src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp

Wed, 10 Apr 2013 14:26:49 +0200

author
stefank
date
Wed, 10 Apr 2013 14:26:49 +0200
changeset 4904
7b835924c31c
parent 4900
8617e38bb4cb
child 5018
b06ac540229e
permissions
-rw-r--r--

8011872: Include Bit Map addresses in the hs_err files
Reviewed-by: brutisso, jmasa

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
    28 #include "gc_implementation/shared/gSpaceCounters.hpp"
    29 #include "gc_implementation/shared/gcStats.hpp"
    30 #include "gc_implementation/shared/generationCounters.hpp"
    31 #include "memory/freeBlockDictionary.hpp"
    32 #include "memory/generation.hpp"
    33 #include "runtime/mutexLocker.hpp"
    34 #include "runtime/virtualspace.hpp"
    35 #include "services/memoryService.hpp"
    36 #include "utilities/bitMap.inline.hpp"
    37 #include "utilities/stack.inline.hpp"
    38 #include "utilities/taskqueue.hpp"
    39 #include "utilities/yieldingWorkgroup.hpp"
    41 // ConcurrentMarkSweepGeneration is in support of a concurrent
    42 // mark-sweep old generation in the Detlefs-Printezis--Boehm-Demers-Schenker
    43 // style. We assume, for now, that this generation is always the
    44 // seniormost generation and for simplicity
    45 // in the first implementation, that this generation is a single compactible
    46 // space. Neither of these restrictions appears essential, and will be
    47 // relaxed in the future when more time is available to implement the
    48 // greater generality (and there's a need for it).
    49 //
    50 // Concurrent mode failures are currently handled by
    51 // means of a sliding mark-compact.
    53 class CMSAdaptiveSizePolicy;
    54 class CMSConcMarkingTask;
    55 class CMSGCAdaptivePolicyCounters;
    56 class ConcurrentMarkSweepGeneration;
    57 class ConcurrentMarkSweepPolicy;
    58 class ConcurrentMarkSweepThread;
    59 class CompactibleFreeListSpace;
    60 class FreeChunk;
    61 class PromotionInfo;
    62 class ScanMarkedObjectsAgainCarefullyClosure;
    63 class TenuredGeneration;
    65 // A generic CMS bit map. It's the basis for both the CMS marking bit map
    66 // as well as for the mod union table (in each case only a subset of the
    67 // methods are used). This is essentially a wrapper around the BitMap class,
    68 // with one bit per (1<<_shifter) HeapWords. (i.e. for the marking bit map,
    69 // we have _shifter == 0. and for the mod union table we have
    70 // shifter == CardTableModRefBS::card_shift - LogHeapWordSize.)
    71 // XXX 64-bit issues in BitMap?
    72 class CMSBitMap VALUE_OBJ_CLASS_SPEC {
    73   friend class VMStructs;
    75   HeapWord* _bmStartWord;   // base address of range covered by map
    76   size_t    _bmWordSize;    // map size (in #HeapWords covered)
    77   const int _shifter;       // shifts to convert HeapWord to bit position
    78   VirtualSpace _virtual_space; // underlying the bit map
    79   BitMap    _bm;            // the bit map itself
    80  public:
    81   Mutex* const _lock;       // mutex protecting _bm;
    83  public:
    84   // constructor
    85   CMSBitMap(int shifter, int mutex_rank, const char* mutex_name);
    87   // allocates the actual storage for the map
    88   bool allocate(MemRegion mr);
    89   // field getter
    90   Mutex* lock() const { return _lock; }
    91   // locking verifier convenience function
    92   void assert_locked() const PRODUCT_RETURN;
    94   // inquiries
    95   HeapWord* startWord()   const { return _bmStartWord; }
    96   size_t    sizeInWords() const { return _bmWordSize;  }
    97   size_t    sizeInBits()  const { return _bm.size();   }
    98   // the following is one past the last word in space
    99   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
   101   // reading marks
   102   bool isMarked(HeapWord* addr) const;
   103   bool par_isMarked(HeapWord* addr) const; // do not lock checks
   104   bool isUnmarked(HeapWord* addr) const;
   105   bool isAllClear() const;
   107   // writing marks
   108   void mark(HeapWord* addr);
   109   // For marking by parallel GC threads;
   110   // returns true if we did, false if another thread did
   111   bool par_mark(HeapWord* addr);
   113   void mark_range(MemRegion mr);
   114   void par_mark_range(MemRegion mr);
   115   void mark_large_range(MemRegion mr);
   116   void par_mark_large_range(MemRegion mr);
   117   void par_clear(HeapWord* addr); // For unmarking by parallel GC threads.
   118   void clear_range(MemRegion mr);
   119   void par_clear_range(MemRegion mr);
   120   void clear_large_range(MemRegion mr);
   121   void par_clear_large_range(MemRegion mr);
   122   void clear_all();
   123   void clear_all_incrementally();  // Not yet implemented!!
   125   NOT_PRODUCT(
   126     // checks the memory region for validity
   127     void region_invariant(MemRegion mr);
   128   )
   130   // iteration
   131   void iterate(BitMapClosure* cl) {
   132     _bm.iterate(cl);
   133   }
   134   void iterate(BitMapClosure* cl, HeapWord* left, HeapWord* right);
   135   void dirty_range_iterate_clear(MemRegionClosure* cl);
   136   void dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl);
   138   // auxiliary support for iteration
   139   HeapWord* getNextMarkedWordAddress(HeapWord* addr) const;
   140   HeapWord* getNextMarkedWordAddress(HeapWord* start_addr,
   141                                             HeapWord* end_addr) const;
   142   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr) const;
   143   HeapWord* getNextUnmarkedWordAddress(HeapWord* start_addr,
   144                                               HeapWord* end_addr) const;
   145   MemRegion getAndClearMarkedRegion(HeapWord* addr);
   146   MemRegion getAndClearMarkedRegion(HeapWord* start_addr,
   147                                            HeapWord* end_addr);
   149   // conversion utilities
   150   HeapWord* offsetToHeapWord(size_t offset) const;
   151   size_t    heapWordToOffset(HeapWord* addr) const;
   152   size_t    heapWordDiffToOffsetDiff(size_t diff) const;
   154   void print_on_error(outputStream* st, const char* prefix) const;
   156   // debugging
   157   // is this address range covered by the bit-map?
   158   NOT_PRODUCT(
   159     bool covers(MemRegion mr) const;
   160     bool covers(HeapWord* start, size_t size = 0) const;
   161   )
   162   void verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) PRODUCT_RETURN;
   163 };
   165 // Represents a marking stack used by the CMS collector.
   166 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   167 class CMSMarkStack: public CHeapObj<mtGC>  {
   168   //
   169   friend class CMSCollector;   // to get at expasion stats further below
   170   //
   172   VirtualSpace _virtual_space;  // space for the stack
   173   oop*   _base;      // bottom of stack
   174   size_t _index;     // one more than last occupied index
   175   size_t _capacity;  // max #elements
   176   Mutex  _par_lock;  // an advisory lock used in case of parallel access
   177   NOT_PRODUCT(size_t _max_depth;)  // max depth plumbed during run
   179  protected:
   180   size_t _hit_limit;      // we hit max stack size limit
   181   size_t _failed_double;  // we failed expansion before hitting limit
   183  public:
   184   CMSMarkStack():
   185     _par_lock(Mutex::event, "CMSMarkStack._par_lock", true),
   186     _hit_limit(0),
   187     _failed_double(0) {}
   189   bool allocate(size_t size);
   191   size_t capacity() const { return _capacity; }
   193   oop pop() {
   194     if (!isEmpty()) {
   195       return _base[--_index] ;
   196     }
   197     return NULL;
   198   }
   200   bool push(oop ptr) {
   201     if (isFull()) {
   202       return false;
   203     } else {
   204       _base[_index++] = ptr;
   205       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   206       return true;
   207     }
   208   }
   210   bool isEmpty() const { return _index == 0; }
   211   bool isFull()  const {
   212     assert(_index <= _capacity, "buffer overflow");
   213     return _index == _capacity;
   214   }
   216   size_t length() { return _index; }
   218   // "Parallel versions" of some of the above
   219   oop par_pop() {
   220     // lock and pop
   221     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
   222     return pop();
   223   }
   225   bool par_push(oop ptr) {
   226     // lock and push
   227     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
   228     return push(ptr);
   229   }
   231   // Forcibly reset the stack, losing all of its contents.
   232   void reset() {
   233     _index = 0;
   234   }
   236   // Expand the stack, typically in response to an overflow condition
   237   void expand();
   239   // Compute the least valued stack element.
   240   oop least_value(HeapWord* low) {
   241      oop least = (oop)low;
   242      for (size_t i = 0; i < _index; i++) {
   243        least = MIN2(least, _base[i]);
   244      }
   245      return least;
   246   }
   248   // Exposed here to allow stack expansion in || case
   249   Mutex* par_lock() { return &_par_lock; }
   250 };
   252 class CardTableRS;
   253 class CMSParGCThreadState;
   255 class ModUnionClosure: public MemRegionClosure {
   256  protected:
   257   CMSBitMap* _t;
   258  public:
   259   ModUnionClosure(CMSBitMap* t): _t(t) { }
   260   void do_MemRegion(MemRegion mr);
   261 };
   263 class ModUnionClosurePar: public ModUnionClosure {
   264  public:
   265   ModUnionClosurePar(CMSBitMap* t): ModUnionClosure(t) { }
   266   void do_MemRegion(MemRegion mr);
   267 };
   269 // Survivor Chunk Array in support of parallelization of
   270 // Survivor Space rescan.
