src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Fri, 12 Feb 2010 15:27:36 -0800

author
kvn
date
Fri, 12 Feb 2010 15:27:36 -0800
changeset 1692
7b4415a18c8a
parent 1651
7f8790caccb0
parent 1686
576e77447e3c
child 1730
3cf667df43ef
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
    29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    30 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    31 // fast versions of NegF/NegD and AbsF/AbsD.
    33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    35   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    36   // of 128-bits operands for SSE instructions.
    37   jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
    38   // Store the value to a 128-bits operand.
    39   operand[0] = lo;
    40   operand[1] = hi;
    41   return operand;
    42 }
    44 // Buffer for 128-bits masks used by SSE instructions.
    45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    47 // Static initialization during VM startup.
    48 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    50 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    55 NEEDS_CLEANUP // remove this definitions ?
    56 const Register IC_Klass    = rax;   // where the IC klass is cached
    57 const Register SYNC_header = rax;   // synchronization header
    58 const Register SHIFT_count = rcx;   // where count for shift operations must be
    60 #define __ _masm->
    63 static void select_different_registers(Register preserve,
    64                                        Register extra,
    65                                        Register &tmp1,
    66                                        Register &tmp2) {
    67   if (tmp1 == preserve) {
    68     assert_different_registers(tmp1, tmp2, extra);
    69     tmp1 = extra;
    70   } else if (tmp2 == preserve) {
    71     assert_different_registers(tmp1, tmp2, extra);
    72     tmp2 = extra;
    73   }
    74   assert_different_registers(preserve, tmp1, tmp2);
    75 }
    79 static void select_different_registers(Register preserve,
    80                                        Register extra,
    81                                        Register &tmp1,
    82                                        Register &tmp2,
    83                                        Register &tmp3) {
    84   if (tmp1 == preserve) {
    85     assert_different_registers(tmp1, tmp2, tmp3, extra);
    86     tmp1 = extra;
    87   } else if (tmp2 == preserve) {
    88     assert_different_registers(tmp1, tmp2, tmp3, extra);
    89     tmp2 = extra;
    90   } else if (tmp3 == preserve) {
    91     assert_different_registers(tmp1, tmp2, tmp3, extra);
    92     tmp3 = extra;
    93   }
    94   assert_different_registers(preserve, tmp1, tmp2, tmp3);
    95 }
    99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   100   if (opr->is_constant()) {
   101     LIR_Const* constant = opr->as_constant_ptr();
   102     switch (constant->type()) {
   103       case T_INT: {
   104         return true;
   105       }
   107       default:
   108         return false;
   109     }
   110   }
   111   return false;
   112 }
   115 LIR_Opr LIR_Assembler::receiverOpr() {
   116   return FrameMap::receiver_opr;
   117 }
   119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   120   return receiverOpr();
   121 }
   123 LIR_Opr LIR_Assembler::osrBufferPointer() {
   124   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   125 }
   127 //--------------fpu register translations-----------------------
   130 address LIR_Assembler::float_constant(float f) {
   131   address const_addr = __ float_constant(f);
   132   if (const_addr == NULL) {
   133     bailout("const section overflow");
   134     return __ code()->consts()->start();
   135   } else {
   136     return const_addr;
   137   }
   138 }
   141 address LIR_Assembler::double_constant(double d) {
   142   address const_addr = __ double_constant(d);
   143   if (const_addr == NULL) {
   144     bailout("const section overflow");
   145     return __ code()->consts()->start();
   146   } else {
   147     return const_addr;
   148   }
   149 }
   152 void LIR_Assembler::set_24bit_FPU() {
   153   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   154 }
   156 void LIR_Assembler::reset_FPU() {
   157   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   158 }
   160 void LIR_Assembler::fpop() {
   161   __ fpop();
   162 }
   164 void LIR_Assembler::fxch(int i) {
   165   __ fxch(i);
   166 }
   168 void LIR_Assembler::fld(int i) {
   169   __ fld_s(i);
   170 }
   172 void LIR_Assembler::ffree(int i) {
   173   __ ffree(i);
   174 }
   176 void LIR_Assembler::breakpoint() {
   177   __ int3();
   178 }
   180 void LIR_Assembler::push(LIR_Opr opr) {
   181   if (opr->is_single_cpu()) {
   182     __ push_reg(opr->as_register());
   183   } else if (opr->is_double_cpu()) {
   184     NOT_LP64(__ push_reg(opr->as_register_hi()));
   185     __ push_reg(opr->as_register_lo());
   186   } else if (opr->is_stack()) {
   187     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   188   } else if (opr->is_constant()) {
   189     LIR_Const* const_opr = opr->as_constant_ptr();
   190     if (const_opr->type() == T_OBJECT) {
   191       __ push_oop(const_opr->as_jobject());
   192     } else if (const_opr->type() == T_INT) {
   193       __ push_jint(const_opr->as_jint());
   194     } else {
   195       ShouldNotReachHere();
   196     }
   198   } else {
   199     ShouldNotReachHere();
   200   }
   201 }
   203 void LIR_Assembler::pop(LIR_Opr opr) {
   204   if (opr->is_single_cpu()) {
   205     __ pop_reg(opr->as_register());
   206   } else {
   207     ShouldNotReachHere();
   208   }
   209 }
   211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   212   return addr->base()->is_illegal() && addr->index()->is_illegal();
   213 }
   215 //-------------------------------------------
   217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   218   return as_Address(addr, rscratch1);
   219 }
   221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   222   if (addr->base()->is_illegal()) {
   223     assert(addr->index()->is_illegal(), "must be illegal too");
   224     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   225     if (! __ reachable(laddr)) {
   226       __ movptr(tmp, laddr.addr());
   227       Address res(tmp, 0);
   228       return res;
   229     } else {
   230       return __ as_Address(laddr);
   231     }
   232   }
   234   Register base = addr->base()->as_pointer_register();
   236   if (addr->index()->is_illegal()) {
   237     return Address( base, addr->disp());
   238   } else if (addr->index()->is_cpu_register()) {
   239     Register index = addr->index()->as_pointer_register();
   240     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   241   } else if (addr->index()->is_constant()) {
   242     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   243     assert(Assembler::is_simm32(addr_offset), "must be");
   245     return Address(base, addr_offset);
   246   } else {
   247     Unimplemented();
   248     return Address();
   249   }
   250 }
   253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   254   Address base = as_Address(addr);
   255   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   256 }
   259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   260   return as_Address(addr);
   261 }
   264 void LIR_Assembler::osr_entry() {
   265   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   266   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   267   ValueStack* entry_state = osr_entry->state();
   268   int number_of_locks = entry_state->locks_size();
   270   // we jump here if osr happens with the interpreter
   271   // state set up to continue at the beginning of the
   272   // loop that triggered osr - in particular, we have
   273   // the following registers setup:
   274   //
   275   // rcx: osr buffer
   276   //
   278   // build frame
   279   ciMethod* m = compilation()->method();
   280   __ build_frame(initial_frame_size_in_bytes());
   282   // OSR buffer is
   283   //
   284   // locals[nlocals-1..0]
   285   // monitors[0..number_of_locks]
   286   //
   287   // locals is a direct copy of the interpreter frame so in the osr buffer
   288   // so first slot in the local array is the last local from the interpreter
   289   // and last slot is local[0] (receiver) from the interpreter
   290   //
   291   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   292   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   293   // in the interpreter frame (the method lock if a sync method)
   295   // Initialize monitors in the compiled activation.
   296   //   rcx: pointer to osr buffer
   297   //
   298   // All other registers are dead at this point and the locals will be
   299   // copied into place by code emitted in the IR.
   301   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   302   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   303     int monitor_offset = BytesPerWord * method()->max_locals() +
   304       (2 * BytesPerWord) * (number_of_locks - 1);
   305     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   306     // the OSR buffer using 2 word entries: first the lock and then
   307     // the oop.
   308     for (int i = 0; i < number_of_locks; i++) {
   309       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   310 #ifdef ASSERT
   311       // verify the interpreter's monitor has a non-null object
   312       {
   313         Label L;
   314         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
   315         __ jcc(Assembler::notZero, L);
   316         __ stop("locked object is NULL");
   317         __ bind(L);
   318       }
   319 #endif
   320       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
   321       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   322       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
   323       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   324     }
   325   }
   326 }
   329 // inline cache check; done before the frame is built.
   330 int LIR_Assembler::check_icache() {
   331   Register receiver = FrameMap::receiver_opr->as_register();
   332   Register ic_klass = IC_Klass;
   333   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   335   if (!VerifyOops) {
   336     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   337     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   338       __ nop();
   339     }
   340   }
   341   int offset = __ offset();
   342   __ inline_cache_check(receiver, IC_Klass);
   343   assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
   344   if (VerifyOops) {
   345     // force alignment after the cache check.
   346     // It's been verified to be aligned if !VerifyOops
   347     __ align(CodeEntryAlignment);
   348   }
   349   return offset;
   350 }
   353 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   354   jobject o = NULL;
   355   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   356   __ movoop(reg, o);
   357   patching_epilog(patch, lir_patch_normal, reg, info);
   358 }
   361 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
   362   if (exception->is_valid()) {
   363     // preserve exception
   364     // note: the monitor_exit runtime call is a leaf routine
   365     //       and cannot block => no GC can happen
   366     // The slow case (MonitorAccessStub) uses the first two stack slots
   367     // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
   368     __ movptr (Address(rsp, 2*wordSize), exception);
   369   }
   371   Register obj_reg  = obj_opr->as_register();
   372   Register lock_reg = lock_opr->as_register();
   374   // setup registers (lock_reg must be rax, for lock_object)
   375   assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
   376   Register hdr = lock_reg;
   377   assert(new_hdr == SYNC_header, "wrong register");
   378   lock_reg = new_hdr;
   379   // compute pointer to BasicLock
   380   Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
   381   __ lea(lock_reg, lock_addr);
   382   // unlock object
   383   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
   384   // _slow_case_stubs->append(slow_case);
   385   // temporary fix: must be created after exceptionhandler, therefore as call stub
   386   _slow_case_stubs->append(slow_case);
   387   if (UseFastLocking) {
   388     // try inlined fast unlocking first, revert to slow locking if it fails
   389     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   390     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   391     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   392   } else {
   393     // always do slow unlocking
   394     // note: the slow unlocking code could be inlined here, however if we use
   395     //       slow unlocking, speed doesn't matter anyway and this solution is
   396     //       simpler and requires less duplicated code - additionally, the
   397     //       slow unlocking code is the same in either case which simplifies
   398     //       debugging
   399     __ jmp(*slow_case->entry());
   400   }
   401   // done
   402   __ bind(*slow_case->continuation());
   404   if (exception->is_valid()) {
   405     // restore exception
   406     __ movptr (exception, Address(rsp, 2 * wordSize));
   407   }
   408 }
   410 // This specifies the rsp decrement needed to build the frame
   411 int LIR_Assembler::initial_frame_size_in_bytes() {
   412   // if rounding, must let FrameMap know!
