src/share/vm/gc_implementation/g1/g1CollectedHeap.inline.hpp

Thu, 12 Oct 2017 21:27:07 +0800

author
aoqi
date
Thu, 12 Oct 2017 21:27:07 +0800
changeset 7535
7ae4e26cb1e0
parent 7159
e5668dcf12e9
parent 6876
710a3c8b516e
child 7994
04ff2f6cd0eb
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.hpp"
    30 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    32 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    33 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
    34 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
    35 #include "runtime/orderAccess.inline.hpp"
    36 #include "utilities/taskqueue.hpp"
    38 // Inline functions for G1CollectedHeap
    40 inline AllocationContextStats& G1CollectedHeap::allocation_context_stats() {
    41   return _allocation_context_stats;
    42 }
    44 // Return the region with the given index. It assumes the index is valid.
    45 inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrm.at(index); }
    47 inline uint G1CollectedHeap::addr_to_region(HeapWord* addr) const {
    48   assert(is_in_reserved(addr),
    49          err_msg("Cannot calculate region index for address "PTR_FORMAT" that is outside of the heap ["PTR_FORMAT", "PTR_FORMAT")",
    50                  p2i(addr), p2i(_reserved.start()), p2i(_reserved.end())));
    51   return (uint)(pointer_delta(addr, _reserved.start(), sizeof(uint8_t)) >> HeapRegion::LogOfHRGrainBytes);
    52 }
    54 inline HeapWord* G1CollectedHeap::bottom_addr_for_region(uint index) const {
    55   return _hrm.reserved().start() + index * HeapRegion::GrainWords;
    56 }
    58 template <class T>
    59 inline HeapRegion* G1CollectedHeap::heap_region_containing_raw(const T addr) const {
    60   assert(addr != NULL, "invariant");
    61   assert(is_in_g1_reserved((const void*) addr),
    62       err_msg("Address "PTR_FORMAT" is outside of the heap ranging from ["PTR_FORMAT" to "PTR_FORMAT")",
    63           p2i((void*)addr), p2i(g1_reserved().start()), p2i(g1_reserved().end())));
    64   return _hrm.addr_to_region((HeapWord*) addr);
    65 }
    67 template <class T>
    68 inline HeapRegion* G1CollectedHeap::heap_region_containing(const T addr) const {
    69   HeapRegion* hr = heap_region_containing_raw(addr);
    70   if (hr->continuesHumongous()) {
    71     return hr->humongous_start_region();
    72   }
    73   return hr;
    74 }
    76 inline void G1CollectedHeap::reset_gc_time_stamp() {
    77   _gc_time_stamp = 0;
    78   OrderAccess::fence();
    79   // Clear the cached CSet starting regions and time stamps.
    80   // Their validity is dependent on the GC timestamp.
    81   clear_cset_start_regions();
    82 }
    84 inline void G1CollectedHeap::increment_gc_time_stamp() {
    85   ++_gc_time_stamp;
    86   OrderAccess::fence();
    87 }
    89 inline void G1CollectedHeap::old_set_remove(HeapRegion* hr) {
    90   _old_set.remove(hr);
    91 }
    93 inline bool G1CollectedHeap::obj_in_cs(oop obj) {
    94   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
    95   return r != NULL && r->in_collection_set();
    96 }
    98 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
    99                                                      unsigned int* gc_count_before_ret,
   100                                                      int* gclocker_retry_count_ret) {
   101   assert_heap_not_locked_and_not_at_safepoint();
   102   assert(!isHumongous(word_size), "attempt_allocation() should not "
   103          "be called for humongous allocation requests");
   105   AllocationContext_t context = AllocationContext::current();
   106   HeapWord* result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
   107                                                                                    false /* bot_updates */);
   108   if (result == NULL) {
   109     result = attempt_allocation_slow(word_size,
   110                                      context,
   111                                      gc_count_before_ret,
   112                                      gclocker_retry_count_ret);
   113   }
   114   assert_heap_not_locked();
   115   if (result != NULL) {
   116     dirty_young_block(result, word_size);
   117   }
   118   return result;
   119 }
   121 inline HeapWord* G1CollectedHeap::survivor_attempt_allocation(size_t word_size,
   122                                                               AllocationContext_t context) {
   123   assert(!isHumongous(word_size),
   124          "we should not be seeing humongous-size allocations in this path");
   126   HeapWord* result = _allocator->survivor_gc_alloc_region(context)->attempt_allocation(word_size,
   127                                                                                        false /* bot_updates */);
   128   if (result == NULL) {
   129     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
   130     result = _allocator->survivor_gc_alloc_region(context)->attempt_allocation_locked(word_size,
   131                                                                                       false /* bot_updates */);
   132   }
   133   if (result != NULL) {
   134     dirty_young_block(result, word_size);
   135   }
   136   return result;
   137 }
   139 inline HeapWord* G1CollectedHeap::old_attempt_allocation(size_t word_size,
   140                                                          AllocationContext_t context) {
   141   assert(!isHumongous(word_size),
   142          "we should not be seeing humongous-size allocations in this path");
   144   HeapWord* result = _allocator->old_gc_alloc_region(context)->attempt_allocation(word_size,
   145                                                                                   true /* bot_updates */);
   146   if (result == NULL) {
   147     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
   148     result = _allocator->old_gc_alloc_region(context)->attempt_allocation_locked(word_size,
   149                                                                                  true /* bot_updates */);
   150   }
   151   return result;
   152 }
   154 // It dirties the cards that cover the block so that so that the post
   155 // write barrier never queues anything when updating objects on this
   156 // block. It is assumed (and in fact we assert) that the block
   157 // belongs to a young region.