   271 class ChunkArray: public CHeapObj<mtGC> {
   272   size_t _index;
   273   size_t _capacity;
   274   size_t _overflows;
   275   HeapWord** _array;   // storage for array
   277  public:
   278   ChunkArray() : _index(0), _capacity(0), _overflows(0), _array(NULL) {}
   279   ChunkArray(HeapWord** a, size_t c):
   280     _index(0), _capacity(c), _overflows(0), _array(a) {}
   282   HeapWord** array() { return _array; }
   283   void set_array(HeapWord** a) { _array = a; }
   285   size_t capacity() { return _capacity; }
   286   void set_capacity(size_t c) { _capacity = c; }
   288   size_t end() {
   289     assert(_index <= capacity(),
   290            err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT "): out of bounds",
   291                    _index, _capacity));
   292     return _index;
   293   }  // exclusive
   295   HeapWord* nth(size_t n) {
   296     assert(n < end(), "Out of bounds access");
   297     return _array[n];
   298   }
   300   void reset() {
   301     _index = 0;
   302     if (_overflows > 0 && PrintCMSStatistics > 1) {
   303       warning("CMS: ChunkArray[" SIZE_FORMAT "] overflowed " SIZE_FORMAT " times",
   304               _capacity, _overflows);
   305     }
   306     _overflows = 0;
   307   }
   309   void record_sample(HeapWord* p, size_t sz) {
   310     // For now we do not do anything with the size
   311     if (_index < _capacity) {
   312       _array[_index++] = p;
   313     } else {
   314       ++_overflows;
   315       assert(_index == _capacity,
   316              err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT
   317                      "): out of bounds at overflow#" SIZE_FORMAT,
   318                      _index, _capacity, _overflows));
   319     }
   320   }
   321 };
   323 //
   324 // Timing, allocation and promotion statistics for gc scheduling and incremental
   325 // mode pacing.  Most statistics are exponential averages.
   326 //
   327 class CMSStats VALUE_OBJ_CLASS_SPEC {
   328  private:
   329   ConcurrentMarkSweepGeneration* const _cms_gen;   // The cms (old) gen.
   331   // The following are exponential averages with factor alpha:
   332   //   avg = (100 - alpha) * avg + alpha * cur_sample
   333   //
   334   //   The durations measure:  end_time[n] - start_time[n]
   335   //   The periods measure:    start_time[n] - start_time[n-1]
   336   //
   337   // The cms period and duration include only concurrent collections; time spent
   338   // in foreground cms collections due to System.gc() or because of a failure to
   339   // keep up are not included.
   340   //
   341   // There are 3 alphas to "bootstrap" the statistics.  The _saved_alpha is the
   342   // real value, but is used only after the first period.  A value of 100 is
   343   // used for the first sample so it gets the entire weight.
   344   unsigned int _saved_alpha; // 0-100
   345   unsigned int _gc0_alpha;
   346   unsigned int _cms_alpha;
   348   double _gc0_duration;
   349   double _gc0_period;
   350   size_t _gc0_promoted;         // bytes promoted per gc0
   351   double _cms_duration;
   352   double _cms_duration_pre_sweep; // time from initiation to start of sweep
   353   double _cms_duration_per_mb;
   354   double _cms_period;
   355   size_t _cms_allocated;        // bytes of direct allocation per gc0 period
   357   // Timers.
   358   elapsedTimer _cms_timer;
   359   TimeStamp    _gc0_begin_time;
   360   TimeStamp    _cms_begin_time;
   361   TimeStamp    _cms_end_time;
   363   // Snapshots of the amount used in the CMS generation.
   364   size_t _cms_used_at_gc0_begin;
   365   size_t _cms_used_at_gc0_end;
   366   size_t _cms_used_at_cms_begin;
   368   // Used to prevent the duty cycle from being reduced in the middle of a cms
   369   // cycle.
   370   bool _allow_duty_cycle_reduction;
   372   enum {
   373     _GC0_VALID = 0x1,
   374     _CMS_VALID = 0x2,
   375     _ALL_VALID = _GC0_VALID | _CMS_VALID
   376   };
   378   unsigned int _valid_bits;
   380   unsigned int _icms_duty_cycle;        // icms duty cycle (0-100).
   382  protected:
   384   // Return a duty cycle that avoids wild oscillations, by limiting the amount
   385   // of change between old_duty_cycle and new_duty_cycle (the latter is treated
   386   // as a recommended value).
   387   static unsigned int icms_damped_duty_cycle(unsigned int old_duty_cycle,
   388                                              unsigned int new_duty_cycle);
   389   unsigned int icms_update_duty_cycle_impl();
   391   // In support of adjusting of cms trigger ratios based on history
   392   // of concurrent mode failure.
   393   double cms_free_adjustment_factor(size_t free) const;
   394   void   adjust_cms_free_adjustment_factor(bool fail, size_t free);
   396  public:
   397   CMSStats(ConcurrentMarkSweepGeneration* cms_gen,
   398            unsigned int alpha = CMSExpAvgFactor);
   400   // Whether or not the statistics contain valid data; higher level statistics
   401   // cannot be called until this returns true (they require at least one young
   402   // gen and one cms cycle to have completed).
   403   bool valid() const;
   405   // Record statistics.
   406   void record_gc0_begin();
   407   void record_gc0_end(size_t cms_gen_bytes_used);
   408   void record_cms_begin();
   409   void record_cms_end();
   411   // Allow management of the cms timer, which must be stopped/started around
   412   // yield points.
   413   elapsedTimer& cms_timer()     { return _cms_timer; }
   414   void start_cms_timer()        { _cms_timer.start(); }
   415   void stop_cms_timer()         { _cms_timer.stop(); }
   417   // Basic statistics; units are seconds or bytes.
   418   double gc0_period() const     { return _gc0_period; }
   419   double gc0_duration() const   { return _gc0_duration; }
   420   size_t gc0_promoted() const   { return _gc0_promoted; }
   421   double cms_period() const          { return _cms_period; }
   422   double cms_duration() const        { return _cms_duration; }
   423   double cms_duration_per_mb() const { return _cms_duration_per_mb; }
   424   size_t cms_allocated() const       { return _cms_allocated; }
   426   size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
   428   // Seconds since the last background cms cycle began or ended.
   429   double cms_time_since_begin() const;
   430   double cms_time_since_end() const;
   432   // Higher level statistics--caller must check that valid() returns true before
   433   // calling.
   435   // Returns bytes promoted per second of wall clock time.
   436   double promotion_rate() const;
   438   // Returns bytes directly allocated per second of wall clock time.
   439   double cms_allocation_rate() const;
   441   // Rate at which space in the cms generation is being consumed (sum of the
   442   // above two).
   443   double cms_consumption_rate() const;
   445   // Returns an estimate of the number of seconds until the cms generation will
   446   // fill up, assuming no collection work is done.
   447   double time_until_cms_gen_full() const;
   449   // Returns an estimate of the number of seconds remaining until
   450   // the cms generation collection should start.
   451   double time_until_cms_start() const;
   453   // End of higher level statistics.
   455   // Returns the cms incremental mode duty cycle, as a percentage (0-100).
   456   unsigned int icms_duty_cycle() const { return _icms_duty_cycle; }
   458   // Update the duty cycle and return the new value.
   459   unsigned int icms_update_duty_cycle();
   461   // Debugging.
   462   void print_on(outputStream* st) const PRODUCT_RETURN;
   463   void print() const { print_on(gclog_or_tty); }
   464 };
   466 // A closure related to weak references processing which
   467 // we embed in the CMSCollector, since we need to pass
   468 // it to the reference processor for secondary filtering
   469 // of references based on reachability of referent;
   470 // see role of _is_alive_non_header closure in the
   471 // ReferenceProcessor class.
   472 // For objects in the CMS generation, this closure checks
   473 // if the object is "live" (reachable). Used in weak
   474 // reference processing.
   475 class CMSIsAliveClosure: public BoolObjectClosure {
   476   const MemRegion  _span;
   477   const CMSBitMap* _bit_map;
   479   friend class CMSCollector;
   480  public:
   481   CMSIsAliveClosure(MemRegion span,
   482                     CMSBitMap* bit_map):
   483     _span(span),
   484     _bit_map(bit_map) {
   485     assert(!span.is_empty(), "Empty span could spell trouble");
   486   }
   488   void do_object(oop obj) {
   489     assert(false, "not to be invoked");
   490   }
   492   bool do_object_b(oop obj);
   493 };
   496 // Implements AbstractRefProcTaskExecutor for CMS.
   497 class CMSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
   498 public:
   500   CMSRefProcTaskExecutor(CMSCollector& collector)
   501     : _collector(collector)
   502   { }
   504   // Executes a task using worker threads.
   505   virtual void execute(ProcessTask& task);
   506   virtual void execute(EnqueueTask& task);
   507 private:
   508   CMSCollector& _collector;
   509 };
   512 class CMSCollector: public CHeapObj<mtGC> {
   513   friend class VMStructs;
   514   friend class ConcurrentMarkSweepThread;
   515   friend class ConcurrentMarkSweepGeneration;
   516   friend class CompactibleFreeListSpace;
   517   friend class CMSParRemarkTask;
   518   friend class CMSConcMarkingTask;
   519   friend class CMSRefProcTaskProxy;
   520   friend class CMSRefProcTaskExecutor;
   521   friend class ScanMarkedObjectsAgainCarefullyClosure;  // for sampling eden
   522   friend class SurvivorSpacePrecleanClosure;            // --- ditto -------
   523   friend class PushOrMarkClosure;             // to access _restart_addr
   524   friend class Par_PushOrMarkClosure;             // to access _restart_addr
   525   friend class MarkFromRootsClosure;          //  -- ditto --
   526                                               // ... and for clearing cards
   527   friend class Par_MarkFromRootsClosure;      //  to access _restart_addr
   528                                               // ... and for clearing cards
   529   friend class Par_ConcMarkingClosure;        //  to access _restart_addr etc.
