src/os/windows/vm/os_windows.cpp

Thu, 12 Oct 2017 21:27:07 +0800

author
aoqi
date
Thu, 12 Oct 2017 21:27:07 +0800
changeset 7535
7ae4e26cb1e0
parent 7343
09259e52a610
parent 6876
710a3c8b516e
child 7994
04ff2f6cd0eb
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
    26 #define _WIN32_WINNT 0x500
    28 // no precompiled headers
    29 #include "classfile/classLoader.hpp"
    30 #include "classfile/systemDictionary.hpp"
    31 #include "classfile/vmSymbols.hpp"
    32 #include "code/icBuffer.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/disassembler.hpp"
    36 #include "interpreter/interpreter.hpp"
    37 #include "jvm_windows.h"
    38 #include "memory/allocation.inline.hpp"
    39 #include "memory/filemap.hpp"
    40 #include "mutex_windows.inline.hpp"
    41 #include "oops/oop.inline.hpp"
    42 #include "os_share_windows.hpp"
    43 #include "prims/jniFastGetField.hpp"
    44 #include "prims/jvm.h"
    45 #include "prims/jvm_misc.hpp"
    46 #include "runtime/arguments.hpp"
    47 #include "runtime/extendedPC.hpp"
    48 #include "runtime/globals.hpp"
    49 #include "runtime/interfaceSupport.hpp"
    50 #include "runtime/java.hpp"
    51 #include "runtime/javaCalls.hpp"
    52 #include "runtime/mutexLocker.hpp"
    53 #include "runtime/objectMonitor.hpp"
    54 #include "runtime/orderAccess.inline.hpp"
    55 #include "runtime/osThread.hpp"
    56 #include "runtime/perfMemory.hpp"
    57 #include "runtime/sharedRuntime.hpp"
    58 #include "runtime/statSampler.hpp"
    59 #include "runtime/stubRoutines.hpp"
    60 #include "runtime/thread.inline.hpp"
    61 #include "runtime/threadCritical.hpp"
    62 #include "runtime/timer.hpp"
    63 #include "services/attachListener.hpp"
    64 #include "services/memTracker.hpp"
    65 #include "services/runtimeService.hpp"
    66 #include "utilities/decoder.hpp"
    67 #include "utilities/defaultStream.hpp"
    68 #include "utilities/events.hpp"
    69 #include "utilities/growableArray.hpp"
    70 #include "utilities/vmError.hpp"
    72 #ifdef _DEBUG
    73 #include <crtdbg.h>
    74 #endif
    77 #include <windows.h>
    78 #include <sys/types.h>
    79 #include <sys/stat.h>
    80 #include <sys/timeb.h>
    81 #include <objidl.h>
    82 #include <shlobj.h>
    84 #include <malloc.h>
    85 #include <signal.h>
    86 #include <direct.h>
    87 #include <errno.h>
    88 #include <fcntl.h>
    89 #include <io.h>
    90 #include <process.h>              // For _beginthreadex(), _endthreadex()
    91 #include <imagehlp.h>             // For os::dll_address_to_function_name
    92 /* for enumerating dll libraries */
    93 #include <vdmdbg.h>
    95 // for timer info max values which include all bits
    96 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
    98 // For DLL loading/load error detection
    99 // Values of PE COFF
   100 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
   101 #define IMAGE_FILE_SIGNATURE_LENGTH 4
   103 static HANDLE main_process;
   104 static HANDLE main_thread;
   105 static int    main_thread_id;
   107 static FILETIME process_creation_time;
   108 static FILETIME process_exit_time;
   109 static FILETIME process_user_time;
   110 static FILETIME process_kernel_time;
   112 #ifdef _M_IA64
   113 #define __CPU__ ia64
   114 #elif _M_AMD64
   115 #define __CPU__ amd64
   116 #else
   117 #define __CPU__ i486
   118 #endif
   120 // save DLL module handle, used by GetModuleFileName
   122 HINSTANCE vm_lib_handle;
   124 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
   125   switch (reason) {
   126     case DLL_PROCESS_ATTACH:
   127       vm_lib_handle = hinst;
   128       if(ForceTimeHighResolution)
   129         timeBeginPeriod(1L);
   130       break;
   131     case DLL_PROCESS_DETACH:
   132       if(ForceTimeHighResolution)
   133         timeEndPeriod(1L);
   135       break;
   136     default:
   137       break;
   138   }
   139   return true;
   140 }
   142 static inline double fileTimeAsDouble(FILETIME* time) {
   143   const double high  = (double) ((unsigned int) ~0);
   144   const double split = 10000000.0;
   145   double result = (time->dwLowDateTime / split) +
   146                    time->dwHighDateTime * (high/split);
   147   return result;
   148 }
   150 // Implementation of os
   152 bool os::getenv(const char* name, char* buffer, int len) {
   153  int result = GetEnvironmentVariable(name, buffer, len);
   154  return result > 0 && result < len;
   155 }
   157 bool os::unsetenv(const char* name) {
   158   assert(name != NULL, "Null pointer");
   159   return (SetEnvironmentVariable(name, NULL) == TRUE);
   160 }
   162 // No setuid programs under Windows.
   163 bool os::have_special_privileges() {
   164   return false;
   165 }
   168 // This method is  a periodic task to check for misbehaving JNI applications
   169 // under CheckJNI, we can add any periodic checks here.
   170 // For Windows at the moment does nothing
   171 void os::run_periodic_checks() {
   172   return;
   173 }
   175 #ifndef _WIN64
   176 // previous UnhandledExceptionFilter, if there is one
   177 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
   179 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
   180 #endif
   181 void os::init_system_properties_values() {
   182   /* sysclasspath, java_home, dll_dir */
   183   {
   184       char *home_path;
   185       char *dll_path;
   186       char *pslash;
   187       char *bin = "\\bin";
   188       char home_dir[MAX_PATH];
   190       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
   191           os::jvm_path(home_dir, sizeof(home_dir));
   192           // Found the full path to jvm.dll.
   193           // Now cut the path to <java_home>/jre if we can.
   194           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
   195           pslash = strrchr(home_dir, '\\');
   196           if (pslash != NULL) {
   197               *pslash = '\0';                 /* get rid of \{client|server} */
   198               pslash = strrchr(home_dir, '\\');
   199               if (pslash != NULL)
   200                   *pslash = '\0';             /* get rid of \bin */
   201           }
   202       }
   204       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
   205       if (home_path == NULL)
   206           return;
   207       strcpy(home_path, home_dir);
   208       Arguments::set_java_home(home_path);
   210       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
   211       if (dll_path == NULL)
   212           return;
   213       strcpy(dll_path, home_dir);
   214       strcat(dll_path, bin);
   215       Arguments::set_dll_dir(dll_path);
   217       if (!set_boot_path('\\', ';'))
   218           return;
   219   }
   221   /* library_path */
   222   #define EXT_DIR "\\lib\\ext"
   223   #define BIN_DIR "\\bin"
   224   #define PACKAGE_DIR "\\Sun\\Java"
   225   {
   226     /* Win32 library search order (See the documentation for LoadLibrary):
   227      *
   228      * 1. The directory from which application is loaded.
   229      * 2. The system wide Java Extensions directory (Java only)
   230      * 3. System directory (GetSystemDirectory)
   231      * 4. Windows directory (GetWindowsDirectory)
   232      * 5. The PATH environment variable
   233      * 6. The current directory
   234      */
   236     char *library_path;
   237     char tmp[MAX_PATH];
   238     char *path_str = ::getenv("PATH");
   240     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
   241         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
   243     library_path[0] = '\0';
   245     GetModuleFileName(NULL, tmp, sizeof(tmp));
   246     *(strrchr(tmp, '\\')) = '\0';
   247     strcat(library_path, tmp);
   249     GetWindowsDirectory(tmp, sizeof(tmp));
   250     strcat(library_path, ";");
   251     strcat(library_path, tmp);
   252     strcat(library_path, PACKAGE_DIR BIN_DIR);
   254     GetSystemDirectory(tmp, sizeof(tmp));
   255     strcat(library_path, ";");
   256     strcat(library_path, tmp);
   258     GetWindowsDirectory(tmp, sizeof(tmp));
   259     strcat(library_path, ";");
   260     strcat(library_path, tmp);
   262     if (path_str) {
   263         strcat(library_path, ";");
   264         strcat(library_path, path_str);
   265     }
   267     strcat(library_path, ";.");
   269     Arguments::set_library_path(library_path);
   270     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
   271   }
   273   /* Default extensions directory */
   274   {
   275     char path[MAX_PATH];
   276     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
   277     GetWindowsDirectory(path, MAX_PATH);
   278     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
   279         path, PACKAGE_DIR, EXT_DIR);
   280     Arguments::set_ext_dirs(buf);
   281   }
   282   #undef EXT_DIR
   283   #undef BIN_DIR
   284   #undef PACKAGE_DIR
   286   /* Default endorsed standards directory. */
   287   {
   288     #define ENDORSED_DIR "\\lib\\endorsed"
   289     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
   290     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
   291     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
   292     Arguments::set_endorsed_dirs(buf);
   293     #undef ENDORSED_DIR
   294   }
   296 #ifndef _WIN64
   297   // set our UnhandledExceptionFilter and save any previous one
   298   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
   299 #endif
   301   // Done
   302   return;
   303 }
   305 void os::breakpoint() {
   306   DebugBreak();
   307 }
   309 // Invoked from the BREAKPOINT Macro
   310 extern "C" void breakpoint() {
   311   os::breakpoint();
   312 }
   314 /*
   315  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
   316  * So far, this method is only used by Native Memory Tracking, which is
   317  * only supported on Windows XP or later.
   318  */
   320 int os::get_native_stack(address* stack, int frames, int toSkip) {
   321 #ifdef _NMT_NOINLINE_
   322   toSkip ++;
   323 #endif
   324   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
   325     (PVOID*)stack, NULL);
   326   for (int index = captured; index < frames; index ++) {
   327     stack[index] = NULL;
   328   }
   329   return captured;
   330 }
   333 // os::current_stack_base()
   334 //
   335 //   Returns the base of the stack, which is the stack's
   336 //   starting address.  This function must be called
   337 //   while running on the stack of the thread being queried.
   339 address os::current_stack_base() {
   340   MEMORY_BASIC_INFORMATION minfo;
   341   address stack_bottom;
   342   size_t stack_size;
   344   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   345   stack_bottom =  (address)minfo.AllocationBase;
   346   stack_size = minfo.RegionSize;
   348   // Add up the sizes of all the regions with the same
   349   // AllocationBase.
   350   while( 1 )
   351   {
   352     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
   353     if ( stack_bottom == (address)minfo.AllocationBase )
   354       stack_size += minfo.RegionSize;
   355     else
   356       break;
   357   }
   359 #ifdef _M_IA64
   360   // IA64 has memory and register stacks
   361   //
   362   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
   363   // at thread creation (1MB backing store growing upwards, 1MB memory stack
   364   // growing downwards, 2MB summed up)
   365   //
   366   // ...
   367   // ------- top of stack (high address) -----
   368   // |
   369   // |      1MB
   370   // |      Backing Store (Register Stack)
   371   // |
   372   // |         / \
   373   // |          |
   374   // |          |
   375   // |          |
   376   // ------------------------ stack base -----
   377   // |      1MB
   378   // |      Memory Stack
   379   // |
   380   // |          |
   381   // |          |
   382   // |          |
   383   // |         \ /
   384   // |
   385   // ----- bottom of stack (low address) -----
   386   // ...
   388   stack_size = stack_size / 2;
   389 #endif
   390   return stack_bottom + stack_size;
   391 }
   393 size_t os::current_stack_size() {
   394   size_t sz;
   395   MEMORY_BASIC_INFORMATION minfo;
   396   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   397   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
   398   return sz;
   399 }
   401 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
   402   const struct tm* time_struct_ptr = localtime(clock);
   403   if (time_struct_ptr != NULL) {
   404     *res = *time_struct_ptr;
   405     return res;
   406   }
   407   return NULL;
   408 }
   410 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
   412 // Thread start routine for all new Java threads
   413 static unsigned __stdcall java_start(Thread* thread) {
   414   // Try to randomize the cache line index of hot stack frames.
   415   // This helps when threads of the same stack traces evict each other's
   416   // cache lines. The threads can be either from the same JVM instance, or
   417   // from different JVM instances. The benefit is especially true for
   418   // processors with hyperthreading technology.
   419   static int counter = 0;
   420   int pid = os::current_process_id();
   421   _alloca(((pid ^ counter++) & 7) * 128);
   423   OSThread* osthr = thread->osthread();
   424   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   426   if (UseNUMA) {
   427     int lgrp_id = os::numa_get_group_id();
   428     if (lgrp_id != -1) {
   429       thread->set_lgrp_id(lgrp_id);
   430     }
   431   }
   434   // Install a win32 structured exception handler around every thread created
   435   // by VM, so VM can genrate error dump when an exception occurred in non-
   436   // Java thread (e.g. VM thread).
   437   __try {
   438      thread->run();
   439   } __except(topLevelExceptionFilter(
   440              (_EXCEPTION_POINTERS*)_exception_info())) {
   441       // Nothing to do.
   442   }
   444   // One less thread is executing
   445   // When the VMThread gets here, the main thread may have already exited
   446   // which frees the CodeHeap containing the Atomic::add code
   447   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   448     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
   449   }
   451   return 0;
   452 }
   454 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
   455   // Allocate the OSThread object
   456   OSThread* osthread = new OSThread(NULL, NULL);
   457   if (osthread == NULL) return NULL;
   459   // Initialize support for Java interrupts
   460   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   461   if (interrupt_event == NULL) {
   462     delete osthread;
   463     return NULL;
   464   }
   465   osthread->set_interrupt_event(interrupt_event);
   467   // Store info on the Win32 thread into the OSThread
   468   osthread->set_thread_handle(thread_handle);
   469   osthread->set_thread_id(thread_id);
   471   if (UseNUMA) {
   472     int lgrp_id = os::numa_get_group_id();
   473     if (lgrp_id != -1) {
   474       thread->set_lgrp_id(lgrp_id);
   475     }
   476   }
   478   // Initial thread state is INITIALIZED, not SUSPENDED
   479   osthread->set_state(INITIALIZED);
   481   return osthread;
   482 }
   485 bool os::create_attached_thread(JavaThread* thread) {
   486 #ifdef ASSERT
   487   thread->verify_not_published();
   488 #endif
   489   HANDLE thread_h;
   490   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
   491                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
   492     fatal("DuplicateHandle failed\n");
   493   }
   494   OSThread* osthread = create_os_thread(thread, thread_h,
   495                                         (int)current_thread_id());
   496   if (osthread == NULL) {
   497      return false;
   498   }
   500   // Initial thread state is RUNNABLE
   501   osthread->set_state(RUNNABLE);
   503   thread->set_osthread(osthread);
   504   return true;
   505 }
   507 bool os::create_main_thread(JavaThread* thread) {
   508 #ifdef ASSERT
   509   thread->verify_not_published();
   510 #endif
   511   if (_starting_thread == NULL) {
   512     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
   513      if (_starting_thread == NULL) {
   514         return false;
   515      }
   516   }
   518   // The primordial thread is runnable from the start)
   519   _starting_thread->set_state(RUNNABLE);
   521   thread->set_osthread(_starting_thread);
   522   return true;
   523 }
   525 // Allocate and initialize a new OSThread
   526 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   527   unsigned thread_id;
   529   // Allocate the OSThread object
   530   OSThread* osthread = new OSThread(NULL, NULL);
   531   if (osthread == NULL) {
   532     return false;
   533   }
   535   // Initialize support for Java interrupts
   536   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   537   if (interrupt_event == NULL) {
   538     delete osthread;
   539     return NULL;
   540   }
   541   osthread->set_interrupt_event(interrupt_event);
   542   osthread->set_interrupted(false);
   544   thread->set_osthread(osthread);
   546   if (stack_size == 0) {
   547     switch (thr_type) {
   548     case os::java_thread:
   549       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   550       if (JavaThread::stack_size_at_create() > 0)
   551         stack_size = JavaThread::stack_size_at_create();
   552       break;
   553     case os::compiler_thread:
   554       if (CompilerThreadStackSize > 0) {
   555         stack_size = (size_t)(CompilerThreadStackSize * K);
   556         break;
   557       } // else fall through:
   558         // use VMThreadStackSize if CompilerThreadStackSize is not defined
   559     case os::vm_thread:
   560     case os::pgc_thread:
   561     case os::cgc_thread:
   562     case os::watcher_thread:
   563       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   564       break;
   565     }
   566   }
   568   // Create the Win32 thread
   569   //
   570   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
   571   // does not specify stack size. Instead, it specifies the size of
   572   // initially committed space. The stack size is determined by
   573   // PE header in the executable. If the committed "stack_size" is larger
   574   // than default value in the PE header, the stack is rounded up to the
   575   // nearest multiple of 1MB. For example if the launcher has default
   576   // stack size of 320k, specifying any size less than 320k does not
   577   // affect the actual stack size at all, it only affects the initial
   578   // commitment. On the other hand, specifying 'stack_size' larger than
   579   // default value may cause significant increase in memory usage, because
   580   // not only the stack space will be rounded up to MB, but also the
   581   // entire space is committed upfront.
   582   //
   583   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
   584   // for CreateThread() that can treat 'stack_size' as stack size. However we
   585   // are not supposed to call CreateThread() directly according to MSDN
   586   // document because JVM uses C runtime library. The good news is that the
   587   // flag appears to work with _beginthredex() as well.
   589 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
   590 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
   591 #endif
   593   HANDLE thread_handle =
   594     (HANDLE)_beginthreadex(NULL,
   595                            (unsigned)stack_size,
   596                            (unsigned (__stdcall *)(void*)) java_start,
   597                            thread,
   598                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
   599                            &thread_id);
   600   if (thread_handle == NULL) {
   601     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
   602     // without the flag.
   603     thread_handle =
   604     (HANDLE)_beginthreadex(NULL,
   605                            (unsigned)stack_size,
   606                            (unsigned (__stdcall *)(void*)) java_start,
   607                            thread,
   608                            CREATE_SUSPENDED,
   609                            &thread_id);
   610   }
   611   if (thread_handle == NULL) {
   612     // Need to clean up stuff we've allocated so far
   613     CloseHandle(osthread->interrupt_event());
   614     thread->set_osthread(NULL);
   615     delete osthread;
   616     return NULL;
   617   }
   619   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
   621   // Store info on the Win32 thread into the OSThread
   622   osthread->set_thread_handle(thread_handle);
   623   osthread->set_thread_id(thread_id);
   625   // Initial thread state is INITIALIZED, not SUSPENDED
   626   osthread->set_state(INITIALIZED);
   628   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
   629   return true;
   630 }
   633 // Free Win32 resources related to the OSThread
   634 void os::free_thread(OSThread* osthread) {
   635   assert(osthread != NULL, "osthread not set");
   636   CloseHandle(osthread->thread_handle());
   637   CloseHandle(osthread->interrupt_event());
   638   delete osthread;
   639 }
   642 static int    has_performance_count = 0;
   643 static jlong first_filetime;
   644 static jlong initial_performance_count;
   645 static jlong performance_frequency;
   648 jlong as_long(LARGE_INTEGER x) {
   649   jlong result = 0; // initialization to avoid warning
   650   set_high(&result, x.HighPart);
   651   set_low(&result,  x.LowPart);
   652   return result;
   653 }
   656 jlong os::elapsed_counter() {
   657   LARGE_INTEGER count;
   658   if (has_performance_count) {
   659     QueryPerformanceCounter(&count);
   660     return as_long(count) - initial_performance_count;
   661   } else {
   662     FILETIME wt;
   663     GetSystemTimeAsFileTime(&wt);
   664     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
   665   }
   666 }
   669 jlong os::elapsed_frequency() {
   670   if (has_performance_count) {
   671     return performance_frequency;
   672   } else {
   673    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
   674    return 10000000;
   675   }
   676 }
   679 julong os::available_memory() {
   680   return win32::available_memory();
   681 }
   683 julong os::win32::available_memory() {
   684   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
   685   // value if total memory is larger than 4GB
   686   MEMORYSTATUSEX ms;
   687   ms.dwLength = sizeof(ms);
   688   GlobalMemoryStatusEx(&ms);
   690   return (julong)ms.ullAvailPhys;
   691 }
   693 julong os::physical_memory() {
   694   return win32::physical_memory();
   695 }
   697 bool os::has_allocatable_memory_limit(julong* limit) {
   698   MEMORYSTATUSEX ms;
   699   ms.dwLength = sizeof(ms);
   700   GlobalMemoryStatusEx(&ms);
   701 #ifdef _LP64
   702   *limit = (julong)ms.ullAvailVirtual;
   703   return true;
   704 #else
   705   // Limit to 1400m because of the 2gb address space wall
   706   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
   707   return true;
   708 #endif
   709 }
   711 // VC6 lacks DWORD_PTR
   712 #if _MSC_VER < 1300
   713 typedef UINT_PTR DWORD_PTR;
   714 #endif
   716 int os::active_processor_count() {
   717   DWORD_PTR lpProcessAffinityMask = 0;
   718   DWORD_PTR lpSystemAffinityMask = 0;
   719   int proc_count = processor_count();
   720   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
   721       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
   722     // Nof active processors is number of bits in process affinity mask
   723     int bitcount = 0;
   724     while (lpProcessAffinityMask != 0) {
   725       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
   726       bitcount++;
   727     }
   728     return bitcount;
   729   } else {
   730     return proc_count;
   731   }
   732 }
   734 void os::set_native_thread_name(const char *name) {
   735   // Not yet implemented.
