src/share/vm/opto/parse1.cpp

Thu, 12 Oct 2017 21:27:07 +0800

author
aoqi
date
Thu, 12 Oct 2017 21:27:07 +0800
changeset 7535
7ae4e26cb1e0
parent 7341
e7b3d177adda
parent 6876
710a3c8b516e
child 8604
04d83ba48607
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "interpreter/linkResolver.hpp"
    28 #include "oops/method.hpp"
    29 #include "opto/addnode.hpp"
    30 #include "opto/idealGraphPrinter.hpp"
    31 #include "opto/locknode.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/parse.hpp"
    34 #include "opto/rootnode.hpp"
    35 #include "opto/runtime.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/handles.inline.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    39 #include "utilities/copy.hpp"
    41 // Static array so we can figure out which bytecodes stop us from compiling
    42 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
    43 // and eventually should be encapsulated in a proper class (gri 8/18/98).
    45 int nodes_created              = 0;
    46 int methods_parsed             = 0;
    47 int methods_seen               = 0;
    48 int blocks_parsed              = 0;
    49 int blocks_seen                = 0;
    51 int explicit_null_checks_inserted = 0;
    52 int explicit_null_checks_elided   = 0;
    53 int all_null_checks_found         = 0, implicit_null_checks              = 0;
    54 int implicit_null_throws          = 0;
    56 int reclaim_idx  = 0;
    57 int reclaim_in   = 0;
    58 int reclaim_node = 0;
    60 #ifndef PRODUCT
    61 bool Parse::BytecodeParseHistogram::_initialized = false;
    62 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
    63 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
    64 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
    65 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
    66 #endif
    68 //------------------------------print_statistics-------------------------------
    69 #ifndef PRODUCT
    70 void Parse::print_statistics() {
    71   tty->print_cr("--- Compiler Statistics ---");
    72   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
    73   tty->print("  Nodes created: %d", nodes_created);
    74   tty->cr();
    75   if (methods_seen != methods_parsed)
    76     tty->print_cr("Reasons for parse failures (NOT cumulative):");
    77   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
    79   if( explicit_null_checks_inserted )
    80     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
    81   if( all_null_checks_found )
    82     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
    83                   (100*implicit_null_checks)/all_null_checks_found);
    84   if( implicit_null_throws )
    85     tty->print_cr("%d implicit null exceptions at runtime",
    86                   implicit_null_throws);
    88   if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
    89     BytecodeParseHistogram::print();
    90   }
    91 }
    92 #endif
    94 //------------------------------ON STACK REPLACEMENT---------------------------
    96 // Construct a node which can be used to get incoming state for
    97 // on stack replacement.
    98 Node *Parse::fetch_interpreter_state(int index,
    99                                      BasicType bt,
   100                                      Node *local_addrs,
   101                                      Node *local_addrs_base) {
   102   Node *mem = memory(Compile::AliasIdxRaw);
   103   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
   104   Node *ctl = control();
   106   // Very similar to LoadNode::make, except we handle un-aligned longs and
   107   // doubles on Sparc.  Intel can handle them just fine directly.
   108   Node *l;
   109   switch (bt) {                // Signature is flattened
   110   case T_INT:     l = new (C) LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
   111   case T_FLOAT:   l = new (C) LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
   112   case T_ADDRESS: l = new (C) LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
   113   case T_OBJECT:  l = new (C) LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
   114   case T_LONG:
   115   case T_DOUBLE: {
   116     // Since arguments are in reverse order, the argument address 'adr'
   117     // refers to the back half of the long/double.  Recompute adr.
   118     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
   119     if (Matcher::misaligned_doubles_ok) {
   120       l = (bt == T_DOUBLE)
   121         ? (Node*)new (C) LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
   122         : (Node*)new (C) LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
   123     } else {
   124       l = (bt == T_DOUBLE)
   125         ? (Node*)new (C) LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
   126         : (Node*)new (C) LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
   127     }
   128     break;
   129   }
   130   default: ShouldNotReachHere();
   131   }
   132   return _gvn.transform(l);
   133 }
   135 // Helper routine to prevent the interpreter from handing
   136 // unexpected typestate to an OSR method.
   137 // The Node l is a value newly dug out of the interpreter frame.
   138 // The type is the type predicted by ciTypeFlow.  Note that it is
   139 // not a general type, but can only come from Type::get_typeflow_type.
   140 // The safepoint is a map which will feed an uncommon trap.
   141 Node* Parse::check_interpreter_type(Node* l, const Type* type,
   142                                     SafePointNode* &bad_type_exit) {
   144   const TypeOopPtr* tp = type->isa_oopptr();
   146   // TypeFlow may assert null-ness if a type appears unloaded.
   147   if (type == TypePtr::NULL_PTR ||
   148       (tp != NULL && !tp->klass()->is_loaded())) {
   149     // Value must be null, not a real oop.
   150     Node* chk = _gvn.transform( new (C) CmpPNode(l, null()) );
   151     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
   152     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
   153     set_control(_gvn.transform( new (C) IfTrueNode(iff) ));
   154     Node* bad_type = _gvn.transform( new (C) IfFalseNode(iff) );
   155     bad_type_exit->control()->add_req(bad_type);
   156     l = null();
   157   }
   159   // Typeflow can also cut off paths from the CFG, based on
   160   // types which appear unloaded, or call sites which appear unlinked.
   161   // When paths are cut off, values at later merge points can rise
   162   // toward more specific classes.  Make sure these specific classes
   163   // are still in effect.
   164   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
   165     // TypeFlow asserted a specific object type.  Value must have that type.
   166     Node* bad_type_ctrl = NULL;
   167     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
   168     bad_type_exit->control()->add_req(bad_type_ctrl);
   169   }
   171   BasicType bt_l = _gvn.type(l)->basic_type();
   172   BasicType bt_t = type->basic_type();
   173   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
   174   return l;
   175 }
   177 // Helper routine which sets up elements of the initial parser map when
   178 // performing a parse for on stack replacement.  Add values into map.
   179 // The only parameter contains the address of a interpreter arguments.
   180 void Parse::load_interpreter_state(Node* osr_buf) {
   181   int index;
   182   int max_locals = jvms()->loc_size();
   183   int max_stack  = jvms()->stk_size();
   186   // Mismatch between method and jvms can occur since map briefly held
   187   // an OSR entry state (which takes up one RawPtr word).
   188   assert(max_locals == method()->max_locals(), "sanity");
   189   assert(max_stack  >= method()->max_stack(),  "sanity");
   190   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
   191   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
   193   // Find the start block.
   194   Block* osr_block = start_block();
   195   assert(osr_block->start() == osr_bci(), "sanity");
   197   // Set initial BCI.
   198   set_parse_bci(osr_block->start());
   200   // Set initial stack depth.
   201   set_sp(osr_block->start_sp());
   203   // Check bailouts.  We currently do not perform on stack replacement
   204   // of loops in catch blocks or loops which branch with a non-empty stack.
   205   if (sp() != 0) {
   206     C->record_method_not_compilable("OSR starts with non-empty stack");
   207     return;
   208   }
   209   // Do not OSR inside finally clauses:
   210   if (osr_block->has_trap_at(osr_block->start())) {
   211     C->record_method_not_compilable("OSR starts with an immediate trap");
   212     return;
   213   }
   215   // Commute monitors from interpreter frame to compiler frame.
   216   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
   217   int mcnt = osr_block->flow()->monitor_count();
   218   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
   219   for (index = 0; index < mcnt; index++) {
   220     // Make a BoxLockNode for the monitor.
   221     Node *box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
   224     // Displaced headers and locked objects are interleaved in the
   225     // temp OSR buffer.  We only copy the locked objects out here.
   226     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
   227     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
   228     // Try and copy the displaced header to the BoxNode
   229     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
   232     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
   234     // Build a bogus FastLockNode (no code will be generated) and push the
   235     // monitor into our debug info.
   236     const FastLockNode *flock = _gvn.transform(new (C) FastLockNode( 0, lock_object, box ))->as_FastLock();
   237     map()->push_monitor(flock);
   239     // If the lock is our method synchronization lock, tuck it away in
   240     // _sync_lock for return and rethrow exit paths.
   241     if (index == 0 && method()->is_synchronized()) {
   242       _synch_lock = flock;
   243     }
   244   }
   246   // Use the raw liveness computation to make sure that unexpected
   247   // values don't propagate into the OSR frame.
   248   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
   249   if (!live_locals.is_valid()) {
   250     // Degenerate or breakpointed method.
   251     C->record_method_not_compilable("OSR in empty or breakpointed method");
   252     return;
   253   }
   255   // Extract the needed locals from the interpreter frame.
   256   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
   258   // find all the locals that the interpreter thinks contain live oops
   259   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
   260   for (index = 0; index < max_locals; index++) {
   262     if (!live_locals.at(index)) {
   263       continue;
   264     }
   266     const Type *type = osr_block->local_type_at(index);
   268     if (type->isa_oopptr() != NULL) {
   270       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
   271       // else we might load a stale oop if the MethodLiveness disagrees with the
   272       // result of the interpreter. If the interpreter says it is dead we agree
   273       // by making the value go to top.
   274       //
   276       if (!live_oops.at(index)) {
   277         if (C->log() != NULL) {
   278           C->log()->elem("OSR_mismatch local_index='%d'",index);
   279         }
   280         set_local(index, null());
   281         // and ignore it for the loads
   282         continue;
   283       }
   284     }
   286     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
   287     if (type == Type::TOP || type == Type::HALF) {
   288       continue;
   289     }
   290     // If the type falls to bottom, then this must be a local that
   291     // is mixing ints and oops or some such.  Forcing it to top
   292     // makes it go dead.
   293     if (type == Type::BOTTOM) {
   294       continue;
   295     }
   296     // Construct code to access the appropriate local.
   297     BasicType bt = type->basic_type();
   298     if (type == TypePtr::NULL_PTR) {
   299       // Ptr types are mixed together with T_ADDRESS but NULL is
   300       // really for T_OBJECT types so correct it.
