src/share/vm/memory/barrierSet.hpp

Thu, 12 Oct 2017 21:27:07 +0800

author
aoqi
date
Thu, 12 Oct 2017 21:27:07 +0800
changeset 7535
7ae4e26cb1e0
parent 6876
710a3c8b516e
child 8019
3fb3ceb7398f
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_BARRIERSET_HPP
    26 #define SHARE_VM_MEMORY_BARRIERSET_HPP
    28 #include "memory/memRegion.hpp"
    29 #include "oops/oopsHierarchy.hpp"
    30 #include "runtime/orderAccess.hpp"
    32 // This class provides the interface between a barrier implementation and
    33 // the rest of the system.
    35 class BarrierSet: public CHeapObj<mtGC> {
    36   friend class VMStructs;
    37 public:
    38   enum Name {
    39     ModRef,
    40     CardTableModRef,
    41     CardTableExtension,
    42     G1SATBCT,
    43     G1SATBCTLogging,
    44     Other,
    45     Uninit
    46   };
    48   enum Flags {
    49     None                = 0,
    50     TargetUninitialized = 1
    51   };
    52 protected:
    53   int _max_covered_regions;
    54   Name _kind;
    56 public:
    58   BarrierSet() { _kind = Uninit; }
    59   // To get around prohibition on RTTI.
    60   BarrierSet::Name kind() { return _kind; }
    61   virtual bool is_a(BarrierSet::Name bsn) = 0;
    63   // These operations indicate what kind of barriers the BarrierSet has.
    64   virtual bool has_read_ref_barrier() = 0;
    65   virtual bool has_read_prim_barrier() = 0;
    66   virtual bool has_write_ref_barrier() = 0;
    67   virtual bool has_write_ref_pre_barrier() = 0;
    68   virtual bool has_write_prim_barrier() = 0;
    70   // These functions indicate whether a particular access of the given
    71   // kinds requires a barrier.
    72   virtual bool read_ref_needs_barrier(void* field) = 0;
    73   virtual bool read_prim_needs_barrier(HeapWord* field, size_t bytes) = 0;
    74   virtual bool write_prim_needs_barrier(HeapWord* field, size_t bytes,
    75                                         juint val1, juint val2) = 0;
    77   // The first four operations provide a direct implementation of the
    78   // barrier set.  An interpreter loop, for example, could call these
    79   // directly, as appropriate.
    81   // Invoke the barrier, if any, necessary when reading the given ref field.
    82   virtual void read_ref_field(void* field) = 0;
    84   // Invoke the barrier, if any, necessary when reading the given primitive
    85   // "field" of "bytes" bytes in "obj".
    86   virtual void read_prim_field(HeapWord* field, size_t bytes) = 0;
    88   // Invoke the barrier, if any, necessary when writing "new_val" into the
    89   // ref field at "offset" in "obj".
    90   // (For efficiency reasons, this operation is specialized for certain
    91   // barrier types.  Semantically, it should be thought of as a call to the
    92   // virtual "_work" function below, which must implement the barrier.)
    93   // First the pre-write versions...
    94   template <class T> inline void write_ref_field_pre(T* field, oop new_val);
    95 private:
    96   // Keep this private so as to catch violations at build time.
    97   virtual void write_ref_field_pre_work(     void* field, oop new_val) { guarantee(false, "Not needed"); };
    98 protected:
    99   virtual void write_ref_field_pre_work(      oop* field, oop new_val) {
   100 #ifdef MIPS64
   101       if (Use3A2000) OrderAccess::fence();
   102 #endif
   103   };
   104   virtual void write_ref_field_pre_work(narrowOop* field, oop new_val) {
   105 #ifdef MIPS64
   106       if (Use3A2000) OrderAccess::fence();
   107 #endif
   108   };
   109 public:
   111   // ...then the post-write version.
   112   inline void write_ref_field(void* field, oop new_val, bool release = false);
   113 protected:
   114   virtual void write_ref_field_work(void* field, oop new_val, bool release = false) = 0;
   115 public:
   117   // Invoke the barrier, if any, necessary when writing the "bytes"-byte
   118   // value(s) "val1" (and "val2") into the primitive "field".
   119   virtual void write_prim_field(HeapWord* field, size_t bytes,
