src/cpu/ppc/vm/assembler_ppc.hpp

Thu, 12 Oct 2017 21:27:07 +0800

author
aoqi
date
Thu, 12 Oct 2017 21:27:07 +0800
changeset 7535
7ae4e26cb1e0
parent 7222
f6bde7889409
parent 6876
710a3c8b516e
child 8856
ac27a9c85bea
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright 2012, 2013 SAP AG. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #ifndef CPU_PPC_VM_ASSEMBLER_PPC_HPP
    27 #define CPU_PPC_VM_ASSEMBLER_PPC_HPP
    29 #include "asm/register.hpp"
    31 // Address is an abstraction used to represent a memory location
    32 // as used in assembler instructions.
    33 // PPC instructions grok either baseReg + indexReg or baseReg + disp.
    34 // So far we do not use this as simplification by this class is low
    35 // on PPC with its simple addressing mode. Use RegisterOrConstant to
    36 // represent an offset.
    37 class Address VALUE_OBJ_CLASS_SPEC {
    38 };
    40 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
    41  private:
    42   address          _address;
    43   RelocationHolder _rspec;
    45   RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
    46     switch (rtype) {
    47     case relocInfo::external_word_type:
    48       return external_word_Relocation::spec(addr);
    49     case relocInfo::internal_word_type:
    50       return internal_word_Relocation::spec(addr);
    51     case relocInfo::opt_virtual_call_type:
    52       return opt_virtual_call_Relocation::spec();
    53     case relocInfo::static_call_type:
    54       return static_call_Relocation::spec();
    55     case relocInfo::runtime_call_type:
    56       return runtime_call_Relocation::spec();
    57     case relocInfo::none:
    58       return RelocationHolder();
    59     default:
    60       ShouldNotReachHere();
    61       return RelocationHolder();
    62     }
    63   }
    65  protected:
    66   // creation
    67   AddressLiteral() : _address(NULL), _rspec(NULL) {}
    69  public:
    70   AddressLiteral(address addr, RelocationHolder const& rspec)
    71     : _address(addr),
    72       _rspec(rspec) {}
    74   AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
    75     : _address((address) addr),
    76       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
    78   AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
    79     : _address((address) addr),
    80       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
    82   intptr_t value() const { return (intptr_t) _address; }
    84   const RelocationHolder& rspec() const { return _rspec; }
    85 };
    87 // Argument is an abstraction used to represent an outgoing
    88 // actual argument or an incoming formal parameter, whether
    89 // it resides in memory or in a register, in a manner consistent
    90 // with the PPC Application Binary Interface, or ABI. This is
    91 // often referred to as the native or C calling convention.
    93 class Argument VALUE_OBJ_CLASS_SPEC {
    94  private:
    95   int _number;  // The number of the argument.
    96  public:
    97   enum {
    98     // Only 8 registers may contain integer parameters.
    99     n_register_parameters = 8,
   100     // Can have up to 8 floating registers.
   101     n_float_register_parameters = 8,
   103     // PPC C calling conventions.
   104     // The first eight arguments are passed in int regs if they are int.
   105     n_int_register_parameters_c = 8,
   106     // The first thirteen float arguments are passed in float regs.
   107     n_float_register_parameters_c = 13,
   108     // Only the first 8 parameters are not placed on the stack. Aix disassembly
   109     // shows that xlC places all float args after argument 8 on the stack AND
   110     // in a register. This is not documented, but we follow this convention, too.
   111     n_regs_not_on_stack_c = 8,
   112   };
   113   // creation
   114   Argument(int number) : _number(number) {}
   116   int  number() const { return _number; }
   118   // Locating register-based arguments:
   119   bool is_register() const { return _number < n_register_parameters; }
   121   Register as_register() const {
   122     assert(is_register(), "must be a register argument");
   123     return as_Register(number() + R3_ARG1->encoding());
   124   }
   125 };
   127 #if !defined(ABI_ELFv2)
   128 // A ppc64 function descriptor.
   129 struct FunctionDescriptor VALUE_OBJ_CLASS_SPEC {
   130  private:
   131   address _entry;
   132   address _toc;
   133   address _env;
   135  public:
   136   inline address entry() const { return _entry; }
   137   inline address toc()   const { return _toc; }
   138   inline address env()   const { return _env; }
   140   inline void set_entry(address entry) { _entry = entry; }
   141   inline void set_toc(  address toc)   { _toc   = toc; }
   142   inline void set_env(  address env)   { _env   = env; }
   144   inline static ByteSize entry_offset() { return byte_offset_of(FunctionDescriptor, _entry); }
   145   inline static ByteSize toc_offset()   { return byte_offset_of(FunctionDescriptor, _toc); }
   146   inline static ByteSize env_offset()   { return byte_offset_of(FunctionDescriptor, _env); }
   148   // Friend functions can be called without loading toc and env.
   149   enum {
   150     friend_toc = 0xcafe,
   151     friend_env = 0xc0de
   152   };
   154   inline bool is_friend_function() const {
   155     return (toc() == (address) friend_toc) && (env() == (address) friend_env);
   156   }
   158   // Constructor for stack-allocated instances.
   159   FunctionDescriptor() {
   160     _entry = (address) 0xbad;
   161     _toc   = (address) 0xbad;
   162     _env   = (address) 0xbad;
   163   }
   164 };
   165 #endif
   167 class Assembler : public AbstractAssembler {
   168  protected:
   169   // Displacement routines
   170   static void print_instruction(int inst);
   171   static int  patched_branch(int dest_pos, int inst, int inst_pos);
   172   static int  branch_destination(int inst, int pos);
   174   friend class AbstractAssembler;
   176   // Code patchers need various routines like inv_wdisp()
   177   friend class NativeInstruction;
   178   friend class NativeGeneralJump;
   179   friend class Relocation;
   181  public:
   183   enum shifts {
   184     XO_21_29_SHIFT = 2,
   185     XO_21_30_SHIFT = 1,
   186     XO_27_29_SHIFT = 2,
   187     XO_30_31_SHIFT = 0,
   188     SPR_5_9_SHIFT  = 11u, // SPR_5_9 field in bits 11 -- 15
   189     SPR_0_4_SHIFT  = 16u, // SPR_0_4 field in bits 16 -- 20
   190     RS_SHIFT       = 21u, // RS field in bits 21 -- 25
   191     OPCODE_SHIFT   = 26u, // opcode in bits 26 -- 31
   192   };
   194   enum opcdxos_masks {
   195     XL_FORM_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
   196     ADDI_OPCODE_MASK    = (63u << OPCODE_SHIFT),
   197     ADDIS_OPCODE_MASK   = (63u << OPCODE_SHIFT),
   198     BXX_OPCODE_MASK     = (63u << OPCODE_SHIFT),
   199     BCXX_OPCODE_MASK    = (63u << OPCODE_SHIFT),
   200     // trap instructions
   201     TDI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
   202     TWI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
   203     TD_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (1023u << 1),
   204     TW_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (1023u << 1),
   205     LD_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (3u << XO_30_31_SHIFT), // DS-FORM
   206     STD_OPCODE_MASK     = LD_OPCODE_MASK,
   207     STDU_OPCODE_MASK    = STD_OPCODE_MASK,
   208     STDX_OPCODE_MASK    = (63u << OPCODE_SHIFT) | (1023u << 1),
   209     STDUX_OPCODE_MASK   = STDX_OPCODE_MASK,
   210     STW_OPCODE_MASK     = (63u << OPCODE_SHIFT),
   211     STWU_OPCODE_MASK    = STW_OPCODE_MASK,
   212     STWX_OPCODE_MASK    = (63u << OPCODE_SHIFT) | (1023u << 1),
   213     STWUX_OPCODE_MASK   = STWX_OPCODE_MASK,
   214     MTCTR_OPCODE_MASK   = ~(31u << RS_SHIFT),
   215     ORI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
   216     ORIS_OPCODE_MASK    = (63u << OPCODE_SHIFT),
   217     RLDICR_OPCODE_MASK  = (63u << OPCODE_SHIFT) | (7u << XO_27_29_SHIFT)
   218   };
   220   enum opcdxos {
   221     ADD_OPCODE    = (31u << OPCODE_SHIFT | 266u << 1),
   222     ADDC_OPCODE   = (31u << OPCODE_SHIFT |  10u << 1),
   223     ADDI_OPCODE   = (14u << OPCODE_SHIFT),
   224     ADDIS_OPCODE  = (15u << OPCODE_SHIFT),
   225     ADDIC__OPCODE = (13u << OPCODE_SHIFT),
   226     ADDE_OPCODE   = (31u << OPCODE_SHIFT | 138u << 1),
   227     SUBF_OPCODE   = (31u << OPCODE_SHIFT |  40u << 1),
   228     SUBFC_OPCODE  = (31u << OPCODE_SHIFT |   8u << 1),
   229     SUBFE_OPCODE  = (31u << OPCODE_SHIFT | 136u << 1),
   230     SUBFIC_OPCODE = (8u  << OPCODE_SHIFT),
   231     SUBFZE_OPCODE = (31u << OPCODE_SHIFT | 200u << 1),
   232     DIVW_OPCODE   = (31u << OPCODE_SHIFT | 491u << 1),
   233     MULLW_OPCODE  = (31u << OPCODE_SHIFT | 235u << 1),
   234     MULHW_OPCODE  = (31u << OPCODE_SHIFT |  75u << 1),
   235     MULHWU_OPCODE = (31u << OPCODE_SHIFT |  11u << 1),
   236     MULLI_OPCODE  = (7u  << OPCODE_SHIFT),
   237     AND_OPCODE    = (31u << OPCODE_SHIFT |  28u << 1),
   238     ANDI_OPCODE   = (28u << OPCODE_SHIFT),
   239     ANDIS_OPCODE  = (29u << OPCODE_SHIFT),
   240     ANDC_OPCODE   = (31u << OPCODE_SHIFT |  60u << 1),
   241     ORC_OPCODE    = (31u << OPCODE_SHIFT | 412u << 1),
   242     OR_OPCODE     = (31u << OPCODE_SHIFT | 444u << 1),
   243     ORI_OPCODE    = (24u << OPCODE_SHIFT),
   244     ORIS_OPCODE   = (25u << OPCODE_SHIFT),
   245     XOR_OPCODE    = (31u << OPCODE_SHIFT | 316u << 1),
   246     XORI_OPCODE   = (26u << OPCODE_SHIFT),
   247     XORIS_OPCODE  = (27u << OPCODE_SHIFT),
   249     NEG_OPCODE    = (31u << OPCODE_SHIFT | 104u << 1),
   251     RLWINM_OPCODE = (21u << OPCODE_SHIFT),
   252     CLRRWI_OPCODE = RLWINM_OPCODE,
   253     CLRLWI_OPCODE = RLWINM_OPCODE,
   255     RLWIMI_OPCODE = (20u << OPCODE_SHIFT),
   257     SLW_OPCODE    = (31u << OPCODE_SHIFT |  24u << 1),
   258     SLWI_OPCODE   = RLWINM_OPCODE,
   259     SRW_OPCODE    = (31u << OPCODE_SHIFT | 536u << 1),
   260     SRWI_OPCODE   = RLWINM_OPCODE,
   261     SRAW_OPCODE   = (31u << OPCODE_SHIFT | 792u << 1),
   262     SRAWI_OPCODE  = (31u << OPCODE_SHIFT | 824u << 1),
   264     CMP_OPCODE    = (31u << OPCODE_SHIFT |   0u << 1),
   265     CMPI_OPCODE   = (11u << OPCODE_SHIFT),
   266     CMPL_OPCODE   = (31u << OPCODE_SHIFT |  32u << 1),
   267     CMPLI_OPCODE  = (10u << OPCODE_SHIFT),
   269     ISEL_OPCODE   = (31u << OPCODE_SHIFT |  15u << 1),