   301       bt = T_OBJECT;
   302     }
   303     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
   304     set_local(index, value);
   305   }
   307   // Extract the needed stack entries from the interpreter frame.
   308   for (index = 0; index < sp(); index++) {
   309     const Type *type = osr_block->stack_type_at(index);
   310     if (type != Type::TOP) {
   311       // Currently the compiler bails out when attempting to on stack replace
   312       // at a bci with a non-empty stack.  We should not reach here.
   313       ShouldNotReachHere();
   314     }
   315   }
   317   // End the OSR migration
   318   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
   319                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
   320                     "OSR_migration_end", TypeRawPtr::BOTTOM,
   321                     osr_buf);
   323   // Now that the interpreter state is loaded, make sure it will match
   324   // at execution time what the compiler is expecting now:
   325   SafePointNode* bad_type_exit = clone_map();
   326   bad_type_exit->set_control(new (C) RegionNode(1));
   328   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
   329   for (index = 0; index < max_locals; index++) {
   330     if (stopped())  break;
   331     Node* l = local(index);
   332     if (l->is_top())  continue;  // nothing here
   333     const Type *type = osr_block->local_type_at(index);
   334     if (type->isa_oopptr() != NULL) {
   335       if (!live_oops.at(index)) {
   336         // skip type check for dead oops
   337         continue;
   338       }
   339     }
   340     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
   341       // In our current system it's illegal for jsr addresses to be
   342       // live into an OSR entry point because the compiler performs
   343       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
   344       // case and aborts the compile if addresses are live into an OSR
   345       // entry point.  Because of that we can assume that any address
   346       // locals at the OSR entry point are dead.  Method liveness
   347       // isn't precise enought to figure out that they are dead in all
   348       // cases so simply skip checking address locals all
   349       // together. Any type check is guaranteed to fail since the
   350       // interpreter type is the result of a load which might have any
   351       // value and the expected type is a constant.
   352       continue;
   353     }
   354     set_local(index, check_interpreter_type(l, type, bad_type_exit));
   355   }
   357   for (index = 0; index < sp(); index++) {
   358     if (stopped())  break;
   359     Node* l = stack(index);
   360     if (l->is_top())  continue;  // nothing here
   361     const Type *type = osr_block->stack_type_at(index);
   362     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
   363   }
   365   if (bad_type_exit->control()->req() > 1) {
   366     // Build an uncommon trap here, if any inputs can be unexpected.
   367     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
   368     record_for_igvn(bad_type_exit->control());
   369     SafePointNode* types_are_good = map();
   370     set_map(bad_type_exit);
   371     // The unexpected type happens because a new edge is active
   372     // in the CFG, which typeflow had previously ignored.
   373     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
   374     // This x will be typed as Integer if notReached is not yet linked.
   375     // It could also happen due to a problem in ciTypeFlow analysis.
   376     uncommon_trap(Deoptimization::Reason_constraint,
   377                   Deoptimization::Action_reinterpret);
   378     set_map(types_are_good);
   379   }
   380 }
   382 //------------------------------Parse------------------------------------------
   383 // Main parser constructor.
   384 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
   385   : _exits(caller)
   386 {
   387   // Init some variables
   388   _caller = caller;
   389   _method = parse_method;
   390   _expected_uses = expected_uses;
   391   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
   392   _wrote_final = false;
   393   _wrote_volatile = false;
   394   _alloc_with_final = NULL;
   395   _entry_bci = InvocationEntryBci;
   396   _tf = NULL;
   397   _block = NULL;
   398   _first_return = true;
   399   _replaced_nodes_for_exceptions = false;
   400   _new_idx = C->unique();
   401   debug_only(_block_count = -1);
   402   debug_only(_blocks = (Block*)-1);
   403 #ifndef PRODUCT
   404   if (PrintCompilation || PrintOpto) {
   405     // Make sure I have an inline tree, so I can print messages about it.
   406     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
   407     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
   408   }
   409   _max_switch_depth = 0;
   410   _est_switch_depth = 0;
   411 #endif
   413   _tf = TypeFunc::make(method());
   414   _iter.reset_to_method(method());
   415   _flow = method()->get_flow_analysis();
   416   if (_flow->failing()) {
   417     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
   418   }
   420 #ifndef PRODUCT
   421   if (_flow->has_irreducible_entry()) {
   422     C->set_parsed_irreducible_loop(true);
   423   }
   424 #endif
   426   if (_expected_uses <= 0) {
   427     _prof_factor = 1;
   428   } else {
   429     float prof_total = parse_method->interpreter_invocation_count();
   430     if (prof_total <= _expected_uses) {
   431       _prof_factor = 1;
   432     } else {
   433       _prof_factor = _expected_uses / prof_total;
   434     }
   435   }
   437   CompileLog* log = C->log();
   438   if (log != NULL) {
   439     log->begin_head("parse method='%d' uses='%g'",
   440                     log->identify(parse_method), expected_uses);
   441     if (depth() == 1 && C->is_osr_compilation()) {
   442       log->print(" osr_bci='%d'", C->entry_bci());
   443     }
   444     log->stamp();
   445     log->end_head();
   446   }
   448   // Accumulate deoptimization counts.
   449   // (The range_check and store_check counts are checked elsewhere.)
   450   ciMethodData* md = method()->method_data();
   451   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
   452     uint md_count = md->trap_count(reason);
   453     if (md_count != 0) {
   454       if (md_count == md->trap_count_limit())
   455         md_count += md->overflow_trap_count();
   456       uint total_count = C->trap_count(reason);
   457       uint old_count   = total_count;
   458       total_count += md_count;
   459       // Saturate the add if it overflows.
   460       if (total_count < old_count || total_count < md_count)
   461         total_count = (uint)-1;
   462       C->set_trap_count(reason, total_count);
   463       if (log != NULL)
   464         log->elem("observe trap='%s' count='%d' total='%d'",
   465                   Deoptimization::trap_reason_name(reason),
   466                   md_count, total_count);
   467     }
   468   }
   469   // Accumulate total sum of decompilations, also.
   470   C->set_decompile_count(C->decompile_count() + md->decompile_count());
   472   _count_invocations = C->do_count_invocations();
   473   _method_data_update = C->do_method_data_update();
   475   if (log != NULL && method()->has_exception_handlers()) {
   476     log->elem("observe that='has_exception_handlers'");
   477   }
   479   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
   480   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
   482   // Always register dependence if JVMTI is enabled, because
   483   // either breakpoint setting or hotswapping of methods may
   484   // cause deoptimization.
   485   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
   486     C->dependencies()->assert_evol_method(method());
   487   }
   489   methods_seen++;
   491   // Do some special top-level things.
   492   if (depth() == 1 && C->is_osr_compilation()) {
   493     _entry_bci = C->entry_bci();
   494     _flow = method()->get_osr_flow_analysis(osr_bci());
   495     if (_flow->failing()) {
   496       C->record_method_not_compilable(_flow->failure_reason());
   497 #ifndef PRODUCT
   498       if (PrintOpto && (Verbose || WizardMode)) {
   499         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
   500         if (Verbose) {
   501           method()->print();
   502           method()->print_codes();
   503           _flow->print();
   504         }
   505       }
   506 #endif
   507     }
   508     _tf = C->tf();     // the OSR entry type is different
   509   }
   511 #ifdef ASSERT
   512   if (depth() == 1) {
   513     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
   514     if (C->tf() != tf()) {
   515       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
   516       assert(C->env()->system_dictionary_modification_counter_changed(),
   517              "Must invalidate if TypeFuncs differ");
   518     }
   519   } else {
   520     assert(!this->is_osr_parse(), "no recursive OSR");
   521   }
   522 #endif
   524   methods_parsed++;
   525 #ifndef PRODUCT
   526   // add method size here to guarantee that inlined methods are added too
   527   if (TimeCompiler)
   528     _total_bytes_compiled += method()->code_size();
   530   show_parse_info();
   531 #endif
   533   if (failing()) {
   534     if (log)  log->done("parse");
   535     return;
   536   }
   538   gvn().set_type(root(), root()->bottom_type());
   539   gvn().transform(top());
   541   // Import the results of the ciTypeFlow.
   542   init_blocks();
   544   // Merge point for all normal exits
   545   build_exits();
   547   // Setup the initial JVM state map.
   548   SafePointNode* entry_map = create_entry_map();
   550   // Check for bailouts during map initialization
   551   if (failing() || entry_map == NULL) {
   552     if (log)  log->done("parse");
   553     return;
   554   }
   556   Node_Notes* caller_nn = C->default_node_notes();
   557   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
   558   if (DebugInlinedCalls || depth() == 1) {
   559     C->set_default_node_notes(make_node_notes(caller_nn));
   560   }
   562   if (is_osr_parse()) {
   563     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
   564     entry_map->set_req(TypeFunc::Parms+0, top());
   565     set_map(entry_map);
   566     load_interpreter_state(osr_buf);
   567   } else {
   568     set_map(entry_map);
   569     do_method_entry();
   570   }
   572   if (depth() == 1 && !failing()) {
   573     // Add check to deoptimize the nmethod if RTM state was changed
   574     rtm_deopt();
   575   }
   577   // Check for bailouts during method entry or RTM state check setup.
   578   if (failing()) {
   579     if (log)  log->done("parse");
   580     C->set_default_node_notes(caller_nn);
   581     return;
   582   }
   584   entry_map = map();  // capture any changes performed by method setup code
   585   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
   587   // We begin parsing as if we have just encountered a jump to the
   588   // method entry.
   589   Block* entry_block = start_block();
   590   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
   591   set_map_clone(entry_map);
   592   merge_common(entry_block, entry_block->next_path_num());
   594 #ifndef PRODUCT
   595   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
   596   set_parse_histogram( parse_histogram_obj );
   597 #endif
   599   // Parse all the basic blocks.