   414   // The frame_map records size in slots (32bit word)
   416   // subtract two words to account for return address and link
   417   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   418 }
   421 int LIR_Assembler::emit_exception_handler() {
   422   // if the last instruction is a call (typically to do a throw which
   423   // is coming at the end after block reordering) the return address
   424   // must still point into the code area in order to avoid assertion
   425   // failures when searching for the corresponding bci => add a nop
   426   // (was bug 5/14/1999 - gri)
   427   __ nop();
   429   // generate code for exception handler
   430   address handler_base = __ start_a_stub(exception_handler_size);
   431   if (handler_base == NULL) {
   432     // not enough space left for the handler
   433     bailout("exception handler overflow");
   434     return -1;
   435   }
   437   int offset = code_offset();
   439   // if the method does not have an exception handler, then there is
   440   // no reason to search for one
   441   if (compilation()->has_exception_handlers() || compilation()->env()->jvmti_can_post_on_exceptions()) {
   442     // the exception oop and pc are in rax, and rdx
   443     // no other registers need to be preserved, so invalidate them
   444     __ invalidate_registers(false, true, true, false, true, true);
   446     // check that there is really an exception
   447     __ verify_not_null_oop(rax);
   449     // search an exception handler (rax: exception oop, rdx: throwing pc)
   450     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
   452     // if the call returns here, then the exception handler for particular
   453     // exception doesn't exist -> unwind activation and forward exception to caller
   454   }
   456   // the exception oop is in rax,
   457   // no other registers need to be preserved, so invalidate them
   458   __ invalidate_registers(false, true, true, true, true, true);
   460   // check that there is really an exception
   461   __ verify_not_null_oop(rax);
   463   // unlock the receiver/klass if necessary
   464   // rax,: exception
   465   ciMethod* method = compilation()->method();
   466   if (method->is_synchronized() && GenerateSynchronizationCode) {
   467     monitorexit(FrameMap::rbx_oop_opr, FrameMap::rcx_opr, SYNC_header, 0, rax);
   468   }
   470   // unwind activation and forward exception to caller
   471   // rax,: exception
   472   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   473   assert(code_offset() - offset <= exception_handler_size, "overflow");
   474   __ end_a_stub();
   476   return offset;
   477 }
   480 int LIR_Assembler::emit_deopt_handler() {
   481   // if the last instruction is a call (typically to do a throw which
   482   // is coming at the end after block reordering) the return address
   483   // must still point into the code area in order to avoid assertion
   484   // failures when searching for the corresponding bci => add a nop
   485   // (was bug 5/14/1999 - gri)
   486   __ nop();
   488   // generate code for exception handler
   489   address handler_base = __ start_a_stub(deopt_handler_size);
   490   if (handler_base == NULL) {
   491     // not enough space left for the handler
   492     bailout("deopt handler overflow");
   493     return -1;
   494   }
   496   int offset = code_offset();
   497   InternalAddress here(__ pc());
   498   __ pushptr(here.addr());
   499   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   500   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   501   __ end_a_stub();
   503   return offset;
   504 }
   507 // This is the fast version of java.lang.String.compare; it has not
   508 // OSR-entry and therefore, we generate a slow version for OSR's
   509 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   510   __ movptr (rbx, rcx); // receiver is in rcx
   511   __ movptr (rax, arg1->as_register());
   513   // Get addresses of first characters from both Strings
   514   __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   515   __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   516   __ lea    (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   519   // rbx, may be NULL
   520   add_debug_info_for_null_check_here(info);
   521   __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   522   __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   523   __ lea    (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   525   // compute minimum length (in rax) and difference of lengths (on top of stack)
   526   if (VM_Version::supports_cmov()) {
   527     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   528     __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   529     __ mov      (rcx, rbx);
   530     __ subptr   (rbx, rax); // subtract lengths
   531     __ push     (rbx);      // result
   532     __ cmov     (Assembler::lessEqual, rax, rcx);
   533   } else {
   534     Label L;
   535     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   536     __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
   537     __ mov      (rax, rbx);
   538     __ subptr   (rbx, rcx);
   539     __ push     (rbx);
   540     __ jcc      (Assembler::lessEqual, L);
   541     __ mov      (rax, rcx);
   542     __ bind (L);
   543   }
   544   // is minimum length 0?
   545   Label noLoop, haveResult;
   546   __ testptr (rax, rax);
   547   __ jcc (Assembler::zero, noLoop);
   549   // compare first characters
   550   __ load_unsigned_short(rcx, Address(rdi, 0));
   551   __ load_unsigned_short(rbx, Address(rsi, 0));
   552   __ subl(rcx, rbx);
   553   __ jcc(Assembler::notZero, haveResult);
   554   // starting loop
   555   __ decrement(rax); // we already tested index: skip one
   556   __ jcc(Assembler::zero, noLoop);
   558   // set rsi.edi to the end of the arrays (arrays have same length)
   559   // negate the index
   561   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   562   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   563   __ negptr(rax);
   565   // compare the strings in a loop
   567   Label loop;
   568   __ align(wordSize);
   569   __ bind(loop);
   570   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   571   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   572   __ subl(rcx, rbx);
   573   __ jcc(Assembler::notZero, haveResult);
   574   __ increment(rax);
   575   __ jcc(Assembler::notZero, loop);
   577   // strings are equal up to min length
   579   __ bind(noLoop);
   580   __ pop(rax);
   581   return_op(LIR_OprFact::illegalOpr);
   583   __ bind(haveResult);
   584   // leave instruction is going to discard the TOS value
   585   __ mov (rax, rcx); // result of call is in rax,
   586 }
   589 void LIR_Assembler::return_op(LIR_Opr result) {
   590   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   591   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   592     assert(result->fpu() == 0, "result must already be on TOS");
   593   }
   595   // Pop the stack before the safepoint code
   596   __ leave();
   598   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   600   // Note: we do not need to round double result; float result has the right precision
   601   // the poll sets the condition code, but no data registers
   602   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   603                               relocInfo::poll_return_type);
   605   // NOTE: the requires that the polling page be reachable else the reloc
   606   // goes to the movq that loads the address and not the faulting instruction
   607   // which breaks the signal handler code
   609   __ test32(rax, polling_page);
   611   __ ret(0);
   612 }
   615 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   616   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   617                               relocInfo::poll_type);
   619   if (info != NULL) {
   620     add_debug_info_for_branch(info);
   621   } else {
   622     ShouldNotReachHere();
   623   }
   625   int offset = __ offset();
   627   // NOTE: the requires that the polling page be reachable else the reloc
   628   // goes to the movq that loads the address and not the faulting instruction
   629   // which breaks the signal handler code
   631   __ test32(rax, polling_page);
   632   return offset;
   633 }
   636 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   637   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   638 }
   640 void LIR_Assembler::swap_reg(Register a, Register b) {
   641   __ xchgptr(a, b);
   642 }
   645 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   646   assert(src->is_constant(), "should not call otherwise");
   647   assert(dest->is_register(), "should not call otherwise");
   648   LIR_Const* c = src->as_constant_ptr();
   650   switch (c->type()) {
   651     case T_INT: {
   652       assert(patch_code == lir_patch_none, "no patching handled here");
   653       __ movl(dest->as_register(), c->as_jint());
   654       break;
   655     }
   657     case T_LONG: {
   658       assert(patch_code == lir_patch_none, "no patching handled here");
   659 #ifdef _LP64
   660       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   661 #else
   662       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   663       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   664 #endif // _LP64
   665       break;
   666     }
   668     case T_OBJECT: {
   669       if (patch_code != lir_patch_none) {
   670         jobject2reg_with_patching(dest->as_register(), info);
   671       } else {
   672         __ movoop(dest->as_register(), c->as_jobject());
   673       }
   674       break;
   675     }
   677     case T_FLOAT: {
   678       if (dest->is_single_xmm()) {
   679         if (c->is_zero_float()) {
   680           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   681         } else {
   682           __ movflt(dest->as_xmm_float_reg(),
   683                    InternalAddress(float_constant(c->as_jfloat())));
   684         }
   685       } else {
   686         assert(dest->is_single_fpu(), "must be");
   687         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   688         if (c->is_zero_float()) {
   689           __ fldz();
   690         } else if (c->is_one_float()) {
   691           __ fld1();
   692         } else {
   693           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   694         }
   695       }
   696       break;
   697     }
   699     case T_DOUBLE: {
   700       if (dest->is_double_xmm()) {
   701         if (c->is_zero_double()) {
   702           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   703         } else {
   704           __ movdbl(dest->as_xmm_double_reg(),
   705                     InternalAddress(double_constant(c->as_jdouble())));
   706         }
   707       } else {
   708         assert(dest->is_double_fpu(), "must be");
   709         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   710         if (c->is_zero_double()) {
   711           __ fldz();
   712         } else if (c->is_one_double()) {
   713           __ fld1();
   714         } else {
   715           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   716         }
   717       }
   718       break;
   719     }
   721     default:
   722       ShouldNotReachHere();
   723   }
   724 }
   726 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   727   assert(src->is_constant(), "should not call otherwise");
   728   assert(dest->is_stack(), "should not call otherwise");
   729   LIR_Const* c = src->as_constant_ptr();
   731   switch (c->type()) {
   732     case T_INT:  // fall through
   733     case T_FLOAT:
   734       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   735       break;
   737     case T_OBJECT:
   738       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   739       break;
   741     case T_LONG:  // fall through
   742     case T_DOUBLE:
   743 #ifdef _LP64
   744       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   745                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   746 #else
   747       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   748                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   749       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   750                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   751 #endif // _LP64
   752       break;
   754     default:
   755       ShouldNotReachHere();
   756   }
   757 }
   759 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
   760   assert(src->is_constant(), "should not call otherwise");
   761   assert(dest->is_address(), "should not call otherwise");
   762   LIR_Const* c = src->as_constant_ptr();
   763   LIR_Address* addr = dest->as_address_ptr();
   765   int null_check_here = code_offset();
   766   switch (type) {
   767     case T_INT:    // fall through
   768     case T_FLOAT:
   769       __ movl(as_Address(addr), c->as_jint_bits());
   770       break;
   772     case T_OBJECT:  // fall through
   773     case T_ARRAY:
   774       if (c->as_jobject() == NULL) {
   775         __ movptr(as_Address(addr), NULL_WORD);
   776       } else {
   777         if (is_literal_address(addr)) {
   778           ShouldNotReachHere();
   779           __ movoop(as_Address(addr, noreg), c->as_jobject());
   780         } else {
   781 #ifdef _LP64
   782           __ movoop(rscratch1, c->as_jobject());
   783           null_check_here = code_offset();
   784           __ movptr(as_Address_lo(addr), rscratch1);
   785 #else
   786           __ movoop(as_Address(addr), c->as_jobject());
   787 #endif
   788         }
   789       }
   790       break;
   792     case T_LONG:    // fall through
   793     case T_DOUBLE:
   794 #ifdef _LP64
   795       if (is_literal_address(addr)) {
   796         ShouldNotReachHere();
   797         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   798       } else {
   799         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   800         null_check_here = code_offset();
   801         __ movptr(as_Address_lo(addr), r10);
   802       }
   803 #else
   804       // Always reachable in 32bit so this doesn't produce useless move literal
   805       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   806       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   807 #endif // _LP64
   808       break;
   810     case T_BOOLEAN: // fall through
   811     case T_BYTE:
   812       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   813       break;
   815     case T_CHAR:    // fall through
   816     case T_SHORT:
   817       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   818       break;
   820     default:
   821       ShouldNotReachHere();
   822   };
   824   if (info != NULL) {
   825     add_debug_info_for_null_check(null_check_here, info);
   826   }
   827 }
   830 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   831   assert(src->is_register(), "should not call otherwise");
   832   assert(dest->is_register(), "should not call otherwise");
   834   // move between cpu-registers
   835   if (dest->is_single_cpu()) {
   836 #ifdef _LP64
   837     if (src->type() == T_LONG) {
   838       // Can do LONG -> OBJECT
   839       move_regs(src->as_register_lo(), dest->as_register());
   840       return;
   841     }
   842 #endif
   843     assert(src->is_single_cpu(), "must match");
   844     if (src->type() == T_OBJECT) {
   845       __ verify_oop(src->as_register());
   846     }
   847     move_regs(src->as_register(), dest->as_register());
   849   } else if (dest->is_double_cpu()) {
   850 #ifdef _LP64
   851     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   852       // Surprising to me but we can see move of a long to t_object
   853       __ verify_oop(src->as_register());
   854       move_regs(src->as_register(), dest->as_register_lo());
   855       return;
   856     }
   857 #endif
   858     assert(src->is_double_cpu(), "must match");
   859     Register f_lo = src->as_register_lo();
   860     Register f_hi = src->as_register_hi();
   861     Register t_lo = dest->as_register_lo();
   862     Register t_hi = dest->as_register_hi();
   863 #ifdef _LP64
   864     assert(f_hi == f_lo, "must be same");
   865     assert(t_hi == t_lo, "must be same");
   866     move_regs(f_lo, t_lo);
   867 #else
   868     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   871     if (f_lo == t_hi && f_hi == t_lo) {
   872       swap_reg(f_lo, f_hi);
   873     } else if (f_hi == t_lo) {
   874       assert(f_lo != t_hi, "overwriting register");
   875       move_regs(f_hi, t_hi);
   876       move_regs(f_lo, t_lo);
   877     } else {
   878       assert(f_hi != t_lo, "overwriting register");
   879       move_regs(f_lo, t_lo);
   880       move_regs(f_hi, t_hi);
   881     }
   882 #endif // LP64
   884     // special moves from fpu-register to xmm-register