   158 inline void
   159 G1CollectedHeap::dirty_young_block(HeapWord* start, size_t word_size) {
   160   assert_heap_not_locked();
   162   // Assign the containing region to containing_hr so that we don't
   163   // have to keep calling heap_region_containing_raw() in the
   164   // asserts below.
   165   DEBUG_ONLY(HeapRegion* containing_hr = heap_region_containing_raw(start);)
   166   assert(word_size > 0, "pre-condition");
   167   assert(containing_hr->is_in(start), "it should contain start");
   168   assert(containing_hr->is_young(), "it should be young");
   169   assert(!containing_hr->isHumongous(), "it should not be humongous");
   171   HeapWord* end = start + word_size;
   172   assert(containing_hr->is_in(end - 1), "it should also contain end - 1");
   174   MemRegion mr(start, end);
   175   g1_barrier_set()->g1_mark_as_young(mr);
   176 }
   178 inline RefToScanQueue* G1CollectedHeap::task_queue(int i) const {
   179   return _task_queues->queue(i);
   180 }
   182 inline bool G1CollectedHeap::isMarkedPrev(oop obj) const {
   183   return _cm->prevMarkBitMap()->isMarked((HeapWord *)obj);
   184 }
   186 inline bool G1CollectedHeap::isMarkedNext(oop obj) const {
   187   return _cm->nextMarkBitMap()->isMarked((HeapWord *)obj);
   188 }
   190 // This is a fast test on whether a reference points into the
   191 // collection set or not. Assume that the reference
   192 // points into the heap.
   193 inline bool G1CollectedHeap::is_in_cset(oop obj) {
   194   bool ret = _in_cset_fast_test.is_in_cset((HeapWord*)obj);
   195   // let's make sure the result is consistent with what the slower
   196   // test returns
   197   assert( ret || !obj_in_cs(obj), "sanity");
   198   assert(!ret ||  obj_in_cs(obj), "sanity");
   199   return ret;
   200 }
   202 bool G1CollectedHeap::is_in_cset_or_humongous(const oop obj) {
   203   return _in_cset_fast_test.is_in_cset_or_humongous((HeapWord*)obj);
   204 }
   206 G1CollectedHeap::in_cset_state_t G1CollectedHeap::in_cset_state(const oop obj) {
   207   return _in_cset_fast_test.at((HeapWord*)obj);
   208 }
   210 void G1CollectedHeap::register_humongous_region_with_in_cset_fast_test(uint index) {
   211   _in_cset_fast_test.set_humongous(index);
   212 }
   214 #ifndef PRODUCT
   215 // Support for G1EvacuationFailureALot
   217 inline bool
   218 G1CollectedHeap::evacuation_failure_alot_for_gc_type(bool gcs_are_young,
   219                                                      bool during_initial_mark,
   220                                                      bool during_marking) {
   221   bool res = false;
   222   if (during_marking) {
   223     res |= G1EvacuationFailureALotDuringConcMark;
   224   }
   225   if (during_initial_mark) {
   226     res |= G1EvacuationFailureALotDuringInitialMark;
   227   }
   228   if (gcs_are_young) {
   229     res |= G1EvacuationFailureALotDuringYoungGC;
   230   } else {
   231     // GCs are mixed
   232     res |= G1EvacuationFailureALotDuringMixedGC;
   233   }
   234   return res;
   235 }
   237 inline void
   238 G1CollectedHeap::set_evacuation_failure_alot_for_current_gc() {
   239   if (G1EvacuationFailureALot) {
   240     // Note we can't assert that _evacuation_failure_alot_for_current_gc
   241     // is clear here. It may have been set during a previous GC but that GC
   242     // did not copy enough objects (i.e. G1EvacuationFailureALotCount) to
   243     // trigger an evacuation failure and clear the flags and and counts.
   245     // Check if we have gone over the interval.
   246     const size_t gc_num = total_collections();
   247     const size_t elapsed_gcs = gc_num - _evacuation_failure_alot_gc_number;
   249     _evacuation_failure_alot_for_current_gc = (elapsed_gcs >= G1EvacuationFailureALotInterval);
   251     // Now check if G1EvacuationFailureALot is enabled for the current GC type.
   252     const bool gcs_are_young = g1_policy()->gcs_are_young();
   253     const bool during_im = g1_policy()->during_initial_mark_pause();
   254     const bool during_marking = mark_in_progress();
   256     _evacuation_failure_alot_for_current_gc &=
   257       evacuation_failure_alot_for_gc_type(gcs_are_young,
   258                                           during_im,
   259                                           during_marking);
   260   }
   261 }
   263 inline bool G1CollectedHeap::evacuation_should_fail() {
   264   if (!G1EvacuationFailureALot || !_evacuation_failure_alot_for_current_gc) {
   265     return false;
   266   }
   267   // G1EvacuationFailureALot is in effect for current GC
   268   // Access to _evacuation_failure_alot_count is not atomic;
   269   // the value does not have to be exact.
   270   if (++_evacuation_failure_alot_count < G1EvacuationFailureALotCount) {
   271     return false;
   272   }
   273   _evacuation_failure_alot_count = 0;
   274   return true;
   275 }
   277 inline void G1CollectedHeap::reset_evacuation_should_fail() {
   278   if (G1EvacuationFailureALot) {
   279     _evacuation_failure_alot_gc_number = total_collections();
   280     _evacuation_failure_alot_count = 0;
   281     _evacuation_failure_alot_for_current_gc = false;
   282   }
   283 }
   284 #endif  // #ifndef PRODUCT
   286 inline bool G1CollectedHeap::is_in_young(const oop obj) {
   287   if (obj == NULL) {
   288     return false;
   289   }
   290   return heap_region_containing(obj)->is_young();
   291 }
   293 // We don't need barriers for initializing stores to objects
   294 // in the young gen: for the SATB pre-barrier, there is no
   295 // pre-value that needs to be remembered; for the remembered-set
   296 // update logging post-barrier, we don't maintain remembered set
   297 // information for young gen objects.
   298 inline bool G1CollectedHeap::can_elide_initializing_store_barrier(oop new_obj) {
   299   return is_in_young(new_obj);
   300 }
   302 inline bool G1CollectedHeap::is_obj_dead(const oop obj) const {
   303   if (obj == NULL) {
   304     return false;
   305   }
   306   return is_obj_dead(obj, heap_region_containing(obj));
   307 }
   309 inline bool G1CollectedHeap::is_obj_ill(const oop obj) const {
   310   if (obj == NULL) {
   311     return false;
   312   }
   313   return is_obj_ill(obj, heap_region_containing(obj));
   314 }
   316 inline void G1CollectedHeap::set_humongous_is_live(oop obj) {
   317   uint region = addr_to_region((HeapWord*)obj);
   318   // We not only set the "live" flag in the humongous_is_live table, but also
   319   // reset the entry in the _in_cset_fast_test table so that subsequent references
   320   // to the same humongous object do not go into the slow path again.
   321   // This is racy, as multiple threads may at the same time enter here, but this
   322   // is benign.
   323   // During collection we only ever set the "live" flag, and only ever clear the
   324   // entry in the in_cset_fast_table.
   325   // We only ever evaluate the contents of these tables (in the VM thread) after
   326   // having synchronized the worker threads with the VM thread, or in the same
   327   // thread (i.e. within the VM thread).
   328   if (!_humongous_is_live.is_live(region)) {
   329     _humongous_is_live.set_live(region);
   330     _in_cset_fast_test.clear_humongous(region);
   331   }
   332 }
   334 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP

mercurial