   600   do_all_blocks();
   602   C->set_default_node_notes(caller_nn);
   604   // Check for bailouts during conversion to graph
   605   if (failing()) {
   606     if (log)  log->done("parse");
   607     return;
   608   }
   610   // Fix up all exiting control flow.
   611   set_map(entry_map);
   612   do_exits();
   614   if (log)  log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'",
   615                       C->unique(), C->live_nodes(), C->node_arena()->used());
   616 }
   618 //---------------------------do_all_blocks-------------------------------------
   619 void Parse::do_all_blocks() {
   620   bool has_irreducible = flow()->has_irreducible_entry();
   622   // Walk over all blocks in Reverse Post-Order.
   623   while (true) {
   624     bool progress = false;
   625     for (int rpo = 0; rpo < block_count(); rpo++) {
   626       Block* block = rpo_at(rpo);
   628       if (block->is_parsed()) continue;
   630       if (!block->is_merged()) {
   631         // Dead block, no state reaches this block
   632         continue;
   633       }
   635       // Prepare to parse this block.
   636       load_state_from(block);
   638       if (stopped()) {
   639         // Block is dead.
   640         continue;
   641       }
   643       blocks_parsed++;
   645       progress = true;
   646       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
   647         // Not all preds have been parsed.  We must build phis everywhere.
   648         // (Note that dead locals do not get phis built, ever.)
   649         ensure_phis_everywhere();
   651         if (block->is_SEL_head() &&
   652             (UseLoopPredicate || LoopLimitCheck)) {
   653           // Add predicate to single entry (not irreducible) loop head.
   654           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
   655           // Need correct bci for predicate.
   656           // It is fine to set it here since do_one_block() will set it anyway.
   657           set_parse_bci(block->start());
   658           add_predicate();
   659           // Add new region for back branches.
   660           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
   661           RegionNode *r = new (C) RegionNode(edges+1);
   662           _gvn.set_type(r, Type::CONTROL);
   663           record_for_igvn(r);
   664           r->init_req(edges, control());
   665           set_control(r);
   666           // Add new phis.
   667           ensure_phis_everywhere();
   668         }
   670         // Leave behind an undisturbed copy of the map, for future merges.
   671         set_map(clone_map());
   672       }
   674       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
   675         // In the absence of irreducible loops, the Region and Phis
   676         // associated with a merge that doesn't involve a backedge can
   677         // be simplified now since the RPO parsing order guarantees
   678         // that any path which was supposed to reach here has already
   679         // been parsed or must be dead.
   680         Node* c = control();
   681         Node* result = _gvn.transform_no_reclaim(control());
   682         if (c != result && TraceOptoParse) {
   683           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
   684         }
   685         if (result != top()) {
   686           record_for_igvn(result);
   687         }
   688       }
   690       // Parse the block.
   691       do_one_block();
   693       // Check for bailouts.
   694       if (failing())  return;
   695     }
   697     // with irreducible loops multiple passes might be necessary to parse everything
   698     if (!has_irreducible || !progress) {
   699       break;
   700     }
   701   }
   703   blocks_seen += block_count();
   705 #ifndef PRODUCT
   706   // Make sure there are no half-processed blocks remaining.
   707   // Every remaining unprocessed block is dead and may be ignored now.
   708   for (int rpo = 0; rpo < block_count(); rpo++) {
   709     Block* block = rpo_at(rpo);
   710     if (!block->is_parsed()) {
   711       if (TraceOptoParse) {
   712         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
   713       }
   714       assert(!block->is_merged(), "no half-processed blocks");
   715     }
   716   }
   717 #endif
   718 }
   720 //-------------------------------build_exits----------------------------------
   721 // Build normal and exceptional exit merge points.
   722 void Parse::build_exits() {
   723   // make a clone of caller to prevent sharing of side-effects
   724   _exits.set_map(_exits.clone_map());
   725   _exits.clean_stack(_exits.sp());
   726   _exits.sync_jvms();
   728   RegionNode* region = new (C) RegionNode(1);
   729   record_for_igvn(region);
   730   gvn().set_type_bottom(region);
   731   _exits.set_control(region);
   733   // Note:  iophi and memphi are not transformed until do_exits.
   734   Node* iophi  = new (C) PhiNode(region, Type::ABIO);
   735   Node* memphi = new (C) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
   736   gvn().set_type_bottom(iophi);
   737   gvn().set_type_bottom(memphi);
   738   _exits.set_i_o(iophi);
   739   _exits.set_all_memory(memphi);
   741   // Add a return value to the exit state.  (Do not push it yet.)
   742   if (tf()->range()->cnt() > TypeFunc::Parms) {
   743     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
   744     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
   745     // becomes loaded during the subsequent parsing, the loaded and unloaded
   746     // types will not join when we transform and push in do_exits().
   747     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
   748     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
   749       ret_type = TypeOopPtr::BOTTOM;
   750     }
   751     int         ret_size = type2size[ret_type->basic_type()];
   752     Node*       ret_phi  = new (C) PhiNode(region, ret_type);
   753     gvn().set_type_bottom(ret_phi);
   754     _exits.ensure_stack(ret_size);
   755     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
   756     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
   757     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
   758     // Note:  ret_phi is not yet pushed, until do_exits.
   759   }
   760 }
   763 //----------------------------build_start_state-------------------------------
   764 // Construct a state which contains only the incoming arguments from an
   765 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
   766 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
   767   int        arg_size = tf->domain()->cnt();
   768   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
   769   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
   770   SafePointNode* map  = new (this) SafePointNode(max_size, NULL);
   771   record_for_igvn(map);
   772   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
   773   Node_Notes* old_nn = default_node_notes();
   774   if (old_nn != NULL && has_method()) {
   775     Node_Notes* entry_nn = old_nn->clone(this);
   776     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
   777     entry_jvms->set_offsets(0);
   778     entry_jvms->set_bci(entry_bci());
   779     entry_nn->set_jvms(entry_jvms);
   780     set_default_node_notes(entry_nn);
   781   }
   782   uint i;
   783   for (i = 0; i < (uint)arg_size; i++) {
   784     Node* parm = initial_gvn()->transform(new (this) ParmNode(start, i));
   785     map->init_req(i, parm);
   786     // Record all these guys for later GVN.
   787     record_for_igvn(parm);
   788   }
   789   for (; i < map->req(); i++) {
   790     map->init_req(i, top());
   791   }
   792   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
   793   set_default_node_notes(old_nn);
   794   map->set_jvms(jvms);
   795   jvms->set_map(map);
   796   return jvms;
   797 }
   799 //-----------------------------make_node_notes---------------------------------
   800 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
   801   if (caller_nn == NULL)  return NULL;
   802   Node_Notes* nn = caller_nn->clone(C);
   803   JVMState* caller_jvms = nn->jvms();
   804   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
   805   jvms->set_offsets(0);
   806   jvms->set_bci(_entry_bci);
   807   nn->set_jvms(jvms);
   808   return nn;
   809 }
   812 //--------------------------return_values--------------------------------------
   813 void Compile::return_values(JVMState* jvms) {
   814   GraphKit kit(jvms);
   815   Node* ret = new (this) ReturnNode(TypeFunc::Parms,
   816                              kit.control(),
   817                              kit.i_o(),
   818                              kit.reset_memory(),
   819                              kit.frameptr(),
   820                              kit.returnadr());
   821   // Add zero or 1 return values
   822   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
   823   if (ret_size > 0) {
   824     kit.inc_sp(-ret_size);  // pop the return value(s)
   825     kit.sync_jvms();
   826     ret->add_req(kit.argument(0));
   827     // Note:  The second dummy edge is not needed by a ReturnNode.
   828   }
   829   // bind it to root
   830   root()->add_req(ret);
   831   record_for_igvn(ret);
   832   initial_gvn()->transform_no_reclaim(ret);
   833 }
   835 //------------------------rethrow_exceptions-----------------------------------
   836 // Bind all exception states in the list into a single RethrowNode.
   837 void Compile::rethrow_exceptions(JVMState* jvms) {
   838   GraphKit kit(jvms);
   839   if (!kit.has_exceptions())  return;  // nothing to generate
   840   // Load my combined exception state into the kit, with all phis transformed:
   841   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
   842   Node* ex_oop = kit.use_exception_state(ex_map);
   843   RethrowNode* exit = new (this) RethrowNode(kit.control(),
   844                                       kit.i_o(), kit.reset_memory(),
   845                                       kit.frameptr(), kit.returnadr(),
   846                                       // like a return but with exception input
   847                                       ex_oop);
   848   // bind to root
   849   root()->add_req(exit);
   850   record_for_igvn(exit);
   851   initial_gvn()->transform_no_reclaim(exit);
   852 }
   854 //---------------------------do_exceptions-------------------------------------
   855 // Process exceptions arising from the current bytecode.
   856 // Send caught exceptions to the proper handler within this method.
   857 // Unhandled exceptions feed into _exit.
   858 void Parse::do_exceptions() {
   859   if (!has_exceptions())  return;
   861   if (failing()) {
   862     // Pop them all off and throw them away.
   863     while (pop_exception_state() != NULL) ;
   864     return;
   865   }
   867   PreserveJVMState pjvms(this, false);
   869   SafePointNode* ex_map;
   870   while ((ex_map = pop_exception_state()) != NULL) {
   871     if (!method()->has_exception_handlers()) {
   872       // Common case:  Transfer control outward.
   873       // Doing it this early allows the exceptions to common up
   874       // even between adjacent method calls.
   875       throw_to_exit(ex_map);
   876     } else {
   877       // Have to look at the exception first.
   878       assert(stopped(), "catch_inline_exceptions trashes the map");
   879       catch_inline_exceptions(ex_map);
   880       stop_and_kill_map();      // we used up this exception state; kill it
   881     }
   882   }
   884   // We now return to our regularly scheduled program:
   885 }
   887 //---------------------------throw_to_exit-------------------------------------
   888 // Merge the given map into an exception exit from this method.
