src/share/vm/memory/space.hpp

Wed, 13 Jan 2010 15:26:39 -0800

author
ysr
date
Wed, 13 Jan 2010 15:26:39 -0800
changeset 1601
7b0e9cba0307
parent 1280
df6caf649ff7
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6896647: card marks can be deferred too long
Summary: Deferred card marks are now flushed during the gc prologue. Parallel[Scavege,OldGC] and SerialGC no longer defer card marks generated by COMPILER2 as a result of ReduceInitialCardMarks. For these cases, introduced a diagnostic option to defer the card marks, only for the purposes of testing and diagnostics. CMS and G1 continue to defer card marks. Potential performance concern related to single-threaded flushing of deferred card marks in the gc prologue will be addressed in the future.
Reviewed-by: never, johnc

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // A space is an abstraction for the "storage units" backing
    26 // up the generation abstraction. It includes specific
    27 // implementations for keeping track of free and used space,
    28 // for iterating over objects and free blocks, etc.
    30 // Here's the Space hierarchy:
    31 //
    32 // - Space               -- an asbtract base class describing a heap area
    33 //   - CompactibleSpace  -- a space supporting compaction
    34 //     - CompactibleFreeListSpace -- (used for CMS generation)
    35 //     - ContiguousSpace -- a compactible space in which all free space
    36 //                          is contiguous
    37 //       - EdenSpace     -- contiguous space used as nursery
    38 //         - ConcEdenSpace -- contiguous space with a 'soft end safe' allocation
    39 //       - OffsetTableContigSpace -- contiguous space with a block offset array
    40 //                          that allows "fast" block_start calls
    41 //         - TenuredSpace -- (used for TenuredGeneration)
    42 //         - ContigPermSpace -- an offset table contiguous space for perm gen
    44 // Forward decls.
    45 class Space;
    46 class BlockOffsetArray;
    47 class BlockOffsetArrayContigSpace;
    48 class Generation;
    49 class CompactibleSpace;
    50 class BlockOffsetTable;
    51 class GenRemSet;
    52 class CardTableRS;
    53 class DirtyCardToOopClosure;
    55 // An oop closure that is circumscribed by a filtering memory region.
    56 class SpaceMemRegionOopsIterClosure: public OopClosure {
    57  private:
    58   OopClosure* _cl;
    59   MemRegion   _mr;
    60  protected:
    61   template <class T> void do_oop_work(T* p) {
    62     if (_mr.contains(p)) {
    63       _cl->do_oop(p);
    64     }
    65   }
    66  public:
    67   SpaceMemRegionOopsIterClosure(OopClosure* cl, MemRegion mr):
    68     _cl(cl), _mr(mr) {}
    69   virtual void do_oop(oop* p);
    70   virtual void do_oop(narrowOop* p);
    71 };
    73 // A Space describes a heap area. Class Space is an abstract
    74 // base class.
    75 //
    76 // Space supports allocation, size computation and GC support is provided.
    77 //
    78 // Invariant: bottom() and end() are on page_size boundaries and
    79 // bottom() <= top() <= end()
    80 // top() is inclusive and end() is exclusive.
    82 class Space: public CHeapObj {
    83   friend class VMStructs;
    84  protected:
    85   HeapWord* _bottom;
    86   HeapWord* _end;
    88   // Used in support of save_marks()
    89   HeapWord* _saved_mark_word;
    91   MemRegionClosure* _preconsumptionDirtyCardClosure;
    93   // A sequential tasks done structure. This supports
    94   // parallel GC, where we have threads dynamically
    95   // claiming sub-tasks from a larger parallel task.
    96   SequentialSubTasksDone _par_seq_tasks;
    98   Space():
    99     _bottom(NULL), _end(NULL), _preconsumptionDirtyCardClosure(NULL) { }
   101  public:
   102   // Accessors
   103   HeapWord* bottom() const         { return _bottom; }
   104   HeapWord* end() const            { return _end;    }
   105   virtual void set_bottom(HeapWord* value) { _bottom = value; }
   106   virtual void set_end(HeapWord* value)    { _end = value; }
   108   virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
   110   void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
   112   MemRegionClosure* preconsumptionDirtyCardClosure() const {
   113     return _preconsumptionDirtyCardClosure;
   114   }
   115   void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
   116     _preconsumptionDirtyCardClosure = cl;
   117   }
   119   // Returns a subregion of the space containing all the objects in
   120   // the space.
   121   virtual MemRegion used_region() const { return MemRegion(bottom(), end()); }
   123   // Returns a region that is guaranteed to contain (at least) all objects
   124   // allocated at the time of the last call to "save_marks".  If the space
   125   // initializes its DirtyCardToOopClosure's specifying the "contig" option
   126   // (that is, if the space is contiguous), then this region must contain only
   127   // such objects: the memregion will be from the bottom of the region to the
   128   // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
   129   // the space must distiguish between objects in the region allocated before
   130   // and after the call to save marks.
   131   virtual MemRegion used_region_at_save_marks() const {
   132     return MemRegion(bottom(), saved_mark_word());
   133   }
   135   // Initialization.
   136   // "initialize" should be called once on a space, before it is used for
   137   // any purpose.  The "mr" arguments gives the bounds of the space, and
   138   // the "clear_space" argument should be true unless the memory in "mr" is
   139   // known to be zeroed.
   140   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   142   // The "clear" method must be called on a region that may have
   143   // had allocation performed in it, but is now to be considered empty.
   144   virtual void clear(bool mangle_space);
   146   // For detecting GC bugs.  Should only be called at GC boundaries, since
   147   // some unused space may be used as scratch space during GC's.
