by_self() &&                                      \
   400                                     !SafepointSynchronize::is_at_safepoint(), \
   401           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   402                                        "should not be at a safepoint"));      \
   403   } while (0)
   405 #define assert_heap_not_locked()                                              \
   406   do {                                                                        \
   407     assert(!Heap_lock->owned_by_self(),                                       \
   408         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   409   } while (0)
   411 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   412   do {                                                                        \
   413     assert(!Heap_lock->owned_by_self() &&                                     \
   414                                     !SafepointSynchronize::is_at_safepoint(), \
   415       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   416                                    "should not be at a safepoint"));          \
   417   } while (0)
   419 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   420   do {                                                                        \
   421     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   422               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   423            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   424   } while (0)
   426 #define assert_not_at_safepoint()                                             \
   427   do {                                                                        \
   428     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   429            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   430   } while (0)
   432 protected:
   434   // The young region list.
   435   YoungList*  _young_list;
   437   // The current policy object for the collector.
   438   G1CollectorPolicy* _g1_policy;
   440   // This is the second level of trying to allocate a new region. If
   441   // new_region() didn't find a region on the free_list, this call will
   442   // check whether there's anything available on the
   443   // secondary_free_list and/or wait for more regions to appear on
   444   // that list, if _free_regions_coming is set.
   445   HeapRegion* new_region_try_secondary_free_list(bool is_old);
   447   // Try to allocate a single non-humongous HeapRegion sufficient for
   448   // an allocation of the given word_size. If do_expand is true,
   449   // attempt to expand the heap if necessary to satisfy the allocation
   450   // request. If the region is to be used as an old region or for a
   451   // humongous object, set is_old to true. If not, to false.
   452   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
   454   // Initialize a contiguous set of free regions of length num_regions
   455   // and starting at index first so that they appear as a single
   456   // humongous region.
   457   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
   458                                                       uint num_regions,
   459                                                       size_t word_size,
   460                                                       AllocationContext_t context);
   462   // Attempt to allocate a humongous object of the given size. Return
   463   // NULL if unsuccessful.
   464   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
   466   // The following two methods, allocate_new_tlab() and
   467   // mem_allocate(), are the two main entry points from the runtime
   468   // into the G1's allocation routines. They have the following
   469   // assumptions:
   470   //
   471   // * They should both be called outside safepoints.
   472   //
   473   // * They should both be called without holding the Heap_lock.
   474   //
   475   // * All allocation requests for new TLABs should go to
   476   //   allocate_new_tlab().
   477   //
   478   // * All non-TLAB allocation requests should go to mem_allocate().
   479   //
   480   // * If either call cannot satisfy the allocation request using the
   481   //   current allocating region, they will try to get a new one. If
   482   //   this fails, they will attempt to do an evacuation pause and
   483   //   retry the allocation.
   484   //
   485   // * If all allocation attempts fail, even after trying to schedule
   486   //   an evacuation pause, allocate_new_tlab() will return NULL,
   487   //   whereas mem_allocate() will attempt a heap expansion and/or
   488   //   schedule a Full GC.
   489   //
   490   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   491   //   should never be called with word_size being humongous. All
   492   //   humongous allocation requests should go to mem_allocate() which
   493   //   will satisfy them with a special path.
   495   virtual HeapWord* allocate_new_tlab(size_t word_size);
   497   virtual HeapWord* mem_allocate(size_t word_size,
   498                                  bool*  gc_overhead_limit_was_exceeded);
   500   // The following three methods take a gc_count_before_ret
   501   // parameter which is used to return the GC count if the method
   502   // returns NULL. Given that we are required to read the GC count
   503   // while holding the Heap_lock, and these paths will take the
   504   // Heap_lock at some point, it's easier to get them to read the GC
   505   // count while holding the Heap_lock before they return NULL instead
   506   // of the caller (namely: mem_allocate()) having to also take the
   507   // Heap_lock just to read the GC count.
   509   // First-level mutator allocation attempt: try to allocate out of
   510   // the mutator alloc region without taking the Heap_lock. This
   511   // should only be used for non-humongous allocations.
   512   inline HeapWord* attempt_allocation(size_t word_size,
   513                                       unsigned int* gc_count_before_ret,
   514                                       int* gclocker_retry_count_ret);
   516   // Second-level mutator allocation attempt: take the Heap_lock and
   517   // retry the allocation attempt, potentially scheduling a GC
   518   // pause. This should only be used for non-humongous allocations.
   519   HeapWord* attempt_allocation_slow(size_t word_size,
   520                                     AllocationContext_t context,
   521                                     unsigned int* gc_count_before_ret,
   522                                     int* gclocker_retry_count_ret);
   524   // Takes the Heap_lock and attempts a humongous allocation. It can
   525   // potentially schedule a GC pause.
   526   HeapWord* attempt_allocation_humongous(size_t word_size,
   527                                          unsigned int* gc_count_before_ret,
   528                                          int* gclocker_retry_count_ret);
   530   // Allocation attempt that should be called during safepoints (e.g.,
   531   // at the end of a successful GC). expect_null_mutator_alloc_region
   532   // specifies whether the mutator alloc region is expected to be NULL
   533   // or not.
   534   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   535                                             AllocationContext_t context,
   536                                             bool expect_null_mutator_alloc_region);
   538   // It dirties the cards that cover the block so that so that the post
   539   // write barrier never queues anything when updating objects on this
   540   // block. It is assumed (and in fact we assert) that the block
   541   // belongs to a young region.
   542   inline void dirty_young_block(HeapWord* start, size_t word_size);
   544   // Allocate blocks during garbage collection. Will ensure an
   545   // allocation region, either by picking one or expanding the
   546   // heap, and then allocate a block of the given size. The block
   547   // may not be a humongous - it must fit into a single heap region.
   548   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose,
   549                                    size_t word_size,
   550                                    AllocationContext_t context);
   552   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   553                                     HeapRegion*    alloc_region,
   554                                     bool           par,
   555                                     size_t         word_size);
   557   // Ensure that no further allocations can happen in "r", bearing in mind
   558   // that parallel threads might be attempting allocations.
   559   void par_allocate_remaining_space(HeapRegion* r);
   561   // Allocation attempt during GC for a survivor object / PLAB.
