src/share/vm/opto/node.cpp

Thu, 12 Oct 2017 21:27:07 +0800

author
aoqi
date
Thu, 12 Oct 2017 21:27:07 +0800
changeset 7535
7ae4e26cb1e0
parent 7385
9e69e8d1c900
parent 6876
710a3c8b516e
child 8604
04d83ba48607
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/cfgnode.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/loopnode.hpp"
    31 #include "opto/machnode.hpp"
    32 #include "opto/matcher.hpp"
    33 #include "opto/node.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/regmask.hpp"
    36 #include "opto/type.hpp"
    37 #include "utilities/copy.hpp"
    39 class RegMask;
    40 // #include "phase.hpp"
    41 class PhaseTransform;
    42 class PhaseGVN;
    44 // Arena we are currently building Nodes in
    45 const uint Node::NotAMachineReg = 0xffff0000;
    47 #ifndef PRODUCT
    48 extern int nodes_created;
    49 #endif
    51 #ifdef ASSERT
    53 //-------------------------- construct_node------------------------------------
    54 // Set a breakpoint here to identify where a particular node index is built.
    55 void Node::verify_construction() {
    56   _debug_orig = NULL;
    57   int old_debug_idx = Compile::debug_idx();
    58   int new_debug_idx = old_debug_idx+1;
    59   if (new_debug_idx > 0) {
    60     // Arrange that the lowest five decimal digits of _debug_idx
    61     // will repeat those of _idx. In case this is somehow pathological,
    62     // we continue to assign negative numbers (!) consecutively.
    63     const int mod = 100000;
    64     int bump = (int)(_idx - new_debug_idx) % mod;
    65     if (bump < 0)  bump += mod;
    66     assert(bump >= 0 && bump < mod, "");
    67     new_debug_idx += bump;
    68   }
    69   Compile::set_debug_idx(new_debug_idx);
    70   set_debug_idx( new_debug_idx );
    71   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
    72   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
    73   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
    74     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
    75     BREAKPOINT;
    76   }
    77 #if OPTO_DU_ITERATOR_ASSERT
    78   _last_del = NULL;
    79   _del_tick = 0;
    80 #endif
    81   _hash_lock = 0;
    82 }
    85 // #ifdef ASSERT ...
    87 #if OPTO_DU_ITERATOR_ASSERT
    88 void DUIterator_Common::sample(const Node* node) {
    89   _vdui     = VerifyDUIterators;
    90   _node     = node;
    91   _outcnt   = node->_outcnt;
    92   _del_tick = node->_del_tick;
    93   _last     = NULL;
    94 }
    96 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
    97   assert(_node     == node, "consistent iterator source");
    98   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
    99 }
   101 void DUIterator_Common::verify_resync() {
   102   // Ensure that the loop body has just deleted the last guy produced.
   103   const Node* node = _node;
   104   // Ensure that at least one copy of the last-seen edge was deleted.
   105   // Note:  It is OK to delete multiple copies of the last-seen edge.
   106   // Unfortunately, we have no way to verify that all the deletions delete
   107   // that same edge.  On this point we must use the Honor System.
   108   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
   109   assert(node->_last_del == _last, "must have deleted the edge just produced");
   110   // We liked this deletion, so accept the resulting outcnt and tick.
   111   _outcnt   = node->_outcnt;
   112   _del_tick = node->_del_tick;
   113 }
   115 void DUIterator_Common::reset(const DUIterator_Common& that) {
   116   if (this == &that)  return;  // ignore assignment to self
   117   if (!_vdui) {
   118     // We need to initialize everything, overwriting garbage values.
   119     _last = that._last;
   120     _vdui = that._vdui;
   121   }
   122   // Note:  It is legal (though odd) for an iterator over some node x
   123   // to be reassigned to iterate over another node y.  Some doubly-nested
   124   // progress loops depend on being able to do this.
   125   const Node* node = that._node;
   126   // Re-initialize everything, except _last.
   127   _node     = node;
   128   _outcnt   = node->_outcnt;
   129   _del_tick = node->_del_tick;
   130 }
   132 void DUIterator::sample(const Node* node) {
   133   DUIterator_Common::sample(node);      // Initialize the assertion data.
   134   _refresh_tick = 0;                    // No refreshes have happened, as yet.
   135 }
   137 void DUIterator::verify(const Node* node, bool at_end_ok) {
   138   DUIterator_Common::verify(node, at_end_ok);
   139   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
   140 }
   142 void DUIterator::verify_increment() {
   143   if (_refresh_tick & 1) {
   144     // We have refreshed the index during this loop.
   145     // Fix up _idx to meet asserts.
   146     if (_idx > _outcnt)  _idx = _outcnt;
   147   }
   148   verify(_node, true);
   149 }
   151 void DUIterator::verify_resync() {
   152   // Note:  We do not assert on _outcnt, because insertions are OK here.
   153   DUIterator_Common::verify_resync();
   154   // Make sure we are still in sync, possibly with no more out-edges:
   155   verify(_node, true);
   156 }
   158 void DUIterator::reset(const DUIterator& that) {
   159   if (this == &that)  return;  // self assignment is always a no-op
   160   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
   161   assert(that._idx          == 0, "assign only the result of Node::outs()");
   162   assert(_idx               == that._idx, "already assigned _idx");
   163   if (!_vdui) {
   164     // We need to initialize everything, overwriting garbage values.
   165     sample(that._node);
   166   } else {
   167     DUIterator_Common::reset(that);
   168     if (_refresh_tick & 1) {
   169       _refresh_tick++;                  // Clear the "was refreshed" flag.
   170     }
   171     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
   172   }
   173 }
   175 void DUIterator::refresh() {
   176   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
   177   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
   178 }
   180 void DUIterator::verify_finish() {
   181   // If the loop has killed the node, do not require it to re-run.
   182   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
   183   // If this assert triggers, it means that a loop used refresh_out_pos
   184   // to re-synch an iteration index, but the loop did not correctly
   185   // re-run itself, using a "while (progress)" construct.
   186   // This iterator enforces the rule that you must keep trying the loop
   187   // until it "runs clean" without any need for refreshing.
   188   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
   189 }
   192 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
   193   DUIterator_Common::verify(node, at_end_ok);
   194   Node** out    = node->_out;
   195   uint   cnt    = node->_outcnt;
   196   assert(cnt == _outcnt, "no insertions allowed");
   197   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
   198   // This last check is carefully designed to work for NO_OUT_ARRAY.
   199 }
   201 void DUIterator_Fast::verify_limit() {
   202   const Node* node = _node;
   203   verify(node, true);
   204   assert(_outp == node->_out + node->_outcnt, "limit still correct");
   205 }
   207 void DUIterator_Fast::verify_resync() {
   208   const Node* node = _node;
   209   if (_outp == node->_out + _outcnt) {
   210     // Note that the limit imax, not the pointer i, gets updated with the
   211     // exact count of deletions.  (For the pointer it's always "--i".)
   212     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
   213     // This is a limit pointer, with a name like "imax".
   214     // Fudge the _last field so that the common assert will be happy.
   215     _last = (Node*) node->_last_del;
   216     DUIterator_Common::verify_resync();
   217   } else {
   218     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
   219     // A normal internal pointer.
   220     DUIterator_Common::verify_resync();
   221     // Make sure we are still in sync, possibly with no more out-edges:
   222     verify(node, true);
   223   }
   224 }
   226 void DUIterator_Fast::verify_relimit(uint n) {
   227   const Node* node = _node;
   228   assert((int)n > 0, "use imax -= n only with a positive count");
   229   // This must be a limit pointer, with a name like "imax".
   230   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
   231   // The reported number of deletions must match what the node saw.
   232   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
   233   // Fudge the _last field so that the common assert will be happy.
   234   _last = (Node*) node->_last_del;
   235   DUIterator_Common::verify_resync();
   236 }
   238 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
   239   assert(_outp              == that._outp, "already assigned _outp");
   240   DUIterator_Common::reset(that);
   241 }
   243 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
   244   // at_end_ok means the _outp is allowed to underflow by 1
   245   _outp += at_end_ok;
   246   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
   247   _outp -= at_end_ok;
   248   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
   249 }
   251 void DUIterator_Last::verify_limit() {
   252   // Do not require the limit address to be resynched.
   253   //verify(node, true);
   254   assert(_outp == _node->_out, "limit still correct");
   255 }
   257 void DUIterator_Last::verify_step(uint num_edges) {
   258   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
   259   _outcnt   -= num_edges;
   260   _del_tick += num_edges;
   261   // Make sure we are still in sync, possibly with no more out-edges:
   262   const Node* node = _node;
   263   verify(node, true);
   264   assert(node->_last_del == _last, "must have deleted the edge just produced");
   265 }
   267 #endif //OPTO_DU_ITERATOR_ASSERT
   270 #endif //ASSERT
   273 // This constant used to initialize _out may be any non-null value.
   274 // The value NULL is reserved for the top node only.
   275 #define NO_OUT_ARRAY ((Node**)-1)
   277 // This funny expression handshakes with Node::operator new
   278 // to pull Compile::current out of the new node's _out field,
   279 // and then calls a subroutine which manages most field
   280 // initializations.  The only one which is tricky is the
   281 // _idx field, which is const, and so must be initialized
   282 // by a return value, not an assignment.