   148   // Default implementation does nothing. We also call this when expanding
   149   // a space to satisfy an allocation request. See bug #4668531
   150   virtual void mangle_unused_area() {}
   151   virtual void mangle_unused_area_complete() {}
   152   virtual void mangle_region(MemRegion mr) {}
   154   // Testers
   155   bool is_empty() const              { return used() == 0; }
   156   bool not_empty() const             { return used() > 0; }
   158   // Returns true iff the given the space contains the
   159   // given address as part of an allocated object. For
   160   // ceratin kinds of spaces, this might be a potentially
   161   // expensive operation. To prevent performance problems
   162   // on account of its inadvertent use in product jvm's,
   163   // we restrict its use to assertion checks only.
   164   virtual bool is_in(const void* p) const;
   166   // Returns true iff the given reserved memory of the space contains the
   167   // given address.
   168   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
   170   // Returns true iff the given block is not allocated.
   171   virtual bool is_free_block(const HeapWord* p) const = 0;
   173   // Test whether p is double-aligned
   174   static bool is_aligned(void* p) {
   175     return ((intptr_t)p & (sizeof(double)-1)) == 0;
   176   }
   178   // Size computations.  Sizes are in bytes.
   179   size_t capacity()     const { return byte_size(bottom(), end()); }
   180   virtual size_t used() const = 0;
   181   virtual size_t free() const = 0;
   183   // Iterate over all the ref-containing fields of all objects in the
   184   // space, calling "cl.do_oop" on each.  Fields in objects allocated by
   185   // applications of the closure are not included in the iteration.
   186   virtual void oop_iterate(OopClosure* cl);
   188   // Same as above, restricted to the intersection of a memory region and
   189   // the space.  Fields in objects allocated by applications of the closure
   190   // are not included in the iteration.
   191   virtual void oop_iterate(MemRegion mr, OopClosure* cl) = 0;
   193   // Iterate over all objects in the space, calling "cl.do_object" on
   194   // each.  Objects allocated by applications of the closure are not
   195   // included in the iteration.
   196   virtual void object_iterate(ObjectClosure* blk) = 0;
   197   // Similar to object_iterate() except only iterates over
   198   // objects whose internal references point to objects in the space.
   199   virtual void safe_object_iterate(ObjectClosure* blk) = 0;
   201   // Iterate over all objects that intersect with mr, calling "cl->do_object"
   202   // on each.  There is an exception to this: if this closure has already
   203   // been invoked on an object, it may skip such objects in some cases.  This is
   204   // Most likely to happen in an "upwards" (ascending address) iteration of
   205   // MemRegions.
   206   virtual void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
   208   // Iterate over as many initialized objects in the space as possible,
   209   // calling "cl.do_object_careful" on each. Return NULL if all objects
   210   // in the space (at the start of the iteration) were iterated over.
   211   // Return an address indicating the extent of the iteration in the
   212   // event that the iteration had to return because of finding an
   213   // uninitialized object in the space, or if the closure "cl"
   214   // signalled early termination.
   215   virtual HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
   216   virtual HeapWord* object_iterate_careful_m(MemRegion mr,
   217                                              ObjectClosureCareful* cl);
   219   // Create and return a new dirty card to oop closure. Can be
   220   // overriden to return the appropriate type of closure
   221   // depending on the type of space in which the closure will
   222   // operate. ResourceArea allocated.
   223   virtual DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
   224                                              CardTableModRefBS::PrecisionStyle precision,
   225                                              HeapWord* boundary = NULL);
   227   // If "p" is in the space, returns the address of the start of the
   228   // "block" that contains "p".  We say "block" instead of "object" since
   229   // some heaps may not pack objects densely; a chunk may either be an
   230   // object or a non-object.  If "p" is not in the space, return NULL.
   231   virtual HeapWord* block_start_const(const void* p) const = 0;
   233   // The non-const version may have benevolent side effects on the data
   234   // structure supporting these calls, possibly speeding up future calls.
   235   // The default implementation, however, is simply to call the const
   236   // version.
   237   inline virtual HeapWord* block_start(const void* p);
   239   // Requires "addr" to be the start of a chunk, and returns its size.
   240   // "addr + size" is required to be the start of a new chunk, or the end
   241   // of the active area of the heap.
   242   virtual size_t block_size(const HeapWord* addr) const = 0;
   244   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   245   // the block is an object.
   246   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   248   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   249   // the block is an object and the object is alive.
   250   virtual bool obj_is_alive(const HeapWord* addr) const;
   252   // Allocation (return NULL if full).  Assumes the caller has established
   253   // mutually exclusive access to the space.
   254   virtual HeapWord* allocate(size_t word_size) = 0;
   256   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
   257   virtual HeapWord* par_allocate(size_t word_size) = 0;
   259   // Returns true if this object has been allocated since a
   260   // generation's "save_marks" call.
   261   virtual bool obj_allocated_since_save_marks(const oop obj) const = 0;
   263   // Mark-sweep-compact support: all spaces can update pointers to objects
   264   // moving as a part of compaction.
   265   virtual void adjust_pointers();
   267   // PrintHeapAtGC support
   268   virtual void print() const;
   269   virtual void print_on(outputStream* st) const;
   270   virtual void print_short() const;
   271   virtual void print_short_on(outputStream* st) const;
   274   // Accessor for parallel sequential tasks.
   275   SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
   277   // IF "this" is a ContiguousSpace, return it, else return NULL.
   278   virtual ContiguousSpace* toContiguousSpace() {
   279     return NULL;
   280   }
   282   // Debugging
   283   virtual void verify(bool allow_dirty) const = 0;
   284 };
   286 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
   287 // OopClosure to (the addresses of) all the ref-containing fields that could
   288 // be modified by virtue of the given MemRegion being dirty. (Note that
   289 // because of the imprecise nature of the write barrier, this may iterate
   290 // over oops beyond the region.)