   889 // The exception exit will handle any unlocking of receiver.
   890 // The ex_oop must be saved within the ex_map, unlike merge_exception.
   891 void Parse::throw_to_exit(SafePointNode* ex_map) {
   892   // Pop the JVMS to (a copy of) the caller.
   893   GraphKit caller;
   894   caller.set_map_clone(_caller->map());
   895   caller.set_bci(_caller->bci());
   896   caller.set_sp(_caller->sp());
   897   // Copy out the standard machine state:
   898   for (uint i = 0; i < TypeFunc::Parms; i++) {
   899     caller.map()->set_req(i, ex_map->in(i));
   900   }
   901   if (ex_map->has_replaced_nodes()) {
   902     _replaced_nodes_for_exceptions = true;
   903   }
   904   caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
   905   // ...and the exception:
   906   Node*          ex_oop        = saved_ex_oop(ex_map);
   907   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
   908   // Finally, collect the new exception state in my exits:
   909   _exits.add_exception_state(caller_ex_map);
   910 }
   912 //------------------------------do_exits---------------------------------------
   913 void Parse::do_exits() {
   914   set_parse_bci(InvocationEntryBci);
   916   // Now peephole on the return bits
   917   Node* region = _exits.control();
   918   _exits.set_control(gvn().transform(region));
   920   Node* iophi = _exits.i_o();
   921   _exits.set_i_o(gvn().transform(iophi));
   923   // On PPC64, also add MemBarRelease for constructors which write
   924   // volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu
   925   // is set on PPC64, no sync instruction is issued after volatile
   926   // stores. We want to quarantee the same behaviour as on platforms
   927   // with total store order, although this is not required by the Java
   928   // memory model. So as with finals, we add a barrier here.
   929   if (wrote_final() PPC64_ONLY(|| (wrote_volatile() && method()->is_initializer()))) {
   930     // This method (which must be a constructor by the rules of Java)
   931     // wrote a final.  The effects of all initializations must be
   932     // committed to memory before any code after the constructor
   933     // publishes the reference to the newly constructor object.
   934     // Rather than wait for the publication, we simply block the
   935     // writes here.  Rather than put a barrier on only those writes
   936     // which are required to complete, we force all writes to complete.
   937     //
   938     // "All bets are off" unless the first publication occurs after a
   939     // normal return from the constructor.  We do not attempt to detect
   940     // such unusual early publications.  But no barrier is needed on
   941     // exceptional returns, since they cannot publish normally.
   942     //
   943     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
   944 #ifndef PRODUCT
   945     if (PrintOpto && (Verbose || WizardMode)) {
   946       method()->print_name();
   947       tty->print_cr(" writes finals and needs a memory barrier");
   948     }
   949 #endif
   950   }
   952   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
   953     // transform each slice of the original memphi:
   954     mms.set_memory(_gvn.transform(mms.memory()));
   955   }
   957   if (tf()->range()->cnt() > TypeFunc::Parms) {
   958     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
   959     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
   960     assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined");
   961     _exits.push_node(ret_type->basic_type(), ret_phi);
   962   }
   964   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
   966   // Unlock along the exceptional paths.
   967   // This is done late so that we can common up equivalent exceptions
   968   // (e.g., null checks) arising from multiple points within this method.
   969   // See GraphKit::add_exception_state, which performs the commoning.
   970   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
   972   // record exit from a method if compiled while Dtrace is turned on.
   973   if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
   974     // First move the exception list out of _exits:
   975     GraphKit kit(_exits.transfer_exceptions_into_jvms());
   976     SafePointNode* normal_map = kit.map();  // keep this guy safe
   977     // Now re-collect the exceptions into _exits:
   978     SafePointNode* ex_map;
   979     while ((ex_map = kit.pop_exception_state()) != NULL) {
   980       Node* ex_oop = kit.use_exception_state(ex_map);
   981       // Force the exiting JVM state to have this method at InvocationEntryBci.
   982       // The exiting JVM state is otherwise a copy of the calling JVMS.
   983       JVMState* caller = kit.jvms();
   984       JVMState* ex_jvms = caller->clone_shallow(C);
   985       ex_jvms->set_map(kit.clone_map());
   986       ex_jvms->map()->set_jvms(ex_jvms);
   987       ex_jvms->set_bci(   InvocationEntryBci);
   988       kit.set_jvms(ex_jvms);
   989       if (do_synch) {
   990         // Add on the synchronized-method box/object combo
   991         kit.map()->push_monitor(_synch_lock);
   992         // Unlock!
   993         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
   994       }
   995       if (C->env()->dtrace_method_probes()) {
   996         kit.make_dtrace_method_exit(method());
   997       }
   998       if (_replaced_nodes_for_exceptions) {
   999         kit.map()->apply_replaced_nodes();
  1001       // Done with exception-path processing.
  1002       ex_map = kit.make_exception_state(ex_oop);
  1003       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
  1004       // Pop the last vestige of this method:
  1005       ex_map->set_jvms(caller->clone_shallow(C));
  1006       ex_map->jvms()->set_map(ex_map);
  1007       _exits.push_exception_state(ex_map);
  1009     assert(_exits.map() == normal_map, "keep the same return state");
  1013     // Capture very early exceptions (receiver null checks) from caller JVMS
  1014     GraphKit caller(_caller);
  1015     SafePointNode* ex_map;
  1016     while ((ex_map = caller.pop_exception_state()) != NULL) {
  1017       _exits.add_exception_state(ex_map);
  1020   _exits.map()->apply_replaced_nodes();
  1023 //-----------------------------create_entry_map-------------------------------
  1024 // Initialize our parser map to contain the types at method entry.
  1025 // For OSR, the map contains a single RawPtr parameter.
  1026 // Initial monitor locking for sync. methods is performed by do_method_entry.
  1027 SafePointNode* Parse::create_entry_map() {
  1028   // Check for really stupid bail-out cases.
  1029   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
  1030   if (len >= 32760) {
  1031     C->record_method_not_compilable_all_tiers("too many local variables");
  1032     return NULL;
  1035   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
  1036   _caller->map()->delete_replaced_nodes();
  1038   // If this is an inlined method, we may have to do a receiver null check.
  1039   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
  1040     GraphKit kit(_caller);
  1041     kit.null_check_receiver_before_call(method());
  1042     _caller = kit.transfer_exceptions_into_jvms();
  1043     if (kit.stopped()) {
  1044       _exits.add_exception_states_from(_caller);
  1045       _exits.set_jvms(_caller);
  1046       return NULL;
  1050   assert(method() != NULL, "parser must have a method");
  1052   // Create an initial safepoint to hold JVM state during parsing
  1053   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
  1054   set_map(new (C) SafePointNode(len, jvms));
  1055   jvms->set_map(map());
  1056   record_for_igvn(map());
  1057   assert(jvms->endoff() == len, "correct jvms sizing");
  1059   SafePointNode* inmap = _caller->map();
  1060   assert(inmap != NULL, "must have inmap");
  1061   // In case of null check on receiver above
  1062   map()->transfer_replaced_nodes_from(inmap, _new_idx);
  1064   uint i;
  1066   // Pass thru the predefined input parameters.
  1067   for (i = 0; i < TypeFunc::Parms; i++) {
  1068     map()->init_req(i, inmap->in(i));
  1071   if (depth() == 1) {
  1072     assert(map()->memory()->Opcode() == Op_Parm, "");
  1073     // Insert the memory aliasing node
  1074     set_all_memory(reset_memory());
  1076   assert(merged_memory(), "");
  1078   // Now add the locals which are initially bound to arguments:
  1079   uint arg_size = tf()->domain()->cnt();
  1080   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
  1081   for (i = TypeFunc::Parms; i < arg_size; i++) {
  1082     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
  1085   // Clear out the rest of the map (locals and stack)
  1086   for (i = arg_size; i < len; i++) {
  1087     map()->init_req(i, top());
  1090   SafePointNode* entry_map = stop();
  1091   return entry_map;
  1094 //-----------------------------do_method_entry--------------------------------
  1095 // Emit any code needed in the pseudo-block before BCI zero.
  1096 // The main thing to do is lock the receiver of a synchronized method.
  1097 void Parse::do_method_entry() {
  1098   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
  1099   set_sp(0);                      // Java Stack Pointer
  1101   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
  1103   if (C->env()->dtrace_method_probes()) {
  1104     make_dtrace_method_entry(method());
  1107   // If the method is synchronized, we need to construct a lock node, attach
  1108   // it to the Start node, and pin it there.
  1109   if (method()->is_synchronized()) {
  1110     // Insert a FastLockNode right after the Start which takes as arguments
  1111     // the current thread pointer, the "this" pointer & the address of the
  1112     // stack slot pair used for the lock.  The "this" pointer is a projection
  1113     // off the start node, but the locking spot has to be constructed by
  1114     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
  1115     // becomes the second argument to the FastLockNode call.  The
  1116     // FastLockNode becomes the new control parent to pin it to the start.
  1118     // Setup Object Pointer
  1119     Node *lock_obj = NULL;
  1120     if(method()->is_static()) {
  1121       ciInstance* mirror = _method->holder()->java_mirror();
  1122       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
  1123       lock_obj = makecon(t_lock);
  1124     } else {                  // Else pass the "this" pointer,
  1125       lock_obj = local(0);    // which is Parm0 from StartNode
  1127     // Clear out dead values from the debug info.
  1128     kill_dead_locals();
  1129     // Build the FastLockNode
  1130     _synch_lock = shared_lock(lock_obj);
  1133   // Feed profiling data for parameters to the type system so it can
  1134   // propagate it as speculative types
  1135   record_profiled_parameters_for_speculation();
  1137   if (depth() == 1) {
  1138     increment_and_test_invocation_counter(Tier2CompileThreshold);
  1142 //------------------------------init_blocks------------------------------------
  1143 // Initialize our parser map to contain the types/monitors at method entry.
  1144 void Parse::init_blocks() {
  1145   // Create the blocks.