   283 //
   284 // (Aren't you thankful that Java finals don't require so many tricks?)
   285 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
   286 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
   287 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   288 #endif
   290 // Out-of-line code from node constructors.
   291 // Executed only when extra debug info. is being passed around.
   292 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
   293   C->set_node_notes_at(idx, nn);
   294 }
   296 // Shared initialization code.
   297 inline int Node::Init(int req, Compile* C) {
   298   assert(Compile::current() == C, "must use operator new(Compile*)");
   299   int idx = C->next_unique();
   301   // Allocate memory for the necessary number of edges.
   302   if (req > 0) {
   303     // Allocate space for _in array to have double alignment.
   304     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
   305 #ifdef ASSERT
   306     _in[req-1] = this; // magic cookie for assertion check
   307 #endif
   308   }
   309   // If there are default notes floating around, capture them:
   310   Node_Notes* nn = C->default_node_notes();
   311   if (nn != NULL)  init_node_notes(C, idx, nn);
   313   // Note:  At this point, C is dead,
   314   // and we begin to initialize the new Node.
   316   _cnt = _max = req;
   317   _outcnt = _outmax = 0;
   318   _class_id = Class_Node;
   319   _flags = 0;
   320   _out = NO_OUT_ARRAY;
   321   return idx;
   322 }
   324 //------------------------------Node-------------------------------------------
   325 // Create a Node, with a given number of required edges.
   326 Node::Node(uint req)
   327   : _idx(IDX_INIT(req))
   328 {
   329   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
   330   debug_only( verify_construction() );
   331   NOT_PRODUCT(nodes_created++);
   332   if (req == 0) {
   333     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
   334     _in = NULL;
   335   } else {
   336     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
   337     Node** to = _in;
   338     for(uint i = 0; i < req; i++) {
   339       to[i] = NULL;
   340     }
   341   }
   342 }
   344 //------------------------------Node-------------------------------------------
   345 Node::Node(Node *n0)
   346   : _idx(IDX_INIT(1))
   347 {
   348   debug_only( verify_construction() );
   349   NOT_PRODUCT(nodes_created++);
   350   // Assert we allocated space for input array already
   351   assert( _in[0] == this, "Must pass arg count to 'new'" );
   352   assert( is_not_dead(n0), "can not use dead node");
   353   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   354 }
   356 //------------------------------Node-------------------------------------------
   357 Node::Node(Node *n0, Node *n1)
   358   : _idx(IDX_INIT(2))
   359 {
   360   debug_only( verify_construction() );
   361   NOT_PRODUCT(nodes_created++);
   362   // Assert we allocated space for input array already
   363   assert( _in[1] == this, "Must pass arg count to 'new'" );
   364   assert( is_not_dead(n0), "can not use dead node");
   365   assert( is_not_dead(n1), "can not use dead node");
   366   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   367   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   368 }
   370 //------------------------------Node-------------------------------------------
   371 Node::Node(Node *n0, Node *n1, Node *n2)
   372   : _idx(IDX_INIT(3))
   373 {
   374   debug_only( verify_construction() );
   375   NOT_PRODUCT(nodes_created++);
   376   // Assert we allocated space for input array already
   377   assert( _in[2] == this, "Must pass arg count to 'new'" );
   378   assert( is_not_dead(n0), "can not use dead node");
   379   assert( is_not_dead(n1), "can not use dead node");
   380   assert( is_not_dead(n2), "can not use dead node");
   381   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   382   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   383   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   384 }
   386 //------------------------------Node-------------------------------------------
   387 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
   388   : _idx(IDX_INIT(4))
   389 {
   390   debug_only( verify_construction() );
   391   NOT_PRODUCT(nodes_created++);
   392   // Assert we allocated space for input array already
   393   assert( _in[3] == this, "Must pass arg count to 'new'" );
   394   assert( is_not_dead(n0), "can not use dead node");
   395   assert( is_not_dead(n1), "can not use dead node");
   396   assert( is_not_dead(n2), "can not use dead node");
   397   assert( is_not_dead(n3), "can not use dead node");
   398   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   399   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   400   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   401   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   402 }
   404 //------------------------------Node-------------------------------------------
   405 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
   406   : _idx(IDX_INIT(5))
   407 {
   408   debug_only( verify_construction() );
   409   NOT_PRODUCT(nodes_created++);
   410   // Assert we allocated space for input array already
   411   assert( _in[4] == this, "Must pass arg count to 'new'" );
   412   assert( is_not_dead(n0), "can not use dead node");
   413   assert( is_not_dead(n1), "can not use dead node");
   414   assert( is_not_dead(n2), "can not use dead node");
   415   assert( is_not_dead(n3), "can not use dead node");
   416   assert( is_not_dead(n4), "can not use dead node");
   417   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   418   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   419   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   420   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   421   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   422 }
   424 //------------------------------Node-------------------------------------------
   425 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
   426                      Node *n4, Node *n5)
   427   : _idx(IDX_INIT(6))
   428 {
   429   debug_only( verify_construction() );
   430   NOT_PRODUCT(nodes_created++);
   431   // Assert we allocated space for input array already
   432   assert( _in[5] == this, "Must pass arg count to 'new'" );
   433   assert( is_not_dead(n0), "can not use dead node");
   434   assert( is_not_dead(n1), "can not use dead node");
   435   assert( is_not_dead(n2), "can not use dead node");
   436   assert( is_not_dead(n3), "can not use dead node");
   437   assert( is_not_dead(n4), "can not use dead node");
   438   assert( is_not_dead(n5), "can not use dead node");
   439   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   440   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   441   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   442   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   443   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   444   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
   445 }
   447 //------------------------------Node-------------------------------------------
   448 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
   449                      Node *n4, Node *n5, Node *n6)
   450   : _idx(IDX_INIT(7))
   451 {
   452   debug_only( verify_construction() );
   453   NOT_PRODUCT(nodes_created++);
   454   // Assert we allocated space for input array already
   455   assert( _in[6] == this, "Must pass arg count to 'new'" );
   456   assert( is_not_dead(n0), "can not use dead node");
   457   assert( is_not_dead(n1), "can not use dead node");
   458   assert( is_not_dead(n2), "can not use dead node");
   459   assert( is_not_dead(n3), "can not use dead node");
   460   assert( is_not_dead(n4), "can not use dead node");
   461   assert( is_not_dead(n5), "can not use dead node");
   462   assert( is_not_dead(n6), "can not use dead node");
   463   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
   464   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
   465   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
   466   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
   467   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
   468   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
   469   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
   470 }
   473 //------------------------------clone------------------------------------------
   474 // Clone a Node.
   475 Node *Node::clone() const {
   476   Compile* C = Compile::current();
   477   uint s = size_of();           // Size of inherited Node
   478   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
   479   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
   480   // Set the new input pointer array
   481   n->_in = (Node**)(((char*)n)+s);
   482   // Cannot share the old output pointer array, so kill it
   483   n->_out = NO_OUT_ARRAY;
   484   // And reset the counters to 0
   485   n->_outcnt = 0;
   486   n->_outmax = 0;
   487   // Unlock this guy, since he is not in any hash table.
   488   debug_only(n->_hash_lock = 0);
   489   // Walk the old node's input list to duplicate its edges
   490   uint i;
   491   for( i = 0; i < len(); i++ ) {
   492     Node *x = in(i);
   493     n->_in[i] = x;
   494     if (x != NULL) x->add_out(n);
   495   }
   496   if (is_macro())
   497     C->add_macro_node(n);
   498   if (is_expensive())
   499     C->add_expensive_node(n);
   501   n->set_idx(C->next_unique()); // Get new unique index as well
   502   debug_only( n->verify_construction() );
   503   NOT_PRODUCT(nodes_created++);
   504   // Do not patch over the debug_idx of a clone, because it makes it
   505   // impossible to break on the clone's moment of creation.
   506   //debug_only( n->set_debug_idx( debug_idx() ) );
   508   C->copy_node_notes_to(n, (Node*) this);
   510   // MachNode clone
   511   uint nopnds;
   512   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
   513     MachNode *mach  = n->as_Mach();
   514     MachNode *mthis = this->as_Mach();
   515     // Get address of _opnd_array.
   516     // It should be the same offset since it is the clone of this node.
   517     MachOper **from = mthis->_opnds;
   518     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
   519                     pointer_delta((const void*)from,
   520                                   (const void*)(&mthis->_opnds), 1));
   521     mach->_opnds = to;
   522     for ( uint i = 0; i < nopnds; ++i ) {
   523       to[i] = from[i]->clone(C);
   524     }
   525   }
   526   // cloning CallNode may need to clone JVMState
   527   if (n->is_Call()) {
   528     n->as_Call()->clone_jvms(C);
   529   }
   530   if (n->is_SafePoint()) {
   531     n->as_SafePoint()->clone_replaced_nodes();
   532   }
   533   return n;                     // Return the clone
   534 }
   536 //---------------------------setup_is_top--------------------------------------
   537 // Call this when changing the top node, to reassert the invariants
   538 // required by Node::is_top.  See Compile::set_cached_top_node.
   539 void Node::setup_is_top() {
   540   if (this == (Node*)Compile::current()->top()) {
   541     // This node has just become top.  Kill its out array.