   530   friend class MarkFromRootsVerifyClosure;    // to access _restart_addr
   531   friend class PushAndMarkVerifyClosure;      //  -- ditto --
   532   friend class MarkRefsIntoAndScanClosure;    // to access _overflow_list
   533   friend class PushAndMarkClosure;            //  -- ditto --
   534   friend class Par_PushAndMarkClosure;        //  -- ditto --
   535   friend class CMSKeepAliveClosure;           //  -- ditto --
   536   friend class CMSDrainMarkingStackClosure;   //  -- ditto --
   537   friend class CMSInnerParMarkAndPushClosure; //  -- ditto --
   538   NOT_PRODUCT(friend class ScanMarkedObjectsAgainClosure;) //  assertion on _overflow_list
   539   friend class ReleaseForegroundGC;  // to access _foregroundGCShouldWait
   540   friend class VM_CMS_Operation;
   541   friend class VM_CMS_Initial_Mark;
   542   friend class VM_CMS_Final_Remark;
   543   friend class TraceCMSMemoryManagerStats;
   545  private:
   546   jlong _time_of_last_gc;
   547   void update_time_of_last_gc(jlong now) {
   548     _time_of_last_gc = now;
   549   }
   551   OopTaskQueueSet* _task_queues;
   553   // Overflow list of grey objects, threaded through mark-word
   554   // Manipulated with CAS in the parallel/multi-threaded case.
   555   oop _overflow_list;
   556   // The following array-pair keeps track of mark words
   557   // displaced for accomodating overflow list above.
   558   // This code will likely be revisited under RFE#4922830.
   559   Stack<oop, mtGC>     _preserved_oop_stack;
   560   Stack<markOop, mtGC> _preserved_mark_stack;
   562   int*             _hash_seed;
   564   // In support of multi-threaded concurrent phases
   565   YieldingFlexibleWorkGang* _conc_workers;
   567   // Performance Counters
   568   CollectorCounters* _gc_counters;
   570   // Initialization Errors
   571   bool _completed_initialization;
   573   // In support of ExplicitGCInvokesConcurrent
   574   static   bool _full_gc_requested;
   575   unsigned int  _collection_count_start;
   577   // Should we unload classes this concurrent cycle?
   578   bool _should_unload_classes;
   579   unsigned int  _concurrent_cycles_since_last_unload;
   580   unsigned int concurrent_cycles_since_last_unload() const {
   581     return _concurrent_cycles_since_last_unload;
   582   }
   583   // Did we (allow) unload classes in the previous concurrent cycle?
   584   bool unloaded_classes_last_cycle() const {
   585     return concurrent_cycles_since_last_unload() == 0;
   586   }
   587   // Root scanning options for perm gen
   588   int _roots_scanning_options;
   589   int roots_scanning_options() const      { return _roots_scanning_options; }
   590   void add_root_scanning_option(int o)    { _roots_scanning_options |= o;   }
   591   void remove_root_scanning_option(int o) { _roots_scanning_options &= ~o;  }
   593   // Verification support
   594   CMSBitMap     _verification_mark_bm;
   595   void verify_after_remark_work_1();
   596   void verify_after_remark_work_2();
   598   // true if any verification flag is on.
   599   bool _verifying;
   600   bool verifying() const { return _verifying; }
   601   void set_verifying(bool v) { _verifying = v; }
   603   // Collector policy
   604   ConcurrentMarkSweepPolicy* _collector_policy;
   605   ConcurrentMarkSweepPolicy* collector_policy() { return _collector_policy; }
   607   // XXX Move these to CMSStats ??? FIX ME !!!
   608   elapsedTimer _inter_sweep_timer;   // time between sweeps
   609   elapsedTimer _intra_sweep_timer;   // time _in_ sweeps
   610   // padded decaying average estimates of the above
   611   AdaptivePaddedAverage _inter_sweep_estimate;
   612   AdaptivePaddedAverage _intra_sweep_estimate;
   614  protected:
   615   ConcurrentMarkSweepGeneration* _cmsGen;  // old gen (CMS)
   616   MemRegion                      _span;    // span covering above two
   617   CardTableRS*                   _ct;      // card table
   619   // CMS marking support structures
   620   CMSBitMap     _markBitMap;
   621   CMSBitMap     _modUnionTable;
   622   CMSMarkStack  _markStack;
   624   HeapWord*     _restart_addr; // in support of marking stack overflow
   625   void          lower_restart_addr(HeapWord* low);
   627   // Counters in support of marking stack / work queue overflow handling:
   628   // a non-zero value indicates certain types of overflow events during
   629   // the current CMS cycle and could lead to stack resizing efforts at
   630   // an opportune future time.
   631   size_t        _ser_pmc_preclean_ovflw;
   632   size_t        _ser_pmc_remark_ovflw;
   633   size_t        _par_pmc_remark_ovflw;
   634   size_t        _ser_kac_preclean_ovflw;
   635   size_t        _ser_kac_ovflw;
   636   size_t        _par_kac_ovflw;
   637   NOT_PRODUCT(ssize_t _num_par_pushes;)
   639   // ("Weak") Reference processing support
   640   ReferenceProcessor*            _ref_processor;
   641   CMSIsAliveClosure              _is_alive_closure;
   642       // keep this textually after _markBitMap and _span; c'tor dependency
   644   ConcurrentMarkSweepThread*     _cmsThread;   // the thread doing the work
   645   ModUnionClosure    _modUnionClosure;
   646   ModUnionClosurePar _modUnionClosurePar;
   648   // CMS abstract state machine
   649   // initial_state: Idling
   650   // next_state(Idling)            = {Marking}
   651   // next_state(Marking)           = {Precleaning, Sweeping}
   652   // next_state(Precleaning)       = {AbortablePreclean, FinalMarking}
   653   // next_state(AbortablePreclean) = {FinalMarking}
   654   // next_state(FinalMarking)      = {Sweeping}
   655   // next_state(Sweeping)          = {Resizing}
   656   // next_state(Resizing)          = {Resetting}
   657   // next_state(Resetting)         = {Idling}
   658   // The numeric values below are chosen so that:
   659   // . _collectorState <= Idling ==  post-sweep && pre-mark
   660   // . _collectorState in (Idling, Sweeping) == {initial,final}marking ||
   661   //                                            precleaning || abortablePrecleanb
   662  public:
   663   enum CollectorState {
   664     Resizing            = 0,
   665     Resetting           = 1,
   666     Idling              = 2,
   667     InitialMarking      = 3,
   668     Marking             = 4,
   669     Precleaning         = 5,
   670     AbortablePreclean   = 6,
   671     FinalMarking        = 7,
   672     Sweeping            = 8
   673   };
   674  protected:
   675   static CollectorState _collectorState;
   677   // State related to prologue/epilogue invocation for my generations
   678   bool _between_prologue_and_epilogue;
   680   // Signalling/State related to coordination between fore- and backgroud GC
   681   // Note: When the baton has been passed from background GC to foreground GC,
   682   // _foregroundGCIsActive is true and _foregroundGCShouldWait is false.
   683   static bool _foregroundGCIsActive;    // true iff foreground collector is active or
   684                                  // wants to go active
   685   static bool _foregroundGCShouldWait;  // true iff background GC is active and has not
   686                                  // yet passed the baton to the foreground GC
   688   // Support for CMSScheduleRemark (abortable preclean)
   689   bool _abort_preclean;
   690   bool _start_sampling;
   692   int    _numYields;
   693   size_t _numDirtyCards;
   694   size_t _sweep_count;
   695   // number of full gc's since the last concurrent gc.
   696   uint   _full_gcs_since_conc_gc;
   698   // occupancy used for bootstrapping stats
   699   double _bootstrap_occupancy;
   701   // timer
   702   elapsedTimer _timer;
   704   // Timing, allocation and promotion statistics, used for scheduling.
   705   CMSStats      _stats;
   707   // Allocation limits installed in the young gen, used only in
   708   // CMSIncrementalMode.  When an allocation in the young gen would cross one of
   709   // these limits, the cms generation is notified and the cms thread is started
   710   // or stopped, respectively.