   736   return;
   737 }
   739 bool os::distribute_processes(uint length, uint* distribution) {
   740   // Not yet implemented.
   741   return false;
   742 }
   744 bool os::bind_to_processor(uint processor_id) {
   745   // Not yet implemented.
   746   return false;
   747 }
   749 static void initialize_performance_counter() {
   750   LARGE_INTEGER count;
   751   if (QueryPerformanceFrequency(&count)) {
   752     has_performance_count = 1;
   753     performance_frequency = as_long(count);
   754     QueryPerformanceCounter(&count);
   755     initial_performance_count = as_long(count);
   756   } else {
   757     has_performance_count = 0;
   758     FILETIME wt;
   759     GetSystemTimeAsFileTime(&wt);
   760     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   761   }
   762 }
   765 double os::elapsedTime() {
   766   return (double) elapsed_counter() / (double) elapsed_frequency();
   767 }
   770 // Windows format:
   771 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
   772 // Java format:
   773 //   Java standards require the number of milliseconds since 1/1/1970
   775 // Constant offset - calculated using offset()
   776 static jlong  _offset   = 116444736000000000;
   777 // Fake time counter for reproducible results when debugging
   778 static jlong  fake_time = 0;
   780 #ifdef ASSERT
   781 // Just to be safe, recalculate the offset in debug mode
   782 static jlong _calculated_offset = 0;
   783 static int   _has_calculated_offset = 0;
   785 jlong offset() {
   786   if (_has_calculated_offset) return _calculated_offset;
   787   SYSTEMTIME java_origin;
   788   java_origin.wYear          = 1970;
   789   java_origin.wMonth         = 1;
   790   java_origin.wDayOfWeek     = 0; // ignored
   791   java_origin.wDay           = 1;
   792   java_origin.wHour          = 0;
   793   java_origin.wMinute        = 0;
   794   java_origin.wSecond        = 0;
   795   java_origin.wMilliseconds  = 0;
   796   FILETIME jot;
   797   if (!SystemTimeToFileTime(&java_origin, &jot)) {
   798     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
   799   }
   800   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
   801   _has_calculated_offset = 1;
   802   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
   803   return _calculated_offset;
   804 }
   805 #else
   806 jlong offset() {
   807   return _offset;
   808 }
   809 #endif
   811 jlong windows_to_java_time(FILETIME wt) {
   812   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   813   return (a - offset()) / 10000;
   814 }
   816 FILETIME java_to_windows_time(jlong l) {
   817   jlong a = (l * 10000) + offset();
   818   FILETIME result;
   819   result.dwHighDateTime = high(a);
   820   result.dwLowDateTime  = low(a);
   821   return result;
   822 }
   824 bool os::supports_vtime() { return true; }
   825 bool os::enable_vtime() { return false; }
   826 bool os::vtime_enabled() { return false; }
   828 double os::elapsedVTime() {
   829   FILETIME created;
   830   FILETIME exited;
   831   FILETIME kernel;
   832   FILETIME user;
   833   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
   834     // the resolution of windows_to_java_time() should be sufficient (ms)
   835     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
   836   } else {
   837     return elapsedTime();
   838   }
   839 }
   841 jlong os::javaTimeMillis() {
   842   if (UseFakeTimers) {
   843     return fake_time++;
   844   } else {
   845     FILETIME wt;
   846     GetSystemTimeAsFileTime(&wt);
   847     return windows_to_java_time(wt);
   848   }
   849 }
   851 jlong os::javaTimeNanos() {
   852   if (!has_performance_count) {
   853     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
   854   } else {
   855     LARGE_INTEGER current_count;
   856     QueryPerformanceCounter(&current_count);
   857     double current = as_long(current_count);
   858     double freq = performance_frequency;
   859     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
   860     return time;
   861   }
   862 }
   864 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
   865   if (!has_performance_count) {
   866     // javaTimeMillis() doesn't have much percision,
   867     // but it is not going to wrap -- so all 64 bits
   868     info_ptr->max_value = ALL_64_BITS;
   870     // this is a wall clock timer, so may skip
   871     info_ptr->may_skip_backward = true;
   872     info_ptr->may_skip_forward = true;
   873   } else {
   874     jlong freq = performance_frequency;
   875     if (freq < NANOSECS_PER_SEC) {
   876       // the performance counter is 64 bits and we will
   877       // be multiplying it -- so no wrap in 64 bits
   878       info_ptr->max_value = ALL_64_BITS;
   879     } else if (freq > NANOSECS_PER_SEC) {
   880       // use the max value the counter can reach to
   881       // determine the max value which could be returned
   882       julong max_counter = (julong)ALL_64_BITS;
   883       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
   884     } else {
   885       // the performance counter is 64 bits and we will
   886       // be using it directly -- so no wrap in 64 bits
   887       info_ptr->max_value = ALL_64_BITS;
   888     }
   890     // using a counter, so no skipping
   891     info_ptr->may_skip_backward = false;
   892     info_ptr->may_skip_forward = false;
   893   }
   894   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
   895 }
   897 char* os::local_time_string(char *buf, size_t buflen) {
   898   SYSTEMTIME st;
   899   GetLocalTime(&st);
   900   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
   901                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
   902   return buf;
   903 }
   905 bool os::getTimesSecs(double* process_real_time,
   906                      double* process_user_time,
   907                      double* process_system_time) {
   908   HANDLE h_process = GetCurrentProcess();
   909   FILETIME create_time, exit_time, kernel_time, user_time;
   910   BOOL result = GetProcessTimes(h_process,
   911                                &create_time,
   912                                &exit_time,
   913                                &kernel_time,
   914                                &user_time);
   915   if (result != 0) {
   916     FILETIME wt;
   917     GetSystemTimeAsFileTime(&wt);
   918     jlong rtc_millis = windows_to_java_time(wt);
   919     jlong user_millis = windows_to_java_time(user_time);
   920     jlong system_millis = windows_to_java_time(kernel_time);
   921     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
   922     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
   923     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
   924     return true;
   925   } else {
   926     return false;
   927   }
   928 }
   930 void os::shutdown() {
   932   // allow PerfMemory to attempt cleanup of any persistent resources
   933   perfMemory_exit();
   935   // flush buffered output, finish log files
   936   ostream_abort();
   938   // Check for abort hook
   939   abort_hook_t abort_hook = Arguments::abort_hook();
   940   if (abort_hook != NULL) {
   941     abort_hook();
   942   }
   943 }
   946 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
   947                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
   949 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
   950   HINSTANCE dbghelp;
   951   EXCEPTION_POINTERS ep;
   952   MINIDUMP_EXCEPTION_INFORMATION mei;
   953   MINIDUMP_EXCEPTION_INFORMATION* pmei;
   955   HANDLE hProcess = GetCurrentProcess();
   956   DWORD processId = GetCurrentProcessId();
   957   HANDLE dumpFile;
   958   MINIDUMP_TYPE dumpType;
   959   static const char* cwd;
   961 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
   962 #ifndef ASSERT
   963   // If running on a client version of Windows and user has not explicitly enabled dumping
   964   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
   965     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
   966     return;
   967     // If running on a server version of Windows and user has explictly disabled dumping
   968   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
   969     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
   970     return;
   971   }
   972 #else
   973   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
   974     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
   975     return;
   976   }
   977 #endif
   979   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
   981   if (dbghelp == NULL) {
   982     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
   983     return;
   984   }
   986   _MiniDumpWriteDump = CAST_TO_FN_PTR(
   987     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
   988     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
   989     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
   991   if (_MiniDumpWriteDump == NULL) {
   992     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
   993     return;
   994   }
   996   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
   998 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
   999 // API_VERSION_NUMBER 11 or higher contains the ones we want though
  1000 #if API_VERSION_NUMBER >= 11
  1001   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
  1002     MiniDumpWithUnloadedModules);
  1003 #endif
  1005   cwd = get_current_directory(NULL, 0);
  1006   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
  1007   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
  1009   if (dumpFile == INVALID_HANDLE_VALUE) {
  1010     VMError::report_coredump_status("Failed to create file for dumping", false);
  1011     return;
  1013   if (exceptionRecord != NULL && contextRecord != NULL) {
  1014     ep.ContextRecord = (PCONTEXT) contextRecord;
  1015     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
  1017     mei.ThreadId = GetCurrentThreadId();
  1018     mei.ExceptionPointers = &ep;
  1019     pmei = &mei;
  1020   } else {
  1021     pmei = NULL;
  1025   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
  1026   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
  1027   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
  1028       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
  1029         DWORD error = GetLastError();
  1030         LPTSTR msgbuf = NULL;
  1032         if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
  1033                       FORMAT_MESSAGE_FROM_SYSTEM |
  1034                       FORMAT_MESSAGE_IGNORE_INSERTS,
  1035                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
  1037           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
  1038           LocalFree(msgbuf);
  1039         } else {
  1040           // Call to FormatMessage failed, just include the result from GetLastError
  1041           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
  1043         VMError::report_coredump_status(buffer, false);
  1044   } else {
  1045     VMError::report_coredump_status(buffer, true);
  1048   CloseHandle(dumpFile);
  1053 void os::abort(bool dump_core)
  1055   os::shutdown();
  1056   // no core dump on Windows
  1057   ::exit(1);
  1060 // Die immediately, no exit hook, no abort hook, no cleanup.
  1061 void os::die() {
  1062   _exit(-1);
  1065 // Directory routines copied from src/win32/native/java/io/dirent_md.c
  1066 //  * dirent_md.c       1.15 00/02/02
  1067 //
  1068 // The declarations for DIR and struct dirent are in jvm_win32.h.
  1070 /* Caller must have already run dirname through JVM_NativePath, which removes
  1071    duplicate slashes and converts all instances of '/' into '\\'. */
  1073 DIR *
  1074 os::opendir(const char *dirname)
  1076     assert(dirname != NULL, "just checking");   // hotspot change
  1077     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
  1078     DWORD fattr;                                // hotspot change
  1079     char alt_dirname[4] = { 0, 0, 0, 0 };
  1081     if (dirp == 0) {
  1082         errno = ENOMEM;
  1083         return 0;
  1086     /*
  1087      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
  1088      * as a directory in FindFirstFile().  We detect this case here and
  1089      * prepend the current drive name.
  1090      */
  1091     if (dirname[1] == '\0' && dirname[0] == '\\') {
  1092         alt_dirname[0] = _getdrive() + 'A' - 1;
  1093         alt_dirname[1] = ':';
  1094         alt_dirname[2] = '\\';
  1095         alt_dirname[3] = '\0';
  1096         dirname = alt_dirname;
  1099     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
  1100     if (dirp->path == 0) {
  1101         free(dirp, mtInternal);
  1102         errno = ENOMEM;
  1103         return 0;
  1105     strcpy(dirp->path, dirname);
  1107     fattr = GetFileAttributes(dirp->path);
  1108     if (fattr == 0xffffffff) {
  1109         free(dirp->path, mtInternal);
  1110         free(dirp, mtInternal);
  1111         errno = ENOENT;
  1112         return 0;
  1113     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
  1114         free(dirp->path, mtInternal);
  1115         free(dirp, mtInternal);
  1116         errno = ENOTDIR;
  1117         return 0;
  1120     /* Append "*.*", or possibly "\\*.*", to path */
  1121     if (dirp->path[1] == ':'
  1122         && (dirp->path[2] == '\0'
  1123             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
  1124         /* No '\\' needed for cases like "Z:" or "Z:\" */
  1125         strcat(dirp->path, "*.*");
  1126     } else {
  1127         strcat(dirp->path, "\\*.*");
  1130     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
  1131     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1132         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
  1133             free(dirp->path, mtInternal);
  1134             free(dirp, mtInternal);
  1135             errno = EACCES;
  1136             return 0;
  1139     return dirp;
  1142 /* parameter dbuf unused on Windows */
  1144 struct dirent *
  1145 os::readdir(DIR *dirp, dirent *dbuf)
  1147     assert(dirp != NULL, "just checking");      // hotspot change
  1148     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1149         return 0;
  1152     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
  1154     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
  1155         if (GetLastError() == ERROR_INVALID_HANDLE) {
  1156             errno = EBADF;
  1157             return 0;
  1159         FindClose(dirp->handle);
  1160         dirp->handle = INVALID_HANDLE_VALUE;
  1163     return &dirp->dirent;
  1166 int
  1167 os::closedir(DIR *dirp)
  1169     assert(dirp != NULL, "just checking");      // hotspot change
  1170     if (dirp->handle != INVALID_HANDLE_VALUE) {
  1171         if (!FindClose(dirp->handle)) {
  1172             errno = EBADF;
  1173             return -1;
  1175         dirp->handle = INVALID_HANDLE_VALUE;
  1177     free(dirp->path, mtInternal);
  1178     free(dirp, mtInternal);
  1179     return 0;
  1182 // This must be hard coded because it's the system's temporary
  1183 // directory not the java application's temp directory, ala java.io.tmpdir.
  1184 const char* os::get_temp_directory() {
  1185   static char path_buf[MAX_PATH];
  1186   if (GetTempPath(MAX_PATH, path_buf)>0)
  1187     return path_buf;
  1188   else{
  1189     path_buf[0]='\0';
  1190     return path_buf;
  1194 static bool file_exists(const char* filename) {
  1195   if (filename == NULL || strlen(filename) == 0) {
  1196     return false;
  1198   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
  1201 bool os::dll_build_name(char *buffer, size_t buflen,
  1202                         const char* pname, const char* fname) {
  1203   bool retval = false;
  1204   const size_t pnamelen = pname ? strlen(pname) : 0;
  1205   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
  1207   // Return error on buffer overflow.
  1208   if (pnamelen + strlen(fname) + 10 > buflen) {
  1209     return retval;
  1212   if (pnamelen == 0) {
  1213     jio_snprintf(buffer, buflen, "%s.dll", fname);
  1214     retval = true;
  1215   } else if (c == ':' || c == '\\') {
  1216     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
  1217     retval = true;
  1218   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1219     int n;
  1220     char** pelements = split_path(pname, &n);
  1221     if (pelements == NULL) {
  1222       return false;
  1224     for (int i = 0 ; i < n ; i++) {
  1225       char* path = pelements[i];
  1226       // Really shouldn't be NULL, but check can't hurt
  1227       size_t plen = (path == NULL) ? 0 : strlen(path);
  1228       if (plen == 0) {
  1229         continue; // skip the empty path values
  1231       const char lastchar = path[plen - 1];
  1232       if (lastchar == ':' || lastchar == '\\') {
  1233         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
  1234       } else {
  1235         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
  1237       if (file_exists(buffer)) {
  1238         retval = true;
  1239         break;
  1242     // release the storage
  1243     for (int i = 0 ; i < n ; i++) {
  1244       if (pelements[i] != NULL) {
  1245         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1248     if (pelements != NULL) {
  1249       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1251   } else {
  1252     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
  1253     retval = true;
  1255   return retval;
  1258 // Needs to be in os specific directory because windows requires another
  1259 // header file <direct.h>
  1260 const char* os::get_current_directory(char *buf, size_t buflen) {
  1261   int n = static_cast<int>(buflen);
  1262   if (buflen > INT_MAX)  n = INT_MAX;
  1263   return _getcwd(buf, n);
  1266 //-----------------------------------------------------------
  1267 // Helper functions for fatal error handler
  1268 #ifdef _WIN64
  1269 // Helper routine which returns true if address in
  1270 // within the NTDLL address space.
  1271 //
  1272 static bool _addr_in_ntdll( address addr )
  1274   HMODULE hmod;
  1275   MODULEINFO minfo;
  1277   hmod = GetModuleHandle("NTDLL.DLL");
  1278   if ( hmod == NULL ) return false;
  1279   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
  1280                                &minfo, sizeof(MODULEINFO)) )
  1281     return false;
  1283   if ( (addr >= minfo.lpBaseOfDll) &&
  1284        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
  1285     return true;
  1286   else
  1287     return false;
  1289 #endif
  1292 // Enumerate all modules for a given process ID
  1293 //
  1294 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
  1295 // different API for doing this. We use PSAPI.DLL on NT based
  1296 // Windows and ToolHelp on 95/98/Me.
  1298 // Callback function that is called by enumerate_modules() on
  1299 // every DLL module.
  1300 // Input parameters:
  1301 //    int       pid,
  1302 //    char*     module_file_name,
  1303 //    address   module_base_addr,
  1304 //    unsigned  module_size,
  1305 //    void*     param
  1306 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
  1308 // enumerate_modules for Windows NT, using PSAPI
  1309 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
  1311   HANDLE   hProcess ;
  1313 # define MAX_NUM_MODULES 128
  1314   HMODULE     modules[MAX_NUM_MODULES];
  1315   static char filename[ MAX_PATH ];
  1316   int         result = 0;
  1318   if (!os::PSApiDll::PSApiAvailable()) {
  1319     return 0;
  1322   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1323                          FALSE, pid ) ;
  1324   if (hProcess == NULL) return 0;
  1326   DWORD size_needed;
  1327   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
  1328                            sizeof(modules), &size_needed)) {
  1329       CloseHandle( hProcess );
  1330       return 0;
  1333   // number of modules that are currently loaded
  1334   int num_modules = size_needed / sizeof(HMODULE);
  1336   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1337     // Get Full pathname:
  1338     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
  1339                              filename, sizeof(filename))) {
  1340         filename[0] = '\0';
  1343     MODULEINFO modinfo;
  1344     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
  1345                                &modinfo, sizeof(modinfo))) {
  1346         modinfo.lpBaseOfDll = NULL;
  1347         modinfo.SizeOfImage = 0;
  1350     // Invoke callback function
  1351     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
  1352                   modinfo.SizeOfImage, param);
  1353     if (result) break;
  1356   CloseHandle( hProcess ) ;
  1357   return result;
  1361 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
  1362 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
  1364   HANDLE                hSnapShot ;
  1365   static MODULEENTRY32  modentry ;
  1366   int                   result = 0;
  1368   if (!os::Kernel32Dll::HelpToolsAvailable()) {
  1369     return 0;
  1372   // Get a handle to a Toolhelp snapshot of the system
  1373   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
  1374   if( hSnapShot == INVALID_HANDLE_VALUE ) {
  1375       return FALSE ;
  1378   // iterate through all modules
  1379   modentry.dwSize = sizeof(MODULEENTRY32) ;
  1380   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
  1382   while( not_done ) {
  1383     // invoke the callback
  1384     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
  1385                 modentry.modBaseSize, param);
  1386     if (result) break;
  1388     modentry.dwSize = sizeof(MODULEENTRY32) ;
  1389     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
  1392   CloseHandle(hSnapShot);
  1393   return result;
  1396 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
  1398   // Get current process ID if caller doesn't provide it.
  1399   if (!pid) pid = os::current_process_id();
  1401   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
  1402   else                    return _enumerate_modules_windows(pid, func, param);
  1405 struct _modinfo {
  1406    address addr;
  1407    char*   full_path;   // point to a char buffer
  1408    int     buflen;      // size of the buffer
  1409    address base_addr;
  1410 };
  1412 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
  1413                                   unsigned size, void * param) {
  1414    struct _modinfo *pmod = (struct _modinfo *)param;
  1415    if (!pmod) return -1;
  1417    if (base_addr     <= pmod->addr &&
  1418        base_addr+size > pmod->addr) {
  1419      // if a buffer is provided, copy path name to the buffer
  1420      if (pmod->full_path) {
  1421        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
  1423      pmod->base_addr = base_addr;
  1424      return 1;
  1426    return 0;
  1429 bool os::dll_address_to_library_name(address addr, char* buf,
  1430                                      int buflen, int* offset) {
  1431   // buf is not optional, but offset is optional
  1432   assert(buf != NULL, "sanity check");
  1434 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
  1435 //       return the full path to the DLL file, sometimes it returns path
  1436 //       to the corresponding PDB file (debug info); sometimes it only
  1437 //       returns partial path, which makes life painful.