   885     // necessary for method results
   886   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   887     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   888     __ fld_s(Address(rsp, 0));
   889   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   890     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   891     __ fld_d(Address(rsp, 0));
   892   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   893     __ fstp_s(Address(rsp, 0));
   894     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   895   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   896     __ fstp_d(Address(rsp, 0));
   897     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   899     // move between xmm-registers
   900   } else if (dest->is_single_xmm()) {
   901     assert(src->is_single_xmm(), "must match");
   902     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   903   } else if (dest->is_double_xmm()) {
   904     assert(src->is_double_xmm(), "must match");
   905     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   907     // move between fpu-registers (no instruction necessary because of fpu-stack)
   908   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   909     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   910     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   911   } else {
   912     ShouldNotReachHere();
   913   }
   914 }
   916 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   917   assert(src->is_register(), "should not call otherwise");
   918   assert(dest->is_stack(), "should not call otherwise");
   920   if (src->is_single_cpu()) {
   921     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   922     if (type == T_OBJECT || type == T_ARRAY) {
   923       __ verify_oop(src->as_register());
   924       __ movptr (dst, src->as_register());
   925     } else {
   926       __ movl (dst, src->as_register());
   927     }
   929   } else if (src->is_double_cpu()) {
   930     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   931     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   932     __ movptr (dstLO, src->as_register_lo());
   933     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   935   } else if (src->is_single_xmm()) {
   936     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   937     __ movflt(dst_addr, src->as_xmm_float_reg());
   939   } else if (src->is_double_xmm()) {
   940     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   941     __ movdbl(dst_addr, src->as_xmm_double_reg());
   943   } else if (src->is_single_fpu()) {
   944     assert(src->fpu_regnr() == 0, "argument must be on TOS");
   945     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   946     if (pop_fpu_stack)     __ fstp_s (dst_addr);
   947     else                   __ fst_s  (dst_addr);
   949   } else if (src->is_double_fpu()) {
   950     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   951     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   952     if (pop_fpu_stack)     __ fstp_d (dst_addr);
   953     else                   __ fst_d  (dst_addr);
   955   } else {
   956     ShouldNotReachHere();
   957   }
   958 }
   961 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
   962   LIR_Address* to_addr = dest->as_address_ptr();
   963   PatchingStub* patch = NULL;
   965   if (type == T_ARRAY || type == T_OBJECT) {
   966     __ verify_oop(src->as_register());
   967   }
   968   if (patch_code != lir_patch_none) {
   969     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
   970     Address toa = as_Address(to_addr);
   971     assert(toa.disp() != 0, "must have");
   972   }
   973   if (info != NULL) {
   974     add_debug_info_for_null_check_here(info);
   975   }
   977   switch (type) {
   978     case T_FLOAT: {
   979       if (src->is_single_xmm()) {
   980         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
   981       } else {
   982         assert(src->is_single_fpu(), "must be");
   983         assert(src->fpu_regnr() == 0, "argument must be on TOS");
   984         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
   985         else                    __ fst_s (as_Address(to_addr));
   986       }
   987       break;
   988     }
   990     case T_DOUBLE: {
   991       if (src->is_double_xmm()) {
   992         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
   993       } else {
   994         assert(src->is_double_fpu(), "must be");
   995         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   996         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
   997         else                    __ fst_d (as_Address(to_addr));
   998       }
   999       break;
  1002     case T_ADDRESS: // fall through
  1003     case T_ARRAY:   // fall through
  1004     case T_OBJECT:  // fall through
  1005 #ifdef _LP64
  1006       __ movptr(as_Address(to_addr), src->as_register());
  1007       break;
  1008 #endif // _LP64
  1009     case T_INT:
  1010       __ movl(as_Address(to_addr), src->as_register());
  1011       break;
  1013     case T_LONG: {
  1014       Register from_lo = src->as_register_lo();
  1015       Register from_hi = src->as_register_hi();
  1016 #ifdef _LP64
  1017       __ movptr(as_Address_lo(to_addr), from_lo);
  1018 #else
  1019       Register base = to_addr->base()->as_register();
  1020       Register index = noreg;
  1021       if (to_addr->index()->is_register()) {
  1022         index = to_addr->index()->as_register();
  1024       if (base == from_lo || index == from_lo) {
  1025         assert(base != from_hi, "can't be");
  1026         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1027         __ movl(as_Address_hi(to_addr), from_hi);
  1028         if (patch != NULL) {
  1029           patching_epilog(patch, lir_patch_high, base, info);
  1030           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1031           patch_code = lir_patch_low;
  1033         __ movl(as_Address_lo(to_addr), from_lo);
  1034       } else {
  1035         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1036         __ movl(as_Address_lo(to_addr), from_lo);
  1037         if (patch != NULL) {
  1038           patching_epilog(patch, lir_patch_low, base, info);
  1039           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1040           patch_code = lir_patch_high;
  1042         __ movl(as_Address_hi(to_addr), from_hi);
  1044 #endif // _LP64
  1045       break;
  1048     case T_BYTE:    // fall through
  1049     case T_BOOLEAN: {
  1050       Register src_reg = src->as_register();
  1051       Address dst_addr = as_Address(to_addr);
  1052       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1053       __ movb(dst_addr, src_reg);
  1054       break;
  1057     case T_CHAR:    // fall through
  1058     case T_SHORT:
  1059       __ movw(as_Address(to_addr), src->as_register());
  1060       break;
  1062     default:
  1063       ShouldNotReachHere();
  1066   if (patch_code != lir_patch_none) {
  1067     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1072 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1073   assert(src->is_stack(), "should not call otherwise");
  1074   assert(dest->is_register(), "should not call otherwise");
  1076   if (dest->is_single_cpu()) {
  1077     if (type == T_ARRAY || type == T_OBJECT) {
  1078       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1079       __ verify_oop(dest->as_register());
  1080     } else {
  1081       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1084   } else if (dest->is_double_cpu()) {
  1085     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1086     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1087     __ movptr(dest->as_register_lo(), src_addr_LO);
  1088     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1090   } else if (dest->is_single_xmm()) {
  1091     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1092     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1094   } else if (dest->is_double_xmm()) {
  1095     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1096     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1098   } else if (dest->is_single_fpu()) {
  1099     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1100     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1101     __ fld_s(src_addr);
  1103   } else if (dest->is_double_fpu()) {
  1104     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1105     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1106     __ fld_d(src_addr);
  1108   } else {
  1109     ShouldNotReachHere();
  1114 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1115   if (src->is_single_stack()) {
  1116     if (type == T_OBJECT || type == T_ARRAY) {
  1117       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1118       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1119     } else {
  1120 #ifndef _LP64
  1121       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1122       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1123 #else
  1124       //no pushl on 64bits
  1125       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
  1126       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
  1127 #endif
  1130   } else if (src->is_double_stack()) {
  1131 #ifdef _LP64
  1132     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1133     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1134 #else
  1135     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1136     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1137     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1138     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1139     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1140 #endif // _LP64
  1142   } else {
  1143     ShouldNotReachHere();
  1148 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
  1149   assert(src->is_address(), "should not call otherwise");
  1150   assert(dest->is_register(), "should not call otherwise");
  1152   LIR_Address* addr = src->as_address_ptr();
  1153   Address from_addr = as_Address(addr);
  1155   switch (type) {
  1156     case T_BOOLEAN: // fall through
  1157     case T_BYTE:    // fall through
  1158     case T_CHAR:    // fall through
  1159     case T_SHORT:
  1160       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1161         // on pre P6 processors we may get partial register stalls
  1162         // so blow away the value of to_rinfo before loading a
  1163         // partial word into it.  Do it here so that it precedes
  1164         // the potential patch point below.
  1165         __ xorptr(dest->as_register(), dest->as_register());
  1167       break;
  1170   PatchingStub* patch = NULL;
  1171   if (patch_code != lir_patch_none) {
  1172     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1173     assert(from_addr.disp() != 0, "must have");
  1175   if (info != NULL) {
  1176     add_debug_info_for_null_check_here(info);
  1179   switch (type) {
  1180     case T_FLOAT: {
  1181       if (dest->is_single_xmm()) {
  1182         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1183       } else {
  1184         assert(dest->is_single_fpu(), "must be");
  1185         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1186         __ fld_s(from_addr);
  1188       break;
  1191     case T_DOUBLE: {
  1192       if (dest->is_double_xmm()) {
  1193         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1194       } else {
  1195         assert(dest->is_double_fpu(), "must be");
  1196         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1197         __ fld_d(from_addr);
  1199       break;
  1202     case T_ADDRESS: // fall through
  1203     case T_OBJECT:  // fall through
  1204     case T_ARRAY:   // fall through
  1205 #ifdef _LP64
  1206       __ movptr(dest->as_register(), from_addr);
  1207       break;
  1208 #endif // _L64
  1209     case T_INT:
  1210       // %%% could this be a movl? this is safer but longer instruction
  1211       __ movl2ptr(dest->as_register(), from_addr);
  1212       break;
  1214     case T_LONG: {
  1215       Register to_lo = dest->as_register_lo();
  1216       Register to_hi = dest->as_register_hi();
  1217 #ifdef _LP64
  1218       __ movptr(to_lo, as_Address_lo(addr));
  1219 #else
  1220       Register base = addr->base()->as_register();
  1221       Register index = noreg;
  1222       if (addr->index()->is_register()) {
  1223         index = addr->index()->as_register();
  1225       if ((base == to_lo && index == to_hi) ||
  1226           (base == to_hi && index == to_lo)) {
  1227         // addresses with 2 registers are only formed as a result of
  1228         // array access so this code will never have to deal with
  1229         // patches or null checks.
  1230         assert(info == NULL && patch == NULL, "must be");
  1231         __ lea(to_hi, as_Address(addr));
  1232         __ movl(to_lo, Address(to_hi, 0));
  1233         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1234       } else if (base == to_lo || index == to_lo) {
  1235         assert(base != to_hi, "can't be");
  1236         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1237         __ movl(to_hi, as_Address_hi(addr));
  1238         if (patch != NULL) {
  1239           patching_epilog(patch, lir_patch_high, base, info);
  1240           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1241           patch_code = lir_patch_low;
  1243         __ movl(to_lo, as_Address_lo(addr));
  1244       } else {
  1245         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1246         __ movl(to_lo, as_Address_lo(addr));
  1247         if (patch != NULL) {
  1248           patching_epilog(patch, lir_patch_low, base, info);
  1249           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1250           patch_code = lir_patch_high;
  1252         __ movl(to_hi, as_Address_hi(addr));
  1254 #endif // _LP64
  1255       break;
  1258     case T_BOOLEAN: // fall through
  1259     case T_BYTE: {
  1260       Register dest_reg = dest->as_register();
  1261       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1262       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1263         __ movsbl(dest_reg, from_addr);
  1264       } else {
  1265         __ movb(dest_reg, from_addr);
  1266         __ shll(dest_reg, 24);
  1267         __ sarl(dest_reg, 24);
  1269       // These are unsigned so the zero extension on 64bit is just what we need
  1270       break;
  1273     case T_CHAR: {
  1274       Register dest_reg = dest->as_register();
  1275       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1276       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1277         __ movzwl(dest_reg, from_addr);
  1278       } else {
  1279         __ movw(dest_reg, from_addr);
  1281       // This is unsigned so the zero extension on 64bit is just what we need
  1282       // __ movl2ptr(dest_reg, dest_reg);
  1283       break;
  1286     case T_SHORT: {
  1287       Register dest_reg = dest->as_register();
  1288       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1289         __ movswl(dest_reg, from_addr);
  1290       } else {
  1291         __ movw(dest_reg, from_addr);
  1292         __ shll(dest_reg, 16);
  1293         __ sarl(dest_reg, 16);
  1295       // Might not be needed in 64bit but certainly doesn't hurt (except for code size)
  1296       __ movl2ptr(dest_reg, dest_reg);
  1297       break;
  1300     default:
  1301       ShouldNotReachHere();
  1304   if (patch != NULL) {
  1305     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1308   if (type == T_ARRAY || type == T_OBJECT) {
  1309     __ verify_oop(dest->as_register());
  1314 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1315   LIR_Address* addr = src->as_address_ptr();
  1316   Address from_addr = as_Address(addr);
  1318   if (VM_Version::supports_sse()) {
  1319     switch (ReadPrefetchInstr) {
  1320       case 0:
  1321         __ prefetchnta(from_addr); break;
  1322       case 1:
  1323         __ prefetcht0(from_addr); break;
  1324       case 2:
  1325         __ prefetcht2(from_addr); break;
  1326       default:
  1327         ShouldNotReachHere(); break;
  1329   } else if (VM_Version::supports_3dnow()) {
  1330     __ prefetchr(from_addr);
  1335 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1336   LIR_Address* addr = src->as_address_ptr();
  1337   Address from_addr = as_Address(addr);
  1339   if (VM_Version::supports_sse()) {
  1340     switch (AllocatePrefetchInstr) {
  1341       case 0:
  1342         __ prefetchnta(from_addr); break;
  1343       case 1:
  1344         __ prefetcht0(from_addr); break;
  1345       case 2:
  1346         __ prefetcht2(from_addr); break;
  1347       case 3:
  1348         __ prefetchw(from_addr); break;
  1349       default:
  1350         ShouldNotReachHere(); break;
  1352   } else if (VM_Version::supports_3dnow()) {
  1353     __ prefetchw(from_addr);