   711   HeapWord*     _icms_start_limit;
   712   HeapWord*     _icms_stop_limit;
   714   enum CMS_op_type {
   715     CMS_op_checkpointRootsInitial,
   716     CMS_op_checkpointRootsFinal
   717   };
   719   void do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause);
   720   bool stop_world_and_do(CMS_op_type op);
   722   OopTaskQueueSet* task_queues() { return _task_queues; }
   723   int*             hash_seed(int i) { return &_hash_seed[i]; }
   724   YieldingFlexibleWorkGang* conc_workers() { return _conc_workers; }
   726   // Support for parallelizing Eden rescan in CMS remark phase
   727   void sample_eden(); // ... sample Eden space top
   729  private:
   730   // Support for parallelizing young gen rescan in CMS remark phase
   731   Generation* _young_gen;  // the younger gen
   732   HeapWord** _top_addr;    // ... Top of Eden
   733   HeapWord** _end_addr;    // ... End of Eden
   734   HeapWord** _eden_chunk_array; // ... Eden partitioning array
   735   size_t     _eden_chunk_index; // ... top (exclusive) of array
   736   size_t     _eden_chunk_capacity;  // ... max entries in array
   738   // Support for parallelizing survivor space rescan
   739   HeapWord** _survivor_chunk_array;
   740   size_t     _survivor_chunk_index;
   741   size_t     _survivor_chunk_capacity;
   742   size_t*    _cursor;
   743   ChunkArray* _survivor_plab_array;
   745   // Support for marking stack overflow handling
   746   bool take_from_overflow_list(size_t num, CMSMarkStack* to_stack);
   747   bool par_take_from_overflow_list(size_t num,
   748                                    OopTaskQueue* to_work_q,
   749                                    int no_of_gc_threads);
   750   void push_on_overflow_list(oop p);
   751   void par_push_on_overflow_list(oop p);
   752   // the following is, obviously, not, in general, "MT-stable"
   753   bool overflow_list_is_empty() const;
   755   void preserve_mark_if_necessary(oop p);
   756   void par_preserve_mark_if_necessary(oop p);
   757   void preserve_mark_work(oop p, markOop m);
   758   void restore_preserved_marks_if_any();
   759   NOT_PRODUCT(bool no_preserved_marks() const;)
   760   // in support of testing overflow code
   761   NOT_PRODUCT(int _overflow_counter;)
   762   NOT_PRODUCT(bool simulate_overflow();)       // sequential
   763   NOT_PRODUCT(bool par_simulate_overflow();)   // MT version
   765   // CMS work methods
   766   void checkpointRootsInitialWork(bool asynch); // initial checkpoint work
   768   // a return value of false indicates failure due to stack overflow
   769   bool markFromRootsWork(bool asynch);  // concurrent marking work
   771  public:   // FIX ME!!! only for testing
   772   bool do_marking_st(bool asynch);      // single-threaded marking
   773   bool do_marking_mt(bool asynch);      // multi-threaded  marking
   775  private:
   777   // concurrent precleaning work
   778   size_t preclean_mod_union_table(ConcurrentMarkSweepGeneration* gen,
   779                                   ScanMarkedObjectsAgainCarefullyClosure* cl);
   780   size_t preclean_card_table(ConcurrentMarkSweepGeneration* gen,
   781                              ScanMarkedObjectsAgainCarefullyClosure* cl);
   782   // Does precleaning work, returning a quantity indicative of
   783   // the amount of "useful work" done.
   784   size_t preclean_work(bool clean_refs, bool clean_survivors);
   785   void preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock);
   786   void abortable_preclean(); // Preclean while looking for possible abort
   787   void initialize_sequential_subtasks_for_young_gen_rescan(int i);
   788   // Helper function for above; merge-sorts the per-thread plab samples
   789   void merge_survivor_plab_arrays(ContiguousSpace* surv, int no_of_gc_threads);
   790   // Resets (i.e. clears) the per-thread plab sample vectors
   791   void reset_survivor_plab_arrays();
   793   // final (second) checkpoint work
   794   void checkpointRootsFinalWork(bool asynch, bool clear_all_soft_refs,
   795                                 bool init_mark_was_synchronous);
   796   // work routine for parallel version of remark
   797   void do_remark_parallel();
   798   // work routine for non-parallel version of remark
   799   void do_remark_non_parallel();
   800   // reference processing work routine (during second checkpoint)
   801   void refProcessingWork(bool asynch, bool clear_all_soft_refs);
   803   // concurrent sweeping work
   804   void sweepWork(ConcurrentMarkSweepGeneration* gen, bool asynch);
   806   // (concurrent) resetting of support data structures
   807   void reset(bool asynch);
   809   // Clear _expansion_cause fields of constituent generations
   810   void clear_expansion_cause();
   812   // An auxilliary method used to record the ends of
   813   // used regions of each generation to limit the extent of sweep
   814   void save_sweep_limits();
   816   // A work method used by foreground collection to determine
   817   // what type of collection (compacting or not, continuing or fresh)
   818   // it should do.
   819   void decide_foreground_collection_type(bool clear_all_soft_refs,
   820     bool* should_compact, bool* should_start_over);
   822   // A work method used by the foreground collector to do
   823   // a mark-sweep-compact.
   824   void do_compaction_work(bool clear_all_soft_refs);
   826   // A work method used by the foreground collector to do
   827   // a mark-sweep, after taking over from a possibly on-going
   828   // concurrent mark-sweep collection.
   829   void do_mark_sweep_work(bool clear_all_soft_refs,
   830     CollectorState first_state, bool should_start_over);
   832   // If the backgrould GC is active, acquire control from the background
   833   // GC and do the collection.
   834   void acquire_control_and_collect(bool   full, bool clear_all_soft_refs);
   836   // For synchronizing passing of control from background to foreground
   837   // GC.  waitForForegroundGC() is called by the background
   838   // collector.  It if had to wait for a foreground collection,
   839   // it returns true and the background collection should assume
   840   // that the collection was finished by the foreground
   841   // collector.
   842   bool waitForForegroundGC();
   844   // Incremental mode triggering:  recompute the icms duty cycle and set the
   845   // allocation limits in the young gen.
   846   void icms_update_allocation_limits();
   848   size_t block_size_using_printezis_bits(HeapWord* addr) const;
   849   size_t block_size_if_printezis_bits(HeapWord* addr) const;
   850   HeapWord* next_card_start_after_block(HeapWord* addr) const;
   852   void setup_cms_unloading_and_verification_state();
   853  public:
   854   CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   855                CardTableRS*                   ct,
   856                ConcurrentMarkSweepPolicy*     cp);
   857   ConcurrentMarkSweepThread* cmsThread() { return _cmsThread; }
   859   ReferenceProcessor* ref_processor() { return _ref_processor; }
   860   void ref_processor_init();
   862   Mutex* bitMapLock()        const { return _markBitMap.lock();    }
   863   static CollectorState abstract_state() { return _collectorState;  }
   865   bool should_abort_preclean() const; // Whether preclean should be aborted.
   866   size_t get_eden_used() const;
   867   size_t get_eden_capacity() const;
   869   ConcurrentMarkSweepGeneration* cmsGen() { return _cmsGen; }
   871   // locking checks
   872   NOT_PRODUCT(static bool have_cms_token();)
   874   // XXXPERM bool should_collect(bool full, size_t size, bool tlab);
   875   bool shouldConcurrentCollect();
   877   void collect(bool   full,
   878                bool   clear_all_soft_refs,
   879                size_t size,
   880                bool   tlab);
   881   void collect_in_background(bool clear_all_soft_refs);
   882   void collect_in_foreground(bool clear_all_soft_refs);
   884   // In support of ExplicitGCInvokesConcurrent
   885   static void request_full_gc(unsigned int full_gc_count);
   886   // Should we unload classes in a particular concurrent cycle?
   887   bool should_unload_classes() const {
   888     return _should_unload_classes;
   889   }
   890   void update_should_unload_classes();
   892   void direct_allocated(HeapWord* start, size_t size);
   894   // Object is dead if not marked and current phase is sweeping.
   895   bool is_dead_obj(oop obj) const;
   897   // After a promotion (of "start"), do any necessary marking.
   898   // If "par", then it's being done by a parallel GC thread.
   899   // The last two args indicate if we need precise marking
   900   // and if so the size of the object so it can be dirtied
   901   // in its entirety.
   902   void promoted(bool par, HeapWord* start,
   903                 bool is_obj_array, size_t obj_size);
   905   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
   906                                      size_t word_size);
   908   void getFreelistLocks() const;
   909   void releaseFreelistLocks() const;
   910   bool haveFreelistLocks() const;
   912   // Adjust size of underlying generation
   913   void compute_new_size();
   915   // GC prologue and epilogue
   916   void gc_prologue(bool full);
   917   void gc_epilogue(bool full);
   919   jlong time_of_last_gc(jlong now) {
   920     if (_collectorState <= Idling) {
   921       // gc not in progress
   922       return _time_of_last_gc;
   923     } else {
   924       // collection in progress
   925       return now;
   926     }
   927   }
   929   // Support for parallel remark of survivor space
   930   void* get_data_recorder(int thr_num);
   932   CMSBitMap* markBitMap()  { return &_markBitMap; }
   933   void directAllocated(HeapWord* start, size_t size);
   935   // main CMS steps and related support
   936   void checkpointRootsInitial(bool asynch);
   937   bool markFromRoots(bool asynch);  // a return value of false indicates failure
   938                                     // due to stack overflow
   939   void preclean();
   940   void checkpointRootsFinal(bool asynch, bool clear_all_soft_refs,
   941                             bool init_mark_was_synchronous);
   942   void sweep(bool asynch);
   944   // Check that the currently executing thread is the expected
   945   // one (foreground collector or background collector).