   291 // This base type for dirty card to oop closures handles memory regions
   292 // in non-contiguous spaces with no boundaries, and should be sub-classed
   293 // to support other space types. See ContiguousDCTOC for a sub-class
   294 // that works with ContiguousSpaces.
   296 class DirtyCardToOopClosure: public MemRegionClosureRO {
   297 protected:
   298   OopClosure* _cl;
   299   Space* _sp;
   300   CardTableModRefBS::PrecisionStyle _precision;
   301   HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
   302                                 // pointing below boundary.
   303   HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
   304                                 // a downwards traversal; this is the
   305                                 // lowest location already done (or,
   306                                 // alternatively, the lowest address that
   307                                 // shouldn't be done again.  NULL means infinity.)
   308   NOT_PRODUCT(HeapWord* _last_bottom;)
   309   NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
   311   // Get the actual top of the area on which the closure will
   312   // operate, given where the top is assumed to be (the end of the
   313   // memory region passed to do_MemRegion) and where the object
   314   // at the top is assumed to start. For example, an object may
   315   // start at the top but actually extend past the assumed top,
   316   // in which case the top becomes the end of the object.
   317   virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
   319   // Walk the given memory region from bottom to (actual) top
   320   // looking for objects and applying the oop closure (_cl) to
   321   // them. The base implementation of this treats the area as
   322   // blocks, where a block may or may not be an object. Sub-
   323   // classes should override this to provide more accurate
   324   // or possibly more efficient walking.
   325   virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
   327 public:
   328   DirtyCardToOopClosure(Space* sp, OopClosure* cl,
   329                         CardTableModRefBS::PrecisionStyle precision,
   330                         HeapWord* boundary) :
   331     _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
   332     _min_done(NULL) {
   333     NOT_PRODUCT(_last_bottom = NULL);
   334     NOT_PRODUCT(_last_explicit_min_done = NULL);
   335   }
   337   void do_MemRegion(MemRegion mr);
   339   void set_min_done(HeapWord* min_done) {
   340     _min_done = min_done;
   341     NOT_PRODUCT(_last_explicit_min_done = _min_done);
   342   }
   343 #ifndef PRODUCT
   344   void set_last_bottom(HeapWord* last_bottom) {
   345     _last_bottom = last_bottom;
   346   }
   347 #endif
   348 };
   350 // A structure to represent a point at which objects are being copied
   351 // during compaction.
   352 class CompactPoint : public StackObj {
   353 public:
   354   Generation* gen;
   355   CompactibleSpace* space;
   356   HeapWord* threshold;
   357   CompactPoint(Generation* _gen, CompactibleSpace* _space,
   358                HeapWord* _threshold) :
   359     gen(_gen), space(_space), threshold(_threshold) {}
   360 };
   363 // A space that supports compaction operations.  This is usually, but not
   364 // necessarily, a space that is normally contiguous.  But, for example, a
   365 // free-list-based space whose normal collection is a mark-sweep without
   366 // compaction could still support compaction in full GC's.
   368 class CompactibleSpace: public Space {
   369   friend class VMStructs;
   370   friend class CompactibleFreeListSpace;
   371   friend class CompactingPermGenGen;
   372   friend class CMSPermGenGen;
   373 private:
   374   HeapWord* _compaction_top;
   375   CompactibleSpace* _next_compaction_space;
   377 public:
   378   CompactibleSpace() :
   379    _compaction_top(NULL), _next_compaction_space(NULL) {}
   381   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   382   virtual void clear(bool mangle_space);
   384   // Used temporarily during a compaction phase to hold the value
   385   // top should have when compaction is complete.
   386   HeapWord* compaction_top() const { return _compaction_top;    }
   388   void set_compaction_top(HeapWord* value) {
   389     assert(value == NULL || (value >= bottom() && value <= end()),
   390       "should point inside space");
   391     _compaction_top = value;
   392   }
   394   // Perform operations on the space needed after a compaction
   395   // has been performed.
   396   virtual void reset_after_compaction() {}
   398   // Returns the next space (in the current generation) to be compacted in
   399   // the global compaction order.  Also is used to select the next
   400   // space into which to compact.
   402   virtual CompactibleSpace* next_compaction_space() const {
   403     return _next_compaction_space;
   404   }
   406   void set_next_compaction_space(CompactibleSpace* csp) {
   407     _next_compaction_space = csp;
   408   }
   410   // MarkSweep support phase2
   412   // Start the process of compaction of the current space: compute
   413   // post-compaction addresses, and insert forwarding pointers.  The fields
   414   // "cp->gen" and "cp->compaction_space" are the generation and space into
   415   // which we are currently compacting.  This call updates "cp" as necessary,
   416   // and leaves the "compaction_top" of the final value of
   417   // "cp->compaction_space" up-to-date.  Offset tables may be updated in
   418   // this phase as if the final copy had occurred; if so, "cp->threshold"
   419   // indicates when the next such action should be taken.
   420   virtual void prepare_for_compaction(CompactPoint* cp);
   421   // MarkSweep support phase3
   422   virtual void adjust_pointers();
   423   // MarkSweep support phase4
   424   virtual void compact();
   426   // The maximum percentage of objects that can be dead in the compacted
   427   // live part of a compacted space ("deadwood" support.)
   428   virtual size_t allowed_dead_ratio() const { return 0; };
   430   // Some contiguous spaces may maintain some data structures that should
   431   // be updated whenever an allocation crosses a boundary.  This function
   432   // returns the first such boundary.
   433   // (The default implementation returns the end of the space, so the
   434   // boundary is never crossed.)