  1358 NEEDS_CLEANUP; // This could be static?
  1359 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1360   int elem_size = type2aelembytes(type);
  1361   switch (elem_size) {
  1362     case 1: return Address::times_1;
  1363     case 2: return Address::times_2;
  1364     case 4: return Address::times_4;
  1365     case 8: return Address::times_8;
  1367   ShouldNotReachHere();
  1368   return Address::no_scale;
  1372 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1373   switch (op->code()) {
  1374     case lir_idiv:
  1375     case lir_irem:
  1376       arithmetic_idiv(op->code(),
  1377                       op->in_opr1(),
  1378                       op->in_opr2(),
  1379                       op->in_opr3(),
  1380                       op->result_opr(),
  1381                       op->info());
  1382       break;
  1383     default:      ShouldNotReachHere(); break;
  1387 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1388 #ifdef ASSERT
  1389   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1390   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1391   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1392 #endif
  1394   if (op->cond() == lir_cond_always) {
  1395     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1396     __ jmp (*(op->label()));
  1397   } else {
  1398     Assembler::Condition acond = Assembler::zero;
  1399     if (op->code() == lir_cond_float_branch) {
  1400       assert(op->ublock() != NULL, "must have unordered successor");
  1401       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1402       switch(op->cond()) {
  1403         case lir_cond_equal:        acond = Assembler::equal;      break;
  1404         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1405         case lir_cond_less:         acond = Assembler::below;      break;
  1406         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1407         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1408         case lir_cond_greater:      acond = Assembler::above;      break;
  1409         default:                         ShouldNotReachHere();
  1411     } else {
  1412       switch (op->cond()) {
  1413         case lir_cond_equal:        acond = Assembler::equal;       break;
  1414         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1415         case lir_cond_less:         acond = Assembler::less;        break;
  1416         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1417         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1418         case lir_cond_greater:      acond = Assembler::greater;     break;
  1419         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1420         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1421         default:                         ShouldNotReachHere();
  1424     __ jcc(acond,*(op->label()));
  1428 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1429   LIR_Opr src  = op->in_opr();
  1430   LIR_Opr dest = op->result_opr();
  1432   switch (op->bytecode()) {
  1433     case Bytecodes::_i2l:
  1434 #ifdef _LP64
  1435       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1436 #else
  1437       move_regs(src->as_register(), dest->as_register_lo());
  1438       move_regs(src->as_register(), dest->as_register_hi());
  1439       __ sarl(dest->as_register_hi(), 31);
  1440 #endif // LP64
  1441       break;
  1443     case Bytecodes::_l2i:
  1444       move_regs(src->as_register_lo(), dest->as_register());
  1445       break;
  1447     case Bytecodes::_i2b:
  1448       move_regs(src->as_register(), dest->as_register());
  1449       __ sign_extend_byte(dest->as_register());
  1450       break;
  1452     case Bytecodes::_i2c:
  1453       move_regs(src->as_register(), dest->as_register());
  1454       __ andl(dest->as_register(), 0xFFFF);
  1455       break;
  1457     case Bytecodes::_i2s:
  1458       move_regs(src->as_register(), dest->as_register());
  1459       __ sign_extend_short(dest->as_register());
  1460       break;
  1463     case Bytecodes::_f2d:
  1464     case Bytecodes::_d2f:
  1465       if (dest->is_single_xmm()) {
  1466         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1467       } else if (dest->is_double_xmm()) {
  1468         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1469       } else {
  1470         assert(src->fpu() == dest->fpu(), "register must be equal");
  1471         // do nothing (float result is rounded later through spilling)
  1473       break;
  1475     case Bytecodes::_i2f:
  1476     case Bytecodes::_i2d:
  1477       if (dest->is_single_xmm()) {
  1478         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1479       } else if (dest->is_double_xmm()) {
  1480         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1481       } else {
  1482         assert(dest->fpu() == 0, "result must be on TOS");
  1483         __ movl(Address(rsp, 0), src->as_register());
  1484         __ fild_s(Address(rsp, 0));
  1486       break;
  1488     case Bytecodes::_f2i:
  1489     case Bytecodes::_d2i:
  1490       if (src->is_single_xmm()) {
  1491         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1492       } else if (src->is_double_xmm()) {
  1493         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1494       } else {
  1495         assert(src->fpu() == 0, "input must be on TOS");
  1496         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1497         __ fist_s(Address(rsp, 0));
  1498         __ movl(dest->as_register(), Address(rsp, 0));
  1499         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1502       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1503       assert(op->stub() != NULL, "stub required");
  1504       __ cmpl(dest->as_register(), 0x80000000);
  1505       __ jcc(Assembler::equal, *op->stub()->entry());
  1506       __ bind(*op->stub()->continuation());
  1507       break;
  1509     case Bytecodes::_l2f:
  1510     case Bytecodes::_l2d:
  1511       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1512       assert(dest->fpu() == 0, "result must be on TOS");
  1514       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1515       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1516       __ fild_d(Address(rsp, 0));
  1517       // float result is rounded later through spilling
  1518       break;
  1520     case Bytecodes::_f2l:
  1521     case Bytecodes::_d2l:
  1522       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1523       assert(src->fpu() == 0, "input must be on TOS");
  1524       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1526       // instruction sequence too long to inline it here
  1528         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1530       break;
  1532     default: ShouldNotReachHere();
  1536 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1537   if (op->init_check()) {
  1538     __ cmpl(Address(op->klass()->as_register(),
  1539                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
  1540             instanceKlass::fully_initialized);
  1541     add_debug_info_for_null_check_here(op->stub()->info());
  1542     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1544   __ allocate_object(op->obj()->as_register(),
  1545                      op->tmp1()->as_register(),
  1546                      op->tmp2()->as_register(),
  1547                      op->header_size(),
  1548                      op->object_size(),
  1549                      op->klass()->as_register(),
  1550                      *op->stub()->entry());
  1551   __ bind(*op->stub()->continuation());
  1554 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1555   if (UseSlowPath ||
  1556       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1557       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1558     __ jmp(*op->stub()->entry());
  1559   } else {
  1560     Register len =  op->len()->as_register();
  1561     Register tmp1 = op->tmp1()->as_register();
  1562     Register tmp2 = op->tmp2()->as_register();
  1563     Register tmp3 = op->tmp3()->as_register();
  1564     if (len == tmp1) {
  1565       tmp1 = tmp3;
  1566     } else if (len == tmp2) {
  1567       tmp2 = tmp3;
  1568     } else if (len == tmp3) {
  1569       // everything is ok
  1570     } else {
  1571       __ mov(tmp3, len);
  1573     __ allocate_array(op->obj()->as_register(),
  1574                       len,
  1575                       tmp1,
  1576                       tmp2,
  1577                       arrayOopDesc::header_size(op->type()),
  1578                       array_element_size(op->type()),
  1579                       op->klass()->as_register(),
  1580                       *op->stub()->entry());
  1582   __ bind(*op->stub()->continuation());
  1587 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1588   LIR_Code code = op->code();
  1589   if (code == lir_store_check) {
  1590     Register value = op->object()->as_register();
  1591     Register array = op->array()->as_register();
  1592     Register k_RInfo = op->tmp1()->as_register();
  1593     Register klass_RInfo = op->tmp2()->as_register();
  1594     Register Rtmp1 = op->tmp3()->as_register();
  1596     CodeStub* stub = op->stub();
  1597     Label done;
  1598     __ cmpptr(value, (int32_t)NULL_WORD);
  1599     __ jcc(Assembler::equal, done);
  1600     add_debug_info_for_null_check_here(op->info_for_exception());
  1601     __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
  1602     __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
  1604     // get instance klass
  1605     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
  1606     // perform the fast part of the checking logic
  1607     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
  1608     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1609     __ push(klass_RInfo);
  1610     __ push(k_RInfo);
  1611     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1612     __ pop(klass_RInfo);
  1613     __ pop(k_RInfo);
  1614     // result is a boolean
  1615     __ cmpl(k_RInfo, 0);
  1616     __ jcc(Assembler::equal, *stub->entry());
  1617     __ bind(done);
  1618   } else if (op->code() == lir_checkcast) {
  1619     // we always need a stub for the failure case.
  1620     CodeStub* stub = op->stub();
  1621     Register obj = op->object()->as_register();
  1622     Register k_RInfo = op->tmp1()->as_register();
  1623     Register klass_RInfo = op->tmp2()->as_register();
  1624     Register dst = op->result_opr()->as_register();
  1625     ciKlass* k = op->klass();
  1626     Register Rtmp1 = noreg;
  1628     Label done;
  1629     if (obj == k_RInfo) {
  1630       k_RInfo = dst;
  1631     } else if (obj == klass_RInfo) {
  1632       klass_RInfo = dst;
  1634     if (k->is_loaded()) {
  1635       select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1636     } else {
  1637       Rtmp1 = op->tmp3()->as_register();
  1638       select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1641     assert_different_registers(obj, k_RInfo, klass_RInfo);
  1642     if (!k->is_loaded()) {
  1643       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1644     } else {
  1645 #ifdef _LP64
  1646       __ movoop(k_RInfo, k->constant_encoding());
  1647 #else
  1648       k_RInfo = noreg;
  1649 #endif // _LP64
  1651     assert(obj != k_RInfo, "must be different");
  1652     __ cmpptr(obj, (int32_t)NULL_WORD);
  1653     if (op->profiled_method() != NULL) {
  1654       ciMethod* method = op->profiled_method();
  1655       int bci          = op->profiled_bci();
  1657       Label profile_done;
  1658       __ jcc(Assembler::notEqual, profile_done);
  1659       // Object is null; update methodDataOop
  1660       ciMethodData* md = method->method_data();
  1661       if (md == NULL) {
  1662         bailout("out of memory building methodDataOop");
  1663         return;
  1665       ciProfileData* data = md->bci_to_data(bci);
  1666       assert(data != NULL,       "need data for checkcast");
  1667       assert(data->is_BitData(), "need BitData for checkcast");
  1668       Register mdo  = klass_RInfo;
  1669       __ movoop(mdo, md->constant_encoding());
  1670       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1671       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1672       __ orl(data_addr, header_bits);
  1673       __ jmp(done);
  1674       __ bind(profile_done);
  1675     } else {
  1676       __ jcc(Assembler::equal, done);
  1678     __ verify_oop(obj);
  1680     if (op->fast_check()) {
  1681       // get object classo
  1682       // not a safepoint as obj null check happens earlier
  1683       if (k->is_loaded()) {
  1684 #ifdef _LP64
  1685         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1686 #else
  1687         __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
  1688 #endif // _LP64
  1689       } else {
  1690         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1693       __ jcc(Assembler::notEqual, *stub->entry());
  1694       __ bind(done);
  1695     } else {
  1696       // get object class
  1697       // not a safepoint as obj null check happens earlier
  1698       __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1699       if (k->is_loaded()) {
  1700         // See if we get an immediate positive hit
  1701 #ifdef _LP64
  1702         __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1703 #else
  1704         __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1705 #endif // _LP64
  1706         if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
  1707           __ jcc(Assembler::notEqual, *stub->entry());
  1708         } else {
  1709           // See if we get an immediate positive hit
  1710           __ jcc(Assembler::equal, done);
  1711           // check for self
  1712 #ifdef _LP64
  1713           __ cmpptr(klass_RInfo, k_RInfo);
  1714 #else
  1715           __ cmpoop(klass_RInfo, k->constant_encoding());
  1716 #endif // _LP64
  1717           __ jcc(Assembler::equal, done);
  1719           __ push(klass_RInfo);
  1720 #ifdef _LP64
  1721           __ push(k_RInfo);
  1722 #else
  1723           __ pushoop(k->constant_encoding());
  1724 #endif // _LP64
  1725           __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1726           __ pop(klass_RInfo);
  1727           __ pop(klass_RInfo);
  1728           // result is a boolean
  1729           __ cmpl(klass_RInfo, 0);
  1730           __ jcc(Assembler::equal, *stub->entry());
  1732         __ bind(done);
  1733       } else {
  1734         // perform the fast part of the checking logic
  1735         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
  1736         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1737         __ push(klass_RInfo);
  1738         __ push(k_RInfo);
  1739         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1740         __ pop(klass_RInfo);
  1741         __ pop(k_RInfo);
  1742         // result is a boolean
  1743         __ cmpl(k_RInfo, 0);
  1744         __ jcc(Assembler::equal, *stub->entry());
  1745         __ bind(done);
  1749     if (dst != obj) {
  1750       __ mov(dst, obj);
  1752   } else if (code == lir_instanceof) {
  1753     Register obj = op->object()->as_register();
  1754     Register k_RInfo = op->tmp1()->as_register();
  1755     Register klass_RInfo = op->tmp2()->as_register();
  1756     Register dst = op->result_opr()->as_register();
  1757     ciKlass* k = op->klass();
  1759     Label done;
  1760     Label zero;