   542     _outcnt = _outmax = 0;
   543     _out = NULL;                           // marker value for top
   544     assert(is_top(), "must be top");
   545   } else {
   546     if (_out == NULL)  _out = NO_OUT_ARRAY;
   547     assert(!is_top(), "must not be top");
   548   }
   549 }
   552 //------------------------------~Node------------------------------------------
   553 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   554 extern int reclaim_idx ;
   555 extern int reclaim_in  ;
   556 extern int reclaim_node;
   557 void Node::destruct() {
   558   // Eagerly reclaim unique Node numberings
   559   Compile* compile = Compile::current();
   560   if ((uint)_idx+1 == compile->unique()) {
   561     compile->set_unique(compile->unique()-1);
   562 #ifdef ASSERT
   563     reclaim_idx++;
   564 #endif
   565   }
   566   // Clear debug info:
   567   Node_Notes* nn = compile->node_notes_at(_idx);
   568   if (nn != NULL)  nn->clear();
   569   // Walk the input array, freeing the corresponding output edges
   570   _cnt = _max;  // forget req/prec distinction
   571   uint i;
   572   for( i = 0; i < _max; i++ ) {
   573     set_req(i, NULL);
   574     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
   575   }
   576   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
   577   // See if the input array was allocated just prior to the object
   578   int edge_size = _max*sizeof(void*);
   579   int out_edge_size = _outmax*sizeof(void*);
   580   char *edge_end = ((char*)_in) + edge_size;
   581   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
   582   char *out_edge_end = out_array + out_edge_size;
   583   int node_size = size_of();
   585   // Free the output edge array
   586   if (out_edge_size > 0) {
   587 #ifdef ASSERT
   588     if( out_edge_end == compile->node_arena()->hwm() )
   589       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
   590 #endif
   591     compile->node_arena()->Afree(out_array, out_edge_size);
   592   }
   594   // Free the input edge array and the node itself
   595   if( edge_end == (char*)this ) {
   596 #ifdef ASSERT
   597     if( edge_end+node_size == compile->node_arena()->hwm() ) {
   598       reclaim_in  += edge_size;
   599       reclaim_node+= node_size;
   600     }
   601 #else
   602     // It was; free the input array and object all in one hit
   603     compile->node_arena()->Afree(_in,edge_size+node_size);
   604 #endif
   605   } else {
   607     // Free just the input array
   608 #ifdef ASSERT
   609     if( edge_end == compile->node_arena()->hwm() )
   610       reclaim_in  += edge_size;
   611 #endif
   612     compile->node_arena()->Afree(_in,edge_size);
   614     // Free just the object
   615 #ifdef ASSERT
   616     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
   617       reclaim_node+= node_size;
   618 #else
   619     compile->node_arena()->Afree(this,node_size);
   620 #endif
   621   }
   622   if (is_macro()) {
   623     compile->remove_macro_node(this);
   624   }
   625   if (is_expensive()) {
   626     compile->remove_expensive_node(this);
   627   }
   628   if (is_SafePoint()) {
   629     as_SafePoint()->delete_replaced_nodes();
   630   }
   631 #ifdef ASSERT
   632   // We will not actually delete the storage, but we'll make the node unusable.
   633   *(address*)this = badAddress;  // smash the C++ vtbl, probably
   634   _in = _out = (Node**) badAddress;
   635   _max = _cnt = _outmax = _outcnt = 0;
   636 #endif
   637 }
   639 //------------------------------grow-------------------------------------------
   640 // Grow the input array, making space for more edges
   641 void Node::grow( uint len ) {
   642   Arena* arena = Compile::current()->node_arena();
   643   uint new_max = _max;
   644   if( new_max == 0 ) {
   645     _max = 4;
   646     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
   647     Node** to = _in;
   648     to[0] = NULL;
   649     to[1] = NULL;
   650     to[2] = NULL;
   651     to[3] = NULL;
   652     return;
   653   }
   654   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
   655   // Trimming to limit allows a uint8 to handle up to 255 edges.
   656   // Previously I was using only powers-of-2 which peaked at 128 edges.
   657   //if( new_max >= limit ) new_max = limit-1;
   658   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
   659   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
   660   _max = new_max;               // Record new max length
   661   // This assertion makes sure that Node::_max is wide enough to
   662   // represent the numerical value of new_max.
   663   assert(_max == new_max && _max > len, "int width of _max is too small");
   664 }
   666 //-----------------------------out_grow----------------------------------------
   667 // Grow the input array, making space for more edges
   668 void Node::out_grow( uint len ) {
   669   assert(!is_top(), "cannot grow a top node's out array");
   670   Arena* arena = Compile::current()->node_arena();
   671   uint new_max = _outmax;
   672   if( new_max == 0 ) {
   673     _outmax = 4;
   674     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
   675     return;
   676   }
   677   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
   678   // Trimming to limit allows a uint8 to handle up to 255 edges.
   679   // Previously I was using only powers-of-2 which peaked at 128 edges.
   680   //if( new_max >= limit ) new_max = limit-1;
   681   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
   682   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
   683   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
   684   _outmax = new_max;               // Record new max length
   685   // This assertion makes sure that Node::_max is wide enough to
   686   // represent the numerical value of new_max.
   687   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
   688 }
   690 #ifdef ASSERT
   691 //------------------------------is_dead----------------------------------------
   692 bool Node::is_dead() const {
   693   // Mach and pinch point nodes may look like dead.
   694   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
   695     return false;
   696   for( uint i = 0; i < _max; i++ )
   697     if( _in[i] != NULL )
   698       return false;
   699   dump();
   700   return true;
   701 }
   702 #endif
   705 //------------------------------is_unreachable---------------------------------
   706 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
   707   assert(!is_Mach(), "doesn't work with MachNodes");
   708   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
   709 }
   711 //------------------------------add_req----------------------------------------
   712 // Add a new required input at the end
   713 void Node::add_req( Node *n ) {
   714   assert( is_not_dead(n), "can not use dead node");
   716   // Look to see if I can move precedence down one without reallocating
   717   if( (_cnt >= _max) || (in(_max-1) != NULL) )
   718     grow( _max+1 );
   720   // Find a precedence edge to move
   721   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
   722     uint i;
   723     for( i=_cnt; i<_max; i++ )
   724       if( in(i) == NULL )       // Find the NULL at end of prec edge list
   725         break;                  // There must be one, since we grew the array
   726     _in[i] = in(_cnt);          // Move prec over, making space for req edge
   727   }
   728   _in[_cnt++] = n;            // Stuff over old prec edge
   729   if (n != NULL) n->add_out((Node *)this);
   730 }
   732 //---------------------------add_req_batch-------------------------------------
   733 // Add a new required input at the end
   734 void Node::add_req_batch( Node *n, uint m ) {
   735   assert( is_not_dead(n), "can not use dead node");
   736   // check various edge cases
   737   if ((int)m <= 1) {
   738     assert((int)m >= 0, "oob");
   739     if (m != 0)  add_req(n);
   740     return;
   741   }
   743   // Look to see if I can move precedence down one without reallocating
   744   if( (_cnt+m) > _max || _in[_max-m] )
   745     grow( _max+m );
   747   // Find a precedence edge to move
   748   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
   749     uint i;
   750     for( i=_cnt; i<_max; i++ )
   751       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
   752         break;                  // There must be one, since we grew the array
   753     // Slide all the precs over by m positions (assume #prec << m).
   754     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
   755   }
   757   // Stuff over the old prec edges
   758   for(uint i=0; i<m; i++ ) {
   759     _in[_cnt++] = n;
   760   }
   762   // Insert multiple out edges on the node.
   763   if (n != NULL && !n->is_top()) {
   764     for(uint i=0; i<m; i++ ) {
   765       n->add_out((Node *)this);
   766     }
   767   }
   768 }
   770 //------------------------------del_req----------------------------------------
   771 // Delete the required edge and compact the edge array
   772 void Node::del_req( uint idx ) {
   773   assert( idx < _cnt, "oob");
   774   assert( !VerifyHashTableKeys || _hash_lock == 0,
   775           "remove node from hash table before modifying it");
   776   // First remove corresponding def-use edge
   777   Node *n = in(idx);
   778   if (n != NULL) n->del_out((Node *)this);
   779   _in[idx] = in(--_cnt);  // Compact the array
   780   _in[_cnt] = NULL;       // NULL out emptied slot
   781 }
   783 //------------------------------del_req_ordered--------------------------------
   784 // Delete the required edge and compact the edge array with preserved order
   785 void Node::del_req_ordered( uint idx ) {
   786   assert( idx < _cnt, "oob");
   787   assert( !VerifyHashTableKeys || _hash_lock == 0,
   788           "remove node from hash table before modifying it");
   789   // First remove corresponding def-use edge
   790   Node *n = in(idx);
   791   if (n != NULL) n->del_out((Node *)this);
   792   if (idx < _cnt - 1) { // Not last edge ?