   946   static void check_correct_thread_executing() PRODUCT_RETURN;
   947   // XXXPERM void print_statistics()           PRODUCT_RETURN;
   949   bool is_cms_reachable(HeapWord* addr);
   951   // Performance Counter Support
   952   CollectorCounters* counters()    { return _gc_counters; }
   954   // timer stuff
   955   void    startTimer() { assert(!_timer.is_active(), "Error"); _timer.start();   }
   956   void    stopTimer()  { assert( _timer.is_active(), "Error"); _timer.stop();    }
   957   void    resetTimer() { assert(!_timer.is_active(), "Error"); _timer.reset();   }
   958   double  timerValue() { assert(!_timer.is_active(), "Error"); return _timer.seconds(); }
   960   int  yields()          { return _numYields; }
   961   void resetYields()     { _numYields = 0;    }
   962   void incrementYields() { _numYields++;      }
   963   void resetNumDirtyCards()               { _numDirtyCards = 0; }
   964   void incrementNumDirtyCards(size_t num) { _numDirtyCards += num; }
   965   size_t  numDirtyCards()                 { return _numDirtyCards; }
   967   static bool foregroundGCShouldWait() { return _foregroundGCShouldWait; }
   968   static void set_foregroundGCShouldWait(bool v) { _foregroundGCShouldWait = v; }
   969   static bool foregroundGCIsActive() { return _foregroundGCIsActive; }
   970   static void set_foregroundGCIsActive(bool v) { _foregroundGCIsActive = v; }
   971   size_t sweep_count() const             { return _sweep_count; }
   972   void   increment_sweep_count()         { _sweep_count++; }
   974   // Timers/stats for gc scheduling and incremental mode pacing.
   975   CMSStats& stats() { return _stats; }
   977   // Convenience methods that check whether CMSIncrementalMode is enabled and
   978   // forward to the corresponding methods in ConcurrentMarkSweepThread.
   979   static void start_icms();
   980   static void stop_icms();    // Called at the end of the cms cycle.
   981   static void disable_icms(); // Called before a foreground collection.
   982   static void enable_icms();  // Called after a foreground collection.
   983   void icms_wait();          // Called at yield points.
   985   // Adaptive size policy
   986   CMSAdaptiveSizePolicy* size_policy();
   987   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
   989   static void print_on_error(outputStream* st);
   991   // debugging
   992   void verify();
   993   bool verify_after_remark();
   994   void verify_ok_to_terminate() const PRODUCT_RETURN;
   995   void verify_work_stacks_empty() const PRODUCT_RETURN;
   996   void verify_overflow_empty() const PRODUCT_RETURN;
   998   // convenience methods in support of debugging
   999   static const size_t skip_header_HeapWords() PRODUCT_RETURN0;
  1000   HeapWord* block_start(const void* p) const PRODUCT_RETURN0;
  1002   // accessors
  1003   CMSMarkStack* verification_mark_stack() { return &_markStack; }
  1004   CMSBitMap*    verification_mark_bm()    { return &_verification_mark_bm; }
  1006   // Initialization errors
  1007   bool completed_initialization() { return _completed_initialization; }
  1008 };
  1010 class CMSExpansionCause : public AllStatic  {
  1011  public:
  1012   enum Cause {
  1013     _no_expansion,
  1014     _satisfy_free_ratio,
  1015     _satisfy_promotion,
  1016     _satisfy_allocation,
  1017     _allocate_par_lab,
  1018     _allocate_par_spooling_space,
  1019     _adaptive_size_policy
  1020   };
  1021   // Return a string describing the cause of the expansion.
  1022   static const char* to_string(CMSExpansionCause::Cause cause);
  1023 };
  1025 class ConcurrentMarkSweepGeneration: public CardGeneration {
  1026   friend class VMStructs;
  1027   friend class ConcurrentMarkSweepThread;
  1028   friend class ConcurrentMarkSweep;
  1029   friend class CMSCollector;
  1030  protected:
  1031   static CMSCollector*       _collector; // the collector that collects us
  1032   CompactibleFreeListSpace*  _cmsSpace;  // underlying space (only one for now)
  1034   // Performance Counters
  1035   GenerationCounters*      _gen_counters;
  1036   GSpaceCounters*          _space_counters;
  1038   // Words directly allocated, used by CMSStats.
  1039   size_t _direct_allocated_words;
  1041   // Non-product stat counters
  1042   NOT_PRODUCT(
  1043     size_t _numObjectsPromoted;
  1044     size_t _numWordsPromoted;
  1045     size_t _numObjectsAllocated;
  1046     size_t _numWordsAllocated;
  1049   // Used for sizing decisions
  1050   bool _incremental_collection_failed;
  1051   bool incremental_collection_failed() {
  1052     return _incremental_collection_failed;
  1054   void set_incremental_collection_failed() {
  1055     _incremental_collection_failed = true;
  1057   void clear_incremental_collection_failed() {
  1058     _incremental_collection_failed = false;
  1061   // accessors
  1062   void set_expansion_cause(CMSExpansionCause::Cause v) { _expansion_cause = v;}
  1063   CMSExpansionCause::Cause expansion_cause() const { return _expansion_cause; }
  1065  private:
  1066   // For parallel young-gen GC support.
  1067   CMSParGCThreadState** _par_gc_thread_states;
  1069   // Reason generation was expanded
  1070   CMSExpansionCause::Cause _expansion_cause;
  1072   // In support of MinChunkSize being larger than min object size
  1073   const double _dilatation_factor;
  1075   enum CollectionTypes {
  1076     Concurrent_collection_type          = 0,
  1077     MS_foreground_collection_type       = 1,
  1078     MSC_foreground_collection_type      = 2,
  1079     Unknown_collection_type             = 3
  1080   };
  1082   CollectionTypes _debug_collection_type;
  1084   // Fraction of current occupancy at which to start a CMS collection which
  1085   // will collect this generation (at least).
  1086   double _initiating_occupancy;
  1088  protected:
  1089   // Shrink generation by specified size (returns false if unable to shrink)
  1090   void shrink_free_list_by(size_t bytes);
  1092   // Update statistics for GC
  1093   virtual void update_gc_stats(int level, bool full);
  1095   // Maximum available space in the generation (including uncommitted)
  1096   // space.
  1097   size_t max_available() const;
  1099   // getter and initializer for _initiating_occupancy field.
  1100   double initiating_occupancy() const { return _initiating_occupancy; }
  1101   void   init_initiating_occupancy(intx io, uintx tr);
  1103  public:
  1104   ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
  1105                                 int level, CardTableRS* ct,
  1106                                 bool use_adaptive_freelists,
  1107                                 FreeBlockDictionary<FreeChunk>::DictionaryChoice);
  1109   // Accessors
  1110   CMSCollector* collector() const { return _collector; }
  1111   static void set_collector(CMSCollector* collector) {
  1112     assert(_collector == NULL, "already set");
  1113     _collector = collector;
  1115   CompactibleFreeListSpace*  cmsSpace() const { return _cmsSpace;  }
  1117   Mutex* freelistLock() const;
  1119   virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
  1121   // Adaptive size policy
  1122   CMSAdaptiveSizePolicy* size_policy();
  1124   bool refs_discovery_is_atomic() const { return false; }
  1125   bool refs_discovery_is_mt()     const {
  1126     // Note: CMS does MT-discovery during the parallel-remark
  1127     // phases. Use ReferenceProcessorMTMutator to make refs
  1128     // discovery MT-safe during such phases or other parallel
  1129     // discovery phases in the future. This may all go away
  1130     // if/when we decide that refs discovery is sufficiently
  1131     // rare that the cost of the CAS's involved is in the
  1132     // noise. That's a measurement that should be done, and
  1133     // the code simplified if that turns out to be the case.
  1134     return ConcGCThreads > 1;
  1137   // Override
  1138   virtual void ref_processor_init();
  1140   // Grow generation by specified size (returns false if unable to grow)
  1141   bool grow_by(size_t bytes);
  1142   // Grow generation to reserved size.
  1143   bool grow_to_reserved();
  1145   void clear_expansion_cause() { _expansion_cause = CMSExpansionCause::_no_expansion; }
  1147   // Space enquiries
  1148   size_t capacity() const;
  1149   size_t used() const;
  1150   size_t free() const;
  1151   double occupancy() const { return ((double)used())/((double)capacity()); }
  1152   size_t contiguous_available() const;
  1153   size_t unsafe_max_alloc_nogc() const;
  1155   // over-rides
  1156   MemRegion used_region() const;
  1157   MemRegion used_region_at_save_marks() const;
  1159   // Does a "full" (forced) collection invoked on this generation collect
  1160   // all younger generations as well? Note that the second conjunct is a
  1161   // hack to allow the collection of the younger gen first if the flag is
  1162   // set. This is better than using th policy's should_collect_gen0_first()
  1163   // since that causes us to do an extra unnecessary pair of restart-&-stop-world.
  1164   virtual bool full_collects_younger_generations() const {
  1165     return UseCMSCompactAtFullCollection && !CollectGen0First;
  1168   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
  1170   // Support for compaction
  1171   CompactibleSpace* first_compaction_space() const;
  1172   // Adjust quantites in the generation affected by
  1173   // the compaction.
  1174   void reset_after_compaction();
  1176   // Allocation support
  1177   HeapWord* allocate(size_t size, bool tlab);
  1178   HeapWord* have_lock_and_allocate(size_t size, bool tlab);
  1179   oop       promote(oop obj, size_t obj_size);
  1180   HeapWord* par_allocate(size_t size, bool tlab) {
  1181     return allocate(size, tlab);
  1184   // Incremental mode triggering.
  1185   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
  1186                                      size_t word_size);
  1188   // Used by CMSStats to track direct allocation.  The value is sampled and
  1189   // reset after each young gen collection.
  1190   size_t direct_allocated_words() const { return _direct_allocated_words; }
  1191   void reset_direct_allocated_words()   { _direct_allocated_words = 0; }
  1193   // Overrides for parallel promotion.
  1194   virtual oop par_promote(int thread_num,
  1195                           oop obj, markOop m, size_t word_sz);
  1196   // This one should not be called for CMS.