  1146   _block_count = flow()->block_count();
  1147   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
  1148   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
  1150   int rpo;
  1152   // Initialize the structs.
  1153   for (rpo = 0; rpo < block_count(); rpo++) {
  1154     Block* block = rpo_at(rpo);
  1155     block->init_node(this, rpo);
  1158   // Collect predecessor and successor information.
  1159   for (rpo = 0; rpo < block_count(); rpo++) {
  1160     Block* block = rpo_at(rpo);
  1161     block->init_graph(this);
  1165 //-------------------------------init_node-------------------------------------
  1166 void Parse::Block::init_node(Parse* outer, int rpo) {
  1167   _flow = outer->flow()->rpo_at(rpo);
  1168   _pred_count = 0;
  1169   _preds_parsed = 0;
  1170   _count = 0;
  1171   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
  1172   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
  1173   assert(_live_locals.size() == 0, "sanity");
  1175   // entry point has additional predecessor
  1176   if (flow()->is_start())  _pred_count++;
  1177   assert(flow()->is_start() == (this == outer->start_block()), "");
  1180 //-------------------------------init_graph------------------------------------
  1181 void Parse::Block::init_graph(Parse* outer) {
  1182   // Create the successor list for this parser block.
  1183   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
  1184   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
  1185   int ns = tfs->length();
  1186   int ne = tfe->length();
  1187   _num_successors = ns;
  1188   _all_successors = ns+ne;
  1189   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
  1190   int p = 0;
  1191   for (int i = 0; i < ns+ne; i++) {
  1192     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
  1193     Block* block2 = outer->rpo_at(tf2->rpo());
  1194     _successors[i] = block2;
  1196     // Accumulate pred info for the other block, too.
  1197     if (i < ns) {
  1198       block2->_pred_count++;
  1199     } else {
  1200       block2->_is_handler = true;
  1203     #ifdef ASSERT
  1204     // A block's successors must be distinguishable by BCI.
  1205     // That is, no bytecode is allowed to branch to two different
  1206     // clones of the same code location.
  1207     for (int j = 0; j < i; j++) {
  1208       Block* block1 = _successors[j];
  1209       if (block1 == block2)  continue;  // duplicates are OK
  1210       assert(block1->start() != block2->start(), "successors have unique bcis");
  1212     #endif
  1215   // Note: We never call next_path_num along exception paths, so they
  1216   // never get processed as "ready".  Also, the input phis of exception
  1217   // handlers get specially processed, so that
  1220 //---------------------------successor_for_bci---------------------------------
  1221 Parse::Block* Parse::Block::successor_for_bci(int bci) {
  1222   for (int i = 0; i < all_successors(); i++) {
  1223     Block* block2 = successor_at(i);
  1224     if (block2->start() == bci)  return block2;
  1226   // We can actually reach here if ciTypeFlow traps out a block
  1227   // due to an unloaded class, and concurrently with compilation the
  1228   // class is then loaded, so that a later phase of the parser is
  1229   // able to see more of the bytecode CFG.  Or, the flow pass and
  1230   // the parser can have a minor difference of opinion about executability
  1231   // of bytecodes.  For example, "obj.field = null" is executable even
  1232   // if the field's type is an unloaded class; the flow pass used to
  1233   // make a trap for such code.
  1234   return NULL;
  1238 //-----------------------------stack_type_at-----------------------------------
  1239 const Type* Parse::Block::stack_type_at(int i) const {
  1240   return get_type(flow()->stack_type_at(i));
  1244 //-----------------------------local_type_at-----------------------------------
  1245 const Type* Parse::Block::local_type_at(int i) const {
  1246   // Make dead locals fall to bottom.
  1247   if (_live_locals.size() == 0) {
  1248     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
  1249     // This bitmap can be zero length if we saw a breakpoint.
  1250     // In such cases, pretend they are all live.
  1251     ((Block*)this)->_live_locals = live_locals;
  1253   if (_live_locals.size() > 0 && !_live_locals.at(i))
  1254     return Type::BOTTOM;
  1256   return get_type(flow()->local_type_at(i));
  1260 #ifndef PRODUCT
  1262 //----------------------------name_for_bc--------------------------------------
  1263 // helper method for BytecodeParseHistogram
  1264 static const char* name_for_bc(int i) {
  1265   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
  1268 //----------------------------BytecodeParseHistogram------------------------------------
  1269 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
  1270   _parser   = p;
  1271   _compiler = c;
  1272   if( ! _initialized ) { _initialized = true; reset(); }
  1275 //----------------------------current_count------------------------------------
  1276 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
  1277   switch( bph_type ) {
  1278   case BPH_transforms: { return _parser->gvn().made_progress(); }
  1279   case BPH_values:     { return _parser->gvn().made_new_values(); }
  1280   default: { ShouldNotReachHere(); return 0; }
  1284 //----------------------------initialized--------------------------------------
  1285 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
  1287 //----------------------------reset--------------------------------------------
  1288 void Parse::BytecodeParseHistogram::reset() {
  1289   int i = Bytecodes::number_of_codes;
  1290   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
  1293 //----------------------------set_initial_state--------------------------------
  1294 // Record info when starting to parse one bytecode
  1295 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
  1296   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
  1297     _initial_bytecode    = bc;
  1298     _initial_node_count  = _compiler->unique();
  1299     _initial_transforms  = current_count(BPH_transforms);
  1300     _initial_values      = current_count(BPH_values);
  1304 //----------------------------record_change--------------------------------
  1305 // Record results of parsing one bytecode
  1306 void Parse::BytecodeParseHistogram::record_change() {
  1307   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
  1308     ++_bytecodes_parsed[_initial_bytecode];
  1309     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
  1310     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
  1311     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
  1316 //----------------------------print--------------------------------------------
  1317 void Parse::BytecodeParseHistogram::print(float cutoff) {
  1318   ResourceMark rm;
  1319   // print profile
  1320   int total  = 0;
  1321   int i      = 0;
  1322   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
  1323   int abs_sum = 0;
  1324   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
  1325   tty->print_cr("Histogram of %d parsed bytecodes:", total);
  1326   if( total == 0 ) { return; }
  1327   tty->cr();
  1328   tty->print_cr("absolute:  count of compiled bytecodes of this type");
  1329   tty->print_cr("relative:  percentage contribution to compiled nodes");
  1330   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
  1331   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
  1332   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
  1333   tty->print_cr("values  :  Average number of node values improved per bytecode");
  1334   tty->print_cr("name    :  Bytecode name");
  1335   tty->cr();
  1336   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
  1337   tty->print_cr("----------------------------------------------------------------------");
  1338   while (--i > 0) {
  1339     int       abs = _bytecodes_parsed[i];
  1340     float     rel = abs * 100.0F / total;
  1341     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
  1342     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
  1343     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
  1344     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
  1345     if (cutoff <= rel) {
  1346       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
  1347       abs_sum += abs;
  1350   tty->print_cr("----------------------------------------------------------------------");
  1351   float rel_sum = abs_sum * 100.0F / total;
  1352   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
  1353   tty->print_cr("----------------------------------------------------------------------");
  1354   tty->cr();
  1356 #endif
  1358 //----------------------------load_state_from----------------------------------
  1359 // Load block/map/sp.  But not do not touch iter/bci.
  1360 void Parse::load_state_from(Block* block) {
  1361   set_block(block);
  1362   // load the block's JVM state:
  1363   set_map(block->start_map());
  1364   set_sp( block->start_sp());
  1368 //-----------------------------record_state------------------------------------
  1369 void Parse::Block::record_state(Parse* p) {
  1370   assert(!is_merged(), "can only record state once, on 1st inflow");
  1371   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
  1372   set_start_map(p->stop());
  1376 //------------------------------do_one_block-----------------------------------
  1377 void Parse::do_one_block() {
  1378   if (TraceOptoParse) {
  1379     Block *b = block();
  1380     int ns = b->num_successors();
  1381     int nt = b->all_successors();
  1383     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
  1384                   block()->rpo(), block()->start(), block()->limit());
  1385     for (int i = 0; i < nt; i++) {
  1386       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
  1388     if (b->is_loop_head()) tty->print("  lphd");
  1389     tty->cr();
  1392   assert(block()->is_merged(), "must be merged before being parsed");
  1393   block()->mark_parsed();
  1394   ++_blocks_parsed;
  1396   // Set iterator to start of block.
  1397   iter().reset_to_bci(block()->start());
  1399   CompileLog* log = C->log();
  1401   // Parse bytecodes
  1402   while (!stopped() && !failing()) {
  1403     iter().next();
  1405     // Learn the current bci from the iterator:
  1406     set_parse_bci(iter().cur_bci());
  1408     if (bci() == block()->limit()) {
  1409       // Do not walk into the next block until directed by do_all_blocks.
  1410       merge(bci());
  1411       break;
  1413     assert(bci() < block()->limit(), "bci still in block");
  1415     if (log != NULL) {
  1416       // Output an optional context marker, to help place actions
  1417       // that occur during parsing of this BC.  If there is no log
  1418       // output until the next context string, this context string
  1419       // will be silently ignored.
  1420       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
  1423     if (block()->has_trap_at(bci())) {
  1424       // We must respect the flow pass's traps, because it will refuse
  1425       // to produce successors for trapping blocks.
  1426       int trap_index = block()->flow()->trap_index();
  1427       assert(trap_index != 0, "trap index must be valid");
  1428       uncommon_trap(trap_index);
  1429       break;
  1432     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
  1434 #ifdef ASSERT
  1435     int pre_bc_sp = sp();
  1436     int inputs, depth;
  1437     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
  1438     assert(!have_se || pre_bc_sp >= inputs, err_msg_res("have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs));
  1439 #endif //ASSERT
  1441     do_one_bytecode();
  1443     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
  1444            err_msg_res("incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth));
  1446     do_exceptions();
  1448     NOT_PRODUCT( parse_histogram()->record_change(); );
  1450     if (log != NULL)
  1451       log->clear_context();  // skip marker if nothing was printed
  1453     // Fall into next bytecode.  Each bytecode normally has 1 sequential
  1454     // successor which is typically made ready by visiting this bytecode.