  1439   struct _modinfo mi;
  1440   mi.addr      = addr;
  1441   mi.full_path = buf;
  1442   mi.buflen    = buflen;
  1443   int pid = os::current_process_id();
  1444   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
  1445     // buf already contains path name
  1446     if (offset) *offset = addr - mi.base_addr;
  1447     return true;
  1450   buf[0] = '\0';
  1451   if (offset) *offset = -1;
  1452   return false;
  1455 bool os::dll_address_to_function_name(address addr, char *buf,
  1456                                       int buflen, int *offset) {
  1457   // buf is not optional, but offset is optional
  1458   assert(buf != NULL, "sanity check");
  1460   if (Decoder::decode(addr, buf, buflen, offset)) {
  1461     return true;
  1463   if (offset != NULL)  *offset  = -1;
  1464   buf[0] = '\0';
  1465   return false;
  1468 // save the start and end address of jvm.dll into param[0] and param[1]
  1469 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
  1470                     unsigned size, void * param) {
  1471    if (!param) return -1;
  1473    if (base_addr     <= (address)_locate_jvm_dll &&
  1474        base_addr+size > (address)_locate_jvm_dll) {
  1475          ((address*)param)[0] = base_addr;
  1476          ((address*)param)[1] = base_addr + size;
  1477          return 1;
  1479    return 0;
  1482 address vm_lib_location[2];    // start and end address of jvm.dll
  1484 // check if addr is inside jvm.dll
  1485 bool os::address_is_in_vm(address addr) {
  1486   if (!vm_lib_location[0] || !vm_lib_location[1]) {
  1487     int pid = os::current_process_id();
  1488     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
  1489       assert(false, "Can't find jvm module.");
  1490       return false;
  1494   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
  1497 // print module info; param is outputStream*
  1498 static int _print_module(int pid, char* fname, address base,
  1499                          unsigned size, void* param) {
  1500    if (!param) return -1;
  1502    outputStream* st = (outputStream*)param;
  1504    address end_addr = base + size;
  1505    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
  1506    return 0;
  1509 // Loads .dll/.so and
  1510 // in case of error it checks if .dll/.so was built for the
  1511 // same architecture as Hotspot is running on
  1512 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
  1514   void * result = LoadLibrary(name);
  1515   if (result != NULL)
  1517     return result;
  1520   DWORD errcode = GetLastError();
  1521   if (errcode == ERROR_MOD_NOT_FOUND) {
  1522     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
  1523     ebuf[ebuflen-1]='\0';
  1524     return NULL;
  1527   // Parsing dll below
  1528   // If we can read dll-info and find that dll was built
  1529   // for an architecture other than Hotspot is running in
  1530   // - then print to buffer "DLL was built for a different architecture"
  1531   // else call os::lasterror to obtain system error message
  1533   // Read system error message into ebuf
  1534   // It may or may not be overwritten below (in the for loop and just above)
  1535   lasterror(ebuf, (size_t) ebuflen);
  1536   ebuf[ebuflen-1]='\0';
  1537   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
  1538   if (file_descriptor<0)
  1540     return NULL;
  1543   uint32_t signature_offset;
  1544   uint16_t lib_arch=0;
  1545   bool failed_to_get_lib_arch=
  1547     //Go to position 3c in the dll
  1548     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
  1549     ||
  1550     // Read loacation of signature
  1551     (sizeof(signature_offset)!=
  1552       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
  1553     ||
  1554     //Go to COFF File Header in dll
  1555     //that is located after"signature" (4 bytes long)
  1556     (os::seek_to_file_offset(file_descriptor,
  1557       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
  1558     ||
  1559     //Read field that contains code of architecture
  1560     // that dll was build for
  1561     (sizeof(lib_arch)!=
  1562       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
  1563   );
  1565   ::close(file_descriptor);
  1566   if (failed_to_get_lib_arch)
  1568     // file i/o error - report os::lasterror(...) msg
  1569     return NULL;
  1572   typedef struct
  1574     uint16_t arch_code;
  1575     char* arch_name;
  1576   } arch_t;
  1578   static const arch_t arch_array[]={
  1579     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
  1580     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
  1581     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
  1582   };
  1583   #if   (defined _M_IA64)
  1584     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
  1585   #elif (defined _M_AMD64)
  1586     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
  1587   #elif (defined _M_IX86)
  1588     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
  1589   #else
  1590     #error Method os::dll_load requires that one of following \
  1591            is defined :_M_IA64,_M_AMD64 or _M_IX86
  1592   #endif
  1595   // Obtain a string for printf operation
  1596   // lib_arch_str shall contain string what platform this .dll was built for
  1597   // running_arch_str shall string contain what platform Hotspot was built for
  1598   char *running_arch_str=NULL,*lib_arch_str=NULL;
  1599   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
  1601     if (lib_arch==arch_array[i].arch_code)
  1602       lib_arch_str=arch_array[i].arch_name;
  1603     if (running_arch==arch_array[i].arch_code)
  1604       running_arch_str=arch_array[i].arch_name;
  1607   assert(running_arch_str,
  1608     "Didn't find runing architecture code in arch_array");
  1610   // If the architure is right
  1611   // but some other error took place - report os::lasterror(...) msg
  1612   if (lib_arch == running_arch)
  1614     return NULL;
  1617   if (lib_arch_str!=NULL)
  1619     ::_snprintf(ebuf, ebuflen-1,
  1620       "Can't load %s-bit .dll on a %s-bit platform",
  1621       lib_arch_str,running_arch_str);
  1623   else
  1625     // don't know what architecture this dll was build for
  1626     ::_snprintf(ebuf, ebuflen-1,
  1627       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
  1628       lib_arch,running_arch_str);
  1631   return NULL;
  1635 void os::print_dll_info(outputStream *st) {
  1636    int pid = os::current_process_id();
  1637    st->print_cr("Dynamic libraries:");
  1638    enumerate_modules(pid, _print_module, (void *)st);
  1641 void os::print_os_info_brief(outputStream* st) {
  1642   os::print_os_info(st);
  1645 void os::print_os_info(outputStream* st) {
  1646   st->print("OS:");
  1648   os::win32::print_windows_version(st);
  1651 void os::win32::print_windows_version(outputStream* st) {
  1652   OSVERSIONINFOEX osvi;
  1653   VS_FIXEDFILEINFO *file_info;
  1654   TCHAR kernel32_path[MAX_PATH];
  1655   UINT len, ret;
  1657   // Use the GetVersionEx information to see if we're on a server or
  1658   // workstation edition of Windows. Starting with Windows 8.1 we can't
  1659   // trust the OS version information returned by this API.
  1660   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
  1661   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  1662   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
  1663     st->print_cr("Call to GetVersionEx failed");
  1664     return;
  1666   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
  1668   // Get the full path to \Windows\System32\kernel32.dll and use that for
  1669   // determining what version of Windows we're running on.
  1670   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
  1671   ret = GetSystemDirectory(kernel32_path, len);
  1672   if (ret == 0 || ret > len) {
  1673     st->print_cr("Call to GetSystemDirectory failed");
  1674     return;
  1676   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
  1678   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
  1679   if (version_size == 0) {
  1680     st->print_cr("Call to GetFileVersionInfoSize failed");
  1681     return;
  1684   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
  1685   if (version_info == NULL) {
  1686     st->print_cr("Failed to allocate version_info");
  1687     return;
  1690   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
  1691     os::free(version_info);
  1692     st->print_cr("Call to GetFileVersionInfo failed");
  1693     return;
  1696   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
  1697     os::free(version_info);
  1698     st->print_cr("Call to VerQueryValue failed");
  1699     return;
  1702   int major_version = HIWORD(file_info->dwProductVersionMS);
  1703   int minor_version = LOWORD(file_info->dwProductVersionMS);
  1704   int build_number = HIWORD(file_info->dwProductVersionLS);
  1705   int build_minor = LOWORD(file_info->dwProductVersionLS);
  1706   int os_vers = major_version * 1000 + minor_version;
  1707   os::free(version_info);
  1709   st->print(" Windows ");
  1710   switch (os_vers) {
  1712   case 6000:
  1713     if (is_workstation) {
  1714       st->print("Vista");
  1715     } else {
  1716       st->print("Server 2008");
  1718     break;
  1720   case 6001:
  1721     if (is_workstation) {
  1722       st->print("7");
  1723     } else {
  1724       st->print("Server 2008 R2");
  1726     break;
  1728   case 6002:
  1729     if (is_workstation) {
  1730       st->print("8");
  1731     } else {
  1732       st->print("Server 2012");
  1734     break;
  1736   case 6003:
  1737     if (is_workstation) {
  1738       st->print("8.1");
  1739     } else {
  1740       st->print("Server 2012 R2");
  1742     break;
  1744   case 6004:
  1745     if (is_workstation) {
  1746       st->print("10");
  1747     } else {
  1748       // The server version name of Windows 10 is not known at this time
  1749       st->print("%d.%d", major_version, minor_version);
  1751     break;
  1753   default:
  1754     // Unrecognized windows, print out its major and minor versions
  1755     st->print("%d.%d", major_version, minor_version);
  1756     break;
  1759   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
  1760   // find out whether we are running on 64 bit processor or not
  1761   SYSTEM_INFO si;
  1762   ZeroMemory(&si, sizeof(SYSTEM_INFO));
  1763   os::Kernel32Dll::GetNativeSystemInfo(&si);
  1764   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
  1765     st->print(" , 64 bit");
  1768   st->print(" Build %d", build_number);
  1769   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
  1770   st->cr();
  1773 void os::pd_print_cpu_info(outputStream* st) {
  1774   // Nothing to do for now.
  1777 void os::print_memory_info(outputStream* st) {
  1778   st->print("Memory:");
  1779   st->print(" %dk page", os::vm_page_size()>>10);
  1781   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
  1782   // value if total memory is larger than 4GB
  1783   MEMORYSTATUSEX ms;
  1784   ms.dwLength = sizeof(ms);
  1785   GlobalMemoryStatusEx(&ms);
  1787   st->print(", physical %uk", os::physical_memory() >> 10);
  1788   st->print("(%uk free)", os::available_memory() >> 10);
  1790   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
  1791   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
  1792   st->cr();
  1795 void os::print_siginfo(outputStream *st, void *siginfo) {
  1796   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
  1797   st->print("siginfo:");
  1798   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
  1800   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  1801       er->NumberParameters >= 2) {
  1802       switch (er->ExceptionInformation[0]) {
  1803       case 0: st->print(", reading address"); break;
  1804       case 1: st->print(", writing address"); break;
  1805       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
  1806                             er->ExceptionInformation[0]);
  1808       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
  1809   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
  1810              er->NumberParameters >= 2 && UseSharedSpaces) {
  1811     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1812     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
  1813       st->print("\n\nError accessing class data sharing archive."       \
  1814                 " Mapped file inaccessible during execution, "          \
  1815                 " possible disk/network problem.");
  1817   } else {
  1818     int num = er->NumberParameters;
  1819     if (num > 0) {
  1820       st->print(", ExceptionInformation=");
  1821       for (int i = 0; i < num; i++) {
  1822         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
  1826   st->cr();
  1829 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1830   // do nothing
  1833 static char saved_jvm_path[MAX_PATH] = {0};
  1835 // Find the full path to the current module, jvm.dll
  1836 void os::jvm_path(char *buf, jint buflen) {
  1837   // Error checking.
  1838   if (buflen < MAX_PATH) {
  1839     assert(false, "must use a large-enough buffer");
  1840     buf[0] = '\0';
  1841     return;
  1843   // Lazy resolve the path to current module.
  1844   if (saved_jvm_path[0] != 0) {
  1845     strcpy(buf, saved_jvm_path);
  1846     return;
  1849   buf[0] = '\0';
  1850   if (Arguments::created_by_gamma_launcher()) {
  1851      // Support for the gamma launcher. Check for an
  1852      // JAVA_HOME environment variable
  1853      // and fix up the path so it looks like
  1854      // libjvm.so is installed there (append a fake suffix
  1855      // hotspot/libjvm.so).
  1856      char* java_home_var = ::getenv("JAVA_HOME");
  1857      if (java_home_var != NULL && java_home_var[0] != 0 &&
  1858          strlen(java_home_var) < (size_t)buflen) {
  1860         strncpy(buf, java_home_var, buflen);
  1862         // determine if this is a legacy image or modules image
  1863         // modules image doesn't have "jre" subdirectory
  1864         size_t len = strlen(buf);
  1865         char* jrebin_p = buf + len;
  1866         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
  1867         if (0 != _access(buf, 0)) {
  1868           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
  1870         len = strlen(buf);
  1871         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
  1875   if(buf[0] == '\0') {
  1876     GetModuleFileName(vm_lib_handle, buf, buflen);
  1878   strncpy(saved_jvm_path, buf, MAX_PATH);
  1882 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1883 #ifndef _WIN64
  1884   st->print("_");
  1885 #endif
  1889 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1890 #ifndef _WIN64
  1891   st->print("@%d", args_size  * sizeof(int));
  1892 #endif
  1895 // This method is a copy of JDK's sysGetLastErrorString
  1896 // from src/windows/hpi/src/system_md.c
  1898 size_t os::lasterror(char* buf, size_t len) {
  1899   DWORD errval;
  1901   if ((errval = GetLastError()) != 0) {
  1902     // DOS error
  1903     size_t n = (size_t)FormatMessage(
  1904           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  1905           NULL,
  1906           errval,
  1907           0,
  1908           buf,
  1909           (DWORD)len,
  1910           NULL);
  1911     if (n > 3) {
  1912       // Drop final '.', CR, LF
  1913       if (buf[n - 1] == '\n') n--;
  1914       if (buf[n - 1] == '\r') n--;
  1915       if (buf[n - 1] == '.') n--;
  1916       buf[n] = '\0';
  1918     return n;
  1921   if (errno != 0) {
  1922     // C runtime error that has no corresponding DOS error code
  1923     const char* s = strerror(errno);
  1924     size_t n = strlen(s);
  1925     if (n >= len) n = len - 1;
  1926     strncpy(buf, s, n);
  1927     buf[n] = '\0';
  1928     return n;
  1931   return 0;
  1934 int os::get_last_error() {
  1935   DWORD error = GetLastError();
  1936   if (error == 0)
  1937     error = errno;
  1938   return (int)error;
  1941 // sun.misc.Signal
  1942 // NOTE that this is a workaround for an apparent kernel bug where if
  1943 // a signal handler for SIGBREAK is installed then that signal handler
  1944 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
  1945 // See bug 4416763.
  1946 static void (*sigbreakHandler)(int) = NULL;
  1948 static void UserHandler(int sig, void *siginfo, void *context) {
  1949   os::signal_notify(sig);
  1950   // We need to reinstate the signal handler each time...
  1951   os::signal(sig, (void*)UserHandler);
  1954 void* os::user_handler() {
  1955   return (void*) UserHandler;
  1958 void* os::signal(int signal_number, void* handler) {
  1959   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
  1960     void (*oldHandler)(int) = sigbreakHandler;
  1961     sigbreakHandler = (void (*)(int)) handler;
  1962     return (void*) oldHandler;
  1963   } else {
  1964     return (void*)::signal(signal_number, (void (*)(int))handler);
  1968 void os::signal_raise(int signal_number) {
  1969   raise(signal_number);
  1972 // The Win32 C runtime library maps all console control events other than ^C
  1973 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
  1974 // logoff, and shutdown events.  We therefore install our own console handler
  1975 // that raises SIGTERM for the latter cases.
  1976 //
  1977 static BOOL WINAPI consoleHandler(DWORD event) {
  1978   switch(event) {
  1979     case CTRL_C_EVENT:
  1980       if (is_error_reported()) {
  1981         // Ctrl-C is pressed during error reporting, likely because the error
  1982         // handler fails to abort. Let VM die immediately.
  1983         os::die();
  1986       os::signal_raise(SIGINT);
  1987       return TRUE;
  1988       break;
  1989     case CTRL_BREAK_EVENT:
  1990       if (sigbreakHandler != NULL) {
  1991         (*sigbreakHandler)(SIGBREAK);
  1993       return TRUE;
  1994       break;
  1995     case CTRL_LOGOFF_EVENT: {
  1996       // Don't terminate JVM if it is running in a non-interactive session,
  1997       // such as a service process.
  1998       USEROBJECTFLAGS flags;
  1999       HANDLE handle = GetProcessWindowStation();
  2000       if (handle != NULL &&
  2001           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
  2002             sizeof( USEROBJECTFLAGS), NULL)) {
  2003         // If it is a non-interactive session, let next handler to deal
  2004         // with it.
  2005         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
  2006           return FALSE;
  2010     case CTRL_CLOSE_EVENT:
  2011     case CTRL_SHUTDOWN_EVENT:
  2012       os::signal_raise(SIGTERM);
  2013       return TRUE;
  2014       break;
  2015     default:
  2016       break;
  2018   return FALSE;
  2021 /*
  2022  * The following code is moved from os.cpp for making this
  2023  * code platform specific, which it is by its very nature.
  2024  */
  2026 // Return maximum OS signal used + 1 for internal use only
  2027 // Used as exit signal for signal_thread
  2028 int os::sigexitnum_pd(){
  2029   return NSIG;
  2032 // a counter for each possible signal value, including signal_thread exit signal
  2033 static volatile jint pending_signals[NSIG+1] = { 0 };
  2034 static HANDLE sig_sem = NULL;
  2036 void os::signal_init_pd() {
  2037   // Initialize signal structures
  2038   memset((void*)pending_signals, 0, sizeof(pending_signals));
  2040   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
  2042   // Programs embedding the VM do not want it to attempt to receive
  2043   // events like CTRL_LOGOFF_EVENT, which are used to implement the
  2044   // shutdown hooks mechanism introduced in 1.3.  For example, when
  2045   // the VM is run as part of a Windows NT service (i.e., a servlet
  2046   // engine in a web server), the correct behavior is for any console
  2047   // control handler to return FALSE, not TRUE, because the OS's
  2048   // "final" handler for such events allows the process to continue if
  2049   // it is a service (while terminating it if it is not a service).
  2050   // To make this behavior uniform and the mechanism simpler, we
  2051   // completely disable the VM's usage of these console events if -Xrs
  2052   // (=ReduceSignalUsage) is specified.  This means, for example, that
  2053   // the CTRL-BREAK thread dump mechanism is also disabled in this
  2054   // case.  See bugs 4323062, 4345157, and related bugs.
  2056   if (!ReduceSignalUsage) {
  2057     // Add a CTRL-C handler
  2058     SetConsoleCtrlHandler(consoleHandler, TRUE);
  2062 void os::signal_notify(int signal_number) {
  2063   BOOL ret;
  2064   if (sig_sem != NULL) {
  2065     Atomic::inc(&pending_signals[signal_number]);
  2066     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  2067     assert(ret != 0, "ReleaseSemaphore() failed");
  2071 static int check_pending_signals(bool wait_for_signal) {
  2072   DWORD ret;
  2073   while (true) {
  2074     for (int i = 0; i < NSIG + 1; i++) {
  2075       jint n = pending_signals[i];
  2076       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2077         return i;
  2080     if (!wait_for_signal) {
  2081       return -1;
  2084     JavaThread *thread = JavaThread::current();
  2086     ThreadBlockInVM tbivm(thread);
  2088     bool threadIsSuspended;
  2089     do {
  2090       thread->set_suspend_equivalent();
  2091       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2092       ret = ::WaitForSingleObject(sig_sem, INFINITE);
  2093       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
  2095       // were we externally suspended while we were waiting?
  2096       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2097       if (threadIsSuspended) {
  2098         //
  2099         // The semaphore has been incremented, but while we were waiting
  2100         // another thread suspended us. We don't want to continue running
  2101         // while suspended because that would surprise the thread that
  2102         // suspended us.
  2103         //
  2104         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  2105         assert(ret != 0, "ReleaseSemaphore() failed");
  2107         thread->java_suspend_self();
  2109     } while (threadIsSuspended);
  2113 int os::signal_lookup() {
  2114   return check_pending_signals(false);
  2117 int os::signal_wait() {
  2118   return check_pending_signals(true);
  2121 // Implicit OS exception handling
  2123 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
  2124   JavaThread* thread = JavaThread::current();
  2125   // Save pc in thread
  2126 #ifdef _M_IA64
  2127   // Do not blow up if no thread info available.
  2128   if (thread) {
  2129     // Saving PRECISE pc (with slot information) in thread.
  2130     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
  2131     // Convert precise PC into "Unix" format
  2132     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
  2133     thread->set_saved_exception_pc((address)precise_pc);
  2135   // Set pc to handler
  2136   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
  2137   // Clear out psr.ri (= Restart Instruction) in order to continue
  2138   // at the beginning of the target bundle.
  2139   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
  2140   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
  2141 #elif _M_AMD64
  2142   // Do not blow up if no thread info available.
  2143   if (thread) {
  2144     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
  2146   // Set pc to handler
  2147   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
  2148 #else
  2149   // Do not blow up if no thread info available.
  2150   if (thread) {
  2151     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
  2153   // Set pc to handler
  2154   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
  2155 #endif
  2157   // Continue the execution
  2158   return EXCEPTION_CONTINUE_EXECUTION;
  2162 // Used for PostMortemDump
  2163 extern "C" void safepoints();
  2164 extern "C" void find(int x);
  2165 extern "C" void events();
  2167 // According to Windows API documentation, an illegal instruction sequence should generate
  2168 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
  2169 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
  2170 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
  2172 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
  2174 // From "Execution Protection in the Windows Operating System" draft 0.35
  2175 // Once a system header becomes available, the "real" define should be
  2176 // included or copied here.
  2177 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
  2179 // Handle NAT Bit consumption on IA64.
  2180 #ifdef _M_IA64
  2181 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
  2182 #endif
  2184 // Windows Vista/2008 heap corruption check
  2185 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
  2187 #define def_excpt(val) #val, val
  2189 struct siglabel {
  2190   char *name;
  2191   int   number;
  2192 };
  2194 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
  2195 // C++ compiler contain this error code. Because this is a compiler-generated
  2196 // error, the code is not listed in the Win32 API header files.