  1197   virtual void par_promote_alloc_undo(int thread_num,
  1198                                       HeapWord* obj, size_t word_sz);
  1199   virtual void par_promote_alloc_done(int thread_num);
  1200   virtual void par_oop_since_save_marks_iterate_done(int thread_num);
  1202   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes) const;
  1204   // Inform this (non-young) generation that a promotion failure was
  1205   // encountered during a collection of a younger generation that
  1206   // promotes into this generation.
  1207   virtual void promotion_failure_occurred();
  1209   bool should_collect(bool full, size_t size, bool tlab);
  1210   virtual bool should_concurrent_collect() const;
  1211   virtual bool is_too_full() const;
  1212   void collect(bool   full,
  1213                bool   clear_all_soft_refs,
  1214                size_t size,
  1215                bool   tlab);
  1217   HeapWord* expand_and_allocate(size_t word_size,
  1218                                 bool tlab,
  1219                                 bool parallel = false);
  1221   // GC prologue and epilogue
  1222   void gc_prologue(bool full);
  1223   void gc_prologue_work(bool full, bool registerClosure,
  1224                         ModUnionClosure* modUnionClosure);
  1225   void gc_epilogue(bool full);
  1226   void gc_epilogue_work(bool full);
  1228   // Time since last GC of this generation
  1229   jlong time_of_last_gc(jlong now) {
  1230     return collector()->time_of_last_gc(now);
  1232   void update_time_of_last_gc(jlong now) {
  1233     collector()-> update_time_of_last_gc(now);
  1236   // Allocation failure
  1237   void expand(size_t bytes, size_t expand_bytes,
  1238     CMSExpansionCause::Cause cause);
  1239   virtual bool expand(size_t bytes, size_t expand_bytes);
  1240   void shrink(size_t bytes);
  1241   void shrink_by(size_t bytes);
  1242   HeapWord* expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz);
  1243   bool expand_and_ensure_spooling_space(PromotionInfo* promo);
  1245   // Iteration support and related enquiries
  1246   void save_marks();
  1247   bool no_allocs_since_save_marks();
  1248   void object_iterate_since_last_GC(ObjectClosure* cl);
  1249   void younger_refs_iterate(OopsInGenClosure* cl);
  1251   // Iteration support specific to CMS generations
  1252   void save_sweep_limit();
  1254   // More iteration support
  1255   virtual void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
  1256   virtual void oop_iterate(ExtendedOopClosure* cl);
  1257   virtual void safe_object_iterate(ObjectClosure* cl);
  1258   virtual void object_iterate(ObjectClosure* cl);
  1260   // Need to declare the full complement of closures, whether we'll
  1261   // override them or not, or get message from the compiler:
  1262   //   oop_since_save_marks_iterate_nv hides virtual function...
  1263   #define CMS_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
  1264     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
  1265   ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DECL)
  1267   // Smart allocation  XXX -- move to CFLSpace?
  1268   void setNearLargestChunk();
  1269   bool isNearLargestChunk(HeapWord* addr);
  1271   // Get the chunk at the end of the space.  Delagates to
  1272   // the space.
  1273   FreeChunk* find_chunk_at_end();
  1275   void post_compact();
  1277   // Debugging
  1278   void prepare_for_verify();
  1279   void verify();
  1280   void print_statistics()               PRODUCT_RETURN;
  1282   // Performance Counters support
  1283   virtual void update_counters();
  1284   virtual void update_counters(size_t used);
  1285   void initialize_performance_counters();
  1286   CollectorCounters* counters()  { return collector()->counters(); }
  1288   // Support for parallel remark of survivor space
  1289   void* get_data_recorder(int thr_num) {
  1290     //Delegate to collector
  1291     return collector()->get_data_recorder(thr_num);
  1294   // Printing
  1295   const char* name() const;
  1296   virtual const char* short_name() const { return "CMS"; }
  1297   void        print() const;
  1298   void printOccupancy(const char* s);
  1299   bool must_be_youngest() const { return false; }
  1300   bool must_be_oldest()   const { return true; }
  1302   // Resize the generation after a compacting GC.  The
  1303   // generation can be treated as a contiguous space
  1304   // after the compaction.
  1305   virtual void compute_new_size();
  1306   // Resize the generation after a non-compacting
  1307   // collection.
  1308   void compute_new_size_free_list();
  1310   CollectionTypes debug_collection_type() { return _debug_collection_type; }
  1311   void rotate_debug_collection_type();
  1312 };
  1314 class ASConcurrentMarkSweepGeneration : public ConcurrentMarkSweepGeneration {
  1316   // Return the size policy from the heap's collector
  1317   // policy casted to CMSAdaptiveSizePolicy*.
  1318   CMSAdaptiveSizePolicy* cms_size_policy() const;
  1320   // Resize the generation based on the adaptive size
  1321   // policy.
  1322   void resize(size_t cur_promo, size_t desired_promo);
  1324   // Return the GC counters from the collector policy
  1325   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
  1327   virtual void shrink_by(size_t bytes);
  1329  public:
  1330   ASConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
  1331                                   int level, CardTableRS* ct,
  1332                                   bool use_adaptive_freelists,
  1333                                   FreeBlockDictionary<FreeChunk>::DictionaryChoice
  1334                                     dictionaryChoice) :
  1335     ConcurrentMarkSweepGeneration(rs, initial_byte_size, level, ct,
  1336       use_adaptive_freelists, dictionaryChoice) {}
  1338   virtual const char* short_name() const { return "ASCMS"; }
  1339   virtual Generation::Name kind() { return Generation::ASConcurrentMarkSweep; }
  1341   virtual void update_counters();
  1342   virtual void update_counters(size_t used);
  1343 };
  1345 //
  1346 // Closures of various sorts used by CMS to accomplish its work
  1347 //
  1349 // This closure is used to check that a certain set of oops is empty.
  1350 class FalseClosure: public OopClosure {
  1351  public:
  1352   void do_oop(oop* p)       { guarantee(false, "Should be an empty set"); }
  1353   void do_oop(narrowOop* p) { guarantee(false, "Should be an empty set"); }
  1354 };
  1356 // This closure is used to do concurrent marking from the roots
  1357 // following the first checkpoint.
  1358 class MarkFromRootsClosure: public BitMapClosure {
  1359   CMSCollector*  _collector;
  1360   MemRegion      _span;
  1361   CMSBitMap*     _bitMap;
  1362   CMSBitMap*     _mut;
  1363   CMSMarkStack*  _markStack;
  1364   bool           _yield;
  1365   int            _skipBits;
  1366   HeapWord*      _finger;
  1367   HeapWord*      _threshold;
  1368   DEBUG_ONLY(bool _verifying;)
  1370  public:
  1371   MarkFromRootsClosure(CMSCollector* collector, MemRegion span,
  1372                        CMSBitMap* bitMap,
  1373                        CMSMarkStack*  markStack,
  1374                        bool should_yield, bool verifying = false);
  1375   bool do_bit(size_t offset);
  1376   void reset(HeapWord* addr);
  1377   inline void do_yield_check();
  1379  private:
  1380   void scanOopsInOop(HeapWord* ptr);
  1381   void do_yield_work();
  1382 };
  1384 // This closure is used to do concurrent multi-threaded
  1385 // marking from the roots following the first checkpoint.
  1386 // XXX This should really be a subclass of The serial version
  1387 // above, but i have not had the time to refactor things cleanly.
  1388 // That willbe done for Dolphin.
  1389 class Par_MarkFromRootsClosure: public BitMapClosure {
  1390   CMSCollector*  _collector;
  1391   MemRegion      _whole_span;
  1392   MemRegion      _span;
  1393   CMSBitMap*     _bit_map;
  1394   CMSBitMap*     _mut;
  1395   OopTaskQueue*  _work_queue;
  1396   CMSMarkStack*  _overflow_stack;
  1397   bool           _yield;
  1398   int            _skip_bits;
  1399   HeapWord*      _finger;
  1400   HeapWord*      _threshold;
  1401   CMSConcMarkingTask* _task;
  1402  public:
  1403   Par_MarkFromRootsClosure(CMSConcMarkingTask* task, CMSCollector* collector,
  1404                        MemRegion span,
  1405                        CMSBitMap* bit_map,
  1406                        OopTaskQueue* work_queue,
  1407                        CMSMarkStack*  overflow_stack,
  1408                        bool should_yield);
  1409   bool do_bit(size_t offset);
  1410   inline void do_yield_check();
  1412  private:
  1413   void scan_oops_in_oop(HeapWord* ptr);
  1414   void do_yield_work();
  1415   bool get_work_from_overflow_stack();
  1416 };
  1418 // The following closures are used to do certain kinds of verification of
  1419 // CMS marking.