  1761     Label one;
  1762     if (obj == k_RInfo) {
  1763       k_RInfo = klass_RInfo;
  1764       klass_RInfo = obj;
  1766     // patching may screw with our temporaries on sparc,
  1767     // so let's do it before loading the class
  1768     if (!k->is_loaded()) {
  1769       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1770     } else {
  1771       LP64_ONLY(__ movoop(k_RInfo, k->constant_encoding()));
  1773     assert(obj != k_RInfo, "must be different");
  1775     __ verify_oop(obj);
  1776     if (op->fast_check()) {
  1777       __ cmpptr(obj, (int32_t)NULL_WORD);
  1778       __ jcc(Assembler::equal, zero);
  1779       // get object class
  1780       // not a safepoint as obj null check happens earlier
  1781       if (LP64_ONLY(false &&) k->is_loaded()) {
  1782         NOT_LP64(__ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()));
  1783         k_RInfo = noreg;
  1784       } else {
  1785         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1788       __ jcc(Assembler::equal, one);
  1789     } else {
  1790       // get object class
  1791       // not a safepoint as obj null check happens earlier
  1792       __ cmpptr(obj, (int32_t)NULL_WORD);
  1793       __ jcc(Assembler::equal, zero);
  1794       __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1796 #ifndef _LP64
  1797       if (k->is_loaded()) {
  1798         // See if we get an immediate positive hit
  1799         __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1800         __ jcc(Assembler::equal, one);
  1801         if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
  1802           // check for self
  1803           __ cmpoop(klass_RInfo, k->constant_encoding());
  1804           __ jcc(Assembler::equal, one);
  1805           __ push(klass_RInfo);
  1806           __ pushoop(k->constant_encoding());
  1807           __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1808           __ pop(klass_RInfo);
  1809           __ pop(dst);
  1810           __ jmp(done);
  1813         else // next block is unconditional if LP64:
  1814 #endif // LP64
  1816         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
  1818         // perform the fast part of the checking logic
  1819         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, dst, &one, &zero, NULL);
  1820         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1821         __ push(klass_RInfo);
  1822         __ push(k_RInfo);
  1823         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1824         __ pop(klass_RInfo);
  1825         __ pop(dst);
  1826         __ jmp(done);
  1829     __ bind(zero);
  1830     __ xorptr(dst, dst);
  1831     __ jmp(done);
  1832     __ bind(one);
  1833     __ movptr(dst, 1);
  1834     __ bind(done);
  1835   } else {
  1836     ShouldNotReachHere();
  1842 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1843   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1844     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1845     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1846     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1847     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1848     Register addr = op->addr()->as_register();
  1849     if (os::is_MP()) {
  1850       __ lock();
  1852     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1854   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1855     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1856     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1857     Register newval = op->new_value()->as_register();
  1858     Register cmpval = op->cmp_value()->as_register();
  1859     assert(cmpval == rax, "wrong register");
  1860     assert(newval != NULL, "new val must be register");
  1861     assert(cmpval != newval, "cmp and new values must be in different registers");
  1862     assert(cmpval != addr, "cmp and addr must be in different registers");
  1863     assert(newval != addr, "new value and addr must be in different registers");
  1864     if (os::is_MP()) {
  1865       __ lock();
  1867     if ( op->code() == lir_cas_obj) {
  1868       __ cmpxchgptr(newval, Address(addr, 0));
  1869     } else if (op->code() == lir_cas_int) {
  1870       __ cmpxchgl(newval, Address(addr, 0));
  1871     } else {
  1872       LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
  1874 #ifdef _LP64
  1875   } else if (op->code() == lir_cas_long) {
  1876     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1877     Register newval = op->new_value()->as_register_lo();
  1878     Register cmpval = op->cmp_value()->as_register_lo();
  1879     assert(cmpval == rax, "wrong register");
  1880     assert(newval != NULL, "new val must be register");
  1881     assert(cmpval != newval, "cmp and new values must be in different registers");
  1882     assert(cmpval != addr, "cmp and addr must be in different registers");
  1883     assert(newval != addr, "new value and addr must be in different registers");
  1884     if (os::is_MP()) {
  1885       __ lock();
  1887     __ cmpxchgq(newval, Address(addr, 0));
  1888 #endif // _LP64
  1889   } else {
  1890     Unimplemented();
  1895 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
  1896   Assembler::Condition acond, ncond;
  1897   switch (condition) {
  1898     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  1899     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  1900     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  1901     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  1902     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  1903     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  1904     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  1905     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  1906     default:                    ShouldNotReachHere();
  1909   if (opr1->is_cpu_register()) {
  1910     reg2reg(opr1, result);
  1911   } else if (opr1->is_stack()) {
  1912     stack2reg(opr1, result, result->type());
  1913   } else if (opr1->is_constant()) {
  1914     const2reg(opr1, result, lir_patch_none, NULL);
  1915   } else {
  1916     ShouldNotReachHere();
  1919   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  1920     // optimized version that does not require a branch
  1921     if (opr2->is_single_cpu()) {
  1922       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  1923       __ cmov(ncond, result->as_register(), opr2->as_register());
  1924     } else if (opr2->is_double_cpu()) {
  1925       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  1926       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  1927       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  1928       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  1929     } else if (opr2->is_single_stack()) {
  1930       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  1931     } else if (opr2->is_double_stack()) {
  1932       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  1933       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  1934     } else {
  1935       ShouldNotReachHere();
  1938   } else {
  1939     Label skip;
  1940     __ jcc (acond, skip);
  1941     if (opr2->is_cpu_register()) {
  1942       reg2reg(opr2, result);
  1943     } else if (opr2->is_stack()) {
  1944       stack2reg(opr2, result, result->type());
  1945     } else if (opr2->is_constant()) {
  1946       const2reg(opr2, result, lir_patch_none, NULL);
  1947     } else {
  1948       ShouldNotReachHere();
  1950     __ bind(skip);
  1955 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1956   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  1958   if (left->is_single_cpu()) {
  1959     assert(left == dest, "left and dest must be equal");
  1960     Register lreg = left->as_register();
  1962     if (right->is_single_cpu()) {
  1963       // cpu register - cpu register
  1964       Register rreg = right->as_register();
  1965       switch (code) {
  1966         case lir_add: __ addl (lreg, rreg); break;
  1967         case lir_sub: __ subl (lreg, rreg); break;
  1968         case lir_mul: __ imull(lreg, rreg); break;
  1969         default:      ShouldNotReachHere();
  1972     } else if (right->is_stack()) {
  1973       // cpu register - stack
  1974       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  1975       switch (code) {
  1976         case lir_add: __ addl(lreg, raddr); break;
  1977         case lir_sub: __ subl(lreg, raddr); break;
  1978         default:      ShouldNotReachHere();
  1981     } else if (right->is_constant()) {
  1982       // cpu register - constant
  1983       jint c = right->as_constant_ptr()->as_jint();
  1984       switch (code) {
  1985         case lir_add: {
  1986           __ increment(lreg, c);
  1987           break;
  1989         case lir_sub: {
  1990           __ decrement(lreg, c);
  1991           break;
  1993         default: ShouldNotReachHere();
  1996     } else {
  1997       ShouldNotReachHere();
  2000   } else if (left->is_double_cpu()) {
  2001     assert(left == dest, "left and dest must be equal");
  2002     Register lreg_lo = left->as_register_lo();
  2003     Register lreg_hi = left->as_register_hi();
  2005     if (right->is_double_cpu()) {
  2006       // cpu register - cpu register
  2007       Register rreg_lo = right->as_register_lo();
  2008       Register rreg_hi = right->as_register_hi();
  2009       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2010       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2011       switch (code) {
  2012         case lir_add:
  2013           __ addptr(lreg_lo, rreg_lo);
  2014           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2015           break;
  2016         case lir_sub:
  2017           __ subptr(lreg_lo, rreg_lo);
  2018           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2019           break;
  2020         case lir_mul:
  2021 #ifdef _LP64
  2022           __ imulq(lreg_lo, rreg_lo);
  2023 #else
  2024           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2025           __ imull(lreg_hi, rreg_lo);
  2026           __ imull(rreg_hi, lreg_lo);
  2027           __ addl (rreg_hi, lreg_hi);
  2028           __ mull (rreg_lo);
  2029           __ addl (lreg_hi, rreg_hi);
  2030 #endif // _LP64
  2031           break;
  2032         default:
  2033           ShouldNotReachHere();
  2036     } else if (right->is_constant()) {
  2037       // cpu register - constant
  2038 #ifdef _LP64
  2039       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2040       __ movptr(r10, (intptr_t) c);
  2041       switch (code) {
  2042         case lir_add:
  2043           __ addptr(lreg_lo, r10);
  2044           break;
  2045         case lir_sub:
  2046           __ subptr(lreg_lo, r10);
  2047           break;
  2048         default:
  2049           ShouldNotReachHere();
  2051 #else
  2052       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2053       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2054       switch (code) {
  2055         case lir_add:
  2056           __ addptr(lreg_lo, c_lo);
  2057           __ adcl(lreg_hi, c_hi);
  2058           break;
  2059         case lir_sub:
  2060           __ subptr(lreg_lo, c_lo);
  2061           __ sbbl(lreg_hi, c_hi);
  2062           break;
  2063         default:
  2064           ShouldNotReachHere();
  2066 #endif // _LP64
  2068     } else {
  2069       ShouldNotReachHere();
  2072   } else if (left->is_single_xmm()) {
  2073     assert(left == dest, "left and dest must be equal");
  2074     XMMRegister lreg = left->as_xmm_float_reg();
  2076     if (right->is_single_xmm()) {
  2077       XMMRegister rreg = right->as_xmm_float_reg();
  2078       switch (code) {
  2079         case lir_add: __ addss(lreg, rreg);  break;
  2080         case lir_sub: __ subss(lreg, rreg);  break;
  2081         case lir_mul_strictfp: // fall through
  2082         case lir_mul: __ mulss(lreg, rreg);  break;
  2083         case lir_div_strictfp: // fall through
  2084         case lir_div: __ divss(lreg, rreg);  break;
  2085         default: ShouldNotReachHere();
  2087     } else {
  2088       Address raddr;
  2089       if (right->is_single_stack()) {
  2090         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2091       } else if (right->is_constant()) {
  2092         // hack for now
  2093         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2094       } else {
  2095         ShouldNotReachHere();
  2097       switch (code) {
  2098         case lir_add: __ addss(lreg, raddr);  break;
  2099         case lir_sub: __ subss(lreg, raddr);  break;
  2100         case lir_mul_strictfp: // fall through
  2101         case lir_mul: __ mulss(lreg, raddr);  break;
  2102         case lir_div_strictfp: // fall through
  2103         case lir_div: __ divss(lreg, raddr);  break;
  2104         default: ShouldNotReachHere();
  2108   } else if (left->is_double_xmm()) {
  2109     assert(left == dest, "left and dest must be equal");
  2111     XMMRegister lreg = left->as_xmm_double_reg();
  2112     if (right->is_double_xmm()) {
  2113       XMMRegister rreg = right->as_xmm_double_reg();
  2114       switch (code) {
  2115         case lir_add: __ addsd(lreg, rreg);  break;
  2116         case lir_sub: __ subsd(lreg, rreg);  break;
  2117         case lir_mul_strictfp: // fall through
  2118         case lir_mul: __ mulsd(lreg, rreg);  break;
  2119         case lir_div_strictfp: // fall through
  2120         case lir_div: __ divsd(lreg, rreg);  break;
  2121         default: ShouldNotReachHere();
  2123     } else {
  2124       Address raddr;
  2125       if (right->is_double_stack()) {
  2126         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2127       } else if (right->is_constant()) {
  2128         // hack for now
  2129         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2130       } else {
  2131         ShouldNotReachHere();
  2133       switch (code) {
  2134         case lir_add: __ addsd(lreg, raddr);  break;
  2135         case lir_sub: __ subsd(lreg, raddr);  break;
  2136         case lir_mul_strictfp: // fall through
  2137         case lir_mul: __ mulsd(lreg, raddr);  break;
  2138         case lir_div_strictfp: // fall through
  2139         case lir_div: __ divsd(lreg, raddr);  break;
  2140         default: ShouldNotReachHere();
  2144   } else if (left->is_single_fpu()) {
  2145     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2147     if (right->is_single_fpu()) {
  2148       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2150     } else {
  2151       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2152       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2154       Address raddr;
  2155       if (right->is_single_stack()) {
  2156         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2157       } else if (right->is_constant()) {
  2158         address const_addr = float_constant(right->as_jfloat());
  2159         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2160         // hack for now
  2161         raddr = __ as_Address(InternalAddress(const_addr));
  2162       } else {
  2163         ShouldNotReachHere();
  2166       switch (code) {
  2167         case lir_add: __ fadd_s(raddr); break;
  2168         case lir_sub: __ fsub_s(raddr); break;
  2169         case lir_mul_strictfp: // fall through
  2170         case lir_mul: __ fmul_s(raddr); break;