   435   virtual HeapWord* initialize_threshold() { return end(); }
   437   // "q" is an object of the given "size" that should be forwarded;
   438   // "cp" names the generation ("gen") and containing "this" (which must
   439   // also equal "cp->space").  "compact_top" is where in "this" the
   440   // next object should be forwarded to.  If there is room in "this" for
   441   // the object, insert an appropriate forwarding pointer in "q".
   442   // If not, go to the next compaction space (there must
   443   // be one, since compaction must succeed -- we go to the first space of
   444   // the previous generation if necessary, updating "cp"), reset compact_top
   445   // and then forward.  In either case, returns the new value of "compact_top".
   446   // If the forwarding crosses "cp->threshold", invokes the "cross_threhold"
   447   // function of the then-current compaction space, and updates "cp->threshold
   448   // accordingly".
   449   virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
   450                     HeapWord* compact_top);
   452   // Return a size with adjusments as required of the space.
   453   virtual size_t adjust_object_size_v(size_t size) const { return size; }
   455 protected:
   456   // Used during compaction.
   457   HeapWord* _first_dead;
   458   HeapWord* _end_of_live;
   460   // Minimum size of a free block.
   461   virtual size_t minimum_free_block_size() const = 0;
   463   // This the function is invoked when an allocation of an object covering
   464   // "start" to "end occurs crosses the threshold; returns the next
   465   // threshold.  (The default implementation does nothing.)
   466   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
   467     return end();
   468   }
   470   // Requires "allowed_deadspace_words > 0", that "q" is the start of a
   471   // free block of the given "word_len", and that "q", were it an object,
   472   // would not move if forwared.  If the size allows, fill the free
   473   // block with an object, to prevent excessive compaction.  Returns "true"
   474   // iff the free region was made deadspace, and modifies
   475   // "allowed_deadspace_words" to reflect the number of available deadspace
   476   // words remaining after this operation.
   477   bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
   478                         size_t word_len);
   479 };
   481 #define SCAN_AND_FORWARD(cp,scan_limit,block_is_obj,block_size) {            \
   482   /* Compute the new addresses for the live objects and store it in the mark \
   483    * Used by universe::mark_sweep_phase2()                                   \
   484    */                                                                        \
   485   HeapWord* compact_top; /* This is where we are currently compacting to. */ \
   486                                                                              \
   487   /* We're sure to be here before any objects are compacted into this        \
   488    * space, so this is a good time to initialize this:                       \
   489    */                                                                        \
   490   set_compaction_top(bottom());                                              \
   491                                                                              \
   492   if (cp->space == NULL) {                                                   \
   493     assert(cp->gen != NULL, "need a generation");                            \
   494     assert(cp->threshold == NULL, "just checking");                          \
   495     assert(cp->gen->first_compaction_space() == this, "just checking");      \
   496     cp->space = cp->gen->first_compaction_space();                           \
   497     compact_top = cp->space->bottom();                                       \
   498     cp->space->set_compaction_top(compact_top);                              \
   499     cp->threshold = cp->space->initialize_threshold();                       \
   500   } else {                                                                   \
   501     compact_top = cp->space->compaction_top();                               \
   502   }                                                                          \
   503                                                                              \
   504   /* We allow some amount of garbage towards the bottom of the space, so     \
   505    * we don't start compacting before there is a significant gain to be made.\
   506    * Occasionally, we want to ensure a full compaction, which is determined  \
   507    * by the MarkSweepAlwaysCompactCount parameter.                           \
   508    */                                                                        \
   509   int invocations = SharedHeap::heap()->perm_gen()->stat_record()->invocations;\
   510   bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0);       \
   511                                                                              \
   512   size_t allowed_deadspace = 0;                                              \
   513   if (skip_dead) {                                                           \
   514     const size_t ratio = allowed_dead_ratio();                               \
   515     allowed_deadspace = (capacity() * ratio / 100) / HeapWordSize;           \
   516   }                                                                          \
   517                                                                              \
   518   HeapWord* q = bottom();                                                    \
   519   HeapWord* t = scan_limit();                                                \
   520                                                                              \
   521   HeapWord*  end_of_live= q;    /* One byte beyond the last byte of the last \
   522                                    live object. */                           \
   523   HeapWord*  first_dead = end();/* The first dead object. */                 \
   524   LiveRange* liveRange  = NULL; /* The current live range, recorded in the   \
   525                                    first header of preceding free area. */   \
   526   _first_dead = first_dead;                                                  \
   527                                                                              \
   528   const intx interval = PrefetchScanIntervalInBytes;                         \
   529                                                                              \
   530   while (q < t) {                                                            \
   531     assert(!block_is_obj(q) ||                                               \
   532            oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() ||   \
   533            oop(q)->mark()->has_bias_pattern(),                               \
   534            "these are the only valid states during a mark sweep");           \
   535     if (block_is_obj(q) && oop(q)->is_gc_marked()) {                         \
   536       /* prefetch beyond q */                                                \
   537       Prefetch::write(q, interval);                                          \
   538       /* size_t size = oop(q)->size();  changing this for cms for perm gen */\
   539       size_t size = block_size(q);                                           \
   540       compact_top = cp->space->forward(oop(q), size, cp, compact_top);       \
   541       q += size;                                                             \
   542       end_of_live = q;                                                       \
   543     } else {                                                                 \
   544       /* run over all the contiguous dead objects */                         \
   545       HeapWord* end = q;                                                     \
   546       do {                                                                   \
   547         /* prefetch beyond end */                                            \
   548         Prefetch::write(end, interval);                                      \
   549         end += block_size(end);                                              \
   550       } while (end < t && (!block_is_obj(end) || !oop(end)->is_gc_marked()));\
   551                                                                              \
   552       /* see if we might want to pretend this object is alive so that        \
   553        * we don't have to compact quite as often.                            \
   554        */                                                                    \
   555       if (allowed_deadspace > 0 && q == compact_top) {                       \
   556         size_t sz = pointer_delta(end, q);                                   \
   557         if (insert_deadspace(allowed_deadspace, q, sz)) {                    \
   558           compact_top = cp->space->forward(oop(q), sz, cp, compact_top);     \
   559           q = end;                                                           \
   560           end_of_live = end;                                                 \
   561           continue;                                                          \