   562   inline HeapWord* survivor_attempt_allocation(size_t word_size,
   563                                                AllocationContext_t context);
   565   // Allocation attempt during GC for an old object / PLAB.
   566   inline HeapWord* old_attempt_allocation(size_t word_size,
   567                                           AllocationContext_t context);
   569   // These methods are the "callbacks" from the G1AllocRegion class.
   571   // For mutator alloc regions.
   572   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   573   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   574                                    size_t allocated_bytes);
   576   // For GC alloc regions.
   577   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
   578                                   GCAllocPurpose ap);
   579   void retire_gc_alloc_region(HeapRegion* alloc_region,
   580                               size_t allocated_bytes, GCAllocPurpose ap);
   582   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   583   //   inspection request and should collect the entire heap
   584   // - if clear_all_soft_refs is true, all soft references should be
   585   //   cleared during the GC
   586   // - if explicit_gc is false, word_size describes the allocation that
   587   //   the GC should attempt (at least) to satisfy
   588   // - it returns false if it is unable to do the collection due to the
   589   //   GC locker being active, true otherwise
   590   bool do_collection(bool explicit_gc,
   591                      bool clear_all_soft_refs,
   592                      size_t word_size);
   594   // Callback from VM_G1CollectFull operation.
   595   // Perform a full collection.
   596   virtual void do_full_collection(bool clear_all_soft_refs);
   598   // Resize the heap if necessary after a full collection.  If this is
   599   // after a collect-for allocation, "word_size" is the allocation size,
   600   // and will be considered part of the used portion of the heap.
   601   void resize_if_necessary_after_full_collection(size_t word_size);
   603   // Callback from VM_G1CollectForAllocation operation.
   604   // This function does everything necessary/possible to satisfy a
   605   // failed allocation request (including collection, expansion, etc.)
   606   HeapWord* satisfy_failed_allocation(size_t word_size,
   607                                       AllocationContext_t context,
   608                                       bool* succeeded);
   610   // Attempting to expand the heap sufficiently
   611   // to support an allocation of the given "word_size".  If
   612   // successful, perform the allocation and return the address of the
   613   // allocated block, or else "NULL".
   614   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
   616   // Process any reference objects discovered during
   617   // an incremental evacuation pause.
   618   void process_discovered_references(uint no_of_gc_workers);
   620   // Enqueue any remaining discovered references
   621   // after processing.
   622   void enqueue_discovered_references(uint no_of_gc_workers);
   624 public:
   626   G1Allocator* allocator() {
   627     return _allocator;
   628   }
   630   G1MonitoringSupport* g1mm() {
   631     assert(_g1mm != NULL, "should have been initialized");
   632     return _g1mm;
   633   }
   635   // Expand the garbage-first heap by at least the given size (in bytes!).
   636   // Returns true if the heap was expanded by the requested amount;
   637   // false otherwise.
   638   // (Rounds up to a HeapRegion boundary.)
   639   bool expand(size_t expand_bytes);
   641   // Returns the PLAB statistics given a purpose.
   642   PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
   643     PLABStats* stats = NULL;
   645     switch (purpose) {
   646     case GCAllocForSurvived:
   647       stats = &_survivor_plab_stats;
   648       break;
   649     case GCAllocForTenured:
   650       stats = &_old_plab_stats;
   651       break;
   652     default:
   653       assert(false, "unrecognized GCAllocPurpose");
   654     }
   656     return stats;
   657   }
   659   // Determines PLAB size for a particular allocation purpose.
   660   size_t desired_plab_sz(GCAllocPurpose purpose);
   662   inline AllocationContextStats& allocation_context_stats();
   664   // Do anything common to GC's.
   665   virtual void gc_prologue(bool full);
   666   virtual void gc_epilogue(bool full);
   668   inline void set_humongous_is_live(oop obj);
   670   bool humongous_is_live(uint region) {
   671     return _humongous_is_live.is_live(region);
   672   }
   674   // Returns whether the given region (which must be a humongous (start) region)
   675   // is to be considered conservatively live regardless of any other conditions.
   676   bool humongous_region_is_always_live(uint index);
   677   // Register the given region to be part of the collection set.
   678   inline void register_humongous_region_with_in_cset_fast_test(uint index);
   679   // Register regions with humongous objects (actually on the start region) in
   680   // the in_cset_fast_test table.
   681   void register_humongous_regions_with_in_cset_fast_test();
   682   // We register a region with the fast "in collection set" test. We
   683   // simply set to true the array slot corresponding to this region.
   684   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   685     _in_cset_fast_test.set_in_cset(r->hrm_index());
   686   }
   688   // This is a fast test on whether a reference points into the
   689   // collection set or not. Assume that the reference
   690   // points into the heap.
   691   inline bool in_cset_fast_test(oop obj);
   693   void clear_cset_fast_test() {
   694     _in_cset_fast_test.clear();
   695   }
   697   // This is called at the start of either a concurrent cycle or a Full
   698   // GC to update the number of old marking cycles started.
   699   void increment_old_marking_cycles_started();
   701   // This is called at the end of either a concurrent cycle or a Full
   702   // GC to update the number of old marking cycles completed. Those two
   703   // can happen in a nested fashion, i.e., we start a concurrent
   704   // cycle, a Full GC happens half-way through it which ends first,
   705   // and then the cycle notices that a Full GC happened and ends
   706   // too. The concurrent parameter is a boolean to help us do a bit
   707   // tighter consistency checking in the method. If concurrent is
   708   // false, the caller is the inner caller in the nesting (i.e., the
   709   // Full GC). If concurrent is true, the caller is the outer caller
   710   // in this nesting (i.e., the concurrent cycle). Further nesting is
   711   // not currently supported. The end of this call also notifies
   712   // the FullGCCount_lock in case a Java thread is waiting for a full
   713   // GC to happen (e.g., it called System.gc() with
   714   // +ExplicitGCInvokesConcurrent).
   715   void increment_old_marking_cycles_completed(bool concurrent);
   717   unsigned int old_marking_cycles_completed() {
   718     return _old_marking_cycles_completed;
   719   }
   721   void register_concurrent_cycle_start(const Ticks& start_time);
   722   void register_concurrent_cycle_end();
   723   void trace_heap_after_concurrent_cycle();
   725   G1YCType yc_type();
   727   G1HRPrinter* hr_printer() { return &_hr_printer; }
   729   // Frees a non-humongous region by initializing its contents and
   730   // adding it to the free list that's passed as a parameter (this is
   731   // usually a local list which will be appended to the master free
   732   // list later). The used bytes of freed regions are accumulated in
   733   // pre_used. If par is true, the region's RSet will not be freed
   734   // up. The assumption is that this will be done later.