  1455     // If the successor has several predecessors, then it is a merge
  1456     // point, starts a new basic block, and is handled like other basic blocks.
  1461 //------------------------------merge------------------------------------------
  1462 void Parse::set_parse_bci(int bci) {
  1463   set_bci(bci);
  1464   Node_Notes* nn = C->default_node_notes();
  1465   if (nn == NULL)  return;
  1467   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
  1468   if (!DebugInlinedCalls && depth() > 1) {
  1469     return;
  1472   // Update the JVMS annotation, if present.
  1473   JVMState* jvms = nn->jvms();
  1474   if (jvms != NULL && jvms->bci() != bci) {
  1475     // Update the JVMS.
  1476     jvms = jvms->clone_shallow(C);
  1477     jvms->set_bci(bci);
  1478     nn->set_jvms(jvms);
  1482 //------------------------------merge------------------------------------------
  1483 // Merge the current mapping into the basic block starting at bci
  1484 void Parse::merge(int target_bci) {
  1485   Block* target = successor_for_bci(target_bci);
  1486   if (target == NULL) { handle_missing_successor(target_bci); return; }
  1487   assert(!target->is_ready(), "our arrival must be expected");
  1488   int pnum = target->next_path_num();
  1489   merge_common(target, pnum);
  1492 //-------------------------merge_new_path--------------------------------------
  1493 // Merge the current mapping into the basic block, using a new path
  1494 void Parse::merge_new_path(int target_bci) {
  1495   Block* target = successor_for_bci(target_bci);
  1496   if (target == NULL) { handle_missing_successor(target_bci); return; }
  1497   assert(!target->is_ready(), "new path into frozen graph");
  1498   int pnum = target->add_new_path();
  1499   merge_common(target, pnum);
  1502 //-------------------------merge_exception-------------------------------------
  1503 // Merge the current mapping into the basic block starting at bci
  1504 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
  1505 void Parse::merge_exception(int target_bci) {
  1506   assert(sp() == 1, "must have only the throw exception on the stack");
  1507   Block* target = successor_for_bci(target_bci);
  1508   if (target == NULL) { handle_missing_successor(target_bci); return; }
  1509   assert(target->is_handler(), "exceptions are handled by special blocks");
  1510   int pnum = target->add_new_path();
  1511   merge_common(target, pnum);
  1514 //--------------------handle_missing_successor---------------------------------
  1515 void Parse::handle_missing_successor(int target_bci) {
  1516 #ifndef PRODUCT
  1517   Block* b = block();
  1518   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
  1519   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
  1520 #endif
  1521   ShouldNotReachHere();
  1524 //--------------------------merge_common---------------------------------------
  1525 void Parse::merge_common(Parse::Block* target, int pnum) {
  1526   if (TraceOptoParse) {
  1527     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
  1530   // Zap extra stack slots to top
  1531   assert(sp() == target->start_sp(), "");
  1532   clean_stack(sp());
  1534   if (!target->is_merged()) {   // No prior mapping at this bci
  1535     if (TraceOptoParse) { tty->print(" with empty state");  }
  1537     // If this path is dead, do not bother capturing it as a merge.
  1538     // It is "as if" we had 1 fewer predecessors from the beginning.
  1539     if (stopped()) {
  1540       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
  1541       return;
  1544     // Record that a new block has been merged.
  1545     ++_blocks_merged;
  1547     // Make a region if we know there are multiple or unpredictable inputs.
  1548     // (Also, if this is a plain fall-through, we might see another region,
  1549     // which must not be allowed into this block's map.)
  1550     if (pnum > PhiNode::Input         // Known multiple inputs.
  1551         || target->is_handler()       // These have unpredictable inputs.
  1552         || target->is_loop_head()     // Known multiple inputs
  1553         || control()->is_Region()) {  // We must hide this guy.
  1555       int current_bci = bci();
  1556       set_parse_bci(target->start()); // Set target bci
  1557       if (target->is_SEL_head()) {
  1558         DEBUG_ONLY( target->mark_merged_backedge(block()); )
  1559         if (target->start() == 0) {
  1560           // Add loop predicate for the special case when
  1561           // there are backbranches to the method entry.
  1562           add_predicate();
  1565       // Add a Region to start the new basic block.  Phis will be added
  1566       // later lazily.
  1567       int edges = target->pred_count();
  1568       if (edges < pnum)  edges = pnum;  // might be a new path!
  1569       RegionNode *r = new (C) RegionNode(edges+1);
  1570       gvn().set_type(r, Type::CONTROL);
  1571       record_for_igvn(r);
  1572       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
  1573       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
  1574       r->init_req(pnum, control());
  1575       set_control(r);
  1576       set_parse_bci(current_bci); // Restore bci
  1579     // Convert the existing Parser mapping into a mapping at this bci.
  1580     store_state_to(target);
  1581     assert(target->is_merged(), "do not come here twice");
  1583   } else {                      // Prior mapping at this bci
  1584     if (TraceOptoParse) {  tty->print(" with previous state"); }
  1585 #ifdef ASSERT
  1586     if (target->is_SEL_head()) {
  1587       target->mark_merged_backedge(block());
  1589 #endif
  1590     // We must not manufacture more phis if the target is already parsed.
  1591     bool nophi = target->is_parsed();
  1593     SafePointNode* newin = map();// Hang on to incoming mapping
  1594     Block* save_block = block(); // Hang on to incoming block;
  1595     load_state_from(target);    // Get prior mapping
  1597     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
  1598     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
  1599     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
  1600     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
  1602     // Iterate over my current mapping and the old mapping.
  1603     // Where different, insert Phi functions.
  1604     // Use any existing Phi functions.
  1605     assert(control()->is_Region(), "must be merging to a region");
  1606     RegionNode* r = control()->as_Region();
  1608     // Compute where to merge into
  1609     // Merge incoming control path
  1610     r->init_req(pnum, newin->control());
  1612     if (pnum == 1) {            // Last merge for this Region?
  1613       if (!block()->flow()->is_irreducible_entry()) {
  1614         Node* result = _gvn.transform_no_reclaim(r);
  1615         if (r != result && TraceOptoParse) {
  1616           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
  1619       record_for_igvn(r);
  1622     // Update all the non-control inputs to map:
  1623     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
  1624     bool check_elide_phi = target->is_SEL_backedge(save_block);
  1625     for (uint j = 1; j < newin->req(); j++) {
  1626       Node* m = map()->in(j);   // Current state of target.
  1627       Node* n = newin->in(j);   // Incoming change to target state.
  1628       PhiNode* phi;
  1629       if (m->is_Phi() && m->as_Phi()->region() == r)
  1630         phi = m->as_Phi();
  1631       else
  1632         phi = NULL;
  1633       if (m != n) {             // Different; must merge
  1634         switch (j) {
  1635         // Frame pointer and Return Address never changes
  1636         case TypeFunc::FramePtr:// Drop m, use the original value
  1637         case TypeFunc::ReturnAdr:
  1638           break;
  1639         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
  1640           assert(phi == NULL, "the merge contains phis, not vice versa");
  1641           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
  1642           continue;
  1643         default:                // All normal stuff
  1644           if (phi == NULL) {
  1645             const JVMState* jvms = map()->jvms();
  1646             if (EliminateNestedLocks &&
  1647                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
  1648               // BoxLock nodes are not commoning.
  1649               // Use old BoxLock node as merged box.
  1650               assert(newin->jvms()->is_monitor_box(j), "sanity");
  1651               // This assert also tests that nodes are BoxLock.
  1652               assert(BoxLockNode::same_slot(n, m), "sanity");
  1653               C->gvn_replace_by(n, m);
  1654             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
  1655               phi = ensure_phi(j, nophi);
  1658           break;
  1661       // At this point, n might be top if:
  1662       //  - there is no phi (because TypeFlow detected a conflict), or
  1663       //  - the corresponding control edges is top (a dead incoming path)
  1664       // It is a bug if we create a phi which sees a garbage value on a live path.
  1666       if (phi != NULL) {
  1667         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
  1668         assert(phi->region() == r, "");
  1669         phi->set_req(pnum, n);  // Then add 'n' to the merge
  1670         if (pnum == PhiNode::Input) {
  1671           // Last merge for this Phi.
  1672           // So far, Phis have had a reasonable type from ciTypeFlow.
  1673           // Now _gvn will join that with the meet of current inputs.
  1674           // BOTTOM is never permissible here, 'cause pessimistically
  1675           // Phis of pointers cannot lose the basic pointer type.
  1676           debug_only(const Type* bt1 = phi->bottom_type());
  1677           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
  1678           map()->set_req(j, _gvn.transform_no_reclaim(phi));
  1679           debug_only(const Type* bt2 = phi->bottom_type());
  1680           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
  1681           record_for_igvn(phi);
  1684     } // End of for all values to be merged
  1686     if (pnum == PhiNode::Input &&
  1687         !r->in(0)) {         // The occasional useless Region
  1688       assert(control() == r, "");
  1689       set_control(r->nonnull_req());
  1692     map()->merge_replaced_nodes_with(newin);
  1694     // newin has been subsumed into the lazy merge, and is now dead.
  1695     set_block(save_block);
  1697     stop();                     // done with this guy, for now
  1700   if (TraceOptoParse) {
  1701     tty->print_cr(" on path %d", pnum);
  1704   // Done with this parser state.
  1705   assert(stopped(), "");
  1709 //--------------------------merge_memory_edges---------------------------------
  1710 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
  1711   // (nophi means we must not create phis, because we already parsed here)
  1712   assert(n != NULL, "");
  1713   // Merge the inputs to the MergeMems
  1714   MergeMemNode* m = merged_memory();
  1716   assert(control()->is_Region(), "must be merging to a region");
  1717   RegionNode* r = control()->as_Region();
  1719   PhiNode* base = NULL;
  1720   MergeMemNode* remerge = NULL;
  1721   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
  1722     Node *p = mms.force_memory();
  1723     Node *q = mms.memory2();
  1724     if (mms.is_empty() && nophi) {
  1725       // Trouble:  No new splits allowed after a loop body is parsed.