   271     // Special purpose registers
   272     MTSPR_OPCODE  = (31u << OPCODE_SHIFT | 467u << 1),
   273     MFSPR_OPCODE  = (31u << OPCODE_SHIFT | 339u << 1),
   275     MTXER_OPCODE  = (MTSPR_OPCODE | 1 << SPR_0_4_SHIFT),
   276     MFXER_OPCODE  = (MFSPR_OPCODE | 1 << SPR_0_4_SHIFT),
   278     MTDSCR_OPCODE = (MTSPR_OPCODE | 3 << SPR_0_4_SHIFT),
   279     MFDSCR_OPCODE = (MFSPR_OPCODE | 3 << SPR_0_4_SHIFT),
   281     MTLR_OPCODE   = (MTSPR_OPCODE | 8 << SPR_0_4_SHIFT),
   282     MFLR_OPCODE   = (MFSPR_OPCODE | 8 << SPR_0_4_SHIFT),
   284     MTCTR_OPCODE  = (MTSPR_OPCODE | 9 << SPR_0_4_SHIFT),
   285     MFCTR_OPCODE  = (MFSPR_OPCODE | 9 << SPR_0_4_SHIFT),
   287     MTTFHAR_OPCODE   = (MTSPR_OPCODE | 128 << SPR_0_4_SHIFT),
   288     MFTFHAR_OPCODE   = (MFSPR_OPCODE | 128 << SPR_0_4_SHIFT),
   289     MTTFIAR_OPCODE   = (MTSPR_OPCODE | 129 << SPR_0_4_SHIFT),
   290     MFTFIAR_OPCODE   = (MFSPR_OPCODE | 129 << SPR_0_4_SHIFT),
   291     MTTEXASR_OPCODE  = (MTSPR_OPCODE | 130 << SPR_0_4_SHIFT),
   292     MFTEXASR_OPCODE  = (MFSPR_OPCODE | 130 << SPR_0_4_SHIFT),
   293     MTTEXASRU_OPCODE = (MTSPR_OPCODE | 131 << SPR_0_4_SHIFT),
   294     MFTEXASRU_OPCODE = (MFSPR_OPCODE | 131 << SPR_0_4_SHIFT),
   296     MTVRSAVE_OPCODE  = (MTSPR_OPCODE | 256 << SPR_0_4_SHIFT),
   297     MFVRSAVE_OPCODE  = (MFSPR_OPCODE | 256 << SPR_0_4_SHIFT),
   299     MFTB_OPCODE   = (MFSPR_OPCODE | 268 << SPR_0_4_SHIFT),
   301     MTCRF_OPCODE  = (31u << OPCODE_SHIFT | 144u << 1),
   302     MFCR_OPCODE   = (31u << OPCODE_SHIFT | 19u << 1),
   303     MCRF_OPCODE   = (19u << OPCODE_SHIFT | 0u << 1),
   305     // condition register logic instructions
   306     CRAND_OPCODE  = (19u << OPCODE_SHIFT | 257u << 1),
   307     CRNAND_OPCODE = (19u << OPCODE_SHIFT | 225u << 1),
   308     CROR_OPCODE   = (19u << OPCODE_SHIFT | 449u << 1),
   309     CRXOR_OPCODE  = (19u << OPCODE_SHIFT | 193u << 1),
   310     CRNOR_OPCODE  = (19u << OPCODE_SHIFT |  33u << 1),
   311     CREQV_OPCODE  = (19u << OPCODE_SHIFT | 289u << 1),
   312     CRANDC_OPCODE = (19u << OPCODE_SHIFT | 129u << 1),
   313     CRORC_OPCODE  = (19u << OPCODE_SHIFT | 417u << 1),
   315     BCLR_OPCODE   = (19u << OPCODE_SHIFT | 16u << 1),
   316     BXX_OPCODE      = (18u << OPCODE_SHIFT),
   317     BCXX_OPCODE     = (16u << OPCODE_SHIFT),
   319     // CTR-related opcodes
   320     BCCTR_OPCODE  = (19u << OPCODE_SHIFT | 528u << 1),
   322     LWZ_OPCODE   = (32u << OPCODE_SHIFT),
   323     LWZX_OPCODE  = (31u << OPCODE_SHIFT |  23u << 1),
   324     LWZU_OPCODE  = (33u << OPCODE_SHIFT),
   325     LWBRX_OPCODE = (31u << OPCODE_SHIFT |  534 << 1),
   327     LHA_OPCODE   = (42u << OPCODE_SHIFT),
   328     LHAX_OPCODE  = (31u << OPCODE_SHIFT | 343u << 1),
   329     LHAU_OPCODE  = (43u << OPCODE_SHIFT),
   331     LHZ_OPCODE   = (40u << OPCODE_SHIFT),
   332     LHZX_OPCODE  = (31u << OPCODE_SHIFT | 279u << 1),
   333     LHZU_OPCODE  = (41u << OPCODE_SHIFT),
   334     LHBRX_OPCODE = (31u << OPCODE_SHIFT |  790 << 1),
   336     LBZ_OPCODE   = (34u << OPCODE_SHIFT),
   337     LBZX_OPCODE  = (31u << OPCODE_SHIFT |  87u << 1),
   338     LBZU_OPCODE  = (35u << OPCODE_SHIFT),
   340     STW_OPCODE   = (36u << OPCODE_SHIFT),
   341     STWX_OPCODE  = (31u << OPCODE_SHIFT | 151u << 1),
   342     STWU_OPCODE  = (37u << OPCODE_SHIFT),
   343     STWUX_OPCODE = (31u << OPCODE_SHIFT | 183u << 1),
   345     STH_OPCODE   = (44u << OPCODE_SHIFT),
   346     STHX_OPCODE  = (31u << OPCODE_SHIFT | 407u << 1),
   347     STHU_OPCODE  = (45u << OPCODE_SHIFT),
   349     STB_OPCODE   = (38u << OPCODE_SHIFT),
   350     STBX_OPCODE  = (31u << OPCODE_SHIFT | 215u << 1),
   351     STBU_OPCODE  = (39u << OPCODE_SHIFT),
   353     EXTSB_OPCODE = (31u << OPCODE_SHIFT | 954u << 1),
   354     EXTSH_OPCODE = (31u << OPCODE_SHIFT | 922u << 1),
   355     EXTSW_OPCODE = (31u << OPCODE_SHIFT | 986u << 1),               // X-FORM
   357     // 32 bit opcode encodings
   359     LWA_OPCODE    = (58u << OPCODE_SHIFT |   2u << XO_30_31_SHIFT), // DS-FORM
   360     LWAX_OPCODE   = (31u << OPCODE_SHIFT | 341u << XO_21_30_SHIFT), // X-FORM
   362     CNTLZW_OPCODE = (31u << OPCODE_SHIFT |  26u << XO_21_30_SHIFT), // X-FORM
   364     // 64 bit opcode encodings
   366     LD_OPCODE     = (58u << OPCODE_SHIFT |   0u << XO_30_31_SHIFT), // DS-FORM
   367     LDU_OPCODE    = (58u << OPCODE_SHIFT |   1u << XO_30_31_SHIFT), // DS-FORM
   368     LDX_OPCODE    = (31u << OPCODE_SHIFT |  21u << XO_21_30_SHIFT), // X-FORM
   370     STD_OPCODE    = (62u << OPCODE_SHIFT |   0u << XO_30_31_SHIFT), // DS-FORM
   371     STDU_OPCODE   = (62u << OPCODE_SHIFT |   1u << XO_30_31_SHIFT), // DS-FORM
   372     STDUX_OPCODE  = (31u << OPCODE_SHIFT | 181u << 1),                  // X-FORM
   373     STDX_OPCODE   = (31u << OPCODE_SHIFT | 149u << XO_21_30_SHIFT), // X-FORM
   375     RLDICR_OPCODE = (30u << OPCODE_SHIFT |   1u << XO_27_29_SHIFT), // MD-FORM
   376     RLDICL_OPCODE = (30u << OPCODE_SHIFT |   0u << XO_27_29_SHIFT), // MD-FORM
   377     RLDIC_OPCODE  = (30u << OPCODE_SHIFT |   2u << XO_27_29_SHIFT), // MD-FORM
   378     RLDIMI_OPCODE = (30u << OPCODE_SHIFT |   3u << XO_27_29_SHIFT), // MD-FORM
   380     SRADI_OPCODE  = (31u << OPCODE_SHIFT | 413u << XO_21_29_SHIFT), // XS-FORM
   382     SLD_OPCODE    = (31u << OPCODE_SHIFT |  27u << 1),              // X-FORM
   383     SRD_OPCODE    = (31u << OPCODE_SHIFT | 539u << 1),              // X-FORM
   384     SRAD_OPCODE   = (31u << OPCODE_SHIFT | 794u << 1),              // X-FORM
   386     MULLD_OPCODE  = (31u << OPCODE_SHIFT | 233u << 1),              // XO-FORM
   387     MULHD_OPCODE  = (31u << OPCODE_SHIFT |  73u << 1),              // XO-FORM
   388     MULHDU_OPCODE = (31u << OPCODE_SHIFT |   9u << 1),              // XO-FORM
   389     DIVD_OPCODE   = (31u << OPCODE_SHIFT | 489u << 1),              // XO-FORM
   391     CNTLZD_OPCODE = (31u << OPCODE_SHIFT |  58u << XO_21_30_SHIFT), // X-FORM
   392     NAND_OPCODE   = (31u << OPCODE_SHIFT | 476u << XO_21_30_SHIFT), // X-FORM
   393     NOR_OPCODE    = (31u << OPCODE_SHIFT | 124u << XO_21_30_SHIFT), // X-FORM
   396     // opcodes only used for floating arithmetic
   397     FADD_OPCODE   = (63u << OPCODE_SHIFT |  21u << 1),
   398     FADDS_OPCODE  = (59u << OPCODE_SHIFT |  21u << 1),
   399     FCMPU_OPCODE  = (63u << OPCODE_SHIFT |  00u << 1),
   400     FDIV_OPCODE   = (63u << OPCODE_SHIFT |  18u << 1),
   401     FDIVS_OPCODE  = (59u << OPCODE_SHIFT |  18u << 1),
   402     FMR_OPCODE    = (63u << OPCODE_SHIFT |  72u << 1),
   403     // These are special Power6 opcodes, reused for "lfdepx" and "stfdepx"
   404     // on Power7.  Do not use.
   405     // MFFGPR_OPCODE  = (31u << OPCODE_SHIFT | 607u << 1),
   406     // MFTGPR_OPCODE  = (31u << OPCODE_SHIFT | 735u << 1),
   407     CMPB_OPCODE    = (31u << OPCODE_SHIFT |  508  << 1),
   408     POPCNTB_OPCODE = (31u << OPCODE_SHIFT |  122  << 1),
   409     POPCNTW_OPCODE = (31u << OPCODE_SHIFT |  378  << 1),
   410     POPCNTD_OPCODE = (31u << OPCODE_SHIFT |  506  << 1),
   411     FABS_OPCODE    = (63u << OPCODE_SHIFT |  264u << 1),
   412     FNABS_OPCODE   = (63u << OPCODE_SHIFT |  136u << 1),
   413     FMUL_OPCODE    = (63u << OPCODE_SHIFT |   25u << 1),
   414     FMULS_OPCODE   = (59u << OPCODE_SHIFT |   25u << 1),
   415     FNEG_OPCODE    = (63u << OPCODE_SHIFT |   40u << 1),
   416     FSUB_OPCODE    = (63u << OPCODE_SHIFT |   20u << 1),
   417     FSUBS_OPCODE   = (59u << OPCODE_SHIFT |   20u << 1),
   419     // PPC64-internal FPU conversion opcodes
   420     FCFID_OPCODE   = (63u << OPCODE_SHIFT |  846u << 1),
   421     FCFIDS_OPCODE  = (59u << OPCODE_SHIFT |  846u << 1),
   422     FCTID_OPCODE   = (63u << OPCODE_SHIFT |  814u << 1),
   423     FCTIDZ_OPCODE  = (63u << OPCODE_SHIFT |  815u << 1),
   424     FCTIW_OPCODE   = (63u << OPCODE_SHIFT |   14u << 1),
   425     FCTIWZ_OPCODE  = (63u << OPCODE_SHIFT |   15u << 1),
   426     FRSP_OPCODE    = (63u << OPCODE_SHIFT |   12u << 1),
   428     // WARNING: using fmadd results in a non-compliant vm. Some floating
   429     // point tck tests will fail.
   430     FMADD_OPCODE   = (59u << OPCODE_SHIFT |   29u << 1),
   431     DMADD_OPCODE   = (63u << OPCODE_SHIFT |   29u << 1),
   432     FMSUB_OPCODE   = (59u << OPCODE_SHIFT |   28u << 1),
   433     DMSUB_OPCODE   = (63u << OPCODE_SHIFT |   28u << 1),
   434     FNMADD_OPCODE  = (59u << OPCODE_SHIFT |   31u << 1),
   435     DNMADD_OPCODE  = (63u << OPCODE_SHIFT |   31u << 1),
   436     FNMSUB_OPCODE  = (59u << OPCODE_SHIFT |   30u << 1),
   437     DNMSUB_OPCODE  = (63u << OPCODE_SHIFT |   30u << 1),
   439     LFD_OPCODE     = (50u << OPCODE_SHIFT |   00u << 1),
   440     LFDU_OPCODE    = (51u << OPCODE_SHIFT |   00u << 1),
   441     LFDX_OPCODE    = (31u << OPCODE_SHIFT |  599u << 1),
   442     LFS_OPCODE     = (48u << OPCODE_SHIFT |   00u << 1),
   443     LFSU_OPCODE    = (49u << OPCODE_SHIFT |   00u << 1),
   444     LFSX_OPCODE    = (31u << OPCODE_SHIFT |  535u << 1),
   446     STFD_OPCODE    = (54u << OPCODE_SHIFT |   00u << 1),
   447     STFDU_OPCODE   = (55u << OPCODE_SHIFT |   00u << 1),
   448     STFDX_OPCODE   = (31u << OPCODE_SHIFT |  727u << 1),
   449     STFS_OPCODE    = (52u << OPCODE_SHIFT |   00u << 1),
   450     STFSU_OPCODE   = (53u << OPCODE_SHIFT |   00u << 1),
   451     STFSX_OPCODE   = (31u << OPCODE_SHIFT |  663u << 1),
   453     FSQRT_OPCODE   = (63u << OPCODE_SHIFT |   22u << 1),            // A-FORM
   454     FSQRTS_OPCODE  = (59u << OPCODE_SHIFT |   22u << 1),            // A-FORM
   456     // Vector instruction support for >= Power6
   457     // Vector Storage Access
   458     LVEBX_OPCODE   = (31u << OPCODE_SHIFT |    7u << 1),
   459     LVEHX_OPCODE   = (31u << OPCODE_SHIFT |   39u << 1),
   460     LVEWX_OPCODE   = (31u << OPCODE_SHIFT |   71u << 1),
   461     LVX_OPCODE     = (31u << OPCODE_SHIFT |  103u << 1),
   462     LVXL_OPCODE    = (31u << OPCODE_SHIFT |  359u << 1),
   463     STVEBX_OPCODE  = (31u << OPCODE_SHIFT |  135u << 1),
   464     STVEHX_OPCODE  = (31u << OPCODE_SHIFT |  167u << 1),
   465     STVEWX_OPCODE  = (31u << OPCODE_SHIFT |  199u << 1),
   466     STVX_OPCODE    = (31u << OPCODE_SHIFT |  231u << 1),
   467     STVXL_OPCODE   = (31u << OPCODE_SHIFT |  487u << 1),
   468     LVSL_OPCODE    = (31u << OPCODE_SHIFT |    6u << 1),
   469     LVSR_OPCODE    = (31u << OPCODE_SHIFT |   38u << 1),
   471     // Vector Permute and Formatting
   472     VPKPX_OPCODE   = (4u  << OPCODE_SHIFT |  782u     ),