   793     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx-1)*sizeof(Node*)));
   794   }
   795   _in[--_cnt] = NULL;   // NULL out emptied slot
   796 }
   798 //------------------------------ins_req----------------------------------------
   799 // Insert a new required input at the end
   800 void Node::ins_req( uint idx, Node *n ) {
   801   assert( is_not_dead(n), "can not use dead node");
   802   add_req(NULL);                // Make space
   803   assert( idx < _max, "Must have allocated enough space");
   804   // Slide over
   805   if(_cnt-idx-1 > 0) {
   806     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
   807   }
   808   _in[idx] = n;                            // Stuff over old required edge
   809   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
   810 }
   812 //-----------------------------find_edge---------------------------------------
   813 int Node::find_edge(Node* n) {
   814   for (uint i = 0; i < len(); i++) {
   815     if (_in[i] == n)  return i;
   816   }
   817   return -1;
   818 }
   820 //----------------------------replace_edge-------------------------------------
   821 int Node::replace_edge(Node* old, Node* neww) {
   822   if (old == neww)  return 0;  // nothing to do
   823   uint nrep = 0;
   824   for (uint i = 0; i < len(); i++) {
   825     if (in(i) == old) {
   826       if (i < req())
   827         set_req(i, neww);
   828       else
   829         set_prec(i, neww);
   830       nrep++;
   831     }
   832   }
   833   return nrep;
   834 }
   836 /**
   837  * Replace input edges in the range pointing to 'old' node.
   838  */
   839 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
   840   if (old == neww)  return 0;  // nothing to do
   841   uint nrep = 0;
   842   for (int i = start; i < end; i++) {
   843     if (in(i) == old) {
   844       set_req(i, neww);
   845       nrep++;
   846     }
   847   }
   848   return nrep;
   849 }
   851 //-------------------------disconnect_inputs-----------------------------------
   852 // NULL out all inputs to eliminate incoming Def-Use edges.
   853 // Return the number of edges between 'n' and 'this'
   854 int Node::disconnect_inputs(Node *n, Compile* C) {
   855   int edges_to_n = 0;
   857   uint cnt = req();
   858   for( uint i = 0; i < cnt; ++i ) {
   859     if( in(i) == 0 ) continue;
   860     if( in(i) == n ) ++edges_to_n;
   861     set_req(i, NULL);
   862   }
   863   // Remove precedence edges if any exist
   864   // Note: Safepoints may have precedence edges, even during parsing
   865   if( (req() != len()) && (in(req()) != NULL) ) {
   866     uint max = len();
   867     for( uint i = 0; i < max; ++i ) {
   868       if( in(i) == 0 ) continue;
   869       if( in(i) == n ) ++edges_to_n;
   870       set_prec(i, NULL);
   871     }
   872   }
   874   // Node::destruct requires all out edges be deleted first
   875   // debug_only(destruct();)   // no reuse benefit expected
   876   if (edges_to_n == 0) {
   877     C->record_dead_node(_idx);
   878   }
   879   return edges_to_n;
   880 }
   882 //-----------------------------uncast---------------------------------------
   883 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
   884 // Strip away casting.  (It is depth-limited.)
   885 Node* Node::uncast() const {
   886   // Should be inline:
   887   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
   888   if (is_ConstraintCast() || is_CheckCastPP())
   889     return uncast_helper(this);
   890   else
   891     return (Node*) this;
   892 }
   894 //---------------------------uncast_helper-------------------------------------
   895 Node* Node::uncast_helper(const Node* p) {
   896 #ifdef ASSERT
   897   uint depth_count = 0;
   898   const Node* orig_p = p;
   899 #endif
   901   while (true) {
   902 #ifdef ASSERT
   903     if (depth_count >= K) {
   904       orig_p->dump(4);
   905       if (p != orig_p)
   906         p->dump(1);
   907     }
   908     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
   909 #endif
   910     if (p == NULL || p->req() != 2) {
   911       break;
   912     } else if (p->is_ConstraintCast()) {
   913       p = p->in(1);
   914     } else if (p->is_CheckCastPP()) {
   915       p = p->in(1);
   916     } else {
   917       break;
   918     }
   919   }
   920   return (Node*) p;
   921 }
   923 //------------------------------add_prec---------------------------------------
   924 // Add a new precedence input.  Precedence inputs are unordered, with
   925 // duplicates removed and NULLs packed down at the end.
   926 void Node::add_prec( Node *n ) {
   927   assert( is_not_dead(n), "can not use dead node");
   929   // Check for NULL at end
   930   if( _cnt >= _max || in(_max-1) )
   931     grow( _max+1 );
   933   // Find a precedence edge to move
   934   uint i = _cnt;
   935   while( in(i) != NULL ) i++;
   936   _in[i] = n;                                // Stuff prec edge over NULL
   937   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
   938 }
   940 //------------------------------rm_prec----------------------------------------
   941 // Remove a precedence input.  Precedence inputs are unordered, with
   942 // duplicates removed and NULLs packed down at the end.
   943 void Node::rm_prec( uint j ) {
   945   // Find end of precedence list to pack NULLs
   946   uint i;
   947   for( i=j; i<_max; i++ )
   948     if( !_in[i] )               // Find the NULL at end of prec edge list
   949       break;
   950   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
   951   _in[j] = _in[--i];            // Move last element over removed guy
   952   _in[i] = NULL;                // NULL out last element
   953 }
   955 //------------------------------size_of----------------------------------------
   956 uint Node::size_of() const { return sizeof(*this); }
   958 //------------------------------ideal_reg--------------------------------------
   959 uint Node::ideal_reg() const { return 0; }
   961 //------------------------------jvms-------------------------------------------
   962 JVMState* Node::jvms() const { return NULL; }
   964 #ifdef ASSERT
   965 //------------------------------jvms-------------------------------------------
   966 bool Node::verify_jvms(const JVMState* using_jvms) const {
   967   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
   968     if (jvms == using_jvms)  return true;
   969   }
   970   return false;
   971 }
   973 //------------------------------init_NodeProperty------------------------------
   974 void Node::init_NodeProperty() {
   975   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
   976   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
   977 }
   978 #endif
   980 //------------------------------format-----------------------------------------
   981 // Print as assembly
   982 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
   983 //------------------------------emit-------------------------------------------
   984 // Emit bytes starting at parameter 'ptr'.
   985 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
   986 //------------------------------size-------------------------------------------
   987 // Size of instruction in bytes
   988 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
   990 //------------------------------CFG Construction-------------------------------
   991 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
   992 // Goto and Return.
   993 const Node *Node::is_block_proj() const { return 0; }
   995 // Minimum guaranteed type
   996 const Type *Node::bottom_type() const { return Type::BOTTOM; }
   999 //------------------------------raise_bottom_type------------------------------
  1000 // Get the worst-case Type output for this Node.
  1001 void Node::raise_bottom_type(const Type* new_type) {
  1002   if (is_Type()) {
  1003     TypeNode *n = this->as_Type();
  1004     if (VerifyAliases) {
  1005       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
  1007     n->set_type(new_type);
  1008   } else if (is_Load()) {
  1009     LoadNode *n = this->as_Load();
  1010     if (VerifyAliases) {
  1011       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
  1013     n->set_type(new_type);
  1017 //------------------------------Identity---------------------------------------
  1018 // Return a node that the given node is equivalent to.
  1019 Node *Node::Identity( PhaseTransform * ) {
  1020   return this;                  // Default to no identities
  1023 //------------------------------Value------------------------------------------
  1024 // Compute a new Type for a node using the Type of the inputs.
  1025 const Type *Node::Value( PhaseTransform * ) const {
  1026   return bottom_type();         // Default to worst-case Type
  1029 //------------------------------Ideal------------------------------------------
  1030 //
  1031 // 'Idealize' the graph rooted at this Node.
  1032 //
  1033 // In order to be efficient and flexible there are some subtle invariants
  1034 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
  1035 // these invariants, although its too slow to have on by default.  If you are
  1036 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
  1037 //
  1038 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
  1039 // pointer.  If ANY change is made, it must return the root of the reshaped
  1040 // graph - even if the root is the same Node.  Example: swapping the inputs
  1041 // to an AddINode gives the same answer and same root, but you still have to
  1042 // return the 'this' pointer instead of NULL.
  1043 //
  1044 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
  1045 // Identity call to return an old Node; basically if Identity can find
  1046 // another Node have the Ideal call make no change and return NULL.
  1047 // Example: AddINode::Ideal must check for add of zero; in this case it
  1048 // returns NULL instead of doing any graph reshaping.
  1049 //
  1050 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
  1051 // sharing there may be other users of the old Nodes relying on their current
  1052 // semantics.  Modifying them will break the other users.
  1053 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
  1054 // "X+3" unchanged in case it is shared.
  1055 //
  1056 // If you modify the 'this' pointer's inputs, you should use
  1057 // 'set_req'.  If you are making a new Node (either as the new root or
  1058 // some new internal piece) you may use 'init_req' to set the initial
  1059 // value.  You can make a new Node with either 'new' or 'clone'.  In
  1060 // either case, def-use info is correctly maintained.
  1061 //
  1062 // Example: reshape "(X+3)+4" into "X+7":
  1063 //    set_req(1, in(1)->in(1));
  1064 //    set_req(2, phase->intcon(7));
  1065 //    return this;
  1066 // Example: reshape "X*4" into "X<<2"
  1067 //    return new (C) LShiftINode(in(1), phase->intcon(2));
  1068 //
  1069 // You must call 'phase->transform(X)' on any new Nodes X you make, except
  1070 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
  1071 //    Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
  1072 //    return new (C) AddINode(shift, in(1));
  1073 //
  1074 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
  1075 // These forms are faster than 'phase->transform(new (C) ConNode())' and Do
  1076 // The Right Thing with def-use info.
  1077 //
  1078 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
  1079 // graph uses the 'this' Node it must be the root.  If you want a Node with
  1080 // the same Opcode as the 'this' pointer use 'clone'.