  2197 // The code is actually a cryptic mnemonic device, with the initial "E"
  2198 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
  2199 // ASCII values of "msc".
  2201 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
  2204 struct siglabel exceptlabels[] = {
  2205     def_excpt(EXCEPTION_ACCESS_VIOLATION),
  2206     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
  2207     def_excpt(EXCEPTION_BREAKPOINT),
  2208     def_excpt(EXCEPTION_SINGLE_STEP),
  2209     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
  2210     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
  2211     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
  2212     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
  2213     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
  2214     def_excpt(EXCEPTION_FLT_OVERFLOW),
  2215     def_excpt(EXCEPTION_FLT_STACK_CHECK),
  2216     def_excpt(EXCEPTION_FLT_UNDERFLOW),
  2217     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
  2218     def_excpt(EXCEPTION_INT_OVERFLOW),
  2219     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
  2220     def_excpt(EXCEPTION_IN_PAGE_ERROR),
  2221     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
  2222     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
  2223     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
  2224     def_excpt(EXCEPTION_STACK_OVERFLOW),
  2225     def_excpt(EXCEPTION_INVALID_DISPOSITION),
  2226     def_excpt(EXCEPTION_GUARD_PAGE),
  2227     def_excpt(EXCEPTION_INVALID_HANDLE),
  2228     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
  2229     def_excpt(EXCEPTION_HEAP_CORRUPTION),
  2230 #ifdef _M_IA64
  2231     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
  2232 #endif
  2233     NULL, 0
  2234 };
  2236 const char* os::exception_name(int exception_code, char *buf, size_t size) {
  2237   for (int i = 0; exceptlabels[i].name != NULL; i++) {
  2238     if (exceptlabels[i].number == exception_code) {
  2239        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
  2240        return buf;
  2244   return NULL;
  2247 //-----------------------------------------------------------------------------
  2248 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2249   // handle exception caused by idiv; should only happen for -MinInt/-1
  2250   // (division by zero is handled explicitly)
  2251 #ifdef _M_IA64
  2252   assert(0, "Fix Handle_IDiv_Exception");
  2253 #elif _M_AMD64
  2254   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2255   address pc = (address)ctx->Rip;
  2256   assert(pc[0] == 0xF7, "not an idiv opcode");
  2257   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2258   assert(ctx->Rax == min_jint, "unexpected idiv exception");
  2259   // set correct result values and continue after idiv instruction
  2260   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2261   ctx->Rax = (DWORD)min_jint;      // result
  2262   ctx->Rdx = (DWORD)0;             // remainder
  2263   // Continue the execution
  2264 #else
  2265   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2266   address pc = (address)ctx->Eip;
  2267   assert(pc[0] == 0xF7, "not an idiv opcode");
  2268   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2269   assert(ctx->Eax == min_jint, "unexpected idiv exception");
  2270   // set correct result values and continue after idiv instruction
  2271   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2272   ctx->Eax = (DWORD)min_jint;      // result
  2273   ctx->Edx = (DWORD)0;             // remainder
  2274   // Continue the execution
  2275 #endif
  2276   return EXCEPTION_CONTINUE_EXECUTION;
  2279 #ifndef  _WIN64
  2280 //-----------------------------------------------------------------------------
  2281 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2282   // handle exception caused by native method modifying control word
  2283   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2284   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2286   switch (exception_code) {
  2287     case EXCEPTION_FLT_DENORMAL_OPERAND:
  2288     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
  2289     case EXCEPTION_FLT_INEXACT_RESULT:
  2290     case EXCEPTION_FLT_INVALID_OPERATION:
  2291     case EXCEPTION_FLT_OVERFLOW:
  2292     case EXCEPTION_FLT_STACK_CHECK:
  2293     case EXCEPTION_FLT_UNDERFLOW:
  2294       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
  2295       if (fp_control_word != ctx->FloatSave.ControlWord) {
  2296         // Restore FPCW and mask out FLT exceptions
  2297         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
  2298         // Mask out pending FLT exceptions
  2299         ctx->FloatSave.StatusWord &=  0xffffff00;
  2300         return EXCEPTION_CONTINUE_EXECUTION;
  2304   if (prev_uef_handler != NULL) {
  2305     // We didn't handle this exception so pass it to the previous
  2306     // UnhandledExceptionFilter.
  2307     return (prev_uef_handler)(exceptionInfo);
  2310   return EXCEPTION_CONTINUE_SEARCH;
  2312 #else //_WIN64
  2313 /*
  2314   On Windows, the mxcsr control bits are non-volatile across calls
  2315   See also CR 6192333
  2316   If EXCEPTION_FLT_* happened after some native method modified
  2317   mxcsr - it is not a jvm fault.
  2318   However should we decide to restore of mxcsr after a faulty
  2319   native method we can uncomment following code
  2320       jint MxCsr = INITIAL_MXCSR;
  2321         // we can't use StubRoutines::addr_mxcsr_std()
  2322         // because in Win64 mxcsr is not saved there
  2323       if (MxCsr != ctx->MxCsr) {
  2324         ctx->MxCsr = MxCsr;
  2325         return EXCEPTION_CONTINUE_EXECUTION;
  2328 */
  2329 #endif // _WIN64
  2332 static inline void report_error(Thread* t, DWORD exception_code,
  2333                                 address addr, void* siginfo, void* context) {
  2334   VMError err(t, exception_code, addr, siginfo, context);
  2335   err.report_and_die();
  2337   // If UseOsErrorReporting, this will return here and save the error file
  2338   // somewhere where we can find it in the minidump.
  2341 //-----------------------------------------------------------------------------
  2342 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2343   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
  2344   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2345 #ifdef _M_IA64
  2346   // On Itanium, we need the "precise pc", which has the slot number coded
  2347   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
  2348   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
  2349   // Convert the pc to "Unix format", which has the slot number coded
  2350   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
  2351   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
  2352   // information is saved in the Unix format.
  2353   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
  2354 #elif _M_AMD64
  2355   address pc = (address) exceptionInfo->ContextRecord->Rip;
  2356 #else
  2357   address pc = (address) exceptionInfo->ContextRecord->Eip;
  2358 #endif
  2359   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
  2361   // Handle SafeFetch32 and SafeFetchN exceptions.
  2362   if (StubRoutines::is_safefetch_fault(pc)) {
  2363     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
  2366 #ifndef _WIN64
  2367   // Execution protection violation - win32 running on AMD64 only
  2368   // Handled first to avoid misdiagnosis as a "normal" access violation;
  2369   // This is safe to do because we have a new/unique ExceptionInformation
  2370   // code for this condition.
  2371   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2372     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2373     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
  2374     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2376     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
  2377       int page_size = os::vm_page_size();
  2379       // Make sure the pc and the faulting address are sane.
  2380       //
  2381       // If an instruction spans a page boundary, and the page containing
  2382       // the beginning of the instruction is executable but the following
  2383       // page is not, the pc and the faulting address might be slightly
  2384       // different - we still want to unguard the 2nd page in this case.
  2385       //
  2386       // 15 bytes seems to be a (very) safe value for max instruction size.
  2387       bool pc_is_near_addr =
  2388         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
  2389       bool instr_spans_page_boundary =
  2390         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
  2391                          (intptr_t) page_size) > 0);
  2393       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
  2394         static volatile address last_addr =
  2395           (address) os::non_memory_address_word();
  2397         // In conservative mode, don't unguard unless the address is in the VM
  2398         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
  2399             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
  2401           // Set memory to RWX and retry
  2402           address page_start =
  2403             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
  2404           bool res = os::protect_memory((char*) page_start, page_size,
  2405                                         os::MEM_PROT_RWX);
  2407           if (PrintMiscellaneous && Verbose) {
  2408             char buf[256];
  2409             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
  2410                          "at " INTPTR_FORMAT
  2411                          ", unguarding " INTPTR_FORMAT ": %s", addr,
  2412                          page_start, (res ? "success" : strerror(errno)));
  2413             tty->print_raw_cr(buf);
  2416           // Set last_addr so if we fault again at the same address, we don't
  2417           // end up in an endless loop.
  2418           //
  2419           // There are two potential complications here.  Two threads trapping
  2420           // at the same address at the same time could cause one of the
  2421           // threads to think it already unguarded, and abort the VM.  Likely
  2422           // very rare.
  2423           //
  2424           // The other race involves two threads alternately trapping at
  2425           // different addresses and failing to unguard the page, resulting in
  2426           // an endless loop.  This condition is probably even more unlikely
  2427           // than the first.
  2428           //
  2429           // Although both cases could be avoided by using locks or thread
  2430           // local last_addr, these solutions are unnecessary complication:
  2431           // this handler is a best-effort safety net, not a complete solution.
  2432           // It is disabled by default and should only be used as a workaround
  2433           // in case we missed any no-execute-unsafe VM code.
  2435           last_addr = addr;
  2437           return EXCEPTION_CONTINUE_EXECUTION;
  2441       // Last unguard failed or not unguarding
  2442       tty->print_raw_cr("Execution protection violation");
  2443       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
  2444                    exceptionInfo->ContextRecord);
  2445       return EXCEPTION_CONTINUE_SEARCH;
  2448 #endif // _WIN64
  2450   // Check to see if we caught the safepoint code in the
  2451   // process of write protecting the memory serialization page.
  2452   // It write enables the page immediately after protecting it
  2453   // so just return.
  2454   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  2455     JavaThread* thread = (JavaThread*) t;
  2456     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2457     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2458     if ( os::is_memory_serialize_page(thread, addr) ) {
  2459       // Block current thread until the memory serialize page permission restored.
  2460       os::block_on_serialize_page_trap();
  2461       return EXCEPTION_CONTINUE_EXECUTION;
  2465   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
  2466       VM_Version::is_cpuinfo_segv_addr(pc)) {
  2467     // Verify that OS save/restore AVX registers.
  2468     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
  2471   if (t != NULL && t->is_Java_thread()) {
  2472     JavaThread* thread = (JavaThread*) t;
  2473     bool in_java = thread->thread_state() == _thread_in_Java;
  2475     // Handle potential stack overflows up front.
  2476     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
  2477       if (os::uses_stack_guard_pages()) {
  2478 #ifdef _M_IA64
  2479         // Use guard page for register stack.
  2480         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2481         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2482         // Check for a register stack overflow on Itanium
  2483         if (thread->addr_inside_register_stack_red_zone(addr)) {
  2484           // Fatal red zone violation happens if the Java program
  2485           // catches a StackOverflow error and does so much processing
  2486           // that it runs beyond the unprotected yellow guard zone. As
  2487           // a result, we are out of here.
  2488           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
  2489         } else if(thread->addr_inside_register_stack(addr)) {
  2490           // Disable the yellow zone which sets the state that
  2491           // we've got a stack overflow problem.
  2492           if (thread->stack_yellow_zone_enabled()) {
  2493             thread->disable_stack_yellow_zone();
  2495           // Give us some room to process the exception.
  2496           thread->disable_register_stack_guard();
  2497           // Tracing with +Verbose.
  2498           if (Verbose) {
  2499             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
  2500             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
  2501             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
  2502             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
  2503                           thread->register_stack_base(),
  2504                           thread->register_stack_base() + thread->stack_size());
  2507           // Reguard the permanent register stack red zone just to be sure.
  2508           // We saw Windows silently disabling this without telling us.
  2509           thread->enable_register_stack_red_zone();
  2511           return Handle_Exception(exceptionInfo,
  2512             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2514 #endif
  2515         if (thread->stack_yellow_zone_enabled()) {
  2516           // Yellow zone violation.  The o/s has unprotected the first yellow
  2517           // zone page for us.  Note:  must call disable_stack_yellow_zone to
  2518           // update the enabled status, even if the zone contains only one page.
  2519           thread->disable_stack_yellow_zone();
  2520           // If not in java code, return and hope for the best.
  2521           return in_java ? Handle_Exception(exceptionInfo,
  2522             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2523             :  EXCEPTION_CONTINUE_EXECUTION;
  2524         } else {
  2525           // Fatal red zone violation.
  2526           thread->disable_stack_red_zone();
  2527           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
  2528           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2529                        exceptionInfo->ContextRecord);
  2530           return EXCEPTION_CONTINUE_SEARCH;
  2532       } else if (in_java) {
  2533         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
  2534         // a one-time-only guard page, which it has released to us.  The next
  2535         // stack overflow on this thread will result in an ACCESS_VIOLATION.
  2536         return Handle_Exception(exceptionInfo,
  2537           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2538       } else {
  2539         // Can only return and hope for the best.  Further stack growth will
  2540         // result in an ACCESS_VIOLATION.
  2541         return EXCEPTION_CONTINUE_EXECUTION;
  2543     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2544       // Either stack overflow or null pointer exception.
  2545       if (in_java) {
  2546         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2547         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2548         address stack_end = thread->stack_base() - thread->stack_size();
  2549         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
  2550           // Stack overflow.
  2551           assert(!os::uses_stack_guard_pages(),
  2552             "should be caught by red zone code above.");
  2553           return Handle_Exception(exceptionInfo,
  2554             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2556         //
  2557         // Check for safepoint polling and implicit null
  2558         // We only expect null pointers in the stubs (vtable)
  2559         // the rest are checked explicitly now.
  2560         //
  2561         CodeBlob* cb = CodeCache::find_blob(pc);
  2562         if (cb != NULL) {
  2563           if (os::is_poll_address(addr)) {
  2564             address stub = SharedRuntime::get_poll_stub(pc);
  2565             return Handle_Exception(exceptionInfo, stub);
  2569 #ifdef _WIN64
  2570           //
  2571           // If it's a legal stack address map the entire region in
  2572           //
  2573           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2574           address addr = (address) exceptionRecord->ExceptionInformation[1];
  2575           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
  2576                   addr = (address)((uintptr_t)addr &
  2577                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
  2578                   os::commit_memory((char *)addr, thread->stack_base() - addr,
  2579                                     !ExecMem);
  2580                   return EXCEPTION_CONTINUE_EXECUTION;
  2582           else
  2583 #endif
  2585             // Null pointer exception.
  2586 #ifdef _M_IA64
  2587             // Process implicit null checks in compiled code. Note: Implicit null checks
  2588             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
  2589             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
  2590               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
  2591               // Handle implicit null check in UEP method entry
  2592               if (cb && (cb->is_frame_complete_at(pc) ||
  2593                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
  2594                 if (Verbose) {
  2595                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
  2596                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
  2597                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
  2598                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
  2599                                 *(bundle_start + 1), *bundle_start);
  2601                 return Handle_Exception(exceptionInfo,
  2602                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
  2606             // Implicit null checks were processed above.  Hence, we should not reach
  2607             // here in the usual case => die!
  2608             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
  2609             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2610                          exceptionInfo->ContextRecord);
  2611             return EXCEPTION_CONTINUE_SEARCH;
  2613 #else // !IA64
  2615             // Windows 98 reports faulting addresses incorrectly
  2616             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
  2617                 !os::win32::is_nt()) {
  2618               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2619               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2621             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2622                          exceptionInfo->ContextRecord);
  2623             return EXCEPTION_CONTINUE_SEARCH;
  2624 #endif
  2629 #ifdef _WIN64
  2630       // Special care for fast JNI field accessors.
  2631       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
  2632       // in and the heap gets shrunk before the field access.
  2633       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2634         address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2635         if (addr != (address)-1) {
  2636           return Handle_Exception(exceptionInfo, addr);
  2639 #endif
  2641       // Stack overflow or null pointer exception in native code.
  2642       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2643                    exceptionInfo->ContextRecord);
  2644       return EXCEPTION_CONTINUE_SEARCH;
  2645     } // /EXCEPTION_ACCESS_VIOLATION
  2646     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  2647 #if defined _M_IA64
  2648     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
  2649               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
  2650       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
  2652       // Compiled method patched to be non entrant? Following conditions must apply:
  2653       // 1. must be first instruction in bundle
  2654       // 2. must be a break instruction with appropriate code
  2655       if((((uint64_t) pc & 0x0F) == 0) &&
  2656          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
  2657         return Handle_Exception(exceptionInfo,
  2658                                 (address)SharedRuntime::get_handle_wrong_method_stub());
  2660     } // /EXCEPTION_ILLEGAL_INSTRUCTION
  2661 #endif
  2664     if (in_java) {
  2665       switch (exception_code) {
  2666       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2667         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
  2669       case EXCEPTION_INT_OVERFLOW:
  2670         return Handle_IDiv_Exception(exceptionInfo);
  2672       } // switch
  2674 #ifndef _WIN64
  2675     if (((thread->thread_state() == _thread_in_Java) ||
  2676         (thread->thread_state() == _thread_in_native)) &&
  2677         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
  2679       LONG result=Handle_FLT_Exception(exceptionInfo);
  2680       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
  2682 #endif //_WIN64
  2685   if (exception_code != EXCEPTION_BREAKPOINT) {
  2686     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2687                  exceptionInfo->ContextRecord);
  2689   return EXCEPTION_CONTINUE_SEARCH;
  2692 #ifndef _WIN64
  2693 // Special care for fast JNI accessors.
  2694 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
  2695 // the heap gets shrunk before the field access.
  2696 // Need to install our own structured exception handler since native code may
  2697 // install its own.
  2698 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2699   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2700   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2701     address pc = (address) exceptionInfo->ContextRecord->Eip;
  2702     address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2703     if (addr != (address)-1) {
  2704       return Handle_Exception(exceptionInfo, addr);
  2707   return EXCEPTION_CONTINUE_SEARCH;
  2710 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
  2711 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
  2712   __try { \
  2713     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
  2714   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
  2715   } \
  2716   return 0; \
  2719 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
  2720 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
  2721 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
  2722 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
  2723 DEFINE_FAST_GETFIELD(jint,     int,    Int)
  2724 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
  2725 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
  2726 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
  2728 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
  2729   switch (type) {
  2730     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
  2731     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
  2732     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
  2733     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
  2734     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
  2735     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
  2736     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
  2737     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
  2738     default:        ShouldNotReachHere();
  2740   return (address)-1;
  2742 #endif
  2744 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
  2745   // Install a win32 structured exception handler around the test
  2746   // function call so the VM can generate an error dump if needed.
  2747   __try {
  2748     (*funcPtr)();
  2749   } __except(topLevelExceptionFilter(
  2750              (_EXCEPTION_POINTERS*)_exception_info())) {
  2751     // Nothing to do.
  2755 // Virtual Memory
  2757 int os::vm_page_size() { return os::win32::vm_page_size(); }
  2758 int os::vm_allocation_granularity() {
  2759   return os::win32::vm_allocation_granularity();
  2762 // Windows large page support is available on Windows 2003. In order to use
  2763 // large page memory, the administrator must first assign additional privilege
  2764 // to the user:
  2765 //   + select Control Panel -> Administrative Tools -> Local Security Policy
  2766 //   + select Local Policies -> User Rights Assignment
  2767 //   + double click "Lock pages in memory", add users and/or groups
  2768 //   + reboot
  2769 // Note the above steps are needed for administrator as well, as administrators
  2770 // by default do not have the privilege to lock pages in memory.
  2771 //
  2772 // Note about Windows 2003: although the API supports committing large page
  2773 // memory on a page-by-page basis and VirtualAlloc() returns success under this
  2774 // scenario, I found through experiment it only uses large page if the entire
  2775 // memory region is reserved and committed in a single VirtualAlloc() call.
  2776 // This makes Windows large page support more or less like Solaris ISM, in
  2777 // that the entire heap must be committed upfront. This probably will change
  2778 // in the future, if so the code below needs to be revisited.
  2780 #ifndef MEM_LARGE_PAGES
  2781 #define MEM_LARGE_PAGES 0x20000000
  2782 #endif
  2784 static HANDLE    _hProcess;
  2785 static HANDLE    _hToken;
  2787 // Container for NUMA node list info
  2788 class NUMANodeListHolder {
  2789 private:
  2790   int *_numa_used_node_list;  // allocated below
  2791   int _numa_used_node_count;
  2793   void free_node_list() {
  2794     if (_numa_used_node_list != NULL) {
  2795       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
  2799 public:
  2800   NUMANodeListHolder() {
  2801     _numa_used_node_count = 0;
  2802     _numa_used_node_list = NULL;
  2803     // do rest of initialization in build routine (after function pointers are set up)
  2806   ~NUMANodeListHolder() {
  2807     free_node_list();
  2810   bool build() {
  2811     DWORD_PTR proc_aff_mask;
  2812     DWORD_PTR sys_aff_mask;
  2813     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
  2814     ULONG highest_node_number;
  2815     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
  2816     free_node_list();
  2817     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
  2818     for (unsigned int i = 0; i <= highest_node_number; i++) {
  2819       ULONGLONG proc_mask_numa_node;
  2820       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
  2821       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
  2822         _numa_used_node_list[_numa_used_node_count++] = i;
  2825     return (_numa_used_node_count > 1);
  2828   int get_count() {return _numa_used_node_count;}
  2829   int get_node_list_entry(int n) {
  2830     // for indexes out of range, returns -1
  2831     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
  2834 } numa_node_list_holder;
  2838 static size_t _large_page_size = 0;
  2840 static bool resolve_functions_for_large_page_init() {
  2841   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
  2842     os::Advapi32Dll::AdvapiAvailable();
  2845 static bool request_lock_memory_privilege() {
  2846   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
  2847                                 os::current_process_id());
  2849   LUID luid;
  2850   if (_hProcess != NULL &&
  2851       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
  2852       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
  2854     TOKEN_PRIVILEGES tp;
  2855     tp.PrivilegeCount = 1;
  2856     tp.Privileges[0].Luid = luid;
  2857     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
  2859     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
  2860     // privilege. Check GetLastError() too. See MSDN document.