   735   // The locked parameter indicates if the caller has already taken
   736   // care of proper synchronization. This may allow some optimizations.
   737   void free_region(HeapRegion* hr,
   738                    FreeRegionList* free_list,
   739                    bool par,
   740                    bool locked = false);
   742   // Frees a humongous region by collapsing it into individual regions
   743   // and calling free_region() for each of them. The freed regions
   744   // will be added to the free list that's passed as a parameter (this
   745   // is usually a local list which will be appended to the master free
   746   // list later). The used bytes of freed regions are accumulated in
   747   // pre_used. If par is true, the region's RSet will not be freed
   748   // up. The assumption is that this will be done later.
   749   void free_humongous_region(HeapRegion* hr,
   750                              FreeRegionList* free_list,
   751                              bool par);
   752 protected:
   754   // Shrink the garbage-first heap by at most the given size (in bytes!).
   755   // (Rounds down to a HeapRegion boundary.)
   756   virtual void shrink(size_t expand_bytes);
   757   void shrink_helper(size_t expand_bytes);
   759   #if TASKQUEUE_STATS
   760   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   761   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   762   void reset_taskqueue_stats();
   763   #endif // TASKQUEUE_STATS
   765   // Schedule the VM operation that will do an evacuation pause to
   766   // satisfy an allocation request of word_size. *succeeded will
   767   // return whether the VM operation was successful (it did do an
   768   // evacuation pause) or not (another thread beat us to it or the GC
   769   // locker was active). Given that we should not be holding the
   770   // Heap_lock when we enter this method, we will pass the
   771   // gc_count_before (i.e., total_collections()) as a parameter since
   772   // it has to be read while holding the Heap_lock. Currently, both
   773   // methods that call do_collection_pause() release the Heap_lock
   774   // before the call, so it's easy to read gc_count_before just before.
   775   HeapWord* do_collection_pause(size_t         word_size,
   776                                 unsigned int   gc_count_before,
   777                                 bool*          succeeded,
   778                                 GCCause::Cause gc_cause);
   780   // The guts of the incremental collection pause, executed by the vm
   781   // thread. It returns false if it is unable to do the collection due
   782   // to the GC locker being active, true otherwise
   783   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   785   // Actually do the work of evacuating the collection set.
   786   void evacuate_collection_set(EvacuationInfo& evacuation_info);
   788   // The g1 remembered set of the heap.
   789   G1RemSet* _g1_rem_set;
   791   // A set of cards that cover the objects for which the Rsets should be updated
   792   // concurrently after the collection.
   793   DirtyCardQueueSet _dirty_card_queue_set;
   795   // The closure used to refine a single card.
   796   RefineCardTableEntryClosure* _refine_cte_cl;
   798   // A function to check the consistency of dirty card logs.
   799   void check_ct_logs_at_safepoint();
   801   // A DirtyCardQueueSet that is used to hold cards that contain
   802   // references into the current collection set. This is used to
   803   // update the remembered sets of the regions in the collection
   804   // set in the event of an evacuation failure.
   805   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   807   // After a collection pause, make the regions in the CS into free
   808   // regions.
   809   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
   811   // Abandon the current collection set without recording policy
   812   // statistics or updating free lists.
   813   void abandon_collection_set(HeapRegion* cs_head);
   815   // Applies "scan_non_heap_roots" to roots outside the heap,
   816   // "scan_rs" to roots inside the heap (having done "set_region" to
   817   // indicate the region in which the root resides),
   818   // and does "scan_metadata" If "scan_rs" is
   819   // NULL, then this step is skipped.  The "worker_i"
   820   // param is for use with parallel roots processing, and should be
   821   // the "i" of the calling parallel worker thread's work(i) function.
   822   // In the sequential case this param will be ignored.
   823   void g1_process_roots(OopClosure* scan_non_heap_roots,
   824                         OopClosure* scan_non_heap_weak_roots,
   825                         OopsInHeapRegionClosure* scan_rs,
   826                         CLDClosure* scan_strong_clds,
   827                         CLDClosure* scan_weak_clds,
   828                         CodeBlobClosure* scan_strong_code,
   829                         uint worker_i);
   831   // The concurrent marker (and the thread it runs in.)
   832   ConcurrentMark* _cm;
   833   ConcurrentMarkThread* _cmThread;
   834   bool _mark_in_progress;
   836   // The concurrent refiner.
   837   ConcurrentG1Refine* _cg1r;
   839   // The parallel task queues
   840   RefToScanQueueSet *_task_queues;
   842   // True iff a evacuation has failed in the current collection.
   843   bool _evacuation_failed;
   845   EvacuationFailedInfo* _evacuation_failed_info_array;
   847   // Failed evacuations cause some logical from-space objects to have
   848   // forwarding pointers to themselves.  Reset them.
   849   void remove_self_forwarding_pointers();
   851   // Together, these store an object with a preserved mark, and its mark value.
   852   Stack<oop, mtGC>     _objs_with_preserved_marks;
   853   Stack<markOop, mtGC> _preserved_marks_of_objs;
   855   // Preserve the mark of "obj", if necessary, in preparation for its mark
   856   // word being overwritten with a self-forwarding-pointer.
   857   void preserve_mark_if_necessary(oop obj, markOop m);
   859   // The stack of evac-failure objects left to be scanned.
   860   GrowableArray<oop>*    _evac_failure_scan_stack;
   861   // The closure to apply to evac-failure objects.
   863   OopsInHeapRegionClosure* _evac_failure_closure;
   864   // Set the field above.
   865   void
   866   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   867     _evac_failure_closure = evac_failure_closure;
   868   }
   870   // Push "obj" on the scan stack.
   871   void push_on_evac_failure_scan_stack(oop obj);
   872   // Process scan stack entries until the stack is empty.
   873   void drain_evac_failure_scan_stack();
   874   // True iff an invocation of "drain_scan_stack" is in progress; to
   875   // prevent unnecessary recursion.
   876   bool _drain_in_progress;
   878   // Do any necessary initialization for evacuation-failure handling.