  1081 //
  1082 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
  1083   return NULL;                  // Default to being Ideal already
  1086 // Some nodes have specific Ideal subgraph transformations only if they are
  1087 // unique users of specific nodes. Such nodes should be put on IGVN worklist
  1088 // for the transformations to happen.
  1089 bool Node::has_special_unique_user() const {
  1090   assert(outcnt() == 1, "match only for unique out");
  1091   Node* n = unique_out();
  1092   int op  = Opcode();
  1093   if( this->is_Store() ) {
  1094     // Condition for back-to-back stores folding.
  1095     return n->Opcode() == op && n->in(MemNode::Memory) == this;
  1096   } else if (this->is_Load()) {
  1097     // Condition for removing an unused LoadNode from the MemBarAcquire precedence input
  1098     return n->Opcode() == Op_MemBarAcquire;
  1099   } else if( op == Op_AddL ) {
  1100     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
  1101     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
  1102   } else if( op == Op_SubI || op == Op_SubL ) {
  1103     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
  1104     return n->Opcode() == op && n->in(2) == this;
  1106   return false;
  1107 };
  1109 //--------------------------find_exact_control---------------------------------
  1110 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
  1111 Node* Node::find_exact_control(Node* ctrl) {
  1112   if (ctrl == NULL && this->is_Region())
  1113     ctrl = this->as_Region()->is_copy();
  1115   if (ctrl != NULL && ctrl->is_CatchProj()) {
  1116     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
  1117       ctrl = ctrl->in(0);
  1118     if (ctrl != NULL && !ctrl->is_top())
  1119       ctrl = ctrl->in(0);
  1122   if (ctrl != NULL && ctrl->is_Proj())
  1123     ctrl = ctrl->in(0);
  1125   return ctrl;
  1128 //--------------------------dominates------------------------------------------
  1129 // Helper function for MemNode::all_controls_dominate().
  1130 // Check if 'this' control node dominates or equal to 'sub' control node.
  1131 // We already know that if any path back to Root or Start reaches 'this',
  1132 // then all paths so, so this is a simple search for one example,
  1133 // not an exhaustive search for a counterexample.
  1134 bool Node::dominates(Node* sub, Node_List &nlist) {
  1135   assert(this->is_CFG(), "expecting control");
  1136   assert(sub != NULL && sub->is_CFG(), "expecting control");
  1138   // detect dead cycle without regions
  1139   int iterations_without_region_limit = DominatorSearchLimit;
  1141   Node* orig_sub = sub;
  1142   Node* dom      = this;
  1143   bool  met_dom  = false;
  1144   nlist.clear();
  1146   // Walk 'sub' backward up the chain to 'dom', watching for regions.
  1147   // After seeing 'dom', continue up to Root or Start.
  1148   // If we hit a region (backward split point), it may be a loop head.
  1149   // Keep going through one of the region's inputs.  If we reach the
  1150   // same region again, go through a different input.  Eventually we
  1151   // will either exit through the loop head, or give up.
  1152   // (If we get confused, break out and return a conservative 'false'.)
  1153   while (sub != NULL) {
  1154     if (sub->is_top())  break; // Conservative answer for dead code.
  1155     if (sub == dom) {
  1156       if (nlist.size() == 0) {
  1157         // No Region nodes except loops were visited before and the EntryControl
  1158         // path was taken for loops: it did not walk in a cycle.
  1159         return true;
  1160       } else if (met_dom) {
  1161         break;          // already met before: walk in a cycle
  1162       } else {
  1163         // Region nodes were visited. Continue walk up to Start or Root
  1164         // to make sure that it did not walk in a cycle.
  1165         met_dom = true; // first time meet
  1166         iterations_without_region_limit = DominatorSearchLimit; // Reset
  1169     if (sub->is_Start() || sub->is_Root()) {
  1170       // Success if we met 'dom' along a path to Start or Root.
  1171       // We assume there are no alternative paths that avoid 'dom'.
  1172       // (This assumption is up to the caller to ensure!)
  1173       return met_dom;
  1175     Node* up = sub->in(0);
  1176     // Normalize simple pass-through regions and projections:
  1177     up = sub->find_exact_control(up);
  1178     // If sub == up, we found a self-loop.  Try to push past it.
  1179     if (sub == up && sub->is_Loop()) {
  1180       // Take loop entry path on the way up to 'dom'.
  1181       up = sub->in(1); // in(LoopNode::EntryControl);
  1182     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
  1183       // Always take in(1) path on the way up to 'dom' for clone regions
  1184       // (with only one input) or regions which merge > 2 paths
  1185       // (usually used to merge fast/slow paths).
  1186       up = sub->in(1);
  1187     } else if (sub == up && sub->is_Region()) {
  1188       // Try both paths for Regions with 2 input paths (it may be a loop head).
  1189       // It could give conservative 'false' answer without information
  1190       // which region's input is the entry path.
  1191       iterations_without_region_limit = DominatorSearchLimit; // Reset
  1193       bool region_was_visited_before = false;
  1194       // Was this Region node visited before?
  1195       // If so, we have reached it because we accidentally took a
  1196       // loop-back edge from 'sub' back into the body of the loop,
  1197       // and worked our way up again to the loop header 'sub'.
  1198       // So, take the first unexplored path on the way up to 'dom'.
  1199       for (int j = nlist.size() - 1; j >= 0; j--) {
  1200         intptr_t ni = (intptr_t)nlist.at(j);
  1201         Node* visited = (Node*)(ni & ~1);
  1202         bool  visited_twice_already = ((ni & 1) != 0);
  1203         if (visited == sub) {
  1204           if (visited_twice_already) {
  1205             // Visited 2 paths, but still stuck in loop body.  Give up.
  1206             return false;
  1208           // The Region node was visited before only once.
  1209           // (We will repush with the low bit set, below.)
  1210           nlist.remove(j);
  1211           // We will find a new edge and re-insert.
  1212           region_was_visited_before = true;
  1213           break;
  1217       // Find an incoming edge which has not been seen yet; walk through it.
  1218       assert(up == sub, "");
  1219       uint skip = region_was_visited_before ? 1 : 0;
  1220       for (uint i = 1; i < sub->req(); i++) {
  1221         Node* in = sub->in(i);
  1222         if (in != NULL && !in->is_top() && in != sub) {
  1223           if (skip == 0) {
  1224             up = in;
  1225             break;
  1227           --skip;               // skip this nontrivial input
  1231       // Set 0 bit to indicate that both paths were taken.
  1232       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
  1235     if (up == sub) {
  1236       break;    // some kind of tight cycle
  1238     if (up == orig_sub && met_dom) {
  1239       // returned back after visiting 'dom'
  1240       break;    // some kind of cycle
  1242     if (--iterations_without_region_limit < 0) {
  1243       break;    // dead cycle
  1245     sub = up;
  1248   // Did not meet Root or Start node in pred. chain.
  1249   // Conservative answer for dead code.
  1250   return false;
  1253 //------------------------------remove_dead_region-----------------------------
  1254 // This control node is dead.  Follow the subgraph below it making everything
  1255 // using it dead as well.  This will happen normally via the usual IterGVN
  1256 // worklist but this call is more efficient.  Do not update use-def info
  1257 // inside the dead region, just at the borders.
  1258 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
  1259   // Con's are a popular node to re-hit in the hash table again.
  1260   if( dead->is_Con() ) return;
  1262   // Can't put ResourceMark here since igvn->_worklist uses the same arena
  1263   // for verify pass with +VerifyOpto and we add/remove elements in it here.
  1264   Node_List  nstack(Thread::current()->resource_area());
  1266   Node *top = igvn->C->top();
  1267   nstack.push(dead);
  1268   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
  1270   while (nstack.size() > 0) {
  1271     dead = nstack.pop();
  1272     if (dead->outcnt() > 0) {
  1273       // Keep dead node on stack until all uses are processed.
  1274       nstack.push(dead);
  1275       // For all Users of the Dead...    ;-)
  1276       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
  1277         Node* use = dead->last_out(k);
  1278         igvn->hash_delete(use);       // Yank from hash table prior to mod
  1279         if (use->in(0) == dead) {     // Found another dead node
  1280           assert (!use->is_Con(), "Control for Con node should be Root node.");
  1281           use->set_req(0, top);       // Cut dead edge to prevent processing
  1282           nstack.push(use);           // the dead node again.
  1283         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
  1284                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
  1285                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
  1286           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
  1287           use->set_req(0, top);       // Cut self edge
  1288           nstack.push(use);
  1289         } else {                      // Else found a not-dead user
  1290           // Dead if all inputs are top or null
  1291           bool dead_use = !use->is_Root(); // Keep empty graph alive
  1292           for (uint j = 1; j < use->req(); j++) {
  1293             Node* in = use->in(j);
  1294             if (in == dead) {         // Turn all dead inputs into TOP
  1295               use->set_req(j, top);
  1296             } else if (in != NULL && !in->is_top()) {
  1297               dead_use = false;
  1300           if (dead_use) {
  1301             if (use->is_Region()) {
  1302               use->set_req(0, top);   // Cut self edge
  1304             nstack.push(use);
  1305           } else {
  1306             igvn->_worklist.push(use);
  1309         // Refresh the iterator, since any number of kills might have happened.