   562         }                                                                    \
   563       }                                                                      \
   564                                                                              \
   565       /* otherwise, it really is a free region. */                           \
   566                                                                              \
   567       /* for the previous LiveRange, record the end of the live objects. */  \
   568       if (liveRange) {                                                       \
   569         liveRange->set_end(q);                                               \
   570       }                                                                      \
   571                                                                              \
   572       /* record the current LiveRange object.                                \
   573        * liveRange->start() is overlaid on the mark word.                    \
   574        */                                                                    \
   575       liveRange = (LiveRange*)q;                                             \
   576       liveRange->set_start(end);                                             \
   577       liveRange->set_end(end);                                               \
   578                                                                              \
   579       /* see if this is the first dead region. */                            \
   580       if (q < first_dead) {                                                  \
   581         first_dead = q;                                                      \
   582       }                                                                      \
   583                                                                              \
   584       /* move on to the next object */                                       \
   585       q = end;                                                               \
   586     }                                                                        \
   587   }                                                                          \
   588                                                                              \
   589   assert(q == t, "just checking");                                           \
   590   if (liveRange != NULL) {                                                   \
   591     liveRange->set_end(q);                                                   \
   592   }                                                                          \
   593   _end_of_live = end_of_live;                                                \
   594   if (end_of_live < first_dead) {                                            \
   595     first_dead = end_of_live;                                                \
   596   }                                                                          \
   597   _first_dead = first_dead;                                                  \
   598                                                                              \
   599   /* save the compaction_top of the compaction space. */                     \
   600   cp->space->set_compaction_top(compact_top);                                \
   601 }
   603 #define SCAN_AND_ADJUST_POINTERS(adjust_obj_size) {                             \
   604   /* adjust all the interior pointers to point at the new locations of objects  \
   605    * Used by MarkSweep::mark_sweep_phase3() */                                  \
   606                                                                                 \
   607   HeapWord* q = bottom();                                                       \
   608   HeapWord* t = _end_of_live;  /* Established by "prepare_for_compaction". */   \
   609                                                                                 \
   610   assert(_first_dead <= _end_of_live, "Stands to reason, no?");                 \
   611                                                                                 \
   612   if (q < t && _first_dead > q &&                                               \
   613       !oop(q)->is_gc_marked()) {                                                \
   614     /* we have a chunk of the space which hasn't moved and we've                \
   615      * reinitialized the mark word during the previous pass, so we can't        \
   616      * use is_gc_marked for the traversal. */                                   \
   617     HeapWord* end = _first_dead;                                                \
   618                                                                                 \
   619     while (q < end) {                                                           \
   620       /* I originally tried to conjoin "block_start(q) == q" to the             \
   621        * assertion below, but that doesn't work, because you can't              \
   622        * accurately traverse previous objects to get to the current one         \
   623        * after their pointers (including pointers into permGen) have been       \
   624        * updated, until the actual compaction is done.  dld, 4/00 */            \
   625       assert(block_is_obj(q),                                                   \
   626              "should be at block boundaries, and should be looking at objs");   \
   627                                                                                 \
   628       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));     \
   629                                                                                 \
   630       /* point all the oops to the new location */                              \
   631       size_t size = oop(q)->adjust_pointers();                                  \
   632       size = adjust_obj_size(size);                                             \
   633                                                                                 \
   634       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());           \
   635                                                                                 \
   636       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));     \
   637                                                                                 \
   638       q += size;                                                                \
   639     }                                                                           \
   640                                                                                 \
   641     if (_first_dead == t) {                                                     \
   642       q = t;                                                                    \
   643     } else {                                                                    \
   644       /* $$$ This is funky.  Using this to read the previously written          \
   645        * LiveRange.  See also use below. */                                     \
   646       q = (HeapWord*)oop(_first_dead)->mark()->decode_pointer();                \
   647     }                                                                           \
   648   }                                                                             \
   649                                                                                 \
   650   const intx interval = PrefetchScanIntervalInBytes;                            \
   651                                                                                 \
   652   debug_only(HeapWord* prev_q = NULL);                                          \
   653   while (q < t) {                                                               \
   654     /* prefetch beyond q */                                                     \
   655     Prefetch::write(q, interval);                                               \
   656     if (oop(q)->is_gc_marked()) {                                               \
   657       /* q is alive */                                                          \
   658       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));     \
   659       /* point all the oops to the new location */                              \
   660       size_t size = oop(q)->adjust_pointers();                                  \
   661       size = adjust_obj_size(size);                                             \
   662       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());           \
   663       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));     \
   664       debug_only(prev_q = q);                                                   \
   665       q += size;                                                                \
   666     } else {                                                                    \
   667       /* q is not a live object, so its mark should point at the next           \
   668        * live object */                                                         \
   669       debug_only(prev_q = q);                                                   \
   670       q = (HeapWord*) oop(q)->mark()->decode_pointer();                         \
   671       assert(q > prev_q, "we should be moving forward through memory");         \
