src/share/vm/memory/referenceProcessor.hpp

Wed, 13 Jan 2010 15:26:39 -0800

author
ysr
date
Wed, 13 Jan 2010 15:26:39 -0800
changeset 1601
7b0e9cba0307
parent 892
27a80744a83b
child 1625
4788266644c1
permissions
-rw-r--r--

6896647: card marks can be deferred too long
Summary: Deferred card marks are now flushed during the gc prologue. Parallel[Scavege,OldGC] and SerialGC no longer defer card marks generated by COMPILER2 as a result of ReduceInitialCardMarks. For these cases, introduced a diagnostic option to defer the card marks, only for the purposes of testing and diagnostics. CMS and G1 continue to defer card marks. Potential performance concern related to single-threaded flushing of deferred card marks in the gc prologue will be addressed in the future.
Reviewed-by: never, johnc

     1 /*
     2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // ReferenceProcessor class encapsulates the per-"collector" processing
    26 // of java.lang.Reference objects for GC. The interface is useful for supporting
    27 // a generational abstraction, in particular when there are multiple
    28 // generations that are being independently collected -- possibly
    29 // concurrently and/or incrementally.  Note, however, that the
    30 // ReferenceProcessor class abstracts away from a generational setting
    31 // by using only a heap interval (called "span" below), thus allowing
    32 // its use in a straightforward manner in a general, non-generational
    33 // setting.
    34 //
    35 // The basic idea is that each ReferenceProcessor object concerns
    36 // itself with ("weak") reference processing in a specific "span"
    37 // of the heap of interest to a specific collector. Currently,
    38 // the span is a convex interval of the heap, but, efficiency
    39 // apart, there seems to be no reason it couldn't be extended
    40 // (with appropriate modifications) to any "non-convex interval".
    42 // forward references
    43 class ReferencePolicy;
    44 class AbstractRefProcTaskExecutor;
    45 class DiscoveredList;
    47 class ReferenceProcessor : public CHeapObj {
    48  protected:
    49   // End of list marker
    50   static oop  _sentinelRef;
    51   MemRegion   _span; // (right-open) interval of heap
    52                      // subject to wkref discovery
    53   bool        _discovering_refs;      // true when discovery enabled
    54   bool        _discovery_is_atomic;   // if discovery is atomic wrt
    55                                       // other collectors in configuration
    56   bool        _discovery_is_mt;       // true if reference discovery is MT.
    57   // If true, setting "next" field of a discovered refs list requires
    58   // write barrier(s).  (Must be true if used in a collector in which
    59   // elements of a discovered list may be moved during discovery: for
    60   // example, a collector like Garbage-First that moves objects during a
    61   // long-term concurrent marking phase that does weak reference
    62   // discovery.)
    63   bool        _discovered_list_needs_barrier;
    64   BarrierSet* _bs;                    // Cached copy of BarrierSet.
    65   bool        _enqueuing_is_done;     // true if all weak references enqueued
    66   bool        _processing_is_mt;      // true during phases when
    67                                       // reference processing is MT.
    68   int         _next_id;               // round-robin counter in
    69                                       // support of work distribution
    71   // For collectors that do not keep GC marking information
    72   // in the object header, this field holds a closure that
    73   // helps the reference processor determine the reachability
    74   // of an oop (the field is currently initialized to NULL for
    75   // all collectors but the CMS collector).
    76   BoolObjectClosure* _is_alive_non_header;
    78   // Soft ref clearing policies
    79   // . the default policy
    80   static ReferencePolicy*   _default_soft_ref_policy;
    81   // . the "clear all" policy
    82   static ReferencePolicy*   _always_clear_soft_ref_policy;
    83   // . the current policy below is either one of the above
    84   ReferencePolicy*          _current_soft_ref_policy;
    86   // The discovered ref lists themselves
    88   // The MT'ness degree of the queues below
    89   int             _num_q;
    90   // Arrays of lists of oops, one per thread
    91   DiscoveredList* _discoveredSoftRefs;
    92   DiscoveredList* _discoveredWeakRefs;
    93   DiscoveredList* _discoveredFinalRefs;
    94   DiscoveredList* _discoveredPhantomRefs;
    96  public:
    97   int num_q()                            { return _num_q; }
    98   DiscoveredList* discovered_soft_refs() { return _discoveredSoftRefs; }
    99   static oop  sentinel_ref()             { return _sentinelRef; }
   100   static oop* adr_sentinel_ref()         { return &_sentinelRef; }
   101   ReferencePolicy* setup_policy(bool always_clear) {
   102     _current_soft_ref_policy = always_clear ?