  1310         k = dead->last_outs(kmin);
  1312     } else { // (dead->outcnt() == 0)
  1313       // Done with outputs.
  1314       igvn->hash_delete(dead);
  1315       igvn->_worklist.remove(dead);
  1316       igvn->set_type(dead, Type::TOP);
  1317       if (dead->is_macro()) {
  1318         igvn->C->remove_macro_node(dead);
  1320       if (dead->is_expensive()) {
  1321         igvn->C->remove_expensive_node(dead);
  1323       igvn->C->record_dead_node(dead->_idx);
  1324       // Kill all inputs to the dead guy
  1325       for (uint i=0; i < dead->req(); i++) {
  1326         Node *n = dead->in(i);      // Get input to dead guy
  1327         if (n != NULL && !n->is_top()) { // Input is valid?
  1328           dead->set_req(i, top);    // Smash input away
  1329           if (n->outcnt() == 0) {   // Input also goes dead?
  1330             if (!n->is_Con())
  1331               nstack.push(n);       // Clear it out as well
  1332           } else if (n->outcnt() == 1 &&
  1333                      n->has_special_unique_user()) {
  1334             igvn->add_users_to_worklist( n );
  1335           } else if (n->outcnt() <= 2 && n->is_Store()) {
  1336             // Push store's uses on worklist to enable folding optimization for
  1337             // store/store and store/load to the same address.
  1338             // The restriction (outcnt() <= 2) is the same as in set_req_X()
  1339             // and remove_globally_dead_node().
  1340             igvn->add_users_to_worklist( n );
  1344     } // (dead->outcnt() == 0)
  1345   }   // while (nstack.size() > 0) for outputs
  1346   return;
  1349 //------------------------------remove_dead_region-----------------------------
  1350 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
  1351   Node *n = in(0);
  1352   if( !n ) return false;
  1353   // Lost control into this guy?  I.e., it became unreachable?
  1354   // Aggressively kill all unreachable code.
  1355   if (can_reshape && n->is_top()) {
  1356     kill_dead_code(this, phase->is_IterGVN());
  1357     return false; // Node is dead.
  1360   if( n->is_Region() && n->as_Region()->is_copy() ) {
  1361     Node *m = n->nonnull_req();
  1362     set_req(0, m);
  1363     return true;
  1365   return false;
  1368 //------------------------------Ideal_DU_postCCP-------------------------------
  1369 // Idealize graph, using DU info.  Must clone result into new-space
  1370 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
  1371   return NULL;                 // Default to no change
  1374 //------------------------------hash-------------------------------------------
  1375 // Hash function over Nodes.
  1376 uint Node::hash() const {
  1377   uint sum = 0;
  1378   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
  1379     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
  1380   return (sum>>2) + _cnt + Opcode();
  1383 //------------------------------cmp--------------------------------------------
  1384 // Compare special parts of simple Nodes
  1385 uint Node::cmp( const Node &n ) const {
  1386   return 1;                     // Must be same
  1389 //------------------------------rematerialize-----------------------------------
  1390 // Should we clone rather than spill this instruction?
  1391 bool Node::rematerialize() const {
  1392   if ( is_Mach() )
  1393     return this->as_Mach()->rematerialize();
  1394   else
  1395     return (_flags & Flag_rematerialize) != 0;
  1398 //------------------------------needs_anti_dependence_check---------------------
  1399 // Nodes which use memory without consuming it, hence need antidependences.
  1400 bool Node::needs_anti_dependence_check() const {
  1401   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
  1402     return false;
  1403   else
  1404     return in(1)->bottom_type()->has_memory();
  1408 // Get an integer constant from a ConNode (or CastIINode).
  1409 // Return a default value if there is no apparent constant here.
  1410 const TypeInt* Node::find_int_type() const {
  1411   if (this->is_Type()) {
  1412     return this->as_Type()->type()->isa_int();
  1413   } else if (this->is_Con()) {
  1414     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
  1415     return this->bottom_type()->isa_int();
  1417   return NULL;
  1420 // Get a pointer constant from a ConstNode.
  1421 // Returns the constant if it is a pointer ConstNode
  1422 intptr_t Node::get_ptr() const {
  1423   assert( Opcode() == Op_ConP, "" );
  1424   return ((ConPNode*)this)->type()->is_ptr()->get_con();
  1427 // Get a narrow oop constant from a ConNNode.
  1428 intptr_t Node::get_narrowcon() const {
  1429   assert( Opcode() == Op_ConN, "" );
  1430   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
  1433 // Get a long constant from a ConNode.
  1434 // Return a default value if there is no apparent constant here.
  1435 const TypeLong* Node::find_long_type() const {
  1436   if (this->is_Type()) {
  1437     return this->as_Type()->type()->isa_long();
  1438   } else if (this->is_Con()) {
  1439     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
  1440     return this->bottom_type()->isa_long();
  1442   return NULL;
  1446 /**
  1447  * Return a ptr type for nodes which should have it.
  1448  */
  1449 const TypePtr* Node::get_ptr_type() const {
  1450   const TypePtr* tp = this->bottom_type()->make_ptr();
  1451 #ifdef ASSERT
  1452   if (tp == NULL) {
  1453     this->dump(1);
  1454     assert((tp != NULL), "unexpected node type");
  1456 #endif
  1457   return tp;
  1460 // Get a double constant from a ConstNode.
  1461 // Returns the constant if it is a double ConstNode
  1462 jdouble Node::getd() const {
  1463   assert( Opcode() == Op_ConD, "" );
  1464   return ((ConDNode*)this)->type()->is_double_constant()->getd();
  1467 // Get a float constant from a ConstNode.
  1468 // Returns the constant if it is a float ConstNode
  1469 jfloat Node::getf() const {
  1470   assert( Opcode() == Op_ConF, "" );
  1471   return ((ConFNode*)this)->type()->is_float_constant()->getf();
  1474 #ifndef PRODUCT
  1476 //----------------------------NotANode----------------------------------------
  1477 // Used in debugging code to avoid walking across dead or uninitialized edges.
  1478 static inline bool NotANode(const Node* n) {
  1479   if (n == NULL)                   return true;
  1480   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
  1481   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
  1482   return false;
  1486 //------------------------------find------------------------------------------
  1487 // Find a neighbor of this Node with the given _idx
  1488 // If idx is negative, find its absolute value, following both _in and _out.
  1489 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
  1490                         VectorSet* old_space, VectorSet* new_space ) {
  1491   int node_idx = (idx >= 0) ? idx : -idx;
  1492   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
  1493   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
  1494   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
  1495   if( v->test(n->_idx) ) return;
  1496   if( (int)n->_idx == node_idx
  1497       debug_only(|| n->debug_idx() == node_idx) ) {
  1498     if (result != NULL)
  1499       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
  1500                  (uintptr_t)result, (uintptr_t)n, node_idx);
  1501     result = n;
  1503   v->set(n->_idx);
  1504   for( uint i=0; i<n->len(); i++ ) {
  1505     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
  1506     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
  1508   // Search along forward edges also:
  1509   if (idx < 0 && !only_ctrl) {
  1510     for( uint j=0; j<n->outcnt(); j++ ) {
  1511       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
  1514 #ifdef ASSERT
  1515   // Search along debug_orig edges last, checking for cycles
  1516   Node* orig = n->debug_orig();
  1517   if (orig != NULL) {
  1518     do {
  1519       if (NotANode(orig))  break;
  1520       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
  1521       orig = orig->debug_orig();
  1522     } while (orig != NULL && orig != n->debug_orig());
  1524 #endif //ASSERT
  1527 // call this from debugger:
  1528 Node* find_node(Node* n, int idx) {
  1529   return n->find(idx);
  1532 //------------------------------find-------------------------------------------
  1533 Node* Node::find(int idx) const {
  1534   ResourceArea *area = Thread::current()->resource_area();
  1535   VectorSet old_space(area), new_space(area);
  1536   Node* result = NULL;
  1537   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
  1538   return result;
  1541 //------------------------------find_ctrl--------------------------------------
  1542 // Find an ancestor to this node in the control history with given _idx
  1543 Node* Node::find_ctrl(int idx) const {
  1544   ResourceArea *area = Thread::current()->resource_area();
  1545   VectorSet old_space(area), new_space(area);
  1546   Node* result = NULL;
  1547   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
  1548   return result;
  1550 #endif
  1554 #ifndef PRODUCT
  1556 // -----------------------------Name-------------------------------------------
  1557 extern const char *NodeClassNames[];
  1558 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
  1560 static bool is_disconnected(const Node* n) {
  1561   for (uint i = 0; i < n->req(); i++) {
  1562     if (n->in(i) != NULL)  return false;
  1564   return true;
  1567 #ifdef ASSERT
  1568 static void dump_orig(Node* orig, outputStream *st) {
  1569   Compile* C = Compile::current();
  1570   if (NotANode(orig)) orig = NULL;