  1726       // Instead, wire the new split into a MergeMem on the backedge.
  1727       // The optimizer will sort it out, slicing the phi.
  1728       if (remerge == NULL) {
  1729         assert(base != NULL, "");
  1730         assert(base->in(0) != NULL, "should not be xformed away");
  1731         remerge = MergeMemNode::make(C, base->in(pnum));
  1732         gvn().set_type(remerge, Type::MEMORY);
  1733         base->set_req(pnum, remerge);
  1735       remerge->set_memory_at(mms.alias_idx(), q);
  1736       continue;
  1738     assert(!q->is_MergeMem(), "");
  1739     PhiNode* phi;
  1740     if (p != q) {
  1741       phi = ensure_memory_phi(mms.alias_idx(), nophi);
  1742     } else {
  1743       if (p->is_Phi() && p->as_Phi()->region() == r)
  1744         phi = p->as_Phi();
  1745       else
  1746         phi = NULL;
  1748     // Insert q into local phi
  1749     if (phi != NULL) {
  1750       assert(phi->region() == r, "");
  1751       p = phi;
  1752       phi->set_req(pnum, q);
  1753       if (mms.at_base_memory()) {
  1754         base = phi;  // delay transforming it
  1755       } else if (pnum == 1) {
  1756         record_for_igvn(phi);
  1757         p = _gvn.transform_no_reclaim(phi);
  1759       mms.set_memory(p);// store back through the iterator
  1762   // Transform base last, in case we must fiddle with remerging.
  1763   if (base != NULL && pnum == 1) {
  1764     record_for_igvn(base);
  1765     m->set_base_memory( _gvn.transform_no_reclaim(base) );
  1770 //------------------------ensure_phis_everywhere-------------------------------
  1771 void Parse::ensure_phis_everywhere() {
  1772   ensure_phi(TypeFunc::I_O);
  1774   // Ensure a phi on all currently known memories.
  1775   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
  1776     ensure_memory_phi(mms.alias_idx());
  1777     debug_only(mms.set_memory());  // keep the iterator happy
  1780   // Note:  This is our only chance to create phis for memory slices.
  1781   // If we miss a slice that crops up later, it will have to be
  1782   // merged into the base-memory phi that we are building here.
  1783   // Later, the optimizer will comb out the knot, and build separate
  1784   // phi-loops for each memory slice that matters.
  1786   // Monitors must nest nicely and not get confused amongst themselves.
  1787   // Phi-ify everything up to the monitors, though.
  1788   uint monoff = map()->jvms()->monoff();
  1789   uint nof_monitors = map()->jvms()->nof_monitors();
  1791   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
  1792   bool check_elide_phi = block()->is_SEL_head();
  1793   for (uint i = TypeFunc::Parms; i < monoff; i++) {
  1794     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
  1795       ensure_phi(i);
  1799   // Even monitors need Phis, though they are well-structured.
  1800   // This is true for OSR methods, and also for the rare cases where
  1801   // a monitor object is the subject of a replace_in_map operation.
  1802   // See bugs 4426707 and 5043395.
  1803   for (uint m = 0; m < nof_monitors; m++) {
  1804     ensure_phi(map()->jvms()->monitor_obj_offset(m));
  1809 //-----------------------------add_new_path------------------------------------
  1810 // Add a previously unaccounted predecessor to this block.
  1811 int Parse::Block::add_new_path() {
  1812   // If there is no map, return the lowest unused path number.
  1813   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
  1815   SafePointNode* map = start_map();
  1816   if (!map->control()->is_Region())
  1817     return pred_count()+1;  // there may be a region some day
  1818   RegionNode* r = map->control()->as_Region();
  1820   // Add new path to the region.
  1821   uint pnum = r->req();
  1822   r->add_req(NULL);
  1824   for (uint i = 1; i < map->req(); i++) {
  1825     Node* n = map->in(i);
  1826     if (i == TypeFunc::Memory) {
  1827       // Ensure a phi on all currently known memories.
  1828       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
  1829         Node* phi = mms.memory();
  1830         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
  1831           assert(phi->req() == pnum, "must be same size as region");
  1832           phi->add_req(NULL);
  1835     } else {
  1836       if (n->is_Phi() && n->as_Phi()->region() == r) {
  1837         assert(n->req() == pnum, "must be same size as region");
  1838         n->add_req(NULL);
  1843   return pnum;
  1846 //------------------------------ensure_phi-------------------------------------
  1847 // Turn the idx'th entry of the current map into a Phi
  1848 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
  1849   SafePointNode* map = this->map();
  1850   Node* region = map->control();
  1851   assert(region->is_Region(), "");
  1853   Node* o = map->in(idx);
  1854   assert(o != NULL, "");
  1856   if (o == top())  return NULL; // TOP always merges into TOP
  1858   if (o->is_Phi() && o->as_Phi()->region() == region) {
  1859     return o->as_Phi();
  1862   // Now use a Phi here for merging
  1863   assert(!nocreate, "Cannot build a phi for a block already parsed.");
  1864   const JVMState* jvms = map->jvms();
  1865   const Type* t;
  1866   if (jvms->is_loc(idx)) {
  1867     t = block()->local_type_at(idx - jvms->locoff());
  1868   } else if (jvms->is_stk(idx)) {
  1869     t = block()->stack_type_at(idx - jvms->stkoff());
  1870   } else if (jvms->is_mon(idx)) {
  1871     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
  1872     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
  1873   } else if ((uint)idx < TypeFunc::Parms) {
  1874     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
  1875   } else {
  1876     assert(false, "no type information for this phi");
  1879   // If the type falls to bottom, then this must be a local that
  1880   // is mixing ints and oops or some such.  Forcing it to top
  1881   // makes it go dead.
  1882   if (t == Type::BOTTOM) {
  1883     map->set_req(idx, top());
  1884     return NULL;
  1887   // Do not create phis for top either.
  1888   // A top on a non-null control flow must be an unused even after the.phi.
  1889   if (t == Type::TOP || t == Type::HALF) {
  1890     map->set_req(idx, top());
  1891     return NULL;
  1894   PhiNode* phi = PhiNode::make(region, o, t);
  1895   gvn().set_type(phi, t);
  1896   if (C->do_escape_analysis()) record_for_igvn(phi);
  1897   map->set_req(idx, phi);
  1898   return phi;
  1901 //--------------------------ensure_memory_phi----------------------------------
  1902 // Turn the idx'th slice of the current memory into a Phi
  1903 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
  1904   MergeMemNode* mem = merged_memory();
  1905   Node* region = control();
  1906   assert(region->is_Region(), "");
  1908   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
  1909   assert(o != NULL && o != top(), "");
  1911   PhiNode* phi;
  1912   if (o->is_Phi() && o->as_Phi()->region() == region) {
  1913     phi = o->as_Phi();
  1914     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
  1915       // clone the shared base memory phi to make a new memory split
  1916       assert(!nocreate, "Cannot build a phi for a block already parsed.");
  1917       const Type* t = phi->bottom_type();
  1918       const TypePtr* adr_type = C->get_adr_type(idx);
  1919       phi = phi->slice_memory(adr_type);
  1920       gvn().set_type(phi, t);
  1922     return phi;
  1925   // Now use a Phi here for merging
  1926   assert(!nocreate, "Cannot build a phi for a block already parsed.");
  1927   const Type* t = o->bottom_type();
  1928   const TypePtr* adr_type = C->get_adr_type(idx);
  1929   phi = PhiNode::make(region, o, t, adr_type);
  1930   gvn().set_type(phi, t);
  1931   if (idx == Compile::AliasIdxBot)
  1932     mem->set_base_memory(phi);
  1933   else
  1934     mem->set_memory_at(idx, phi);
  1935   return phi;
  1938 //------------------------------call_register_finalizer-----------------------
  1939 // Check the klass of the receiver and call register_finalizer if the
  1940 // class need finalization.
  1941 void Parse::call_register_finalizer() {
  1942   Node* receiver = local(0);
  1943   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
  1944          "must have non-null instance type");
  1946   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
  1947   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
  1948     // The type isn't known exactly so see if CHA tells us anything.
  1949     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1950     if (!Dependencies::has_finalizable_subclass(ik)) {
  1951       // No finalizable subclasses so skip the dynamic check.
  1952       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
  1953       return;
  1957   // Insert a dynamic test for whether the instance needs
  1958   // finalization.  In general this will fold up since the concrete
  1959   // class is often visible so the access flags are constant.
  1960   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
  1961   Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
  1963   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
  1964   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
  1966   Node* mask  = _gvn.transform(new (C) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
  1967   Node* check = _gvn.transform(new (C) CmpINode(mask, intcon(0)));
  1968   Node* test  = _gvn.transform(new (C) BoolNode(check, BoolTest::ne));
  1970   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
  1972   RegionNode* result_rgn = new (C) RegionNode(3);
  1973   record_for_igvn(result_rgn);
  1975   Node *skip_register = _gvn.transform(new (C) IfFalseNode(iff));
  1976   result_rgn->init_req(1, skip_register);
  1978   Node *needs_register = _gvn.transform(new (C) IfTrueNode(iff));
  1979   set_control(needs_register);
  1980   if (stopped()) {
  1981     // There is no slow path.