   879   // "cl" is the closure that will be used to process evac-failure
   880   // objects.
   881   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   882   // Do any necessary cleanup for evacuation-failure handling data
   883   // structures.
   884   void finalize_for_evac_failure();
   886   // An attempt to evacuate "obj" has failed; take necessary steps.
   887   oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
   888   void handle_evacuation_failure_common(oop obj, markOop m);
   890 #ifndef PRODUCT
   891   // Support for forcing evacuation failures. Analogous to
   892   // PromotionFailureALot for the other collectors.
   894   // Records whether G1EvacuationFailureALot should be in effect
   895   // for the current GC
   896   bool _evacuation_failure_alot_for_current_gc;
   898   // Used to record the GC number for interval checking when
   899   // determining whether G1EvaucationFailureALot is in effect
   900   // for the current GC.
   901   size_t _evacuation_failure_alot_gc_number;
   903   // Count of the number of evacuations between failures.
   904   volatile size_t _evacuation_failure_alot_count;
   906   // Set whether G1EvacuationFailureALot should be in effect
   907   // for the current GC (based upon the type of GC and which
   908   // command line flags are set);
   909   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
   910                                                   bool during_initial_mark,
   911                                                   bool during_marking);
   913   inline void set_evacuation_failure_alot_for_current_gc();
   915   // Return true if it's time to cause an evacuation failure.
   916   inline bool evacuation_should_fail();
   918   // Reset the G1EvacuationFailureALot counters.  Should be called at
   919   // the end of an evacuation pause in which an evacuation failure occurred.
   920   inline void reset_evacuation_should_fail();
   921 #endif // !PRODUCT
   923   // ("Weak") Reference processing support.
   924   //
   925   // G1 has 2 instances of the reference processor class. One
   926   // (_ref_processor_cm) handles reference object discovery
   927   // and subsequent processing during concurrent marking cycles.
   928   //
   929   // The other (_ref_processor_stw) handles reference object
   930   // discovery and processing during full GCs and incremental
   931   // evacuation pauses.
   932   //
   933   // During an incremental pause, reference discovery will be
   934   // temporarily disabled for _ref_processor_cm and will be
   935   // enabled for _ref_processor_stw. At the end of the evacuation
   936   // pause references discovered by _ref_processor_stw will be
   937   // processed and discovery will be disabled. The previous
   938   // setting for reference object discovery for _ref_processor_cm
   939   // will be re-instated.
   940   //
   941   // At the start of marking:
   942   //  * Discovery by the CM ref processor is verified to be inactive
   943   //    and it's discovered lists are empty.
   944   //  * Discovery by the CM ref processor is then enabled.
   945   //
   946   // At the end of marking:
   947   //  * Any references on the CM ref processor's discovered
   948   //    lists are processed (possibly MT).
   949   //
   950   // At the start of full GC we:
   951   //  * Disable discovery by the CM ref processor and
   952   //    empty CM ref processor's discovered lists
   953   //    (without processing any entries).
   954   //  * Verify that the STW ref processor is inactive and it's
   955   //    discovered lists are empty.
   956   //  * Temporarily set STW ref processor discovery as single threaded.
   957   //  * Temporarily clear the STW ref processor's _is_alive_non_header
   958   //    field.
   959   //  * Finally enable discovery by the STW ref processor.
   960   //
   961   // The STW ref processor is used to record any discovered
   962   // references during the full GC.
   963   //
   964   // At the end of a full GC we:
   965   //  * Enqueue any reference objects discovered by the STW ref processor
   966   //    that have non-live referents. This has the side-effect of
   967   //    making the STW ref processor inactive by disabling discovery.
   968   //  * Verify that the CM ref processor is still inactive
   969   //    and no references have been placed on it's discovered
   970   //    lists (also checked as a precondition during initial marking).
   972   // The (stw) reference processor...
   973   ReferenceProcessor* _ref_processor_stw;
   975   STWGCTimer* _gc_timer_stw;
   976   ConcurrentGCTimer* _gc_timer_cm;
   978   G1OldTracer* _gc_tracer_cm;
   979   G1NewTracer* _gc_tracer_stw;
   981   // During reference object discovery, the _is_alive_non_header
   982   // closure (if non-null) is applied to the referent object to
   983   // determine whether the referent is live. If so then the
   984   // reference object does not need to be 'discovered' and can
   985   // be treated as a regular oop. This has the benefit of reducing
   986   // the number of 'discovered' reference objects that need to
   987   // be processed.
   988   //
   989   // Instance of the is_alive closure for embedding into the
   990   // STW reference processor as the _is_alive_non_header field.
   991   // Supplying a value for the _is_alive_non_header field is
   992   // optional but doing so prevents unnecessary additions to
   993   // the discovered lists during reference discovery.
   994   G1STWIsAliveClosure _is_alive_closure_stw;
   996   // The (concurrent marking) reference processor...
   997   ReferenceProcessor* _ref_processor_cm;
   999   // Instance of the concurrent mark is_alive closure for embedding
  1000   // into the Concurrent Marking reference processor as the
  1001   // _is_alive_non_header field. Supplying a value for the
  1002   // _is_alive_non_header field is optional but doing so prevents
  1003   // unnecessary additions to the discovered lists during reference
  1004   // discovery.
  1005   G1CMIsAliveClosure _is_alive_closure_cm;
  1007   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
  1008   HeapRegion** _worker_cset_start_region;
  1010   // Time stamp to validate the regions recorded in the cache
  1011   // used by G1CollectedHeap::start_cset_region_for_worker().
  1012   // The heap region entry for a given worker is valid iff
  1013   // the associated time stamp value matches the current value
  1014   // of G1CollectedHeap::_gc_time_stamp.
  1015   unsigned int* _worker_cset_start_region_time_stamp;
  1017   enum G1H_process_roots_tasks {
  1018     G1H_PS_filter_satb_buffers,
  1019     G1H_PS_refProcessor_oops_do,
  1020     // Leave this one last.
  1021     G1H_PS_NumElements
  1022   };
  1024   SubTasksDone* _process_strong_tasks;
  1026   volatile bool _free_regions_coming;
  1028 public:
  1030   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
  1032   void set_refine_cte_cl_concurrency(bool concurrent);
  1034   RefToScanQueue *task_queue(int i) const;
  1036   // A set of cards where updates happened during the GC
  1037   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
  1039   // A DirtyCardQueueSet that is used to hold cards that contain
  1040   // references into the current collection set. This is used to
  1041   // update the remembered sets of the regions in the collection
  1042   // set in the event of an evacuation failure.