  1571   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
  1572   if (orig == NULL) return;
  1573   st->print(" !orig=");
  1574   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
  1575   if (NotANode(fast)) fast = NULL;
  1576   while (orig != NULL) {
  1577     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
  1578     if (discon) st->print("[");
  1579     if (!Compile::current()->node_arena()->contains(orig))
  1580       st->print("o");
  1581     st->print("%d", orig->_idx);
  1582     if (discon) st->print("]");
  1583     orig = orig->debug_orig();
  1584     if (NotANode(orig)) orig = NULL;
  1585     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
  1586     if (orig != NULL) st->print(",");
  1587     if (fast != NULL) {
  1588       // Step fast twice for each single step of orig:
  1589       fast = fast->debug_orig();
  1590       if (NotANode(fast)) fast = NULL;
  1591       if (fast != NULL && fast != orig) {
  1592         fast = fast->debug_orig();
  1593         if (NotANode(fast)) fast = NULL;
  1595       if (fast == orig) {
  1596         st->print("...");
  1597         break;
  1603 void Node::set_debug_orig(Node* orig) {
  1604   _debug_orig = orig;
  1605   if (BreakAtNode == 0)  return;
  1606   if (NotANode(orig))  orig = NULL;
  1607   int trip = 10;
  1608   while (orig != NULL) {
  1609     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
  1610       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
  1611                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
  1612       BREAKPOINT;
  1614     orig = orig->debug_orig();
  1615     if (NotANode(orig))  orig = NULL;
  1616     if (trip-- <= 0)  break;
  1619 #endif //ASSERT
  1621 //------------------------------dump------------------------------------------
  1622 // Dump a Node
  1623 void Node::dump(const char* suffix, outputStream *st) const {
  1624   Compile* C = Compile::current();
  1625   bool is_new = C->node_arena()->contains(this);
  1626   C->_in_dump_cnt++;
  1627   st->print("%c%d\t%s\t=== ", is_new ? ' ' : 'o', _idx, Name());
  1629   // Dump the required and precedence inputs
  1630   dump_req(st);
  1631   dump_prec(st);
  1632   // Dump the outputs
  1633   dump_out(st);
  1635   if (is_disconnected(this)) {
  1636 #ifdef ASSERT
  1637     st->print("  [%d]",debug_idx());
  1638     dump_orig(debug_orig(), st);
  1639 #endif
  1640     st->cr();
  1641     C->_in_dump_cnt--;
  1642     return;                     // don't process dead nodes
  1645   // Dump node-specific info
  1646   dump_spec(st);
  1647 #ifdef ASSERT
  1648   // Dump the non-reset _debug_idx
  1649   if (Verbose && WizardMode) {
  1650     st->print("  [%d]",debug_idx());
  1652 #endif
  1654   const Type *t = bottom_type();
  1656   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
  1657     const TypeInstPtr  *toop = t->isa_instptr();
  1658     const TypeKlassPtr *tkls = t->isa_klassptr();
  1659     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
  1660     if (klass && klass->is_loaded() && klass->is_interface()) {
  1661       st->print("  Interface:");
  1662     } else if (toop) {
  1663       st->print("  Oop:");
  1664     } else if (tkls) {
  1665       st->print("  Klass:");
  1667     t->dump_on(st);
  1668   } else if (t == Type::MEMORY) {
  1669     st->print("  Memory:");
  1670     MemNode::dump_adr_type(this, adr_type(), st);
  1671   } else if (Verbose || WizardMode) {
  1672     st->print("  Type:");
  1673     if (t) {
  1674       t->dump_on(st);
  1675     } else {
  1676       st->print("no type");
  1678   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
  1679     // Dump MachSpillcopy vector type.
  1680     t->dump_on(st);
  1682   if (is_new) {
  1683     debug_only(dump_orig(debug_orig(), st));
  1684     Node_Notes* nn = C->node_notes_at(_idx);
  1685     if (nn != NULL && !nn->is_clear()) {
  1686       if (nn->jvms() != NULL) {
  1687         st->print(" !jvms:");
  1688         nn->jvms()->dump_spec(st);
  1692   if (suffix) st->print("%s", suffix);
  1693   C->_in_dump_cnt--;
  1696 //------------------------------dump_req--------------------------------------
  1697 void Node::dump_req(outputStream *st) const {
  1698   // Dump the required input edges
  1699   for (uint i = 0; i < req(); i++) {    // For all required inputs
  1700     Node* d = in(i);
  1701     if (d == NULL) {
  1702       st->print("_ ");
  1703     } else if (NotANode(d)) {
  1704       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
  1705     } else {
  1706       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
  1712 //------------------------------dump_prec-------------------------------------
  1713 void Node::dump_prec(outputStream *st) const {
  1714   // Dump the precedence edges
  1715   int any_prec = 0;
  1716   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
  1717     Node* p = in(i);
  1718     if (p != NULL) {
  1719       if (!any_prec++) st->print(" |");
  1720       if (NotANode(p)) { st->print("NotANode "); continue; }
  1721       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
  1726 //------------------------------dump_out--------------------------------------
  1727 void Node::dump_out(outputStream *st) const {
  1728   // Delimit the output edges
  1729   st->print(" [[");
  1730   // Dump the output edges
  1731   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
  1732     Node* u = _out[i];
  1733     if (u == NULL) {
  1734       st->print("_ ");
  1735     } else if (NotANode(u)) {
  1736       st->print("NotANode ");
  1737     } else {
  1738       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
  1741   st->print("]] ");
  1744 //------------------------------dump_nodes-------------------------------------
  1745 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
  1746   Node* s = (Node*)start; // remove const
  1747   if (NotANode(s)) return;
  1749   uint depth = (uint)ABS(d);
  1750   int direction = d;
  1751   Compile* C = Compile::current();
  1752   GrowableArray <Node *> nstack(C->unique());
  1754   nstack.append(s);
  1755   int begin = 0;
  1756   int end = 0;
  1757   for(uint i = 0; i < depth; i++) {
  1758     end = nstack.length();
  1759     for(int j = begin; j < end; j++) {
  1760       Node* tp  = nstack.at(j);
  1761       uint limit = direction > 0 ? tp->len() : tp->outcnt();
  1762       for(uint k = 0; k < limit; k++) {
  1763         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
  1765         if (NotANode(n))  continue;
  1766         // do not recurse through top or the root (would reach unrelated stuff)
  1767         if (n->is_Root() || n->is_top())  continue;
  1768         if (only_ctrl && !n->is_CFG()) continue;
  1770         bool on_stack = nstack.contains(n);
  1771         if (!on_stack) {
  1772           nstack.append(n);
  1776     begin = end;
  1778   end = nstack.length();
  1779   if (direction > 0) {
  1780     for(int j = end-1; j >= 0; j--) {
  1781       nstack.at(j)->dump();
  1783   } else {
  1784     for(int j = 0; j < end; j++) {
  1785       nstack.at(j)->dump();
  1790 //------------------------------dump-------------------------------------------
  1791 void Node::dump(int d) const {
  1792   dump_nodes(this, d, false);
  1795 //------------------------------dump_ctrl--------------------------------------
  1796 // Dump a Node's control history to depth
  1797 void Node::dump_ctrl(int d) const {
  1798   dump_nodes(this, d, true);
  1801 // VERIFICATION CODE
  1802 // For each input edge to a node (ie - for each Use-Def edge), verify that
  1803 // there is a corresponding Def-Use edge.
  1804 //------------------------------verify_edges-----------------------------------
  1805 void Node::verify_edges(Unique_Node_List &visited) {
  1806   uint i, j, idx;
  1807   int  cnt;
  1808   Node *n;
  1810   // Recursive termination test
  1811   if (visited.member(this))  return;
  1812   visited.push(this);
  1814   // Walk over all input edges, checking for correspondence
  1815   for( i = 0; i < len(); i++ ) {
  1816     n = in(i);
  1817     if (n != NULL && !n->is_top()) {
  1818       // Count instances of (Node *)this
  1819       cnt = 0;
  1820       for (idx = 0; idx < n->_outcnt; idx++ ) {
  1821         if (n->_out[idx] == (Node *)this)  cnt++;
  1823       assert( cnt > 0,"Failed to find Def-Use edge." );
  1824       // Check for duplicate edges
  1825       // walk the input array downcounting the input edges to n
  1826       for( j = 0; j < len(); j++ ) {
  1827         if( in(j) == n ) cnt--;
  1829       assert( cnt == 0,"Mismatched edge count.");
  1830     } else if (n == NULL) {
  1831       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
  1832     } else {
  1833       assert(n->is_top(), "sanity");
  1834       // Nothing to check.
  1837   // Recursive walk over all input edges
  1838   for( i = 0; i < len(); i++ ) {
  1839     n = in(i);
  1840     if( n != NULL )
  1841       in(i)->verify_edges(visited);
  1845 //------------------------------verify_recur-----------------------------------
  1846 static const Node *unique_top = NULL;
  1848 void Node::verify_recur(const Node *n, int verify_depth,
  1849                         VectorSet &old_space, VectorSet &new_space) {
  1850   if ( verify_depth == 0 )  return;
  1851   if (verify_depth > 0)  --verify_depth;
  1853   Compile* C = Compile::current();
  1855   // Contained in new_space or old_space?
  1856   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
  1857   // Check for visited in the proper space.  Numberings are not unique
  1858   // across spaces so we need a separate VectorSet for each space.