   103       _always_clear_soft_ref_policy : _default_soft_ref_policy;
   104     _current_soft_ref_policy->setup();   // snapshot the policy threshold
   105     return _current_soft_ref_policy;
   106   }
   108  public:
   109   // Process references with a certain reachability level.
   110   void process_discovered_reflist(DiscoveredList               refs_lists[],
   111                                   ReferencePolicy*             policy,
   112                                   bool                         clear_referent,
   113                                   BoolObjectClosure*           is_alive,
   114                                   OopClosure*                  keep_alive,
   115                                   VoidClosure*                 complete_gc,
   116                                   AbstractRefProcTaskExecutor* task_executor);
   118   void process_phaseJNI(BoolObjectClosure* is_alive,
   119                         OopClosure*        keep_alive,
   120                         VoidClosure*       complete_gc);
   122   // Work methods used by the method process_discovered_reflist
   123   // Phase1: keep alive all those referents that are otherwise
   124   // dead but which must be kept alive by policy (and their closure).
   125   void process_phase1(DiscoveredList&     refs_list,
   126                       ReferencePolicy*    policy,
   127                       BoolObjectClosure*  is_alive,
   128                       OopClosure*         keep_alive,
   129                       VoidClosure*        complete_gc);
   130   // Phase2: remove all those references whose referents are
   131   // reachable.
   132   inline void process_phase2(DiscoveredList&    refs_list,
   133                              BoolObjectClosure* is_alive,
   134                              OopClosure*        keep_alive,
   135                              VoidClosure*       complete_gc) {
   136     if (discovery_is_atomic()) {
   137       // complete_gc is ignored in this case for this phase
   138       pp2_work(refs_list, is_alive, keep_alive);
   139     } else {
   140       assert(complete_gc != NULL, "Error");
   141       pp2_work_concurrent_discovery(refs_list, is_alive,
   142                                     keep_alive, complete_gc);
   143     }
   144   }
   145   // Work methods in support of process_phase2
   146   void pp2_work(DiscoveredList&    refs_list,
   147                 BoolObjectClosure* is_alive,
   148                 OopClosure*        keep_alive);
   149   void pp2_work_concurrent_discovery(
   150                 DiscoveredList&    refs_list,
   151                 BoolObjectClosure* is_alive,
   152                 OopClosure*        keep_alive,
   153                 VoidClosure*       complete_gc);
   154   // Phase3: process the referents by either clearing them
   155   // or keeping them alive (and their closure)
   156   void process_phase3(DiscoveredList&    refs_list,
   157                       bool               clear_referent,
   158                       BoolObjectClosure* is_alive,
   159                       OopClosure*        keep_alive,
   160                       VoidClosure*       complete_gc);
   162   // Enqueue references with a certain reachability level
   163   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
   165   // "Preclean" all the discovered reference lists
   166   // by removing references with strongly reachable referents.
   167   // The first argument is a predicate on an oop that indicates
   168   // its (strong) reachability and the second is a closure that
   169   // may be used to incrementalize or abort the precleaning process.
   170   // The caller is responsible for taking care of potential
   171   // interference with concurrent operations on these lists
   172   // (or predicates involved) by other threads. Currently
   173   // only used by the CMS collector.
   174   void preclean_discovered_references(BoolObjectClosure* is_alive,
   175                                       OopClosure*        keep_alive,
   176                                       VoidClosure*       complete_gc,
   177                                       YieldClosure*      yield);
   179   // Delete entries in the discovered lists that have
   180   // either a null referent or are not active. Such
   181   // Reference objects can result from the clearing
   182   // or enqueueing of Reference objects concurrent
   183   // with their discovery by a (concurrent) collector.