   473     VPKSHSS_OPCODE = (4u  << OPCODE_SHIFT |  398u     ),
   474     VPKSWSS_OPCODE = (4u  << OPCODE_SHIFT |  462u     ),
   475     VPKSHUS_OPCODE = (4u  << OPCODE_SHIFT |  270u     ),
   476     VPKSWUS_OPCODE = (4u  << OPCODE_SHIFT |  334u     ),
   477     VPKUHUM_OPCODE = (4u  << OPCODE_SHIFT |   14u     ),
   478     VPKUWUM_OPCODE = (4u  << OPCODE_SHIFT |   78u     ),
   479     VPKUHUS_OPCODE = (4u  << OPCODE_SHIFT |  142u     ),
   480     VPKUWUS_OPCODE = (4u  << OPCODE_SHIFT |  206u     ),
   481     VUPKHPX_OPCODE = (4u  << OPCODE_SHIFT |  846u     ),
   482     VUPKHSB_OPCODE = (4u  << OPCODE_SHIFT |  526u     ),
   483     VUPKHSH_OPCODE = (4u  << OPCODE_SHIFT |  590u     ),
   484     VUPKLPX_OPCODE = (4u  << OPCODE_SHIFT |  974u     ),
   485     VUPKLSB_OPCODE = (4u  << OPCODE_SHIFT |  654u     ),
   486     VUPKLSH_OPCODE = (4u  << OPCODE_SHIFT |  718u     ),
   488     VMRGHB_OPCODE  = (4u  << OPCODE_SHIFT |   12u     ),
   489     VMRGHW_OPCODE  = (4u  << OPCODE_SHIFT |  140u     ),
   490     VMRGHH_OPCODE  = (4u  << OPCODE_SHIFT |   76u     ),
   491     VMRGLB_OPCODE  = (4u  << OPCODE_SHIFT |  268u     ),
   492     VMRGLW_OPCODE  = (4u  << OPCODE_SHIFT |  396u     ),
   493     VMRGLH_OPCODE  = (4u  << OPCODE_SHIFT |  332u     ),
   495     VSPLT_OPCODE   = (4u  << OPCODE_SHIFT |  524u     ),
   496     VSPLTH_OPCODE  = (4u  << OPCODE_SHIFT |  588u     ),
   497     VSPLTW_OPCODE  = (4u  << OPCODE_SHIFT |  652u     ),
   498     VSPLTISB_OPCODE= (4u  << OPCODE_SHIFT |  780u     ),
   499     VSPLTISH_OPCODE= (4u  << OPCODE_SHIFT |  844u     ),
   500     VSPLTISW_OPCODE= (4u  << OPCODE_SHIFT |  908u     ),
   502     VPERM_OPCODE   = (4u  << OPCODE_SHIFT |   43u     ),
   503     VSEL_OPCODE    = (4u  << OPCODE_SHIFT |   42u     ),
   505     VSL_OPCODE     = (4u  << OPCODE_SHIFT |  452u     ),
   506     VSLDOI_OPCODE  = (4u  << OPCODE_SHIFT |   44u     ),
   507     VSLO_OPCODE    = (4u  << OPCODE_SHIFT | 1036u     ),
   508     VSR_OPCODE     = (4u  << OPCODE_SHIFT |  708u     ),
   509     VSRO_OPCODE    = (4u  << OPCODE_SHIFT | 1100u     ),
   511     // Vector Integer
   512     VADDCUW_OPCODE = (4u  << OPCODE_SHIFT |  384u     ),
   513     VADDSHS_OPCODE = (4u  << OPCODE_SHIFT |  832u     ),
   514     VADDSBS_OPCODE = (4u  << OPCODE_SHIFT |  768u     ),
   515     VADDSWS_OPCODE = (4u  << OPCODE_SHIFT |  896u     ),
   516     VADDUBM_OPCODE = (4u  << OPCODE_SHIFT |    0u     ),
   517     VADDUWM_OPCODE = (4u  << OPCODE_SHIFT |  128u     ),
   518     VADDUHM_OPCODE = (4u  << OPCODE_SHIFT |   64u     ),
   519     VADDUBS_OPCODE = (4u  << OPCODE_SHIFT |  512u     ),
   520     VADDUWS_OPCODE = (4u  << OPCODE_SHIFT |  640u     ),
   521     VADDUHS_OPCODE = (4u  << OPCODE_SHIFT |  576u     ),
   522     VSUBCUW_OPCODE = (4u  << OPCODE_SHIFT | 1408u     ),
   523     VSUBSHS_OPCODE = (4u  << OPCODE_SHIFT | 1856u     ),
   524     VSUBSBS_OPCODE = (4u  << OPCODE_SHIFT | 1792u     ),
   525     VSUBSWS_OPCODE = (4u  << OPCODE_SHIFT | 1920u     ),
   526     VSUBUBM_OPCODE = (4u  << OPCODE_SHIFT | 1024u     ),
   527     VSUBUWM_OPCODE = (4u  << OPCODE_SHIFT | 1152u     ),
   528     VSUBUHM_OPCODE = (4u  << OPCODE_SHIFT | 1088u     ),
   529     VSUBUBS_OPCODE = (4u  << OPCODE_SHIFT | 1536u     ),
   530     VSUBUWS_OPCODE = (4u  << OPCODE_SHIFT | 1664u     ),
   531     VSUBUHS_OPCODE = (4u  << OPCODE_SHIFT | 1600u     ),
   533     VMULESB_OPCODE = (4u  << OPCODE_SHIFT |  776u     ),
   534     VMULEUB_OPCODE = (4u  << OPCODE_SHIFT |  520u     ),
   535     VMULESH_OPCODE = (4u  << OPCODE_SHIFT |  840u     ),
   536     VMULEUH_OPCODE = (4u  << OPCODE_SHIFT |  584u     ),
   537     VMULOSB_OPCODE = (4u  << OPCODE_SHIFT |  264u     ),
   538     VMULOUB_OPCODE = (4u  << OPCODE_SHIFT |    8u     ),
   539     VMULOSH_OPCODE = (4u  << OPCODE_SHIFT |  328u     ),
   540     VMULOUH_OPCODE = (4u  << OPCODE_SHIFT |   72u     ),
   541     VMHADDSHS_OPCODE=(4u  << OPCODE_SHIFT |   32u     ),
   542     VMHRADDSHS_OPCODE=(4u << OPCODE_SHIFT |   33u     ),
   543     VMLADDUHM_OPCODE=(4u  << OPCODE_SHIFT |   34u     ),
   544     VMSUBUHM_OPCODE= (4u  << OPCODE_SHIFT |   36u     ),
   545     VMSUMMBM_OPCODE= (4u  << OPCODE_SHIFT |   37u     ),
   546     VMSUMSHM_OPCODE= (4u  << OPCODE_SHIFT |   40u     ),
   547     VMSUMSHS_OPCODE= (4u  << OPCODE_SHIFT |   41u     ),
   548     VMSUMUHM_OPCODE= (4u  << OPCODE_SHIFT |   38u     ),
   549     VMSUMUHS_OPCODE= (4u  << OPCODE_SHIFT |   39u     ),
   551     VSUMSWS_OPCODE = (4u  << OPCODE_SHIFT | 1928u     ),
   552     VSUM2SWS_OPCODE= (4u  << OPCODE_SHIFT | 1672u     ),
   553     VSUM4SBS_OPCODE= (4u  << OPCODE_SHIFT | 1800u     ),
   554     VSUM4UBS_OPCODE= (4u  << OPCODE_SHIFT | 1544u     ),
   555     VSUM4SHS_OPCODE= (4u  << OPCODE_SHIFT | 1608u     ),
   557     VAVGSB_OPCODE  = (4u  << OPCODE_SHIFT | 1282u     ),
   558     VAVGSW_OPCODE  = (4u  << OPCODE_SHIFT | 1410u     ),
   559     VAVGSH_OPCODE  = (4u  << OPCODE_SHIFT | 1346u     ),
   560     VAVGUB_OPCODE  = (4u  << OPCODE_SHIFT | 1026u     ),
   561     VAVGUW_OPCODE  = (4u  << OPCODE_SHIFT | 1154u     ),
   562     VAVGUH_OPCODE  = (4u  << OPCODE_SHIFT | 1090u     ),
   564     VMAXSB_OPCODE  = (4u  << OPCODE_SHIFT |  258u     ),
   565     VMAXSW_OPCODE  = (4u  << OPCODE_SHIFT |  386u     ),
   566     VMAXSH_OPCODE  = (4u  << OPCODE_SHIFT |  322u     ),
   567     VMAXUB_OPCODE  = (4u  << OPCODE_SHIFT |    2u     ),
   568     VMAXUW_OPCODE  = (4u  << OPCODE_SHIFT |  130u     ),
   569     VMAXUH_OPCODE  = (4u  << OPCODE_SHIFT |   66u     ),
   570     VMINSB_OPCODE  = (4u  << OPCODE_SHIFT |  770u     ),
   571     VMINSW_OPCODE  = (4u  << OPCODE_SHIFT |  898u     ),
   572     VMINSH_OPCODE  = (4u  << OPCODE_SHIFT |  834u     ),
   573     VMINUB_OPCODE  = (4u  << OPCODE_SHIFT |  514u     ),
   574     VMINUW_OPCODE  = (4u  << OPCODE_SHIFT |  642u     ),
   575     VMINUH_OPCODE  = (4u  << OPCODE_SHIFT |  578u     ),
   577     VCMPEQUB_OPCODE= (4u  << OPCODE_SHIFT |    6u     ),
   578     VCMPEQUH_OPCODE= (4u  << OPCODE_SHIFT |   70u     ),
   579     VCMPEQUW_OPCODE= (4u  << OPCODE_SHIFT |  134u     ),
   580     VCMPGTSH_OPCODE= (4u  << OPCODE_SHIFT |  838u     ),
   581     VCMPGTSB_OPCODE= (4u  << OPCODE_SHIFT |  774u     ),
   582     VCMPGTSW_OPCODE= (4u  << OPCODE_SHIFT |  902u     ),
   583     VCMPGTUB_OPCODE= (4u  << OPCODE_SHIFT |  518u     ),
   584     VCMPGTUH_OPCODE= (4u  << OPCODE_SHIFT |  582u     ),
   585     VCMPGTUW_OPCODE= (4u  << OPCODE_SHIFT |  646u     ),
   587     VAND_OPCODE    = (4u  << OPCODE_SHIFT | 1028u     ),
   588     VANDC_OPCODE   = (4u  << OPCODE_SHIFT | 1092u     ),
   589     VNOR_OPCODE    = (4u  << OPCODE_SHIFT | 1284u     ),
   590     VOR_OPCODE     = (4u  << OPCODE_SHIFT | 1156u     ),
   591     VXOR_OPCODE    = (4u  << OPCODE_SHIFT | 1220u     ),
   592     VRLB_OPCODE    = (4u  << OPCODE_SHIFT |    4u     ),
   593     VRLW_OPCODE    = (4u  << OPCODE_SHIFT |  132u     ),
   594     VRLH_OPCODE    = (4u  << OPCODE_SHIFT |   68u     ),
   595     VSLB_OPCODE    = (4u  << OPCODE_SHIFT |  260u     ),
   596     VSKW_OPCODE    = (4u  << OPCODE_SHIFT |  388u     ),
   597     VSLH_OPCODE    = (4u  << OPCODE_SHIFT |  324u     ),
   598     VSRB_OPCODE    = (4u  << OPCODE_SHIFT |  516u     ),
   599     VSRW_OPCODE    = (4u  << OPCODE_SHIFT |  644u     ),
   600     VSRH_OPCODE    = (4u  << OPCODE_SHIFT |  580u     ),
   601     VSRAB_OPCODE   = (4u  << OPCODE_SHIFT |  772u     ),
   602     VSRAW_OPCODE   = (4u  << OPCODE_SHIFT |  900u     ),
   603     VSRAH_OPCODE   = (4u  << OPCODE_SHIFT |  836u     ),
   605     // Vector Floating-Point
   606     // not implemented yet
   608     // Vector Status and Control
   609     MTVSCR_OPCODE  = (4u  << OPCODE_SHIFT | 1604u     ),
   610     MFVSCR_OPCODE  = (4u  << OPCODE_SHIFT | 1540u     ),
   612     // AES (introduced with Power 8)
   613     VCIPHER_OPCODE      = (4u  << OPCODE_SHIFT | 1288u),
   614     VCIPHERLAST_OPCODE  = (4u  << OPCODE_SHIFT | 1289u),
   615     VNCIPHER_OPCODE     = (4u  << OPCODE_SHIFT | 1352u),
   616     VNCIPHERLAST_OPCODE = (4u  << OPCODE_SHIFT | 1353u),
   617     VSBOX_OPCODE        = (4u  << OPCODE_SHIFT | 1480u),
   619     // SHA (introduced with Power 8)
   620     VSHASIGMAD_OPCODE   = (4u  << OPCODE_SHIFT | 1730u),
   621     VSHASIGMAW_OPCODE   = (4u  << OPCODE_SHIFT | 1666u),
   623     // Vector Binary Polynomial Multiplication (introduced with Power 8)
   624     VPMSUMB_OPCODE      = (4u  << OPCODE_SHIFT | 1032u),
   625     VPMSUMD_OPCODE      = (4u  << OPCODE_SHIFT | 1224u),
   626     VPMSUMH_OPCODE      = (4u  << OPCODE_SHIFT | 1096u),
   627     VPMSUMW_OPCODE      = (4u  << OPCODE_SHIFT | 1160u),
   629     // Vector Permute and Xor (introduced with Power 8)
   630     VPERMXOR_OPCODE     = (4u  << OPCODE_SHIFT |   45u),
   632     // Transactional Memory instructions (introduced with Power 8)
   633     TBEGIN_OPCODE    = (31u << OPCODE_SHIFT |  654u << 1),
   634     TEND_OPCODE      = (31u << OPCODE_SHIFT |  686u << 1),
   635     TABORT_OPCODE    = (31u << OPCODE_SHIFT |  910u << 1),
   636     TABORTWC_OPCODE  = (31u << OPCODE_SHIFT |  782u << 1),
   637     TABORTWCI_OPCODE = (31u << OPCODE_SHIFT |  846u << 1),
   638     TABORTDC_OPCODE  = (31u << OPCODE_SHIFT |  814u << 1),
   639     TABORTDCI_OPCODE = (31u << OPCODE_SHIFT |  878u << 1),
   640     TSR_OPCODE       = (31u << OPCODE_SHIFT |  750u << 1),
   641     TCHECK_OPCODE    = (31u << OPCODE_SHIFT |  718u << 1),
   643     // Icache and dcache related instructions
   644     DCBA_OPCODE    = (31u << OPCODE_SHIFT |  758u << 1),
   645     DCBZ_OPCODE    = (31u << OPCODE_SHIFT | 1014u << 1),
   646     DCBST_OPCODE   = (31u << OPCODE_SHIFT |   54u << 1),
   647     DCBF_OPCODE    = (31u << OPCODE_SHIFT |   86u << 1),
   649     DCBT_OPCODE    = (31u << OPCODE_SHIFT |  278u << 1),
   650     DCBTST_OPCODE  = (31u << OPCODE_SHIFT |  246u << 1),
   651     ICBI_OPCODE    = (31u << OPCODE_SHIFT |  982u << 1),
   653     // Instruction synchronization
   654     ISYNC_OPCODE   = (19u << OPCODE_SHIFT |  150u << 1),
   655     // Memory barriers
   656     SYNC_OPCODE    = (31u << OPCODE_SHIFT |  598u << 1),
   657     EIEIO_OPCODE   = (31u << OPCODE_SHIFT |  854u << 1),
   659     // Trap instructions
   660     TDI_OPCODE     = (2u  << OPCODE_SHIFT),
   661     TWI_OPCODE     = (3u  << OPCODE_SHIFT),
   662     TD_OPCODE      = (31u << OPCODE_SHIFT |   68u << 1),
   663     TW_OPCODE      = (31u << OPCODE_SHIFT |    4u << 1),
   665     // Atomics.