  1859   if( v->test_set(n->_idx) ) return;
  1861   if (n->is_Con() && n->bottom_type() == Type::TOP) {
  1862     if (C->cached_top_node() == NULL)
  1863       C->set_cached_top_node((Node*)n);
  1864     assert(C->cached_top_node() == n, "TOP node must be unique");
  1867   for( uint i = 0; i < n->len(); i++ ) {
  1868     Node *x = n->in(i);
  1869     if (!x || x->is_top()) continue;
  1871     // Verify my input has a def-use edge to me
  1872     if (true /*VerifyDefUse*/) {
  1873       // Count use-def edges from n to x
  1874       int cnt = 0;
  1875       for( uint j = 0; j < n->len(); j++ )
  1876         if( n->in(j) == x )
  1877           cnt++;
  1878       // Count def-use edges from x to n
  1879       uint max = x->_outcnt;
  1880       for( uint k = 0; k < max; k++ )
  1881         if (x->_out[k] == n)
  1882           cnt--;
  1883       assert( cnt == 0, "mismatched def-use edge counts" );
  1886     verify_recur(x, verify_depth, old_space, new_space);
  1891 //------------------------------verify-----------------------------------------
  1892 // Check Def-Use info for my subgraph
  1893 void Node::verify() const {
  1894   Compile* C = Compile::current();
  1895   Node* old_top = C->cached_top_node();
  1896   ResourceMark rm;
  1897   ResourceArea *area = Thread::current()->resource_area();
  1898   VectorSet old_space(area), new_space(area);
  1899   verify_recur(this, -1, old_space, new_space);
  1900   C->set_cached_top_node(old_top);
  1902 #endif
  1905 //------------------------------walk-------------------------------------------
  1906 // Graph walk, with both pre-order and post-order functions
  1907 void Node::walk(NFunc pre, NFunc post, void *env) {
  1908   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
  1909   walk_(pre, post, env, visited);
  1912 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
  1913   if( visited.test_set(_idx) ) return;
  1914   pre(*this,env);               // Call the pre-order walk function
  1915   for( uint i=0; i<_max; i++ )
  1916     if( in(i) )                 // Input exists and is not walked?
  1917       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
  1918   post(*this,env);              // Call the post-order walk function
  1921 void Node::nop(Node &, void*) {}
  1923 //------------------------------Registers--------------------------------------
  1924 // Do we Match on this edge index or not?  Generally false for Control
  1925 // and true for everything else.  Weird for calls & returns.
  1926 uint Node::match_edge(uint idx) const {
  1927   return idx;                   // True for other than index 0 (control)
  1930 static RegMask _not_used_at_all;
  1931 // Register classes are defined for specific machines
  1932 const RegMask &Node::out_RegMask() const {
  1933   ShouldNotCallThis();
  1934   return _not_used_at_all;
  1937 const RegMask &Node::in_RegMask(uint) const {
  1938   ShouldNotCallThis();
  1939   return _not_used_at_all;
  1942 //=============================================================================
  1943 //-----------------------------------------------------------------------------
  1944 void Node_Array::reset( Arena *new_arena ) {
  1945   _a->Afree(_nodes,_max*sizeof(Node*));
  1946   _max   = 0;
  1947   _nodes = NULL;
  1948   _a     = new_arena;
  1951 //------------------------------clear------------------------------------------
  1952 // Clear all entries in _nodes to NULL but keep storage
  1953 void Node_Array::clear() {
  1954   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
  1957 //-----------------------------------------------------------------------------
  1958 void Node_Array::grow( uint i ) {
  1959   if( !_max ) {
  1960     _max = 1;
  1961     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
  1962     _nodes[0] = NULL;
  1964   uint old = _max;
  1965   while( i >= _max ) _max <<= 1;        // Double to fit
  1966   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
  1967   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
  1970 //-----------------------------------------------------------------------------
  1971 void Node_Array::insert( uint i, Node *n ) {
  1972   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
  1973   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
  1974   _nodes[i] = n;
  1977 //-----------------------------------------------------------------------------
  1978 void Node_Array::remove( uint i ) {
  1979   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
  1980   _nodes[_max-1] = NULL;
  1983 //-----------------------------------------------------------------------------
  1984 void Node_Array::sort( C_sort_func_t func) {
  1985   qsort( _nodes, _max, sizeof( Node* ), func );
  1988 //-----------------------------------------------------------------------------
  1989 void Node_Array::dump() const {
  1990 #ifndef PRODUCT
  1991   for( uint i = 0; i < _max; i++ ) {
  1992     Node *nn = _nodes[i];
  1993     if( nn != NULL ) {
  1994       tty->print("%5d--> ",i); nn->dump();
  1997 #endif
  2000 //--------------------------is_iteratively_computed------------------------------
  2001 // Operation appears to be iteratively computed (such as an induction variable)
  2002 // It is possible for this operation to return false for a loop-varying
  2003 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
  2004 bool Node::is_iteratively_computed() {
  2005   if (ideal_reg()) { // does operation have a result register?
  2006     for (uint i = 1; i < req(); i++) {
  2007       Node* n = in(i);
  2008       if (n != NULL && n->is_Phi()) {
  2009         for (uint j = 1; j < n->req(); j++) {
  2010           if (n->in(j) == this) {
  2011             return true;
  2017   return false;
  2020 //--------------------------find_similar------------------------------
  2021 // Return a node with opcode "opc" and same inputs as "this" if one can
  2022 // be found; Otherwise return NULL;
  2023 Node* Node::find_similar(int opc) {
  2024   if (req() >= 2) {
  2025     Node* def = in(1);
  2026     if (def && def->outcnt() >= 2) {
  2027       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
  2028         Node* use = def->fast_out(i);
  2029         if (use->Opcode() == opc &&
  2030             use->req() == req()) {
  2031           uint j;
  2032           for (j = 0; j < use->req(); j++) {
  2033             if (use->in(j) != in(j)) {
  2034               break;
  2037           if (j == use->req()) {
  2038             return use;
  2044   return NULL;
  2048 //--------------------------unique_ctrl_out------------------------------
  2049 // Return the unique control out if only one. Null if none or more than one.
  2050 Node* Node::unique_ctrl_out() {
  2051   Node* found = NULL;
  2052   for (uint i = 0; i < outcnt(); i++) {
  2053     Node* use = raw_out(i);
  2054     if (use->is_CFG() && use != this) {
  2055       if (found != NULL) return NULL;
  2056       found = use;
  2059   return found;
  2062 //=============================================================================
  2063 //------------------------------yank-------------------------------------------
  2064 // Find and remove
  2065 void Node_List::yank( Node *n ) {
  2066   uint i;
  2067   for( i = 0; i < _cnt; i++ )
  2068     if( _nodes[i] == n )
  2069       break;
  2071   if( i < _cnt )
  2072     _nodes[i] = _nodes[--_cnt];
  2075 //------------------------------dump-------------------------------------------
  2076 void Node_List::dump() const {
  2077 #ifndef PRODUCT
  2078   for( uint i = 0; i < _cnt; i++ )
  2079     if( _nodes[i] ) {
  2080       tty->print("%5d--> ",i);
  2081       _nodes[i]->dump();
  2083 #endif
  2086 //=============================================================================
  2087 //------------------------------remove-----------------------------------------
  2088 void Unique_Node_List::remove( Node *n ) {
  2089   if( _in_worklist[n->_idx] ) {
  2090     for( uint i = 0; i < size(); i++ )
  2091       if( _nodes[i] == n ) {
  2092         map(i,Node_List::pop());
  2093         _in_worklist >>= n->_idx;
  2094         return;
  2096     ShouldNotReachHere();
  2100 //-----------------------remove_useless_nodes----------------------------------
  2101 // Remove useless nodes from worklist
  2102 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
  2104   for( uint i = 0; i < size(); ++i ) {
  2105     Node *n = at(i);
  2106     assert( n != NULL, "Did not expect null entries in worklist");
  2107     if( ! useful.test(n->_idx) ) {
  2108       _in_worklist >>= n->_idx;
  2109       map(i,Node_List::pop());
  2110       // Node *replacement = Node_List::pop();
  2111       // if( i != size() ) { // Check if removing last entry
  2112       //   _nodes[i] = replacement;
  2113       // }
  2114       --i;  // Visit popped node
  2115       // If it was last entry, loop terminates since size() was also reduced
  2120 //=============================================================================
  2121 void Node_Stack::grow() {
  2122   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
  2123   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
  2124   size_t max = old_max << 1;             // max * 2
  2125   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
  2126   _inode_max = _inodes + max;
  2127   _inode_top = _inodes + old_top;        // restore _top
  2130 // Node_Stack is used to map nodes.
  2131 Node* Node_Stack::find(uint idx) const {
  2132   uint sz = size();
  2133   for (uint i=0; i < sz; i++) {
  2134     if (idx == index_at(i) )
  2135       return node_at(i);
  2137   return NULL;
  2140 //=============================================================================
  2141 uint TypeNode::size_of() const { return sizeof(*this); }
  2142 #ifndef PRODUCT
  2143 void TypeNode::dump_spec(outputStream *st) const {
  2144   if( !Verbose && !WizardMode ) {
  2145     // standard dump does this in Verbose and WizardMode
  2146     st->print(" #"); _type->dump_on(st);
  2149 #endif
  2150 uint TypeNode::hash() const {
  2151   return Node::hash() + _type->hash();
  2153 uint TypeNode::cmp( const Node &n ) const
  2154 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
  2155 const Type *TypeNode::bottom_type() const { return _type; }
  2156 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
  2158 //------------------------------ideal_reg--------------------------------------
  2159 uint TypeNode::ideal_reg() const {
  2160   return _type->ideal_reg();

mercurial