   672     }                                                                           \
   673   }                                                                             \
   674                                                                                 \
   675   assert(q == t, "just checking");                                              \
   676 }
   678 #define SCAN_AND_COMPACT(obj_size) {                                            \
   679   /* Copy all live objects to their new location                                \
   680    * Used by MarkSweep::mark_sweep_phase4() */                                  \
   681                                                                                 \
   682   HeapWord*       q = bottom();                                                 \
   683   HeapWord* const t = _end_of_live;                                             \
   684   debug_only(HeapWord* prev_q = NULL);                                          \
   685                                                                                 \
   686   if (q < t && _first_dead > q &&                                               \
   687       !oop(q)->is_gc_marked()) {                                                \
   688     debug_only(                                                                 \
   689     /* we have a chunk of the space which hasn't moved and we've reinitialized  \
   690      * the mark word during the previous pass, so we can't use is_gc_marked for \
   691      * the traversal. */                                                        \
   692     HeapWord* const end = _first_dead;                                          \
   693                                                                                 \
   694     while (q < end) {                                                           \
   695       size_t size = obj_size(q);                                                \
   696       assert(!oop(q)->is_gc_marked(),                                           \
   697              "should be unmarked (special dense prefix handling)");             \
   698       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size, q));       \
   699       debug_only(prev_q = q);                                                   \
   700       q += size;                                                                \
   701     }                                                                           \
   702     )  /* debug_only */                                                         \
   703                                                                                 \
   704     if (_first_dead == t) {                                                     \
   705       q = t;                                                                    \
   706     } else {                                                                    \
   707       /* $$$ Funky */                                                           \
   708       q = (HeapWord*) oop(_first_dead)->mark()->decode_pointer();               \
   709     }                                                                           \
   710   }                                                                             \
   711                                                                                 \
   712   const intx scan_interval = PrefetchScanIntervalInBytes;                       \
   713   const intx copy_interval = PrefetchCopyIntervalInBytes;                       \
   714   while (q < t) {                                                               \
   715     if (!oop(q)->is_gc_marked()) {                                              \
   716       /* mark is pointer to next marked oop */                                  \
   717       debug_only(prev_q = q);                                                   \
   718       q = (HeapWord*) oop(q)->mark()->decode_pointer();                         \
   719       assert(q > prev_q, "we should be moving forward through memory");         \
   720     } else {                                                                    \
   721       /* prefetch beyond q */                                                   \
   722       Prefetch::read(q, scan_interval);                                         \
   723                                                                                 \
   724       /* size and destination */                                                \
   725       size_t size = obj_size(q);                                                \
   726       HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee();                \
   727                                                                                 \
   728       /* prefetch beyond compaction_top */                                      \
   729       Prefetch::write(compaction_top, copy_interval);                           \
   730                                                                                 \
   731       /* copy object and reinit its mark */                                     \
   732       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size,            \
   733                                                             compaction_top));   \
   734       assert(q != compaction_top, "everything in this pass should be moving");  \
   735       Copy::aligned_conjoint_words(q, compaction_top, size);                    \
   736       oop(compaction_top)->init_mark();                                         \
   737       assert(oop(compaction_top)->klass() != NULL, "should have a class");      \
   738                                                                                 \
   739       debug_only(prev_q = q);                                                   \
   740       q += size;                                                                \
   741     }                                                                           \
   742   }                                                                             \
   743                                                                                 \
   744   /* Let's remember if we were empty before we did the compaction. */           \
   745   bool was_empty = used_region().is_empty();                                    \
   746   /* Reset space after compaction is complete */                                \
   747   reset_after_compaction();                                                     \
   748   /* We do this clear, below, since it has overloaded meanings for some */      \
   749   /* space subtypes.  For example, OffsetTableContigSpace's that were   */      \
   750   /* compacted into will have had their offset table thresholds updated */      \
   751   /* continuously, but those that weren't need to have their thresholds */      \
   752   /* re-initialized.  Also mangles unused area for debugging.           */      \
   753   if (used_region().is_empty()) {                                               \
   754     if (!was_empty) clear(SpaceDecorator::Mangle);                              \
   755   } else {                                                                      \
   756     if (ZapUnusedHeapArea) mangle_unused_area();                                \
   757   }                                                                             \
   758 }
   760 class GenSpaceMangler;
   762 // A space in which the free area is contiguous.  It therefore supports
   763 // faster allocation, and compaction.
   764 class ContiguousSpace: public CompactibleSpace {
   765   friend class OneContigSpaceCardGeneration;
   766   friend class VMStructs;
   767  protected:
   768   HeapWord* _top;
   769   HeapWord* _concurrent_iteration_safe_limit;
   770   // A helper for mangling the unused area of the space in debug builds.
   771   GenSpaceMangler* _mangler;
   773   GenSpaceMangler* mangler() { return _mangler; }
   775   // Allocation helpers (return NULL if full).
   776   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
   777   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
   779  public:
   780   ContiguousSpace();
   781   ~ContiguousSpace();
   783   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   784   virtual void clear(bool mangle_space);
   786   // Accessors
   787   HeapWord* top() const            { return _top;    }
   788   void set_top(HeapWord* value)    { _top = value; }
   790   virtual void set_saved_mark()    { _saved_mark_word = top();    }
   791   void reset_saved_mark()          { _saved_mark_word = bottom(); }
   793   WaterMark bottom_mark()     { return WaterMark(this, bottom()); }
   794   WaterMark top_mark()        { return WaterMark(this, top()); }
   795   WaterMark saved_mark()      { return WaterMark(this, saved_mark_word()); }
   796   bool saved_mark_at_top() const { return saved_mark_word() == top(); }
   798   // In debug mode mangle (write it with a particular bit
   799   // pattern) the unused part of a space.
   801   // Used to save the an address in a space for later use during mangling.
   802   void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
   803   // Used to save the space's current top for later use during mangling.