  1043   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
  1044         { return _into_cset_dirty_card_queue_set; }
  1046   // Create a G1CollectedHeap with the specified policy.
  1047   // Must call the initialize method afterwards.
  1048   // May not return if something goes wrong.
  1049   G1CollectedHeap(G1CollectorPolicy* policy);
  1051   // Initialize the G1CollectedHeap to have the initial and
  1052   // maximum sizes and remembered and barrier sets
  1053   // specified by the policy object.
  1054   jint initialize();
  1056   virtual void stop();
  1058   // Return the (conservative) maximum heap alignment for any G1 heap
  1059   static size_t conservative_max_heap_alignment();
  1061   // Initialize weak reference processing.
  1062   virtual void ref_processing_init();
  1064   void set_par_threads(uint t) {
  1065     SharedHeap::set_par_threads(t);
  1066     // Done in SharedHeap but oddly there are
  1067     // two _process_strong_tasks's in a G1CollectedHeap
  1068     // so do it here too.
  1069     _process_strong_tasks->set_n_threads(t);
  1072   // Set _n_par_threads according to a policy TBD.
  1073   void set_par_threads();
  1075   void set_n_termination(int t) {
  1076     _process_strong_tasks->set_n_threads(t);
  1079   virtual CollectedHeap::Name kind() const {
  1080     return CollectedHeap::G1CollectedHeap;
  1083   // The current policy object for the collector.
  1084   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
  1086   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
  1088   // Adaptive size policy.  No such thing for g1.
  1089   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
  1091   // The rem set and barrier set.
  1092   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  1094   unsigned get_gc_time_stamp() {
  1095     return _gc_time_stamp;
  1098   inline void reset_gc_time_stamp();
  1100   void check_gc_time_stamps() PRODUCT_RETURN;
  1102   inline void increment_gc_time_stamp();
  1104   // Reset the given region's GC timestamp. If it's starts humongous,
  1105   // also reset the GC timestamp of its corresponding
  1106   // continues humongous regions too.
  1107   void reset_gc_time_stamps(HeapRegion* hr);
  1109   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1110                                   DirtyCardQueue* into_cset_dcq,
  1111                                   bool concurrent, uint worker_i);
  1113   // The shared block offset table array.
  1114   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
  1116   // Reference Processing accessors
  1118   // The STW reference processor....
  1119   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
  1121   // The Concurrent Marking reference processor...
  1122   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
  1124   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
  1125   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
  1127   virtual size_t capacity() const;
  1128   virtual size_t used() const;
  1129   // This should be called when we're not holding the heap lock. The
  1130   // result might be a bit inaccurate.
  1131   size_t used_unlocked() const;
  1132   size_t recalculate_used() const;
  1134   // These virtual functions do the actual allocation.
  1135   // Some heaps may offer a contiguous region for shared non-blocking
  1136   // allocation, via inlined code (by exporting the address of the top and
  1137   // end fields defining the extent of the contiguous allocation region.)
  1138   // But G1CollectedHeap doesn't yet support this.
  1140   virtual bool is_maximal_no_gc() const {
  1141     return _hrm.available() == 0;
  1144   // The current number of regions in the heap.
  1145   uint num_regions() const { return _hrm.length(); }
  1147   // The max number of regions in the heap.
  1148   uint max_regions() const { return _hrm.max_length(); }
  1150   // The number of regions that are completely free.
  1151   uint num_free_regions() const { return _hrm.num_free_regions(); }
  1153   // The number of regions that are not completely free.
  1154   uint num_used_regions() const { return num_regions() - num_free_regions(); }
  1156   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1157   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1158   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  1159   void verify_dirty_young_regions() PRODUCT_RETURN;
  1161 #ifndef PRODUCT
  1162   // Make sure that the given bitmap has no marked objects in the
  1163   // range [from,limit). If it does, print an error message and return
  1164   // false. Otherwise, just return true. bitmap_name should be "prev"
  1165   // or "next".
  1166   bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
  1167                                 HeapWord* from, HeapWord* limit);
  1169   // Verify that the prev / next bitmap range [tams,end) for the given
  1170   // region has no marks. Return true if all is well, false if errors
  1171   // are detected.
  1172   bool verify_bitmaps(const char* caller, HeapRegion* hr);
  1173 #endif // PRODUCT
  1175   // If G1VerifyBitmaps is set, verify that the marking bitmaps for
  1176   // the given region do not have any spurious marks. If errors are
  1177   // detected, print appropriate error messages and crash.
  1178   void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
  1180   // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
  1181   // have any spurious marks. If errors are detected, print
  1182   // appropriate error messages and crash.
  1183   void check_bitmaps(const char* caller) PRODUCT_RETURN;
  1185   // verify_region_sets() performs verification over the region
  1186   // lists. It will be compiled in the product code to be used when
  1187   // necessary (i.e., during heap verification).
  1188   void verify_region_sets();
  1190   // verify_region_sets_optional() is planted in the code for
  1191   // list verification in non-product builds (and it can be enabled in
  1192   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1193 #if HEAP_REGION_SET_FORCE_VERIFY
  1194   void verify_region_sets_optional() {
  1195     verify_region_sets();
  1197 #else // HEAP_REGION_SET_FORCE_VERIFY
  1198   void verify_region_sets_optional() { }
  1199 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1201 #ifdef ASSERT
  1202   bool is_on_master_free_list(HeapRegion* hr) {
  1203     return _hrm.is_free(hr);
  1205 #endif // ASSERT
  1207   // Wrapper for the region list operations that can be called from
  1208   // methods outside this class.
  1210   void secondary_free_list_add(FreeRegionList* list) {
  1211     _secondary_free_list.add_ordered(list);
  1214   void append_secondary_free_list() {
  1215     _hrm.insert_list_into_free_list(&_secondary_free_list);
  1218   void append_secondary_free_list_if_not_empty_with_lock() {
  1219     // If the secondary free list looks empty there's no reason to
  1220     // take the lock and then try to append it.