  1420 class PushAndMarkVerifyClosure: public CMSOopClosure {
  1421   CMSCollector*    _collector;
  1422   MemRegion        _span;
  1423   CMSBitMap*       _verification_bm;
  1424   CMSBitMap*       _cms_bm;
  1425   CMSMarkStack*    _mark_stack;
  1426  protected:
  1427   void do_oop(oop p);
  1428   template <class T> inline void do_oop_work(T *p) {
  1429     oop obj = oopDesc::load_decode_heap_oop(p);
  1430     do_oop(obj);
  1432  public:
  1433   PushAndMarkVerifyClosure(CMSCollector* cms_collector,
  1434                            MemRegion span,
  1435                            CMSBitMap* verification_bm,
  1436                            CMSBitMap* cms_bm,
  1437                            CMSMarkStack*  mark_stack);
  1438   void do_oop(oop* p);
  1439   void do_oop(narrowOop* p);
  1441   // Deal with a stack overflow condition
  1442   void handle_stack_overflow(HeapWord* lost);
  1443 };
  1445 class MarkFromRootsVerifyClosure: public BitMapClosure {
  1446   CMSCollector*  _collector;
  1447   MemRegion      _span;
  1448   CMSBitMap*     _verification_bm;
  1449   CMSBitMap*     _cms_bm;
  1450   CMSMarkStack*  _mark_stack;
  1451   HeapWord*      _finger;
  1452   PushAndMarkVerifyClosure _pam_verify_closure;
  1453  public:
  1454   MarkFromRootsVerifyClosure(CMSCollector* collector, MemRegion span,
  1455                              CMSBitMap* verification_bm,
  1456                              CMSBitMap* cms_bm,
  1457                              CMSMarkStack*  mark_stack);
  1458   bool do_bit(size_t offset);
  1459   void reset(HeapWord* addr);
  1460 };
  1463 // This closure is used to check that a certain set of bits is
  1464 // "empty" (i.e. the bit vector doesn't have any 1-bits).
  1465 class FalseBitMapClosure: public BitMapClosure {
  1466  public:
  1467   bool do_bit(size_t offset) {
  1468     guarantee(false, "Should not have a 1 bit");
  1469     return true;
  1471 };
  1473 // This closure is used during the second checkpointing phase
  1474 // to rescan the marked objects on the dirty cards in the mod
  1475 // union table and the card table proper. It's invoked via
  1476 // MarkFromDirtyCardsClosure below. It uses either
  1477 // [Par_]MarkRefsIntoAndScanClosure (Par_ in the parallel case)
  1478 // declared in genOopClosures.hpp to accomplish some of its work.
  1479 // In the parallel case the bitMap is shared, so access to
  1480 // it needs to be suitably synchronized for updates by embedded
  1481 // closures that update it; however, this closure itself only
  1482 // reads the bit_map and because it is idempotent, is immune to
  1483 // reading stale values.
  1484 class ScanMarkedObjectsAgainClosure: public UpwardsObjectClosure {
  1485   #ifdef ASSERT
  1486     CMSCollector*          _collector;
  1487     MemRegion              _span;
  1488     union {
  1489       CMSMarkStack*        _mark_stack;
  1490       OopTaskQueue*        _work_queue;
  1491     };
  1492   #endif // ASSERT
  1493   bool                       _parallel;
  1494   CMSBitMap*                 _bit_map;
  1495   union {
  1496     MarkRefsIntoAndScanClosure*     _scan_closure;
  1497     Par_MarkRefsIntoAndScanClosure* _par_scan_closure;
  1498   };
  1500  public:
  1501   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
  1502                                 MemRegion span,
  1503                                 ReferenceProcessor* rp,
  1504                                 CMSBitMap* bit_map,
  1505                                 CMSMarkStack*  mark_stack,
  1506                                 MarkRefsIntoAndScanClosure* cl):
  1507     #ifdef ASSERT
  1508       _collector(collector),
  1509       _span(span),
  1510       _mark_stack(mark_stack),
  1511     #endif // ASSERT
  1512     _parallel(false),
  1513     _bit_map(bit_map),
  1514     _scan_closure(cl) { }
  1516   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
  1517                                 MemRegion span,
  1518                                 ReferenceProcessor* rp,
  1519                                 CMSBitMap* bit_map,
  1520                                 OopTaskQueue* work_queue,
  1521                                 Par_MarkRefsIntoAndScanClosure* cl):
  1522     #ifdef ASSERT
  1523       _collector(collector),
  1524       _span(span),
  1525       _work_queue(work_queue),
  1526     #endif // ASSERT
  1527     _parallel(true),
  1528     _bit_map(bit_map),
  1529     _par_scan_closure(cl) { }
  1531   void do_object(oop obj) {
  1532     guarantee(false, "Call do_object_b(oop, MemRegion) instead");
  1534   bool do_object_b(oop obj) {
  1535     guarantee(false, "Call do_object_b(oop, MemRegion) form instead");
  1536     return false;
  1538   bool do_object_bm(oop p, MemRegion mr);
  1539 };
  1541 // This closure is used during the second checkpointing phase
  1542 // to rescan the marked objects on the dirty cards in the mod
  1543 // union table and the card table proper. It invokes
  1544 // ScanMarkedObjectsAgainClosure above to accomplish much of its work.
  1545 // In the parallel case, the bit map is shared and requires
  1546 // synchronized access.
  1547 class MarkFromDirtyCardsClosure: public MemRegionClosure {
  1548   CompactibleFreeListSpace*      _space;
  1549   ScanMarkedObjectsAgainClosure  _scan_cl;
  1550   size_t                         _num_dirty_cards;
  1552  public:
  1553   MarkFromDirtyCardsClosure(CMSCollector* collector,
  1554                             MemRegion span,
  1555                             CompactibleFreeListSpace* space,
  1556                             CMSBitMap* bit_map,
  1557                             CMSMarkStack* mark_stack,
  1558                             MarkRefsIntoAndScanClosure* cl):
  1559     _space(space),
  1560     _num_dirty_cards(0),
  1561     _scan_cl(collector, span, collector->ref_processor(), bit_map,
  1562                  mark_stack, cl) { }
  1564   MarkFromDirtyCardsClosure(CMSCollector* collector,
  1565                             MemRegion span,
  1566                             CompactibleFreeListSpace* space,
  1567                             CMSBitMap* bit_map,
  1568                             OopTaskQueue* work_queue,
  1569                             Par_MarkRefsIntoAndScanClosure* cl):
  1570     _space(space),
  1571     _num_dirty_cards(0),
  1572     _scan_cl(collector, span, collector->ref_processor(), bit_map,
  1573              work_queue, cl) { }
  1575   void do_MemRegion(MemRegion mr);
  1576   void set_space(CompactibleFreeListSpace* space) { _space = space; }
  1577   size_t num_dirty_cards() { return _num_dirty_cards; }
  1578 };
  1580 // This closure is used in the non-product build to check
  1581 // that there are no MemRegions with a certain property.
  1582 class FalseMemRegionClosure: public MemRegionClosure {
  1583   void do_MemRegion(MemRegion mr) {
  1584     guarantee(!mr.is_empty(), "Shouldn't be empty");
  1585     guarantee(false, "Should never be here");
  1587 };
  1589 // This closure is used during the precleaning phase
  1590 // to "carefully" rescan marked objects on dirty cards.
  1591 // It uses MarkRefsIntoAndScanClosure declared in genOopClosures.hpp
  1592 // to accomplish some of its work.
  1593 class ScanMarkedObjectsAgainCarefullyClosure: public ObjectClosureCareful {
  1594   CMSCollector*                  _collector;
  1595   MemRegion                      _span;
  1596   bool                           _yield;
  1597   Mutex*                         _freelistLock;
  1598   CMSBitMap*                     _bitMap;
  1599   CMSMarkStack*                  _markStack;
  1600   MarkRefsIntoAndScanClosure*    _scanningClosure;
  1602  public:
  1603   ScanMarkedObjectsAgainCarefullyClosure(CMSCollector* collector,
  1604                                          MemRegion     span,
  1605                                          CMSBitMap* bitMap,
  1606                                          CMSMarkStack*  markStack,
  1607                                          MarkRefsIntoAndScanClosure* cl,
  1608                                          bool should_yield):
  1609     _collector(collector),
  1610     _span(span),
  1611     _yield(should_yield),
  1612     _bitMap(bitMap),
  1613     _markStack(markStack),
  1614     _scanningClosure(cl) {
  1617   void do_object(oop p) {
  1618     guarantee(false, "call do_object_careful instead");
  1621   size_t      do_object_careful(oop p) {
  1622     guarantee(false, "Unexpected caller");
  1623     return 0;
  1626   size_t      do_object_careful_m(oop p, MemRegion mr);
  1628   void setFreelistLock(Mutex* m) {
  1629     _freelistLock = m;
  1630     _scanningClosure->set_freelistLock(m);
  1633  private:
  1634   inline bool do_yield_check();
  1636   void do_yield_work();
  1637 };
  1639 class SurvivorSpacePrecleanClosure: public ObjectClosureCareful {
  1640   CMSCollector*                  _collector;
  1641   MemRegion                      _span;
  1642   bool                           _yield;
  1643   CMSBitMap*                     _bit_map;
  1644   CMSMarkStack*                  _mark_stack;
  1645   PushAndMarkClosure*            _scanning_closure;
  1646   unsigned int                   _before_count;
  1648  public:
  1649   SurvivorSpacePrecleanClosure(CMSCollector* collector,
  1650                                MemRegion     span,
  1651                                CMSBitMap*    bit_map,
  1652                                CMSMarkStack* mark_stack,
  1653                                PushAndMarkClosure* cl,
  1654                                unsigned int  before_count,
  1655                                bool          should_yield):
  1656     _collector(collector),
  1657     _span(span),
  1658     _yield(should_yield),
  1659     _bit_map(bit_map),
  1660     _mark_stack(mark_stack),
  1661     _scanning_closure(cl),
  1662     _before_count(before_count)
  1663   { }
  1665   void do_object(oop p) {
  1666     guarantee(false, "call do_object_careful instead");
  1669   size_t      do_object_careful(oop p);
  1671   size_t      do_object_careful_m(oop p, MemRegion mr) {
  1672     guarantee(false, "Unexpected caller");
  1673     return 0;
  1676  private:
  1677   inline void do_yield_check();
  1678   void do_yield_work();
  1679 };
  1681 // This closure is used to accomplish the sweeping work
  1682 // after the second checkpoint but before the concurrent reset
  1683 // phase.