   804   void set_top_for_allocations() PRODUCT_RETURN;
   806   // Mangle regions in the space from the current top up to the
   807   // previously mangled part of the space.
   808   void mangle_unused_area() PRODUCT_RETURN;
   809   // Mangle [top, end)
   810   void mangle_unused_area_complete() PRODUCT_RETURN;
   811   // Mangle the given MemRegion.
   812   void mangle_region(MemRegion mr) PRODUCT_RETURN;
   814   // Do some sparse checking on the area that should have been mangled.
   815   void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
   816   // Check the complete area that should have been mangled.
   817   // This code may be NULL depending on the macro DEBUG_MANGLING.
   818   void check_mangled_unused_area_complete() PRODUCT_RETURN;
   820   // Size computations: sizes in bytes.
   821   size_t capacity() const        { return byte_size(bottom(), end()); }
   822   size_t used() const            { return byte_size(bottom(), top()); }
   823   size_t free() const            { return byte_size(top(),    end()); }
   825   // Override from space.
   826   bool is_in(const void* p) const;
   828   virtual bool is_free_block(const HeapWord* p) const;
   830   // In a contiguous space we have a more obvious bound on what parts
   831   // contain objects.
   832   MemRegion used_region() const { return MemRegion(bottom(), top()); }
   834   MemRegion used_region_at_save_marks() const {
   835     return MemRegion(bottom(), saved_mark_word());
   836   }
   838   // Allocation (return NULL if full)
   839   virtual HeapWord* allocate(size_t word_size);
   840   virtual HeapWord* par_allocate(size_t word_size);
   842   virtual bool obj_allocated_since_save_marks(const oop obj) const {
   843     return (HeapWord*)obj >= saved_mark_word();
   844   }
   846   // Iteration
   847   void oop_iterate(OopClosure* cl);
   848   void oop_iterate(MemRegion mr, OopClosure* cl);
   849   void object_iterate(ObjectClosure* blk);
   850   // For contiguous spaces this method will iterate safely over objects
   851   // in the space (i.e., between bottom and top) when at a safepoint.
   852   void safe_object_iterate(ObjectClosure* blk);
   853   void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
   854   // iterates on objects up to the safe limit
   855   HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
   856   inline HeapWord* concurrent_iteration_safe_limit();
   857   // changes the safe limit, all objects from bottom() to the new
   858   // limit should be properly initialized
   859   inline void set_concurrent_iteration_safe_limit(HeapWord* new_limit);
   861 #ifndef SERIALGC
   862   // In support of parallel oop_iterate.
   863   #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix)  \
   864     void par_oop_iterate(MemRegion mr, OopClosureType* blk);
   866     ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
   867   #undef ContigSpace_PAR_OOP_ITERATE_DECL
   868 #endif // SERIALGC
   870   // Compaction support
   871   virtual void reset_after_compaction() {
   872     assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
   873     set_top(compaction_top());
   874     // set new iteration safe limit
   875     set_concurrent_iteration_safe_limit(compaction_top());
   876   }
   877   virtual size_t minimum_free_block_size() const { return 0; }
   879   // Override.
   880   DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
   881                                      CardTableModRefBS::PrecisionStyle precision,
   882                                      HeapWord* boundary = NULL);
   884   // Apply "blk->do_oop" to the addresses of all reference fields in objects
   885   // starting with the _saved_mark_word, which was noted during a generation's
   886   // save_marks and is required to denote the head of an object.
   887   // Fields in objects allocated by applications of the closure
   888   // *are* included in the iteration.
   889   // Updates _saved_mark_word to point to just after the last object
   890   // iterated over.
   891 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   892   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
   894   ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
   895 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
   897   // Same as object_iterate, but starting from "mark", which is required
   898   // to denote the start of an object.  Objects allocated by
   899   // applications of the closure *are* included in the iteration.
   900   virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk);
   902   // Very inefficient implementation.
   903   virtual HeapWord* block_start_const(const void* p) const;
   904   size_t block_size(const HeapWord* p) const;
   905   // If a block is in the allocated area, it is an object.
   906   bool block_is_obj(const HeapWord* p) const { return p < top(); }
   908   // Addresses for inlined allocation
   909   HeapWord** top_addr() { return &_top; }
   910   HeapWord** end_addr() { return &_end; }
   912   // Overrides for more efficient compaction support.
   913   void prepare_for_compaction(CompactPoint* cp);
   915   // PrintHeapAtGC support.
   916   virtual void print_on(outputStream* st) const;
   918   // Checked dynamic downcasts.
   919   virtual ContiguousSpace* toContiguousSpace() {
   920     return this;
   921   }
   923   // Debugging
   924   virtual void verify(bool allow_dirty) const;
   926   // Used to increase collection frequency.  "factor" of 0 means entire
   927   // space.
   928   void allocate_temporary_filler(int factor);
   930 };
   933 // A dirty card to oop closure that does filtering.
   934 // It knows how to filter out objects that are outside of the _boundary.
   935 class Filtering_DCTOC : public DirtyCardToOopClosure {
   936 protected:
   937   // Override.
   938   void walk_mem_region(MemRegion mr,
   939                        HeapWord* bottom, HeapWord* top);
   941   // Walk the given memory region, from bottom to top, applying
   942   // the given oop closure to (possibly) all objects found. The
   943   // given oop closure may or may not be the same as the oop
   944   // closure with which this closure was created, as it may
   945   // be a filtering closure which makes use of the _boundary.
   946   // We offer two signatures, so the FilteringClosure static type is
   947   // apparent.