  1221     if (!_secondary_free_list.is_empty()) {
  1222       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1223       append_secondary_free_list();
  1227   inline void old_set_remove(HeapRegion* hr);
  1229   size_t non_young_capacity_bytes() {
  1230     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  1233   void set_free_regions_coming();
  1234   void reset_free_regions_coming();
  1235   bool free_regions_coming() { return _free_regions_coming; }
  1236   void wait_while_free_regions_coming();
  1238   // Determine whether the given region is one that we are using as an
  1239   // old GC alloc region.
  1240   bool is_old_gc_alloc_region(HeapRegion* hr) {
  1241     return _allocator->is_retained_old_region(hr);
  1244   // Perform a collection of the heap; intended for use in implementing
  1245   // "System.gc".  This probably implies as full a collection as the
  1246   // "CollectedHeap" supports.
  1247   virtual void collect(GCCause::Cause cause);
  1249   // The same as above but assume that the caller holds the Heap_lock.
  1250   void collect_locked(GCCause::Cause cause);
  1252   virtual void copy_allocation_context_stats(const jint* contexts,
  1253                                              jlong* totals,
  1254                                              jbyte* accuracy,
  1255                                              jint len);
  1257   // True iff an evacuation has failed in the most-recent collection.
  1258   bool evacuation_failed() { return _evacuation_failed; }
  1260   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
  1261   void prepend_to_freelist(FreeRegionList* list);
  1262   void decrement_summary_bytes(size_t bytes);
  1264   // Returns "TRUE" iff "p" points into the committed areas of the heap.
  1265   virtual bool is_in(const void* p) const;
  1266 #ifdef ASSERT
  1267   // Returns whether p is in one of the available areas of the heap. Slow but
  1268   // extensive version.
  1269   bool is_in_exact(const void* p) const;
  1270 #endif
  1272   // Return "TRUE" iff the given object address is within the collection
  1273   // set. Slow implementation.
  1274   inline bool obj_in_cs(oop obj);
  1276   inline bool is_in_cset(oop obj);
  1278   inline bool is_in_cset_or_humongous(const oop obj);
  1280   enum in_cset_state_t {
  1281    InNeither,           // neither in collection set nor humongous
  1282    InCSet,              // region is in collection set only
  1283    IsHumongous          // region is a humongous start region
  1284   };
  1285  private:
  1286   // Instances of this class are used for quick tests on whether a reference points
  1287   // into the collection set or is a humongous object (points into a humongous
  1288   // object).
  1289   // Each of the array's elements denotes whether the corresponding region is in
  1290   // the collection set or a humongous region.
  1291   // We use this to quickly reclaim humongous objects: by making a humongous region
  1292   // succeed this test, we sort-of add it to the collection set. During the reference
  1293   // iteration closures, when we see a humongous region, we simply mark it as
  1294   // referenced, i.e. live.
  1295   class G1FastCSetBiasedMappedArray : public G1BiasedMappedArray<char> {
  1296    protected:
  1297     char default_value() const { return G1CollectedHeap::InNeither; }
  1298    public:
  1299     void set_humongous(uintptr_t index) {
  1300       assert(get_by_index(index) != InCSet, "Should not overwrite InCSet values");
  1301       set_by_index(index, G1CollectedHeap::IsHumongous);
  1304     void clear_humongous(uintptr_t index) {
  1305       set_by_index(index, G1CollectedHeap::InNeither);
  1308     void set_in_cset(uintptr_t index) {
  1309       assert(get_by_index(index) != G1CollectedHeap::IsHumongous, "Should not overwrite IsHumongous value");
  1310       set_by_index(index, G1CollectedHeap::InCSet);
  1313     bool is_in_cset_or_humongous(HeapWord* addr) const { return get_by_address(addr) != G1CollectedHeap::InNeither; }
  1314     bool is_in_cset(HeapWord* addr) const { return get_by_address(addr) == G1CollectedHeap::InCSet; }
  1315     G1CollectedHeap::in_cset_state_t at(HeapWord* addr) const { return (G1CollectedHeap::in_cset_state_t)get_by_address(addr); }
  1316     void clear() { G1BiasedMappedArray<char>::clear(); }
  1317   };
  1319   // This array is used for a quick test on whether a reference points into
  1320   // the collection set or not. Each of the array's elements denotes whether the
  1321   // corresponding region is in the collection set or not.
  1322   G1FastCSetBiasedMappedArray _in_cset_fast_test;
  1324  public:
  1326   inline in_cset_state_t in_cset_state(const oop obj);
  1328   // Return "TRUE" iff the given object address is in the reserved
  1329   // region of g1.
  1330   bool is_in_g1_reserved(const void* p) const {
  1331     return _hrm.reserved().contains(p);
  1334   // Returns a MemRegion that corresponds to the space that has been
  1335   // reserved for the heap
  1336   MemRegion g1_reserved() const {
  1337     return _hrm.reserved();
  1340   virtual bool is_in_closed_subset(const void* p) const;
  1342   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
  1343     return (G1SATBCardTableLoggingModRefBS*) barrier_set();
  1346   // This resets the card table to all zeros.  It is used after
  1347   // a collection pause which used the card table to claim cards.
  1348   void cleanUpCardTable();
  1350   // Iteration functions.
  1352   // Iterate over all the ref-containing fields of all objects, calling
  1353   // "cl.do_oop" on each.
  1354   virtual void oop_iterate(ExtendedOopClosure* cl);
  1356   // Iterate over all objects, calling "cl.do_object" on each.
  1357   virtual void object_iterate(ObjectClosure* cl);
  1359   virtual void safe_object_iterate(ObjectClosure* cl) {
  1360     object_iterate(cl);
  1363   // Iterate over all spaces in use in the heap, in ascending address order.
  1364   virtual void space_iterate(SpaceClosure* cl);
  1366   // Iterate over heap regions, in address order, terminating the
  1367   // iteration early if the "doHeapRegion" method returns "true".
  1368   void heap_region_iterate(HeapRegionClosure* blk) const;
  1370   // Return the region with the given index. It assumes the index is valid.
  1371   inline HeapRegion* region_at(uint index) const;
  1373   // Calculate the region index of the given address. Given address must be
  1374   // within the heap.