  2171         case lir_div_strictfp: // fall through
  2172         case lir_div: __ fdiv_s(raddr); break;
  2173         default:      ShouldNotReachHere();
  2177   } else if (left->is_double_fpu()) {
  2178     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2180     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2181       // Double values require special handling for strictfp mul/div on x86
  2182       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2183       __ fmulp(left->fpu_regnrLo() + 1);
  2186     if (right->is_double_fpu()) {
  2187       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2189     } else {
  2190       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2191       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2193       Address raddr;
  2194       if (right->is_double_stack()) {
  2195         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2196       } else if (right->is_constant()) {
  2197         // hack for now
  2198         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2199       } else {
  2200         ShouldNotReachHere();
  2203       switch (code) {
  2204         case lir_add: __ fadd_d(raddr); break;
  2205         case lir_sub: __ fsub_d(raddr); break;
  2206         case lir_mul_strictfp: // fall through
  2207         case lir_mul: __ fmul_d(raddr); break;
  2208         case lir_div_strictfp: // fall through
  2209         case lir_div: __ fdiv_d(raddr); break;
  2210         default: ShouldNotReachHere();
  2214     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2215       // Double values require special handling for strictfp mul/div on x86
  2216       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2217       __ fmulp(dest->fpu_regnrLo() + 1);
  2220   } else if (left->is_single_stack() || left->is_address()) {
  2221     assert(left == dest, "left and dest must be equal");
  2223     Address laddr;
  2224     if (left->is_single_stack()) {
  2225       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2226     } else if (left->is_address()) {
  2227       laddr = as_Address(left->as_address_ptr());
  2228     } else {
  2229       ShouldNotReachHere();
  2232     if (right->is_single_cpu()) {
  2233       Register rreg = right->as_register();
  2234       switch (code) {
  2235         case lir_add: __ addl(laddr, rreg); break;
  2236         case lir_sub: __ subl(laddr, rreg); break;
  2237         default:      ShouldNotReachHere();
  2239     } else if (right->is_constant()) {
  2240       jint c = right->as_constant_ptr()->as_jint();
  2241       switch (code) {
  2242         case lir_add: {
  2243           __ incrementl(laddr, c);
  2244           break;
  2246         case lir_sub: {
  2247           __ decrementl(laddr, c);
  2248           break;
  2250         default: ShouldNotReachHere();
  2252     } else {
  2253       ShouldNotReachHere();
  2256   } else {
  2257     ShouldNotReachHere();
  2261 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2262   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2263   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2264   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2266   bool left_is_tos = (left_index == 0);
  2267   bool dest_is_tos = (dest_index == 0);
  2268   int non_tos_index = (left_is_tos ? right_index : left_index);
  2270   switch (code) {
  2271     case lir_add:
  2272       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2273       else if (dest_is_tos)    __ fadd (non_tos_index);
  2274       else                     __ fadda(non_tos_index);
  2275       break;
  2277     case lir_sub:
  2278       if (left_is_tos) {
  2279         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2280         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2281         else                   __ fsubra(non_tos_index);
  2282       } else {
  2283         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2284         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2285         else                   __ fsuba (non_tos_index);
  2287       break;
  2289     case lir_mul_strictfp: // fall through
  2290     case lir_mul:
  2291       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2292       else if (dest_is_tos)    __ fmul (non_tos_index);
  2293       else                     __ fmula(non_tos_index);
  2294       break;
  2296     case lir_div_strictfp: // fall through
  2297     case lir_div:
  2298       if (left_is_tos) {
  2299         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2300         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2301         else                   __ fdivra(non_tos_index);
  2302       } else {
  2303         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2304         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2305         else                   __ fdiva (non_tos_index);
  2307       break;
  2309     case lir_rem:
  2310       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2311       __ fremr(noreg);
  2312       break;
  2314     default:
  2315       ShouldNotReachHere();
  2320 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2321   if (value->is_double_xmm()) {
  2322     switch(code) {
  2323       case lir_abs :
  2325           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2326             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2328           __ andpd(dest->as_xmm_double_reg(),
  2329                     ExternalAddress((address)double_signmask_pool));
  2331         break;
  2333       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2334       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2335       default      : ShouldNotReachHere();
  2338   } else if (value->is_double_fpu()) {
  2339     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2340     switch(code) {
  2341       case lir_log   : __ flog() ; break;
  2342       case lir_log10 : __ flog10() ; break;
  2343       case lir_abs   : __ fabs() ; break;
  2344       case lir_sqrt  : __ fsqrt(); break;
  2345       case lir_sin   :
  2346         // Should consider not saving rbx, if not necessary
  2347         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2348         break;
  2349       case lir_cos :
  2350         // Should consider not saving rbx, if not necessary
  2351         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2352         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2353         break;
  2354       case lir_tan :
  2355         // Should consider not saving rbx, if not necessary
  2356         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2357         break;
  2358       default      : ShouldNotReachHere();
  2360   } else {
  2361     Unimplemented();
  2365 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2366   // assert(left->destroys_register(), "check");
  2367   if (left->is_single_cpu()) {
  2368     Register reg = left->as_register();
  2369     if (right->is_constant()) {
  2370       int val = right->as_constant_ptr()->as_jint();
  2371       switch (code) {
  2372         case lir_logic_and: __ andl (reg, val); break;
  2373         case lir_logic_or:  __ orl  (reg, val); break;
  2374         case lir_logic_xor: __ xorl (reg, val); break;
  2375         default: ShouldNotReachHere();
  2377     } else if (right->is_stack()) {
  2378       // added support for stack operands
  2379       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2380       switch (code) {
  2381         case lir_logic_and: __ andl (reg, raddr); break;
  2382         case lir_logic_or:  __ orl  (reg, raddr); break;
  2383         case lir_logic_xor: __ xorl (reg, raddr); break;
  2384         default: ShouldNotReachHere();
  2386     } else {
  2387       Register rright = right->as_register();
  2388       switch (code) {
  2389         case lir_logic_and: __ andptr (reg, rright); break;
  2390         case lir_logic_or : __ orptr  (reg, rright); break;
  2391         case lir_logic_xor: __ xorptr (reg, rright); break;
  2392         default: ShouldNotReachHere();
  2395     move_regs(reg, dst->as_register());
  2396   } else {
  2397     Register l_lo = left->as_register_lo();
  2398     Register l_hi = left->as_register_hi();
  2399     if (right->is_constant()) {
  2400 #ifdef _LP64
  2401       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2402       switch (code) {
  2403         case lir_logic_and:
  2404           __ andq(l_lo, rscratch1);
  2405           break;
  2406         case lir_logic_or:
  2407           __ orq(l_lo, rscratch1);
  2408           break;
  2409         case lir_logic_xor:
  2410           __ xorq(l_lo, rscratch1);
  2411           break;
  2412         default: ShouldNotReachHere();
  2414 #else
  2415       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2416       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2417       switch (code) {
  2418         case lir_logic_and:
  2419           __ andl(l_lo, r_lo);
  2420           __ andl(l_hi, r_hi);
  2421           break;
  2422         case lir_logic_or:
  2423           __ orl(l_lo, r_lo);
  2424           __ orl(l_hi, r_hi);
  2425           break;
  2426         case lir_logic_xor:
  2427           __ xorl(l_lo, r_lo);
  2428           __ xorl(l_hi, r_hi);
  2429           break;
  2430         default: ShouldNotReachHere();
  2432 #endif // _LP64
  2433     } else {
  2434       Register r_lo = right->as_register_lo();
  2435       Register r_hi = right->as_register_hi();
  2436       assert(l_lo != r_hi, "overwriting registers");
  2437       switch (code) {
  2438         case lir_logic_and:
  2439           __ andptr(l_lo, r_lo);
  2440           NOT_LP64(__ andptr(l_hi, r_hi);)
  2441           break;
  2442         case lir_logic_or:
  2443           __ orptr(l_lo, r_lo);
  2444           NOT_LP64(__ orptr(l_hi, r_hi);)
  2445           break;
  2446         case lir_logic_xor:
  2447           __ xorptr(l_lo, r_lo);
  2448           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2449           break;
  2450         default: ShouldNotReachHere();
  2454     Register dst_lo = dst->as_register_lo();
  2455     Register dst_hi = dst->as_register_hi();
  2457 #ifdef _LP64
  2458     move_regs(l_lo, dst_lo);
  2459 #else
  2460     if (dst_lo == l_hi) {
  2461       assert(dst_hi != l_lo, "overwriting registers");
  2462       move_regs(l_hi, dst_hi);
  2463       move_regs(l_lo, dst_lo);
  2464     } else {
  2465       assert(dst_lo != l_hi, "overwriting registers");
  2466       move_regs(l_lo, dst_lo);
  2467       move_regs(l_hi, dst_hi);
  2469 #endif // _LP64
  2474 // we assume that rax, and rdx can be overwritten
  2475 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2477   assert(left->is_single_cpu(),   "left must be register");
  2478   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2479   assert(result->is_single_cpu(), "result must be register");
  2481   //  assert(left->destroys_register(), "check");
  2482   //  assert(right->destroys_register(), "check");
  2484   Register lreg = left->as_register();
  2485   Register dreg = result->as_register();
  2487   if (right->is_constant()) {
  2488     int divisor = right->as_constant_ptr()->as_jint();
  2489     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2490     if (code == lir_idiv) {
  2491       assert(lreg == rax, "must be rax,");
  2492       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2493       __ cdql(); // sign extend into rdx:rax
  2494       if (divisor == 2) {
  2495         __ subl(lreg, rdx);
  2496       } else {
  2497         __ andl(rdx, divisor - 1);
  2498         __ addl(lreg, rdx);
  2500       __ sarl(lreg, log2_intptr(divisor));
  2501       move_regs(lreg, dreg);
  2502     } else if (code == lir_irem) {
  2503       Label done;
  2504       __ mov(dreg, lreg);
  2505       __ andl(dreg, 0x80000000 | (divisor - 1));
  2506       __ jcc(Assembler::positive, done);
  2507       __ decrement(dreg);
  2508       __ orl(dreg, ~(divisor - 1));
  2509       __ increment(dreg);
  2510       __ bind(done);
  2511     } else {
  2512       ShouldNotReachHere();
  2514   } else {
  2515     Register rreg = right->as_register();
  2516     assert(lreg == rax, "left register must be rax,");
  2517     assert(rreg != rdx, "right register must not be rdx");
  2518     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2520     move_regs(lreg, rax);
  2522     int idivl_offset = __ corrected_idivl(rreg);
  2523     add_debug_info_for_div0(idivl_offset, info);
  2524     if (code == lir_irem) {
  2525       move_regs(rdx, dreg); // result is in rdx
  2526     } else {
  2527       move_regs(rax, dreg);
  2533 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2534   if (opr1->is_single_cpu()) {
  2535     Register reg1 = opr1->as_register();
  2536     if (opr2->is_single_cpu()) {
  2537       // cpu register - cpu register
  2538       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2539         __ cmpptr(reg1, opr2->as_register());
  2540       } else {
  2541         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2542         __ cmpl(reg1, opr2->as_register());
  2544     } else if (opr2->is_stack()) {
  2545       // cpu register - stack
  2546       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2547         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2548       } else {
  2549         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2551     } else if (opr2->is_constant()) {
  2552       // cpu register - constant
  2553       LIR_Const* c = opr2->as_constant_ptr();
  2554       if (c->type() == T_INT) {
  2555         __ cmpl(reg1, c->as_jint());
  2556       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2557         // In 64bit oops are single register
  2558         jobject o = c->as_jobject();
  2559         if (o == NULL) {
  2560           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2561         } else {
  2562 #ifdef _LP64
  2563           __ movoop(rscratch1, o);
  2564           __ cmpptr(reg1, rscratch1);
  2565 #else
  2566           __ cmpoop(reg1, c->as_jobject());
  2567 #endif // _LP64
  2569       } else {
  2570         ShouldNotReachHere();
  2572       // cpu register - address
  2573     } else if (opr2->is_address()) {
  2574       if (op->info() != NULL) {
  2575         add_debug_info_for_null_check_here(op->info());
  2577       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2578     } else {
  2579       ShouldNotReachHere();
  2582   } else if(opr1->is_double_cpu()) {
  2583     Register xlo = opr1->as_register_lo();
  2584     Register xhi = opr1->as_register_hi();
  2585     if (opr2->is_double_cpu()) {
  2586 #ifdef _LP64
  2587       __ cmpptr(xlo, opr2->as_register_lo());
  2588 #else
  2589       // cpu register - cpu register
  2590       Register ylo = opr2->as_register_lo();
  2591       Register yhi = opr2->as_register_hi();
  2592       __ subl(xlo, ylo);
  2593       __ sbbl(xhi, yhi);
  2594       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2595         __ orl(xhi, xlo);
  2597 #endif // _LP64
  2598     } else if (opr2->is_constant()) {
  2599       // cpu register - constant 0
  2600       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2601 #ifdef _LP64
  2602       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2603 #else
  2604       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2605       __ orl(xhi, xlo);
  2606 #endif // _LP64
  2607     } else {