  1982     result_rgn->init_req(2, top());
  1983   } else {
  1984     Node *call = make_runtime_call(RC_NO_LEAF,
  1985                                    OptoRuntime::register_finalizer_Type(),
  1986                                    OptoRuntime::register_finalizer_Java(),
  1987                                    NULL, TypePtr::BOTTOM,
  1988                                    receiver);
  1989     make_slow_call_ex(call, env()->Throwable_klass(), true);
  1991     Node* fast_io  = call->in(TypeFunc::I_O);
  1992     Node* fast_mem = call->in(TypeFunc::Memory);
  1993     // These two phis are pre-filled with copies of of the fast IO and Memory
  1994     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  1995     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  1997     result_rgn->init_req(2, control());
  1998     io_phi    ->init_req(2, i_o());
  1999     mem_phi   ->init_req(2, reset_memory());
  2001     set_all_memory( _gvn.transform(mem_phi) );
  2002     set_i_o(        _gvn.transform(io_phi) );
  2005   set_control( _gvn.transform(result_rgn) );
  2008 // Add check to deoptimize if RTM state is not ProfileRTM
  2009 void Parse::rtm_deopt() {
  2010 #if INCLUDE_RTM_OPT
  2011   if (C->profile_rtm()) {
  2012     assert(C->method() != NULL, "only for normal compilations");
  2013     assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
  2014     assert(depth() == 1, "generate check only for main compiled method");
  2016     // Set starting bci for uncommon trap.
  2017     set_parse_bci(is_osr_parse() ? osr_bci() : 0);
  2019     // Load the rtm_state from the MethodData.
  2020     const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data());
  2021     Node* mdo = makecon(adr_type);
  2022     int offset = MethodData::rtm_state_offset_in_bytes();
  2023     Node* adr_node = basic_plus_adr(mdo, mdo, offset);
  2024     Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
  2026     // Separate Load from Cmp by Opaque.
  2027     // In expand_macro_nodes() it will be replaced either
  2028     // with this load when there are locks in the code
  2029     // or with ProfileRTM (cmp->in(2)) otherwise so that
  2030     // the check will fold.
  2031     Node* profile_state = makecon(TypeInt::make(ProfileRTM));
  2032     Node* opq   = _gvn.transform( new (C) Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
  2033     Node* chk   = _gvn.transform( new (C) CmpINode(opq, profile_state) );
  2034     Node* tst   = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
  2035     // Branch to failure if state was changed
  2036     { BuildCutout unless(this, tst, PROB_ALWAYS);
  2037       uncommon_trap(Deoptimization::Reason_rtm_state_change,
  2038                     Deoptimization::Action_make_not_entrant);
  2041 #endif
  2044 //------------------------------return_current---------------------------------
  2045 // Append current _map to _exit_return
  2046 void Parse::return_current(Node* value) {
  2047   if (RegisterFinalizersAtInit &&
  2048       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
  2049     call_register_finalizer();
  2052   // Do not set_parse_bci, so that return goo is credited to the return insn.
  2053   set_bci(InvocationEntryBci);
  2054   if (method()->is_synchronized() && GenerateSynchronizationCode) {
  2055     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
  2057   if (C->env()->dtrace_method_probes()) {
  2058     make_dtrace_method_exit(method());
  2060   SafePointNode* exit_return = _exits.map();
  2061   exit_return->in( TypeFunc::Control  )->add_req( control() );
  2062   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
  2063   Node *mem = exit_return->in( TypeFunc::Memory   );
  2064   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
  2065     if (mms.is_empty()) {
  2066       // get a copy of the base memory, and patch just this one input
  2067       const TypePtr* adr_type = mms.adr_type(C);
  2068       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
  2069       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
  2070       gvn().set_type_bottom(phi);
  2071       phi->del_req(phi->req()-1);  // prepare to re-patch
  2072       mms.set_memory(phi);
  2074     mms.memory()->add_req(mms.memory2());
  2077   // frame pointer is always same, already captured
  2078   if (value != NULL) {
  2079     // If returning oops to an interface-return, there is a silent free
  2080     // cast from oop to interface allowed by the Verifier.  Make it explicit
  2081     // here.
  2082     Node* phi = _exits.argument(0);
  2083     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
  2084     if( tr && tr->klass()->is_loaded() &&
  2085         tr->klass()->is_interface() ) {
  2086       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
  2087       if (tp && tp->klass()->is_loaded() &&
  2088           !tp->klass()->is_interface()) {
  2089         // sharpen the type eagerly; this eases certain assert checking
  2090         if (tp->higher_equal(TypeInstPtr::NOTNULL))
  2091           tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
  2092         value = _gvn.transform(new (C) CheckCastPPNode(0,value,tr));
  2095     phi->add_req(value);
  2098   if (_first_return) {
  2099     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
  2100     _first_return = false;
  2101   } else {
  2102     _exits.map()->merge_replaced_nodes_with(map());
  2105   stop_and_kill_map();          // This CFG path dies here
  2109 //------------------------------add_safepoint----------------------------------
  2110 void Parse::add_safepoint() {
  2111   // See if we can avoid this safepoint.  No need for a SafePoint immediately
  2112   // after a Call (except Leaf Call) or another SafePoint.
  2113   Node *proj = control();
  2114   bool add_poll_param = SafePointNode::needs_polling_address_input();
  2115   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
  2116   if( proj->is_Proj() ) {
  2117     Node *n0 = proj->in(0);
  2118     if( n0->is_Catch() ) {
  2119       n0 = n0->in(0)->in(0);
  2120       assert( n0->is_Call(), "expect a call here" );
  2122     if( n0->is_Call() ) {
  2123       if( n0->as_Call()->guaranteed_safepoint() )
  2124         return;
  2125     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
  2126       return;
  2130   // Clear out dead values from the debug info.
  2131   kill_dead_locals();
  2133   // Clone the JVM State
  2134   SafePointNode *sfpnt = new (C) SafePointNode(parms, NULL);
  2136   // Capture memory state BEFORE a SafePoint.  Since we can block at a
  2137   // SafePoint we need our GC state to be safe; i.e. we need all our current
  2138   // write barriers (card marks) to not float down after the SafePoint so we
  2139   // must read raw memory.  Likewise we need all oop stores to match the card
  2140   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
  2141   // state on a deopt).
  2143   // We do not need to WRITE the memory state after a SafePoint.  The control
  2144   // edge will keep card-marks and oop-stores from floating up from below a
  2145   // SafePoint and our true dependency added here will keep them from floating
  2146   // down below a SafePoint.
  2148   // Clone the current memory state
  2149   Node* mem = MergeMemNode::make(C, map()->memory());
  2151   mem = _gvn.transform(mem);
  2153   // Pass control through the safepoint
  2154   sfpnt->init_req(TypeFunc::Control  , control());
  2155   // Fix edges normally used by a call
  2156   sfpnt->init_req(TypeFunc::I_O      , top() );
  2157   sfpnt->init_req(TypeFunc::Memory   , mem   );
  2158   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
  2159   sfpnt->init_req(TypeFunc::FramePtr , top() );
  2161   // Create a node for the polling address
  2162   if( add_poll_param ) {
  2163     Node *polladr = ConPNode::make(C, (address)os::get_polling_page());
  2164     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
  2167   // Fix up the JVM State edges
  2168   add_safepoint_edges(sfpnt);
  2169   Node *transformed_sfpnt = _gvn.transform(sfpnt);
  2170   set_control(transformed_sfpnt);
  2172   // Provide an edge from root to safepoint.  This makes the safepoint
  2173   // appear useful until the parse has completed.
  2174   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
  2175     assert(C->root() != NULL, "Expect parse is still valid");
  2176     C->root()->add_prec(transformed_sfpnt);
  2180 #ifndef PRODUCT
  2181 //------------------------show_parse_info--------------------------------------
  2182 void Parse::show_parse_info() {
  2183   InlineTree* ilt = NULL;
  2184   if (C->ilt() != NULL) {
  2185     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
  2186     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
  2188   if (PrintCompilation && Verbose) {
  2189     if (depth() == 1) {
  2190       if( ilt->count_inlines() ) {
  2191         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
  2192                      ilt->count_inline_bcs());
  2193         tty->cr();
  2195     } else {
  2196       if (method()->is_synchronized())         tty->print("s");
  2197       if (method()->has_exception_handlers())  tty->print("!");
  2198       // Check this is not the final compiled version
  2199       if (C->trap_can_recompile()) {
  2200         tty->print("-");
  2201       } else {
  2202         tty->print(" ");
  2204       method()->print_short_name();
  2205       if (is_osr_parse()) {
  2206         tty->print(" @ %d", osr_bci());
  2208       tty->print(" (%d bytes)",method()->code_size());
  2209       if (ilt->count_inlines()) {
  2210         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
  2211                    ilt->count_inline_bcs());
  2213       tty->cr();
  2216   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
  2217     // Print that we succeeded; suppress this message on the first osr parse.
  2219     if (method()->is_synchronized())         tty->print("s");
  2220     if (method()->has_exception_handlers())  tty->print("!");
  2221     // Check this is not the final compiled version
  2222     if (C->trap_can_recompile() && depth() == 1) {
  2223       tty->print("-");
  2224     } else {
  2225       tty->print(" ");
  2227     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
  2228     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
  2229     method()->print_short_name();
  2230     if (is_osr_parse()) {
  2231       tty->print(" @ %d", osr_bci());
  2233     if (ilt->caller_bci() != -1) {
  2234       tty->print(" @ %d", ilt->caller_bci());
  2236     tty->print(" (%d bytes)",method()->code_size());
  2237     if (ilt->count_inlines()) {
  2238       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
  2239                  ilt->count_inline_bcs());
  2241     tty->cr();
  2246 //------------------------------dump-------------------------------------------
  2247 // Dump information associated with the bytecodes of current _method
  2248 void Parse::dump() {
  2249   if( method() != NULL ) {
  2250     // Iterate over bytecodes
  2251     ciBytecodeStream iter(method());
  2252     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
  2253       dump_bci( iter.cur_bci() );
  2254       tty->cr();
  2259 // Dump information associated with a byte code index, 'bci'
  2260 void Parse::dump_bci(int bci) {
  2261   // Output info on merge-points, cloning, and within _jsr..._ret
  2262   // NYI
  2263   tty->print(" bci:%d", bci);
  2266 #endif

mercurial