  1684 //
  1685 // Terminology
  1686 //   left hand chunk (LHC) - block of one or more chunks currently being
  1687 //     coalesced.  The LHC is available for coalescing with a new chunk.
  1688 //   right hand chunk (RHC) - block that is currently being swept that is
  1689 //     free or garbage that can be coalesced with the LHC.
  1690 // _inFreeRange is true if there is currently a LHC
  1691 // _lastFreeRangeCoalesced is true if the LHC consists of more than one chunk.
  1692 // _freeRangeInFreeLists is true if the LHC is in the free lists.
  1693 // _freeFinger is the address of the current LHC
  1694 class SweepClosure: public BlkClosureCareful {
  1695   CMSCollector*                  _collector;  // collector doing the work
  1696   ConcurrentMarkSweepGeneration* _g;    // Generation being swept
  1697   CompactibleFreeListSpace*      _sp;   // Space being swept
  1698   HeapWord*                      _limit;// the address at or above which the sweep should stop
  1699                                         // because we do not expect newly garbage blocks
  1700                                         // eligible for sweeping past that address.
  1701   Mutex*                         _freelistLock; // Free list lock (in space)
  1702   CMSBitMap*                     _bitMap;       // Marking bit map (in
  1703                                                 // generation)
  1704   bool                           _inFreeRange;  // Indicates if we are in the
  1705                                                 // midst of a free run
  1706   bool                           _freeRangeInFreeLists;
  1707                                         // Often, we have just found
  1708                                         // a free chunk and started
  1709                                         // a new free range; we do not
  1710                                         // eagerly remove this chunk from
  1711                                         // the free lists unless there is
  1712                                         // a possibility of coalescing.
  1713                                         // When true, this flag indicates
  1714                                         // that the _freeFinger below
  1715                                         // points to a potentially free chunk
  1716                                         // that may still be in the free lists
  1717   bool                           _lastFreeRangeCoalesced;
  1718                                         // free range contains chunks
  1719                                         // coalesced
  1720   bool                           _yield;
  1721                                         // Whether sweeping should be
  1722                                         // done with yields. For instance
  1723                                         // when done by the foreground
  1724                                         // collector we shouldn't yield.
  1725   HeapWord*                      _freeFinger;   // When _inFreeRange is set, the
  1726                                                 // pointer to the "left hand
  1727                                                 // chunk"
  1728   size_t                         _freeRangeSize;
  1729                                         // When _inFreeRange is set, this
  1730                                         // indicates the accumulated size
  1731                                         // of the "left hand chunk"
  1732   NOT_PRODUCT(
  1733     size_t                       _numObjectsFreed;
  1734     size_t                       _numWordsFreed;
  1735     size_t                       _numObjectsLive;
  1736     size_t                       _numWordsLive;
  1737     size_t                       _numObjectsAlreadyFree;
  1738     size_t                       _numWordsAlreadyFree;
  1739     FreeChunk*                   _last_fc;
  1741  private:
  1742   // Code that is common to a free chunk or garbage when
  1743   // encountered during sweeping.
  1744   void do_post_free_or_garbage_chunk(FreeChunk *fc, size_t chunkSize);
  1745   // Process a free chunk during sweeping.
  1746   void do_already_free_chunk(FreeChunk *fc);
  1747   // Work method called when processing an already free or a
  1748   // freshly garbage chunk to do a lookahead and possibly a
  1749   // premptive flush if crossing over _limit.
  1750   void lookahead_and_flush(FreeChunk* fc, size_t chunkSize);
  1751   // Process a garbage chunk during sweeping.
  1752   size_t do_garbage_chunk(FreeChunk *fc);
  1753   // Process a live chunk during sweeping.
  1754   size_t do_live_chunk(FreeChunk* fc);
  1756   // Accessors.
  1757   HeapWord* freeFinger() const          { return _freeFinger; }
  1758   void set_freeFinger(HeapWord* v)      { _freeFinger = v; }
  1759   bool inFreeRange()    const           { return _inFreeRange; }
  1760   void set_inFreeRange(bool v)          { _inFreeRange = v; }
  1761   bool lastFreeRangeCoalesced() const    { return _lastFreeRangeCoalesced; }
  1762   void set_lastFreeRangeCoalesced(bool v) { _lastFreeRangeCoalesced = v; }
  1763   bool freeRangeInFreeLists() const     { return _freeRangeInFreeLists; }
  1764   void set_freeRangeInFreeLists(bool v) { _freeRangeInFreeLists = v; }
  1766   // Initialize a free range.
  1767   void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
  1768   // Return this chunk to the free lists.
  1769   void flush_cur_free_chunk(HeapWord* chunk, size_t size);
  1771   // Check if we should yield and do so when necessary.
  1772   inline void do_yield_check(HeapWord* addr);
  1774   // Yield
  1775   void do_yield_work(HeapWord* addr);
  1777   // Debugging/Printing
  1778   void print_free_block_coalesced(FreeChunk* fc) const;
  1780  public:
  1781   SweepClosure(CMSCollector* collector, ConcurrentMarkSweepGeneration* g,
  1782                CMSBitMap* bitMap, bool should_yield);
  1783   ~SweepClosure() PRODUCT_RETURN;
  1785   size_t       do_blk_careful(HeapWord* addr);
  1786   void         print() const { print_on(tty); }
  1787   void         print_on(outputStream *st) const;
  1788 };
  1790 // Closures related to weak references processing
  1792 // During CMS' weak reference processing, this is a
  1793 // work-routine/closure used to complete transitive
  1794 // marking of objects as live after a certain point
  1795 // in which an initial set has been completely accumulated.
  1796 // This closure is currently used both during the final
  1797 // remark stop-world phase, as well as during the concurrent
  1798 // precleaning of the discovered reference lists.
  1799 class CMSDrainMarkingStackClosure: public VoidClosure {
  1800   CMSCollector*        _collector;
  1801   MemRegion            _span;
  1802   CMSMarkStack*        _mark_stack;
  1803   CMSBitMap*           _bit_map;
  1804   CMSKeepAliveClosure* _keep_alive;
  1805   bool                 _concurrent_precleaning;
  1806  public:
  1807   CMSDrainMarkingStackClosure(CMSCollector* collector, MemRegion span,
  1808                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
  1809                       CMSKeepAliveClosure* keep_alive,
  1810                       bool cpc):
  1811     _collector(collector),
  1812     _span(span),
  1813     _bit_map(bit_map),
  1814     _mark_stack(mark_stack),
  1815     _keep_alive(keep_alive),
  1816     _concurrent_precleaning(cpc) {
  1817     assert(_concurrent_precleaning == _keep_alive->concurrent_precleaning(),
  1818            "Mismatch");
  1821   void do_void();
  1822 };
  1824 // A parallel version of CMSDrainMarkingStackClosure above.
  1825 class CMSParDrainMarkingStackClosure: public VoidClosure {
  1826   CMSCollector*           _collector;
  1827   MemRegion               _span;
  1828   OopTaskQueue*           _work_queue;
  1829   CMSBitMap*              _bit_map;
  1830   CMSInnerParMarkAndPushClosure _mark_and_push;
  1832  public:
  1833   CMSParDrainMarkingStackClosure(CMSCollector* collector,
  1834                                  MemRegion span, CMSBitMap* bit_map,
  1835                                  OopTaskQueue* work_queue):
  1836     _collector(collector),
  1837     _span(span),
  1838     _bit_map(bit_map),
  1839     _work_queue(work_queue),
  1840     _mark_and_push(collector, span, bit_map, work_queue) { }
  1842  public:
  1843   void trim_queue(uint max);
  1844   void do_void();
  1845 };
  1847 // Allow yielding or short-circuiting of reference list
  1848 // prelceaning work.
  1849 class CMSPrecleanRefsYieldClosure: public YieldClosure {
  1850   CMSCollector* _collector;
  1851   void do_yield_work();
  1852  public:
  1853   CMSPrecleanRefsYieldClosure(CMSCollector* collector):
  1854     _collector(collector) {}
  1855   virtual bool should_return();
  1856 };
  1859 // Convenience class that locks free list locks for given CMS collector
  1860 class FreelistLocker: public StackObj {
  1861  private:
  1862   CMSCollector* _collector;
  1863  public:
  1864   FreelistLocker(CMSCollector* collector):
  1865     _collector(collector) {
  1866     _collector->getFreelistLocks();
  1869   ~FreelistLocker() {
  1870     _collector->releaseFreelistLocks();
  1872 };
  1874 // Mark all dead objects in a given space.
  1875 class MarkDeadObjectsClosure: public BlkClosure {
  1876   const CMSCollector*             _collector;
  1877   const CompactibleFreeListSpace* _sp;
  1878   CMSBitMap*                      _live_bit_map;
  1879   CMSBitMap*                      _dead_bit_map;
  1880 public:
  1881   MarkDeadObjectsClosure(const CMSCollector* collector,
  1882                          const CompactibleFreeListSpace* sp,
  1883                          CMSBitMap *live_bit_map,
  1884                          CMSBitMap *dead_bit_map) :
  1885     _collector(collector),
  1886     _sp(sp),
  1887     _live_bit_map(live_bit_map),
  1888     _dead_bit_map(dead_bit_map) {}
  1889   size_t do_blk(HeapWord* addr);
  1890 };
  1892 class TraceCMSMemoryManagerStats : public TraceMemoryManagerStats {
  1894  public:
  1895   TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause);
  1896 };
  1899 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP

mercurial