  2608       ShouldNotReachHere();
  2611   } else if (opr1->is_single_xmm()) {
  2612     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2613     if (opr2->is_single_xmm()) {
  2614       // xmm register - xmm register
  2615       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2616     } else if (opr2->is_stack()) {
  2617       // xmm register - stack
  2618       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2619     } else if (opr2->is_constant()) {
  2620       // xmm register - constant
  2621       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2622     } else if (opr2->is_address()) {
  2623       // xmm register - address
  2624       if (op->info() != NULL) {
  2625         add_debug_info_for_null_check_here(op->info());
  2627       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2628     } else {
  2629       ShouldNotReachHere();
  2632   } else if (opr1->is_double_xmm()) {
  2633     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2634     if (opr2->is_double_xmm()) {
  2635       // xmm register - xmm register
  2636       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2637     } else if (opr2->is_stack()) {
  2638       // xmm register - stack
  2639       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2640     } else if (opr2->is_constant()) {
  2641       // xmm register - constant
  2642       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2643     } else if (opr2->is_address()) {
  2644       // xmm register - address
  2645       if (op->info() != NULL) {
  2646         add_debug_info_for_null_check_here(op->info());
  2648       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2649     } else {
  2650       ShouldNotReachHere();
  2653   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2654     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2655     assert(opr2->is_fpu_register(), "both must be registers");
  2656     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2658   } else if (opr1->is_address() && opr2->is_constant()) {
  2659     LIR_Const* c = opr2->as_constant_ptr();
  2660 #ifdef _LP64
  2661     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2662       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2663       __ movoop(rscratch1, c->as_jobject());
  2665 #endif // LP64
  2666     if (op->info() != NULL) {
  2667       add_debug_info_for_null_check_here(op->info());
  2669     // special case: address - constant
  2670     LIR_Address* addr = opr1->as_address_ptr();
  2671     if (c->type() == T_INT) {
  2672       __ cmpl(as_Address(addr), c->as_jint());
  2673     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2674 #ifdef _LP64
  2675       // %%% Make this explode if addr isn't reachable until we figure out a
  2676       // better strategy by giving noreg as the temp for as_Address
  2677       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2678 #else
  2679       __ cmpoop(as_Address(addr), c->as_jobject());
  2680 #endif // _LP64
  2681     } else {
  2682       ShouldNotReachHere();
  2685   } else {
  2686     ShouldNotReachHere();
  2690 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2691   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2692     if (left->is_single_xmm()) {
  2693       assert(right->is_single_xmm(), "must match");
  2694       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2695     } else if (left->is_double_xmm()) {
  2696       assert(right->is_double_xmm(), "must match");
  2697       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2699     } else {
  2700       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2701       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2703       assert(left->fpu() == 0, "left must be on TOS");
  2704       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2705                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2707   } else {
  2708     assert(code == lir_cmp_l2i, "check");
  2709 #ifdef _LP64
  2710       Register dest = dst->as_register();
  2711       __ xorptr(dest, dest);
  2712       Label high, done;
  2713       __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2714       __ jcc(Assembler::equal, done);
  2715       __ jcc(Assembler::greater, high);
  2716       __ decrement(dest);
  2717       __ jmp(done);
  2718       __ bind(high);
  2719       __ increment(dest);
  2721       __ bind(done);
  2723 #else
  2724     __ lcmp2int(left->as_register_hi(),
  2725                 left->as_register_lo(),
  2726                 right->as_register_hi(),
  2727                 right->as_register_lo());
  2728     move_regs(left->as_register_hi(), dst->as_register());
  2729 #endif // _LP64
  2734 void LIR_Assembler::align_call(LIR_Code code) {
  2735   if (os::is_MP()) {
  2736     // make sure that the displacement word of the call ends up word aligned
  2737     int offset = __ offset();
  2738     switch (code) {
  2739       case lir_static_call:
  2740       case lir_optvirtual_call:
  2741         offset += NativeCall::displacement_offset;
  2742         break;
  2743       case lir_icvirtual_call:
  2744         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2745       break;
  2746       case lir_virtual_call:  // currently, sparc-specific for niagara
  2747       default: ShouldNotReachHere();
  2749     while (offset++ % BytesPerWord != 0) {
  2750       __ nop();
  2756 void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) {
  2757   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2758          "must be aligned");
  2759   __ call(AddressLiteral(entry, rtype));
  2760   add_call_info(code_offset(), info);
  2764 void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) {
  2765   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  2766   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
  2767   assert(!os::is_MP() ||
  2768          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2769          "must be aligned");
  2770   __ call(AddressLiteral(entry, rh));
  2771   add_call_info(code_offset(), info);
  2775 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2776 void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) {
  2777   ShouldNotReachHere();
  2780 void LIR_Assembler::emit_static_call_stub() {
  2781   address call_pc = __ pc();
  2782   address stub = __ start_a_stub(call_stub_size);
  2783   if (stub == NULL) {
  2784     bailout("static call stub overflow");
  2785     return;
  2788   int start = __ offset();
  2789   if (os::is_MP()) {
  2790     // make sure that the displacement word of the call ends up word aligned
  2791     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2792     while (offset++ % BytesPerWord != 0) {
  2793       __ nop();
  2796   __ relocate(static_stub_Relocation::spec(call_pc));
  2797   __ movoop(rbx, (jobject)NULL);
  2798   // must be set to -1 at code generation time
  2799   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2800   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2801   __ jump(RuntimeAddress(__ pc()));
  2803   assert(__ offset() - start <= call_stub_size, "stub too big")
  2804   __ end_a_stub();
  2808 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
  2809   assert(exceptionOop->as_register() == rax, "must match");
  2810   assert(unwind || exceptionPC->as_register() == rdx, "must match");
  2812   // exception object is not added to oop map by LinearScan
  2813   // (LinearScan assumes that no oops are in fixed registers)
  2814   info->add_register_oop(exceptionOop);
  2815   Runtime1::StubID unwind_id;
  2817   if (!unwind) {
  2818     // get current pc information
  2819     // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2820     int pc_for_athrow_offset = __ offset();
  2821     InternalAddress pc_for_athrow(__ pc());
  2822     __ lea(exceptionPC->as_register(), pc_for_athrow);
  2823     add_call_info(pc_for_athrow_offset, info); // for exception handler
  2825     __ verify_not_null_oop(rax);
  2826     // search an exception handler (rax: exception oop, rdx: throwing pc)
  2827     if (compilation()->has_fpu_code()) {
  2828       unwind_id = Runtime1::handle_exception_id;
  2829     } else {
  2830       unwind_id = Runtime1::handle_exception_nofpu_id;
  2832   } else {
  2833     unwind_id = Runtime1::unwind_exception_id;
  2835   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2837   // enough room for two byte trap
  2838   __ nop();
  2842 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2844   // optimized version for linear scan:
  2845   // * count must be already in ECX (guaranteed by LinearScan)
  2846   // * left and dest must be equal
  2847   // * tmp must be unused
  2848   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  2849   assert(left == dest, "left and dest must be equal");
  2850   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  2852   if (left->is_single_cpu()) {
  2853     Register value = left->as_register();
  2854     assert(value != SHIFT_count, "left cannot be ECX");
  2856     switch (code) {
  2857       case lir_shl:  __ shll(value); break;
  2858       case lir_shr:  __ sarl(value); break;
  2859       case lir_ushr: __ shrl(value); break;
  2860       default: ShouldNotReachHere();
  2862   } else if (left->is_double_cpu()) {
  2863     Register lo = left->as_register_lo();
  2864     Register hi = left->as_register_hi();
  2865     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  2866 #ifdef _LP64
  2867     switch (code) {
  2868       case lir_shl:  __ shlptr(lo);        break;
  2869       case lir_shr:  __ sarptr(lo);        break;
  2870       case lir_ushr: __ shrptr(lo);        break;
  2871       default: ShouldNotReachHere();
  2873 #else
  2875     switch (code) {
  2876       case lir_shl:  __ lshl(hi, lo);        break;
  2877       case lir_shr:  __ lshr(hi, lo, true);  break;
  2878       case lir_ushr: __ lshr(hi, lo, false); break;
  2879       default: ShouldNotReachHere();
  2881 #endif // LP64
  2882   } else {
  2883     ShouldNotReachHere();
  2888 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2889   if (dest->is_single_cpu()) {
  2890     // first move left into dest so that left is not destroyed by the shift
  2891     Register value = dest->as_register();
  2892     count = count & 0x1F; // Java spec
  2894     move_regs(left->as_register(), value);
  2895     switch (code) {
  2896       case lir_shl:  __ shll(value, count); break;
  2897       case lir_shr:  __ sarl(value, count); break;
  2898       case lir_ushr: __ shrl(value, count); break;
  2899       default: ShouldNotReachHere();
  2901   } else if (dest->is_double_cpu()) {
  2902 #ifndef _LP64
  2903     Unimplemented();
  2904 #else
  2905     // first move left into dest so that left is not destroyed by the shift
  2906     Register value = dest->as_register_lo();
  2907     count = count & 0x1F; // Java spec
  2909     move_regs(left->as_register_lo(), value);
  2910     switch (code) {
  2911       case lir_shl:  __ shlptr(value, count); break;
  2912       case lir_shr:  __ sarptr(value, count); break;
  2913       case lir_ushr: __ shrptr(value, count); break;
  2914       default: ShouldNotReachHere();
  2916 #endif // _LP64
  2917   } else {
  2918     ShouldNotReachHere();
  2923 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  2924   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2925   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2926   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2927   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  2931 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  2932   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2933   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2934   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2935   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  2939 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  2940   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2941   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2942   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2943   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  2947 // This code replaces a call to arraycopy; no exception may
  2948 // be thrown in this code, they must be thrown in the System.arraycopy
  2949 // activation frame; we could save some checks if this would not be the case
  2950 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2951   ciArrayKlass* default_type = op->expected_type();
  2952   Register src = op->src()->as_register();
  2953   Register dst = op->dst()->as_register();
  2954   Register src_pos = op->src_pos()->as_register();
  2955   Register dst_pos = op->dst_pos()->as_register();
  2956   Register length  = op->length()->as_register();
  2957   Register tmp = op->tmp()->as_register();
  2959   CodeStub* stub = op->stub();
  2960   int flags = op->flags();
  2961   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2962   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2964   // if we don't know anything or it's an object array, just go through the generic arraycopy
  2965   if (default_type == NULL) {
  2966     Label done;
  2967     // save outgoing arguments on stack in case call to System.arraycopy is needed
  2968     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  2969     // for interpreter calling conventions. Now we have to do it in new style conventions.
  2970     // For the moment until C1 gets the new register allocator I just force all the
  2971     // args to the right place (except the register args) and then on the back side
  2972     // reload the register args properly if we go slow path. Yuck
  2974     // These are proper for the calling convention
  2976     store_parameter(length, 2);
  2977     store_parameter(dst_pos, 1);
  2978     store_parameter(dst, 0);
  2980     // these are just temporary placements until we need to reload
  2981     store_parameter(src_pos, 3);
  2982     store_parameter(src, 4);
  2983     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  2985     address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  2987     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  2988 #ifdef _LP64
  2989     // The arguments are in java calling convention so we can trivially shift them to C
  2990     // convention
  2991     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  2992     __ mov(c_rarg0, j_rarg0);
  2993     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  2994     __ mov(c_rarg1, j_rarg1);
  2995     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  2996     __ mov(c_rarg2, j_rarg2);
  2997     assert_different_registers(c_rarg3, j_rarg4);
  2998     __ mov(c_rarg3, j_rarg3);
  2999 #ifdef _WIN64
  3000     // Allocate abi space for args but be sure to keep stack aligned
  3001     __ subptr(rsp, 6*wordSize);
  3002     store_parameter(j_rarg4, 4);
  3003     __ call(RuntimeAddress(entry));
  3004     __ addptr(rsp, 6*wordSize);
  3005 #else
  3006     __ mov(c_rarg4, j_rarg4);
  3007     __ call(RuntimeAddress(entry));
  3008 #endif // _WIN64
  3009 #else
  3010     __ push(length);
  3011     __ push(dst_pos);
  3012     __ push(dst);
  3013     __ push(src_pos);
  3014     __ push(src);
  3015     __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
  3017 #endif // _LP64
  3019     __ cmpl(rax, 0);
  3020     __ jcc(Assembler::equal, *stub->continuation());
  3022     // Reload values from the stack so they are where the stub
  3023     // expects them.