   184   // For a definition of "active" see java.lang.ref.Reference;
   185   // Refs are born active, become inactive when enqueued,
   186   // and never become active again. The state of being
   187   // active is encoded as follows: A Ref is active
   188   // if and only if its "next" field is NULL.
   189   void clean_up_discovered_references();
   190   void clean_up_discovered_reflist(DiscoveredList& refs_list);
   192   // Returns the name of the discovered reference list
   193   // occupying the i / _num_q slot.
   194   const char* list_name(int i);
   196   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
   198  protected:
   199   // "Preclean" the given discovered reference list
   200   // by removing references with strongly reachable referents.
   201   // Currently used in support of CMS only.
   202   void preclean_discovered_reflist(DiscoveredList&    refs_list,
   203                                    BoolObjectClosure* is_alive,
   204                                    OopClosure*        keep_alive,
   205                                    VoidClosure*       complete_gc,
   206                                    YieldClosure*      yield);
   208   int next_id() {
   209     int id = _next_id;
   210     if (++_next_id == _num_q) {
   211       _next_id = 0;
   212     }
   213     return id;
   214   }
   215   DiscoveredList* get_discovered_list(ReferenceType rt);
   216   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
   217                                         HeapWord* discovered_addr);
   218   void verify_ok_to_handle_reflists() PRODUCT_RETURN;
   220   void abandon_partial_discovered_list(DiscoveredList& refs_list);
   222   // Calculate the number of jni handles.
   223   unsigned int count_jni_refs();
   225   // Balances reference queues.
   226   void balance_queues(DiscoveredList ref_lists[]);
   228   // Update (advance) the soft ref master clock field.
   229   void update_soft_ref_master_clock();
   231  public:
   232   // constructor
   233   ReferenceProcessor():
   234     _span((HeapWord*)NULL, (HeapWord*)NULL),
   235     _discoveredSoftRefs(NULL),  _discoveredWeakRefs(NULL),
   236     _discoveredFinalRefs(NULL), _discoveredPhantomRefs(NULL),
   237     _discovering_refs(false),
   238     _discovery_is_atomic(true),
   239     _enqueuing_is_done(false),
   240     _discovery_is_mt(false),
   241     _discovered_list_needs_barrier(false),
   242     _bs(NULL),
   243     _is_alive_non_header(NULL),
   244     _num_q(0),
   245     _processing_is_mt(false),
   246     _next_id(0)
   247   {}
   249   ReferenceProcessor(MemRegion span, bool atomic_discovery,
   250                      bool mt_discovery,
   251                      int mt_degree = 1,
   252                      bool mt_processing = false,
   253                      bool discovered_list_needs_barrier = false);
   255   // Allocates and initializes a reference processor.
   256   static ReferenceProcessor* create_ref_processor(
   257     MemRegion          span,
   258     bool               atomic_discovery,
   259     bool               mt_discovery,
   260     BoolObjectClosure* is_alive_non_header = NULL,
   261     int                parallel_gc_threads = 1,
   262     bool               mt_processing = false,
   263     bool               discovered_list_needs_barrier = false);
   264   // RefDiscoveryPolicy values
   265   enum {
   266     ReferenceBasedDiscovery = 0,
   267     ReferentBasedDiscovery  = 1
   268   };
   270   static void init_statics();
   272  public:
   273   // get and set "is_alive_non_header" field
   274   BoolObjectClosure* is_alive_non_header() {
   275     return _is_alive_non_header;
   276   }
   277   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
   278     _is_alive_non_header = is_alive_non_header;
   279   }
   281   // get and set span
   282   MemRegion span()                   { return _span; }
   283   void      set_span(MemRegion span) { _span = span; }
   285   // start and stop weak ref discovery
   286   void enable_discovery()   { _discovering_refs = true;  }
   287   void disable_discovery()  { _discovering_refs = false; }
   288   bool discovery_enabled()  { return _discovering_refs;  }
   290   // whether discovery is atomic wrt other collectors
   291   bool discovery_is_atomic() const { return _discovery_is_atomic; }
   292   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
   294   // whether discovery is done by multiple threads same-old-timeously
   295   bool discovery_is_mt() const { return _discovery_is_mt; }
   296   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
   298   // Whether we are in a phase when _processing_ is MT.