   666     LWARX_OPCODE   = (31u << OPCODE_SHIFT |   20u << 1),
   667     LDARX_OPCODE   = (31u << OPCODE_SHIFT |   84u << 1),
   668     STWCX_OPCODE   = (31u << OPCODE_SHIFT |  150u << 1),
   669     STDCX_OPCODE   = (31u << OPCODE_SHIFT |  214u << 1)
   671   };
   673   // Trap instructions TO bits
   674   enum trap_to_bits {
   675     // single bits
   676     traptoLessThanSigned      = 1 << 4, // 0, left end
   677     traptoGreaterThanSigned   = 1 << 3,
   678     traptoEqual               = 1 << 2,
   679     traptoLessThanUnsigned    = 1 << 1,
   680     traptoGreaterThanUnsigned = 1 << 0, // 4, right end
   682     // compound ones
   683     traptoUnconditional       = (traptoLessThanSigned |
   684                                  traptoGreaterThanSigned |
   685                                  traptoEqual |
   686                                  traptoLessThanUnsigned |
   687                                  traptoGreaterThanUnsigned)
   688   };
   690   // Branch hints BH field
   691   enum branch_hint_bh {
   692     // bclr cases:
   693     bhintbhBCLRisReturn            = 0,
   694     bhintbhBCLRisNotReturnButSame  = 1,
   695     bhintbhBCLRisNotPredictable    = 3,
   697     // bcctr cases:
   698     bhintbhBCCTRisNotReturnButSame = 0,
   699     bhintbhBCCTRisNotPredictable   = 3
   700   };
   702   // Branch prediction hints AT field
   703   enum branch_hint_at {
   704     bhintatNoHint     = 0,  // at=00
   705     bhintatIsNotTaken = 2,  // at=10
   706     bhintatIsTaken    = 3   // at=11
   707   };
   709   // Branch prediction hints
   710   enum branch_hint_concept {
   711     // Use the same encoding as branch_hint_at to simply code.
   712     bhintNoHint       = bhintatNoHint,
   713     bhintIsNotTaken   = bhintatIsNotTaken,
   714     bhintIsTaken      = bhintatIsTaken
   715   };
   717   // Used in BO field of branch instruction.
   718   enum branch_condition {
   719     bcondCRbiIs0      =  4, // bo=001at
   720     bcondCRbiIs1      = 12, // bo=011at
   721     bcondAlways       = 20  // bo=10100
   722   };
   724   // Branch condition with combined prediction hints.
   725   enum branch_condition_with_hint {
   726     bcondCRbiIs0_bhintNoHint     = bcondCRbiIs0 | bhintatNoHint,
   727     bcondCRbiIs0_bhintIsNotTaken = bcondCRbiIs0 | bhintatIsNotTaken,
   728     bcondCRbiIs0_bhintIsTaken    = bcondCRbiIs0 | bhintatIsTaken,
   729     bcondCRbiIs1_bhintNoHint     = bcondCRbiIs1 | bhintatNoHint,
   730     bcondCRbiIs1_bhintIsNotTaken = bcondCRbiIs1 | bhintatIsNotTaken,
   731     bcondCRbiIs1_bhintIsTaken    = bcondCRbiIs1 | bhintatIsTaken,
   732   };
   734   // Elemental Memory Barriers (>=Power 8)
   735   enum Elemental_Membar_mask_bits {
   736     StoreStore = 1 << 0,
   737     StoreLoad  = 1 << 1,
   738     LoadStore  = 1 << 2,
   739     LoadLoad   = 1 << 3
   740   };
   742   // Branch prediction hints.
   743   inline static int add_bhint_to_boint(const int bhint, const int boint) {
   744     switch (boint) {
   745       case bcondCRbiIs0:
   746       case bcondCRbiIs1:
   747         // branch_hint and branch_hint_at have same encodings
   748         assert(   (int)bhintNoHint     == (int)bhintatNoHint
   749                && (int)bhintIsNotTaken == (int)bhintatIsNotTaken
   750                && (int)bhintIsTaken    == (int)bhintatIsTaken,
   751                "wrong encodings");
   752         assert((bhint & 0x03) == bhint, "wrong encodings");
   753         return (boint & ~0x03) | bhint;
   754       case bcondAlways:
   755         // no branch_hint
   756         return boint;
   757       default:
   758         ShouldNotReachHere();
   759         return 0;
   760     }
   761   }
   763   // Extract bcond from boint.
   764   inline static int inv_boint_bcond(const int boint) {
   765     int r_bcond = boint & ~0x03;
   766     assert(r_bcond == bcondCRbiIs0 ||
   767            r_bcond == bcondCRbiIs1 ||
   768            r_bcond == bcondAlways,
   769            "bad branch condition");
   770     return r_bcond;
   771   }
   773   // Extract bhint from boint.
   774   inline static int inv_boint_bhint(const int boint) {
   775     int r_bhint = boint & 0x03;
   776     assert(r_bhint == bhintatNoHint ||
   777            r_bhint == bhintatIsNotTaken ||
   778            r_bhint == bhintatIsTaken,
   779            "bad branch hint");
   780     return r_bhint;
   781   }
   783   // Calculate opposite of given bcond.
   784   inline static int opposite_bcond(const int bcond) {
   785     switch (bcond) {
   786       case bcondCRbiIs0:
   787         return bcondCRbiIs1;
   788       case bcondCRbiIs1:
   789         return bcondCRbiIs0;
   790       default:
   791         ShouldNotReachHere();
   792         return 0;
   793     }
   794   }
   796   // Calculate opposite of given bhint.
   797   inline static int opposite_bhint(const int bhint) {
   798     switch (bhint) {
   799       case bhintatNoHint:
   800         return bhintatNoHint;
   801       case bhintatIsNotTaken:
   802         return bhintatIsTaken;
   803       case bhintatIsTaken:
   804         return bhintatIsNotTaken;
   805       default:
   806         ShouldNotReachHere();
   807         return 0;
   808     }
   809   }
   811   // PPC branch instructions
   812   enum ppcops {
   813     b_op    = 18,
   814     bc_op   = 16,
   815     bcr_op  = 19
   816   };
   818   enum Condition {
   819     negative         = 0,
   820     less             = 0,
   821     positive         = 1,
   822     greater          = 1,
   823     zero             = 2,
   824     equal            = 2,
   825     summary_overflow = 3,
   826   };
   828  public:
   829   // Helper functions for groups of instructions
   831   enum Predict { pt = 1, pn = 0 }; // pt = predict taken
   833   // instruction must start at passed address
   834   static int instr_len(unsigned char *instr) { return BytesPerInstWord; }
   836   // instruction must be left-justified in argument
   837   static int instr_len(unsigned long instr)  { return BytesPerInstWord; }
   839   // longest instructions
   840   static int instr_maxlen() { return BytesPerInstWord; }
   842   // Test if x is within signed immediate range for nbits.
   843   static bool is_simm(int x, unsigned int nbits) {
   844     assert(0 < nbits && nbits < 32, "out of bounds");
   845     const int   min      = -( ((int)1) << nbits-1 );
   846     const int   maxplus1 =  ( ((int)1) << nbits-1 );
   847     return min <= x && x < maxplus1;
   848   }
   850   static bool is_simm(jlong x, unsigned int nbits) {
   851     assert(0 < nbits && nbits < 64, "out of bounds");
   852     const jlong min      = -( ((jlong)1) << nbits-1 );
   853     const jlong maxplus1 =  ( ((jlong)1) << nbits-1 );
   854     return min <= x && x < maxplus1;
   855   }
   857   // Test if x is within unsigned immediate range for nbits
   858   static bool is_uimm(int x, unsigned int nbits) {
   859     assert(0 < nbits && nbits < 32, "out of bounds");
   860     const int   maxplus1 = ( ((int)1) << nbits );
   861     return 0 <= x && x < maxplus1;
   862   }
   864   static bool is_uimm(jlong x, unsigned int nbits) {
   865     assert(0 < nbits && nbits < 64, "out of bounds");
   866     const jlong maxplus1 =  ( ((jlong)1) << nbits );
   867     return 0 <= x && x < maxplus1;
   868   }
   870  protected:
   871   // helpers
   873   // X is supposed to fit in a field "nbits" wide
   874   // and be sign-extended. Check the range.
   875   static void assert_signed_range(intptr_t x, int nbits) {
   876     assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
   877            "value out of range");
   878   }
   880   static void assert_signed_word_disp_range(intptr_t x, int nbits) {
   881     assert((x & 3) == 0, "not word aligned");
   882     assert_signed_range(x, nbits + 2);
   883   }
   885   static void assert_unsigned_const(int x, int nbits) {
   886     assert(juint(x) < juint(1 << nbits), "unsigned constant out of range");
   887   }
   889   static int fmask(juint hi_bit, juint lo_bit) {
   890     assert(hi_bit >= lo_bit && hi_bit < 32, "bad bits");
   891     return (1 << ( hi_bit-lo_bit + 1 )) - 1;
   892   }
   894   // inverse of u_field
   895   static int inv_u_field(int x, int hi_bit, int lo_bit) {
   896     juint r = juint(x) >> lo_bit;
   897     r &= fmask(hi_bit, lo_bit);
   898     return int(r);
   899   }
   901   // signed version: extract from field and sign-extend
   902   static int inv_s_field_ppc(int x, int hi_bit, int lo_bit) {
   903     x = x << (31-hi_bit);
   904     x = x >> (31-hi_bit+lo_bit);
   905     return x;
   906   }
   908   static int u_field(int x, int hi_bit, int lo_bit) {
   909     assert((x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range");
   910     int r = x << lo_bit;
   911     assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
   912     return r;
   913   }
   915   // Same as u_field for signed values
   916   static int s_field(int x, int hi_bit, int lo_bit) {
   917     int nbits = hi_bit - lo_bit + 1;
   918     assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
   919       "value out of range");
   920     x &= fmask(hi_bit, lo_bit);
   921     int r = x << lo_bit;
   922     return r;
   923   }
   925   // inv_op for ppc instructions
   926   static int inv_op_ppc(int x) { return inv_u_field(x, 31, 26); }
   928   // Determine target address from li, bd field of branch instruction.
   929   static intptr_t inv_li_field(int x) {
   930     intptr_t r = inv_s_field_ppc(x, 25, 2);
   931     r = (r << 2);
   932     return r;
   933   }
   934   static intptr_t inv_bd_field(int x, intptr_t pos) {
   935     intptr_t r = inv_s_field_ppc(x, 15, 2);
   936     r = (r << 2) + pos;
   937     return r;
   938   }
   940   #define inv_opp_u_field(x, hi_bit, lo_bit) inv_u_field(x, 31-(lo_bit), 31-(hi_bit))
   941   #define inv_opp_s_field(x, hi_bit, lo_bit) inv_s_field_ppc(x, 31-(lo_bit), 31-(hi_bit))
   942   // Extract instruction fields from instruction words.
   943  public:
   944   static int inv_ra_field(int x)  { return inv_opp_u_field(x, 15, 11); }
   945   static int inv_rb_field(int x)  { return inv_opp_u_field(x, 20, 16); }
   946   static int inv_rt_field(int x)  { return inv_opp_u_field(x, 10,  6); }
   947   static int inv_rta_field(int x) { return inv_opp_u_field(x, 15, 11); }
   948   static int inv_rs_field(int x)  { return inv_opp_u_field(x, 10,  6); }
   949   // Ds uses opp_s_field(x, 31, 16), but lowest 2 bits must be 0.
   950   // Inv_ds_field uses range (x, 29, 16) but shifts by 2 to ensure that lowest bits are 0.
   951   static int inv_ds_field(int x)  { return inv_opp_s_field(x, 29, 16) << 2; }
   952   static int inv_d1_field(int x)  { return inv_opp_s_field(x, 31, 16); }
   953   static int inv_si_field(int x)  { return inv_opp_s_field(x, 31, 16); }
   954   static int inv_to_field(int x)  { return inv_opp_u_field(x, 10, 6);  }
   955   static int inv_lk_field(int x)  { return inv_opp_u_field(x, 31, 31); }
   956   static int inv_bo_field(int x)  { return inv_opp_u_field(x, 10,  6); }
   957   static int inv_bi_field(int x)  { return inv_opp_u_field(x, 15, 11); }
   959   #define opp_u_field(x, hi_bit, lo_bit) u_field(x, 31-(lo_bit), 31-(hi_bit))
   960   #define opp_s_field(x, hi_bit, lo_bit) s_field(x, 31-(lo_bit), 31-(hi_bit))
   962   // instruction fields
   963   static int aa(       int         x)  { return  opp_u_field(x,             30, 30); }
   964   static int ba(       int         x)  { return  opp_u_field(x,             15, 11); }
   965   static int bb(       int         x)  { return  opp_u_field(x,             20, 16); }
   966   static int bc(       int         x)  { return  opp_u_field(x,             25, 21); }
   967   static int bd(       int         x)  { return  opp_s_field(x,             29, 16); }
   968   static int bf( ConditionRegister cr) { return  bf(cr->encoding()); }
   969   static int bf(       int         x)  { return  opp_u_field(x,              8,  6); }
   970   static int bfa(ConditionRegister cr) { return  bfa(cr->encoding()); }
   971   static int bfa(      int         x)  { return  opp_u_field(x,             13, 11); }
   972   static int bh(       int         x)  { return  opp_u_field(x,             20, 19); }
   973   static int bi(       int         x)  { return  opp_u_field(x,             15, 11); }
   974   static int bi0(ConditionRegister cr, Condition c) { return (cr->encoding() << 2) | c; }
   975   static int bo(       int         x)  { return  opp_u_field(x,             10,  6); }
   976   static int bt(       int         x)  { return  opp_u_field(x,             10,  6); }
   977   static int d1(       int         x)  { return  opp_s_field(x,             31, 16); }
   978   static int ds(       int         x)  { assert((x & 0x3) == 0, "unaligned offset"); return opp_s_field(x, 31, 16); }
   979   static int eh(       int         x)  { return  opp_u_field(x,             31, 31); }
   980   static int flm(      int         x)  { return  opp_u_field(x,             14,  7); }
   981   static int fra(    FloatRegister r)  { return  fra(r->encoding());}
   982   static int frb(    FloatRegister r)  { return  frb(r->encoding());}
   983   static int frc(    FloatRegister r)  { return  frc(r->encoding());}
   984   static int frs(    FloatRegister r)  { return  frs(r->encoding());}
   985   static int frt(    FloatRegister r)  { return  frt(r->encoding());}
   986   static int fra(      int         x)  { return  opp_u_field(x,             15, 11); }
   987   static int frb(      int         x)  { return  opp_u_field(x,             20, 16); }
   988   static int frc(      int         x)  { return  opp_u_field(x,             25, 21); }
   989   static int frs(      int         x)  { return  opp_u_field(x,             10,  6); }
   990   static int frt(      int         x)  { return  opp_u_field(x,             10,  6); }
   991   static int fxm(      int         x)  { return  opp_u_field(x,             19, 12); }
   992   static int l10(      int         x)  { return  opp_u_field(x,             10, 10); }
   993   static int l15(      int         x)  { return  opp_u_field(x,             15, 15); }
   994   static int l910(     int         x)  { return  opp_u_field(x,             10,  9); }
   995   static int e1215(    int         x)  { return  opp_u_field(x,             15, 12); }
   996   static int lev(      int         x)  { return  opp_u_field(x,             26, 20); }
   997   static int li(       int         x)  { return  opp_s_field(x,             29,  6); }
   998   static int lk(       int         x)  { return  opp_u_field(x,             31, 31); }
   999   static int mb2125(   int         x)  { return  opp_u_field(x,             25, 21); }
  1000   static int me2630(   int         x)  { return  opp_u_field(x,             30, 26); }
  1001   static int mb2126(   int         x)  { return  opp_u_field(((x & 0x1f) << 1) | ((x & 0x20) >> 5), 26, 21); }
  1002   static int me2126(   int         x)  { return  mb2126(x); }
  1003   static int nb(       int         x)  { return  opp_u_field(x,             20, 16); }
  1004   //static int opcd(   int         x)  { return  opp_u_field(x,              5,  0); } // is contained in our opcodes
  1005   static int oe(       int         x)  { return  opp_u_field(x,             21, 21); }
  1006   static int ra(       Register    r)  { return  ra(r->encoding()); }
  1007   static int ra(       int         x)  { return  opp_u_field(x,             15, 11); }
  1008   static int rb(       Register    r)  { return  rb(r->encoding()); }
  1009   static int rb(       int         x)  { return  opp_u_field(x,             20, 16); }
  1010   static int rc(       int         x)  { return  opp_u_field(x,             31, 31); }
  1011   static int rs(       Register    r)  { return  rs(r->encoding()); }
  1012   static int rs(       int         x)  { return  opp_u_field(x,             10,  6); }
  1013   // we don't want to use R0 in memory accesses, because it has value `0' then
  1014   static int ra0mem(   Register    r)  { assert(r != R0, "cannot use register R0 in memory access"); return ra(r); }
  1015   static int ra0mem(   int         x)  { assert(x != 0,  "cannot use register 0 in memory access");  return ra(x); }
  1017   // register r is target
  1018   static int rt(       Register    r)  { return rs(r); }
  1019   static int rt(       int         x)  { return rs(x); }
  1020   static int rta(      Register    r)  { return ra(r); }
  1021   static int rta0mem(  Register    r)  { rta(r); return ra0mem(r); }
  1023   static int sh1620(   int         x)  { return  opp_u_field(x,             20, 16); }
  1024   static int sh30(     int         x)  { return  opp_u_field(x,             30, 30); }
  1025   static int sh162030( int         x)  { return  sh1620(x & 0x1f) | sh30((x & 0x20) >> 5); }
  1026   static int si(       int         x)  { return  opp_s_field(x,             31, 16); }
  1027   static int spr(      int         x)  { return  opp_u_field(x,             20, 11); }
  1028   static int sr(       int         x)  { return  opp_u_field(x,             15, 12); }
  1029   static int tbr(      int         x)  { return  opp_u_field(x,             20, 11); }
  1030   static int th(       int         x)  { return  opp_u_field(x,             10,  7); }
  1031   static int thct(     int         x)  { assert((x&8) == 0, "must be valid cache specification");  return th(x); }
  1032   static int thds(     int         x)  { assert((x&8) == 8, "must be valid stream specification"); return th(x); }
  1033   static int to(       int         x)  { return  opp_u_field(x,             10,  6); }
  1034   static int u(        int         x)  { return  opp_u_field(x,             19, 16); }
  1035   static int ui(       int         x)  { return  opp_u_field(x,             31, 16); }
  1037   // Support vector instructions for >= Power6.