  2861     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
  2862         (GetLastError() == ERROR_SUCCESS)) {
  2863       return true;
  2867   return false;
  2870 static void cleanup_after_large_page_init() {
  2871   if (_hProcess) CloseHandle(_hProcess);
  2872   _hProcess = NULL;
  2873   if (_hToken) CloseHandle(_hToken);
  2874   _hToken = NULL;
  2877 static bool numa_interleaving_init() {
  2878   bool success = false;
  2879   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
  2881   // print a warning if UseNUMAInterleaving flag is specified on command line
  2882   bool warn_on_failure = use_numa_interleaving_specified;
  2883 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2885   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
  2886   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  2887   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
  2889   if (os::Kernel32Dll::NumaCallsAvailable()) {
  2890     if (numa_node_list_holder.build()) {
  2891       if (PrintMiscellaneous && Verbose) {
  2892         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
  2893         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
  2894           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
  2896         tty->print("\n");
  2898       success = true;
  2899     } else {
  2900       WARN("Process does not cover multiple NUMA nodes.");
  2902   } else {
  2903     WARN("NUMA Interleaving is not supported by the operating system.");
  2905   if (!success) {
  2906     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
  2908   return success;
  2909 #undef WARN
  2912 // this routine is used whenever we need to reserve a contiguous VA range
  2913 // but we need to make separate VirtualAlloc calls for each piece of the range
  2914 // Reasons for doing this:
  2915 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
  2916 //  * UseNUMAInterleaving requires a separate node for each piece
  2917 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
  2918                                          bool should_inject_error=false) {
  2919   char * p_buf;
  2920   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
  2921   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  2922   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
  2924   // first reserve enough address space in advance since we want to be
  2925   // able to break a single contiguous virtual address range into multiple
  2926   // large page commits but WS2003 does not allow reserving large page space
  2927   // so we just use 4K pages for reserve, this gives us a legal contiguous
  2928   // address space. then we will deallocate that reservation, and re alloc
  2929   // using large pages
  2930   const size_t size_of_reserve = bytes + chunk_size;
  2931   if (bytes > size_of_reserve) {
  2932     // Overflowed.
  2933     return NULL;
  2935   p_buf = (char *) VirtualAlloc(addr,
  2936                                 size_of_reserve,  // size of Reserve
  2937                                 MEM_RESERVE,
  2938                                 PAGE_READWRITE);
  2939   // If reservation failed, return NULL
  2940   if (p_buf == NULL) return NULL;
  2941   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
  2942   os::release_memory(p_buf, bytes + chunk_size);
  2944   // we still need to round up to a page boundary (in case we are using large pages)
  2945   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
  2946   // instead we handle this in the bytes_to_rq computation below
  2947   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
  2949   // now go through and allocate one chunk at a time until all bytes are
  2950   // allocated
  2951   size_t  bytes_remaining = bytes;
  2952   // An overflow of align_size_up() would have been caught above
  2953   // in the calculation of size_of_reserve.
  2954   char * next_alloc_addr = p_buf;
  2955   HANDLE hProc = GetCurrentProcess();
  2957 #ifdef ASSERT
  2958   // Variable for the failure injection
  2959   long ran_num = os::random();
  2960   size_t fail_after = ran_num % bytes;
  2961 #endif
  2963   int count=0;
  2964   while (bytes_remaining) {
  2965     // select bytes_to_rq to get to the next chunk_size boundary
  2967     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
  2968     // Note allocate and commit
  2969     char * p_new;
  2971 #ifdef ASSERT
  2972     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
  2973 #else
  2974     const bool inject_error_now = false;
  2975 #endif
  2977     if (inject_error_now) {
  2978       p_new = NULL;
  2979     } else {
  2980       if (!UseNUMAInterleaving) {
  2981         p_new = (char *) VirtualAlloc(next_alloc_addr,
  2982                                       bytes_to_rq,
  2983                                       flags,
  2984                                       prot);
  2985       } else {
  2986         // get the next node to use from the used_node_list
  2987         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
  2988         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
  2989         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
  2990                                                             next_alloc_addr,
  2991                                                             bytes_to_rq,
  2992                                                             flags,
  2993                                                             prot,
  2994                                                             node);
  2998     if (p_new == NULL) {
  2999       // Free any allocated pages
  3000       if (next_alloc_addr > p_buf) {
  3001         // Some memory was committed so release it.
  3002         size_t bytes_to_release = bytes - bytes_remaining;
  3003         // NMT has yet to record any individual blocks, so it
  3004         // need to create a dummy 'reserve' record to match
  3005         // the release.
  3006         MemTracker::record_virtual_memory_reserve((address)p_buf,
  3007           bytes_to_release, CALLER_PC);
  3008         os::release_memory(p_buf, bytes_to_release);
  3010 #ifdef ASSERT
  3011       if (should_inject_error) {
  3012         if (TracePageSizes && Verbose) {
  3013           tty->print_cr("Reserving pages individually failed.");
  3016 #endif
  3017       return NULL;
  3020     bytes_remaining -= bytes_to_rq;
  3021     next_alloc_addr += bytes_to_rq;
  3022     count++;
  3024   // Although the memory is allocated individually, it is returned as one.
  3025   // NMT records it as one block.
  3026   if ((flags & MEM_COMMIT) != 0) {
  3027     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
  3028   } else {
  3029     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
  3032   // made it this far, success
  3033   return p_buf;
  3038 void os::large_page_init() {
  3039   if (!UseLargePages) return;
  3041   // print a warning if any large page related flag is specified on command line
  3042   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
  3043                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  3044   bool success = false;
  3046 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  3047   if (resolve_functions_for_large_page_init()) {
  3048     if (request_lock_memory_privilege()) {
  3049       size_t s = os::Kernel32Dll::GetLargePageMinimum();
  3050       if (s) {
  3051 #if defined(IA32) || defined(AMD64)
  3052         if (s > 4*M || LargePageSizeInBytes > 4*M) {
  3053           WARN("JVM cannot use large pages bigger than 4mb.");
  3054         } else {
  3055 #endif
  3056           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
  3057             _large_page_size = LargePageSizeInBytes;
  3058           } else {
  3059             _large_page_size = s;
  3061           success = true;
  3062 #if defined(IA32) || defined(AMD64)
  3064 #endif
  3065       } else {
  3066         WARN("Large page is not supported by the processor.");
  3068     } else {
  3069       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
  3071   } else {
  3072     WARN("Large page is not supported by the operating system.");
  3074 #undef WARN
  3076   const size_t default_page_size = (size_t) vm_page_size();
  3077   if (success && _large_page_size > default_page_size) {
  3078     _page_sizes[0] = _large_page_size;
  3079     _page_sizes[1] = default_page_size;
  3080     _page_sizes[2] = 0;
  3083   cleanup_after_large_page_init();
  3084   UseLargePages = success;
  3087 // On win32, one cannot release just a part of reserved memory, it's an
  3088 // all or nothing deal.  When we split a reservation, we must break the
  3089 // reservation into two reservations.
  3090 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
  3091                               bool realloc) {
  3092   if (size > 0) {
  3093     release_memory(base, size);
  3094     if (realloc) {
  3095       reserve_memory(split, base);
  3097     if (size != split) {
  3098       reserve_memory(size - split, base + split);
  3103 // Multiple threads can race in this code but it's not possible to unmap small sections of
  3104 // virtual space to get requested alignment, like posix-like os's.
  3105 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
  3106 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
  3107   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
  3108       "Alignment must be a multiple of allocation granularity (page size)");
  3109   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
  3111   size_t extra_size = size + alignment;
  3112   assert(extra_size >= size, "overflow, size is too large to allow alignment");
  3114   char* aligned_base = NULL;
  3116   do {
  3117     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
  3118     if (extra_base == NULL) {
  3119       return NULL;
  3121     // Do manual alignment
  3122     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
  3124     os::release_memory(extra_base, extra_size);
  3126     aligned_base = os::reserve_memory(size, aligned_base);
  3128   } while (aligned_base == NULL);
  3130   return aligned_base;
  3133 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  3134   assert((size_t)addr % os::vm_allocation_granularity() == 0,
  3135          "reserve alignment");
  3136   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
  3137   char* res;
  3138   // note that if UseLargePages is on, all the areas that require interleaving
  3139   // will go thru reserve_memory_special rather than thru here.
  3140   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
  3141   if (!use_individual) {
  3142     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
  3143   } else {
  3144     elapsedTimer reserveTimer;
  3145     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
  3146     // in numa interleaving, we have to allocate pages individually
  3147     // (well really chunks of NUMAInterleaveGranularity size)
  3148     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
  3149     if (res == NULL) {
  3150       warning("NUMA page allocation failed");
  3152     if( Verbose && PrintMiscellaneous ) {
  3153       reserveTimer.stop();
  3154       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
  3155                     reserveTimer.milliseconds(), reserveTimer.ticks());
  3158   assert(res == NULL || addr == NULL || addr == res,
  3159          "Unexpected address from reserve.");
  3161   return res;
  3164 // Reserve memory at an arbitrary address, only if that area is
  3165 // available (and not reserved for something else).
  3166 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3167   // Windows os::reserve_memory() fails of the requested address range is
  3168   // not avilable.
  3169   return reserve_memory(bytes, requested_addr);
  3172 size_t os::large_page_size() {
  3173   return _large_page_size;
  3176 bool os::can_commit_large_page_memory() {
  3177   // Windows only uses large page memory when the entire region is reserved
  3178   // and committed in a single VirtualAlloc() call. This may change in the
  3179   // future, but with Windows 2003 it's not possible to commit on demand.
  3180   return false;
  3183 bool os::can_execute_large_page_memory() {
  3184   return true;
  3187 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr, bool exec) {
  3188   assert(UseLargePages, "only for large pages");
  3190   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
  3191     return NULL; // Fallback to small pages.
  3194   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
  3195   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  3197   // with large pages, there are two cases where we need to use Individual Allocation
  3198   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
  3199   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
  3200   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
  3201     if (TracePageSizes && Verbose) {
  3202        tty->print_cr("Reserving large pages individually.");
  3204     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
  3205     if (p_buf == NULL) {
  3206       // give an appropriate warning message
  3207       if (UseNUMAInterleaving) {
  3208         warning("NUMA large page allocation failed, UseLargePages flag ignored");
  3210       if (UseLargePagesIndividualAllocation) {
  3211         warning("Individually allocated large pages failed, "
  3212                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
  3214       return NULL;
  3217     return p_buf;
  3219   } else {
  3220     if (TracePageSizes && Verbose) {
  3221        tty->print_cr("Reserving large pages in a single large chunk.");
  3223     // normal policy just allocate it all at once
  3224     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  3225     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
  3226     if (res != NULL) {
  3227       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
  3230     return res;
  3234 bool os::release_memory_special(char* base, size_t bytes) {
  3235   assert(base != NULL, "Sanity check");
  3236   return release_memory(base, bytes);
  3239 void os::print_statistics() {
  3242 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
  3243   int err = os::get_last_error();
  3244   char buf[256];
  3245   size_t buf_len = os::lasterror(buf, sizeof(buf));
  3246   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  3247           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
  3248           exec, buf_len != 0 ? buf : "<no_error_string>", err);
  3251 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
  3252   if (bytes == 0) {
  3253     // Don't bother the OS with noops.
  3254     return true;
  3256   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
  3257   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
  3258   // Don't attempt to print anything if the OS call fails. We're
  3259   // probably low on resources, so the print itself may cause crashes.
  3261   // unless we have NUMAInterleaving enabled, the range of a commit
  3262   // is always within a reserve covered by a single VirtualAlloc
  3263   // in that case we can just do a single commit for the requested size
  3264   if (!UseNUMAInterleaving) {
  3265     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
  3266       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
  3267       return false;
  3269     if (exec) {
  3270       DWORD oldprot;
  3271       // Windows doc says to use VirtualProtect to get execute permissions
  3272       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
  3273         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
  3274         return false;
  3277     return true;
  3278   } else {
  3280     // when NUMAInterleaving is enabled, the commit might cover a range that
  3281     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
  3282     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
  3283     // returns represents the number of bytes that can be committed in one step.
  3284     size_t bytes_remaining = bytes;
  3285     char * next_alloc_addr = addr;
  3286     while (bytes_remaining > 0) {
  3287       MEMORY_BASIC_INFORMATION alloc_info;
  3288       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
  3289       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
  3290       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
  3291                        PAGE_READWRITE) == NULL) {
  3292         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
  3293                                             exec);)
  3294         return false;
  3296       if (exec) {
  3297         DWORD oldprot;
  3298         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
  3299                             PAGE_EXECUTE_READWRITE, &oldprot)) {
  3300           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
  3301                                               exec);)
  3302           return false;
  3305       bytes_remaining -= bytes_to_rq;
  3306       next_alloc_addr += bytes_to_rq;
  3309   // if we made it this far, return true
  3310   return true;
  3313 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  3314                        bool exec) {
  3315   // alignment_hint is ignored on this OS
  3316   return pd_commit_memory(addr, size, exec);
  3319 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  3320                                   const char* mesg) {
  3321   assert(mesg != NULL, "mesg must be specified");
  3322   if (!pd_commit_memory(addr, size, exec)) {
  3323     warn_fail_commit_memory(addr, size, exec);
  3324     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  3328 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  3329                                   size_t alignment_hint, bool exec,
  3330                                   const char* mesg) {
  3331   // alignment_hint is ignored on this OS
  3332   pd_commit_memory_or_exit(addr, size, exec, mesg);
  3335 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
  3336   if (bytes == 0) {
  3337     // Don't bother the OS with noops.
  3338     return true;
  3340   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
  3341   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
  3342   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
  3345 bool os::pd_release_memory(char* addr, size_t bytes) {
  3346   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
  3349 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3350   return os::commit_memory(addr, size, !ExecMem);
  3353 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3354   return os::uncommit_memory(addr, size);
  3357 // Set protections specified
  3358 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3359                         bool is_committed) {
  3360   unsigned int p = 0;
  3361   switch (prot) {
  3362   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
  3363   case MEM_PROT_READ: p = PAGE_READONLY; break;
  3364   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
  3365   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
  3366   default:
  3367     ShouldNotReachHere();
  3370   DWORD old_status;
  3372   // Strange enough, but on Win32 one can change protection only for committed
  3373   // memory, not a big deal anyway, as bytes less or equal than 64K
  3374   if (!is_committed) {
  3375     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
  3376                           "cannot commit protection page");
  3378   // One cannot use os::guard_memory() here, as on Win32 guard page
  3379   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
  3380   //
  3381   // Pages in the region become guard pages. Any attempt to access a guard page
  3382   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
  3383   // the guard page status. Guard pages thus act as a one-time access alarm.
  3384   return VirtualProtect(addr, bytes, p, &old_status) != 0;
  3387 bool os::guard_memory(char* addr, size_t bytes) {
  3388   DWORD old_status;
  3389   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
  3392 bool os::unguard_memory(char* addr, size_t bytes) {
  3393   DWORD old_status;
  3394   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
  3397 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  3398 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  3399 void os::numa_make_global(char *addr, size_t bytes)    { }
  3400 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
  3401 bool os::numa_topology_changed()                       { return false; }
  3402 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
  3403 int os::numa_get_group_id()                            { return 0; }
  3404 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  3405   if (numa_node_list_holder.get_count() == 0 && size > 0) {
  3406     // Provide an answer for UMA systems
  3407     ids[0] = 0;
  3408     return 1;
  3409   } else {
  3410     // check for size bigger than actual groups_num
  3411     size = MIN2(size, numa_get_groups_num());
  3412     for (int i = 0; i < (int)size; i++) {
  3413       ids[i] = numa_node_list_holder.get_node_list_entry(i);
  3415     return size;
  3419 bool os::get_page_info(char *start, page_info* info) {
  3420   return false;
  3423 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  3424   return end;
  3427 char* os::non_memory_address_word() {
  3428   // Must never look like an address returned by reserve_memory,
  3429   // even in its subfields (as defined by the CPU immediate fields,
  3430   // if the CPU splits constants across multiple instructions).
  3431   return (char*)-1;
  3434 #define MAX_ERROR_COUNT 100
  3435 #define SYS_THREAD_ERROR 0xffffffffUL
  3437 void os::pd_start_thread(Thread* thread) {
  3438   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
  3439   // Returns previous suspend state:
  3440   // 0:  Thread was not suspended
  3441   // 1:  Thread is running now
  3442   // >1: Thread is still suspended.
  3443   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
  3446 class HighResolutionInterval : public CHeapObj<mtThread> {
  3447   // The default timer resolution seems to be 10 milliseconds.
  3448   // (Where is this written down?)
  3449   // If someone wants to sleep for only a fraction of the default,
  3450   // then we set the timer resolution down to 1 millisecond for
  3451   // the duration of their interval.
  3452   // We carefully set the resolution back, since otherwise we
  3453   // seem to incur an overhead (3%?) that we don't need.
  3454   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
  3455   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
  3456   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
  3457   // timeBeginPeriod() if the relative error exceeded some threshold.
  3458   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
  3459   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
  3460   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
  3461   // resolution timers running.
  3462 private:
  3463     jlong resolution;
  3464 public:
  3465   HighResolutionInterval(jlong ms) {
  3466     resolution = ms % 10L;
  3467     if (resolution != 0) {
  3468       MMRESULT result = timeBeginPeriod(1L);
  3471   ~HighResolutionInterval() {
  3472     if (resolution != 0) {
  3473       MMRESULT result = timeEndPeriod(1L);
  3475     resolution = 0L;
  3477 };
  3479 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
  3480   jlong limit = (jlong) MAXDWORD;
  3482   while(ms > limit) {
  3483     int res;
  3484     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
  3485       return res;
  3486     ms -= limit;
  3489   assert(thread == Thread::current(),  "thread consistency check");
  3490   OSThread* osthread = thread->osthread();
  3491   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
  3492   int result;
  3493   if (interruptable) {
  3494     assert(thread->is_Java_thread(), "must be java thread");
  3495     JavaThread *jt = (JavaThread *) thread;
  3496     ThreadBlockInVM tbivm(jt);
  3498     jt->set_suspend_equivalent();
  3499     // cleared by handle_special_suspend_equivalent_condition() or
  3500     // java_suspend_self() via check_and_wait_while_suspended()
  3502     HANDLE events[1];
  3503     events[0] = osthread->interrupt_event();
  3504     HighResolutionInterval *phri=NULL;
  3505     if(!ForceTimeHighResolution)
  3506       phri = new HighResolutionInterval( ms );
  3507     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
  3508       result = OS_TIMEOUT;
  3509     } else {
  3510       ResetEvent(osthread->interrupt_event());
  3511       osthread->set_interrupted(false);
  3512       result = OS_INTRPT;
  3514     delete phri; //if it is NULL, harmless
  3516     // were we externally suspended while we were waiting?
  3517     jt->check_and_wait_while_suspended();
  3518   } else {
  3519     assert(!thread->is_Java_thread(), "must not be java thread");
  3520     Sleep((long) ms);
  3521     result = OS_TIMEOUT;
  3523   return result;
  3526 //
  3527 // Short sleep, direct OS call.
  3528 //
  3529 // ms = 0, means allow others (if any) to run.
  3530 //
  3531 void os::naked_short_sleep(jlong ms) {
  3532   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  3533   Sleep(ms);
  3536 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3537 void os::infinite_sleep() {
  3538   while (true) {    // sleep forever ...
  3539     Sleep(100000);  // ... 100 seconds at a time
  3543 typedef BOOL (WINAPI * STTSignature)(void) ;
  3545 os::YieldResult os::NakedYield() {
  3546   // Use either SwitchToThread() or Sleep(0)
  3547   // Consider passing back the return value from SwitchToThread().
  3548   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
  3549     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
  3550   } else {
  3551     Sleep(0);
  3553   return os::YIELD_UNKNOWN ;
  3556 void os::yield() {  os::NakedYield(); }
  3558 void os::yield_all(int attempts) {
  3559   // Yields to all threads, including threads with lower priorities
  3560   Sleep(1);
  3563 // Win32 only gives you access to seven real priorities at a time,
  3564 // so we compress Java's ten down to seven.  It would be better
  3565 // if we dynamically adjusted relative priorities.