   299   bool processing_is_mt() const { return _processing_is_mt; }
   300   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
   302   // whether all enqueuing of weak references is complete
   303   bool enqueuing_is_done()  { return _enqueuing_is_done; }
   304   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
   306   // iterate over oops
   307   void weak_oops_do(OopClosure* f);       // weak roots
   308   static void oops_do(OopClosure* f);     // strong root(s)
   310   // Discover a Reference object, using appropriate discovery criteria
   311   bool discover_reference(oop obj, ReferenceType rt);
   313   // Process references found during GC (called by the garbage collector)
   314   void process_discovered_references(BoolObjectClosure*           is_alive,
   315                                      OopClosure*                  keep_alive,
   316                                      VoidClosure*                 complete_gc,
   317                                      AbstractRefProcTaskExecutor* task_executor);
   319  public:
   320   // Enqueue references at end of GC (called by the garbage collector)
   321   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
   323   // If a discovery is in process that is being superceded, abandon it: all
   324   // the discovered lists will be empty, and all the objects on them will
   325   // have NULL discovered fields.  Must be called only at a safepoint.
   326   void abandon_partial_discovery();
   328   // debugging
   329   void verify_no_references_recorded() PRODUCT_RETURN;
   330   static void verify();
   332   // clear the discovered lists (unlinking each entry).
   333   void clear_discovered_references() PRODUCT_RETURN;
   334 };
   336 // A utility class to disable reference discovery in
   337 // the scope which contains it, for given ReferenceProcessor.
   338 class NoRefDiscovery: StackObj {
   339  private:
   340   ReferenceProcessor* _rp;
   341   bool _was_discovering_refs;
   342  public:
   343   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
   344     if (_was_discovering_refs = _rp->discovery_enabled()) {
   345       _rp->disable_discovery();
   346     }
   347   }
   349   ~NoRefDiscovery() {
   350     if (_was_discovering_refs) {
   351       _rp->enable_discovery();
   352     }
   353   }
   354 };
   357 // A utility class to temporarily mutate the span of the
   358 // given ReferenceProcessor in the scope that contains it.
   359 class ReferenceProcessorSpanMutator: StackObj {
   360  private:
   361   ReferenceProcessor* _rp;
   362   MemRegion           _saved_span;
   364  public:
   365   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
   366                                 MemRegion span):
   367     _rp(rp) {
   368     _saved_span = _rp->span();
   369     _rp->set_span(span);
   370   }
   372   ~ReferenceProcessorSpanMutator() {
   373     _rp->set_span(_saved_span);
   374   }
   375 };
   377 // A utility class to temporarily change the MT'ness of
   378 // reference discovery for the given ReferenceProcessor
   379 // in the scope that contains it.
   380 class ReferenceProcessorMTMutator: StackObj {
   381  private:
   382   ReferenceProcessor* _rp;
   383   bool                _saved_mt;
   385  public:
   386   ReferenceProcessorMTMutator(ReferenceProcessor* rp,
   387                               bool mt):
   388     _rp(rp) {
   389     _saved_mt = _rp->discovery_is_mt();
   390     _rp->set_mt_discovery(mt);
   391   }
   393   ~ReferenceProcessorMTMutator() {
   394     _rp->set_mt_discovery(_saved_mt);
   395   }
   396 };
   399 // A utility class to temporarily change the disposition
   400 // of the "is_alive_non_header" closure field of the
   401 // given ReferenceProcessor in the scope that contains it.