   948   virtual void walk_mem_region_with_cl(MemRegion mr,
   949                                        HeapWord* bottom, HeapWord* top,
   950                                        OopClosure* cl) = 0;
   951   virtual void walk_mem_region_with_cl(MemRegion mr,
   952                                        HeapWord* bottom, HeapWord* top,
   953                                        FilteringClosure* cl) = 0;
   955 public:
   956   Filtering_DCTOC(Space* sp, OopClosure* cl,
   957                   CardTableModRefBS::PrecisionStyle precision,
   958                   HeapWord* boundary) :
   959     DirtyCardToOopClosure(sp, cl, precision, boundary) {}
   960 };
   962 // A dirty card to oop closure for contiguous spaces
   963 // (ContiguousSpace and sub-classes).
   964 // It is a FilteringClosure, as defined above, and it knows:
   965 //
   966 // 1. That the actual top of any area in a memory region
   967 //    contained by the space is bounded by the end of the contiguous
   968 //    region of the space.
   969 // 2. That the space is really made up of objects and not just
   970 //    blocks.
   972 class ContiguousSpaceDCTOC : public Filtering_DCTOC {
   973 protected:
   974   // Overrides.
   975   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
   977   virtual void walk_mem_region_with_cl(MemRegion mr,
   978                                        HeapWord* bottom, HeapWord* top,
   979                                        OopClosure* cl);
   980   virtual void walk_mem_region_with_cl(MemRegion mr,
   981                                        HeapWord* bottom, HeapWord* top,
   982                                        FilteringClosure* cl);
   984 public:
   985   ContiguousSpaceDCTOC(ContiguousSpace* sp, OopClosure* cl,
   986                        CardTableModRefBS::PrecisionStyle precision,
   987                        HeapWord* boundary) :
   988     Filtering_DCTOC(sp, cl, precision, boundary)
   989   {}
   990 };
   993 // Class EdenSpace describes eden-space in new generation.
   995 class DefNewGeneration;
   997 class EdenSpace : public ContiguousSpace {
   998   friend class VMStructs;
   999  private:
  1000   DefNewGeneration* _gen;
  1002   // _soft_end is used as a soft limit on allocation.  As soft limits are
  1003   // reached, the slow-path allocation code can invoke other actions and then
  1004   // adjust _soft_end up to a new soft limit or to end().
  1005   HeapWord* _soft_end;
  1007  public:
  1008   EdenSpace(DefNewGeneration* gen) :
  1009    _gen(gen), _soft_end(NULL) {}
  1011   // Get/set just the 'soft' limit.
  1012   HeapWord* soft_end()               { return _soft_end; }
  1013   HeapWord** soft_end_addr()         { return &_soft_end; }
  1014   void set_soft_end(HeapWord* value) { _soft_end = value; }
  1016   // Override.
  1017   void clear(bool mangle_space);
  1019   // Set both the 'hard' and 'soft' limits (_end and _soft_end).
  1020   void set_end(HeapWord* value) {
  1021     set_soft_end(value);
  1022     ContiguousSpace::set_end(value);
  1025   // Allocation (return NULL if full)
  1026   HeapWord* allocate(size_t word_size);
  1027   HeapWord* par_allocate(size_t word_size);
  1028 };
  1030 // Class ConcEdenSpace extends EdenSpace for the sake of safe
  1031 // allocation while soft-end is being modified concurrently
  1033 class ConcEdenSpace : public EdenSpace {
  1034  public:
  1035   ConcEdenSpace(DefNewGeneration* gen) : EdenSpace(gen) { }
  1037   // Allocation (return NULL if full)
  1038   HeapWord* par_allocate(size_t word_size);
  1039 };
  1042 // A ContigSpace that Supports an efficient "block_start" operation via
  1043 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
  1044 // other spaces.)  This is the abstract base class for old generation
  1045 // (tenured, perm) spaces.
  1047 class OffsetTableContigSpace: public ContiguousSpace {
  1048   friend class VMStructs;
  1049  protected:
  1050   BlockOffsetArrayContigSpace _offsets;
  1051   Mutex _par_alloc_lock;
  1053  public:
  1054   // Constructor
  1055   OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
  1056                          MemRegion mr);
  1058   void set_bottom(HeapWord* value);
  1059   void set_end(HeapWord* value);
  1061   void clear(bool mangle_space);
  1063   inline HeapWord* block_start_const(const void* p) const;
  1065   // Add offset table update.
  1066   virtual inline HeapWord* allocate(size_t word_size);
  1067   inline HeapWord* par_allocate(size_t word_size);
  1069   // MarkSweep support phase3
  1070   virtual HeapWord* initialize_threshold();
  1071   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
  1073   virtual void print_on(outputStream* st) const;
  1075   // Debugging
  1076   void verify(bool allow_dirty) const;
  1078   // Shared space support
  1079   void serialize_block_offset_array_offsets(SerializeOopClosure* soc);
  1080 };
  1083 // Class TenuredSpace is used by TenuredGeneration
  1085 class TenuredSpace: public OffsetTableContigSpace {
  1086   friend class VMStructs;
  1087  protected:
  1088   // Mark sweep support
  1089   size_t allowed_dead_ratio() const;
  1090  public:
  1091   // Constructor
  1092   TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
  1093                MemRegion mr) :
  1094     OffsetTableContigSpace(sharedOffsetArray, mr) {}
  1095 };
  1098 // Class ContigPermSpace is used by CompactingPermGen
  1100 class ContigPermSpace: public OffsetTableContigSpace {
  1101   friend class VMStructs;
  1102  protected:
  1103   // Mark sweep support
  1104   size_t allowed_dead_ratio() const;
  1105  public:
  1106   // Constructor
  1107   ContigPermSpace(BlockOffsetSharedArray* sharedOffsetArray, MemRegion mr) :
  1108     OffsetTableContigSpace(sharedOffsetArray, mr) {}
  1109 };

mercurial