  3024     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3025     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3026     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3027     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3028     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3029     __ jmp(*stub->entry());
  3031     __ bind(*stub->continuation());
  3032     return;
  3035   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3037   int elem_size = type2aelembytes(basic_type);
  3038   int shift_amount;
  3039   Address::ScaleFactor scale;
  3041   switch (elem_size) {
  3042     case 1 :
  3043       shift_amount = 0;
  3044       scale = Address::times_1;
  3045       break;
  3046     case 2 :
  3047       shift_amount = 1;
  3048       scale = Address::times_2;
  3049       break;
  3050     case 4 :
  3051       shift_amount = 2;
  3052       scale = Address::times_4;
  3053       break;
  3054     case 8 :
  3055       shift_amount = 3;
  3056       scale = Address::times_8;
  3057       break;
  3058     default:
  3059       ShouldNotReachHere();
  3062   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3063   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3064   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3065   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3067   // length and pos's are all sign extended at this point on 64bit
  3069   // test for NULL
  3070   if (flags & LIR_OpArrayCopy::src_null_check) {
  3071     __ testptr(src, src);
  3072     __ jcc(Assembler::zero, *stub->entry());
  3074   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3075     __ testptr(dst, dst);
  3076     __ jcc(Assembler::zero, *stub->entry());
  3079   // check if negative
  3080   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3081     __ testl(src_pos, src_pos);
  3082     __ jcc(Assembler::less, *stub->entry());
  3084   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3085     __ testl(dst_pos, dst_pos);
  3086     __ jcc(Assembler::less, *stub->entry());
  3088   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3089     __ testl(length, length);
  3090     __ jcc(Assembler::less, *stub->entry());
  3093   if (flags & LIR_OpArrayCopy::src_range_check) {
  3094     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3095     __ cmpl(tmp, src_length_addr);
  3096     __ jcc(Assembler::above, *stub->entry());
  3098   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3099     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3100     __ cmpl(tmp, dst_length_addr);
  3101     __ jcc(Assembler::above, *stub->entry());
  3104   if (flags & LIR_OpArrayCopy::type_check) {
  3105     __ movptr(tmp, src_klass_addr);
  3106     __ cmpptr(tmp, dst_klass_addr);
  3107     __ jcc(Assembler::notEqual, *stub->entry());
  3110 #ifdef ASSERT
  3111   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3112     // Sanity check the known type with the incoming class.  For the
  3113     // primitive case the types must match exactly with src.klass and
  3114     // dst.klass each exactly matching the default type.  For the
  3115     // object array case, if no type check is needed then either the
  3116     // dst type is exactly the expected type and the src type is a
  3117     // subtype which we can't check or src is the same array as dst
  3118     // but not necessarily exactly of type default_type.
  3119     Label known_ok, halt;
  3120     __ movoop(tmp, default_type->constant_encoding());
  3121     if (basic_type != T_OBJECT) {
  3122       __ cmpptr(tmp, dst_klass_addr);
  3123       __ jcc(Assembler::notEqual, halt);
  3124       __ cmpptr(tmp, src_klass_addr);
  3125       __ jcc(Assembler::equal, known_ok);
  3126     } else {
  3127       __ cmpptr(tmp, dst_klass_addr);
  3128       __ jcc(Assembler::equal, known_ok);
  3129       __ cmpptr(src, dst);
  3130       __ jcc(Assembler::equal, known_ok);
  3132     __ bind(halt);
  3133     __ stop("incorrect type information in arraycopy");
  3134     __ bind(known_ok);
  3136 #endif
  3138   if (shift_amount > 0 && basic_type != T_OBJECT) {
  3139     __ shlptr(length, shift_amount);
  3142 #ifdef _LP64
  3143   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3144   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
  3145   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3146   assert_different_registers(c_rarg1, length);
  3147   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
  3148   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3149   __ mov(c_rarg2, length);
  3151 #else
  3152   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3153   store_parameter(tmp, 0);
  3154   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3155   store_parameter(tmp, 1);
  3156   store_parameter(length, 2);
  3157 #endif // _LP64
  3158   if (basic_type == T_OBJECT) {
  3159     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
  3160   } else {
  3161     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
  3164   __ bind(*stub->continuation());
  3168 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3169   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3170   Register hdr = op->hdr_opr()->as_register();
  3171   Register lock = op->lock_opr()->as_register();
  3172   if (!UseFastLocking) {
  3173     __ jmp(*op->stub()->entry());
  3174   } else if (op->code() == lir_lock) {
  3175     Register scratch = noreg;
  3176     if (UseBiasedLocking) {
  3177       scratch = op->scratch_opr()->as_register();
  3179     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3180     // add debug info for NullPointerException only if one is possible
  3181     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3182     if (op->info() != NULL) {
  3183       add_debug_info_for_null_check(null_check_offset, op->info());
  3185     // done
  3186   } else if (op->code() == lir_unlock) {
  3187     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3188     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3189   } else {
  3190     Unimplemented();
  3192   __ bind(*op->stub()->continuation());
  3196 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3197   ciMethod* method = op->profiled_method();
  3198   int bci          = op->profiled_bci();
  3200   // Update counter for all call types
  3201   ciMethodData* md = method->method_data();
  3202   if (md == NULL) {
  3203     bailout("out of memory building methodDataOop");
  3204     return;
  3206   ciProfileData* data = md->bci_to_data(bci);
  3207   assert(data->is_CounterData(), "need CounterData for calls");
  3208   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3209   Register mdo  = op->mdo()->as_register();
  3210   __ movoop(mdo, md->constant_encoding());
  3211   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3212   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3213   // Perform additional virtual call profiling for invokevirtual and
  3214   // invokeinterface bytecodes
  3215   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3216       Tier1ProfileVirtualCalls) {
  3217     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3218     Register recv = op->recv()->as_register();
  3219     assert_different_registers(mdo, recv);
  3220     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3221     ciKlass* known_klass = op->known_holder();
  3222     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3223       // We know the type that will be seen at this call site; we can
  3224       // statically update the methodDataOop rather than needing to do
  3225       // dynamic tests on the receiver type
  3227       // NOTE: we should probably put a lock around this search to
  3228       // avoid collisions by concurrent compilations
  3229       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3230       uint i;
  3231       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3232         ciKlass* receiver = vc_data->receiver(i);
  3233         if (known_klass->equals(receiver)) {
  3234           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3235           __ addl(data_addr, DataLayout::counter_increment);
  3236           return;
  3240       // Receiver type not found in profile data; select an empty slot
  3242       // Note that this is less efficient than it should be because it
  3243       // always does a write to the receiver part of the
  3244       // VirtualCallData rather than just the first time
  3245       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3246         ciKlass* receiver = vc_data->receiver(i);
  3247         if (receiver == NULL) {
  3248           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3249           __ movoop(recv_addr, known_klass->constant_encoding());
  3250           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3251           __ addl(data_addr, DataLayout::counter_increment);
  3252           return;
  3255     } else {
  3256       __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
  3257       Label update_done;
  3258       uint i;
  3259       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3260         Label next_test;
  3261         // See if the receiver is receiver[n].
  3262         __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
  3263         __ jcc(Assembler::notEqual, next_test);
  3264         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3265         __ addl(data_addr, DataLayout::counter_increment);
  3266         __ jmp(update_done);
  3267         __ bind(next_test);
  3270       // Didn't find receiver; find next empty slot and fill it in
  3271       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3272         Label next_test;
  3273         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3274         __ cmpptr(recv_addr, (int32_t)NULL_WORD);
  3275         __ jcc(Assembler::notEqual, next_test);
  3276         __ movptr(recv_addr, recv);
  3277         __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
  3278         __ jmp(update_done);
  3279         __ bind(next_test);
  3281       // Receiver did not match any saved receiver and there is no empty row for it.
  3282       // Increment total counter to indicate polymorphic case.
  3283       __ addl(counter_addr, DataLayout::counter_increment);
  3285       __ bind(update_done);
  3287   } else {
  3288     // Static call
  3289     __ addl(counter_addr, DataLayout::counter_increment);
  3294 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3295   Unimplemented();
  3299 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3300   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3304 void LIR_Assembler::align_backward_branch_target() {
  3305   __ align(BytesPerWord);
  3309 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3310   if (left->is_single_cpu()) {
  3311     __ negl(left->as_register());
  3312     move_regs(left->as_register(), dest->as_register());
  3314   } else if (left->is_double_cpu()) {
  3315     Register lo = left->as_register_lo();
  3316 #ifdef _LP64
  3317     Register dst = dest->as_register_lo();
  3318     __ movptr(dst, lo);
  3319     __ negptr(dst);
  3320 #else
  3321     Register hi = left->as_register_hi();
  3322     __ lneg(hi, lo);
  3323     if (dest->as_register_lo() == hi) {
  3324       assert(dest->as_register_hi() != lo, "destroying register");
  3325       move_regs(hi, dest->as_register_hi());
  3326       move_regs(lo, dest->as_register_lo());
  3327     } else {
  3328       move_regs(lo, dest->as_register_lo());
  3329       move_regs(hi, dest->as_register_hi());
  3331 #endif // _LP64
  3333   } else if (dest->is_single_xmm()) {
  3334     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3335       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3337     __ xorps(dest->as_xmm_float_reg(),
  3338              ExternalAddress((address)float_signflip_pool));
  3340   } else if (dest->is_double_xmm()) {
  3341     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3342       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3344     __ xorpd(dest->as_xmm_double_reg(),
  3345              ExternalAddress((address)double_signflip_pool));
  3347   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3348     assert(left->fpu() == 0, "arg must be on TOS");
  3349     assert(dest->fpu() == 0, "dest must be TOS");
  3350     __ fchs();
  3352   } else {
  3353     ShouldNotReachHere();
  3358 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3359   assert(addr->is_address() && dest->is_register(), "check");
  3360   Register reg;
  3361   reg = dest->as_pointer_register();
  3362   __ lea(reg, as_Address(addr->as_address_ptr()));
  3367 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3368   assert(!tmp->is_valid(), "don't need temporary");
  3369   __ call(RuntimeAddress(dest));
  3370   if (info != NULL) {
  3371     add_call_info_here(info);
  3376 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3377   assert(type == T_LONG, "only for volatile long fields");
  3379   if (info != NULL) {
  3380     add_debug_info_for_null_check_here(info);
  3383   if (src->is_double_xmm()) {
  3384     if (dest->is_double_cpu()) {
  3385 #ifdef _LP64
  3386       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3387 #else
  3388       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3389       __ psrlq(src->as_xmm_double_reg(), 32);
  3390       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3391 #endif // _LP64
  3392     } else if (dest->is_double_stack()) {
  3393       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3394     } else if (dest->is_address()) {
  3395       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3396     } else {
  3397       ShouldNotReachHere();
  3400   } else if (dest->is_double_xmm()) {
  3401     if (src->is_double_stack()) {
  3402       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3403     } else if (src->is_address()) {
  3404       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3405     } else {
  3406       ShouldNotReachHere();
  3409   } else if (src->is_double_fpu()) {
  3410     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3411     if (dest->is_double_stack()) {
  3412       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3413     } else if (dest->is_address()) {
  3414       __ fistp_d(as_Address(dest->as_address_ptr()));
  3415     } else {
  3416       ShouldNotReachHere();
  3419   } else if (dest->is_double_fpu()) {
  3420     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3421     if (src->is_double_stack()) {
  3422       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3423     } else if (src->is_address()) {
  3424       __ fild_d(as_Address(src->as_address_ptr()));
  3425     } else {
  3426       ShouldNotReachHere();
  3428   } else {
  3429     ShouldNotReachHere();
  3434 void LIR_Assembler::membar() {
  3435   // QQQ sparc TSO uses this,
  3436   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3439 void LIR_Assembler::membar_acquire() {
  3440   // No x86 machines currently require load fences
  3441   // __ load_fence();
  3444 void LIR_Assembler::membar_release() {
  3445   // No x86 machines currently require store fences
  3446   // __ store_fence();
  3449 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3450   assert(result_reg->is_register(), "check");
  3451 #ifdef _LP64
  3452   // __ get_thread(result_reg->as_register_lo());
  3453   __ mov(result_reg->as_register(), r15_thread);
  3454 #else
  3455   __ get_thread(result_reg->as_register());
  3456 #endif // _LP64
  3460 void LIR_Assembler::peephole(LIR_List*) {
  3461   // do nothing for now
  3465 #undef __

mercurial