   402 class ReferenceProcessorIsAliveMutator: StackObj {
   403  private:
   404   ReferenceProcessor* _rp;
   405   BoolObjectClosure*  _saved_cl;
   407  public:
   408   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
   409                                    BoolObjectClosure*  cl):
   410     _rp(rp) {
   411     _saved_cl = _rp->is_alive_non_header();
   412     _rp->set_is_alive_non_header(cl);
   413   }
   415   ~ReferenceProcessorIsAliveMutator() {
   416     _rp->set_is_alive_non_header(_saved_cl);
   417   }
   418 };
   420 // A utility class to temporarily change the disposition
   421 // of the "discovery_is_atomic" field of the
   422 // given ReferenceProcessor in the scope that contains it.
   423 class ReferenceProcessorAtomicMutator: StackObj {
   424  private:
   425   ReferenceProcessor* _rp;
   426   bool                _saved_atomic_discovery;
   428  public:
   429   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
   430                                   bool atomic):
   431     _rp(rp) {
   432     _saved_atomic_discovery = _rp->discovery_is_atomic();
   433     _rp->set_atomic_discovery(atomic);
   434   }
   436   ~ReferenceProcessorAtomicMutator() {
   437     _rp->set_atomic_discovery(_saved_atomic_discovery);
   438   }
   439 };
   442 // A utility class to temporarily change the MT processing
   443 // disposition of the given ReferenceProcessor instance
   444 // in the scope that contains it.
   445 class ReferenceProcessorMTProcMutator: StackObj {
   446  private:
   447   ReferenceProcessor* _rp;
   448   bool  _saved_mt;
   450  public:
   451   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
   452                                   bool mt):
   453     _rp(rp) {
   454     _saved_mt = _rp->processing_is_mt();
   455     _rp->set_mt_processing(mt);
   456   }
   458   ~ReferenceProcessorMTProcMutator() {
   459     _rp->set_mt_processing(_saved_mt);
   460   }
   461 };
   464 // This class is an interface used to implement task execution for the
   465 // reference processing.
   466 class AbstractRefProcTaskExecutor {
   467 public:
   469   // Abstract tasks to execute.
   470   class ProcessTask;
   471   class EnqueueTask;
   473   // Executes a task using worker threads.
   474   virtual void execute(ProcessTask& task) = 0;
   475   virtual void execute(EnqueueTask& task) = 0;
   477   // Switch to single threaded mode.
   478   virtual void set_single_threaded_mode() { };
   479 };
   481 // Abstract reference processing task to execute.
   482 class AbstractRefProcTaskExecutor::ProcessTask {
   483 protected:
   484   ProcessTask(ReferenceProcessor& ref_processor,
   485               DiscoveredList      refs_lists[],
   486               bool                marks_oops_alive)
   487     : _ref_processor(ref_processor),
   488       _refs_lists(refs_lists),
   489       _marks_oops_alive(marks_oops_alive)
   490   { }
   492 public:
   493   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
   494                     OopClosure& keep_alive,
   495                     VoidClosure& complete_gc) = 0;
   497   // Returns true if a task marks some oops as alive.
   498   bool marks_oops_alive() const
   499   { return _marks_oops_alive; }
   501 protected:
   502   ReferenceProcessor& _ref_processor;
   503   DiscoveredList*     _refs_lists;
   504   const bool          _marks_oops_alive;
   505 };
   507 // Abstract reference processing task to execute.
   508 class AbstractRefProcTaskExecutor::EnqueueTask {
   509 protected:
   510   EnqueueTask(ReferenceProcessor& ref_processor,
   511               DiscoveredList      refs_lists[],
   512               HeapWord*           pending_list_addr,
   513               oop                 sentinel_ref,
   514               int                 n_queues)
   515     : _ref_processor(ref_processor),
   516       _refs_lists(refs_lists),
   517       _pending_list_addr(pending_list_addr),
   518       _sentinel_ref(sentinel_ref),
   519       _n_queues(n_queues)
   520   { }
   522 public:
   523   virtual void work(unsigned int work_id) = 0;
   525 protected:
   526   ReferenceProcessor& _ref_processor;
   527   DiscoveredList*     _refs_lists;
   528   HeapWord*           _pending_list_addr;
   529   oop                 _sentinel_ref;
   530   int                 _n_queues;
   531 };

mercurial