   120                                 juint val1, juint val2) = 0;
   122   // Operations on arrays, or general regions (e.g., for "clone") may be
   123   // optimized by some barriers.
   125   // The first six operations tell whether such an optimization exists for
   126   // the particular barrier.
   127   virtual bool has_read_ref_array_opt() = 0;
   128   virtual bool has_read_prim_array_opt() = 0;
   129   virtual bool has_write_ref_array_pre_opt() { return true; }
   130   virtual bool has_write_ref_array_opt() = 0;
   131   virtual bool has_write_prim_array_opt() = 0;
   133   virtual bool has_read_region_opt() = 0;
   134   virtual bool has_write_region_opt() = 0;
   136   // These operations should assert false unless the correponding operation
   137   // above returns true.  Otherwise, they should perform an appropriate
   138   // barrier for an array whose elements are all in the given memory region.
   139   virtual void read_ref_array(MemRegion mr) = 0;
   140   virtual void read_prim_array(MemRegion mr) = 0;
   142   // Below length is the # array elements being written
   143   virtual void write_ref_array_pre(oop* dst, int length,
   144                                    bool dest_uninitialized = false) {
   145 #ifdef MIPS64
   146       if (Use3A2000) OrderAccess::fence();
   147 #endif
   148   }
   149   virtual void write_ref_array_pre(narrowOop* dst, int length,
   150                                    bool dest_uninitialized = false) {
   151 #ifdef MIPS64
   152       if (Use3A2000) OrderAccess::fence();
   153 #endif
   154 }
   155   // Below count is the # array elements being written, starting
   156   // at the address "start", which may not necessarily be HeapWord-aligned
   157   inline void write_ref_array(HeapWord* start, size_t count);
   159   // Static versions, suitable for calling from generated code;
   160   // count is # array elements being written, starting with "start",
   161   // which may not necessarily be HeapWord-aligned.
   162   static void static_write_ref_array_pre(HeapWord* start, size_t count);
   163   static void static_write_ref_array_post(HeapWord* start, size_t count);
   165 protected:
   166   virtual void write_ref_array_work(MemRegion mr) = 0;
   167 public:
   168   virtual void write_prim_array(MemRegion mr) = 0;
   170   virtual void read_region(MemRegion mr) = 0;
   172   // (For efficiency reasons, this operation is specialized for certain
   173   // barrier types.  Semantically, it should be thought of as a call to the
   174   // virtual "_work" function below, which must implement the barrier.)
   175   inline void write_region(MemRegion mr);
   176 protected:
   177   virtual void write_region_work(MemRegion mr) = 0;
   178 public:
   180   // Some barrier sets create tables whose elements correspond to parts of
   181   // the heap; the CardTableModRefBS is an example.  Such barrier sets will
   182   // normally reserve space for such tables, and commit parts of the table
   183   // "covering" parts of the heap that are committed.  The constructor is
   184   // passed the maximum number of independently committable subregions to
   185   // be covered, and the "resize_covoered_region" function allows the
   186   // sub-parts of the heap to inform the barrier set of changes of their
   187   // sizes.
   188   BarrierSet(int max_covered_regions) :
   189     _max_covered_regions(max_covered_regions) {}
   191   // Inform the BarrierSet that the the covered heap region that starts
   192   // with "base" has been changed to have the given size (possibly from 0,
   193   // for initialization.)
   194   virtual void resize_covered_region(MemRegion new_region) = 0;
   196   // If the barrier set imposes any alignment restrictions on boundaries
   197   // within the heap, this function tells whether they are met.
   198   virtual bool is_aligned(HeapWord* addr) = 0;
   200   // Print a description of the memory for the barrier set
   201   virtual void print_on(outputStream* st) const = 0;
   202 };
   204 #endif // SHARE_VM_MEMORY_BARRIERSET_HPP

mercurial