  1375   inline uint addr_to_region(HeapWord* addr) const;
  1377   inline HeapWord* bottom_addr_for_region(uint index) const;
  1379   // Divide the heap region sequence into "chunks" of some size (the number
  1380   // of regions divided by the number of parallel threads times some
  1381   // overpartition factor, currently 4).  Assumes that this will be called
  1382   // in parallel by ParallelGCThreads worker threads with discinct worker
  1383   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1384   // calls will use the same "claim_value", and that that claim value is
  1385   // different from the claim_value of any heap region before the start of
  1386   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1387   // attempting to claim the first region in each chunk, and, if
  1388   // successful, applying the closure to each region in the chunk (and
  1389   // setting the claim value of the second and subsequent regions of the
  1390   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1391   // i.e., that a closure never attempt to abort a traversal.
  1392   void heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  1393                                        uint worker_id,
  1394                                        uint num_workers,
  1395                                        jint claim_value) const;
  1397   // It resets all the region claim values to the default.
  1398   void reset_heap_region_claim_values();
  1400   // Resets the claim values of regions in the current
  1401   // collection set to the default.
  1402   void reset_cset_heap_region_claim_values();
  1404 #ifdef ASSERT
  1405   bool check_heap_region_claim_values(jint claim_value);
  1407   // Same as the routine above but only checks regions in the
  1408   // current collection set.
  1409   bool check_cset_heap_region_claim_values(jint claim_value);
  1410 #endif // ASSERT
  1412   // Clear the cached cset start regions and (more importantly)
  1413   // the time stamps. Called when we reset the GC time stamp.
  1414   void clear_cset_start_regions();
  1416   // Given the id of a worker, obtain or calculate a suitable
  1417   // starting region for iterating over the current collection set.
  1418   HeapRegion* start_cset_region_for_worker(uint worker_i);
  1420   // Iterate over the regions (if any) in the current collection set.
  1421   void collection_set_iterate(HeapRegionClosure* blk);
  1423   // As above but starting from region r
  1424   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1426   HeapRegion* next_compaction_region(const HeapRegion* from) const;
  1428   // A CollectedHeap will contain some number of spaces.  This finds the
  1429   // space containing a given address, or else returns NULL.
  1430   virtual Space* space_containing(const void* addr) const;
  1432   // Returns the HeapRegion that contains addr. addr must not be NULL.
  1433   template <class T>
  1434   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1436   // Returns the HeapRegion that contains addr. addr must not be NULL.
  1437   // If addr is within a humongous continues region, it returns its humongous start region.
  1438   template <class T>
  1439   inline HeapRegion* heap_region_containing(const T addr) const;
  1441   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1442   // each address in the (reserved) heap is a member of exactly
  1443   // one block.  The defining characteristic of a block is that it is
  1444   // possible to find its size, and thus to progress forward to the next
  1445   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1446   // represent Java objects, or they might be free blocks in a
  1447   // free-list-based heap (or subheap), as long as the two kinds are
  1448   // distinguishable and the size of each is determinable.
  1450   // Returns the address of the start of the "block" that contains the
  1451   // address "addr".  We say "blocks" instead of "object" since some heaps
  1452   // may not pack objects densely; a chunk may either be an object or a
  1453   // non-object.
  1454   virtual HeapWord* block_start(const void* addr) const;
  1456   // Requires "addr" to be the start of a chunk, and returns its size.
  1457   // "addr + size" is required to be the start of a new chunk, or the end
  1458   // of the active area of the heap.
  1459   virtual size_t block_size(const HeapWord* addr) const;
  1461   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1462   // the block is an object.
  1463   virtual bool block_is_obj(const HeapWord* addr) const;
  1465   // Does this heap support heap inspection? (+PrintClassHistogram)
  1466   virtual bool supports_heap_inspection() const { return true; }
  1468   // Section on thread-local allocation buffers (TLABs)
  1469   // See CollectedHeap for semantics.
  1471   bool supports_tlab_allocation() const;
  1472   size_t tlab_capacity(Thread* ignored) const;
  1473   size_t tlab_used(Thread* ignored) const;
  1474   size_t max_tlab_size() const;
  1475   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
  1477   // Can a compiler initialize a new object without store barriers?
  1478   // This permission only extends from the creation of a new object
  1479   // via a TLAB up to the first subsequent safepoint. If such permission
  1480   // is granted for this heap type, the compiler promises to call
  1481   // defer_store_barrier() below on any slow path allocation of
  1482   // a new object for which such initializing store barriers will
  1483   // have been elided. G1, like CMS, allows this, but should be
  1484   // ready to provide a compensating write barrier as necessary
  1485   // if that storage came out of a non-young region. The efficiency
  1486   // of this implementation depends crucially on being able to
  1487   // answer very efficiently in constant time whether a piece of
  1488   // storage in the heap comes from a young region or not.
  1489   // See ReduceInitialCardMarks.
  1490   virtual bool can_elide_tlab_store_barriers() const {
  1491     return true;
  1494   virtual bool card_mark_must_follow_store() const {
  1495     return true;
  1498   inline bool is_in_young(const oop obj);
  1500 #ifdef ASSERT
  1501   virtual bool is_in_partial_collection(const void* p);
  1502 #endif
  1504   virtual bool is_scavengable(const void* addr);
  1506   // We don't need barriers for initializing stores to objects
  1507   // in the young gen: for the SATB pre-barrier, there is no
  1508   // pre-value that needs to be remembered; for the remembered-set
  1509   // update logging post-barrier, we don't maintain remembered set
  1510   // information for young gen objects.
  1511   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
  1513   // Returns "true" iff the given word_size is "very large".
  1514   static bool isHumongous(size_t word_size) {
  1515     // Note this has to be strictly greater-than as the TLABs
  1516     // are capped at the humongous thresold and we want to
  1517     // ensure that we don't try to allocate a TLAB as
  1518     // humongous and that we don't allocate a humongous
  1519     // object in a TLAB.
  1520     return word_size > _humongous_object_threshold_in_words;
  1523   // Update mod union table with the set of dirty cards.
  1524   void updateModUnion();
  1526   // Set the mod union bits corresponding to the given memRegion.  Note
  1527   // that this is always a safe operation, since it doesn't clear any
  1528   // bits.
  1529   void markModUnionRange(MemRegion mr);
  1531   // Records the fact that a marking phase is no longer in progress.
  1532   void set_marking_complete() {
  1533     _mark_in_progress = false;
  1535   void set_marking_started() {
  1536     _mark_in_progress = true;
  1538   bool mark_in_progress() {
  1539     return _mark_in_progress;
  1542   // Print the maximum heap capacity.