  1038   static int vra(      int         x)  { return  opp_u_field(x,             15, 11); }
  1039   static int vrb(      int         x)  { return  opp_u_field(x,             20, 16); }
  1040   static int vrc(      int         x)  { return  opp_u_field(x,             25, 21); }
  1041   static int vrs(      int         x)  { return  opp_u_field(x,             10,  6); }
  1042   static int vrt(      int         x)  { return  opp_u_field(x,             10,  6); }
  1044   static int vra(   VectorRegister r)  { return  vra(r->encoding());}
  1045   static int vrb(   VectorRegister r)  { return  vrb(r->encoding());}
  1046   static int vrc(   VectorRegister r)  { return  vrc(r->encoding());}
  1047   static int vrs(   VectorRegister r)  { return  vrs(r->encoding());}
  1048   static int vrt(   VectorRegister r)  { return  vrt(r->encoding());}
  1050   static int vsplt_uim( int        x)  { return  opp_u_field(x,             15, 12); } // for vsplt* instructions
  1051   static int vsplti_sim(int        x)  { return  opp_u_field(x,             15, 11); } // for vsplti* instructions
  1052   static int vsldoi_shb(int        x)  { return  opp_u_field(x,             25, 22); } // for vsldoi instruction
  1053   static int vcmp_rc(   int        x)  { return  opp_u_field(x,             21, 21); } // for vcmp* instructions
  1055   //static int xo1(     int        x)  { return  opp_u_field(x,             29, 21); }// is contained in our opcodes
  1056   //static int xo2(     int        x)  { return  opp_u_field(x,             30, 21); }// is contained in our opcodes
  1057   //static int xo3(     int        x)  { return  opp_u_field(x,             30, 22); }// is contained in our opcodes
  1058   //static int xo4(     int        x)  { return  opp_u_field(x,             30, 26); }// is contained in our opcodes
  1059   //static int xo5(     int        x)  { return  opp_u_field(x,             29, 27); }// is contained in our opcodes
  1060   //static int xo6(     int        x)  { return  opp_u_field(x,             30, 27); }// is contained in our opcodes
  1061   //static int xo7(     int        x)  { return  opp_u_field(x,             31, 30); }// is contained in our opcodes
  1063  protected:
  1064   // Compute relative address for branch.
  1065   static intptr_t disp(intptr_t x, intptr_t off) {
  1066     int xx = x - off;
  1067     xx = xx >> 2;
  1068     return xx;
  1071  public:
  1072   // signed immediate, in low bits, nbits long
  1073   static int simm(int x, int nbits) {
  1074     assert_signed_range(x, nbits);
  1075     return x & ((1 << nbits) - 1);
  1078   // unsigned immediate, in low bits, nbits long
  1079   static int uimm(int x, int nbits) {
  1080     assert_unsigned_const(x, nbits);
  1081     return x & ((1 << nbits) - 1);
  1084   static void set_imm(int* instr, short s) {
  1085     // imm is always in the lower 16 bits of the instruction,
  1086     // so this is endian-neutral. Same for the get_imm below.
  1087     uint32_t w = *(uint32_t *)instr;
  1088     *instr = (int)((w & ~0x0000FFFF) | (s & 0x0000FFFF));
  1091   static int get_imm(address a, int instruction_number) {
  1092     return (short)((int *)a)[instruction_number];
  1095   static inline int hi16_signed(  int x) { return (int)(int16_t)(x >> 16); }
  1096   static inline int lo16_unsigned(int x) { return x & 0xffff; }
  1098  protected:
  1100   // Extract the top 32 bits in a 64 bit word.
  1101   static int32_t hi32(int64_t x) {
  1102     int32_t r = int32_t((uint64_t)x >> 32);
  1103     return r;
  1106  public:
  1108   static inline unsigned int align_addr(unsigned int addr, unsigned int a) {
  1109     return ((addr + (a - 1)) & ~(a - 1));
  1112   static inline bool is_aligned(unsigned int addr, unsigned int a) {
  1113     return (0 == addr % a);
  1116   void flush() {
  1117     AbstractAssembler::flush();
  1120   inline void emit_int32(int);  // shadows AbstractAssembler::emit_int32
  1121   inline void emit_data(int);
  1122   inline void emit_data(int, RelocationHolder const&);
  1123   inline void emit_data(int, relocInfo::relocType rtype);
  1125   // Emit an address.
  1126   inline address emit_addr(const address addr = NULL);
  1128 #if !defined(ABI_ELFv2)
  1129   // Emit a function descriptor with the specified entry point, TOC,
  1130   // and ENV. If the entry point is NULL, the descriptor will point
  1131   // just past the descriptor.
  1132   // Use values from friend functions as defaults.
  1133   inline address emit_fd(address entry = NULL,
  1134                          address toc = (address) FunctionDescriptor::friend_toc,
  1135                          address env = (address) FunctionDescriptor::friend_env);
  1136 #endif
  1138   /////////////////////////////////////////////////////////////////////////////////////
  1139   // PPC instructions
  1140   /////////////////////////////////////////////////////////////////////////////////////
  1142   // Memory instructions use r0 as hard coded 0, e.g. to simulate loading
  1143   // immediates. The normal instruction encoders enforce that r0 is not
  1144   // passed to them. Use either extended mnemonics encoders or the special ra0
  1145   // versions.
  1147   // Issue an illegal instruction.
  1148   inline void illtrap();
  1149   static inline bool is_illtrap(int x);
  1151   // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
  1152   inline void addi( Register d, Register a, int si16);
  1153   inline void addis(Register d, Register a, int si16);
  1154  private:
  1155   inline void addi_r0ok( Register d, Register a, int si16);
  1156   inline void addis_r0ok(Register d, Register a, int si16);
  1157  public:
  1158   inline void addic_( Register d, Register a, int si16);
  1159   inline void subfic( Register d, Register a, int si16);
  1160   inline void add(    Register d, Register a, Register b);
  1161   inline void add_(   Register d, Register a, Register b);
  1162   inline void subf(   Register d, Register a, Register b);  // d = b - a    "Sub_from", as in ppc spec.
  1163   inline void sub(    Register d, Register a, Register b);  // d = a - b    Swap operands of subf for readability.
  1164   inline void subf_(  Register d, Register a, Register b);
  1165   inline void addc(   Register d, Register a, Register b);
  1166   inline void addc_(  Register d, Register a, Register b);
  1167   inline void subfc(  Register d, Register a, Register b);
  1168   inline void subfc_( Register d, Register a, Register b);
  1169   inline void adde(   Register d, Register a, Register b);
  1170   inline void adde_(  Register d, Register a, Register b);
  1171   inline void subfe(  Register d, Register a, Register b);
  1172   inline void subfe_( Register d, Register a, Register b);
  1173   inline void neg(    Register d, Register a);
  1174   inline void neg_(   Register d, Register a);
  1175   inline void mulli(  Register d, Register a, int si16);
  1176   inline void mulld(  Register d, Register a, Register b);
  1177   inline void mulld_( Register d, Register a, Register b);
  1178   inline void mullw(  Register d, Register a, Register b);
  1179   inline void mullw_( Register d, Register a, Register b);
  1180   inline void mulhw(  Register d, Register a, Register b);
  1181   inline void mulhw_( Register d, Register a, Register b);
  1182   inline void mulhd(  Register d, Register a, Register b);
  1183   inline void mulhd_( Register d, Register a, Register b);
  1184   inline void mulhdu( Register d, Register a, Register b);
  1185   inline void mulhdu_(Register d, Register a, Register b);
  1186   inline void divd(   Register d, Register a, Register b);
  1187   inline void divd_(  Register d, Register a, Register b);
  1188   inline void divw(   Register d, Register a, Register b);
  1189   inline void divw_(  Register d, Register a, Register b);
  1191   // extended mnemonics
  1192   inline void li(   Register d, int si16);
  1193   inline void lis(  Register d, int si16);
  1194   inline void addir(Register d, int si16, Register a);
  1196   static bool is_addi(int x) {
  1197      return ADDI_OPCODE == (x & ADDI_OPCODE_MASK);
  1199   static bool is_addis(int x) {
  1200      return ADDIS_OPCODE == (x & ADDIS_OPCODE_MASK);
  1202   static bool is_bxx(int x) {
  1203      return BXX_OPCODE == (x & BXX_OPCODE_MASK);
  1205   static bool is_b(int x) {
  1206      return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 0;
  1208   static bool is_bl(int x) {
  1209      return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 1;
  1211   static bool is_bcxx(int x) {
  1212      return BCXX_OPCODE == (x & BCXX_OPCODE_MASK);
  1214   static bool is_bxx_or_bcxx(int x) {
  1215      return is_bxx(x) || is_bcxx(x);
  1217   static bool is_bctrl(int x) {
  1218      return x == 0x4e800421;
  1220   static bool is_bctr(int x) {
  1221      return x == 0x4e800420;
  1223   static bool is_bclr(int x) {
  1224      return BCLR_OPCODE == (x & XL_FORM_OPCODE_MASK);
  1226   static bool is_li(int x) {
  1227      return is_addi(x) && inv_ra_field(x)==0;
  1229   static bool is_lis(int x) {
  1230      return is_addis(x) && inv_ra_field(x)==0;
  1232   static bool is_mtctr(int x) {
  1233      return MTCTR_OPCODE == (x & MTCTR_OPCODE_MASK);
  1235   static bool is_ld(int x) {
  1236      return LD_OPCODE == (x & LD_OPCODE_MASK);
  1238   static bool is_std(int x) {
  1239      return STD_OPCODE == (x & STD_OPCODE_MASK);
  1241   static bool is_stdu(int x) {
  1242      return STDU_OPCODE == (x & STDU_OPCODE_MASK);
  1244   static bool is_stdx(int x) {
  1245      return STDX_OPCODE == (x & STDX_OPCODE_MASK);
  1247   static bool is_stdux(int x) {
  1248      return STDUX_OPCODE == (x & STDUX_OPCODE_MASK);
  1250   static bool is_stwx(int x) {
  1251      return STWX_OPCODE == (x & STWX_OPCODE_MASK);
  1253   static bool is_stwux(int x) {
  1254      return STWUX_OPCODE == (x & STWUX_OPCODE_MASK);
  1256   static bool is_stw(int x) {
  1257      return STW_OPCODE == (x & STW_OPCODE_MASK);
  1259   static bool is_stwu(int x) {
  1260      return STWU_OPCODE == (x & STWU_OPCODE_MASK);
  1262   static bool is_ori(int x) {
  1263      return ORI_OPCODE == (x & ORI_OPCODE_MASK);
  1264   };
  1265   static bool is_oris(int x) {
  1266      return ORIS_OPCODE == (x & ORIS_OPCODE_MASK);
  1267   };
  1268   static bool is_rldicr(int x) {
  1269      return (RLDICR_OPCODE == (x & RLDICR_OPCODE_MASK));
  1270   };
  1271   static bool is_nop(int x) {
  1272     return x == 0x60000000;
  1274   // endgroup opcode for Power6
  1275   static bool is_endgroup(int x) {
  1276     return is_ori(x) && inv_ra_field(x) == 1 && inv_rs_field(x) == 1 && inv_d1_field(x) == 0;
  1280  private:
  1281   // PPC 1, section 3.3.9, Fixed-Point Compare Instructions
  1282   inline void cmpi( ConditionRegister bf, int l, Register a, int si16);
  1283   inline void cmp(  ConditionRegister bf, int l, Register a, Register b);
  1284   inline void cmpli(ConditionRegister bf, int l, Register a, int ui16);
  1285   inline void cmpl( ConditionRegister bf, int l, Register a, Register b);
  1287  public:
  1288   // extended mnemonics of Compare Instructions
  1289   inline void cmpwi( ConditionRegister crx, Register a, int si16);
  1290   inline void cmpdi( ConditionRegister crx, Register a, int si16);
  1291   inline void cmpw(  ConditionRegister crx, Register a, Register b);
  1292   inline void cmpd(  ConditionRegister crx, Register a, Register b);
  1293   inline void cmplwi(ConditionRegister crx, Register a, int ui16);
  1294   inline void cmpldi(ConditionRegister crx, Register a, int ui16);
  1295   inline void cmplw( ConditionRegister crx, Register a, Register b);
  1296   inline void cmpld( ConditionRegister crx, Register a, Register b);
  1298   inline void isel(   Register d, Register a, Register b, int bc);
  1299   // Convenient version which takes: Condition register, Condition code and invert flag. Omit b to keep old value.
  1300   inline void isel(   Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b = noreg);
  1301   // Set d = 0 if (cr.cc) equals 1, otherwise b.
  1302   inline void isel_0( Register d, ConditionRegister cr, Condition cc, Register b = noreg);
  1304   // PPC 1, section 3.3.11, Fixed-Point Logical Instructions
  1305          void andi(   Register a, Register s, int ui16);   // optimized version
  1306   inline void andi_(  Register a, Register s, int ui16);
  1307   inline void andis_( Register a, Register s, int ui16);
  1308   inline void ori(    Register a, Register s, int ui16);
  1309   inline void oris(   Register a, Register s, int ui16);
  1310   inline void xori(   Register a, Register s, int ui16);
  1311   inline void xoris(  Register a, Register s, int ui16);
  1312   inline void andr(   Register a, Register s, Register b);  // suffixed by 'r' as 'and' is C++ keyword
  1313   inline void and_(   Register a, Register s, Register b);
  1314   // Turn or0(rx,rx,rx) into a nop and avoid that we accidently emit a
  1315   // SMT-priority change instruction (see SMT instructions below).
  1316   inline void or_unchecked(Register a, Register s, Register b);
  1317   inline void orr(    Register a, Register s, Register b);  // suffixed by 'r' as 'or' is C++ keyword
  1318   inline void or_(    Register a, Register s, Register b);
  1319   inline void xorr(   Register a, Register s, Register b);  // suffixed by 'r' as 'xor' is C++ keyword
  1320   inline void xor_(   Register a, Register s, Register b);
  1321   inline void nand(   Register a, Register s, Register b);
  1322   inline void nand_(  Register a, Register s, Register b);
  1323   inline void nor(    Register a, Register s, Register b);
  1324   inline void nor_(   Register a, Register s, Register b);
  1325   inline void andc(   Register a, Register s, Register b);
  1326   inline void andc_(  Register a, Register s, Register b);
  1327   inline void orc(    Register a, Register s, Register b);
  1328   inline void orc_(   Register a, Register s, Register b);
  1329   inline void extsb(  Register a, Register s);
  1330   inline void extsh(  Register a, Register s);
  1331   inline void extsw(  Register a, Register s);
  1333   // extended mnemonics
  1334   inline void nop();
  1335   // NOP for FP and BR units (different versions to allow them to be in one group)
  1336   inline void fpnop0();
  1337   inline void fpnop1();
  1338   inline void brnop0();
  1339   inline void brnop1();
  1340   inline void brnop2();
  1342   inline void mr(      Register d, Register s);
  1343   inline void ori_opt( Register d, int ui16);
  1344   inline void oris_opt(Register d, int ui16);
  1346   // endgroup opcode for Power6
  1347   inline void endgroup();
  1349   // count instructions
  1350   inline void cntlzw(  Register a, Register s);
  1351   inline void cntlzw_( Register a, Register s);
  1352   inline void cntlzd(  Register a, Register s);
  1353   inline void cntlzd_( Register a, Register s);
  1355   // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
  1356   inline void sld(     Register a, Register s, Register b);
  1357   inline void sld_(    Register a, Register s, Register b);
  1358   inline void slw(     Register a, Register s, Register b);
  1359   inline void slw_(    Register a, Register s, Register b);
  1360   inline void srd(     Register a, Register s, Register b);
  1361   inline void srd_(    Register a, Register s, Register b);
  1362   inline void srw(     Register a, Register s, Register b);
  1363   inline void srw_(    Register a, Register s, Register b);
  1364   inline void srad(    Register a, Register s, Register b);
  1365   inline void srad_(   Register a, Register s, Register b);
  1366   inline void sraw(    Register a, Register s, Register b);
  1367   inline void sraw_(   Register a, Register s, Register b);
  1368   inline void sradi(   Register a, Register s, int sh6);
  1369   inline void sradi_(  Register a, Register s, int sh6);
  1370   inline void srawi(   Register a, Register s, int sh5);
  1371   inline void srawi_(  Register a, Register s, int sh5);
  1373   // extended mnemonics for Shift Instructions
  1374   inline void sldi(    Register a, Register s, int sh6);
  1375   inline void sldi_(   Register a, Register s, int sh6);
  1376   inline void slwi(    Register a, Register s, int sh5);
  1377   inline void slwi_(   Register a, Register s, int sh5);
  1378   inline void srdi(    Register a, Register s, int sh6);
  1379   inline void srdi_(   Register a, Register s, int sh6);
  1380   inline void srwi(    Register a, Register s, int sh5);
  1381   inline void srwi_(   Register a, Register s, int sh5);
  1383   inline void clrrdi(  Register a, Register s, int ui6);
  1384   inline void clrrdi_( Register a, Register s, int ui6);
  1385   inline void clrldi(  Register a, Register s, int ui6);
  1386   inline void clrldi_( Register a, Register s, int ui6);
  1387   inline void clrlsldi(Register a, Register s, int clrl6, int shl6);
  1388   inline void clrlsldi_(Register a, Register s, int clrl6, int shl6);
  1389   inline void extrdi(  Register a, Register s, int n, int b);
  1390   // testbit with condition register
  1391   inline void testbitdi(ConditionRegister cr, Register a, Register s, int ui6);
  1393   // rotate instructions
  1394   inline void rotldi(  Register a, Register s, int n);
  1395   inline void rotrdi(  Register a, Register s, int n);
  1396   inline void rotlwi(  Register a, Register s, int n);
  1397   inline void rotrwi(  Register a, Register s, int n);
  1399   // Rotate Instructions
  1400   inline void rldic(   Register a, Register s, int sh6, int mb6);
  1401   inline void rldic_(  Register a, Register s, int sh6, int mb6);
  1402   inline void rldicr(  Register a, Register s, int sh6, int mb6);
  1403   inline void rldicr_( Register a, Register s, int sh6, int mb6);
  1404   inline void rldicl(  Register a, Register s, int sh6, int mb6);
  1405   inline void rldicl_( Register a, Register s, int sh6, int mb6);
  1406   inline void rlwinm(  Register a, Register s, int sh5, int mb5, int me5);
  1407   inline void rlwinm_( Register a, Register s, int sh5, int mb5, int me5);
  1408   inline void rldimi(  Register a, Register s, int sh6, int mb6);
  1409   inline void rldimi_( Register a, Register s, int sh6, int mb6);
  1410   inline void rlwimi(  Register a, Register s, int sh5, int mb5, int me5);
  1411   inline void insrdi(  Register a, Register s, int n,   int b);
  1412   inline void insrwi(  Register a, Register s, int n,   int b);
  1414   // PPC 1, section 3.3.2 Fixed-Point Load Instructions
  1415   // 4 bytes
  1416   inline void lwzx( Register d, Register s1, Register s2);
  1417   inline void lwz(  Register d, int si16,    Register s1);
  1418   inline void lwzu( Register d, int si16,    Register s1);
  1420   // 4 bytes
  1421   inline void lwax( Register d, Register s1, Register s2);
  1422   inline void lwa(  Register d, int si16,    Register s1);
  1424   // 4 bytes reversed
  1425   inline void lwbrx( Register d, Register s1, Register s2);
  1427   // 2 bytes
  1428   inline void lhzx( Register d, Register s1, Register s2);
  1429   inline void lhz(  Register d, int si16,    Register s1);
  1430   inline void lhzu( Register d, int si16,    Register s1);
  1432   // 2 bytes reversed
  1433   inline void lhbrx( Register d, Register s1, Register s2);
  1435   // 2 bytes
  1436   inline void lhax( Register d, Register s1, Register s2);
  1437   inline void lha(  Register d, int si16,    Register s1);
  1438   inline void lhau( Register d, int si16,    Register s1);
  1440   // 1 byte
  1441   inline void lbzx( Register d, Register s1, Register s2);
  1442   inline void lbz(  Register d, int si16,    Register s1);
  1443   inline void lbzu( Register d, int si16,    Register s1);
  1445   // 8 bytes
  1446   inline void ldx(  Register d, Register s1, Register s2);
  1447   inline void ld(   Register d, int si16,    Register s1);
  1448   inline void ldu(  Register d, int si16,    Register s1);
  1450   //  PPC 1, section 3.3.3 Fixed-Point Store Instructions
  1451   inline void stwx( Register d, Register s1, Register s2);
  1452   inline void stw(  Register d, int si16,    Register s1);
  1453   inline void stwu( Register d, int si16,    Register s1);
  1455   inline void sthx( Register d, Register s1, Register s2);
  1456   inline void sth(  Register d, int si16,    Register s1);
  1457   inline void sthu( Register d, int si16,    Register s1);
  1459   inline void stbx( Register d, Register s1, Register s2);
  1460   inline void stb(  Register d, int si16,    Register s1);
  1461   inline void stbu( Register d, int si16,    Register s1);
  1463   inline void stdx( Register d, Register s1, Register s2);
  1464   inline void std(  Register d, int si16,    Register s1);
  1465   inline void stdu( Register d, int si16,    Register s1);
  1466   inline void stdux(Register s, Register a,  Register b);
  1468   // PPC 1, section 3.3.13 Move To/From System Register Instructions
  1469   inline void mtlr( Register s1);
  1470   inline void mflr( Register d);
  1471   inline void mtctr(Register s1);
  1472   inline void mfctr(Register d);
  1473   inline void mtcrf(int fxm, Register s);
  1474   inline void mfcr( Register d);
  1475   inline void mcrf( ConditionRegister crd, ConditionRegister cra);
  1476   inline void mtcr( Register s);
  1478   // Special purpose registers
  1479   // Exception Register
  1480   inline void mtxer(Register s1);
  1481   inline void mfxer(Register d);
  1482   // Vector Register Save Register
  1483   inline void mtvrsave(Register s1);
  1484   inline void mfvrsave(Register d);
  1485   // Timebase
  1486   inline void mftb(Register d);
  1487   // Introduced with Power 8:
  1488   // Data Stream Control Register
  1489   inline void mtdscr(Register s1);
  1490   inline void mfdscr(Register d );
  1491   // Transactional Memory Registers
  1492   inline void mftfhar(Register d);
  1493   inline void mftfiar(Register d);
  1494   inline void mftexasr(Register d);
  1495   inline void mftexasru(Register d);
  1497   // PPC 1, section 2.4.1 Branch Instructions
  1498   inline void b(  address a, relocInfo::relocType rt = relocInfo::none);
  1499   inline void b(  Label& L);
  1500   inline void bl( address a, relocInfo::relocType rt = relocInfo::none);
  1501   inline void bl( Label& L);
  1502   inline void bc( int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
  1503   inline void bc( int boint, int biint, Label& L);
  1504   inline void bcl(int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
  1505   inline void bcl(int boint, int biint, Label& L);
  1507   inline void bclr(  int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
  1508   inline void bclrl( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
  1509   inline void bcctr( int boint, int biint, int bhint = bhintbhBCCTRisNotReturnButSame,
  1510                          relocInfo::relocType rt = relocInfo::none);
  1511   inline void bcctrl(int boint, int biint, int bhint = bhintbhBCLRisReturn,
  1512                          relocInfo::relocType rt = relocInfo::none);
  1514   // helper function for b, bcxx
  1515   inline bool is_within_range_of_b(address a, address pc);
  1516   inline bool is_within_range_of_bcxx(address a, address pc);
  1518   // get the destination of a bxx branch (b, bl, ba, bla)
  1519   static inline address  bxx_destination(address baddr);
  1520   static inline address  bxx_destination(int instr, address pc);
  1521   static inline intptr_t bxx_destination_offset(int instr, intptr_t bxx_pos);
  1523   // extended mnemonics for branch instructions
  1524   inline void blt(ConditionRegister crx, Label& L);
  1525   inline void bgt(ConditionRegister crx, Label& L);
  1526   inline void beq(ConditionRegister crx, Label& L);
  1527   inline void bso(ConditionRegister crx, Label& L);
  1528   inline void bge(ConditionRegister crx, Label& L);
  1529   inline void ble(ConditionRegister crx, Label& L);
  1530   inline void bne(ConditionRegister crx, Label& L);
  1531   inline void bns(ConditionRegister crx, Label& L);
  1533   // Branch instructions with static prediction hints.
  1534   inline void blt_predict_taken(    ConditionRegister crx, Label& L);
  1535   inline void bgt_predict_taken(    ConditionRegister crx, Label& L);
  1536   inline void beq_predict_taken(    ConditionRegister crx, Label& L);
  1537   inline void bso_predict_taken(    ConditionRegister crx, Label& L);
  1538   inline void bge_predict_taken(    ConditionRegister crx, Label& L);
  1539   inline void ble_predict_taken(    ConditionRegister crx, Label& L);
  1540   inline void bne_predict_taken(    ConditionRegister crx, Label& L);
  1541   inline void bns_predict_taken(    ConditionRegister crx, Label& L);
  1542   inline void blt_predict_not_taken(ConditionRegister crx, Label& L);
  1543   inline void bgt_predict_not_taken(ConditionRegister crx, Label& L);
  1544   inline void beq_predict_not_taken(ConditionRegister crx, Label& L);
  1545   inline void bso_predict_not_taken(ConditionRegister crx, Label& L);
  1546   inline void bge_predict_not_taken(ConditionRegister crx, Label& L);
  1547   inline void ble_predict_not_taken(ConditionRegister crx, Label& L);
  1548   inline void bne_predict_not_taken(ConditionRegister crx, Label& L);
  1549   inline void bns_predict_not_taken(ConditionRegister crx, Label& L);
  1551   // for use in conjunction with testbitdi:
  1552   inline void btrue( ConditionRegister crx, Label& L);
  1553   inline void bfalse(ConditionRegister crx, Label& L);
  1555   inline void bltl(ConditionRegister crx, Label& L);
  1556   inline void bgtl(ConditionRegister crx, Label& L);
  1557   inline void beql(ConditionRegister crx, Label& L);
  1558   inline void bsol(ConditionRegister crx, Label& L);
  1559   inline void bgel(ConditionRegister crx, Label& L);
  1560   inline void blel(ConditionRegister crx, Label& L);
  1561   inline void bnel(ConditionRegister crx, Label& L);
  1562   inline void bnsl(ConditionRegister crx, Label& L);
  1564   // extended mnemonics for Branch Instructions via LR
  1565   // We use `blr' for returns.
  1566   inline void blr(relocInfo::relocType rt = relocInfo::none);
  1568   // extended mnemonics for Branch Instructions with CTR
  1569   // bdnz means `decrement CTR and jump to L if CTR is not zero'
  1570   inline void bdnz(Label& L);
  1571   // Decrement and branch if result is zero.
  1572   inline void bdz(Label& L);
  1573   // we use `bctr[l]' for jumps/calls in function descriptor glue
  1574   // code, e.g. calls to runtime functions
  1575   inline void bctr( relocInfo::relocType rt = relocInfo::none);
  1576   inline void bctrl(relocInfo::relocType rt = relocInfo::none);
  1577   // conditional jumps/branches via CTR
  1578   inline void beqctr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
  1579   inline void beqctrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
  1580   inline void bnectr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
  1581   inline void bnectrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
  1583   // condition register logic instructions
  1584   inline void crand( int d, int s1, int s2);
  1585   inline void crnand(int d, int s1, int s2);
  1586   inline void cror(  int d, int s1, int s2);
  1587   inline void crxor( int d, int s1, int s2);
  1588   inline void crnor( int d, int s1, int s2);
  1589   inline void creqv( int d, int s1, int s2);
  1590   inline void crandc(int d, int s1, int s2);
  1591   inline void crorc( int d, int s1, int s2);
  1593   // icache and dcache related instructions
  1594   inline void icbi(  Register s1, Register s2);
  1595   //inline void dcba(Register s1, Register s2); // Instruction for embedded processor only.
  1596   inline void dcbz(  Register s1, Register s2);
  1597   inline void dcbst( Register s1, Register s2);
  1598   inline void dcbf(  Register s1, Register s2);
  1600   enum ct_cache_specification {
  1601     ct_primary_cache   = 0,
  1602     ct_secondary_cache = 2
  1603   };
  1604   // dcache read hint
  1605   inline void dcbt(    Register s1, Register s2);
  1606   inline void dcbtct(  Register s1, Register s2, int ct);
  1607   inline void dcbtds(  Register s1, Register s2, int ds);
  1608   // dcache write hint
  1609   inline void dcbtst(  Register s1, Register s2);
  1610   inline void dcbtstct(Register s1, Register s2, int ct);
  1612   //  machine barrier instructions:
  1613   //
  1614   //  - sync    two-way memory barrier, aka fence
  1615   //  - lwsync  orders  Store|Store,
  1616   //                     Load|Store,
  1617   //                     Load|Load,
  1618   //            but not Store|Load
  1619   //  - eieio   orders memory accesses for device memory (only)
  1620   //  - isync   invalidates speculatively executed instructions
  1621   //            From the Power ISA 2.06 documentation:
  1622   //             "[...] an isync instruction prevents the execution of
  1623   //            instructions following the isync until instructions
  1624   //            preceding the isync have completed, [...]"
  1625   //            From IBM's AIX assembler reference:
  1626   //             "The isync [...] instructions causes the processor to
  1627   //            refetch any instructions that might have been fetched
  1628   //            prior to the isync instruction. The instruction isync
  1629   //            causes the processor to wait for all previous instructions
  1630   //            to complete. Then any instructions already fetched are
  1631   //            discarded and instruction processing continues in the
  1632   //            environment established by the previous instructions."
  1633   //
  1634   //  semantic barrier instructions:
  1635   //  (as defined in orderAccess.hpp)
  1636   //
  1637   //  - release  orders Store|Store,       (maps to lwsync)
  1638   //                     Load|Store
  1639   //  - acquire  orders  Load|Store,       (maps to lwsync)
  1640   //                     Load|Load
  1641   //  - fence    orders Store|Store,       (maps to sync)
  1642   //                     Load|Store,
  1643   //                     Load|Load,
  1644   //                    Store|Load
  1645   //
  1646  private:
  1647   inline void sync(int l);
  1648  public:
  1649   inline void sync();
  1650   inline void lwsync();
  1651   inline void ptesync();
  1652   inline void eieio();
  1653   inline void isync();
  1654   inline void elemental_membar(int e); // Elemental Memory Barriers (>=Power 8)
  1656   // atomics
  1657   inline void lwarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
  1658   inline void ldarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
  1659   inline bool lxarx_hint_exclusive_access();
  1660   inline void lwarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
  1661   inline void ldarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
  1662   inline void stwcx_( Register s, Register a, Register b);
  1663   inline void stdcx_( Register s, Register a, Register b);
  1665   // Instructions for adjusting thread priority for simultaneous
  1666   // multithreading (SMT) on Power5.
  1667  private:
  1668   inline void smt_prio_very_low();
  1669   inline void smt_prio_medium_high();
  1670   inline void smt_prio_high();
  1672  public:
  1673   inline void smt_prio_low();
  1674   inline void smt_prio_medium_low();
  1675   inline void smt_prio_medium();
  1677   // trap instructions
  1678   inline void twi_0(Register a); // for load with acquire semantics use load+twi_0+isync (trap can't occur)
  1679   // NOT FOR DIRECT USE!!
  1680  protected:
  1681   inline void tdi_unchecked(int tobits, Register a, int si16);
  1682   inline void twi_unchecked(int tobits, Register a, int si16);
  1683   inline void tdi(          int tobits, Register a, int si16);   // asserts UseSIGTRAP
  1684   inline void twi(          int tobits, Register a, int si16);   // asserts UseSIGTRAP
  1685   inline void td(           int tobits, Register a, Register b); // asserts UseSIGTRAP
  1686   inline void tw(           int tobits, Register a, Register b); // asserts UseSIGTRAP
  1688   static bool is_tdi(int x, int tobits, int ra, int si16) {
  1689      return (TDI_OPCODE == (x & TDI_OPCODE_MASK))
  1690          && (tobits == inv_to_field(x))
  1691          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
  1692          && (si16 == inv_si_field(x));
  1695   static bool is_twi(int x, int tobits, int ra, int si16) {
  1696      return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
  1697          && (tobits == inv_to_field(x))
  1698          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
  1699          && (si16 == inv_si_field(x));
  1702   static bool is_twi(int x, int tobits, int ra) {
  1703      return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
  1704          && (tobits == inv_to_field(x))
  1705          && (ra == -1/*any reg*/ || ra == inv_ra_field(x));
  1708   static bool is_td(int x, int tobits, int ra, int rb) {
  1709      return (TD_OPCODE == (x & TD_OPCODE_MASK))
  1710          && (tobits == inv_to_field(x))
  1711          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
  1712          && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
  1715   static bool is_tw(int x, int tobits, int ra, int rb) {
  1716      return (TW_OPCODE == (x & TW_OPCODE_MASK))
  1717          && (tobits == inv_to_field(x))
  1718          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
  1719          && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
  1722  public:
  1723   // PPC floating point instructions
  1724   // PPC 1, section 4.6.2 Floating-Point Load Instructions
  1725   inline void lfs(  FloatRegister d, int si16,   Register a);
  1726   inline void lfsu( FloatRegister d, int si16,   Register a);
  1727   inline void lfsx( FloatRegister d, Register a, Register b);
  1728   inline void lfd(  FloatRegister d, int si16,   Register a);
  1729   inline void lfdu( FloatRegister d, int si16,   Register a);
  1730   inline void lfdx( FloatRegister d, Register a, Register b);
  1732   // PPC 1, section 4.6.3 Floating-Point Store Instructions
  1733   inline void stfs(  FloatRegister s, int si16,   Register a);
  1734   inline void stfsu( FloatRegister s, int si16,   Register a);
  1735   inline void stfsx( FloatRegister s, Register a, Register b);
  1736   inline void stfd(  FloatRegister s, int si16,   Register a);
  1737   inline void stfdu( FloatRegister s, int si16,   Register a);
  1738   inline void stfdx( FloatRegister s, Register a, Register b);
  1740   // PPC 1, section 4.6.4 Floating-Point Move Instructions
  1741   inline void fmr(  FloatRegister d, FloatRegister b);
  1742   inline void fmr_( FloatRegister d, FloatRegister b);
  1744   //  inline void mffgpr( FloatRegister d, Register b);
  1745   //  inline void mftgpr( Register d, FloatRegister b);
  1746   inline void cmpb(   Register a, Register s, Register b);
  1747   inline void popcntb(Register a, Register s);
  1748   inline void popcntw(Register a, Register s);
  1749   inline void popcntd(Register a, Register s);
  1751   inline void fneg(  FloatRegister d, FloatRegister b);
  1752   inline void fneg_( FloatRegister d, FloatRegister b);
  1753   inline void fabs(  FloatRegister d, FloatRegister b);
  1754   inline void fabs_( FloatRegister d, FloatRegister b);
  1755   inline void fnabs( FloatRegister d, FloatRegister b);
  1756   inline void fnabs_(FloatRegister d, FloatRegister b);
  1758   // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions
  1759   inline void fadd(  FloatRegister d, FloatRegister a, FloatRegister b);
  1760   inline void fadd_( FloatRegister d, FloatRegister a, FloatRegister b);
  1761   inline void fadds( FloatRegister d, FloatRegister a, FloatRegister b);
  1762   inline void fadds_(FloatRegister d, FloatRegister a, FloatRegister b);
  1763   inline void fsub(  FloatRegister d, FloatRegister a, FloatRegister b);
  1764   inline void fsub_( FloatRegister d, FloatRegister a, FloatRegister b);
  1765   inline void fsubs( FloatRegister d, FloatRegister a, FloatRegister b);
  1766   inline void fsubs_(FloatRegister d, FloatRegister a, FloatRegister b);
  1767   inline void fmul(  FloatRegister d, FloatRegister a, FloatRegister c);
  1768   inline void fmul_( FloatRegister d, FloatRegister a, FloatRegister c);
  1769   inline void fmuls( FloatRegister d, FloatRegister a, FloatRegister c);
  1770   inline void fmuls_(FloatRegister d, FloatRegister a, FloatRegister c);
  1771   inline void fdiv(  FloatRegister d, FloatRegister a, FloatRegister b);
  1772   inline void fdiv_( FloatRegister d, FloatRegister a, FloatRegister b);
  1773   inline void fdivs( FloatRegister d, FloatRegister a, FloatRegister b);
  1774   inline void fdivs_(FloatRegister d, FloatRegister a, FloatRegister b);
  1776   // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions
  1777   inline void frsp(  FloatRegister d, FloatRegister b);
  1778   inline void fctid( FloatRegister d, FloatRegister b);
  1779   inline void fctidz(FloatRegister d, FloatRegister b);
  1780   inline void fctiw( FloatRegister d, FloatRegister b);
  1781   inline void fctiwz(FloatRegister d, FloatRegister b);
  1782   inline void fcfid( FloatRegister d, FloatRegister b);
  1783   inline void fcfids(FloatRegister d, FloatRegister b);
  1785   // PPC 1, section 4.6.7 Floating-Point Compare Instructions
  1786   inline void fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b);
  1788   inline void fsqrt( FloatRegister d, FloatRegister b);
  1789   inline void fsqrts(FloatRegister d, FloatRegister b);
  1791   // Vector instructions for >= Power6.
  1792   inline void lvebx(    VectorRegister d, Register s1, Register s2);
  1793   inline void lvehx(    VectorRegister d, Register s1, Register s2);
  1794   inline void lvewx(    VectorRegister d, Register s1, Register s2);
  1795   inline void lvx(      VectorRegister d, Register s1, Register s2);
  1796   inline void lvxl(     VectorRegister d, Register s1, Register s2);
  1797   inline void stvebx(   VectorRegister d, Register s1, Register s2);
  1798   inline void stvehx(   VectorRegister d, Register s1, Register s2);
  1799   inline void stvewx(   VectorRegister d, Register s1, Register s2);
  1800   inline void stvx(     VectorRegister d, Register s1, Register s2);
  1801   inline void stvxl(    VectorRegister d, Register s1, Register s2);
  1802   inline void lvsl(     VectorRegister d, Register s1, Register s2);
  1803   inline void lvsr(     VectorRegister d, Register s1, Register s2);
  1804   inline void vpkpx(    VectorRegister d, VectorRegister a, VectorRegister b);
  1805   inline void vpkshss(  VectorRegister d, VectorRegister a, VectorRegister b);
  1806   inline void vpkswss(  VectorRegister d, VectorRegister a, VectorRegister b);
  1807   inline void vpkshus(  VectorRegister d, VectorRegister a, VectorRegister b);
  1808   inline void vpkswus(  VectorRegister d, VectorRegister a, VectorRegister b);
  1809   inline void vpkuhum(  VectorRegister d, VectorRegister a, VectorRegister b);
  1810   inline void vpkuwum(  VectorRegister d, VectorRegister a, VectorRegister b);
  1811   inline void vpkuhus(  VectorRegister d, VectorRegister a, VectorRegister b);
  1812   inline void vpkuwus(  VectorRegister d, VectorRegister a, VectorRegister b);
  1813   inline void vupkhpx(  VectorRegister d, VectorRegister b);
  1814   inline void vupkhsb(  VectorRegister d, VectorRegister b);
  1815   inline void vupkhsh(  VectorRegister d, VectorRegister b);
  1816   inline void vupklpx(  VectorRegister d, VectorRegister b);
  1817   inline void vupklsb(  VectorRegister d, VectorRegister b);
  1818   inline void vupklsh(  VectorRegister d, VectorRegister b);
  1819   inline void vmrghb(   VectorRegister d, VectorRegister a, VectorRegister b);
  1820   inline void vmrghw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1821   inline void vmrghh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1822   inline void vmrglb(   VectorRegister d, VectorRegister a, VectorRegister b);
  1823   inline void vmrglw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1824   inline void vmrglh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1825   inline void vsplt(    VectorRegister d, int ui4,          VectorRegister b);
  1826   inline void vsplth(   VectorRegister d, int ui3,          VectorRegister b);
  1827   inline void vspltw(   VectorRegister d, int ui2,          VectorRegister b);
  1828   inline void vspltisb( VectorRegister d, int si5);
  1829   inline void vspltish( VectorRegister d, int si5);
  1830   inline void vspltisw( VectorRegister d, int si5);
  1831   inline void vperm(    VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1832   inline void vsel(     VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1833   inline void vsl(      VectorRegister d, VectorRegister a, VectorRegister b);
  1834   inline void vsldoi(   VectorRegister d, VectorRegister a, VectorRegister b, int si4);
  1835   inline void vslo(     VectorRegister d, VectorRegister a, VectorRegister b);
  1836   inline void vsr(      VectorRegister d, VectorRegister a, VectorRegister b);
  1837   inline void vsro(     VectorRegister d, VectorRegister a, VectorRegister b);
  1838   inline void vaddcuw(  VectorRegister d, VectorRegister a, VectorRegister b);
  1839   inline void vaddshs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1840   inline void vaddsbs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1841   inline void vaddsws(  VectorRegister d, VectorRegister a, VectorRegister b);
  1842   inline void vaddubm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1843   inline void vadduwm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1844   inline void vadduhm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1845   inline void vaddubs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1846   inline void vadduws(  VectorRegister d, VectorRegister a, VectorRegister b);
  1847   inline void vadduhs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1848   inline void vsubcuw(  VectorRegister d, VectorRegister a, VectorRegister b);
  1849   inline void vsubshs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1850   inline void vsubsbs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1851   inline void vsubsws(  VectorRegister d, VectorRegister a, VectorRegister b);
  1852   inline void vsububm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1853   inline void vsubuwm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1854   inline void vsubuhm(  VectorRegister d, VectorRegister a, VectorRegister b);
  1855   inline void vsububs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1856   inline void vsubuws(  VectorRegister d, VectorRegister a, VectorRegister b);
  1857   inline void vsubuhs(  VectorRegister d, VectorRegister a, VectorRegister b);
  1858   inline void vmulesb(  VectorRegister d, VectorRegister a, VectorRegister b);
  1859   inline void vmuleub(  VectorRegister d, VectorRegister a, VectorRegister b);
  1860   inline void vmulesh(  VectorRegister d, VectorRegister a, VectorRegister b);
  1861   inline void vmuleuh(  VectorRegister d, VectorRegister a, VectorRegister b);
  1862   inline void vmulosb(  VectorRegister d, VectorRegister a, VectorRegister b);
  1863   inline void vmuloub(  VectorRegister d, VectorRegister a, VectorRegister b);
  1864   inline void vmulosh(  VectorRegister d, VectorRegister a, VectorRegister b);
  1865   inline void vmulouh(  VectorRegister d, VectorRegister a, VectorRegister b);
  1866   inline void vmhaddshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1867   inline void vmhraddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c);
  1868   inline void vmladduhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1869   inline void vmsubuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1870   inline void vmsummbm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1871   inline void vmsumshm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1872   inline void vmsumshs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1873   inline void vmsumuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1874   inline void vmsumuhs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1875   inline void vsumsws(  VectorRegister d, VectorRegister a, VectorRegister b);
  1876   inline void vsum2sws( VectorRegister d, VectorRegister a, VectorRegister b);
  1877   inline void vsum4sbs( VectorRegister d, VectorRegister a, VectorRegister b);
  1878   inline void vsum4ubs( VectorRegister d, VectorRegister a, VectorRegister b);
  1879   inline void vsum4shs( VectorRegister d, VectorRegister a, VectorRegister b);
  1880   inline void vavgsb(   VectorRegister d, VectorRegister a, VectorRegister b);
  1881   inline void vavgsw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1882   inline void vavgsh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1883   inline void vavgub(   VectorRegister d, VectorRegister a, VectorRegister b);
  1884   inline void vavguw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1885   inline void vavguh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1886   inline void vmaxsb(   VectorRegister d, VectorRegister a, VectorRegister b);
  1887   inline void vmaxsw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1888   inline void vmaxsh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1889   inline void vmaxub(   VectorRegister d, VectorRegister a, VectorRegister b);
  1890   inline void vmaxuw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1891   inline void vmaxuh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1892   inline void vminsb(   VectorRegister d, VectorRegister a, VectorRegister b);
  1893   inline void vminsw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1894   inline void vminsh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1895   inline void vminub(   VectorRegister d, VectorRegister a, VectorRegister b);
  1896   inline void vminuw(   VectorRegister d, VectorRegister a, VectorRegister b);
  1897   inline void vminuh(   VectorRegister d, VectorRegister a, VectorRegister b);
  1898   inline void vcmpequb( VectorRegister d, VectorRegister a, VectorRegister b);
  1899   inline void vcmpequh( VectorRegister d, VectorRegister a, VectorRegister b);
  1900   inline void vcmpequw( VectorRegister d, VectorRegister a, VectorRegister b);
  1901   inline void vcmpgtsh( VectorRegister d, VectorRegister a, VectorRegister b);
  1902   inline void vcmpgtsb( VectorRegister d, VectorRegister a, VectorRegister b);
  1903   inline void vcmpgtsw( VectorRegister d, VectorRegister a, VectorRegister b);
  1904   inline void vcmpgtub( VectorRegister d, VectorRegister a, VectorRegister b);
  1905   inline void vcmpgtuh( VectorRegister d, VectorRegister a, VectorRegister b);
  1906   inline void vcmpgtuw( VectorRegister d, VectorRegister a, VectorRegister b);
  1907   inline void vcmpequb_(VectorRegister d, VectorRegister a, VectorRegister b);
  1908   inline void vcmpequh_(VectorRegister d, VectorRegister a, VectorRegister b);
  1909   inline void vcmpequw_(VectorRegister d, VectorRegister a, VectorRegister b);
  1910   inline void vcmpgtsh_(VectorRegister d, VectorRegister a, VectorRegister b);
  1911   inline void vcmpgtsb_(VectorRegister d, VectorRegister a, VectorRegister b);
  1912   inline void vcmpgtsw_(VectorRegister d, VectorRegister a, VectorRegister b);
  1913   inline void vcmpgtub_(VectorRegister d, VectorRegister a, VectorRegister b);
  1914   inline void vcmpgtuh_(VectorRegister d, VectorRegister a, VectorRegister b);
  1915   inline void vcmpgtuw_(VectorRegister d, VectorRegister a, VectorRegister b);
  1916   inline void vand(     VectorRegister d, VectorRegister a, VectorRegister b);
  1917   inline void vandc(    VectorRegister d, VectorRegister a, VectorRegister b);
  1918   inline void vnor(     VectorRegister d, VectorRegister a, VectorRegister b);
  1919   inline void vor(      VectorRegister d, VectorRegister a, VectorRegister b);
  1920   inline void vxor(     VectorRegister d, VectorRegister a, VectorRegister b);
  1921   inline void vrlb(     VectorRegister d, VectorRegister a, VectorRegister b);
  1922   inline void vrlw(     VectorRegister d, VectorRegister a, VectorRegister b);
  1923   inline void vrlh(     VectorRegister d, VectorRegister a, VectorRegister b);
  1924   inline void vslb(     VectorRegister d, VectorRegister a, VectorRegister b);
  1925   inline void vskw(     VectorRegister d, VectorRegister a, VectorRegister b);
  1926   inline void vslh(     VectorRegister d, VectorRegister a, VectorRegister b);
  1927   inline void vsrb(     VectorRegister d, VectorRegister a, VectorRegister b);
  1928   inline void vsrw(     VectorRegister d, VectorRegister a, VectorRegister b);
  1929   inline void vsrh(     VectorRegister d, VectorRegister a, VectorRegister b);
  1930   inline void vsrab(    VectorRegister d, VectorRegister a, VectorRegister b);
  1931   inline void vsraw(    VectorRegister d, VectorRegister a, VectorRegister b);
  1932   inline void vsrah(    VectorRegister d, VectorRegister a, VectorRegister b);
  1933   // Vector Floating-Point not implemented yet
  1934   inline void mtvscr(   VectorRegister b);
  1935   inline void mfvscr(   VectorRegister d);
  1937   // AES (introduced with Power 8)
  1938   inline void vcipher(     VectorRegister d, VectorRegister a, VectorRegister b);
  1939   inline void vcipherlast( VectorRegister d, VectorRegister a, VectorRegister b);
  1940   inline void vncipher(    VectorRegister d, VectorRegister a, VectorRegister b);
  1941   inline void vncipherlast(VectorRegister d, VectorRegister a, VectorRegister b);
  1942   inline void vsbox(       VectorRegister d, VectorRegister a);
  1944   // SHA (introduced with Power 8)
  1945   // Not yet implemented.
  1947   // Vector Binary Polynomial Multiplication (introduced with Power 8)
  1948   inline void vpmsumb(  VectorRegister d, VectorRegister a, VectorRegister b);
  1949   inline void vpmsumd(  VectorRegister d, VectorRegister a, VectorRegister b);
  1950   inline void vpmsumh(  VectorRegister d, VectorRegister a, VectorRegister b);
  1951   inline void vpmsumw(  VectorRegister d, VectorRegister a, VectorRegister b);
  1953   // Vector Permute and Xor (introduced with Power 8)
  1954   inline void vpermxor( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
  1956   // Transactional Memory instructions (introduced with Power 8)
  1957   inline void tbegin_();    // R=0
  1958   inline void tbeginrot_(); // R=1 Rollback-Only Transaction
  1959   inline void tend_();    // A=0
  1960   inline void tendall_(); // A=1
  1961   inline void tabort_(Register a);
  1962   inline void tabortwc_(int t, Register a, Register b);
  1963   inline void tabortwci_(int t, Register a, int si);
  1964   inline void tabortdc_(int t, Register a, Register b);
  1965   inline void tabortdci_(int t, Register a, int si);
  1966   inline void tsuspend_(); // tsr with L=0
  1967   inline void tresume_();  // tsr with L=1
  1968   inline void tcheck(int f);
  1970   // The following encoders use r0 as second operand. These instructions
  1971   // read r0 as '0'.
  1972   inline void lwzx( Register d, Register s2);
  1973   inline void lwz(  Register d, int si16);
  1974   inline void lwax( Register d, Register s2);
  1975   inline void lwa(  Register d, int si16);
  1976   inline void lwbrx(Register d, Register s2);
  1977   inline void lhzx( Register d, Register s2);
  1978   inline void lhz(  Register d, int si16);
  1979   inline void lhax( Register d, Register s2);
  1980   inline void lha(  Register d, int si16);
  1981   inline void lhbrx(Register d, Register s2);
  1982   inline void lbzx( Register d, Register s2);
  1983   inline void lbz(  Register d, int si16);
  1984   inline void ldx(  Register d, Register s2);
  1985   inline void ld(   Register d, int si16);
  1986   inline void stwx( Register d, Register s2);
  1987   inline void stw(  Register d, int si16);
  1988   inline void sthx( Register d, Register s2);
  1989   inline void sth(  Register d, int si16);
  1990   inline void stbx( Register d, Register s2);
  1991   inline void stb(  Register d, int si16);
  1992   inline void stdx( Register d, Register s2);
  1993   inline void std(  Register d, int si16);
  1995   // PPC 2, section 3.2.1 Instruction Cache Instructions
  1996   inline void icbi(    Register s2);
  1997   // PPC 2, section 3.2.2 Data Cache Instructions
  1998   //inlinevoid dcba(   Register s2); // Instruction for embedded processor only.
  1999   inline void dcbz(    Register s2);
  2000   inline void dcbst(   Register s2);
  2001   inline void dcbf(    Register s2);
  2002   // dcache read hint
  2003   inline void dcbt(    Register s2);
  2004   inline void dcbtct(  Register s2, int ct);
  2005   inline void dcbtds(  Register s2, int ds);
  2006   // dcache write hint
  2007   inline void dcbtst(  Register s2);
  2008   inline void dcbtstct(Register s2, int ct);
  2010   // Atomics: use ra0mem to disallow R0 as base.
  2011   inline void lwarx_unchecked(Register d, Register b, int eh1);
  2012   inline void ldarx_unchecked(Register d, Register b, int eh1);
  2013   inline void lwarx( Register d, Register b, bool hint_exclusive_access);
  2014   inline void ldarx( Register d, Register b, bool hint_exclusive_access);
  2015   inline void stwcx_(Register s, Register b);
  2016   inline void stdcx_(Register s, Register b);
  2017   inline void lfs(   FloatRegister d, int si16);
  2018   inline void lfsx(  FloatRegister d, Register b);
  2019   inline void lfd(   FloatRegister d, int si16);
  2020   inline void lfdx(  FloatRegister d, Register b);
  2021   inline void stfs(  FloatRegister s, int si16);
  2022   inline void stfsx( FloatRegister s, Register b);
  2023   inline void stfd(  FloatRegister s, int si16);
  2024   inline void stfdx( FloatRegister s, Register b);
  2025   inline void lvebx( VectorRegister d, Register s2);
  2026   inline void lvehx( VectorRegister d, Register s2);
  2027   inline void lvewx( VectorRegister d, Register s2);
  2028   inline void lvx(   VectorRegister d, Register s2);
  2029   inline void lvxl(  VectorRegister d, Register s2);
  2030   inline void stvebx(VectorRegister d, Register s2);
  2031   inline void stvehx(VectorRegister d, Register s2);
  2032   inline void stvewx(VectorRegister d, Register s2);
  2033   inline void stvx(  VectorRegister d, Register s2);
  2034   inline void stvxl( VectorRegister d, Register s2);
  2035   inline void lvsl(  VectorRegister d, Register s2);
  2036   inline void lvsr(  VectorRegister d, Register s2);
  2038   // RegisterOrConstant versions.
  2039   // These emitters choose between the versions using two registers and
  2040   // those with register and immediate, depending on the content of roc.
  2041   // If the constant is not encodable as immediate, instructions to
  2042   // load the constant are emitted beforehand. Store instructions need a
  2043   // tmp reg if the constant is not encodable as immediate.
  2044   // Size unpredictable.
  2045   void ld(  Register d, RegisterOrConstant roc, Register s1 = noreg);
  2046   void lwa( Register d, RegisterOrConstant roc, Register s1 = noreg);
  2047   void lwz( Register d, RegisterOrConstant roc, Register s1 = noreg);
  2048   void lha( Register d, RegisterOrConstant roc, Register s1 = noreg);
  2049   void lhz( Register d, RegisterOrConstant roc, Register s1 = noreg);
  2050   void lbz( Register d, RegisterOrConstant roc, Register s1 = noreg);
  2051   void std( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
  2052   void stw( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
  2053   void sth( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
  2054   void stb( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
  2055   void add( Register d, RegisterOrConstant roc, Register s1);
  2056   void subf(Register d, RegisterOrConstant roc, Register s1);
  2057   void cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1);
  2060   // Emit several instructions to load a 64 bit constant. This issues a fixed
  2061   // instruction pattern so that the constant can be patched later on.
  2062   enum {
  2063     load_const_size = 5 * BytesPerInstWord
  2064   };
  2065          void load_const(Register d, long a,            Register tmp = noreg);
  2066   inline void load_const(Register d, void* a,           Register tmp = noreg);
  2067   inline void load_const(Register d, Label& L,          Register tmp = noreg);
  2068   inline void load_const(Register d, AddressLiteral& a, Register tmp = noreg);
  2070   // Load a 64 bit constant, optimized, not identifyable.
  2071   // Tmp can be used to increase ILP. Set return_simm16_rest = true to get a
  2072   // 16 bit immediate offset. This is useful if the offset can be encoded in
  2073   // a succeeding instruction.
  2074          int load_const_optimized(Register d, long a,  Register tmp = noreg, bool return_simm16_rest = false);
  2075   inline int load_const_optimized(Register d, void* a, Register tmp = noreg, bool return_simm16_rest = false) {
  2076     return load_const_optimized(d, (long)(unsigned long)a, tmp, return_simm16_rest);
  2079   // Creation
  2080   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
  2081 #ifdef CHECK_DELAY
  2082     delay_state = no_delay;
  2083 #endif
  2086   // Testing
  2087 #ifndef PRODUCT
  2088   void test_asm();
  2089 #endif
  2090 };
  2093 #endif // CPU_PPC_VM_ASSEMBLER_PPC_HPP

mercurial