  3567 int os::java_to_os_priority[CriticalPriority + 1] = {
  3568   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3569   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3570   THREAD_PRIORITY_LOWEST,                       // 2
  3571   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3572   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3573   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3574   THREAD_PRIORITY_NORMAL,                       // 6
  3575   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3576   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
  3577   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3578   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
  3579   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
  3580 };
  3582 int prio_policy1[CriticalPriority + 1] = {
  3583   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3584   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3585   THREAD_PRIORITY_LOWEST,                       // 2
  3586   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3587   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3588   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3589   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
  3590   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3591   THREAD_PRIORITY_HIGHEST,                      // 8
  3592   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3593   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
  3594   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
  3595 };
  3597 static int prio_init() {
  3598   // If ThreadPriorityPolicy is 1, switch tables
  3599   if (ThreadPriorityPolicy == 1) {
  3600     int i;
  3601     for (i = 0; i < CriticalPriority + 1; i++) {
  3602       os::java_to_os_priority[i] = prio_policy1[i];
  3605   if (UseCriticalJavaThreadPriority) {
  3606     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
  3608   return 0;
  3611 OSReturn os::set_native_priority(Thread* thread, int priority) {
  3612   if (!UseThreadPriorities) return OS_OK;
  3613   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
  3614   return ret ? OS_OK : OS_ERR;
  3617 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
  3618   if ( !UseThreadPriorities ) {
  3619     *priority_ptr = java_to_os_priority[NormPriority];
  3620     return OS_OK;
  3622   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
  3623   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
  3624     assert(false, "GetThreadPriority failed");
  3625     return OS_ERR;
  3627   *priority_ptr = os_prio;
  3628   return OS_OK;
  3632 // Hint to the underlying OS that a task switch would not be good.
  3633 // Void return because it's a hint and can fail.
  3634 void os::hint_no_preempt() {}
  3636 void os::interrupt(Thread* thread) {
  3637   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3638          "possibility of dangling Thread pointer");
  3640   OSThread* osthread = thread->osthread();
  3641   osthread->set_interrupted(true);
  3642   // More than one thread can get here with the same value of osthread,
  3643   // resulting in multiple notifications.  We do, however, want the store
  3644   // to interrupted() to be visible to other threads before we post
  3645   // the interrupt event.
  3646   OrderAccess::release();
  3647   SetEvent(osthread->interrupt_event());
  3648   // For JSR166:  unpark after setting status
  3649   if (thread->is_Java_thread())
  3650     ((JavaThread*)thread)->parker()->unpark();
  3652   ParkEvent * ev = thread->_ParkEvent ;
  3653   if (ev != NULL) ev->unpark() ;
  3658 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3659   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3660          "possibility of dangling Thread pointer");
  3662   OSThread* osthread = thread->osthread();
  3663   // There is no synchronization between the setting of the interrupt
  3664   // and it being cleared here. It is critical - see 6535709 - that
  3665   // we only clear the interrupt state, and reset the interrupt event,
  3666   // if we are going to report that we were indeed interrupted - else
  3667   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
  3668   // depending on the timing. By checking thread interrupt event to see
  3669   // if the thread gets real interrupt thus prevent spurious wakeup.
  3670   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
  3671   if (interrupted && clear_interrupted) {
  3672     osthread->set_interrupted(false);
  3673     ResetEvent(osthread->interrupt_event());
  3674   } // Otherwise leave the interrupted state alone
  3676   return interrupted;
  3679 // Get's a pc (hint) for a running thread. Currently used only for profiling.
  3680 ExtendedPC os::get_thread_pc(Thread* thread) {
  3681   CONTEXT context;
  3682   context.ContextFlags = CONTEXT_CONTROL;
  3683   HANDLE handle = thread->osthread()->thread_handle();
  3684 #ifdef _M_IA64
  3685   assert(0, "Fix get_thread_pc");
  3686   return ExtendedPC(NULL);
  3687 #else
  3688   if (GetThreadContext(handle, &context)) {
  3689 #ifdef _M_AMD64
  3690     return ExtendedPC((address) context.Rip);
  3691 #else
  3692     return ExtendedPC((address) context.Eip);
  3693 #endif
  3694   } else {
  3695     return ExtendedPC(NULL);
  3697 #endif
  3700 // GetCurrentThreadId() returns DWORD
  3701 intx os::current_thread_id()          { return GetCurrentThreadId(); }
  3703 static int _initial_pid = 0;
  3705 int os::current_process_id()
  3707   return (_initial_pid ? _initial_pid : _getpid());
  3710 int    os::win32::_vm_page_size       = 0;
  3711 int    os::win32::_vm_allocation_granularity = 0;
  3712 int    os::win32::_processor_type     = 0;
  3713 // Processor level is not available on non-NT systems, use vm_version instead
  3714 int    os::win32::_processor_level    = 0;
  3715 julong os::win32::_physical_memory    = 0;
  3716 size_t os::win32::_default_stack_size = 0;
  3718          intx os::win32::_os_thread_limit    = 0;
  3719 volatile intx os::win32::_os_thread_count    = 0;
  3721 bool   os::win32::_is_nt              = false;
  3722 bool   os::win32::_is_windows_2003    = false;
  3723 bool   os::win32::_is_windows_server  = false;
  3725 void os::win32::initialize_system_info() {
  3726   SYSTEM_INFO si;
  3727   GetSystemInfo(&si);
  3728   _vm_page_size    = si.dwPageSize;
  3729   _vm_allocation_granularity = si.dwAllocationGranularity;
  3730   _processor_type  = si.dwProcessorType;
  3731   _processor_level = si.wProcessorLevel;
  3732   set_processor_count(si.dwNumberOfProcessors);
  3734   MEMORYSTATUSEX ms;
  3735   ms.dwLength = sizeof(ms);
  3737   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
  3738   // dwMemoryLoad (% of memory in use)
  3739   GlobalMemoryStatusEx(&ms);
  3740   _physical_memory = ms.ullTotalPhys;
  3742   OSVERSIONINFOEX oi;
  3743   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  3744   GetVersionEx((OSVERSIONINFO*)&oi);
  3745   switch(oi.dwPlatformId) {
  3746     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
  3747     case VER_PLATFORM_WIN32_NT:
  3748       _is_nt = true;
  3750         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
  3751         if (os_vers == 5002) {
  3752           _is_windows_2003 = true;
  3754         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
  3755           oi.wProductType == VER_NT_SERVER) {
  3756             _is_windows_server = true;
  3759       break;
  3760     default: fatal("Unknown platform");
  3763   _default_stack_size = os::current_stack_size();
  3764   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
  3765   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
  3766     "stack size not a multiple of page size");
  3768   initialize_performance_counter();
  3770   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
  3771   // known to deadlock the system, if the VM issues to thread operations with
  3772   // a too high frequency, e.g., such as changing the priorities.
  3773   // The 6000 seems to work well - no deadlocks has been notices on the test
  3774   // programs that we have seen experience this problem.
  3775   if (!os::win32::is_nt()) {
  3776     StarvationMonitorInterval = 6000;
  3781 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
  3782   char path[MAX_PATH];
  3783   DWORD size;
  3784   DWORD pathLen = (DWORD)sizeof(path);
  3785   HINSTANCE result = NULL;
  3787   // only allow library name without path component
  3788   assert(strchr(name, '\\') == NULL, "path not allowed");
  3789   assert(strchr(name, ':') == NULL, "path not allowed");
  3790   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
  3791     jio_snprintf(ebuf, ebuflen,
  3792       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
  3793     return NULL;
  3796   // search system directory
  3797   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
  3798     strcat(path, "\\");
  3799     strcat(path, name);
  3800     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3801       return result;
  3805   // try Windows directory
  3806   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
  3807     strcat(path, "\\");
  3808     strcat(path, name);
  3809     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3810       return result;
  3814   jio_snprintf(ebuf, ebuflen,
  3815     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
  3816   return NULL;
  3819 void os::win32::setmode_streams() {
  3820   _setmode(_fileno(stdin), _O_BINARY);
  3821   _setmode(_fileno(stdout), _O_BINARY);
  3822   _setmode(_fileno(stderr), _O_BINARY);
  3826 bool os::is_debugger_attached() {
  3827   return IsDebuggerPresent() ? true : false;
  3831 void os::wait_for_keypress_at_exit(void) {
  3832   if (PauseAtExit) {
  3833     fprintf(stderr, "Press any key to continue...\n");
  3834     fgetc(stdin);
  3839 int os::message_box(const char* title, const char* message) {
  3840   int result = MessageBox(NULL, message, title,
  3841                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
  3842   return result == IDYES;
  3845 int os::allocate_thread_local_storage() {
  3846   return TlsAlloc();
  3850 void os::free_thread_local_storage(int index) {
  3851   TlsFree(index);
  3855 void os::thread_local_storage_at_put(int index, void* value) {
  3856   TlsSetValue(index, value);
  3857   assert(thread_local_storage_at(index) == value, "Just checking");
  3861 void* os::thread_local_storage_at(int index) {
  3862   return TlsGetValue(index);
  3866 #ifndef PRODUCT
  3867 #ifndef _WIN64
  3868 // Helpers to check whether NX protection is enabled
  3869 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
  3870   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  3871       pex->ExceptionRecord->NumberParameters > 0 &&
  3872       pex->ExceptionRecord->ExceptionInformation[0] ==
  3873       EXCEPTION_INFO_EXEC_VIOLATION) {
  3874     return EXCEPTION_EXECUTE_HANDLER;
  3876   return EXCEPTION_CONTINUE_SEARCH;
  3879 void nx_check_protection() {
  3880   // If NX is enabled we'll get an exception calling into code on the stack
  3881   char code[] = { (char)0xC3 }; // ret
  3882   void *code_ptr = (void *)code;
  3883   __try {
  3884     __asm call code_ptr
  3885   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
  3886     tty->print_raw_cr("NX protection detected.");
  3889 #endif // _WIN64
  3890 #endif // PRODUCT
  3892 // this is called _before_ the global arguments have been parsed
  3893 void os::init(void) {
  3894   _initial_pid = _getpid();
  3896   init_random(1234567);
  3898   win32::initialize_system_info();
  3899   win32::setmode_streams();
  3900   init_page_sizes((size_t) win32::vm_page_size());
  3902   // For better scalability on MP systems (must be called after initialize_system_info)
  3903 #ifndef PRODUCT
  3904   if (is_MP()) {
  3905     NoYieldsInMicrolock = true;
  3907 #endif
  3908   // This may be overridden later when argument processing is done.
  3909   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
  3910     os::win32::is_windows_2003());
  3912   // Initialize main_process and main_thread
  3913   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
  3914  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
  3915                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
  3916     fatal("DuplicateHandle failed\n");
  3918   main_thread_id = (int) GetCurrentThreadId();
  3921 // To install functions for atexit processing
  3922 extern "C" {
  3923   static void perfMemory_exit_helper() {
  3924     perfMemory_exit();
  3928 static jint initSock();
  3930 // this is called _after_ the global arguments have been parsed
  3931 jint os::init_2(void) {
  3932   // Allocate a single page and mark it as readable for safepoint polling
  3933   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
  3934   guarantee( polling_page != NULL, "Reserve Failed for polling page");
  3936   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
  3937   guarantee( return_page != NULL, "Commit Failed for polling page");
  3939   os::set_polling_page( polling_page );
  3941 #ifndef PRODUCT
  3942   if( Verbose && PrintMiscellaneous )
  3943     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3944 #endif
  3946   if (!UseMembar) {
  3947     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
  3948     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
  3950     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
  3951     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
  3953     os::set_memory_serialize_page( mem_serialize_page );
  3955 #ifndef PRODUCT
  3956     if(Verbose && PrintMiscellaneous)
  3957       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3958 #endif
  3961   // Setup Windows Exceptions
  3963   // for debugging float code generation bugs
  3964   if (ForceFloatExceptions) {
  3965 #ifndef  _WIN64
  3966     static long fp_control_word = 0;
  3967     __asm { fstcw fp_control_word }
  3968     // see Intel PPro Manual, Vol. 2, p 7-16
  3969     const long precision = 0x20;
  3970     const long underflow = 0x10;
  3971     const long overflow  = 0x08;
  3972     const long zero_div  = 0x04;
  3973     const long denorm    = 0x02;
  3974     const long invalid   = 0x01;
  3975     fp_control_word |= invalid;
  3976     __asm { fldcw fp_control_word }
  3977 #endif
  3980   // If stack_commit_size is 0, windows will reserve the default size,
  3981   // but only commit a small portion of it.
  3982   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
  3983   size_t default_reserve_size = os::win32::default_stack_size();
  3984   size_t actual_reserve_size = stack_commit_size;
  3985   if (stack_commit_size < default_reserve_size) {
  3986     // If stack_commit_size == 0, we want this too
  3987     actual_reserve_size = default_reserve_size;
  3990   // Check minimum allowable stack size for thread creation and to initialize
  3991   // the java system classes, including StackOverflowError - depends on page
  3992   // size.  Add a page for compiler2 recursion in main thread.
  3993   // Add in 2*BytesPerWord times page size to account for VM stack during
  3994   // class initialization depending on 32 or 64 bit VM.
  3995   size_t min_stack_allowed =
  3996             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  3997             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
  3998   if (actual_reserve_size < min_stack_allowed) {
  3999     tty->print_cr("\nThe stack size specified is too small, "
  4000                   "Specify at least %dk",
  4001                   min_stack_allowed / K);
  4002     return JNI_ERR;
  4005   JavaThread::set_stack_size_at_create(stack_commit_size);
  4007   // Calculate theoretical max. size of Threads to guard gainst artifical
  4008   // out-of-memory situations, where all available address-space has been
  4009   // reserved by thread stacks.
  4010   assert(actual_reserve_size != 0, "Must have a stack");
  4012   // Calculate the thread limit when we should start doing Virtual Memory
  4013   // banging. Currently when the threads will have used all but 200Mb of space.
  4014   //
  4015   // TODO: consider performing a similar calculation for commit size instead
  4016   // as reserve size, since on a 64-bit platform we'll run into that more
  4017   // often than running out of virtual memory space.  We can use the
  4018   // lower value of the two calculations as the os_thread_limit.
  4019   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
  4020   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
  4022   // at exit methods are called in the reverse order of their registration.
  4023   // there is no limit to the number of functions registered. atexit does
  4024   // not set errno.
  4026   if (PerfAllowAtExitRegistration) {
  4027     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4028     // atexit functions can be delayed until process exit time, which
  4029     // can be problematic for embedded VM situations. Embedded VMs should
  4030     // call DestroyJavaVM() to assure that VM resources are released.
  4032     // note: perfMemory_exit_helper atexit function may be removed in
  4033     // the future if the appropriate cleanup code can be added to the
  4034     // VM_Exit VMOperation's doit method.
  4035     if (atexit(perfMemory_exit_helper) != 0) {
  4036       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  4040 #ifndef _WIN64
  4041   // Print something if NX is enabled (win32 on AMD64)
  4042   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
  4043 #endif
  4045   // initialize thread priority policy
  4046   prio_init();
  4048   if (UseNUMA && !ForceNUMA) {
  4049     UseNUMA = false; // We don't fully support this yet
  4052   if (UseNUMAInterleaving) {
  4053     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
  4054     bool success = numa_interleaving_init();
  4055     if (!success) UseNUMAInterleaving = false;
  4058   if (initSock() != JNI_OK) {
  4059     return JNI_ERR;
  4062   return JNI_OK;
  4065 void os::init_3(void) {
  4066   return;
  4069 // Mark the polling page as unreadable
  4070 void os::make_polling_page_unreadable(void) {
  4071   DWORD old_status;
  4072   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
  4073     fatal("Could not disable polling page");
  4074 };
  4076 // Mark the polling page as readable
  4077 void os::make_polling_page_readable(void) {
  4078   DWORD old_status;
  4079   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
  4080     fatal("Could not enable polling page");
  4081 };
  4084 int os::stat(const char *path, struct stat *sbuf) {
  4085   char pathbuf[MAX_PATH];
  4086   if (strlen(path) > MAX_PATH - 1) {
  4087     errno = ENAMETOOLONG;
  4088     return -1;
  4090   os::native_path(strcpy(pathbuf, path));
  4091   int ret = ::stat(pathbuf, sbuf);
  4092   if (sbuf != NULL && UseUTCFileTimestamp) {
  4093     // Fix for 6539723.  st_mtime returned from stat() is dependent on
  4094     // the system timezone and so can return different values for the
  4095     // same file if/when daylight savings time changes.  This adjustment
  4096     // makes sure the same timestamp is returned regardless of the TZ.
  4097     //
  4098     // See:
  4099     // http://msdn.microsoft.com/library/
  4100     //   default.asp?url=/library/en-us/sysinfo/base/
  4101     //   time_zone_information_str.asp
  4102     // and
  4103     // http://msdn.microsoft.com/library/default.asp?url=
  4104     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
  4105     //
  4106     // NOTE: there is a insidious bug here:  If the timezone is changed
  4107     // after the call to stat() but before 'GetTimeZoneInformation()', then
  4108     // the adjustment we do here will be wrong and we'll return the wrong
  4109     // value (which will likely end up creating an invalid class data
  4110     // archive).  Absent a better API for this, or some time zone locking
  4111     // mechanism, we'll have to live with this risk.
  4112     TIME_ZONE_INFORMATION tz;
  4113     DWORD tzid = GetTimeZoneInformation(&tz);
  4114     int daylightBias =
  4115       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
  4116     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
  4118   return ret;
  4122 #define FT2INT64(ft) \
  4123   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
  4126 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4127 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4128 // of a thread.
  4129 //
  4130 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4131 // the fast estimate available on the platform.
  4133 // current_thread_cpu_time() is not optimized for Windows yet
  4134 jlong os::current_thread_cpu_time() {
  4135   // return user + sys since the cost is the same
  4136   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
  4139 jlong os::thread_cpu_time(Thread* thread) {
  4140   // consistent with what current_thread_cpu_time() returns.
  4141   return os::thread_cpu_time(thread, true /* user+sys */);
  4144 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4145   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4148 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
  4149   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
  4150   // If this function changes, os::is_thread_cpu_time_supported() should too
  4151   if (os::win32::is_nt()) {
  4152     FILETIME CreationTime;
  4153     FILETIME ExitTime;
  4154     FILETIME KernelTime;
  4155     FILETIME UserTime;
  4157     if ( GetThreadTimes(thread->osthread()->thread_handle(),
  4158                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  4159       return -1;
  4160     else
  4161       if (user_sys_cpu_time) {
  4162         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
  4163       } else {
  4164         return FT2INT64(UserTime) * 100;
  4166   } else {
  4167     return (jlong) timeGetTime() * 1000000;
  4171 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4172   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  4173   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  4174   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  4175   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  4178 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4179   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  4180   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  4181   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  4182   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  4185 bool os::is_thread_cpu_time_supported() {
  4186   // see os::thread_cpu_time
  4187   if (os::win32::is_nt()) {
  4188     FILETIME CreationTime;
  4189     FILETIME ExitTime;
  4190     FILETIME KernelTime;
  4191     FILETIME UserTime;
  4193     if ( GetThreadTimes(GetCurrentThread(),
  4194                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  4195       return false;
  4196     else
  4197       return true;
  4198   } else {
  4199     return false;
  4203 // Windows does't provide a loadavg primitive so this is stubbed out for now.
  4204 // It does have primitives (PDH API) to get CPU usage and run queue length.
  4205 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
  4206 // If we wanted to implement loadavg on Windows, we have a few options:
  4207 //
  4208 // a) Query CPU usage and run queue length and "fake" an answer by
  4209 //    returning the CPU usage if it's under 100%, and the run queue
  4210 //    length otherwise.  It turns out that querying is pretty slow
  4211 //    on Windows, on the order of 200 microseconds on a fast machine.
  4212 //    Note that on the Windows the CPU usage value is the % usage
  4213 //    since the last time the API was called (and the first call
  4214 //    returns 100%), so we'd have to deal with that as well.
  4215 //
  4216 // b) Sample the "fake" answer using a sampling thread and store
  4217 //    the answer in a global variable.  The call to loadavg would
  4218 //    just return the value of the global, avoiding the slow query.
  4219 //
  4220 // c) Sample a better answer using exponential decay to smooth the
  4221 //    value.  This is basically the algorithm used by UNIX kernels.
  4222 //
  4223 // Note that sampling thread starvation could affect both (b) and (c).
  4224 int os::loadavg(double loadavg[], int nelem) {
  4225   return -1;
  4229 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
  4230 bool os::dont_yield() {
  4231   return DontYieldALot;
  4234 // This method is a slightly reworked copy of JDK's sysOpen
  4235 // from src/windows/hpi/src/sys_api_md.c
  4237 int os::open(const char *path, int oflag, int mode) {
  4238   char pathbuf[MAX_PATH];
  4240   if (strlen(path) > MAX_PATH - 1) {
  4241     errno = ENAMETOOLONG;
  4242           return -1;
  4244   os::native_path(strcpy(pathbuf, path));
  4245   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
  4248 FILE* os::open(int fd, const char* mode) {
  4249   return ::_fdopen(fd, mode);
  4252 // Is a (classpath) directory empty?
  4253 bool os::dir_is_empty(const char* path) {
  4254   WIN32_FIND_DATA fd;
  4255   HANDLE f = FindFirstFile(path, &fd);
  4256   if (f == INVALID_HANDLE_VALUE) {
  4257     return true;
  4259   FindClose(f);
  4260   return false;
  4263 // create binary file, rewriting existing file if required
  4264 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4265   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
  4266   if (!rewrite_existing) {
  4267     oflags |= _O_EXCL;
  4269   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
  4272 // return current position of file pointer
  4273 jlong os::current_file_offset(int fd) {
  4274   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
  4277 // move file pointer to the specified offset
  4278 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4279   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
  4283 jlong os::lseek(int fd, jlong offset, int whence) {
  4284   return (jlong) ::_lseeki64(fd, offset, whence);
  4287 // This method is a slightly reworked copy of JDK's sysNativePath
  4288 // from src/windows/hpi/src/path_md.c
  4290 /* Convert a pathname to native format.  On win32, this involves forcing all
  4291    separators to be '\\' rather than '/' (both are legal inputs, but Win95
  4292    sometimes rejects '/') and removing redundant separators.  The input path is
  4293    assumed to have been converted into the character encoding used by the local
  4294    system.  Because this might be a double-byte encoding, care is taken to
  4295    treat double-byte lead characters correctly.
  4297    This procedure modifies the given path in place, as the result is never
  4298    longer than the original.  There is no error return; this operation always
  4299    succeeds. */
  4300 char * os::native_path(char *path) {
  4301   char *src = path, *dst = path, *end = path;
  4302   char *colon = NULL;           /* If a drive specifier is found, this will
  4303                                         point to the colon following the drive
  4304                                         letter */
  4306   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
  4307   assert(((!::IsDBCSLeadByte('/'))
  4308     && (!::IsDBCSLeadByte('\\'))
  4309     && (!::IsDBCSLeadByte(':'))),
  4310     "Illegal lead byte");
  4312   /* Check for leading separators */
  4313 #define isfilesep(c) ((c) == '/' || (c) == '\\')
  4314   while (isfilesep(*src)) {
  4315     src++;
  4318   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
  4319     /* Remove leading separators if followed by drive specifier.  This
  4320       hack is necessary to support file URLs containing drive
  4321       specifiers (e.g., "file://c:/path").  As a side effect,
  4322       "/c:/path" can be used as an alternative to "c:/path". */
  4323     *dst++ = *src++;
  4324     colon = dst;
  4325     *dst++ = ':';
  4326     src++;
  4327   } else {
  4328     src = path;
  4329     if (isfilesep(src[0]) && isfilesep(src[1])) {
  4330       /* UNC pathname: Retain first separator; leave src pointed at
  4331          second separator so that further separators will be collapsed
  4332          into the second separator.  The result will be a pathname
  4333          beginning with "\\\\" followed (most likely) by a host name. */
  4334       src = dst = path + 1;
  4335       path[0] = '\\';     /* Force first separator to '\\' */
  4339   end = dst;
  4341   /* Remove redundant separators from remainder of path, forcing all
  4342       separators to be '\\' rather than '/'. Also, single byte space
  4343       characters are removed from the end of the path because those
  4344       are not legal ending characters on this operating system.
  4345   */
  4346   while (*src != '\0') {
  4347     if (isfilesep(*src)) {
  4348       *dst++ = '\\'; src++;
  4349       while (isfilesep(*src)) src++;
  4350       if (*src == '\0') {
  4351         /* Check for trailing separator */
  4352         end = dst;
  4353         if (colon == dst - 2) break;                      /* "z:\\" */
  4354         if (dst == path + 1) break;                       /* "\\" */
  4355         if (dst == path + 2 && isfilesep(path[0])) {
  4356           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
  4357             beginning of a UNC pathname.  Even though it is not, by
  4358             itself, a valid UNC pathname, we leave it as is in order
  4359             to be consistent with the path canonicalizer as well
  4360             as the win32 APIs, which treat this case as an invalid
  4361             UNC pathname rather than as an alias for the root
  4362             directory of the current drive. */
  4363           break;
  4365         end = --dst;  /* Path does not denote a root directory, so
  4366                                     remove trailing separator */
  4367         break;
  4369       end = dst;
  4370     } else {
  4371       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
  4372         *dst++ = *src++;
  4373         if (*src) *dst++ = *src++;
  4374         end = dst;
  4375       } else {         /* Copy a single-byte character */
  4376         char c = *src++;
  4377         *dst++ = c;
  4378         /* Space is not a legal ending character */
  4379         if (c != ' ') end = dst;
  4384   *end = '\0';
  4386   /* For "z:", add "." to work around a bug in the C runtime library */
  4387   if (colon == dst - 1) {
  4388           path[2] = '.';
  4389           path[3] = '\0';
  4392   return path;
  4395 // This code is a copy of JDK's sysSetLength
  4396 // from src/windows/hpi/src/sys_api_md.c
  4398 int os::ftruncate(int fd, jlong length) {
  4399   HANDLE h = (HANDLE)::_get_osfhandle(fd);
  4400   long high = (long)(length >> 32);
  4401   DWORD ret;
  4403   if (h == (HANDLE)(-1)) {
  4404     return -1;
  4407   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
  4408   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
  4409       return -1;
  4412   if (::SetEndOfFile(h) == FALSE) {
  4413     return -1;
  4416   return 0;
  4420 // This code is a copy of JDK's sysSync
  4421 // from src/windows/hpi/src/sys_api_md.c
  4422 // except for the legacy workaround for a bug in Win 98
  4424 int os::fsync(int fd) {
  4425   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
  4427   if ( (!::FlushFileBuffers(handle)) &&
  4428          (GetLastError() != ERROR_ACCESS_DENIED) ) {
  4429     /* from winerror.h */
  4430     return -1;
  4432   return 0;
  4435 static int nonSeekAvailable(int, long *);
  4436 static int stdinAvailable(int, long *);
  4438 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
  4439 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
  4441 // This code is a copy of JDK's sysAvailable
  4442 // from src/windows/hpi/src/sys_api_md.c
  4444 int os::available(int fd, jlong *bytes) {
  4445   jlong cur, end;
  4446   struct _stati64 stbuf64;
  4448   if (::_fstati64(fd, &stbuf64) >= 0) {
  4449     int mode = stbuf64.st_mode;
  4450     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
  4451       int ret;
  4452       long lpbytes;
  4453       if (fd == 0) {
  4454         ret = stdinAvailable(fd, &lpbytes);
  4455       } else {
  4456         ret = nonSeekAvailable(fd, &lpbytes);
  4458       (*bytes) = (jlong)(lpbytes);
  4459       return ret;
  4461     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
  4462       return FALSE;
  4463     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
  4464       return FALSE;
  4465     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
  4466       return FALSE;
  4468     *bytes = end - cur;
  4469     return TRUE;
  4470   } else {
  4471     return FALSE;
  4475 // This code is a copy of JDK's nonSeekAvailable
  4476 // from src/windows/hpi/src/sys_api_md.c
  4478 static int nonSeekAvailable(int fd, long *pbytes) {
  4479   /* This is used for available on non-seekable devices
  4480     * (like both named and anonymous pipes, such as pipes
  4481     *  connected to an exec'd process).
  4482     * Standard Input is a special case.
  4484     */
  4485   HANDLE han;
  4487   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
  4488     return FALSE;
  4491   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
  4492         /* PeekNamedPipe fails when at EOF.  In that case we
  4493          * simply make *pbytes = 0 which is consistent with the
  4494          * behavior we get on Solaris when an fd is at EOF.
  4495          * The only alternative is to raise an Exception,
  4496          * which isn't really warranted.
  4497          */
  4498     if (::GetLastError() != ERROR_BROKEN_PIPE) {
  4499       return FALSE;
  4501     *pbytes = 0;
  4503   return TRUE;
  4506 #define MAX_INPUT_EVENTS 2000
  4508 // This code is a copy of JDK's stdinAvailable
  4509 // from src/windows/hpi/src/sys_api_md.c
  4511 static int stdinAvailable(int fd, long *pbytes) {
  4512   HANDLE han;
  4513   DWORD numEventsRead = 0;      /* Number of events read from buffer */
  4514   DWORD numEvents = 0;  /* Number of events in buffer */
  4515   DWORD i = 0;          /* Loop index */
  4516   DWORD curLength = 0;  /* Position marker */
  4517   DWORD actualLength = 0;       /* Number of bytes readable */
  4518   BOOL error = FALSE;         /* Error holder */
  4519   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
  4521   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
  4522         return FALSE;
  4525   /* Construct an array of input records in the console buffer */
  4526   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
  4527   if (error == 0) {
  4528     return nonSeekAvailable(fd, pbytes);
  4531   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
  4532   if (numEvents > MAX_INPUT_EVENTS) {
  4533     numEvents = MAX_INPUT_EVENTS;
  4536   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
  4537   if (lpBuffer == NULL) {
  4538     return FALSE;
  4541   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
  4542   if (error == 0) {
  4543     os::free(lpBuffer, mtInternal);
  4544     return FALSE;
  4547   /* Examine input records for the number of bytes available */
  4548   for(i=0; i<numEvents; i++) {
  4549     if (lpBuffer[i].EventType == KEY_EVENT) {
  4551       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
  4552                                       &(lpBuffer[i].Event);
  4553       if (keyRecord->bKeyDown == TRUE) {
  4554         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
  4555         curLength++;
  4556         if (*keyPressed == '\r') {
  4557           actualLength = curLength;
  4563   if(lpBuffer != NULL) {
  4564     os::free(lpBuffer, mtInternal);
  4567   *pbytes = (long) actualLength;
  4568   return TRUE;
  4571 // Map a block of memory.
  4572 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  4573                      char *addr, size_t bytes, bool read_only,
  4574                      bool allow_exec) {
  4575   HANDLE hFile;
  4576   char* base;
  4578   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
  4579                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  4580   if (hFile == NULL) {
  4581     if (PrintMiscellaneous && Verbose) {
  4582       DWORD err = GetLastError();
  4583       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
  4585     return NULL;
  4588   if (allow_exec) {
  4589     // CreateFileMapping/MapViewOfFileEx can't map executable memory
  4590     // unless it comes from a PE image (which the shared archive is not.)
  4591     // Even VirtualProtect refuses to give execute access to mapped memory
  4592     // that was not previously executable.
  4593     //
  4594     // Instead, stick the executable region in anonymous memory.  Yuck.
  4595     // Penalty is that ~4 pages will not be shareable - in the future
  4596     // we might consider DLLizing the shared archive with a proper PE
  4597     // header so that mapping executable + sharing is possible.
  4599     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
  4600                                 PAGE_READWRITE);
  4601     if (base == NULL) {
  4602       if (PrintMiscellaneous && Verbose) {
  4603         DWORD err = GetLastError();
  4604         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
  4606       CloseHandle(hFile);
  4607       return NULL;
  4610     DWORD bytes_read;
  4611     OVERLAPPED overlapped;
  4612     overlapped.Offset = (DWORD)file_offset;
  4613     overlapped.OffsetHigh = 0;
  4614     overlapped.hEvent = NULL;
  4615     // ReadFile guarantees that if the return value is true, the requested
  4616     // number of bytes were read before returning.
  4617     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
  4618     if (!res) {
  4619       if (PrintMiscellaneous && Verbose) {
  4620         DWORD err = GetLastError();
  4621         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
  4623       release_memory(base, bytes);
  4624       CloseHandle(hFile);
  4625       return NULL;
  4627   } else {
  4628     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
  4629                                     NULL /*file_name*/);
  4630     if (hMap == NULL) {
  4631       if (PrintMiscellaneous && Verbose) {
  4632         DWORD err = GetLastError();
  4633         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
  4635       CloseHandle(hFile);
  4636       return NULL;
  4639     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
  4640     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
  4641                                   (DWORD)bytes, addr);
  4642     if (base == NULL) {
  4643       if (PrintMiscellaneous && Verbose) {
  4644         DWORD err = GetLastError();
  4645         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
  4647       CloseHandle(hMap);
  4648       CloseHandle(hFile);
  4649       return NULL;
  4652     if (CloseHandle(hMap) == 0) {
  4653       if (PrintMiscellaneous && Verbose) {
  4654         DWORD err = GetLastError();
  4655         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
  4657       CloseHandle(hFile);
  4658       return base;
  4662   if (allow_exec) {
  4663     DWORD old_protect;
  4664     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
  4665     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
  4667     if (!res) {
  4668       if (PrintMiscellaneous && Verbose) {
  4669         DWORD err = GetLastError();
  4670         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
  4672       // Don't consider this a hard error, on IA32 even if the
  4673       // VirtualProtect fails, we should still be able to execute
  4674       CloseHandle(hFile);
  4675       return base;
  4679   if (CloseHandle(hFile) == 0) {
  4680     if (PrintMiscellaneous && Verbose) {
  4681       DWORD err = GetLastError();
  4682       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
  4684     return base;
  4687   return base;
  4691 // Remap a block of memory.
  4692 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  4693                        char *addr, size_t bytes, bool read_only,
  4694                        bool allow_exec) {
  4695   // This OS does not allow existing memory maps to be remapped so we
  4696   // have to unmap the memory before we remap it.
  4697   if (!os::unmap_memory(addr, bytes)) {
  4698     return NULL;
  4701   // There is a very small theoretical window between the unmap_memory()
  4702   // call above and the map_memory() call below where a thread in native
  4703   // code may be able to access an address that is no longer mapped.
  4705   return os::map_memory(fd, file_name, file_offset, addr, bytes,
  4706            read_only, allow_exec);
  4710 // Unmap a block of memory.
  4711 // Returns true=success, otherwise false.
  4713 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  4714   BOOL result = UnmapViewOfFile(addr);
  4715   if (result == 0) {
  4716     if (PrintMiscellaneous && Verbose) {
  4717       DWORD err = GetLastError();
  4718       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
  4720     return false;
  4722   return true;
  4725 void os::pause() {
  4726   char filename[MAX_PATH];
  4727   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4728     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4729   } else {
  4730     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4733   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4734   if (fd != -1) {
  4735     struct stat buf;
  4736     ::close(fd);
  4737     while (::stat(filename, &buf) == 0) {
  4738       Sleep(100);
  4740   } else {
  4741     jio_fprintf(stderr,
  4742       "Could not open pause file '%s', continuing immediately.\n", filename);
  4746 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
  4747   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
  4750 /*
  4751  * See the caveats for this class in os_windows.hpp
  4752  * Protects the callback call so that raised OS EXCEPTIONS causes a jump back
  4753  * into this method and returns false. If no OS EXCEPTION was raised, returns
  4754  * true.
  4755  * The callback is supposed to provide the method that should be protected.
  4756  */
  4757 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
  4758   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
  4759   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
  4760       "crash_protection already set?");
  4762   bool success = true;
  4763   __try {
  4764     WatcherThread::watcher_thread()->set_crash_protection(this);
  4765     cb.call();
  4766   } __except(EXCEPTION_EXECUTE_HANDLER) {
  4767     // only for protection, nothing to do
  4768     success = false;
  4770   WatcherThread::watcher_thread()->set_crash_protection(NULL);
  4771   return success;
  4774 // An Event wraps a win32 "CreateEvent" kernel handle.
  4775 //
  4776 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
  4777 //
  4778 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
  4779 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
  4780 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
  4781 //     In addition, an unpark() operation might fetch the handle field, but the
  4782 //     event could recycle between the fetch and the SetEvent() operation.
  4783 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
  4784 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
  4785 //     on an stale but recycled handle would be harmless, but in practice this might
  4786 //     confuse other non-Sun code, so it's not a viable approach.
  4787 //
  4788 // 2:  Once a win32 event handle is associated with an Event, it remains associated
  4789 //     with the Event.  The event handle is never closed.  This could be construed
  4790 //     as handle leakage, but only up to the maximum # of threads that have been extant
  4791 //     at any one time.  This shouldn't be an issue, as windows platforms typically
  4792 //     permit a process to have hundreds of thousands of open handles.
  4793 //
  4794 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
  4795 //     and release unused handles.
  4796 //
  4797 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
  4798 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
  4799 //
  4800 // 5.  Use an RCU-like mechanism (Read-Copy Update).
  4801 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
  4802 //
  4803 // We use (2).
  4804 //
  4805 // TODO-FIXME:
  4806 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
  4807 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
  4808 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
  4809 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
  4810 //     into a single win32 CreateEvent() handle.
  4811 //
  4812 // _Event transitions in park()
  4813 //   -1 => -1 : illegal
  4814 //    1 =>  0 : pass - return immediately
  4815 //    0 => -1 : block
  4816 //
  4817 // _Event serves as a restricted-range semaphore :
  4818 //    -1 : thread is blocked
  4819 //     0 : neutral  - thread is running or ready
  4820 //     1 : signaled - thread is running or ready
  4821 //
  4822 // Another possible encoding of _Event would be
  4823 // with explicit "PARKED" and "SIGNALED" bits.
  4825 int os::PlatformEvent::park (jlong Millis) {
  4826     guarantee (_ParkHandle != NULL , "Invariant") ;
  4827     guarantee (Millis > 0          , "Invariant") ;
  4828     int v ;
  4830     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
  4831     // the initial park() operation.
  4833     for (;;) {
  4834         v = _Event ;
  4835         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4837     guarantee ((v == 0) || (v == 1), "invariant") ;
  4838     if (v != 0) return OS_OK ;
  4840     // Do this the hard way by blocking ...
  4841     // TODO: consider a brief spin here, gated on the success of recent
  4842     // spin attempts by this thread.
  4843     //
  4844     // We decompose long timeouts into series of shorter timed waits.
  4845     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
  4846     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
  4847     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
  4848     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
  4849     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
  4850     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
  4851     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
  4852     // for the already waited time.  This policy does not admit any new outcomes.
  4853     // In the future, however, we might want to track the accumulated wait time and
  4854     // adjust Millis accordingly if we encounter a spurious wakeup.
  4856     const int MAXTIMEOUT = 0x10000000 ;
  4857     DWORD rv = WAIT_TIMEOUT ;
  4858     while (_Event < 0 && Millis > 0) {
  4859        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
  4860        if (Millis > MAXTIMEOUT) {
  4861           prd = MAXTIMEOUT ;
  4863        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
  4864        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
  4865        if (rv == WAIT_TIMEOUT) {
  4866            Millis -= prd ;
  4869     v = _Event ;
  4870     _Event = 0 ;
  4871     // see comment at end of os::PlatformEvent::park() below:
  4872     OrderAccess::fence() ;
  4873     // If we encounter a nearly simultanous timeout expiry and unpark()
  4874     // we return OS_OK indicating we awoke via unpark().
  4875     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
  4876     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
  4879 void os::PlatformEvent::park () {
  4880     guarantee (_ParkHandle != NULL, "Invariant") ;
  4881     // Invariant: Only the thread associated with the Event/PlatformEvent
  4882     // may call park().
  4883     int v ;
  4884     for (;;) {
  4885         v = _Event ;
  4886         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4888     guarantee ((v == 0) || (v == 1), "invariant") ;
  4889     if (v != 0) return ;
  4891     // Do this the hard way by blocking ...
  4892     // TODO: consider a brief spin here, gated on the success of recent
  4893     // spin attempts by this thread.
  4894     while (_Event < 0) {
  4895        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
  4896        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
  4899     // Usually we'll find _Event == 0 at this point, but as
  4900     // an optional optimization we clear it, just in case can
  4901     // multiple unpark() operations drove _Event up to 1.
  4902     _Event = 0 ;
  4903     OrderAccess::fence() ;
  4904     guarantee (_Event >= 0, "invariant") ;
  4907 void os::PlatformEvent::unpark() {
  4908   guarantee (_ParkHandle != NULL, "Invariant") ;
  4910   // Transitions for _Event:
  4911   //    0 :=> 1
  4912   //    1 :=> 1
  4913   //   -1 :=> either 0 or 1; must signal target thread
  4914   //          That is, we can safely transition _Event from -1 to either
  4915   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  4916   //          unpark() calls.
  4917   // See also: "Semaphores in Plan 9" by Mullender & Cox
  4918   //
  4919   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  4920   // that it will take two back-to-back park() calls for the owning
  4921   // thread to block. This has the benefit of forcing a spurious return
  4922   // from the first park() call after an unpark() call which will help
  4923   // shake out uses of park() and unpark() without condition variables.
  4925   if (Atomic::xchg(1, &_Event) >= 0) return;
  4927   ::SetEvent(_ParkHandle);
  4931 // JSR166
  4932 // -------------------------------------------------------
  4934 /*
  4935  * The Windows implementation of Park is very straightforward: Basic
  4936  * operations on Win32 Events turn out to have the right semantics to
  4937  * use them directly. We opportunistically resuse the event inherited
  4938  * from Monitor.
  4939  */
  4942 void Parker::park(bool isAbsolute, jlong time) {
  4943   guarantee (_ParkEvent != NULL, "invariant") ;
  4944   // First, demultiplex/decode time arguments
  4945   if (time < 0) { // don't wait
  4946     return;
  4948   else if (time == 0 && !isAbsolute) {
  4949     time = INFINITE;
  4951   else if  (isAbsolute) {
  4952     time -= os::javaTimeMillis(); // convert to relative time
  4953     if (time <= 0) // already elapsed
  4954       return;
  4956   else { // relative
  4957     time /= 1000000; // Must coarsen from nanos to millis
  4958     if (time == 0)   // Wait for the minimal time unit if zero
  4959       time = 1;
  4962   JavaThread* thread = (JavaThread*)(Thread::current());
  4963   assert(thread->is_Java_thread(), "Must be JavaThread");
  4964   JavaThread *jt = (JavaThread *)thread;
  4966   // Don't wait if interrupted or already triggered
  4967   if (Thread::is_interrupted(thread, false) ||
  4968     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
  4969     ResetEvent(_ParkEvent);
  4970     return;
  4972   else {
  4973     ThreadBlockInVM tbivm(jt);
  4974     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4975     jt->set_suspend_equivalent();
  4977     WaitForSingleObject(_ParkEvent,  time);
  4978     ResetEvent(_ParkEvent);
  4980     // If externally suspended while waiting, re-suspend
  4981     if (jt->handle_special_suspend_equivalent_condition()) {
  4982       jt->java_suspend_self();
  4987 void Parker::unpark() {
  4988   guarantee (_ParkEvent != NULL, "invariant") ;
  4989   SetEvent(_ParkEvent);
  4992 // Run the specified command in a separate process. Return its exit value,
  4993 // or -1 on failure (e.g. can't create a new process).
  4994 int os::fork_and_exec(char* cmd) {
  4995   STARTUPINFO si;
  4996   PROCESS_INFORMATION pi;
  4998   memset(&si, 0, sizeof(si));
  4999   si.cb = sizeof(si);
  5000   memset(&pi, 0, sizeof(pi));
  5001   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
  5002                             cmd,    // command line
  5003                             NULL,   // process security attribute
  5004                             NULL,   // thread security attribute
  5005                             TRUE,   // inherits system handles
  5006                             0,      // no creation flags
  5007                             NULL,   // use parent's environment block
  5008                             NULL,   // use parent's starting directory
  5009                             &si,    // (in) startup information
  5010                             &pi);   // (out) process information
  5012   if (rslt) {
  5013     // Wait until child process exits.
  5014     WaitForSingleObject(pi.hProcess, INFINITE);
  5016     DWORD exit_code;
  5017     GetExitCodeProcess(pi.hProcess, &exit_code);
  5019     // Close process and thread handles.
  5020     CloseHandle(pi.hProcess);
  5021     CloseHandle(pi.hThread);
  5023     return (int)exit_code;
  5024   } else {
  5025     return -1;
  5029 //--------------------------------------------------------------------------------------------------
  5030 // Non-product code
  5032 static int mallocDebugIntervalCounter = 0;
  5033 static int mallocDebugCounter = 0;
  5034 bool os::check_heap(bool force) {
  5035   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
  5036   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
  5037     // Note: HeapValidate executes two hardware breakpoints when it finds something
  5038     // wrong; at these points, eax contains the address of the offending block (I think).
  5039     // To get to the exlicit error message(s) below, just continue twice.
  5040     HANDLE heap = GetProcessHeap();
  5041     { HeapLock(heap);
  5042       PROCESS_HEAP_ENTRY phe;
  5043       phe.lpData = NULL;
  5044       while (HeapWalk(heap, &phe) != 0) {
  5045         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
  5046             !HeapValidate(heap, 0, phe.lpData)) {
  5047           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
  5048           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
  5049           fatal("corrupted C heap");
  5052       DWORD err = GetLastError();
  5053       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
  5054         fatal(err_msg("heap walk aborted with error %d", err));
  5056       HeapUnlock(heap);
  5058     mallocDebugIntervalCounter = 0;
  5060   return true;
  5064 bool os::find(address addr, outputStream* st) {
  5065   // Nothing yet
  5066   return false;
  5069 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
  5070   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
  5072   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  5073     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
  5074     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
  5075     address addr = (address) exceptionRecord->ExceptionInformation[1];
  5077     if (os::is_memory_serialize_page(thread, addr))
  5078       return EXCEPTION_CONTINUE_EXECUTION;
  5081   return EXCEPTION_CONTINUE_SEARCH;
  5084 // We don't build a headless jre for Windows
  5085 bool os::is_headless_jre() { return false; }
  5087 static jint initSock() {
  5088   WSADATA wsadata;
  5090   if (!os::WinSock2Dll::WinSock2Available()) {
  5091     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
  5092       ::GetLastError());
  5093     return JNI_ERR;
  5096   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
  5097     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
  5098       ::GetLastError());
  5099     return JNI_ERR;
  5101   return JNI_OK;
  5104 struct hostent* os::get_host_by_name(char* name) {
  5105   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
  5108 int os::socket_close(int fd) {
  5109   return ::closesocket(fd);
  5112 int os::socket_available(int fd, jint *pbytes) {
  5113   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
  5114   return (ret < 0) ? 0 : 1;
  5117 int os::socket(int domain, int type, int protocol) {
  5118   return ::socket(domain, type, protocol);
  5121 int os::listen(int fd, int count) {
  5122   return ::listen(fd, count);
  5125 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
  5126   return ::connect(fd, him, len);
  5129 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
  5130   return ::accept(fd, him, len);
  5133 int os::sendto(int fd, char* buf, size_t len, uint flags,
  5134                struct sockaddr* to, socklen_t tolen) {
  5136   return ::sendto(fd, buf, (int)len, flags, to, tolen);
  5139 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
  5140                  sockaddr* from, socklen_t* fromlen) {
  5142   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
  5145 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
  5146   return ::recv(fd, buf, (int)nBytes, flags);
  5149 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
  5150   return ::send(fd, buf, (int)nBytes, flags);
  5153 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
  5154   return ::send(fd, buf, (int)nBytes, flags);
  5157 int os::timeout(int fd, long timeout) {
  5158   fd_set tbl;
  5159   struct timeval t;
  5161   t.tv_sec  = timeout / 1000;
  5162   t.tv_usec = (timeout % 1000) * 1000;
  5164   tbl.fd_count    = 1;
  5165   tbl.fd_array[0] = fd;
  5167   return ::select(1, &tbl, 0, 0, &t);
  5170 int os::get_host_name(char* name, int namelen) {
  5171   return ::gethostname(name, namelen);
  5174 int os::socket_shutdown(int fd, int howto) {
  5175   return ::shutdown(fd, howto);
  5178 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
  5179   return ::bind(fd, him, len);
  5182 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
  5183   return ::getsockname(fd, him, len);
  5186 int os::get_sock_opt(int fd, int level, int optname,
  5187                      char* optval, socklen_t* optlen) {
  5188   return ::getsockopt(fd, level, optname, optval, optlen);
  5191 int os::set_sock_opt(int fd, int level, int optname,
  5192                      const char* optval, socklen_t optlen) {
  5193   return ::setsockopt(fd, level, optname, optval, optlen);
  5196 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
  5197 #if defined(IA32)
  5198 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
  5199 #elif defined (AMD64)
  5200 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
  5201 #endif
  5203 // returns true if thread could be suspended,
  5204 // false otherwise
  5205 static bool do_suspend(HANDLE* h) {
  5206   if (h != NULL) {
  5207     if (SuspendThread(*h) != ~0) {
  5208       return true;
  5211   return false;
  5214 // resume the thread
  5215 // calling resume on an active thread is a no-op
  5216 static void do_resume(HANDLE* h) {
  5217   if (h != NULL) {
  5218     ResumeThread(*h);
  5222 // retrieve a suspend/resume context capable handle
  5223 // from the tid. Caller validates handle return value.
  5224 void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
  5225   if (h != NULL) {
  5226     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
  5230 //
  5231 // Thread sampling implementation
  5232 //
  5233 void os::SuspendedThreadTask::internal_do_task() {
  5234   CONTEXT    ctxt;
  5235   HANDLE     h = NULL;
  5237   // get context capable handle for thread
  5238   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
  5240   // sanity
  5241   if (h == NULL || h == INVALID_HANDLE_VALUE) {
  5242     return;
  5245   // suspend the thread
  5246   if (do_suspend(&h)) {
  5247     ctxt.ContextFlags = sampling_context_flags;
  5248     // get thread context
  5249     GetThreadContext(h, &ctxt);
  5250     SuspendedThreadTaskContext context(_thread, &ctxt);
  5251     // pass context to Thread Sampling impl
  5252     do_task(context);
  5253     // resume thread
  5254     do_resume(&h);
  5257   // close handle
  5258   CloseHandle(h);
  5262 // Kernel32 API
  5263 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
  5264 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
  5265 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
  5266 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
  5267 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
  5269 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
  5270 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
  5271 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
  5272 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
  5273 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
  5276 BOOL                        os::Kernel32Dll::initialized = FALSE;
  5277 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
  5278   assert(initialized && _GetLargePageMinimum != NULL,
  5279     "GetLargePageMinimumAvailable() not yet called");
  5280   return _GetLargePageMinimum();
  5283 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
  5284   if (!initialized) {
  5285     initialize();
  5287   return _GetLargePageMinimum != NULL;
  5290 BOOL os::Kernel32Dll::NumaCallsAvailable() {
  5291   if (!initialized) {
  5292     initialize();
  5294   return _VirtualAllocExNuma != NULL;
  5297 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
  5298   assert(initialized && _VirtualAllocExNuma != NULL,
  5299     "NUMACallsAvailable() not yet called");
  5301   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
  5304 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
  5305   assert(initialized && _GetNumaHighestNodeNumber != NULL,
  5306     "NUMACallsAvailable() not yet called");
  5308   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
  5311 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
  5312   assert(initialized && _GetNumaNodeProcessorMask != NULL,
  5313     "NUMACallsAvailable() not yet called");
  5315   return _GetNumaNodeProcessorMask(node, proc_mask);
  5318 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
  5319   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
  5320     if (!initialized) {
  5321       initialize();
  5324     if (_RtlCaptureStackBackTrace != NULL) {
  5325       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
  5326         BackTrace, BackTraceHash);
  5327     } else {
  5328       return 0;
  5332 void os::Kernel32Dll::initializeCommon() {
  5333   if (!initialized) {
  5334     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  5335     assert(handle != NULL, "Just check");
  5336     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
  5337     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
  5338     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
  5339     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
  5340     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
  5341     initialized = TRUE;
  5347 #ifndef JDK6_OR_EARLIER
  5349 void os::Kernel32Dll::initialize() {
  5350   initializeCommon();
  5354 // Kernel32 API
  5355 inline BOOL os::Kernel32Dll::SwitchToThread() {
  5356   return ::SwitchToThread();
  5359 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5360   return true;
  5363   // Help tools
  5364 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5365   return true;
  5368 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5369   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5372 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5373   return ::Module32First(hSnapshot, lpme);
  5376 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5377   return ::Module32Next(hSnapshot, lpme);
  5380 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5381   ::GetNativeSystemInfo(lpSystemInfo);
  5384 // PSAPI API
  5385 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5386   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5389 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5390   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5393 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5394   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5397 inline BOOL os::PSApiDll::PSApiAvailable() {
  5398   return true;
  5402 // WinSock2 API
  5403 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5404   return ::WSAStartup(wVersionRequested, lpWSAData);
  5407 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5408   return ::gethostbyname(name);
  5411 inline BOOL os::WinSock2Dll::WinSock2Available() {
  5412   return true;
  5415 // Advapi API
  5416 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5417    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5418    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5419      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5420        BufferLength, PreviousState, ReturnLength);
  5423 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5424   PHANDLE TokenHandle) {
  5425     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5428 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5429   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5432 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
  5433   return true;
  5436 void* os::get_default_process_handle() {
  5437   return (void*)GetModuleHandle(NULL);
  5440 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
  5441 // which is used to find statically linked in agents.
  5442 // Additionally for windows, takes into account __stdcall names.
  5443 // Parameters:
  5444 //            sym_name: Symbol in library we are looking for
  5445 //            lib_name: Name of library to look in, NULL for shared libs.
  5446 //            is_absolute_path == true if lib_name is absolute path to agent
  5447 //                                     such as "C:/a/b/L.dll"
  5448 //            == false if only the base name of the library is passed in
  5449 //               such as "L"
  5450 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
  5451                                     bool is_absolute_path) {
  5452   char *agent_entry_name;
  5453   size_t len;
  5454   size_t name_len;
  5455   size_t prefix_len = strlen(JNI_LIB_PREFIX);
  5456   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
  5457   const char *start;
  5459   if (lib_name != NULL) {
  5460     len = name_len = strlen(lib_name);
  5461     if (is_absolute_path) {
  5462       // Need to strip path, prefix and suffix
  5463       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
  5464         lib_name = ++start;
  5465       } else {
  5466         // Need to check for drive prefix
  5467         if ((start = strchr(lib_name, ':')) != NULL) {
  5468           lib_name = ++start;
  5471       if (len <= (prefix_len + suffix_len)) {
  5472         return NULL;
  5474       lib_name += prefix_len;
  5475       name_len = strlen(lib_name) - suffix_len;
  5478   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
  5479   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
  5480   if (agent_entry_name == NULL) {
  5481     return NULL;
  5483   if (lib_name != NULL) {
  5484     const char *p = strrchr(sym_name, '@');
  5485     if (p != NULL && p != sym_name) {
  5486       // sym_name == _Agent_OnLoad@XX
  5487       strncpy(agent_entry_name, sym_name, (p - sym_name));
  5488       agent_entry_name[(p-sym_name)] = '\0';
  5489       // agent_entry_name == _Agent_OnLoad
  5490       strcat(agent_entry_name, "_");
  5491       strncat(agent_entry_name, lib_name, name_len);
  5492       strcat(agent_entry_name, p);
  5493       // agent_entry_name == _Agent_OnLoad_lib_name@XX
  5494     } else {
  5495       strcpy(agent_entry_name, sym_name);
  5496       strcat(agent_entry_name, "_");
  5497       strncat(agent_entry_name, lib_name, name_len);
  5499   } else {
  5500     strcpy(agent_entry_name, sym_name);
  5502   return agent_entry_name;
  5505 #else
  5506 // Kernel32 API
  5507 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
  5508 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
  5509 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
  5510 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
  5511 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
  5513 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
  5514 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
  5515 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
  5516 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
  5517 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
  5519 void os::Kernel32Dll::initialize() {
  5520   if (!initialized) {
  5521     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  5522     assert(handle != NULL, "Just check");
  5524     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
  5525     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
  5526       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
  5527     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
  5528     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
  5529     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
  5530     initializeCommon();  // resolve the functions that always need resolving
  5532     initialized = TRUE;
  5536 BOOL os::Kernel32Dll::SwitchToThread() {
  5537   assert(initialized && _SwitchToThread != NULL,
  5538     "SwitchToThreadAvailable() not yet called");
  5539   return _SwitchToThread();
  5543 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5544   if (!initialized) {
  5545     initialize();
  5547   return _SwitchToThread != NULL;
  5550 // Help tools
  5551 BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5552   if (!initialized) {
  5553     initialize();
  5555   return _CreateToolhelp32Snapshot != NULL &&
  5556          _Module32First != NULL &&
  5557          _Module32Next != NULL;
  5560 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5561   assert(initialized && _CreateToolhelp32Snapshot != NULL,
  5562     "HelpToolsAvailable() not yet called");
  5564   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5567 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5568   assert(initialized && _Module32First != NULL,
  5569     "HelpToolsAvailable() not yet called");
  5571   return _Module32First(hSnapshot, lpme);
  5574 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5575   assert(initialized && _Module32Next != NULL,
  5576     "HelpToolsAvailable() not yet called");
  5578   return _Module32Next(hSnapshot, lpme);
  5582 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
  5583   if (!initialized) {
  5584     initialize();
  5586   return _GetNativeSystemInfo != NULL;
  5589 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5590   assert(initialized && _GetNativeSystemInfo != NULL,
  5591     "GetNativeSystemInfoAvailable() not yet called");
  5593   _GetNativeSystemInfo(lpSystemInfo);
  5596 // PSAPI API
  5599 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
  5600 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
  5601 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
  5603 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
  5604 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
  5605 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
  5606 BOOL                    os::PSApiDll::initialized = FALSE;
  5608 void os::PSApiDll::initialize() {
  5609   if (!initialized) {
  5610     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
  5611     if (handle != NULL) {
  5612       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
  5613         "EnumProcessModules");
  5614       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
  5615         "GetModuleFileNameExA");
  5616       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
  5617         "GetModuleInformation");
  5619     initialized = TRUE;
  5625 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5626   assert(initialized && _EnumProcessModules != NULL,
  5627     "PSApiAvailable() not yet called");
  5628   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5631 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5632   assert(initialized && _GetModuleFileNameEx != NULL,
  5633     "PSApiAvailable() not yet called");
  5634   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5637 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5638   assert(initialized && _GetModuleInformation != NULL,
  5639     "PSApiAvailable() not yet called");
  5640   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5643 BOOL os::PSApiDll::PSApiAvailable() {
  5644   if (!initialized) {
  5645     initialize();
  5647   return _EnumProcessModules != NULL &&
  5648     _GetModuleFileNameEx != NULL &&
  5649     _GetModuleInformation != NULL;
  5653 // WinSock2 API
  5654 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
  5655 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
  5657 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
  5658 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
  5659 BOOL             os::WinSock2Dll::initialized = FALSE;
  5661 void os::WinSock2Dll::initialize() {
  5662   if (!initialized) {
  5663     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
  5664     if (handle != NULL) {
  5665       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
  5666       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
  5668     initialized = TRUE;
  5673 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5674   assert(initialized && _WSAStartup != NULL,
  5675     "WinSock2Available() not yet called");
  5676   return _WSAStartup(wVersionRequested, lpWSAData);
  5679 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5680   assert(initialized && _gethostbyname != NULL,
  5681     "WinSock2Available() not yet called");
  5682   return _gethostbyname(name);
  5685 BOOL os::WinSock2Dll::WinSock2Available() {
  5686   if (!initialized) {
  5687     initialize();
  5689   return _WSAStartup != NULL &&
  5690     _gethostbyname != NULL;
  5693 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
  5694 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
  5695 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
  5697 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
  5698 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
  5699 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
  5700 BOOL                     os::Advapi32Dll::initialized = FALSE;
  5702 void os::Advapi32Dll::initialize() {
  5703   if (!initialized) {
  5704     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
  5705     if (handle != NULL) {
  5706       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
  5707         "AdjustTokenPrivileges");
  5708       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
  5709         "OpenProcessToken");
  5710       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
  5711         "LookupPrivilegeValueA");
  5713     initialized = TRUE;
  5717 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5718    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5719    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5720    assert(initialized && _AdjustTokenPrivileges != NULL,
  5721      "AdvapiAvailable() not yet called");
  5722    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5723        BufferLength, PreviousState, ReturnLength);
  5726 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5727   PHANDLE TokenHandle) {
  5728    assert(initialized && _OpenProcessToken != NULL,
  5729      "AdvapiAvailable() not yet called");
  5730     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5733 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5734    assert(initialized && _LookupPrivilegeValue != NULL,
  5735      "AdvapiAvailable() not yet called");
  5736   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5739 BOOL os::Advapi32Dll::AdvapiAvailable() {
  5740   if (!initialized) {
  5741     initialize();
  5743   return _AdjustTokenPrivileges != NULL &&
  5744     _OpenProcessToken != NULL &&
  5745     _LookupPrivilegeValue != NULL;
  5748 #endif
  5750 #ifndef PRODUCT
  5752 // test the code path in reserve_memory_special() that tries to allocate memory in a single
  5753 // contiguous memory block at a particular address.
  5754 // The test first tries to find a good approximate address to allocate at by using the same
  5755 // method to allocate some memory at any address. The test then tries to allocate memory in
  5756 // the vicinity (not directly after it to avoid possible by-chance use of that location)
  5757 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
  5758 // the previously allocated memory is available for allocation. The only actual failure
  5759 // that is reported is when the test tries to allocate at a particular location but gets a
  5760 // different valid one. A NULL return value at this point is not considered an error but may
  5761 // be legitimate.
  5762 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
  5763 void TestReserveMemorySpecial_test() {
  5764   if (!UseLargePages) {
  5765     if (VerboseInternalVMTests) {
  5766       gclog_or_tty->print("Skipping test because large pages are disabled");
  5768     return;
  5770   // save current value of globals
  5771   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
  5772   bool old_use_numa_interleaving = UseNUMAInterleaving;
  5774   // set globals to make sure we hit the correct code path
  5775   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
  5777   // do an allocation at an address selected by the OS to get a good one.
  5778   const size_t large_allocation_size = os::large_page_size() * 4;
  5779   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
  5780   if (result == NULL) {
  5781     if (VerboseInternalVMTests) {
  5782       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
  5783         large_allocation_size);
  5785   } else {
  5786     os::release_memory_special(result, large_allocation_size);
  5788     // allocate another page within the recently allocated memory area which seems to be a good location. At least
  5789     // we managed to get it once.
  5790     const size_t expected_allocation_size = os::large_page_size();
  5791     char* expected_location = result + os::large_page_size();
  5792     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
  5793     if (actual_location == NULL) {
  5794       if (VerboseInternalVMTests) {
  5795         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
  5796           expected_location, large_allocation_size);
  5798     } else {
  5799       // release memory
  5800       os::release_memory_special(actual_location, expected_allocation_size);
  5801       // only now check, after releasing any memory to avoid any leaks.
  5802       assert(actual_location == expected_location,
  5803         err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
  5804           expected_location, expected_allocation_size, actual_location));
  5808   // restore globals
  5809   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
  5810   UseNUMAInterleaving = old_use_numa_interleaving;
  5812 #endif // PRODUCT

mercurial