  1543   virtual size_t max_capacity() const;
  1545   virtual jlong millis_since_last_gc();
  1548   // Convenience function to be used in situations where the heap type can be
  1549   // asserted to be this type.
  1550   static G1CollectedHeap* heap();
  1552   void set_region_short_lived_locked(HeapRegion* hr);
  1553   // add appropriate methods for any other surv rate groups
  1555   YoungList* young_list() const { return _young_list; }
  1557   // debugging
  1558   bool check_young_list_well_formed() {
  1559     return _young_list->check_list_well_formed();
  1562   bool check_young_list_empty(bool check_heap,
  1563                               bool check_sample = true);
  1565   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1566   // many of these need to be public.
  1568   // The functions below are helper functions that a subclass of
  1569   // "CollectedHeap" can use in the implementation of its virtual
  1570   // functions.
  1571   // This performs a concurrent marking of the live objects in a
  1572   // bitmap off to the side.
  1573   void doConcurrentMark();
  1575   bool isMarkedPrev(oop obj) const;
  1576   bool isMarkedNext(oop obj) const;
  1578   // Determine if an object is dead, given the object and also
  1579   // the region to which the object belongs. An object is dead
  1580   // iff a) it was not allocated since the last mark and b) it
  1581   // is not marked.
  1582   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1583     return
  1584       !hr->obj_allocated_since_prev_marking(obj) &&
  1585       !isMarkedPrev(obj);
  1588   // This function returns true when an object has been
  1589   // around since the previous marking and hasn't yet
  1590   // been marked during this marking.
  1591   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1592     return
  1593       !hr->obj_allocated_since_next_marking(obj) &&
  1594       !isMarkedNext(obj);
  1597   // Determine if an object is dead, given only the object itself.
  1598   // This will find the region to which the object belongs and
  1599   // then call the region version of the same function.
  1601   // Added if it is NULL it isn't dead.
  1603   inline bool is_obj_dead(const oop obj) const;
  1605   inline bool is_obj_ill(const oop obj) const;
  1607   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
  1608   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
  1609   bool is_marked(oop obj, VerifyOption vo);
  1610   const char* top_at_mark_start_str(VerifyOption vo);
  1612   ConcurrentMark* concurrent_mark() const { return _cm; }
  1614   // Refinement
  1616   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1618   // The dirty cards region list is used to record a subset of regions
  1619   // whose cards need clearing. The list if populated during the
  1620   // remembered set scanning and drained during the card table
  1621   // cleanup. Although the methods are reentrant, population/draining
  1622   // phases must not overlap. For synchronization purposes the last
  1623   // element on the list points to itself.
  1624   HeapRegion* _dirty_cards_region_list;
  1625   void push_dirty_cards_region(HeapRegion* hr);
  1626   HeapRegion* pop_dirty_cards_region();
  1628   // Optimized nmethod scanning support routines
  1630   // Register the given nmethod with the G1 heap
  1631   virtual void register_nmethod(nmethod* nm);
  1633   // Unregister the given nmethod from the G1 heap
  1634   virtual void unregister_nmethod(nmethod* nm);
  1636   // Free up superfluous code root memory.
  1637   void purge_code_root_memory();
  1639   // Rebuild the stong code root lists for each region
  1640   // after a full GC
  1641   void rebuild_strong_code_roots();
  1643   // Delete entries for dead interned string and clean up unreferenced symbols
  1644   // in symbol table, possibly in parallel.
  1645   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
  1647   // Parallel phase of unloading/cleaning after G1 concurrent mark.
  1648   void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
  1650   // Redirty logged cards in the refinement queue.
  1651   void redirty_logged_cards();
  1652   // Verification
  1654   // The following is just to alert the verification code
  1655   // that a full collection has occurred and that the
  1656   // remembered sets are no longer up to date.
  1657   bool _full_collection;
  1658   void set_full_collection() { _full_collection = true;}
  1659   void clear_full_collection() {_full_collection = false;}
  1660   bool full_collection() {return _full_collection;}
  1662   // Perform any cleanup actions necessary before allowing a verification.
  1663   virtual void prepare_for_verify();
  1665   // Perform verification.
  1667   // vo == UsePrevMarking  -> use "prev" marking information,
  1668   // vo == UseNextMarking -> use "next" marking information
  1669   // vo == UseMarkWord    -> use the mark word in the object header
  1670   //
  1671   // NOTE: Only the "prev" marking information is guaranteed to be
  1672   // consistent most of the time, so most calls to this should use
  1673   // vo == UsePrevMarking.
  1674   // Currently, there is only one case where this is called with
  1675   // vo == UseNextMarking, which is to verify the "next" marking
  1676   // information at the end of remark.
  1677   // Currently there is only one place where this is called with
  1678   // vo == UseMarkWord, which is to verify the marking during a
  1679   // full GC.
  1680   void verify(bool silent, VerifyOption vo);
  1682   // Override; it uses the "prev" marking information
  1683   virtual void verify(bool silent);
  1685   // The methods below are here for convenience and dispatch the
  1686   // appropriate method depending on value of the given VerifyOption
  1687   // parameter. The values for that parameter, and their meanings,
  1688   // are the same as those above.
  1690   bool is_obj_dead_cond(const oop obj,
  1691                         const HeapRegion* hr,
  1692                         const VerifyOption vo) const;
  1694   bool is_obj_dead_cond(const oop obj,
  1695                         const VerifyOption vo) const;
  1697   // Printing
  1699   virtual void print_on(outputStream* st) const;
  1700   virtual void print_extended_on(outputStream* st) const;
  1701   virtual void print_on_error(outputStream* st) const;
  1703   virtual void print_gc_threads_on(outputStream* st) const;
  1704   virtual void gc_threads_do(ThreadClosure* tc) const;
  1706   // Override
  1707   void print_tracing_info() const;
  1709   // The following two methods are helpful for debugging RSet issues.
  1710   void print_cset_rsets() PRODUCT_RETURN;
  1711   void print_all_rsets() PRODUCT_RETURN;
  1713 public:
  1714   size_t pending_card_num();
  1715   size_t cards_scanned();
  1717 protected:
  1718   size_t _max_heap_capacity;
  1719 };
  1721 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial