src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp

Mon, 01 Dec 2014 15:24:56 +0100

author
mgerdin
date
Mon, 01 Dec 2014 15:24:56 +0100
changeset 7975
79b13c9a93e8
parent 7476
c2844108a708
child 7990
1f646daf0d67
child 8106
ea47136e6ea4
permissions
-rw-r--r--

8075210: Refactor strong root processing in order to allow G1 to evolve separately from GenCollectedHeap
Summary: Create a G1RootProcessor and move SharedHeap root processing to GenCollectedHeap
Reviewed-by: brutisso, tschatzl, ehelin

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoaderData.hpp"
    27 #include "classfile/symbolTable.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "code/codeCache.hpp"
    30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
    32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
    33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
    34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
    35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
    36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
    38 #include "gc_implementation/parNew/parNewGeneration.hpp"
    39 #include "gc_implementation/shared/collectorCounters.hpp"
    40 #include "gc_implementation/shared/gcTimer.hpp"
    41 #include "gc_implementation/shared/gcTrace.hpp"
    42 #include "gc_implementation/shared/gcTraceTime.hpp"
    43 #include "gc_implementation/shared/isGCActiveMark.hpp"
    44 #include "gc_interface/collectedHeap.inline.hpp"
    45 #include "memory/allocation.hpp"
    46 #include "memory/cardTableRS.hpp"
    47 #include "memory/collectorPolicy.hpp"
    48 #include "memory/gcLocker.inline.hpp"
    49 #include "memory/genCollectedHeap.hpp"
    50 #include "memory/genMarkSweep.hpp"
    51 #include "memory/genOopClosures.inline.hpp"
    52 #include "memory/iterator.inline.hpp"
    53 #include "memory/padded.hpp"
    54 #include "memory/referencePolicy.hpp"
    55 #include "memory/resourceArea.hpp"
    56 #include "memory/tenuredGeneration.hpp"
    57 #include "oops/oop.inline.hpp"
    58 #include "prims/jvmtiExport.hpp"
    59 #include "runtime/globals_extension.hpp"
    60 #include "runtime/handles.inline.hpp"
    61 #include "runtime/java.hpp"
    62 #include "runtime/orderAccess.inline.hpp"
    63 #include "runtime/vmThread.hpp"
    64 #include "services/memoryService.hpp"
    65 #include "services/runtimeService.hpp"
    67 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    69 // statics
    70 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
    71 bool CMSCollector::_full_gc_requested = false;
    72 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
    74 //////////////////////////////////////////////////////////////////
    75 // In support of CMS/VM thread synchronization
    76 //////////////////////////////////////////////////////////////////
    77 // We split use of the CGC_lock into 2 "levels".
    78 // The low-level locking is of the usual CGC_lock monitor. We introduce
    79 // a higher level "token" (hereafter "CMS token") built on top of the
    80 // low level monitor (hereafter "CGC lock").
    81 // The token-passing protocol gives priority to the VM thread. The
    82 // CMS-lock doesn't provide any fairness guarantees, but clients
    83 // should ensure that it is only held for very short, bounded
    84 // durations.
    85 //
    86 // When either of the CMS thread or the VM thread is involved in
    87 // collection operations during which it does not want the other
    88 // thread to interfere, it obtains the CMS token.
    89 //
    90 // If either thread tries to get the token while the other has
    91 // it, that thread waits. However, if the VM thread and CMS thread
    92 // both want the token, then the VM thread gets priority while the
    93 // CMS thread waits. This ensures, for instance, that the "concurrent"
    94 // phases of the CMS thread's work do not block out the VM thread
    95 // for long periods of time as the CMS thread continues to hog
    96 // the token. (See bug 4616232).
    97 //
    98 // The baton-passing functions are, however, controlled by the
    99 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
   100 // and here the low-level CMS lock, not the high level token,
   101 // ensures mutual exclusion.
   102 //
   103 // Two important conditions that we have to satisfy:
   104 // 1. if a thread does a low-level wait on the CMS lock, then it
   105 //    relinquishes the CMS token if it were holding that token
   106 //    when it acquired the low-level CMS lock.
   107 // 2. any low-level notifications on the low-level lock
   108 //    should only be sent when a thread has relinquished the token.
   109 //
   110 // In the absence of either property, we'd have potential deadlock.
   111 //
   112 // We protect each of the CMS (concurrent and sequential) phases
   113 // with the CMS _token_, not the CMS _lock_.
   114 //
   115 // The only code protected by CMS lock is the token acquisition code
   116 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
   117 // baton-passing code.
   118 //
   119 // Unfortunately, i couldn't come up with a good abstraction to factor and
   120 // hide the naked CGC_lock manipulation in the baton-passing code
   121 // further below. That's something we should try to do. Also, the proof
   122 // of correctness of this 2-level locking scheme is far from obvious,
   123 // and potentially quite slippery. We have an uneasy supsicion, for instance,
   124 // that there may be a theoretical possibility of delay/starvation in the
   125 // low-level lock/wait/notify scheme used for the baton-passing because of
   126 // potential intereference with the priority scheme embodied in the
   127 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
   128 // invocation further below and marked with "XXX 20011219YSR".
   129 // Indeed, as we note elsewhere, this may become yet more slippery
   130 // in the presence of multiple CMS and/or multiple VM threads. XXX
   132 class CMSTokenSync: public StackObj {
   133  private:
   134   bool _is_cms_thread;
   135  public:
   136   CMSTokenSync(bool is_cms_thread):
   137     _is_cms_thread(is_cms_thread) {
   138     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
   139            "Incorrect argument to constructor");
   140     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
   141   }
   143   ~CMSTokenSync() {
   144     assert(_is_cms_thread ?
   145              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
   146              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
   147           "Incorrect state");
   148     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
   149   }
   150 };
   152 // Convenience class that does a CMSTokenSync, and then acquires
   153 // upto three locks.
   154 class CMSTokenSyncWithLocks: public CMSTokenSync {
   155  private:
   156   // Note: locks are acquired in textual declaration order
   157   // and released in the opposite order
   158   MutexLockerEx _locker1, _locker2, _locker3;
   159  public:
   160   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
   161                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
   162     CMSTokenSync(is_cms_thread),
   163     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
   164     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
   165     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
   166   { }
   167 };
   170 // Wrapper class to temporarily disable icms during a foreground cms collection.
   171 class ICMSDisabler: public StackObj {
   172  public:
   173   // The ctor disables icms and wakes up the thread so it notices the change;
   174   // the dtor re-enables icms.  Note that the CMSCollector methods will check
   175   // CMSIncrementalMode.
   176   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
   177   ~ICMSDisabler() { CMSCollector::enable_icms(); }
   178 };
   180 //////////////////////////////////////////////////////////////////
   181 //  Concurrent Mark-Sweep Generation /////////////////////////////
   182 //////////////////////////////////////////////////////////////////
   184 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
   186 // This struct contains per-thread things necessary to support parallel
   187 // young-gen collection.
   188 class CMSParGCThreadState: public CHeapObj<mtGC> {
   189  public:
   190   CFLS_LAB lab;
   191   PromotionInfo promo;
   193   // Constructor.
   194   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
   195     promo.setSpace(cfls);
   196   }
   197 };
   199 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
   200      ReservedSpace rs, size_t initial_byte_size, int level,
   201      CardTableRS* ct, bool use_adaptive_freelists,
   202      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
   203   CardGeneration(rs, initial_byte_size, level, ct),
   204   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
   205   _debug_collection_type(Concurrent_collection_type),
   206   _did_compact(false)
   207 {
   208   HeapWord* bottom = (HeapWord*) _virtual_space.low();
   209   HeapWord* end    = (HeapWord*) _virtual_space.high();
   211   _direct_allocated_words = 0;
   212   NOT_PRODUCT(
   213     _numObjectsPromoted = 0;
   214     _numWordsPromoted = 0;
   215     _numObjectsAllocated = 0;
   216     _numWordsAllocated = 0;
   217   )
   219   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
   220                                            use_adaptive_freelists,
   221                                            dictionaryChoice);
   222   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
   223   if (_cmsSpace == NULL) {
   224     vm_exit_during_initialization(
   225       "CompactibleFreeListSpace allocation failure");
   226   }
   227   _cmsSpace->_gen = this;
   229   _gc_stats = new CMSGCStats();
   231   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
   232   // offsets match. The ability to tell free chunks from objects
   233   // depends on this property.
   234   debug_only(
   235     FreeChunk* junk = NULL;
   236     assert(UseCompressedClassPointers ||
   237            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
   238            "Offset of FreeChunk::_prev within FreeChunk must match"
   239            "  that of OopDesc::_klass within OopDesc");
   240   )
   241   if (CollectedHeap::use_parallel_gc_threads()) {
   242     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
   243     _par_gc_thread_states =
   244       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
   245     if (_par_gc_thread_states == NULL) {
   246       vm_exit_during_initialization("Could not allocate par gc structs");
   247     }
   248     for (uint i = 0; i < ParallelGCThreads; i++) {
   249       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
   250       if (_par_gc_thread_states[i] == NULL) {
   251         vm_exit_during_initialization("Could not allocate par gc structs");
   252       }
   253     }
   254   } else {
   255     _par_gc_thread_states = NULL;
   256   }
   257   _incremental_collection_failed = false;
   258   // The "dilatation_factor" is the expansion that can occur on
   259   // account of the fact that the minimum object size in the CMS
   260   // generation may be larger than that in, say, a contiguous young
   261   //  generation.
   262   // Ideally, in the calculation below, we'd compute the dilatation
   263   // factor as: MinChunkSize/(promoting_gen's min object size)
   264   // Since we do not have such a general query interface for the
   265   // promoting generation, we'll instead just use the mimimum
   266   // object size (which today is a header's worth of space);
   267   // note that all arithmetic is in units of HeapWords.
   268   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
   269   assert(_dilatation_factor >= 1.0, "from previous assert");
   270 }
   273 // The field "_initiating_occupancy" represents the occupancy percentage
   274 // at which we trigger a new collection cycle.  Unless explicitly specified
   275 // via CMSInitiatingOccupancyFraction (argument "io" below), it
   276 // is calculated by:
   277 //
   278 //   Let "f" be MinHeapFreeRatio in
   279 //
   280 //    _intiating_occupancy = 100-f +
   281 //                           f * (CMSTriggerRatio/100)
   282 //   where CMSTriggerRatio is the argument "tr" below.
   283 //
   284 // That is, if we assume the heap is at its desired maximum occupancy at the
   285 // end of a collection, we let CMSTriggerRatio of the (purported) free
   286 // space be allocated before initiating a new collection cycle.
   287 //
   288 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
   289   assert(io <= 100 && tr <= 100, "Check the arguments");
   290   if (io >= 0) {
   291     _initiating_occupancy = (double)io / 100.0;
   292   } else {
   293     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
   294                              (double)(tr * MinHeapFreeRatio) / 100.0)
   295                             / 100.0;
   296   }
   297 }
   299 void ConcurrentMarkSweepGeneration::ref_processor_init() {
   300   assert(collector() != NULL, "no collector");
   301   collector()->ref_processor_init();
   302 }
   304 void CMSCollector::ref_processor_init() {
   305   if (_ref_processor == NULL) {
   306     // Allocate and initialize a reference processor
   307     _ref_processor =
   308       new ReferenceProcessor(_span,                               // span
   309                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
   310                              (int) ParallelGCThreads,             // mt processing degree
   311                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
   312                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
   313                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
   314                              &_is_alive_closure);                 // closure for liveness info
   315     // Initialize the _ref_processor field of CMSGen
   316     _cmsGen->set_ref_processor(_ref_processor);
   318   }
   319 }
   321 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
   322   GenCollectedHeap* gch = GenCollectedHeap::heap();
   323   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   324     "Wrong type of heap");
   325   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
   326     gch->gen_policy()->size_policy();
   327   assert(sp->is_gc_cms_adaptive_size_policy(),
   328     "Wrong type of size policy");
   329   return sp;
   330 }
   332 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
   333   CMSGCAdaptivePolicyCounters* results =
   334     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
   335   assert(
   336     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
   337     "Wrong gc policy counter kind");
   338   return results;
   339 }
   342 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
   344   const char* gen_name = "old";
   346   // Generation Counters - generation 1, 1 subspace
   347   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
   349   _space_counters = new GSpaceCounters(gen_name, 0,
   350                                        _virtual_space.reserved_size(),
   351                                        this, _gen_counters);
   352 }
   354 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
   355   _cms_gen(cms_gen)
   356 {
   357   assert(alpha <= 100, "bad value");
   358   _saved_alpha = alpha;
   360   // Initialize the alphas to the bootstrap value of 100.
   361   _gc0_alpha = _cms_alpha = 100;
   363   _cms_begin_time.update();
   364   _cms_end_time.update();
   366   _gc0_duration = 0.0;
   367   _gc0_period = 0.0;
   368   _gc0_promoted = 0;
   370   _cms_duration = 0.0;
   371   _cms_period = 0.0;
   372   _cms_allocated = 0;
   374   _cms_used_at_gc0_begin = 0;
   375   _cms_used_at_gc0_end = 0;
   376   _allow_duty_cycle_reduction = false;
   377   _valid_bits = 0;
   378   _icms_duty_cycle = CMSIncrementalDutyCycle;
   379 }
   381 double CMSStats::cms_free_adjustment_factor(size_t free) const {
   382   // TBD: CR 6909490
   383   return 1.0;
   384 }
   386 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
   387 }
   389 // If promotion failure handling is on use
   390 // the padded average size of the promotion for each
   391 // young generation collection.
   392 double CMSStats::time_until_cms_gen_full() const {
   393   size_t cms_free = _cms_gen->cmsSpace()->free();
   394   GenCollectedHeap* gch = GenCollectedHeap::heap();
   395   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
   396                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
   397   if (cms_free > expected_promotion) {
   398     // Start a cms collection if there isn't enough space to promote
   399     // for the next minor collection.  Use the padded average as
   400     // a safety factor.
   401     cms_free -= expected_promotion;
   403     // Adjust by the safety factor.
   404     double cms_free_dbl = (double)cms_free;
   405     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
   406     // Apply a further correction factor which tries to adjust
   407     // for recent occurance of concurrent mode failures.
   408     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
   409     cms_free_dbl = cms_free_dbl * cms_adjustment;
   411     if (PrintGCDetails && Verbose) {
   412       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
   413         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
   414         cms_free, expected_promotion);
   415       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
   416         cms_free_dbl, cms_consumption_rate() + 1.0);
   417     }
   418     // Add 1 in case the consumption rate goes to zero.
   419     return cms_free_dbl / (cms_consumption_rate() + 1.0);
   420   }
   421   return 0.0;
   422 }
   424 // Compare the duration of the cms collection to the
   425 // time remaining before the cms generation is empty.
   426 // Note that the time from the start of the cms collection
   427 // to the start of the cms sweep (less than the total
   428 // duration of the cms collection) can be used.  This
   429 // has been tried and some applications experienced
   430 // promotion failures early in execution.  This was
   431 // possibly because the averages were not accurate
   432 // enough at the beginning.
   433 double CMSStats::time_until_cms_start() const {
   434   // We add "gc0_period" to the "work" calculation
   435   // below because this query is done (mostly) at the
   436   // end of a scavenge, so we need to conservatively
   437   // account for that much possible delay
   438   // in the query so as to avoid concurrent mode failures
   439   // due to starting the collection just a wee bit too
   440   // late.
   441   double work = cms_duration() + gc0_period();
   442   double deadline = time_until_cms_gen_full();
   443   // If a concurrent mode failure occurred recently, we want to be
   444   // more conservative and halve our expected time_until_cms_gen_full()
   445   if (work > deadline) {
   446     if (Verbose && PrintGCDetails) {
   447       gclog_or_tty->print(
   448         " CMSCollector: collect because of anticipated promotion "
   449         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
   450         gc0_period(), time_until_cms_gen_full());
   451     }
   452     return 0.0;
   453   }
   454   return work - deadline;
   455 }
   457 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
   458 // amount of change to prevent wild oscillation.
   459 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
   460                                               unsigned int new_duty_cycle) {
   461   assert(old_duty_cycle <= 100, "bad input value");
   462   assert(new_duty_cycle <= 100, "bad input value");
   464   // Note:  use subtraction with caution since it may underflow (values are
   465   // unsigned).  Addition is safe since we're in the range 0-100.
   466   unsigned int damped_duty_cycle = new_duty_cycle;
   467   if (new_duty_cycle < old_duty_cycle) {
   468     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
   469     if (new_duty_cycle + largest_delta < old_duty_cycle) {
   470       damped_duty_cycle = old_duty_cycle - largest_delta;
   471     }
   472   } else if (new_duty_cycle > old_duty_cycle) {
   473     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
   474     if (new_duty_cycle > old_duty_cycle + largest_delta) {
   475       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
   476     }
   477   }
   478   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
   480   if (CMSTraceIncrementalPacing) {
   481     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
   482                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
   483   }
   484   return damped_duty_cycle;
   485 }
   487 unsigned int CMSStats::icms_update_duty_cycle_impl() {
   488   assert(CMSIncrementalPacing && valid(),
   489          "should be handled in icms_update_duty_cycle()");
   491   double cms_time_so_far = cms_timer().seconds();
   492   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
   493   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
   495   // Avoid division by 0.
   496   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
   497   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
   499   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
   500   if (new_duty_cycle > _icms_duty_cycle) {
   501     // Avoid very small duty cycles (1 or 2); 0 is allowed.
   502     if (new_duty_cycle > 2) {
   503       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
   504                                                 new_duty_cycle);
   505     }
   506   } else if (_allow_duty_cycle_reduction) {
   507     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
   508     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
   509     // Respect the minimum duty cycle.
   510     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
   511     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
   512   }
   514   if (PrintGCDetails || CMSTraceIncrementalPacing) {
   515     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
   516   }
   518   _allow_duty_cycle_reduction = false;
   519   return _icms_duty_cycle;
   520 }
   522 #ifndef PRODUCT
   523 void CMSStats::print_on(outputStream *st) const {
   524   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
   525   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
   526                gc0_duration(), gc0_period(), gc0_promoted());
   527   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
   528             cms_duration(), cms_duration_per_mb(),
   529             cms_period(), cms_allocated());
   530   st->print(",cms_since_beg=%g,cms_since_end=%g",
   531             cms_time_since_begin(), cms_time_since_end());
   532   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
   533             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
   534   if (CMSIncrementalMode) {
   535     st->print(",dc=%d", icms_duty_cycle());
   536   }
   538   if (valid()) {
   539     st->print(",promo_rate=%g,cms_alloc_rate=%g",
   540               promotion_rate(), cms_allocation_rate());
   541     st->print(",cms_consumption_rate=%g,time_until_full=%g",
   542               cms_consumption_rate(), time_until_cms_gen_full());
   543   }
   544   st->print(" ");
   545 }
   546 #endif // #ifndef PRODUCT
   548 CMSCollector::CollectorState CMSCollector::_collectorState =
   549                              CMSCollector::Idling;
   550 bool CMSCollector::_foregroundGCIsActive = false;
   551 bool CMSCollector::_foregroundGCShouldWait = false;
   553 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   554                            CardTableRS*                   ct,
   555                            ConcurrentMarkSweepPolicy*     cp):
   556   _cmsGen(cmsGen),
   557   _ct(ct),
   558   _ref_processor(NULL),    // will be set later
   559   _conc_workers(NULL),     // may be set later
   560   _abort_preclean(false),
   561   _start_sampling(false),
   562   _between_prologue_and_epilogue(false),
   563   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
   564   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
   565                  -1 /* lock-free */, "No_lock" /* dummy */),
   566   _modUnionClosure(&_modUnionTable),
   567   _modUnionClosurePar(&_modUnionTable),
   568   // Adjust my span to cover old (cms) gen
   569   _span(cmsGen->reserved()),
   570   // Construct the is_alive_closure with _span & markBitMap
   571   _is_alive_closure(_span, &_markBitMap),
   572   _restart_addr(NULL),
   573   _overflow_list(NULL),
   574   _stats(cmsGen),
   575   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true)),
   576   _eden_chunk_array(NULL),     // may be set in ctor body
   577   _eden_chunk_capacity(0),     // -- ditto --
   578   _eden_chunk_index(0),        // -- ditto --
   579   _survivor_plab_array(NULL),  // -- ditto --
   580   _survivor_chunk_array(NULL), // -- ditto --
   581   _survivor_chunk_capacity(0), // -- ditto --
   582   _survivor_chunk_index(0),    // -- ditto --
   583   _ser_pmc_preclean_ovflw(0),
   584   _ser_kac_preclean_ovflw(0),
   585   _ser_pmc_remark_ovflw(0),
   586   _par_pmc_remark_ovflw(0),
   587   _ser_kac_ovflw(0),
   588   _par_kac_ovflw(0),
   589 #ifndef PRODUCT
   590   _num_par_pushes(0),
   591 #endif
   592   _collection_count_start(0),
   593   _verifying(false),
   594   _icms_start_limit(NULL),
   595   _icms_stop_limit(NULL),
   596   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
   597   _completed_initialization(false),
   598   _collector_policy(cp),
   599   _should_unload_classes(CMSClassUnloadingEnabled),
   600   _concurrent_cycles_since_last_unload(0),
   601   _roots_scanning_options(GenCollectedHeap::SO_None),
   602   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
   603   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
   604   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
   605   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
   606   _cms_start_registered(false)
   607 {
   608   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
   609     ExplicitGCInvokesConcurrent = true;
   610   }
   611   // Now expand the span and allocate the collection support structures
   612   // (MUT, marking bit map etc.) to cover both generations subject to
   613   // collection.
   615   // For use by dirty card to oop closures.
   616   _cmsGen->cmsSpace()->set_collector(this);
   618   // Allocate MUT and marking bit map
   619   {
   620     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
   621     if (!_markBitMap.allocate(_span)) {
   622       warning("Failed to allocate CMS Bit Map");
   623       return;
   624     }
   625     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
   626   }
   627   {
   628     _modUnionTable.allocate(_span);
   629     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
   630   }
   632   if (!_markStack.allocate(MarkStackSize)) {
   633     warning("Failed to allocate CMS Marking Stack");
   634     return;
   635   }
   637   // Support for multi-threaded concurrent phases
   638   if (CMSConcurrentMTEnabled) {
   639     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
   640       // just for now
   641       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
   642     }
   643     if (ConcGCThreads > 1) {
   644       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
   645                                  ConcGCThreads, true);
   646       if (_conc_workers == NULL) {
   647         warning("GC/CMS: _conc_workers allocation failure: "
   648               "forcing -CMSConcurrentMTEnabled");
   649         CMSConcurrentMTEnabled = false;
   650       } else {
   651         _conc_workers->initialize_workers();
   652       }
   653     } else {
   654       CMSConcurrentMTEnabled = false;
   655     }
   656   }
   657   if (!CMSConcurrentMTEnabled) {
   658     ConcGCThreads = 0;
   659   } else {
   660     // Turn off CMSCleanOnEnter optimization temporarily for
   661     // the MT case where it's not fixed yet; see 6178663.
   662     CMSCleanOnEnter = false;
   663   }
   664   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
   665          "Inconsistency");
   667   // Parallel task queues; these are shared for the
   668   // concurrent and stop-world phases of CMS, but
   669   // are not shared with parallel scavenge (ParNew).
   670   {
   671     uint i;
   672     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
   674     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
   675          || ParallelRefProcEnabled)
   676         && num_queues > 0) {
   677       _task_queues = new OopTaskQueueSet(num_queues);
   678       if (_task_queues == NULL) {
   679         warning("task_queues allocation failure.");
   680         return;
   681       }
   682       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
   683       if (_hash_seed == NULL) {
   684         warning("_hash_seed array allocation failure");
   685         return;
   686       }
   688       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
   689       for (i = 0; i < num_queues; i++) {
   690         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
   691         if (q == NULL) {
   692           warning("work_queue allocation failure.");
   693           return;
   694         }
   695         _task_queues->register_queue(i, q);
   696       }
   697       for (i = 0; i < num_queues; i++) {
   698         _task_queues->queue(i)->initialize();
   699         _hash_seed[i] = 17;  // copied from ParNew
   700       }
   701     }
   702   }
   704   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
   706   // Clip CMSBootstrapOccupancy between 0 and 100.
   707   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
   709   _full_gcs_since_conc_gc = 0;
   711   // Now tell CMS generations the identity of their collector
   712   ConcurrentMarkSweepGeneration::set_collector(this);
   714   // Create & start a CMS thread for this CMS collector
   715   _cmsThread = ConcurrentMarkSweepThread::start(this);
   716   assert(cmsThread() != NULL, "CMS Thread should have been created");
   717   assert(cmsThread()->collector() == this,
   718          "CMS Thread should refer to this gen");
   719   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   721   // Support for parallelizing young gen rescan
   722   GenCollectedHeap* gch = GenCollectedHeap::heap();
   723   _young_gen = gch->prev_gen(_cmsGen);
   724   if (gch->supports_inline_contig_alloc()) {
   725     _top_addr = gch->top_addr();
   726     _end_addr = gch->end_addr();
   727     assert(_young_gen != NULL, "no _young_gen");
   728     _eden_chunk_index = 0;
   729     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
   730     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
   731     if (_eden_chunk_array == NULL) {
   732       _eden_chunk_capacity = 0;
   733       warning("GC/CMS: _eden_chunk_array allocation failure");
   734     }
   735   }
   736   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
   738   // Support for parallelizing survivor space rescan
   739   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
   740     const size_t max_plab_samples =
   741       ((DefNewGeneration*)_young_gen)->max_survivor_size() / plab_sample_minimum_size();
   743     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
   744     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
   745     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
   746     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
   747         || _cursor == NULL) {
   748       warning("Failed to allocate survivor plab/chunk array");
   749       if (_survivor_plab_array  != NULL) {
   750         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
   751         _survivor_plab_array = NULL;
   752       }
   753       if (_survivor_chunk_array != NULL) {
   754         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
   755         _survivor_chunk_array = NULL;
   756       }
   757       if (_cursor != NULL) {
   758         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
   759         _cursor = NULL;
   760       }
   761     } else {
   762       _survivor_chunk_capacity = 2*max_plab_samples;
   763       for (uint i = 0; i < ParallelGCThreads; i++) {
   764         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
   765         if (vec == NULL) {
   766           warning("Failed to allocate survivor plab array");
   767           for (int j = i; j > 0; j--) {
   768             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
   769           }
   770           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
   771           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
   772           _survivor_plab_array = NULL;
   773           _survivor_chunk_array = NULL;
   774           _survivor_chunk_capacity = 0;
   775           break;
   776         } else {
   777           ChunkArray* cur =
   778             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
   779                                                         max_plab_samples);
   780           assert(cur->end() == 0, "Should be 0");
   781           assert(cur->array() == vec, "Should be vec");
   782           assert(cur->capacity() == max_plab_samples, "Error");
   783         }
   784       }
   785     }
   786   }
   787   assert(   (   _survivor_plab_array  != NULL
   788              && _survivor_chunk_array != NULL)
   789          || (   _survivor_chunk_capacity == 0
   790              && _survivor_chunk_index == 0),
   791          "Error");
   793   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
   794   _gc_counters = new CollectorCounters("CMS", 1);
   795   _completed_initialization = true;
   796   _inter_sweep_timer.start();  // start of time
   797 }
   799 size_t CMSCollector::plab_sample_minimum_size() {
   800   // The default value of MinTLABSize is 2k, but there is
   801   // no way to get the default value if the flag has been overridden.
   802   return MAX2(ThreadLocalAllocBuffer::min_size() * HeapWordSize, 2 * K);
   803 }
   805 const char* ConcurrentMarkSweepGeneration::name() const {
   806   return "concurrent mark-sweep generation";
   807 }
   808 void ConcurrentMarkSweepGeneration::update_counters() {
   809   if (UsePerfData) {
   810     _space_counters->update_all();
   811     _gen_counters->update_all();
   812   }
   813 }
   815 // this is an optimized version of update_counters(). it takes the
   816 // used value as a parameter rather than computing it.
   817 //
   818 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
   819   if (UsePerfData) {
   820     _space_counters->update_used(used);
   821     _space_counters->update_capacity();
   822     _gen_counters->update_all();
   823   }
   824 }
   826 void ConcurrentMarkSweepGeneration::print() const {
   827   Generation::print();
   828   cmsSpace()->print();
   829 }
   831 #ifndef PRODUCT
   832 void ConcurrentMarkSweepGeneration::print_statistics() {
   833   cmsSpace()->printFLCensus(0);
   834 }
   835 #endif
   837 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
   838   GenCollectedHeap* gch = GenCollectedHeap::heap();
   839   if (PrintGCDetails) {
   840     if (Verbose) {
   841       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
   842         level(), short_name(), s, used(), capacity());
   843     } else {
   844       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
   845         level(), short_name(), s, used() / K, capacity() / K);
   846     }
   847   }
   848   if (Verbose) {
   849     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
   850               gch->used(), gch->capacity());
   851   } else {
   852     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
   853               gch->used() / K, gch->capacity() / K);
   854   }
   855 }
   857 size_t
   858 ConcurrentMarkSweepGeneration::contiguous_available() const {
   859   // dld proposes an improvement in precision here. If the committed
   860   // part of the space ends in a free block we should add that to
   861   // uncommitted size in the calculation below. Will make this
   862   // change later, staying with the approximation below for the
   863   // time being. -- ysr.
   864   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
   865 }
   867 size_t
   868 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
   869   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
   870 }
   872 size_t ConcurrentMarkSweepGeneration::max_available() const {
   873   return free() + _virtual_space.uncommitted_size();
   874 }
   876 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
   877   size_t available = max_available();
   878   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
   879   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
   880   if (Verbose && PrintGCDetails) {
   881     gclog_or_tty->print_cr(
   882       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
   883       "max_promo("SIZE_FORMAT")",
   884       res? "":" not", available, res? ">=":"<",
   885       av_promo, max_promotion_in_bytes);
   886   }
   887   return res;
   888 }
   890 // At a promotion failure dump information on block layout in heap
   891 // (cms old generation).
   892 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
   893   if (CMSDumpAtPromotionFailure) {
   894     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
   895   }
   896 }
   898 CompactibleSpace*
   899 ConcurrentMarkSweepGeneration::first_compaction_space() const {
   900   return _cmsSpace;
   901 }
   903 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
   904   // Clear the promotion information.  These pointers can be adjusted
   905   // along with all the other pointers into the heap but
   906   // compaction is expected to be a rare event with
   907   // a heap using cms so don't do it without seeing the need.
   908   if (CollectedHeap::use_parallel_gc_threads()) {
   909     for (uint i = 0; i < ParallelGCThreads; i++) {
   910       _par_gc_thread_states[i]->promo.reset();
   911     }
   912   }
   913 }
   915 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
   916   blk->do_space(_cmsSpace);
   917 }
   919 void ConcurrentMarkSweepGeneration::compute_new_size() {
   920   assert_locked_or_safepoint(Heap_lock);
   922   // If incremental collection failed, we just want to expand
   923   // to the limit.
   924   if (incremental_collection_failed()) {
   925     clear_incremental_collection_failed();
   926     grow_to_reserved();
   927     return;
   928   }
   930   // The heap has been compacted but not reset yet.
   931   // Any metric such as free() or used() will be incorrect.
   933   CardGeneration::compute_new_size();
   935   // Reset again after a possible resizing
   936   if (did_compact()) {
   937     cmsSpace()->reset_after_compaction();
   938   }
   939 }
   941 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
   942   assert_locked_or_safepoint(Heap_lock);
   944   // If incremental collection failed, we just want to expand
   945   // to the limit.
   946   if (incremental_collection_failed()) {
   947     clear_incremental_collection_failed();
   948     grow_to_reserved();
   949     return;
   950   }
   952   double free_percentage = ((double) free()) / capacity();
   953   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
   954   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
   956   // compute expansion delta needed for reaching desired free percentage
   957   if (free_percentage < desired_free_percentage) {
   958     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   959     assert(desired_capacity >= capacity(), "invalid expansion size");
   960     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
   961     if (PrintGCDetails && Verbose) {
   962       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   963       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
   964       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
   965       gclog_or_tty->print_cr("  Desired free fraction %f",
   966         desired_free_percentage);
   967       gclog_or_tty->print_cr("  Maximum free fraction %f",
   968         maximum_free_percentage);
   969       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
   970       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
   971         desired_capacity/1000);
   972       int prev_level = level() - 1;
   973       if (prev_level >= 0) {
   974         size_t prev_size = 0;
   975         GenCollectedHeap* gch = GenCollectedHeap::heap();
   976         Generation* prev_gen = gch->_gens[prev_level];
   977         prev_size = prev_gen->capacity();
   978           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
   979                                  prev_size/1000);
   980       }
   981       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
   982         unsafe_max_alloc_nogc()/1000);
   983       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
   984         contiguous_available()/1000);
   985       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
   986         expand_bytes);
   987     }
   988     // safe if expansion fails
   989     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
   990     if (PrintGCDetails && Verbose) {
   991       gclog_or_tty->print_cr("  Expanded free fraction %f",
   992         ((double) free()) / capacity());
   993     }
   994   } else {
   995     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   996     assert(desired_capacity <= capacity(), "invalid expansion size");
   997     size_t shrink_bytes = capacity() - desired_capacity;
   998     // Don't shrink unless the delta is greater than the minimum shrink we want
   999     if (shrink_bytes >= MinHeapDeltaBytes) {
  1000       shrink_free_list_by(shrink_bytes);
  1005 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
  1006   return cmsSpace()->freelistLock();
  1009 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
  1010                                                   bool   tlab) {
  1011   CMSSynchronousYieldRequest yr;
  1012   MutexLockerEx x(freelistLock(),
  1013                   Mutex::_no_safepoint_check_flag);
  1014   return have_lock_and_allocate(size, tlab);
  1017 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
  1018                                                   bool   tlab /* ignored */) {
  1019   assert_lock_strong(freelistLock());
  1020   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
  1021   HeapWord* res = cmsSpace()->allocate(adjustedSize);
  1022   // Allocate the object live (grey) if the background collector has
  1023   // started marking. This is necessary because the marker may
  1024   // have passed this address and consequently this object will
  1025   // not otherwise be greyed and would be incorrectly swept up.
  1026   // Note that if this object contains references, the writing
  1027   // of those references will dirty the card containing this object
  1028   // allowing the object to be blackened (and its references scanned)
  1029   // either during a preclean phase or at the final checkpoint.
  1030   if (res != NULL) {
  1031     // We may block here with an uninitialized object with
  1032     // its mark-bit or P-bits not yet set. Such objects need
  1033     // to be safely navigable by block_start().
  1034     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
  1035     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
  1036     collector()->direct_allocated(res, adjustedSize);
  1037     _direct_allocated_words += adjustedSize;
  1038     // allocation counters
  1039     NOT_PRODUCT(
  1040       _numObjectsAllocated++;
  1041       _numWordsAllocated += (int)adjustedSize;
  1044   return res;
  1047 // In the case of direct allocation by mutators in a generation that
  1048 // is being concurrently collected, the object must be allocated
  1049 // live (grey) if the background collector has started marking.
  1050 // This is necessary because the marker may
  1051 // have passed this address and consequently this object will
  1052 // not otherwise be greyed and would be incorrectly swept up.
  1053 // Note that if this object contains references, the writing
  1054 // of those references will dirty the card containing this object
  1055 // allowing the object to be blackened (and its references scanned)
  1056 // either during a preclean phase or at the final checkpoint.
  1057 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
  1058   assert(_markBitMap.covers(start, size), "Out of bounds");
  1059   if (_collectorState >= Marking) {
  1060     MutexLockerEx y(_markBitMap.lock(),
  1061                     Mutex::_no_safepoint_check_flag);
  1062     // [see comments preceding SweepClosure::do_blk() below for details]
  1063     //
  1064     // Can the P-bits be deleted now?  JJJ
  1065     //
  1066     // 1. need to mark the object as live so it isn't collected
  1067     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
  1068     // 3. need to mark the end of the object so marking, precleaning or sweeping
  1069     //    can skip over uninitialized or unparsable objects. An allocated
  1070     //    object is considered uninitialized for our purposes as long as
  1071     //    its klass word is NULL.  All old gen objects are parsable
  1072     //    as soon as they are initialized.)
  1073     _markBitMap.mark(start);          // object is live
  1074     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
  1075     _markBitMap.mark(start + size - 1);
  1076                                       // mark end of object
  1078   // check that oop looks uninitialized
  1079   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
  1082 void CMSCollector::promoted(bool par, HeapWord* start,
  1083                             bool is_obj_array, size_t obj_size) {
  1084   assert(_markBitMap.covers(start), "Out of bounds");
  1085   // See comment in direct_allocated() about when objects should
  1086   // be allocated live.
  1087   if (_collectorState >= Marking) {
  1088     // we already hold the marking bit map lock, taken in
  1089     // the prologue
  1090     if (par) {
  1091       _markBitMap.par_mark(start);
  1092     } else {
  1093       _markBitMap.mark(start);
  1095     // We don't need to mark the object as uninitialized (as
  1096     // in direct_allocated above) because this is being done with the
  1097     // world stopped and the object will be initialized by the
  1098     // time the marking, precleaning or sweeping get to look at it.
  1099     // But see the code for copying objects into the CMS generation,
  1100     // where we need to ensure that concurrent readers of the
  1101     // block offset table are able to safely navigate a block that
  1102     // is in flux from being free to being allocated (and in
  1103     // transition while being copied into) and subsequently
  1104     // becoming a bona-fide object when the copy/promotion is complete.
  1105     assert(SafepointSynchronize::is_at_safepoint(),
  1106            "expect promotion only at safepoints");
  1108     if (_collectorState < Sweeping) {
  1109       // Mark the appropriate cards in the modUnionTable, so that
  1110       // this object gets scanned before the sweep. If this is
  1111       // not done, CMS generation references in the object might
  1112       // not get marked.
  1113       // For the case of arrays, which are otherwise precisely
  1114       // marked, we need to dirty the entire array, not just its head.
  1115       if (is_obj_array) {
  1116         // The [par_]mark_range() method expects mr.end() below to
  1117         // be aligned to the granularity of a bit's representation
  1118         // in the heap. In the case of the MUT below, that's a
  1119         // card size.
  1120         MemRegion mr(start,
  1121                      (HeapWord*)round_to((intptr_t)(start + obj_size),
  1122                         CardTableModRefBS::card_size /* bytes */));
  1123         if (par) {
  1124           _modUnionTable.par_mark_range(mr);
  1125         } else {
  1126           _modUnionTable.mark_range(mr);
  1128       } else {  // not an obj array; we can just mark the head
  1129         if (par) {
  1130           _modUnionTable.par_mark(start);
  1131         } else {
  1132           _modUnionTable.mark(start);
  1139 static inline size_t percent_of_space(Space* space, HeapWord* addr)
  1141   size_t delta = pointer_delta(addr, space->bottom());
  1142   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
  1145 void CMSCollector::icms_update_allocation_limits()
  1147   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
  1148   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
  1150   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
  1151   if (CMSTraceIncrementalPacing) {
  1152     stats().print();
  1155   assert(duty_cycle <= 100, "invalid duty cycle");
  1156   if (duty_cycle != 0) {
  1157     // The duty_cycle is a percentage between 0 and 100; convert to words and
  1158     // then compute the offset from the endpoints of the space.
  1159     size_t free_words = eden->free() / HeapWordSize;
  1160     double free_words_dbl = (double)free_words;
  1161     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
  1162     size_t offset_words = (free_words - duty_cycle_words) / 2;
  1164     _icms_start_limit = eden->top() + offset_words;
  1165     _icms_stop_limit = eden->end() - offset_words;
  1167     // The limits may be adjusted (shifted to the right) by
  1168     // CMSIncrementalOffset, to allow the application more mutator time after a
  1169     // young gen gc (when all mutators were stopped) and before CMS starts and
  1170     // takes away one or more cpus.
  1171     if (CMSIncrementalOffset != 0) {
  1172       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
  1173       size_t adjustment = (size_t)adjustment_dbl;
  1174       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
  1175       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
  1176         _icms_start_limit += adjustment;
  1177         _icms_stop_limit = tmp_stop;
  1181   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
  1182     _icms_start_limit = _icms_stop_limit = eden->end();
  1185   // Install the new start limit.
  1186   eden->set_soft_end(_icms_start_limit);
  1188   if (CMSTraceIncrementalMode) {
  1189     gclog_or_tty->print(" icms alloc limits:  "
  1190                            PTR_FORMAT "," PTR_FORMAT
  1191                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
  1192                            p2i(_icms_start_limit), p2i(_icms_stop_limit),
  1193                            percent_of_space(eden, _icms_start_limit),
  1194                            percent_of_space(eden, _icms_stop_limit));
  1195     if (Verbose) {
  1196       gclog_or_tty->print("eden:  ");
  1197       eden->print_on(gclog_or_tty);
  1202 // Any changes here should try to maintain the invariant
  1203 // that if this method is called with _icms_start_limit
  1204 // and _icms_stop_limit both NULL, then it should return NULL
  1205 // and not notify the icms thread.
  1206 HeapWord*
  1207 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
  1208                                        size_t word_size)
  1210   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
  1211   // nop.
  1212   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
  1213     if (top <= _icms_start_limit) {
  1214       if (CMSTraceIncrementalMode) {
  1215         space->print_on(gclog_or_tty);
  1216         gclog_or_tty->stamp();
  1217         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
  1218                                ", new limit=" PTR_FORMAT
  1219                                " (" SIZE_FORMAT "%%)",
  1220                                p2i(top), p2i(_icms_stop_limit),
  1221                                percent_of_space(space, _icms_stop_limit));
  1223       ConcurrentMarkSweepThread::start_icms();
  1224       assert(top < _icms_stop_limit, "Tautology");
  1225       if (word_size < pointer_delta(_icms_stop_limit, top)) {
  1226         return _icms_stop_limit;
  1229       // The allocation will cross both the _start and _stop limits, so do the
  1230       // stop notification also and return end().
  1231       if (CMSTraceIncrementalMode) {
  1232         space->print_on(gclog_or_tty);
  1233         gclog_or_tty->stamp();
  1234         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
  1235                                ", new limit=" PTR_FORMAT
  1236                                " (" SIZE_FORMAT "%%)",
  1237                                p2i(top), p2i(space->end()),
  1238                                percent_of_space(space, space->end()));
  1240       ConcurrentMarkSweepThread::stop_icms();
  1241       return space->end();
  1244     if (top <= _icms_stop_limit) {
  1245       if (CMSTraceIncrementalMode) {
  1246         space->print_on(gclog_or_tty);
  1247         gclog_or_tty->stamp();
  1248         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
  1249                                ", new limit=" PTR_FORMAT
  1250                                " (" SIZE_FORMAT "%%)",
  1251                                top, space->end(),
  1252                                percent_of_space(space, space->end()));
  1254       ConcurrentMarkSweepThread::stop_icms();
  1255       return space->end();
  1258     if (CMSTraceIncrementalMode) {
  1259       space->print_on(gclog_or_tty);
  1260       gclog_or_tty->stamp();
  1261       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
  1262                              ", new limit=" PTR_FORMAT,
  1263                              top, NULL);
  1267   return NULL;
  1270 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
  1271   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1272   // allocate, copy and if necessary update promoinfo --
  1273   // delegate to underlying space.
  1274   assert_lock_strong(freelistLock());
  1276 #ifndef PRODUCT
  1277   if (Universe::heap()->promotion_should_fail()) {
  1278     return NULL;
  1280 #endif  // #ifndef PRODUCT
  1282   oop res = _cmsSpace->promote(obj, obj_size);
  1283   if (res == NULL) {
  1284     // expand and retry
  1285     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
  1286     expand(s*HeapWordSize, MinHeapDeltaBytes,
  1287       CMSExpansionCause::_satisfy_promotion);
  1288     // Since there's currently no next generation, we don't try to promote
  1289     // into a more senior generation.
  1290     assert(next_gen() == NULL, "assumption, based upon which no attempt "
  1291                                "is made to pass on a possibly failing "
  1292                                "promotion to next generation");
  1293     res = _cmsSpace->promote(obj, obj_size);
  1295   if (res != NULL) {
  1296     // See comment in allocate() about when objects should
  1297     // be allocated live.
  1298     assert(obj->is_oop(), "Will dereference klass pointer below");
  1299     collector()->promoted(false,           // Not parallel
  1300                           (HeapWord*)res, obj->is_objArray(), obj_size);
  1301     // promotion counters
  1302     NOT_PRODUCT(
  1303       _numObjectsPromoted++;
  1304       _numWordsPromoted +=
  1305         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
  1308   return res;
  1312 HeapWord*
  1313 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
  1314                                              HeapWord* top,
  1315                                              size_t word_sz)
  1317   return collector()->allocation_limit_reached(space, top, word_sz);
  1320 // IMPORTANT: Notes on object size recognition in CMS.
  1321 // ---------------------------------------------------
  1322 // A block of storage in the CMS generation is always in
  1323 // one of three states. A free block (FREE), an allocated
  1324 // object (OBJECT) whose size() method reports the correct size,
  1325 // and an intermediate state (TRANSIENT) in which its size cannot
  1326 // be accurately determined.
  1327 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
  1328 // -----------------------------------------------------
  1329 // FREE:      klass_word & 1 == 1; mark_word holds block size
  1330 //
  1331 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
  1332 //            obj->size() computes correct size
  1333 //
  1334 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
  1335 //
  1336 // STATE IDENTIFICATION: (64 bit+COOPS)
  1337 // ------------------------------------
  1338 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
  1339 //
  1340 // OBJECT:    klass_word installed; klass_word != 0;
  1341 //            obj->size() computes correct size
  1342 //
  1343 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
  1344 //
  1345 //
  1346 // STATE TRANSITION DIAGRAM
  1347 //
  1348 //        mut / parnew                     mut  /  parnew
  1349 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
  1350 //  ^                                                                   |
  1351 //  |------------------------ DEAD <------------------------------------|
  1352 //         sweep                            mut
  1353 //
  1354 // While a block is in TRANSIENT state its size cannot be determined
  1355 // so readers will either need to come back later or stall until
  1356 // the size can be determined. Note that for the case of direct
  1357 // allocation, P-bits, when available, may be used to determine the
  1358 // size of an object that may not yet have been initialized.
  1360 // Things to support parallel young-gen collection.
  1361 oop
  1362 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
  1363                                            oop old, markOop m,
  1364                                            size_t word_sz) {
  1365 #ifndef PRODUCT
  1366   if (Universe::heap()->promotion_should_fail()) {
  1367     return NULL;
  1369 #endif  // #ifndef PRODUCT
  1371   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1372   PromotionInfo* promoInfo = &ps->promo;
  1373   // if we are tracking promotions, then first ensure space for
  1374   // promotion (including spooling space for saving header if necessary).
  1375   // then allocate and copy, then track promoted info if needed.
  1376   // When tracking (see PromotionInfo::track()), the mark word may
  1377   // be displaced and in this case restoration of the mark word
  1378   // occurs in the (oop_since_save_marks_)iterate phase.
  1379   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
  1380     // Out of space for allocating spooling buffers;
  1381     // try expanding and allocating spooling buffers.
  1382     if (!expand_and_ensure_spooling_space(promoInfo)) {
  1383       return NULL;
  1386   assert(promoInfo->has_spooling_space(), "Control point invariant");
  1387   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
  1388   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
  1389   if (obj_ptr == NULL) {
  1390      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
  1391      if (obj_ptr == NULL) {
  1392        return NULL;
  1395   oop obj = oop(obj_ptr);
  1396   OrderAccess::storestore();
  1397   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1398   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
  1399   // IMPORTANT: See note on object initialization for CMS above.
  1400   // Otherwise, copy the object.  Here we must be careful to insert the
  1401   // klass pointer last, since this marks the block as an allocated object.
  1402   // Except with compressed oops it's the mark word.
  1403   HeapWord* old_ptr = (HeapWord*)old;
  1404   // Restore the mark word copied above.
  1405   obj->set_mark(m);
  1406   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1407   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
  1408   OrderAccess::storestore();
  1410   if (UseCompressedClassPointers) {
  1411     // Copy gap missed by (aligned) header size calculation below
  1412     obj->set_klass_gap(old->klass_gap());
  1414   if (word_sz > (size_t)oopDesc::header_size()) {
  1415     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
  1416                                  obj_ptr + oopDesc::header_size(),
  1417                                  word_sz - oopDesc::header_size());
  1420   // Now we can track the promoted object, if necessary.  We take care
  1421   // to delay the transition from uninitialized to full object
  1422   // (i.e., insertion of klass pointer) until after, so that it
  1423   // atomically becomes a promoted object.
  1424   if (promoInfo->tracking()) {
  1425     promoInfo->track((PromotedObject*)obj, old->klass());
  1427   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1428   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
  1429   assert(old->is_oop(), "Will use and dereference old klass ptr below");
  1431   // Finally, install the klass pointer (this should be volatile).
  1432   OrderAccess::storestore();
  1433   obj->set_klass(old->klass());
  1434   // We should now be able to calculate the right size for this object
  1435   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
  1437   collector()->promoted(true,          // parallel
  1438                         obj_ptr, old->is_objArray(), word_sz);
  1440   NOT_PRODUCT(
  1441     Atomic::inc_ptr(&_numObjectsPromoted);
  1442     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
  1445   return obj;
  1448 void
  1449 ConcurrentMarkSweepGeneration::
  1450 par_promote_alloc_undo(int thread_num,
  1451                        HeapWord* obj, size_t word_sz) {
  1452   // CMS does not support promotion undo.
  1453   ShouldNotReachHere();
  1456 void
  1457 ConcurrentMarkSweepGeneration::
  1458 par_promote_alloc_done(int thread_num) {
  1459   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1460   ps->lab.retire(thread_num);
  1463 void
  1464 ConcurrentMarkSweepGeneration::
  1465 par_oop_since_save_marks_iterate_done(int thread_num) {
  1466   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1467   ParScanWithoutBarrierClosure* dummy_cl = NULL;
  1468   ps->promo.promoted_oops_iterate_nv(dummy_cl);
  1471 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
  1472                                                    size_t size,
  1473                                                    bool   tlab)
  1475   // We allow a STW collection only if a full
  1476   // collection was requested.
  1477   return full || should_allocate(size, tlab); // FIX ME !!!
  1478   // This and promotion failure handling are connected at the
  1479   // hip and should be fixed by untying them.
  1482 bool CMSCollector::shouldConcurrentCollect() {
  1483   if (_full_gc_requested) {
  1484     if (Verbose && PrintGCDetails) {
  1485       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
  1486                              " gc request (or gc_locker)");
  1488     return true;
  1491   // For debugging purposes, change the type of collection.
  1492   // If the rotation is not on the concurrent collection
  1493   // type, don't start a concurrent collection.
  1494   NOT_PRODUCT(
  1495     if (RotateCMSCollectionTypes &&
  1496         (_cmsGen->debug_collection_type() !=
  1497           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
  1498       assert(_cmsGen->debug_collection_type() !=
  1499         ConcurrentMarkSweepGeneration::Unknown_collection_type,
  1500         "Bad cms collection type");
  1501       return false;
  1505   FreelistLocker x(this);
  1506   // ------------------------------------------------------------------
  1507   // Print out lots of information which affects the initiation of
  1508   // a collection.
  1509   if (PrintCMSInitiationStatistics && stats().valid()) {
  1510     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
  1511     gclog_or_tty->stamp();
  1512     gclog_or_tty->cr();
  1513     stats().print_on(gclog_or_tty);
  1514     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
  1515       stats().time_until_cms_gen_full());
  1516     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
  1517     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
  1518                            _cmsGen->contiguous_available());
  1519     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
  1520     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
  1521     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
  1522     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
  1523     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
  1524     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
  1525     gclog_or_tty->print_cr("metadata initialized %d",
  1526       MetaspaceGC::should_concurrent_collect());
  1528   // ------------------------------------------------------------------
  1530   // If the estimated time to complete a cms collection (cms_duration())
  1531   // is less than the estimated time remaining until the cms generation
  1532   // is full, start a collection.
  1533   if (!UseCMSInitiatingOccupancyOnly) {
  1534     if (stats().valid()) {
  1535       if (stats().time_until_cms_start() == 0.0) {
  1536         return true;
  1538     } else {
  1539       // We want to conservatively collect somewhat early in order
  1540       // to try and "bootstrap" our CMS/promotion statistics;
  1541       // this branch will not fire after the first successful CMS
  1542       // collection because the stats should then be valid.
  1543       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
  1544         if (Verbose && PrintGCDetails) {
  1545           gclog_or_tty->print_cr(
  1546             " CMSCollector: collect for bootstrapping statistics:"
  1547             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
  1548             _bootstrap_occupancy);
  1550         return true;
  1555   // Otherwise, we start a collection cycle if
  1556   // old gen want a collection cycle started. Each may use
  1557   // an appropriate criterion for making this decision.
  1558   // XXX We need to make sure that the gen expansion
  1559   // criterion dovetails well with this. XXX NEED TO FIX THIS
  1560   if (_cmsGen->should_concurrent_collect()) {
  1561     if (Verbose && PrintGCDetails) {
  1562       gclog_or_tty->print_cr("CMS old gen initiated");
  1564     return true;
  1567   // We start a collection if we believe an incremental collection may fail;
  1568   // this is not likely to be productive in practice because it's probably too
  1569   // late anyway.
  1570   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1571   assert(gch->collector_policy()->is_two_generation_policy(),
  1572          "You may want to check the correctness of the following");
  1573   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
  1574     if (Verbose && PrintGCDetails) {
  1575       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
  1577     return true;
  1580   if (MetaspaceGC::should_concurrent_collect()) {
  1581     if (Verbose && PrintGCDetails) {
  1582       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
  1584     return true;
  1587   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
  1588   if (CMSTriggerInterval >= 0) {
  1589     if (CMSTriggerInterval == 0) {
  1590       // Trigger always
  1591       return true;
  1594     // Check the CMS time since begin (we do not check the stats validity
  1595     // as we want to be able to trigger the first CMS cycle as well)
  1596     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
  1597       if (Verbose && PrintGCDetails) {
  1598         if (stats().valid()) {
  1599           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
  1600                                  stats().cms_time_since_begin());
  1601         } else {
  1602           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
  1605       return true;
  1609   return false;
  1612 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
  1614 // Clear _expansion_cause fields of constituent generations
  1615 void CMSCollector::clear_expansion_cause() {
  1616   _cmsGen->clear_expansion_cause();
  1619 // We should be conservative in starting a collection cycle.  To
  1620 // start too eagerly runs the risk of collecting too often in the
  1621 // extreme.  To collect too rarely falls back on full collections,
  1622 // which works, even if not optimum in terms of concurrent work.
  1623 // As a work around for too eagerly collecting, use the flag
  1624 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
  1625 // giving the user an easily understandable way of controlling the
  1626 // collections.
  1627 // We want to start a new collection cycle if any of the following
  1628 // conditions hold:
  1629 // . our current occupancy exceeds the configured initiating occupancy
  1630 //   for this generation, or
  1631 // . we recently needed to expand this space and have not, since that
  1632 //   expansion, done a collection of this generation, or
  1633 // . the underlying space believes that it may be a good idea to initiate
  1634 //   a concurrent collection (this may be based on criteria such as the
  1635 //   following: the space uses linear allocation and linear allocation is
  1636 //   going to fail, or there is believed to be excessive fragmentation in
  1637 //   the generation, etc... or ...
  1638 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
  1639 //   the case of the old generation; see CR 6543076):
  1640 //   we may be approaching a point at which allocation requests may fail because
  1641 //   we will be out of sufficient free space given allocation rate estimates.]
  1642 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
  1644   assert_lock_strong(freelistLock());
  1645   if (occupancy() > initiating_occupancy()) {
  1646     if (PrintGCDetails && Verbose) {
  1647       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
  1648         short_name(), occupancy(), initiating_occupancy());
  1650     return true;
  1652   if (UseCMSInitiatingOccupancyOnly) {
  1653     return false;
  1655   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
  1656     if (PrintGCDetails && Verbose) {
  1657       gclog_or_tty->print(" %s: collect because expanded for allocation ",
  1658         short_name());
  1660     return true;
  1662   if (_cmsSpace->should_concurrent_collect()) {
  1663     if (PrintGCDetails && Verbose) {
  1664       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
  1665         short_name());
  1667     return true;
  1669   return false;
  1672 void ConcurrentMarkSweepGeneration::collect(bool   full,
  1673                                             bool   clear_all_soft_refs,
  1674                                             size_t size,
  1675                                             bool   tlab)
  1677   collector()->collect(full, clear_all_soft_refs, size, tlab);
  1680 void CMSCollector::collect(bool   full,
  1681                            bool   clear_all_soft_refs,
  1682                            size_t size,
  1683                            bool   tlab)
  1685   if (!UseCMSCollectionPassing && _collectorState > Idling) {
  1686     // For debugging purposes skip the collection if the state
  1687     // is not currently idle
  1688     if (TraceCMSState) {
  1689       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
  1690         Thread::current(), full, _collectorState);
  1692     return;
  1695   // The following "if" branch is present for defensive reasons.
  1696   // In the current uses of this interface, it can be replaced with:
  1697   // assert(!GC_locker.is_active(), "Can't be called otherwise");
  1698   // But I am not placing that assert here to allow future
  1699   // generality in invoking this interface.
  1700   if (GC_locker::is_active()) {
  1701     // A consistency test for GC_locker
  1702     assert(GC_locker::needs_gc(), "Should have been set already");
  1703     // Skip this foreground collection, instead
  1704     // expanding the heap if necessary.
  1705     // Need the free list locks for the call to free() in compute_new_size()
  1706     compute_new_size();
  1707     return;
  1709   acquire_control_and_collect(full, clear_all_soft_refs);
  1710   _full_gcs_since_conc_gc++;
  1713 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
  1714   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1715   unsigned int gc_count = gch->total_full_collections();
  1716   if (gc_count == full_gc_count) {
  1717     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
  1718     _full_gc_requested = true;
  1719     _full_gc_cause = cause;
  1720     CGC_lock->notify();   // nudge CMS thread
  1721   } else {
  1722     assert(gc_count > full_gc_count, "Error: causal loop");
  1726 bool CMSCollector::is_external_interruption() {
  1727   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
  1728   return GCCause::is_user_requested_gc(cause) ||
  1729          GCCause::is_serviceability_requested_gc(cause);
  1732 void CMSCollector::report_concurrent_mode_interruption() {
  1733   if (is_external_interruption()) {
  1734     if (PrintGCDetails) {
  1735       gclog_or_tty->print(" (concurrent mode interrupted)");
  1737   } else {
  1738     if (PrintGCDetails) {
  1739       gclog_or_tty->print(" (concurrent mode failure)");
  1741     _gc_tracer_cm->report_concurrent_mode_failure();
  1746 // The foreground and background collectors need to coordinate in order
  1747 // to make sure that they do not mutually interfere with CMS collections.
  1748 // When a background collection is active,
  1749 // the foreground collector may need to take over (preempt) and
  1750 // synchronously complete an ongoing collection. Depending on the
  1751 // frequency of the background collections and the heap usage
  1752 // of the application, this preemption can be seldom or frequent.
  1753 // There are only certain
  1754 // points in the background collection that the "collection-baton"
  1755 // can be passed to the foreground collector.
  1756 //
  1757 // The foreground collector will wait for the baton before
  1758 // starting any part of the collection.  The foreground collector
  1759 // will only wait at one location.
  1760 //
  1761 // The background collector will yield the baton before starting a new
  1762 // phase of the collection (e.g., before initial marking, marking from roots,
  1763 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
  1764 // of the loop which switches the phases. The background collector does some
  1765 // of the phases (initial mark, final re-mark) with the world stopped.
  1766 // Because of locking involved in stopping the world,
  1767 // the foreground collector should not block waiting for the background
  1768 // collector when it is doing a stop-the-world phase.  The background
  1769 // collector will yield the baton at an additional point just before
  1770 // it enters a stop-the-world phase.  Once the world is stopped, the
  1771 // background collector checks the phase of the collection.  If the
  1772 // phase has not changed, it proceeds with the collection.  If the
  1773 // phase has changed, it skips that phase of the collection.  See
  1774 // the comments on the use of the Heap_lock in collect_in_background().
  1775 //
  1776 // Variable used in baton passing.
  1777 //   _foregroundGCIsActive - Set to true by the foreground collector when
  1778 //      it wants the baton.  The foreground clears it when it has finished
  1779 //      the collection.
  1780 //   _foregroundGCShouldWait - Set to true by the background collector
  1781 //        when it is running.  The foreground collector waits while
  1782 //      _foregroundGCShouldWait is true.
  1783 //  CGC_lock - monitor used to protect access to the above variables
  1784 //      and to notify the foreground and background collectors.
  1785 //  _collectorState - current state of the CMS collection.
  1786 //
  1787 // The foreground collector
  1788 //   acquires the CGC_lock
  1789 //   sets _foregroundGCIsActive
  1790 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
  1791 //     various locks acquired in preparation for the collection
  1792 //     are released so as not to block the background collector
  1793 //     that is in the midst of a collection
  1794 //   proceeds with the collection
  1795 //   clears _foregroundGCIsActive
  1796 //   returns
  1797 //
  1798 // The background collector in a loop iterating on the phases of the
  1799 //      collection
  1800 //   acquires the CGC_lock
  1801 //   sets _foregroundGCShouldWait
  1802 //   if _foregroundGCIsActive is set
  1803 //     clears _foregroundGCShouldWait, notifies _CGC_lock
  1804 //     waits on _CGC_lock for _foregroundGCIsActive to become false
  1805 //     and exits the loop.
  1806 //   otherwise
  1807 //     proceed with that phase of the collection
  1808 //     if the phase is a stop-the-world phase,
  1809 //       yield the baton once more just before enqueueing
  1810 //       the stop-world CMS operation (executed by the VM thread).
  1811 //   returns after all phases of the collection are done
  1812 //
  1814 void CMSCollector::acquire_control_and_collect(bool full,
  1815         bool clear_all_soft_refs) {
  1816   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1817   assert(!Thread::current()->is_ConcurrentGC_thread(),
  1818          "shouldn't try to acquire control from self!");
  1820   // Start the protocol for acquiring control of the
  1821   // collection from the background collector (aka CMS thread).
  1822   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1823          "VM thread should have CMS token");
  1824   // Remember the possibly interrupted state of an ongoing
  1825   // concurrent collection
  1826   CollectorState first_state = _collectorState;
  1828   // Signal to a possibly ongoing concurrent collection that
  1829   // we want to do a foreground collection.
  1830   _foregroundGCIsActive = true;
  1832   // Disable incremental mode during a foreground collection.
  1833   ICMSDisabler icms_disabler;
  1835   // release locks and wait for a notify from the background collector
  1836   // releasing the locks in only necessary for phases which
  1837   // do yields to improve the granularity of the collection.
  1838   assert_lock_strong(bitMapLock());
  1839   // We need to lock the Free list lock for the space that we are
  1840   // currently collecting.
  1841   assert(haveFreelistLocks(), "Must be holding free list locks");
  1842   bitMapLock()->unlock();
  1843   releaseFreelistLocks();
  1845     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1846     if (_foregroundGCShouldWait) {
  1847       // We are going to be waiting for action for the CMS thread;
  1848       // it had better not be gone (for instance at shutdown)!
  1849       assert(ConcurrentMarkSweepThread::cmst() != NULL,
  1850              "CMS thread must be running");
  1851       // Wait here until the background collector gives us the go-ahead
  1852       ConcurrentMarkSweepThread::clear_CMS_flag(
  1853         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
  1854       // Get a possibly blocked CMS thread going:
  1855       //   Note that we set _foregroundGCIsActive true above,
  1856       //   without protection of the CGC_lock.
  1857       CGC_lock->notify();
  1858       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
  1859              "Possible deadlock");
  1860       while (_foregroundGCShouldWait) {
  1861         // wait for notification
  1862         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  1863         // Possibility of delay/starvation here, since CMS token does
  1864         // not know to give priority to VM thread? Actually, i think
  1865         // there wouldn't be any delay/starvation, but the proof of
  1866         // that "fact" (?) appears non-trivial. XXX 20011219YSR
  1868       ConcurrentMarkSweepThread::set_CMS_flag(
  1869         ConcurrentMarkSweepThread::CMS_vm_has_token);
  1872   // The CMS_token is already held.  Get back the other locks.
  1873   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1874          "VM thread should have CMS token");
  1875   getFreelistLocks();
  1876   bitMapLock()->lock_without_safepoint_check();
  1877   if (TraceCMSState) {
  1878     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
  1879       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
  1880     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
  1883   // Check if we need to do a compaction, or if not, whether
  1884   // we need to start the mark-sweep from scratch.
  1885   bool should_compact    = false;
  1886   bool should_start_over = false;
  1887   decide_foreground_collection_type(clear_all_soft_refs,
  1888     &should_compact, &should_start_over);
  1890 NOT_PRODUCT(
  1891   if (RotateCMSCollectionTypes) {
  1892     if (_cmsGen->debug_collection_type() ==
  1893         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
  1894       should_compact = true;
  1895     } else if (_cmsGen->debug_collection_type() ==
  1896                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
  1897       should_compact = false;
  1902   if (first_state > Idling) {
  1903     report_concurrent_mode_interruption();
  1906   set_did_compact(should_compact);
  1907   if (should_compact) {
  1908     // If the collection is being acquired from the background
  1909     // collector, there may be references on the discovered
  1910     // references lists that have NULL referents (being those
  1911     // that were concurrently cleared by a mutator) or
  1912     // that are no longer active (having been enqueued concurrently
  1913     // by the mutator).
  1914     // Scrub the list of those references because Mark-Sweep-Compact
  1915     // code assumes referents are not NULL and that all discovered
  1916     // Reference objects are active.
  1917     ref_processor()->clean_up_discovered_references();
  1919     if (first_state > Idling) {
  1920       save_heap_summary();
  1923     do_compaction_work(clear_all_soft_refs);
  1925     // Has the GC time limit been exceeded?
  1926     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
  1927     size_t max_eden_size = young_gen->max_capacity() -
  1928                            young_gen->to()->capacity() -
  1929                            young_gen->from()->capacity();
  1930     GenCollectedHeap* gch = GenCollectedHeap::heap();
  1931     GCCause::Cause gc_cause = gch->gc_cause();
  1932     size_policy()->check_gc_overhead_limit(_young_gen->used(),
  1933                                            young_gen->eden()->used(),
  1934                                            _cmsGen->max_capacity(),
  1935                                            max_eden_size,
  1936                                            full,
  1937                                            gc_cause,
  1938                                            gch->collector_policy());
  1939   } else {
  1940     do_mark_sweep_work(clear_all_soft_refs, first_state,
  1941       should_start_over);
  1943   // Reset the expansion cause, now that we just completed
  1944   // a collection cycle.
  1945   clear_expansion_cause();
  1946   _foregroundGCIsActive = false;
  1947   return;
  1950 // Resize the tenured generation
  1951 // after obtaining the free list locks for the
  1952 // two generations.
  1953 void CMSCollector::compute_new_size() {
  1954   assert_locked_or_safepoint(Heap_lock);
  1955   FreelistLocker z(this);
  1956   MetaspaceGC::compute_new_size();
  1957   _cmsGen->compute_new_size_free_list();
  1960 // A work method used by foreground collection to determine
  1961 // what type of collection (compacting or not, continuing or fresh)
  1962 // it should do.
  1963 // NOTE: the intent is to make UseCMSCompactAtFullCollection
  1964 // and CMSCompactWhenClearAllSoftRefs the default in the future
  1965 // and do away with the flags after a suitable period.
  1966 void CMSCollector::decide_foreground_collection_type(
  1967   bool clear_all_soft_refs, bool* should_compact,
  1968   bool* should_start_over) {
  1969   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
  1970   // flag is set, and we have either requested a System.gc() or
  1971   // the number of full gc's since the last concurrent cycle
  1972   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
  1973   // or if an incremental collection has failed
  1974   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1975   assert(gch->collector_policy()->is_two_generation_policy(),
  1976          "You may want to check the correctness of the following");
  1977   // Inform cms gen if this was due to partial collection failing.
  1978   // The CMS gen may use this fact to determine its expansion policy.
  1979   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
  1980     assert(!_cmsGen->incremental_collection_failed(),
  1981            "Should have been noticed, reacted to and cleared");
  1982     _cmsGen->set_incremental_collection_failed();
  1984   *should_compact =
  1985     UseCMSCompactAtFullCollection &&
  1986     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
  1987      GCCause::is_user_requested_gc(gch->gc_cause()) ||
  1988      gch->incremental_collection_will_fail(true /* consult_young */));
  1989   *should_start_over = false;
  1990   if (clear_all_soft_refs && !*should_compact) {
  1991     // We are about to do a last ditch collection attempt
  1992     // so it would normally make sense to do a compaction
  1993     // to reclaim as much space as possible.
  1994     if (CMSCompactWhenClearAllSoftRefs) {
  1995       // Default: The rationale is that in this case either
  1996       // we are past the final marking phase, in which case
  1997       // we'd have to start over, or so little has been done
  1998       // that there's little point in saving that work. Compaction
  1999       // appears to be the sensible choice in either case.
  2000       *should_compact = true;
  2001     } else {
  2002       // We have been asked to clear all soft refs, but not to
  2003       // compact. Make sure that we aren't past the final checkpoint
  2004       // phase, for that is where we process soft refs. If we are already
  2005       // past that phase, we'll need to redo the refs discovery phase and
  2006       // if necessary clear soft refs that weren't previously
  2007       // cleared. We do so by remembering the phase in which
  2008       // we came in, and if we are past the refs processing
  2009       // phase, we'll choose to just redo the mark-sweep
  2010       // collection from scratch.
  2011       if (_collectorState > FinalMarking) {
  2012         // We are past the refs processing phase;
  2013         // start over and do a fresh synchronous CMS cycle
  2014         _collectorState = Resetting; // skip to reset to start new cycle
  2015         reset(false /* == !asynch */);
  2016         *should_start_over = true;
  2017       } // else we can continue a possibly ongoing current cycle
  2022 // A work method used by the foreground collector to do
  2023 // a mark-sweep-compact.
  2024 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
  2025   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2027   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
  2028   gc_timer->register_gc_start();
  2030   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
  2031   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
  2033   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
  2034   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
  2035     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
  2036       "collections passed to foreground collector", _full_gcs_since_conc_gc);
  2039   // Sample collection interval time and reset for collection pause.
  2040   if (UseAdaptiveSizePolicy) {
  2041     size_policy()->msc_collection_begin();
  2044   // Temporarily widen the span of the weak reference processing to
  2045   // the entire heap.
  2046   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
  2047   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
  2048   // Temporarily, clear the "is_alive_non_header" field of the
  2049   // reference processor.
  2050   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
  2051   // Temporarily make reference _processing_ single threaded (non-MT).
  2052   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
  2053   // Temporarily make refs discovery atomic
  2054   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
  2055   // Temporarily make reference _discovery_ single threaded (non-MT)
  2056   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
  2058   ref_processor()->set_enqueuing_is_done(false);
  2059   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
  2060   ref_processor()->setup_policy(clear_all_soft_refs);
  2061   // If an asynchronous collection finishes, the _modUnionTable is
  2062   // all clear.  If we are assuming the collection from an asynchronous
  2063   // collection, clear the _modUnionTable.
  2064   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
  2065     "_modUnionTable should be clear if the baton was not passed");
  2066   _modUnionTable.clear_all();
  2067   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
  2068     "mod union for klasses should be clear if the baton was passed");
  2069   _ct->klass_rem_set()->clear_mod_union();
  2071   // We must adjust the allocation statistics being maintained
  2072   // in the free list space. We do so by reading and clearing
  2073   // the sweep timer and updating the block flux rate estimates below.
  2074   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
  2075   if (_inter_sweep_timer.is_active()) {
  2076     _inter_sweep_timer.stop();
  2077     // Note that we do not use this sample to update the _inter_sweep_estimate.
  2078     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
  2079                                             _inter_sweep_estimate.padded_average(),
  2080                                             _intra_sweep_estimate.padded_average());
  2083   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
  2084     ref_processor(), clear_all_soft_refs);
  2085   #ifdef ASSERT
  2086     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
  2087     size_t free_size = cms_space->free();
  2088     assert(free_size ==
  2089            pointer_delta(cms_space->end(), cms_space->compaction_top())
  2090            * HeapWordSize,
  2091       "All the free space should be compacted into one chunk at top");
  2092     assert(cms_space->dictionary()->total_chunk_size(
  2093                                       debug_only(cms_space->freelistLock())) == 0 ||
  2094            cms_space->totalSizeInIndexedFreeLists() == 0,
  2095       "All the free space should be in a single chunk");
  2096     size_t num = cms_space->totalCount();
  2097     assert((free_size == 0 && num == 0) ||
  2098            (free_size > 0  && (num == 1 || num == 2)),
  2099          "There should be at most 2 free chunks after compaction");
  2100   #endif // ASSERT
  2101   _collectorState = Resetting;
  2102   assert(_restart_addr == NULL,
  2103          "Should have been NULL'd before baton was passed");
  2104   reset(false /* == !asynch */);
  2105   _cmsGen->reset_after_compaction();
  2106   _concurrent_cycles_since_last_unload = 0;
  2108   // Clear any data recorded in the PLAB chunk arrays.
  2109   if (_survivor_plab_array != NULL) {
  2110     reset_survivor_plab_arrays();
  2113   // Adjust the per-size allocation stats for the next epoch.
  2114   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
  2115   // Restart the "inter sweep timer" for the next epoch.
  2116   _inter_sweep_timer.reset();
  2117   _inter_sweep_timer.start();
  2119   // Sample collection pause time and reset for collection interval.
  2120   if (UseAdaptiveSizePolicy) {
  2121     size_policy()->msc_collection_end(gch->gc_cause());
  2124   gc_timer->register_gc_end();
  2126   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
  2128   // For a mark-sweep-compact, compute_new_size() will be called
  2129   // in the heap's do_collection() method.
  2132 // A work method used by the foreground collector to do
  2133 // a mark-sweep, after taking over from a possibly on-going
  2134 // concurrent mark-sweep collection.
  2135 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
  2136   CollectorState first_state, bool should_start_over) {
  2137   if (PrintGC && Verbose) {
  2138     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
  2139       "collector with count %d",
  2140       _full_gcs_since_conc_gc);
  2142   switch (_collectorState) {
  2143     case Idling:
  2144       if (first_state == Idling || should_start_over) {
  2145         // The background GC was not active, or should
  2146         // restarted from scratch;  start the cycle.
  2147         _collectorState = InitialMarking;
  2149       // If first_state was not Idling, then a background GC
  2150       // was in progress and has now finished.  No need to do it
  2151       // again.  Leave the state as Idling.
  2152       break;
  2153     case Precleaning:
  2154       // In the foreground case don't do the precleaning since
  2155       // it is not done concurrently and there is extra work
  2156       // required.
  2157       _collectorState = FinalMarking;
  2159   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
  2161   // For a mark-sweep, compute_new_size() will be called
  2162   // in the heap's do_collection() method.
  2166 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
  2167   DefNewGeneration* dng = _young_gen->as_DefNewGeneration();
  2168   EdenSpace* eden_space = dng->eden();
  2169   ContiguousSpace* from_space = dng->from();
  2170   ContiguousSpace* to_space   = dng->to();
  2171   // Eden
  2172   if (_eden_chunk_array != NULL) {
  2173     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
  2174                            eden_space->bottom(), eden_space->top(),
  2175                            eden_space->end(), eden_space->capacity());
  2176     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
  2177                            "_eden_chunk_capacity=" SIZE_FORMAT,
  2178                            _eden_chunk_index, _eden_chunk_capacity);
  2179     for (size_t i = 0; i < _eden_chunk_index; i++) {
  2180       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
  2181                              i, _eden_chunk_array[i]);
  2184   // Survivor
  2185   if (_survivor_chunk_array != NULL) {
  2186     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
  2187                            from_space->bottom(), from_space->top(),
  2188                            from_space->end(), from_space->capacity());
  2189     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
  2190                            "_survivor_chunk_capacity=" SIZE_FORMAT,
  2191                            _survivor_chunk_index, _survivor_chunk_capacity);
  2192     for (size_t i = 0; i < _survivor_chunk_index; i++) {
  2193       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
  2194                              i, _survivor_chunk_array[i]);
  2199 void CMSCollector::getFreelistLocks() const {
  2200   // Get locks for all free lists in all generations that this
  2201   // collector is responsible for
  2202   _cmsGen->freelistLock()->lock_without_safepoint_check();
  2205 void CMSCollector::releaseFreelistLocks() const {
  2206   // Release locks for all free lists in all generations that this
  2207   // collector is responsible for
  2208   _cmsGen->freelistLock()->unlock();
  2211 bool CMSCollector::haveFreelistLocks() const {
  2212   // Check locks for all free lists in all generations that this
  2213   // collector is responsible for
  2214   assert_lock_strong(_cmsGen->freelistLock());
  2215   PRODUCT_ONLY(ShouldNotReachHere());
  2216   return true;
  2219 // A utility class that is used by the CMS collector to
  2220 // temporarily "release" the foreground collector from its
  2221 // usual obligation to wait for the background collector to
  2222 // complete an ongoing phase before proceeding.
  2223 class ReleaseForegroundGC: public StackObj {
  2224  private:
  2225   CMSCollector* _c;
  2226  public:
  2227   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
  2228     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
  2229     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2230     // allow a potentially blocked foreground collector to proceed
  2231     _c->_foregroundGCShouldWait = false;
  2232     if (_c->_foregroundGCIsActive) {
  2233       CGC_lock->notify();
  2235     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2236            "Possible deadlock");
  2239   ~ReleaseForegroundGC() {
  2240     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
  2241     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2242     _c->_foregroundGCShouldWait = true;
  2244 };
  2246 // There are separate collect_in_background and collect_in_foreground because of
  2247 // the different locking requirements of the background collector and the
  2248 // foreground collector.  There was originally an attempt to share
  2249 // one "collect" method between the background collector and the foreground
  2250 // collector but the if-then-else required made it cleaner to have
  2251 // separate methods.
  2252 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
  2253   assert(Thread::current()->is_ConcurrentGC_thread(),
  2254     "A CMS asynchronous collection is only allowed on a CMS thread.");
  2256   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2258     bool safepoint_check = Mutex::_no_safepoint_check_flag;
  2259     MutexLockerEx hl(Heap_lock, safepoint_check);
  2260     FreelistLocker fll(this);
  2261     MutexLockerEx x(CGC_lock, safepoint_check);
  2262     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
  2263       // The foreground collector is active or we're
  2264       // not using asynchronous collections.  Skip this
  2265       // background collection.
  2266       assert(!_foregroundGCShouldWait, "Should be clear");
  2267       return;
  2268     } else {
  2269       assert(_collectorState == Idling, "Should be idling before start.");
  2270       _collectorState = InitialMarking;
  2271       register_gc_start(cause);
  2272       // Reset the expansion cause, now that we are about to begin
  2273       // a new cycle.
  2274       clear_expansion_cause();
  2276       // Clear the MetaspaceGC flag since a concurrent collection
  2277       // is starting but also clear it after the collection.
  2278       MetaspaceGC::set_should_concurrent_collect(false);
  2280     // Decide if we want to enable class unloading as part of the
  2281     // ensuing concurrent GC cycle.
  2282     update_should_unload_classes();
  2283     _full_gc_requested = false;           // acks all outstanding full gc requests
  2284     _full_gc_cause = GCCause::_no_gc;
  2285     // Signal that we are about to start a collection
  2286     gch->increment_total_full_collections();  // ... starting a collection cycle
  2287     _collection_count_start = gch->total_full_collections();
  2290   // Used for PrintGC
  2291   size_t prev_used;
  2292   if (PrintGC && Verbose) {
  2293     prev_used = _cmsGen->used(); // XXXPERM
  2296   // The change of the collection state is normally done at this level;
  2297   // the exceptions are phases that are executed while the world is
  2298   // stopped.  For those phases the change of state is done while the
  2299   // world is stopped.  For baton passing purposes this allows the
  2300   // background collector to finish the phase and change state atomically.
  2301   // The foreground collector cannot wait on a phase that is done
  2302   // while the world is stopped because the foreground collector already
  2303   // has the world stopped and would deadlock.
  2304   while (_collectorState != Idling) {
  2305     if (TraceCMSState) {
  2306       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2307         Thread::current(), _collectorState);
  2309     // The foreground collector
  2310     //   holds the Heap_lock throughout its collection.
  2311     //   holds the CMS token (but not the lock)
  2312     //     except while it is waiting for the background collector to yield.
  2313     //
  2314     // The foreground collector should be blocked (not for long)
  2315     //   if the background collector is about to start a phase
  2316     //   executed with world stopped.  If the background
  2317     //   collector has already started such a phase, the
  2318     //   foreground collector is blocked waiting for the
  2319     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
  2320     //   are executed in the VM thread.
  2321     //
  2322     // The locking order is
  2323     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
  2324     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
  2325     //   CMS token  (claimed in
  2326     //                stop_world_and_do() -->
  2327     //                  safepoint_synchronize() -->
  2328     //                    CMSThread::synchronize())
  2331       // Check if the FG collector wants us to yield.
  2332       CMSTokenSync x(true); // is cms thread
  2333       if (waitForForegroundGC()) {
  2334         // We yielded to a foreground GC, nothing more to be
  2335         // done this round.
  2336         assert(_foregroundGCShouldWait == false, "We set it to false in "
  2337                "waitForForegroundGC()");
  2338         if (TraceCMSState) {
  2339           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2340             " exiting collection CMS state %d",
  2341             Thread::current(), _collectorState);
  2343         return;
  2344       } else {
  2345         // The background collector can run but check to see if the
  2346         // foreground collector has done a collection while the
  2347         // background collector was waiting to get the CGC_lock
  2348         // above.  If yes, break so that _foregroundGCShouldWait
  2349         // is cleared before returning.
  2350         if (_collectorState == Idling) {
  2351           break;
  2356     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
  2357       "should be waiting");
  2359     switch (_collectorState) {
  2360       case InitialMarking:
  2362           ReleaseForegroundGC x(this);
  2363           stats().record_cms_begin();
  2364           VM_CMS_Initial_Mark initial_mark_op(this);
  2365           VMThread::execute(&initial_mark_op);
  2367         // The collector state may be any legal state at this point
  2368         // since the background collector may have yielded to the
  2369         // foreground collector.
  2370         break;
  2371       case Marking:
  2372         // initial marking in checkpointRootsInitialWork has been completed
  2373         if (markFromRoots(true)) { // we were successful
  2374           assert(_collectorState == Precleaning, "Collector state should "
  2375             "have changed");
  2376         } else {
  2377           assert(_foregroundGCIsActive, "Internal state inconsistency");
  2379         break;
  2380       case Precleaning:
  2381         if (UseAdaptiveSizePolicy) {
  2382           size_policy()->concurrent_precleaning_begin();
  2384         // marking from roots in markFromRoots has been completed
  2385         preclean();
  2386         if (UseAdaptiveSizePolicy) {
  2387           size_policy()->concurrent_precleaning_end();
  2389         assert(_collectorState == AbortablePreclean ||
  2390                _collectorState == FinalMarking,
  2391                "Collector state should have changed");
  2392         break;
  2393       case AbortablePreclean:
  2394         if (UseAdaptiveSizePolicy) {
  2395         size_policy()->concurrent_phases_resume();
  2397         abortable_preclean();
  2398         if (UseAdaptiveSizePolicy) {
  2399           size_policy()->concurrent_precleaning_end();
  2401         assert(_collectorState == FinalMarking, "Collector state should "
  2402           "have changed");
  2403         break;
  2404       case FinalMarking:
  2406           ReleaseForegroundGC x(this);
  2408           VM_CMS_Final_Remark final_remark_op(this);
  2409           VMThread::execute(&final_remark_op);
  2411         assert(_foregroundGCShouldWait, "block post-condition");
  2412         break;
  2413       case Sweeping:
  2414         if (UseAdaptiveSizePolicy) {
  2415           size_policy()->concurrent_sweeping_begin();
  2417         // final marking in checkpointRootsFinal has been completed
  2418         sweep(true);
  2419         assert(_collectorState == Resizing, "Collector state change "
  2420           "to Resizing must be done under the free_list_lock");
  2421         _full_gcs_since_conc_gc = 0;
  2423         // Stop the timers for adaptive size policy for the concurrent phases
  2424         if (UseAdaptiveSizePolicy) {
  2425           size_policy()->concurrent_sweeping_end();
  2426           size_policy()->concurrent_phases_end(gch->gc_cause(),
  2427                                              gch->prev_gen(_cmsGen)->capacity(),
  2428                                              _cmsGen->free());
  2431       case Resizing: {
  2432         // Sweeping has been completed...
  2433         // At this point the background collection has completed.
  2434         // Don't move the call to compute_new_size() down
  2435         // into code that might be executed if the background
  2436         // collection was preempted.
  2438           ReleaseForegroundGC x(this);   // unblock FG collection
  2439           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
  2440           CMSTokenSync        z(true);   // not strictly needed.
  2441           if (_collectorState == Resizing) {
  2442             compute_new_size();
  2443             save_heap_summary();
  2444             _collectorState = Resetting;
  2445           } else {
  2446             assert(_collectorState == Idling, "The state should only change"
  2447                    " because the foreground collector has finished the collection");
  2450         break;
  2452       case Resetting:
  2453         // CMS heap resizing has been completed
  2454         reset(true);
  2455         assert(_collectorState == Idling, "Collector state should "
  2456           "have changed");
  2458         MetaspaceGC::set_should_concurrent_collect(false);
  2460         stats().record_cms_end();
  2461         // Don't move the concurrent_phases_end() and compute_new_size()
  2462         // calls to here because a preempted background collection
  2463         // has it's state set to "Resetting".
  2464         break;
  2465       case Idling:
  2466       default:
  2467         ShouldNotReachHere();
  2468         break;
  2470     if (TraceCMSState) {
  2471       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2472         Thread::current(), _collectorState);
  2474     assert(_foregroundGCShouldWait, "block post-condition");
  2477   // Should this be in gc_epilogue?
  2478   collector_policy()->counters()->update_counters();
  2481     // Clear _foregroundGCShouldWait and, in the event that the
  2482     // foreground collector is waiting, notify it, before
  2483     // returning.
  2484     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2485     _foregroundGCShouldWait = false;
  2486     if (_foregroundGCIsActive) {
  2487       CGC_lock->notify();
  2489     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2490            "Possible deadlock");
  2492   if (TraceCMSState) {
  2493     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2494       " exiting collection CMS state %d",
  2495       Thread::current(), _collectorState);
  2497   if (PrintGC && Verbose) {
  2498     _cmsGen->print_heap_change(prev_used);
  2502 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
  2503   if (!_cms_start_registered) {
  2504     register_gc_start(cause);
  2508 void CMSCollector::register_gc_start(GCCause::Cause cause) {
  2509   _cms_start_registered = true;
  2510   _gc_timer_cm->register_gc_start();
  2511   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
  2514 void CMSCollector::register_gc_end() {
  2515   if (_cms_start_registered) {
  2516     report_heap_summary(GCWhen::AfterGC);
  2518     _gc_timer_cm->register_gc_end();
  2519     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
  2520     _cms_start_registered = false;
  2524 void CMSCollector::save_heap_summary() {
  2525   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2526   _last_heap_summary = gch->create_heap_summary();
  2527   _last_metaspace_summary = gch->create_metaspace_summary();
  2530 void CMSCollector::report_heap_summary(GCWhen::Type when) {
  2531   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
  2532   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
  2535 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
  2536   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
  2537          "Foreground collector should be waiting, not executing");
  2538   assert(Thread::current()->is_VM_thread(), "A foreground collection"
  2539     "may only be done by the VM Thread with the world stopped");
  2540   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  2541          "VM thread should have CMS token");
  2543   // The gc id is created in register_foreground_gc_start if this collection is synchronous
  2544   const GCId gc_id = _collectorState == InitialMarking ? GCId::peek() : _gc_tracer_cm->gc_id();
  2545   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
  2546     true, NULL, gc_id);)
  2547   if (UseAdaptiveSizePolicy) {
  2548     size_policy()->ms_collection_begin();
  2550   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
  2552   HandleMark hm;  // Discard invalid handles created during verification
  2554   if (VerifyBeforeGC &&
  2555       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2556     Universe::verify();
  2559   // Snapshot the soft reference policy to be used in this collection cycle.
  2560   ref_processor()->setup_policy(clear_all_soft_refs);
  2562   // Decide if class unloading should be done
  2563   update_should_unload_classes();
  2565   bool init_mark_was_synchronous = false; // until proven otherwise
  2566   while (_collectorState != Idling) {
  2567     if (TraceCMSState) {
  2568       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2569         Thread::current(), _collectorState);
  2571     switch (_collectorState) {
  2572       case InitialMarking:
  2573         register_foreground_gc_start(cause);
  2574         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
  2575         checkpointRootsInitial(false);
  2576         assert(_collectorState == Marking, "Collector state should have changed"
  2577           " within checkpointRootsInitial()");
  2578         break;
  2579       case Marking:
  2580         // initial marking in checkpointRootsInitialWork has been completed
  2581         if (VerifyDuringGC &&
  2582             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2583           Universe::verify("Verify before initial mark: ");
  2586           bool res = markFromRoots(false);
  2587           assert(res && _collectorState == FinalMarking, "Collector state should "
  2588             "have changed");
  2589           break;
  2591       case FinalMarking:
  2592         if (VerifyDuringGC &&
  2593             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2594           Universe::verify("Verify before re-mark: ");
  2596         checkpointRootsFinal(false, clear_all_soft_refs,
  2597                              init_mark_was_synchronous);
  2598         assert(_collectorState == Sweeping, "Collector state should not "
  2599           "have changed within checkpointRootsFinal()");
  2600         break;
  2601       case Sweeping:
  2602         // final marking in checkpointRootsFinal has been completed
  2603         if (VerifyDuringGC &&
  2604             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2605           Universe::verify("Verify before sweep: ");
  2607         sweep(false);
  2608         assert(_collectorState == Resizing, "Incorrect state");
  2609         break;
  2610       case Resizing: {
  2611         // Sweeping has been completed; the actual resize in this case
  2612         // is done separately; nothing to be done in this state.
  2613         _collectorState = Resetting;
  2614         break;
  2616       case Resetting:
  2617         // The heap has been resized.
  2618         if (VerifyDuringGC &&
  2619             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2620           Universe::verify("Verify before reset: ");
  2622         save_heap_summary();
  2623         reset(false);
  2624         assert(_collectorState == Idling, "Collector state should "
  2625           "have changed");
  2626         break;
  2627       case Precleaning:
  2628       case AbortablePreclean:
  2629         // Elide the preclean phase
  2630         _collectorState = FinalMarking;
  2631         break;
  2632       default:
  2633         ShouldNotReachHere();
  2635     if (TraceCMSState) {
  2636       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2637         Thread::current(), _collectorState);
  2641   if (UseAdaptiveSizePolicy) {
  2642     GenCollectedHeap* gch = GenCollectedHeap::heap();
  2643     size_policy()->ms_collection_end(gch->gc_cause());
  2646   if (VerifyAfterGC &&
  2647       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2648     Universe::verify();
  2650   if (TraceCMSState) {
  2651     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2652       " exiting collection CMS state %d",
  2653       Thread::current(), _collectorState);
  2657 bool CMSCollector::waitForForegroundGC() {
  2658   bool res = false;
  2659   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2660          "CMS thread should have CMS token");
  2661   // Block the foreground collector until the
  2662   // background collectors decides whether to
  2663   // yield.
  2664   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2665   _foregroundGCShouldWait = true;
  2666   if (_foregroundGCIsActive) {
  2667     // The background collector yields to the
  2668     // foreground collector and returns a value
  2669     // indicating that it has yielded.  The foreground
  2670     // collector can proceed.
  2671     res = true;
  2672     _foregroundGCShouldWait = false;
  2673     ConcurrentMarkSweepThread::clear_CMS_flag(
  2674       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2675     ConcurrentMarkSweepThread::set_CMS_flag(
  2676       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2677     // Get a possibly blocked foreground thread going
  2678     CGC_lock->notify();
  2679     if (TraceCMSState) {
  2680       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
  2681         Thread::current(), _collectorState);
  2683     while (_foregroundGCIsActive) {
  2684       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  2686     ConcurrentMarkSweepThread::set_CMS_flag(
  2687       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2688     ConcurrentMarkSweepThread::clear_CMS_flag(
  2689       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2691   if (TraceCMSState) {
  2692     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
  2693       Thread::current(), _collectorState);
  2695   return res;
  2698 // Because of the need to lock the free lists and other structures in
  2699 // the collector, common to all the generations that the collector is
  2700 // collecting, we need the gc_prologues of individual CMS generations
  2701 // delegate to their collector. It may have been simpler had the
  2702 // current infrastructure allowed one to call a prologue on a
  2703 // collector. In the absence of that we have the generation's
  2704 // prologue delegate to the collector, which delegates back
  2705 // some "local" work to a worker method in the individual generations
  2706 // that it's responsible for collecting, while itself doing any
  2707 // work common to all generations it's responsible for. A similar
  2708 // comment applies to the  gc_epilogue()'s.
  2709 // The role of the varaible _between_prologue_and_epilogue is to
  2710 // enforce the invocation protocol.
  2711 void CMSCollector::gc_prologue(bool full) {
  2712   // Call gc_prologue_work() for the CMSGen
  2713   // we are responsible for.
  2715   // The following locking discipline assumes that we are only called
  2716   // when the world is stopped.
  2717   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
  2719   // The CMSCollector prologue must call the gc_prologues for the
  2720   // "generations" that it's responsible
  2721   // for.
  2723   assert(   Thread::current()->is_VM_thread()
  2724          || (   CMSScavengeBeforeRemark
  2725              && Thread::current()->is_ConcurrentGC_thread()),
  2726          "Incorrect thread type for prologue execution");
  2728   if (_between_prologue_and_epilogue) {
  2729     // We have already been invoked; this is a gc_prologue delegation
  2730     // from yet another CMS generation that we are responsible for, just
  2731     // ignore it since all relevant work has already been done.
  2732     return;
  2735   // set a bit saying prologue has been called; cleared in epilogue
  2736   _between_prologue_and_epilogue = true;
  2737   // Claim locks for common data structures, then call gc_prologue_work()
  2738   // for each CMSGen.
  2740   getFreelistLocks();   // gets free list locks on constituent spaces
  2741   bitMapLock()->lock_without_safepoint_check();
  2743   // Should call gc_prologue_work() for all cms gens we are responsible for
  2744   bool duringMarking =    _collectorState >= Marking
  2745                          && _collectorState < Sweeping;
  2747   // The young collections clear the modified oops state, which tells if
  2748   // there are any modified oops in the class. The remark phase also needs
  2749   // that information. Tell the young collection to save the union of all
  2750   // modified klasses.
  2751   if (duringMarking) {
  2752     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
  2755   bool registerClosure = duringMarking;
  2757   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
  2758                                                &_modUnionClosurePar
  2759                                                : &_modUnionClosure;
  2760   _cmsGen->gc_prologue_work(full, registerClosure, muc);
  2762   if (!full) {
  2763     stats().record_gc0_begin();
  2767 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
  2769   _capacity_at_prologue = capacity();
  2770   _used_at_prologue = used();
  2772   // Delegate to CMScollector which knows how to coordinate between
  2773   // this and any other CMS generations that it is responsible for
  2774   // collecting.
  2775   collector()->gc_prologue(full);
  2778 // This is a "private" interface for use by this generation's CMSCollector.
  2779 // Not to be called directly by any other entity (for instance,
  2780 // GenCollectedHeap, which calls the "public" gc_prologue method above).
  2781 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
  2782   bool registerClosure, ModUnionClosure* modUnionClosure) {
  2783   assert(!incremental_collection_failed(), "Shouldn't be set yet");
  2784   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
  2785     "Should be NULL");
  2786   if (registerClosure) {
  2787     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
  2789   cmsSpace()->gc_prologue();
  2790   // Clear stat counters
  2791   NOT_PRODUCT(
  2792     assert(_numObjectsPromoted == 0, "check");
  2793     assert(_numWordsPromoted   == 0, "check");
  2794     if (Verbose && PrintGC) {
  2795       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
  2796                           SIZE_FORMAT" bytes concurrently",
  2797       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
  2799     _numObjectsAllocated = 0;
  2800     _numWordsAllocated   = 0;
  2804 void CMSCollector::gc_epilogue(bool full) {
  2805   // The following locking discipline assumes that we are only called
  2806   // when the world is stopped.
  2807   assert(SafepointSynchronize::is_at_safepoint(),
  2808          "world is stopped assumption");
  2810   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
  2811   // if linear allocation blocks need to be appropriately marked to allow the
  2812   // the blocks to be parsable. We also check here whether we need to nudge the
  2813   // CMS collector thread to start a new cycle (if it's not already active).
  2814   assert(   Thread::current()->is_VM_thread()
  2815          || (   CMSScavengeBeforeRemark
  2816              && Thread::current()->is_ConcurrentGC_thread()),
  2817          "Incorrect thread type for epilogue execution");
  2819   if (!_between_prologue_and_epilogue) {
  2820     // We have already been invoked; this is a gc_epilogue delegation
  2821     // from yet another CMS generation that we are responsible for, just
  2822     // ignore it since all relevant work has already been done.
  2823     return;
  2825   assert(haveFreelistLocks(), "must have freelist locks");
  2826   assert_lock_strong(bitMapLock());
  2828   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
  2830   _cmsGen->gc_epilogue_work(full);
  2832   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
  2833     // in case sampling was not already enabled, enable it
  2834     _start_sampling = true;
  2836   // reset _eden_chunk_array so sampling starts afresh
  2837   _eden_chunk_index = 0;
  2839   size_t cms_used   = _cmsGen->cmsSpace()->used();
  2841   // update performance counters - this uses a special version of
  2842   // update_counters() that allows the utilization to be passed as a
  2843   // parameter, avoiding multiple calls to used().
  2844   //
  2845   _cmsGen->update_counters(cms_used);
  2847   if (CMSIncrementalMode) {
  2848     icms_update_allocation_limits();
  2851   bitMapLock()->unlock();
  2852   releaseFreelistLocks();
  2854   if (!CleanChunkPoolAsync) {
  2855     Chunk::clean_chunk_pool();
  2858   set_did_compact(false);
  2859   _between_prologue_and_epilogue = false;  // ready for next cycle
  2862 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
  2863   collector()->gc_epilogue(full);
  2865   // Also reset promotion tracking in par gc thread states.
  2866   if (CollectedHeap::use_parallel_gc_threads()) {
  2867     for (uint i = 0; i < ParallelGCThreads; i++) {
  2868       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
  2873 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
  2874   assert(!incremental_collection_failed(), "Should have been cleared");
  2875   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
  2876   cmsSpace()->gc_epilogue();
  2877     // Print stat counters
  2878   NOT_PRODUCT(
  2879     assert(_numObjectsAllocated == 0, "check");
  2880     assert(_numWordsAllocated == 0, "check");
  2881     if (Verbose && PrintGC) {
  2882       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
  2883                           SIZE_FORMAT" bytes",
  2884                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
  2886     _numObjectsPromoted = 0;
  2887     _numWordsPromoted   = 0;
  2890   if (PrintGC && Verbose) {
  2891     // Call down the chain in contiguous_available needs the freelistLock
  2892     // so print this out before releasing the freeListLock.
  2893     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
  2894                         contiguous_available());
  2898 #ifndef PRODUCT
  2899 bool CMSCollector::have_cms_token() {
  2900   Thread* thr = Thread::current();
  2901   if (thr->is_VM_thread()) {
  2902     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
  2903   } else if (thr->is_ConcurrentGC_thread()) {
  2904     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
  2905   } else if (thr->is_GC_task_thread()) {
  2906     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
  2907            ParGCRareEvent_lock->owned_by_self();
  2909   return false;
  2911 #endif
  2913 // Check reachability of the given heap address in CMS generation,
  2914 // treating all other generations as roots.
  2915 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
  2916   // We could "guarantee" below, rather than assert, but i'll
  2917   // leave these as "asserts" so that an adventurous debugger
  2918   // could try this in the product build provided some subset of
  2919   // the conditions were met, provided they were intersted in the
  2920   // results and knew that the computation below wouldn't interfere
  2921   // with other concurrent computations mutating the structures
  2922   // being read or written.
  2923   assert(SafepointSynchronize::is_at_safepoint(),
  2924          "Else mutations in object graph will make answer suspect");
  2925   assert(have_cms_token(), "Should hold cms token");
  2926   assert(haveFreelistLocks(), "must hold free list locks");
  2927   assert_lock_strong(bitMapLock());
  2929   // Clear the marking bit map array before starting, but, just
  2930   // for kicks, first report if the given address is already marked
  2931   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
  2932                 _markBitMap.isMarked(addr) ? "" : " not");
  2934   if (verify_after_remark()) {
  2935     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2936     bool result = verification_mark_bm()->isMarked(addr);
  2937     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
  2938                            result ? "IS" : "is NOT");
  2939     return result;
  2940   } else {
  2941     gclog_or_tty->print_cr("Could not compute result");
  2942     return false;
  2947 void
  2948 CMSCollector::print_on_error(outputStream* st) {
  2949   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
  2950   if (collector != NULL) {
  2951     CMSBitMap* bitmap = &collector->_markBitMap;
  2952     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
  2953     bitmap->print_on_error(st, " Bits: ");
  2955     st->cr();
  2957     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
  2958     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
  2959     mut_bitmap->print_on_error(st, " Bits: ");
  2963 ////////////////////////////////////////////////////////
  2964 // CMS Verification Support
  2965 ////////////////////////////////////////////////////////
  2966 // Following the remark phase, the following invariant
  2967 // should hold -- each object in the CMS heap which is
  2968 // marked in markBitMap() should be marked in the verification_mark_bm().
  2970 class VerifyMarkedClosure: public BitMapClosure {
  2971   CMSBitMap* _marks;
  2972   bool       _failed;
  2974  public:
  2975   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
  2977   bool do_bit(size_t offset) {
  2978     HeapWord* addr = _marks->offsetToHeapWord(offset);
  2979     if (!_marks->isMarked(addr)) {
  2980       oop(addr)->print_on(gclog_or_tty);
  2981       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  2982       _failed = true;
  2984     return true;
  2987   bool failed() { return _failed; }
  2988 };
  2990 bool CMSCollector::verify_after_remark(bool silent) {
  2991   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
  2992   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2993   static bool init = false;
  2995   assert(SafepointSynchronize::is_at_safepoint(),
  2996          "Else mutations in object graph will make answer suspect");
  2997   assert(have_cms_token(),
  2998          "Else there may be mutual interference in use of "
  2999          " verification data structures");
  3000   assert(_collectorState > Marking && _collectorState <= Sweeping,
  3001          "Else marking info checked here may be obsolete");
  3002   assert(haveFreelistLocks(), "must hold free list locks");
  3003   assert_lock_strong(bitMapLock());
  3006   // Allocate marking bit map if not already allocated
  3007   if (!init) { // first time
  3008     if (!verification_mark_bm()->allocate(_span)) {
  3009       return false;
  3011     init = true;
  3014   assert(verification_mark_stack()->isEmpty(), "Should be empty");
  3016   // Turn off refs discovery -- so we will be tracing through refs.
  3017   // This is as intended, because by this time
  3018   // GC must already have cleared any refs that need to be cleared,
  3019   // and traced those that need to be marked; moreover,
  3020   // the marking done here is not going to intefere in any
  3021   // way with the marking information used by GC.
  3022   NoRefDiscovery no_discovery(ref_processor());
  3024   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  3026   // Clear any marks from a previous round
  3027   verification_mark_bm()->clear_all();
  3028   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
  3029   verify_work_stacks_empty();
  3031   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3032   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  3033   // Update the saved marks which may affect the root scans.
  3034   gch->save_marks();
  3036   if (CMSRemarkVerifyVariant == 1) {
  3037     // In this first variant of verification, we complete
  3038     // all marking, then check if the new marks-verctor is
  3039     // a subset of the CMS marks-vector.
  3040     verify_after_remark_work_1();
  3041   } else if (CMSRemarkVerifyVariant == 2) {
  3042     // In this second variant of verification, we flag an error
  3043     // (i.e. an object reachable in the new marks-vector not reachable
  3044     // in the CMS marks-vector) immediately, also indicating the
  3045     // identify of an object (A) that references the unmarked object (B) --
  3046     // presumably, a mutation to A failed to be picked up by preclean/remark?
  3047     verify_after_remark_work_2();
  3048   } else {
  3049     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
  3050             CMSRemarkVerifyVariant);
  3052   if (!silent) gclog_or_tty->print(" done] ");
  3053   return true;
  3056 void CMSCollector::verify_after_remark_work_1() {
  3057   ResourceMark rm;
  3058   HandleMark  hm;
  3059   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3061   // Get a clear set of claim bits for the roots processing to work with.
  3062   ClassLoaderDataGraph::clear_claimed_marks();
  3064   // Mark from roots one level into CMS
  3065   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
  3066   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  3068   gch->gen_process_roots(_cmsGen->level(),
  3069                          true,   // younger gens are roots
  3070                          true,   // activate StrongRootsScope
  3071                          GenCollectedHeap::ScanningOption(roots_scanning_options()),
  3072                          should_unload_classes(),
  3073                          &notOlder,
  3074                          NULL,
  3075                          NULL);  // SSS: Provide correct closure
  3077   // Now mark from the roots
  3078   MarkFromRootsClosure markFromRootsClosure(this, _span,
  3079     verification_mark_bm(), verification_mark_stack(),
  3080     false /* don't yield */, true /* verifying */);
  3081   assert(_restart_addr == NULL, "Expected pre-condition");
  3082   verification_mark_bm()->iterate(&markFromRootsClosure);
  3083   while (_restart_addr != NULL) {
  3084     // Deal with stack overflow: by restarting at the indicated
  3085     // address.
  3086     HeapWord* ra = _restart_addr;
  3087     markFromRootsClosure.reset(ra);
  3088     _restart_addr = NULL;
  3089     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  3091   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  3092   verify_work_stacks_empty();
  3094   // Marking completed -- now verify that each bit marked in
  3095   // verification_mark_bm() is also marked in markBitMap(); flag all
  3096   // errors by printing corresponding objects.
  3097   VerifyMarkedClosure vcl(markBitMap());
  3098   verification_mark_bm()->iterate(&vcl);
  3099   if (vcl.failed()) {
  3100     gclog_or_tty->print("Verification failed");
  3101     Universe::heap()->print_on(gclog_or_tty);
  3102     fatal("CMS: failed marking verification after remark");
  3106 class VerifyKlassOopsKlassClosure : public KlassClosure {
  3107   class VerifyKlassOopsClosure : public OopClosure {
  3108     CMSBitMap* _bitmap;
  3109    public:
  3110     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
  3111     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
  3112     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3113   } _oop_closure;
  3114  public:
  3115   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
  3116   void do_klass(Klass* k) {
  3117     k->oops_do(&_oop_closure);
  3119 };
  3121 void CMSCollector::verify_after_remark_work_2() {
  3122   ResourceMark rm;
  3123   HandleMark  hm;
  3124   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3126   // Get a clear set of claim bits for the roots processing to work with.
  3127   ClassLoaderDataGraph::clear_claimed_marks();
  3129   // Mark from roots one level into CMS
  3130   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
  3131                                      markBitMap());
  3132   CLDToOopClosure cld_closure(&notOlder, true);
  3134   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  3136   gch->gen_process_roots(_cmsGen->level(),
  3137                          true,   // younger gens are roots
  3138                          true,   // activate StrongRootsScope
  3139                          GenCollectedHeap::ScanningOption(roots_scanning_options()),
  3140                          should_unload_classes(),
  3141                          &notOlder,
  3142                          NULL,
  3143                          &cld_closure);
  3145   // Now mark from the roots
  3146   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
  3147     verification_mark_bm(), markBitMap(), verification_mark_stack());
  3148   assert(_restart_addr == NULL, "Expected pre-condition");
  3149   verification_mark_bm()->iterate(&markFromRootsClosure);
  3150   while (_restart_addr != NULL) {
  3151     // Deal with stack overflow: by restarting at the indicated
  3152     // address.
  3153     HeapWord* ra = _restart_addr;
  3154     markFromRootsClosure.reset(ra);
  3155     _restart_addr = NULL;
  3156     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  3158   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  3159   verify_work_stacks_empty();
  3161   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
  3162   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
  3164   // Marking completed -- now verify that each bit marked in
  3165   // verification_mark_bm() is also marked in markBitMap(); flag all
  3166   // errors by printing corresponding objects.
  3167   VerifyMarkedClosure vcl(markBitMap());
  3168   verification_mark_bm()->iterate(&vcl);
  3169   assert(!vcl.failed(), "Else verification above should not have succeeded");
  3172 void ConcurrentMarkSweepGeneration::save_marks() {
  3173   // delegate to CMS space
  3174   cmsSpace()->save_marks();
  3175   for (uint i = 0; i < ParallelGCThreads; i++) {
  3176     _par_gc_thread_states[i]->promo.startTrackingPromotions();
  3180 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
  3181   return cmsSpace()->no_allocs_since_save_marks();
  3184 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
  3186 void ConcurrentMarkSweepGeneration::                            \
  3187 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
  3188   cl->set_generation(this);                                     \
  3189   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
  3190   cl->reset_generation();                                       \
  3191   save_marks();                                                 \
  3194 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
  3196 void
  3197 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
  3198   cl->set_generation(this);
  3199   younger_refs_in_space_iterate(_cmsSpace, cl);
  3200   cl->reset_generation();
  3203 void
  3204 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
  3205   if (freelistLock()->owned_by_self()) {
  3206     Generation::oop_iterate(cl);
  3207   } else {
  3208     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3209     Generation::oop_iterate(cl);
  3213 void
  3214 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
  3215   if (freelistLock()->owned_by_self()) {
  3216     Generation::object_iterate(cl);
  3217   } else {
  3218     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3219     Generation::object_iterate(cl);
  3223 void
  3224 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
  3225   if (freelistLock()->owned_by_self()) {
  3226     Generation::safe_object_iterate(cl);
  3227   } else {
  3228     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3229     Generation::safe_object_iterate(cl);
  3233 void
  3234 ConcurrentMarkSweepGeneration::post_compact() {
  3237 void
  3238 ConcurrentMarkSweepGeneration::prepare_for_verify() {
  3239   // Fix the linear allocation blocks to look like free blocks.
  3241   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3242   // are not called when the heap is verified during universe initialization and
  3243   // at vm shutdown.
  3244   if (freelistLock()->owned_by_self()) {
  3245     cmsSpace()->prepare_for_verify();
  3246   } else {
  3247     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3248     cmsSpace()->prepare_for_verify();
  3252 void
  3253 ConcurrentMarkSweepGeneration::verify() {
  3254   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3255   // are not called when the heap is verified during universe initialization and
  3256   // at vm shutdown.
  3257   if (freelistLock()->owned_by_self()) {
  3258     cmsSpace()->verify();
  3259   } else {
  3260     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3261     cmsSpace()->verify();
  3265 void CMSCollector::verify() {
  3266   _cmsGen->verify();
  3269 #ifndef PRODUCT
  3270 bool CMSCollector::overflow_list_is_empty() const {
  3271   assert(_num_par_pushes >= 0, "Inconsistency");
  3272   if (_overflow_list == NULL) {
  3273     assert(_num_par_pushes == 0, "Inconsistency");
  3275   return _overflow_list == NULL;
  3278 // The methods verify_work_stacks_empty() and verify_overflow_empty()
  3279 // merely consolidate assertion checks that appear to occur together frequently.
  3280 void CMSCollector::verify_work_stacks_empty() const {
  3281   assert(_markStack.isEmpty(), "Marking stack should be empty");
  3282   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3285 void CMSCollector::verify_overflow_empty() const {
  3286   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3287   assert(no_preserved_marks(), "No preserved marks");
  3289 #endif // PRODUCT
  3291 // Decide if we want to enable class unloading as part of the
  3292 // ensuing concurrent GC cycle. We will collect and
  3293 // unload classes if it's the case that:
  3294 // (1) an explicit gc request has been made and the flag
  3295 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
  3296 // (2) (a) class unloading is enabled at the command line, and
  3297 //     (b) old gen is getting really full
  3298 // NOTE: Provided there is no change in the state of the heap between
  3299 // calls to this method, it should have idempotent results. Moreover,
  3300 // its results should be monotonically increasing (i.e. going from 0 to 1,
  3301 // but not 1 to 0) between successive calls between which the heap was
  3302 // not collected. For the implementation below, it must thus rely on
  3303 // the property that concurrent_cycles_since_last_unload()
  3304 // will not decrease unless a collection cycle happened and that
  3305 // _cmsGen->is_too_full() are
  3306 // themselves also monotonic in that sense. See check_monotonicity()
  3307 // below.
  3308 void CMSCollector::update_should_unload_classes() {
  3309   _should_unload_classes = false;
  3310   // Condition 1 above
  3311   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
  3312     _should_unload_classes = true;
  3313   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
  3314     // Disjuncts 2.b.(i,ii,iii) above
  3315     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
  3316                               CMSClassUnloadingMaxInterval)
  3317                            || _cmsGen->is_too_full();
  3321 bool ConcurrentMarkSweepGeneration::is_too_full() const {
  3322   bool res = should_concurrent_collect();
  3323   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
  3324   return res;
  3327 void CMSCollector::setup_cms_unloading_and_verification_state() {
  3328   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
  3329                              || VerifyBeforeExit;
  3330   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
  3332   // We set the proper root for this CMS cycle here.
  3333   if (should_unload_classes()) {   // Should unload classes this cycle
  3334     remove_root_scanning_option(rso);  // Shrink the root set appropriately
  3335     set_verifying(should_verify);    // Set verification state for this cycle
  3336     return;                            // Nothing else needs to be done at this time
  3339   // Not unloading classes this cycle
  3340   assert(!should_unload_classes(), "Inconsitency!");
  3342   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
  3343     // Include symbols, strings and code cache elements to prevent their resurrection.
  3344     add_root_scanning_option(rso);
  3345     set_verifying(true);
  3346   } else if (verifying() && !should_verify) {
  3347     // We were verifying, but some verification flags got disabled.
  3348     set_verifying(false);
  3349     // Exclude symbols, strings and code cache elements from root scanning to
  3350     // reduce IM and RM pauses.
  3351     remove_root_scanning_option(rso);
  3356 #ifndef PRODUCT
  3357 HeapWord* CMSCollector::block_start(const void* p) const {
  3358   const HeapWord* addr = (HeapWord*)p;
  3359   if (_span.contains(p)) {
  3360     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
  3361       return _cmsGen->cmsSpace()->block_start(p);
  3364   return NULL;
  3366 #endif
  3368 HeapWord*
  3369 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
  3370                                                    bool   tlab,
  3371                                                    bool   parallel) {
  3372   CMSSynchronousYieldRequest yr;
  3373   assert(!tlab, "Can't deal with TLAB allocation");
  3374   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3375   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
  3376     CMSExpansionCause::_satisfy_allocation);
  3377   if (GCExpandToAllocateDelayMillis > 0) {
  3378     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3380   return have_lock_and_allocate(word_size, tlab);
  3383 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
  3384 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
  3385 // to CardGeneration and share it...
  3386 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
  3387   return CardGeneration::expand(bytes, expand_bytes);
  3390 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
  3391   CMSExpansionCause::Cause cause)
  3394   bool success = expand(bytes, expand_bytes);
  3396   // remember why we expanded; this information is used
  3397   // by shouldConcurrentCollect() when making decisions on whether to start
  3398   // a new CMS cycle.
  3399   if (success) {
  3400     set_expansion_cause(cause);
  3401     if (PrintGCDetails && Verbose) {
  3402       gclog_or_tty->print_cr("Expanded CMS gen for %s",
  3403         CMSExpansionCause::to_string(cause));
  3408 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
  3409   HeapWord* res = NULL;
  3410   MutexLocker x(ParGCRareEvent_lock);
  3411   while (true) {
  3412     // Expansion by some other thread might make alloc OK now:
  3413     res = ps->lab.alloc(word_sz);
  3414     if (res != NULL) return res;
  3415     // If there's not enough expansion space available, give up.
  3416     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
  3417       return NULL;
  3419     // Otherwise, we try expansion.
  3420     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
  3421       CMSExpansionCause::_allocate_par_lab);
  3422     // Now go around the loop and try alloc again;
  3423     // A competing par_promote might beat us to the expansion space,
  3424     // so we may go around the loop again if promotion fails agaion.
  3425     if (GCExpandToAllocateDelayMillis > 0) {
  3426       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3432 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
  3433   PromotionInfo* promo) {
  3434   MutexLocker x(ParGCRareEvent_lock);
  3435   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
  3436   while (true) {
  3437     // Expansion by some other thread might make alloc OK now:
  3438     if (promo->ensure_spooling_space()) {
  3439       assert(promo->has_spooling_space(),
  3440              "Post-condition of successful ensure_spooling_space()");
  3441       return true;
  3443     // If there's not enough expansion space available, give up.
  3444     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
  3445       return false;
  3447     // Otherwise, we try expansion.
  3448     expand(refill_size_bytes, MinHeapDeltaBytes,
  3449       CMSExpansionCause::_allocate_par_spooling_space);
  3450     // Now go around the loop and try alloc again;
  3451     // A competing allocation might beat us to the expansion space,
  3452     // so we may go around the loop again if allocation fails again.
  3453     if (GCExpandToAllocateDelayMillis > 0) {
  3454       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3460 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
  3461   assert_locked_or_safepoint(ExpandHeap_lock);
  3462   // Shrink committed space
  3463   _virtual_space.shrink_by(bytes);
  3464   // Shrink space; this also shrinks the space's BOT
  3465   _cmsSpace->set_end((HeapWord*) _virtual_space.high());
  3466   size_t new_word_size = heap_word_size(_cmsSpace->capacity());
  3467   // Shrink the shared block offset array
  3468   _bts->resize(new_word_size);
  3469   MemRegion mr(_cmsSpace->bottom(), new_word_size);
  3470   // Shrink the card table
  3471   Universe::heap()->barrier_set()->resize_covered_region(mr);
  3473   if (Verbose && PrintGC) {
  3474     size_t new_mem_size = _virtual_space.committed_size();
  3475     size_t old_mem_size = new_mem_size + bytes;
  3476     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
  3477                   name(), old_mem_size/K, new_mem_size/K);
  3481 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
  3482   assert_locked_or_safepoint(Heap_lock);
  3483   size_t size = ReservedSpace::page_align_size_down(bytes);
  3484   // Only shrink if a compaction was done so that all the free space
  3485   // in the generation is in a contiguous block at the end.
  3486   if (size > 0 && did_compact()) {
  3487     shrink_by(size);
  3491 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
  3492   assert_locked_or_safepoint(Heap_lock);
  3493   bool result = _virtual_space.expand_by(bytes);
  3494   if (result) {
  3495     size_t new_word_size =
  3496       heap_word_size(_virtual_space.committed_size());
  3497     MemRegion mr(_cmsSpace->bottom(), new_word_size);
  3498     _bts->resize(new_word_size);  // resize the block offset shared array
  3499     Universe::heap()->barrier_set()->resize_covered_region(mr);
  3500     // Hmmmm... why doesn't CFLS::set_end verify locking?
  3501     // This is quite ugly; FIX ME XXX
  3502     _cmsSpace->assert_locked(freelistLock());
  3503     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  3505     // update the space and generation capacity counters
  3506     if (UsePerfData) {
  3507       _space_counters->update_capacity();
  3508       _gen_counters->update_all();
  3511     if (Verbose && PrintGC) {
  3512       size_t new_mem_size = _virtual_space.committed_size();
  3513       size_t old_mem_size = new_mem_size - bytes;
  3514       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
  3515                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
  3518   return result;
  3521 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
  3522   assert_locked_or_safepoint(Heap_lock);
  3523   bool success = true;
  3524   const size_t remaining_bytes = _virtual_space.uncommitted_size();
  3525   if (remaining_bytes > 0) {
  3526     success = grow_by(remaining_bytes);
  3527     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
  3529   return success;
  3532 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
  3533   assert_locked_or_safepoint(Heap_lock);
  3534   assert_lock_strong(freelistLock());
  3535   if (PrintGCDetails && Verbose) {
  3536     warning("Shrinking of CMS not yet implemented");
  3538   return;
  3542 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
  3543 // phases.
  3544 class CMSPhaseAccounting: public StackObj {
  3545  public:
  3546   CMSPhaseAccounting(CMSCollector *collector,
  3547                      const char *phase,
  3548                      const GCId gc_id,
  3549                      bool print_cr = true);
  3550   ~CMSPhaseAccounting();
  3552  private:
  3553   CMSCollector *_collector;
  3554   const char *_phase;
  3555   elapsedTimer _wallclock;
  3556   bool _print_cr;
  3557   const GCId _gc_id;
  3559  public:
  3560   // Not MT-safe; so do not pass around these StackObj's
  3561   // where they may be accessed by other threads.
  3562   jlong wallclock_millis() {
  3563     assert(_wallclock.is_active(), "Wall clock should not stop");
  3564     _wallclock.stop();  // to record time
  3565     jlong ret = _wallclock.milliseconds();
  3566     _wallclock.start(); // restart
  3567     return ret;
  3569 };
  3571 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
  3572                                        const char *phase,
  3573                                        const GCId gc_id,
  3574                                        bool print_cr) :
  3575   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
  3577   if (PrintCMSStatistics != 0) {
  3578     _collector->resetYields();
  3580   if (PrintGCDetails) {
  3581     gclog_or_tty->gclog_stamp(_gc_id);
  3582     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
  3583       _collector->cmsGen()->short_name(), _phase);
  3585   _collector->resetTimer();
  3586   _wallclock.start();
  3587   _collector->startTimer();
  3590 CMSPhaseAccounting::~CMSPhaseAccounting() {
  3591   assert(_wallclock.is_active(), "Wall clock should not have stopped");
  3592   _collector->stopTimer();
  3593   _wallclock.stop();
  3594   if (PrintGCDetails) {
  3595     gclog_or_tty->gclog_stamp(_gc_id);
  3596     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
  3597                  _collector->cmsGen()->short_name(),
  3598                  _phase, _collector->timerValue(), _wallclock.seconds());
  3599     if (_print_cr) {
  3600       gclog_or_tty->cr();
  3602     if (PrintCMSStatistics != 0) {
  3603       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
  3604                     _collector->yields());
  3609 // CMS work
  3611 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
  3612 class CMSParMarkTask : public AbstractGangTask {
  3613  protected:
  3614   CMSCollector*     _collector;
  3615   int               _n_workers;
  3616   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
  3617       AbstractGangTask(name),
  3618       _collector(collector),
  3619       _n_workers(n_workers) {}
  3620   // Work method in support of parallel rescan ... of young gen spaces
  3621   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
  3622                              ContiguousSpace* space,
  3623                              HeapWord** chunk_array, size_t chunk_top);
  3624   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
  3625 };
  3627 // Parallel initial mark task
  3628 class CMSParInitialMarkTask: public CMSParMarkTask {
  3629  public:
  3630   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
  3631       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
  3632                      collector, n_workers) {}
  3633   void work(uint worker_id);
  3634 };
  3636 // Checkpoint the roots into this generation from outside
  3637 // this generation. [Note this initial checkpoint need only
  3638 // be approximate -- we'll do a catch up phase subsequently.]
  3639 void CMSCollector::checkpointRootsInitial(bool asynch) {
  3640   assert(_collectorState == InitialMarking, "Wrong collector state");
  3641   check_correct_thread_executing();
  3642   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
  3644   save_heap_summary();
  3645   report_heap_summary(GCWhen::BeforeGC);
  3647   ReferenceProcessor* rp = ref_processor();
  3648   SpecializationStats::clear();
  3649   assert(_restart_addr == NULL, "Control point invariant");
  3650   if (asynch) {
  3651     // acquire locks for subsequent manipulations
  3652     MutexLockerEx x(bitMapLock(),
  3653                     Mutex::_no_safepoint_check_flag);
  3654     checkpointRootsInitialWork(asynch);
  3655     // enable ("weak") refs discovery
  3656     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
  3657     _collectorState = Marking;
  3658   } else {
  3659     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
  3660     // which recognizes if we are a CMS generation, and doesn't try to turn on
  3661     // discovery; verify that they aren't meddling.
  3662     assert(!rp->discovery_is_atomic(),
  3663            "incorrect setting of discovery predicate");
  3664     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
  3665            "ref discovery for this generation kind");
  3666     // already have locks
  3667     checkpointRootsInitialWork(asynch);
  3668     // now enable ("weak") refs discovery
  3669     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
  3670     _collectorState = Marking;
  3672   SpecializationStats::print();
  3675 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
  3676   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
  3677   assert(_collectorState == InitialMarking, "just checking");
  3679   // If there has not been a GC[n-1] since last GC[n] cycle completed,
  3680   // precede our marking with a collection of all
  3681   // younger generations to keep floating garbage to a minimum.
  3682   // XXX: we won't do this for now -- it's an optimization to be done later.
  3684   // already have locks
  3685   assert_lock_strong(bitMapLock());
  3686   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
  3688   // Setup the verification and class unloading state for this
  3689   // CMS collection cycle.
  3690   setup_cms_unloading_and_verification_state();
  3692   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
  3693     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
  3694   if (UseAdaptiveSizePolicy) {
  3695     size_policy()->checkpoint_roots_initial_begin();
  3698   // Reset all the PLAB chunk arrays if necessary.
  3699   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
  3700     reset_survivor_plab_arrays();
  3703   ResourceMark rm;
  3704   HandleMark  hm;
  3706   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
  3707   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3709   verify_work_stacks_empty();
  3710   verify_overflow_empty();
  3712   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  3713   // Update the saved marks which may affect the root scans.
  3714   gch->save_marks();
  3716   // weak reference processing has not started yet.
  3717   ref_processor()->set_enqueuing_is_done(false);
  3719   // Need to remember all newly created CLDs,
  3720   // so that we can guarantee that the remark finds them.
  3721   ClassLoaderDataGraph::remember_new_clds(true);
  3723   // Whenever a CLD is found, it will be claimed before proceeding to mark
  3724   // the klasses. The claimed marks need to be cleared before marking starts.
  3725   ClassLoaderDataGraph::clear_claimed_marks();
  3727   if (CMSPrintEdenSurvivorChunks) {
  3728     print_eden_and_survivor_chunk_arrays();
  3732     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  3733     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
  3734       // The parallel version.
  3735       FlexibleWorkGang* workers = gch->workers();
  3736       assert(workers != NULL, "Need parallel worker threads.");
  3737       int n_workers = workers->active_workers();
  3738       CMSParInitialMarkTask tsk(this, n_workers);
  3739       gch->set_par_threads(n_workers);
  3740       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
  3741       if (n_workers > 1) {
  3742         GenCollectedHeap::StrongRootsScope srs(gch);
  3743         workers->run_task(&tsk);
  3744       } else {
  3745         GenCollectedHeap::StrongRootsScope srs(gch);
  3746         tsk.work(0);
  3748       gch->set_par_threads(0);
  3749     } else {
  3750       // The serial version.
  3751       CLDToOopClosure cld_closure(&notOlder, true);
  3752       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  3753       gch->gen_process_roots(_cmsGen->level(),
  3754                              true,   // younger gens are roots
  3755                              true,   // activate StrongRootsScope
  3756                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
  3757                              should_unload_classes(),
  3758                              &notOlder,
  3759                              NULL,
  3760                              &cld_closure);
  3764   // Clear mod-union table; it will be dirtied in the prologue of
  3765   // CMS generation per each younger generation collection.
  3767   assert(_modUnionTable.isAllClear(),
  3768        "Was cleared in most recent final checkpoint phase"
  3769        " or no bits are set in the gc_prologue before the start of the next "
  3770        "subsequent marking phase.");
  3772   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
  3774   // Save the end of the used_region of the constituent generations
  3775   // to be used to limit the extent of sweep in each generation.
  3776   save_sweep_limits();
  3777   if (UseAdaptiveSizePolicy) {
  3778     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
  3780   verify_overflow_empty();
  3783 bool CMSCollector::markFromRoots(bool asynch) {
  3784   // we might be tempted to assert that:
  3785   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  3786   //        "inconsistent argument?");
  3787   // However that wouldn't be right, because it's possible that
  3788   // a safepoint is indeed in progress as a younger generation
  3789   // stop-the-world GC happens even as we mark in this generation.
  3790   assert(_collectorState == Marking, "inconsistent state?");
  3791   check_correct_thread_executing();
  3792   verify_overflow_empty();
  3794   bool res;
  3795   if (asynch) {
  3797     // Start the timers for adaptive size policy for the concurrent phases
  3798     // Do it here so that the foreground MS can use the concurrent
  3799     // timer since a foreground MS might has the sweep done concurrently
  3800     // or STW.
  3801     if (UseAdaptiveSizePolicy) {
  3802       size_policy()->concurrent_marking_begin();
  3805     // Weak ref discovery note: We may be discovering weak
  3806     // refs in this generation concurrent (but interleaved) with
  3807     // weak ref discovery by a younger generation collector.
  3809     CMSTokenSyncWithLocks ts(true, bitMapLock());
  3810     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3811     CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
  3812     res = markFromRootsWork(asynch);
  3813     if (res) {
  3814       _collectorState = Precleaning;
  3815     } else { // We failed and a foreground collection wants to take over
  3816       assert(_foregroundGCIsActive, "internal state inconsistency");
  3817       assert(_restart_addr == NULL,  "foreground will restart from scratch");
  3818       if (PrintGCDetails) {
  3819         gclog_or_tty->print_cr("bailing out to foreground collection");
  3822     if (UseAdaptiveSizePolicy) {
  3823       size_policy()->concurrent_marking_end();
  3825   } else {
  3826     assert(SafepointSynchronize::is_at_safepoint(),
  3827            "inconsistent with asynch == false");
  3828     if (UseAdaptiveSizePolicy) {
  3829       size_policy()->ms_collection_marking_begin();
  3831     // already have locks
  3832     res = markFromRootsWork(asynch);
  3833     _collectorState = FinalMarking;
  3834     if (UseAdaptiveSizePolicy) {
  3835       GenCollectedHeap* gch = GenCollectedHeap::heap();
  3836       size_policy()->ms_collection_marking_end(gch->gc_cause());
  3839   verify_overflow_empty();
  3840   return res;
  3843 bool CMSCollector::markFromRootsWork(bool asynch) {
  3844   // iterate over marked bits in bit map, doing a full scan and mark
  3845   // from these roots using the following algorithm:
  3846   // . if oop is to the right of the current scan pointer,
  3847   //   mark corresponding bit (we'll process it later)
  3848   // . else (oop is to left of current scan pointer)
  3849   //   push oop on marking stack
  3850   // . drain the marking stack
  3852   // Note that when we do a marking step we need to hold the
  3853   // bit map lock -- recall that direct allocation (by mutators)
  3854   // and promotion (by younger generation collectors) is also
  3855   // marking the bit map. [the so-called allocate live policy.]
  3856   // Because the implementation of bit map marking is not
  3857   // robust wrt simultaneous marking of bits in the same word,
  3858   // we need to make sure that there is no such interference
  3859   // between concurrent such updates.
  3861   // already have locks
  3862   assert_lock_strong(bitMapLock());
  3864   verify_work_stacks_empty();
  3865   verify_overflow_empty();
  3866   bool result = false;
  3867   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
  3868     result = do_marking_mt(asynch);
  3869   } else {
  3870     result = do_marking_st(asynch);
  3872   return result;
  3875 // Forward decl
  3876 class CMSConcMarkingTask;
  3878 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
  3879   CMSCollector*       _collector;
  3880   CMSConcMarkingTask* _task;
  3881  public:
  3882   virtual void yield();
  3884   // "n_threads" is the number of threads to be terminated.
  3885   // "queue_set" is a set of work queues of other threads.
  3886   // "collector" is the CMS collector associated with this task terminator.
  3887   // "yield" indicates whether we need the gang as a whole to yield.
  3888   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
  3889     ParallelTaskTerminator(n_threads, queue_set),
  3890     _collector(collector) { }
  3892   void set_task(CMSConcMarkingTask* task) {
  3893     _task = task;
  3895 };
  3897 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
  3898   CMSConcMarkingTask* _task;
  3899  public:
  3900   bool should_exit_termination();
  3901   void set_task(CMSConcMarkingTask* task) {
  3902     _task = task;
  3904 };
  3906 // MT Concurrent Marking Task
  3907 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
  3908   CMSCollector* _collector;
  3909   int           _n_workers;                  // requested/desired # workers
  3910   bool          _asynch;
  3911   bool          _result;
  3912   CompactibleFreeListSpace*  _cms_space;
  3913   char          _pad_front[64];   // padding to ...
  3914   HeapWord*     _global_finger;   // ... avoid sharing cache line
  3915   char          _pad_back[64];
  3916   HeapWord*     _restart_addr;
  3918   //  Exposed here for yielding support
  3919   Mutex* const _bit_map_lock;
  3921   // The per thread work queues, available here for stealing
  3922   OopTaskQueueSet*  _task_queues;
  3924   // Termination (and yielding) support
  3925   CMSConcMarkingTerminator _term;
  3926   CMSConcMarkingTerminatorTerminator _term_term;
  3928  public:
  3929   CMSConcMarkingTask(CMSCollector* collector,
  3930                  CompactibleFreeListSpace* cms_space,
  3931                  bool asynch,
  3932                  YieldingFlexibleWorkGang* workers,
  3933                  OopTaskQueueSet* task_queues):
  3934     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
  3935     _collector(collector),
  3936     _cms_space(cms_space),
  3937     _asynch(asynch), _n_workers(0), _result(true),
  3938     _task_queues(task_queues),
  3939     _term(_n_workers, task_queues, _collector),
  3940     _bit_map_lock(collector->bitMapLock())
  3942     _requested_size = _n_workers;
  3943     _term.set_task(this);
  3944     _term_term.set_task(this);
  3945     _restart_addr = _global_finger = _cms_space->bottom();
  3949   OopTaskQueueSet* task_queues()  { return _task_queues; }
  3951   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  3953   HeapWord** global_finger_addr() { return &_global_finger; }
  3955   CMSConcMarkingTerminator* terminator() { return &_term; }
  3957   virtual void set_for_termination(int active_workers) {
  3958     terminator()->reset_for_reuse(active_workers);
  3961   void work(uint worker_id);
  3962   bool should_yield() {
  3963     return    ConcurrentMarkSweepThread::should_yield()
  3964            && !_collector->foregroundGCIsActive()
  3965            && _asynch;
  3968   virtual void coordinator_yield();  // stuff done by coordinator
  3969   bool result() { return _result; }
  3971   void reset(HeapWord* ra) {
  3972     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
  3973     _restart_addr = _global_finger = ra;
  3974     _term.reset_for_reuse();
  3977   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3978                                            OopTaskQueue* work_q);
  3980  private:
  3981   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
  3982   void do_work_steal(int i);
  3983   void bump_global_finger(HeapWord* f);
  3984 };
  3986 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
  3987   assert(_task != NULL, "Error");
  3988   return _task->yielding();
  3989   // Note that we do not need the disjunct || _task->should_yield() above
  3990   // because we want terminating threads to yield only if the task
  3991   // is already in the midst of yielding, which happens only after at least one
  3992   // thread has yielded.
  3995 void CMSConcMarkingTerminator::yield() {
  3996   if (_task->should_yield()) {
  3997     _task->yield();
  3998   } else {
  3999     ParallelTaskTerminator::yield();
  4003 ////////////////////////////////////////////////////////////////
  4004 // Concurrent Marking Algorithm Sketch
  4005 ////////////////////////////////////////////////////////////////
  4006 // Until all tasks exhausted (both spaces):
  4007 // -- claim next available chunk
  4008 // -- bump global finger via CAS
  4009 // -- find first object that starts in this chunk
  4010 //    and start scanning bitmap from that position
  4011 // -- scan marked objects for oops
  4012 // -- CAS-mark target, and if successful:
  4013 //    . if target oop is above global finger (volatile read)
  4014 //      nothing to do
  4015 //    . if target oop is in chunk and above local finger
  4016 //        then nothing to do
  4017 //    . else push on work-queue
  4018 // -- Deal with possible overflow issues:
  4019 //    . local work-queue overflow causes stuff to be pushed on
  4020 //      global (common) overflow queue
  4021 //    . always first empty local work queue
  4022 //    . then get a batch of oops from global work queue if any
  4023 //    . then do work stealing
  4024 // -- When all tasks claimed (both spaces)
  4025 //    and local work queue empty,
  4026 //    then in a loop do:
  4027 //    . check global overflow stack; steal a batch of oops and trace
  4028 //    . try to steal from other threads oif GOS is empty
  4029 //    . if neither is available, offer termination
  4030 // -- Terminate and return result
  4031 //
  4032 void CMSConcMarkingTask::work(uint worker_id) {
  4033   elapsedTimer _timer;
  4034   ResourceMark rm;
  4035   HandleMark hm;
  4037   DEBUG_ONLY(_collector->verify_overflow_empty();)
  4039   // Before we begin work, our work queue should be empty
  4040   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
  4041   // Scan the bitmap covering _cms_space, tracing through grey objects.
  4042   _timer.start();
  4043   do_scan_and_mark(worker_id, _cms_space);
  4044   _timer.stop();
  4045   if (PrintCMSStatistics != 0) {
  4046     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
  4047       worker_id, _timer.seconds());
  4048       // XXX: need xxx/xxx type of notation, two timers
  4051   // ... do work stealing
  4052   _timer.reset();
  4053   _timer.start();
  4054   do_work_steal(worker_id);
  4055   _timer.stop();
  4056   if (PrintCMSStatistics != 0) {
  4057     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
  4058       worker_id, _timer.seconds());
  4059       // XXX: need xxx/xxx type of notation, two timers
  4061   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
  4062   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
  4063   // Note that under the current task protocol, the
  4064   // following assertion is true even of the spaces
  4065   // expanded since the completion of the concurrent
  4066   // marking. XXX This will likely change under a strict
  4067   // ABORT semantics.
  4068   // After perm removal the comparison was changed to
  4069   // greater than or equal to from strictly greater than.
  4070   // Before perm removal the highest address sweep would
  4071   // have been at the end of perm gen but now is at the
  4072   // end of the tenured gen.
  4073   assert(_global_finger >=  _cms_space->end(),
  4074          "All tasks have been completed");
  4075   DEBUG_ONLY(_collector->verify_overflow_empty();)
  4078 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
  4079   HeapWord* read = _global_finger;
  4080   HeapWord* cur  = read;
  4081   while (f > read) {
  4082     cur = read;
  4083     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
  4084     if (cur == read) {
  4085       // our cas succeeded
  4086       assert(_global_finger >= f, "protocol consistency");
  4087       break;
  4092 // This is really inefficient, and should be redone by
  4093 // using (not yet available) block-read and -write interfaces to the
  4094 // stack and the work_queue. XXX FIX ME !!!
  4095 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  4096                                                       OopTaskQueue* work_q) {
  4097   // Fast lock-free check
  4098   if (ovflw_stk->length() == 0) {
  4099     return false;
  4101   assert(work_q->size() == 0, "Shouldn't steal");
  4102   MutexLockerEx ml(ovflw_stk->par_lock(),
  4103                    Mutex::_no_safepoint_check_flag);
  4104   // Grab up to 1/4 the size of the work queue
  4105   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  4106                     (size_t)ParGCDesiredObjsFromOverflowList);
  4107   num = MIN2(num, ovflw_stk->length());
  4108   for (int i = (int) num; i > 0; i--) {
  4109     oop cur = ovflw_stk->pop();
  4110     assert(cur != NULL, "Counted wrong?");
  4111     work_q->push(cur);
  4113   return num > 0;
  4116 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
  4117   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  4118   int n_tasks = pst->n_tasks();
  4119   // We allow that there may be no tasks to do here because
  4120   // we are restarting after a stack overflow.
  4121   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
  4122   uint nth_task = 0;
  4124   HeapWord* aligned_start = sp->bottom();
  4125   if (sp->used_region().contains(_restart_addr)) {
  4126     // Align down to a card boundary for the start of 0th task
  4127     // for this space.
  4128     aligned_start =
  4129       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
  4130                                  CardTableModRefBS::card_size);
  4133   size_t chunk_size = sp->marking_task_size();
  4134   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  4135     // Having claimed the nth task in this space,
  4136     // compute the chunk that it corresponds to:
  4137     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
  4138                                aligned_start + (nth_task+1)*chunk_size);
  4139     // Try and bump the global finger via a CAS;
  4140     // note that we need to do the global finger bump
  4141     // _before_ taking the intersection below, because
  4142     // the task corresponding to that region will be
  4143     // deemed done even if the used_region() expands
  4144     // because of allocation -- as it almost certainly will
  4145     // during start-up while the threads yield in the
  4146     // closure below.
  4147     HeapWord* finger = span.end();
  4148     bump_global_finger(finger);   // atomically
  4149     // There are null tasks here corresponding to chunks
  4150     // beyond the "top" address of the space.
  4151     span = span.intersection(sp->used_region());
  4152     if (!span.is_empty()) {  // Non-null task
  4153       HeapWord* prev_obj;
  4154       assert(!span.contains(_restart_addr) || nth_task == 0,
  4155              "Inconsistency");
  4156       if (nth_task == 0) {
  4157         // For the 0th task, we'll not need to compute a block_start.
  4158         if (span.contains(_restart_addr)) {
  4159           // In the case of a restart because of stack overflow,
  4160           // we might additionally skip a chunk prefix.
  4161           prev_obj = _restart_addr;
  4162         } else {
  4163           prev_obj = span.start();
  4165       } else {
  4166         // We want to skip the first object because
  4167         // the protocol is to scan any object in its entirety
  4168         // that _starts_ in this span; a fortiori, any
  4169         // object starting in an earlier span is scanned
  4170         // as part of an earlier claimed task.
  4171         // Below we use the "careful" version of block_start
  4172         // so we do not try to navigate uninitialized objects.
  4173         prev_obj = sp->block_start_careful(span.start());
  4174         // Below we use a variant of block_size that uses the
  4175         // Printezis bits to avoid waiting for allocated
  4176         // objects to become initialized/parsable.
  4177         while (prev_obj < span.start()) {
  4178           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
  4179           if (sz > 0) {
  4180             prev_obj += sz;
  4181           } else {
  4182             // In this case we may end up doing a bit of redundant
  4183             // scanning, but that appears unavoidable, short of
  4184             // locking the free list locks; see bug 6324141.
  4185             break;
  4189       if (prev_obj < span.end()) {
  4190         MemRegion my_span = MemRegion(prev_obj, span.end());
  4191         // Do the marking work within a non-empty span --
  4192         // the last argument to the constructor indicates whether the
  4193         // iteration should be incremental with periodic yields.
  4194         Par_MarkFromRootsClosure cl(this, _collector, my_span,
  4195                                     &_collector->_markBitMap,
  4196                                     work_queue(i),
  4197                                     &_collector->_markStack,
  4198                                     _asynch);
  4199         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
  4200       } // else nothing to do for this task
  4201     }   // else nothing to do for this task
  4203   // We'd be tempted to assert here that since there are no
  4204   // more tasks left to claim in this space, the global_finger
  4205   // must exceed space->top() and a fortiori space->end(). However,
  4206   // that would not quite be correct because the bumping of
  4207   // global_finger occurs strictly after the claiming of a task,
  4208   // so by the time we reach here the global finger may not yet
  4209   // have been bumped up by the thread that claimed the last
  4210   // task.
  4211   pst->all_tasks_completed();
  4214 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
  4215  private:
  4216   CMSCollector* _collector;
  4217   CMSConcMarkingTask* _task;
  4218   MemRegion     _span;
  4219   CMSBitMap*    _bit_map;
  4220   CMSMarkStack* _overflow_stack;
  4221   OopTaskQueue* _work_queue;
  4222  protected:
  4223   DO_OOP_WORK_DEFN
  4224  public:
  4225   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
  4226                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
  4227     MetadataAwareOopClosure(collector->ref_processor()),
  4228     _collector(collector),
  4229     _task(task),
  4230     _span(collector->_span),
  4231     _work_queue(work_queue),
  4232     _bit_map(bit_map),
  4233     _overflow_stack(overflow_stack)
  4234   { }
  4235   virtual void do_oop(oop* p);
  4236   virtual void do_oop(narrowOop* p);
  4238   void trim_queue(size_t max);
  4239   void handle_stack_overflow(HeapWord* lost);
  4240   void do_yield_check() {
  4241     if (_task->should_yield()) {
  4242       _task->yield();
  4245 };
  4247 // Grey object scanning during work stealing phase --
  4248 // the salient assumption here is that any references
  4249 // that are in these stolen objects being scanned must
  4250 // already have been initialized (else they would not have
  4251 // been published), so we do not need to check for
  4252 // uninitialized objects before pushing here.
  4253 void Par_ConcMarkingClosure::do_oop(oop obj) {
  4254   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  4255   HeapWord* addr = (HeapWord*)obj;
  4256   // Check if oop points into the CMS generation
  4257   // and is not marked
  4258   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  4259     // a white object ...
  4260     // If we manage to "claim" the object, by being the
  4261     // first thread to mark it, then we push it on our
  4262     // marking stack
  4263     if (_bit_map->par_mark(addr)) {     // ... now grey
  4264       // push on work queue (grey set)
  4265       bool simulate_overflow = false;
  4266       NOT_PRODUCT(
  4267         if (CMSMarkStackOverflowALot &&
  4268             _collector->simulate_overflow()) {
  4269           // simulate a stack overflow
  4270           simulate_overflow = true;
  4273       if (simulate_overflow ||
  4274           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  4275         // stack overflow
  4276         if (PrintCMSStatistics != 0) {
  4277           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  4278                                  SIZE_FORMAT, _overflow_stack->capacity());
  4280         // We cannot assert that the overflow stack is full because
  4281         // it may have been emptied since.
  4282         assert(simulate_overflow ||
  4283                _work_queue->size() == _work_queue->max_elems(),
  4284               "Else push should have succeeded");
  4285         handle_stack_overflow(addr);
  4287     } // Else, some other thread got there first
  4288     do_yield_check();
  4292 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
  4293 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
  4295 void Par_ConcMarkingClosure::trim_queue(size_t max) {
  4296   while (_work_queue->size() > max) {
  4297     oop new_oop;
  4298     if (_work_queue->pop_local(new_oop)) {
  4299       assert(new_oop->is_oop(), "Should be an oop");
  4300       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
  4301       assert(_span.contains((HeapWord*)new_oop), "Not in span");
  4302       new_oop->oop_iterate(this);  // do_oop() above
  4303       do_yield_check();
  4308 // Upon stack overflow, we discard (part of) the stack,
  4309 // remembering the least address amongst those discarded
  4310 // in CMSCollector's _restart_address.
  4311 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
  4312   // We need to do this under a mutex to prevent other
  4313   // workers from interfering with the work done below.
  4314   MutexLockerEx ml(_overflow_stack->par_lock(),
  4315                    Mutex::_no_safepoint_check_flag);
  4316   // Remember the least grey address discarded
  4317   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  4318   _collector->lower_restart_addr(ra);
  4319   _overflow_stack->reset();  // discard stack contents
  4320   _overflow_stack->expand(); // expand the stack if possible
  4324 void CMSConcMarkingTask::do_work_steal(int i) {
  4325   OopTaskQueue* work_q = work_queue(i);
  4326   oop obj_to_scan;
  4327   CMSBitMap* bm = &(_collector->_markBitMap);
  4328   CMSMarkStack* ovflw = &(_collector->_markStack);
  4329   int* seed = _collector->hash_seed(i);
  4330   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
  4331   while (true) {
  4332     cl.trim_queue(0);
  4333     assert(work_q->size() == 0, "Should have been emptied above");
  4334     if (get_work_from_overflow_stack(ovflw, work_q)) {
  4335       // Can't assert below because the work obtained from the
  4336       // overflow stack may already have been stolen from us.
  4337       // assert(work_q->size() > 0, "Work from overflow stack");
  4338       continue;
  4339     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  4340       assert(obj_to_scan->is_oop(), "Should be an oop");
  4341       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
  4342       obj_to_scan->oop_iterate(&cl);
  4343     } else if (terminator()->offer_termination(&_term_term)) {
  4344       assert(work_q->size() == 0, "Impossible!");
  4345       break;
  4346     } else if (yielding() || should_yield()) {
  4347       yield();
  4352 // This is run by the CMS (coordinator) thread.
  4353 void CMSConcMarkingTask::coordinator_yield() {
  4354   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4355          "CMS thread should hold CMS token");
  4356   // First give up the locks, then yield, then re-lock
  4357   // We should probably use a constructor/destructor idiom to
  4358   // do this unlock/lock or modify the MutexUnlocker class to
  4359   // serve our purpose. XXX
  4360   assert_lock_strong(_bit_map_lock);
  4361   _bit_map_lock->unlock();
  4362   ConcurrentMarkSweepThread::desynchronize(true);
  4363   ConcurrentMarkSweepThread::acknowledge_yield_request();
  4364   _collector->stopTimer();
  4365   if (PrintCMSStatistics != 0) {
  4366     _collector->incrementYields();
  4368   _collector->icms_wait();
  4370   // It is possible for whichever thread initiated the yield request
  4371   // not to get a chance to wake up and take the bitmap lock between
  4372   // this thread releasing it and reacquiring it. So, while the
  4373   // should_yield() flag is on, let's sleep for a bit to give the
  4374   // other thread a chance to wake up. The limit imposed on the number
  4375   // of iterations is defensive, to avoid any unforseen circumstances
  4376   // putting us into an infinite loop. Since it's always been this
  4377   // (coordinator_yield()) method that was observed to cause the
  4378   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
  4379   // which is by default non-zero. For the other seven methods that
  4380   // also perform the yield operation, as are using a different
  4381   // parameter (CMSYieldSleepCount) which is by default zero. This way we
  4382   // can enable the sleeping for those methods too, if necessary.
  4383   // See 6442774.
  4384   //
  4385   // We really need to reconsider the synchronization between the GC
  4386   // thread and the yield-requesting threads in the future and we
  4387   // should really use wait/notify, which is the recommended
  4388   // way of doing this type of interaction. Additionally, we should
  4389   // consolidate the eight methods that do the yield operation and they
  4390   // are almost identical into one for better maintenability and
  4391   // readability. See 6445193.
  4392   //
  4393   // Tony 2006.06.29
  4394   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
  4395                    ConcurrentMarkSweepThread::should_yield() &&
  4396                    !CMSCollector::foregroundGCIsActive(); ++i) {
  4397     os::sleep(Thread::current(), 1, false);
  4398     ConcurrentMarkSweepThread::acknowledge_yield_request();
  4401   ConcurrentMarkSweepThread::synchronize(true);
  4402   _bit_map_lock->lock_without_safepoint_check();
  4403   _collector->startTimer();
  4406 bool CMSCollector::do_marking_mt(bool asynch) {
  4407   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
  4408   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
  4409                                        conc_workers()->total_workers(),
  4410                                        conc_workers()->active_workers(),
  4411                                        Threads::number_of_non_daemon_threads());
  4412   conc_workers()->set_active_workers(num_workers);
  4414   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  4416   CMSConcMarkingTask tsk(this,
  4417                          cms_space,
  4418                          asynch,
  4419                          conc_workers(),
  4420                          task_queues());
  4422   // Since the actual number of workers we get may be different
  4423   // from the number we requested above, do we need to do anything different
  4424   // below? In particular, may be we need to subclass the SequantialSubTasksDone
  4425   // class?? XXX
  4426   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
  4428   // Refs discovery is already non-atomic.
  4429   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
  4430   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
  4431   conc_workers()->start_task(&tsk);
  4432   while (tsk.yielded()) {
  4433     tsk.coordinator_yield();
  4434     conc_workers()->continue_task(&tsk);
  4436   // If the task was aborted, _restart_addr will be non-NULL
  4437   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
  4438   while (_restart_addr != NULL) {
  4439     // XXX For now we do not make use of ABORTED state and have not
  4440     // yet implemented the right abort semantics (even in the original
  4441     // single-threaded CMS case). That needs some more investigation
  4442     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
  4443     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
  4444     // If _restart_addr is non-NULL, a marking stack overflow
  4445     // occurred; we need to do a fresh marking iteration from the
  4446     // indicated restart address.
  4447     if (_foregroundGCIsActive && asynch) {
  4448       // We may be running into repeated stack overflows, having
  4449       // reached the limit of the stack size, while making very
  4450       // slow forward progress. It may be best to bail out and
  4451       // let the foreground collector do its job.
  4452       // Clear _restart_addr, so that foreground GC
  4453       // works from scratch. This avoids the headache of
  4454       // a "rescan" which would otherwise be needed because
  4455       // of the dirty mod union table & card table.
  4456       _restart_addr = NULL;
  4457       return false;
  4459     // Adjust the task to restart from _restart_addr
  4460     tsk.reset(_restart_addr);
  4461     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
  4462                   _restart_addr);
  4463     _restart_addr = NULL;
  4464     // Get the workers going again
  4465     conc_workers()->start_task(&tsk);
  4466     while (tsk.yielded()) {
  4467       tsk.coordinator_yield();
  4468       conc_workers()->continue_task(&tsk);
  4471   assert(tsk.completed(), "Inconsistency");
  4472   assert(tsk.result() == true, "Inconsistency");
  4473   return true;
  4476 bool CMSCollector::do_marking_st(bool asynch) {
  4477   ResourceMark rm;
  4478   HandleMark   hm;
  4480   // Temporarily make refs discovery single threaded (non-MT)
  4481   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
  4482   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
  4483     &_markStack, CMSYield && asynch);
  4484   // the last argument to iterate indicates whether the iteration
  4485   // should be incremental with periodic yields.
  4486   _markBitMap.iterate(&markFromRootsClosure);
  4487   // If _restart_addr is non-NULL, a marking stack overflow
  4488   // occurred; we need to do a fresh iteration from the
  4489   // indicated restart address.
  4490   while (_restart_addr != NULL) {
  4491     if (_foregroundGCIsActive && asynch) {
  4492       // We may be running into repeated stack overflows, having
  4493       // reached the limit of the stack size, while making very
  4494       // slow forward progress. It may be best to bail out and
  4495       // let the foreground collector do its job.
  4496       // Clear _restart_addr, so that foreground GC
  4497       // works from scratch. This avoids the headache of
  4498       // a "rescan" which would otherwise be needed because
  4499       // of the dirty mod union table & card table.
  4500       _restart_addr = NULL;
  4501       return false;  // indicating failure to complete marking
  4503     // Deal with stack overflow:
  4504     // we restart marking from _restart_addr
  4505     HeapWord* ra = _restart_addr;
  4506     markFromRootsClosure.reset(ra);
  4507     _restart_addr = NULL;
  4508     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
  4510   return true;
  4513 void CMSCollector::preclean() {
  4514   check_correct_thread_executing();
  4515   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
  4516   verify_work_stacks_empty();
  4517   verify_overflow_empty();
  4518   _abort_preclean = false;
  4519   if (CMSPrecleaningEnabled) {
  4520     if (!CMSEdenChunksRecordAlways) {
  4521       _eden_chunk_index = 0;
  4523     size_t used = get_eden_used();
  4524     size_t capacity = get_eden_capacity();
  4525     // Don't start sampling unless we will get sufficiently
  4526     // many samples.
  4527     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
  4528                 * CMSScheduleRemarkEdenPenetration)) {
  4529       _start_sampling = true;
  4530     } else {
  4531       _start_sampling = false;
  4533     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4534     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
  4535     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
  4537   CMSTokenSync x(true); // is cms thread
  4538   if (CMSPrecleaningEnabled) {
  4539     sample_eden();
  4540     _collectorState = AbortablePreclean;
  4541   } else {
  4542     _collectorState = FinalMarking;
  4544   verify_work_stacks_empty();
  4545   verify_overflow_empty();
  4548 // Try and schedule the remark such that young gen
  4549 // occupancy is CMSScheduleRemarkEdenPenetration %.
  4550 void CMSCollector::abortable_preclean() {
  4551   check_correct_thread_executing();
  4552   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
  4553   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
  4555   // If Eden's current occupancy is below this threshold,
  4556   // immediately schedule the remark; else preclean
  4557   // past the next scavenge in an effort to
  4558   // schedule the pause as described avove. By choosing
  4559   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
  4560   // we will never do an actual abortable preclean cycle.
  4561   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
  4562     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4563     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
  4564     // We need more smarts in the abortable preclean
  4565     // loop below to deal with cases where allocation
  4566     // in young gen is very very slow, and our precleaning
  4567     // is running a losing race against a horde of
  4568     // mutators intent on flooding us with CMS updates
  4569     // (dirty cards).
  4570     // One, admittedly dumb, strategy is to give up
  4571     // after a certain number of abortable precleaning loops
  4572     // or after a certain maximum time. We want to make
  4573     // this smarter in the next iteration.
  4574     // XXX FIX ME!!! YSR
  4575     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
  4576     while (!(should_abort_preclean() ||
  4577              ConcurrentMarkSweepThread::should_terminate())) {
  4578       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
  4579       cumworkdone += workdone;
  4580       loops++;
  4581       // Voluntarily terminate abortable preclean phase if we have
  4582       // been at it for too long.
  4583       if ((CMSMaxAbortablePrecleanLoops != 0) &&
  4584           loops >= CMSMaxAbortablePrecleanLoops) {
  4585         if (PrintGCDetails) {
  4586           gclog_or_tty->print(" CMS: abort preclean due to loops ");
  4588         break;
  4590       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
  4591         if (PrintGCDetails) {
  4592           gclog_or_tty->print(" CMS: abort preclean due to time ");
  4594         break;
  4596       // If we are doing little work each iteration, we should
  4597       // take a short break.
  4598       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
  4599         // Sleep for some time, waiting for work to accumulate
  4600         stopTimer();
  4601         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
  4602         startTimer();
  4603         waited++;
  4606     if (PrintCMSStatistics > 0) {
  4607       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
  4608                           loops, waited, cumworkdone);
  4611   CMSTokenSync x(true); // is cms thread
  4612   if (_collectorState != Idling) {
  4613     assert(_collectorState == AbortablePreclean,
  4614            "Spontaneous state transition?");
  4615     _collectorState = FinalMarking;
  4616   } // Else, a foreground collection completed this CMS cycle.
  4617   return;
  4620 // Respond to an Eden sampling opportunity
  4621 void CMSCollector::sample_eden() {
  4622   // Make sure a young gc cannot sneak in between our
  4623   // reading and recording of a sample.
  4624   assert(Thread::current()->is_ConcurrentGC_thread(),
  4625          "Only the cms thread may collect Eden samples");
  4626   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4627          "Should collect samples while holding CMS token");
  4628   if (!_start_sampling) {
  4629     return;
  4631   // When CMSEdenChunksRecordAlways is true, the eden chunk array
  4632   // is populated by the young generation.
  4633   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
  4634     if (_eden_chunk_index < _eden_chunk_capacity) {
  4635       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
  4636       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
  4637              "Unexpected state of Eden");
  4638       // We'd like to check that what we just sampled is an oop-start address;
  4639       // however, we cannot do that here since the object may not yet have been
  4640       // initialized. So we'll instead do the check when we _use_ this sample
  4641       // later.
  4642       if (_eden_chunk_index == 0 ||
  4643           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
  4644                          _eden_chunk_array[_eden_chunk_index-1])
  4645            >= CMSSamplingGrain)) {
  4646         _eden_chunk_index++;  // commit sample
  4650   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
  4651     size_t used = get_eden_used();
  4652     size_t capacity = get_eden_capacity();
  4653     assert(used <= capacity, "Unexpected state of Eden");
  4654     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
  4655       _abort_preclean = true;
  4661 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
  4662   assert(_collectorState == Precleaning ||
  4663          _collectorState == AbortablePreclean, "incorrect state");
  4664   ResourceMark rm;
  4665   HandleMark   hm;
  4667   // Precleaning is currently not MT but the reference processor
  4668   // may be set for MT.  Disable it temporarily here.
  4669   ReferenceProcessor* rp = ref_processor();
  4670   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
  4672   // Do one pass of scrubbing the discovered reference lists
  4673   // to remove any reference objects with strongly-reachable
  4674   // referents.
  4675   if (clean_refs) {
  4676     CMSPrecleanRefsYieldClosure yield_cl(this);
  4677     assert(rp->span().equals(_span), "Spans should be equal");
  4678     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
  4679                                    &_markStack, true /* preclean */);
  4680     CMSDrainMarkingStackClosure complete_trace(this,
  4681                                    _span, &_markBitMap, &_markStack,
  4682                                    &keep_alive, true /* preclean */);
  4684     // We don't want this step to interfere with a young
  4685     // collection because we don't want to take CPU
  4686     // or memory bandwidth away from the young GC threads
  4687     // (which may be as many as there are CPUs).
  4688     // Note that we don't need to protect ourselves from
  4689     // interference with mutators because they can't
  4690     // manipulate the discovered reference lists nor affect
  4691     // the computed reachability of the referents, the
  4692     // only properties manipulated by the precleaning
  4693     // of these reference lists.
  4694     stopTimer();
  4695     CMSTokenSyncWithLocks x(true /* is cms thread */,
  4696                             bitMapLock());
  4697     startTimer();
  4698     sample_eden();
  4700     // The following will yield to allow foreground
  4701     // collection to proceed promptly. XXX YSR:
  4702     // The code in this method may need further
  4703     // tweaking for better performance and some restructuring
  4704     // for cleaner interfaces.
  4705     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
  4706     rp->preclean_discovered_references(
  4707           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
  4708           gc_timer, _gc_tracer_cm->gc_id());
  4711   if (clean_survivor) {  // preclean the active survivor space(s)
  4712     assert(_young_gen->kind() == Generation::DefNew ||
  4713            _young_gen->kind() == Generation::ParNew ||
  4714            _young_gen->kind() == Generation::ASParNew,
  4715          "incorrect type for cast");
  4716     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  4717     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
  4718                              &_markBitMap, &_modUnionTable,
  4719                              &_markStack, true /* precleaning phase */);
  4720     stopTimer();
  4721     CMSTokenSyncWithLocks ts(true /* is cms thread */,
  4722                              bitMapLock());
  4723     startTimer();
  4724     unsigned int before_count =
  4725       GenCollectedHeap::heap()->total_collections();
  4726     SurvivorSpacePrecleanClosure
  4727       sss_cl(this, _span, &_markBitMap, &_markStack,
  4728              &pam_cl, before_count, CMSYield);
  4729     dng->from()->object_iterate_careful(&sss_cl);
  4730     dng->to()->object_iterate_careful(&sss_cl);
  4732   MarkRefsIntoAndScanClosure
  4733     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  4734              &_markStack, this, CMSYield,
  4735              true /* precleaning phase */);
  4736   // CAUTION: The following closure has persistent state that may need to
  4737   // be reset upon a decrease in the sequence of addresses it
  4738   // processes.
  4739   ScanMarkedObjectsAgainCarefullyClosure
  4740     smoac_cl(this, _span,
  4741       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
  4743   // Preclean dirty cards in ModUnionTable and CardTable using
  4744   // appropriate convergence criterion;
  4745   // repeat CMSPrecleanIter times unless we find that
  4746   // we are losing.
  4747   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
  4748   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
  4749          "Bad convergence multiplier");
  4750   assert(CMSPrecleanThreshold >= 100,
  4751          "Unreasonably low CMSPrecleanThreshold");
  4753   size_t numIter, cumNumCards, lastNumCards, curNumCards;
  4754   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
  4755        numIter < CMSPrecleanIter;
  4756        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
  4757     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
  4758     if (Verbose && PrintGCDetails) {
  4759       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
  4761     // Either there are very few dirty cards, so re-mark
  4762     // pause will be small anyway, or our pre-cleaning isn't
  4763     // that much faster than the rate at which cards are being
  4764     // dirtied, so we might as well stop and re-mark since
  4765     // precleaning won't improve our re-mark time by much.
  4766     if (curNumCards <= CMSPrecleanThreshold ||
  4767         (numIter > 0 &&
  4768          (curNumCards * CMSPrecleanDenominator >
  4769          lastNumCards * CMSPrecleanNumerator))) {
  4770       numIter++;
  4771       cumNumCards += curNumCards;
  4772       break;
  4776   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
  4778   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
  4779   cumNumCards += curNumCards;
  4780   if (PrintGCDetails && PrintCMSStatistics != 0) {
  4781     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
  4782                   curNumCards, cumNumCards, numIter);
  4784   return cumNumCards;   // as a measure of useful work done
  4787 // PRECLEANING NOTES:
  4788 // Precleaning involves:
  4789 // . reading the bits of the modUnionTable and clearing the set bits.
  4790 // . For the cards corresponding to the set bits, we scan the
  4791 //   objects on those cards. This means we need the free_list_lock
  4792 //   so that we can safely iterate over the CMS space when scanning
  4793 //   for oops.
  4794 // . When we scan the objects, we'll be both reading and setting
  4795 //   marks in the marking bit map, so we'll need the marking bit map.
  4796 // . For protecting _collector_state transitions, we take the CGC_lock.
  4797 //   Note that any races in the reading of of card table entries by the
  4798 //   CMS thread on the one hand and the clearing of those entries by the
  4799 //   VM thread or the setting of those entries by the mutator threads on the
  4800 //   other are quite benign. However, for efficiency it makes sense to keep
  4801 //   the VM thread from racing with the CMS thread while the latter is
  4802 //   dirty card info to the modUnionTable. We therefore also use the
  4803 //   CGC_lock to protect the reading of the card table and the mod union
  4804 //   table by the CM thread.
  4805 // . We run concurrently with mutator updates, so scanning
  4806 //   needs to be done carefully  -- we should not try to scan
  4807 //   potentially uninitialized objects.
  4808 //
  4809 // Locking strategy: While holding the CGC_lock, we scan over and
  4810 // reset a maximal dirty range of the mod union / card tables, then lock
  4811 // the free_list_lock and bitmap lock to do a full marking, then
  4812 // release these locks; and repeat the cycle. This allows for a
  4813 // certain amount of fairness in the sharing of these locks between
  4814 // the CMS collector on the one hand, and the VM thread and the
  4815 // mutators on the other.
  4817 // NOTE: preclean_mod_union_table() and preclean_card_table()
  4818 // further below are largely identical; if you need to modify
  4819 // one of these methods, please check the other method too.
  4821 size_t CMSCollector::preclean_mod_union_table(
  4822   ConcurrentMarkSweepGeneration* gen,
  4823   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4824   verify_work_stacks_empty();
  4825   verify_overflow_empty();
  4827   // strategy: starting with the first card, accumulate contiguous
  4828   // ranges of dirty cards; clear these cards, then scan the region
  4829   // covered by these cards.
  4831   // Since all of the MUT is committed ahead, we can just use
  4832   // that, in case the generations expand while we are precleaning.
  4833   // It might also be fine to just use the committed part of the
  4834   // generation, but we might potentially miss cards when the
  4835   // generation is rapidly expanding while we are in the midst
  4836   // of precleaning.
  4837   HeapWord* startAddr = gen->reserved().start();
  4838   HeapWord* endAddr   = gen->reserved().end();
  4840   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4842   size_t numDirtyCards, cumNumDirtyCards;
  4843   HeapWord *nextAddr, *lastAddr;
  4844   for (cumNumDirtyCards = numDirtyCards = 0,
  4845        nextAddr = lastAddr = startAddr;
  4846        nextAddr < endAddr;
  4847        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4849     ResourceMark rm;
  4850     HandleMark   hm;
  4852     MemRegion dirtyRegion;
  4854       stopTimer();
  4855       // Potential yield point
  4856       CMSTokenSync ts(true);
  4857       startTimer();
  4858       sample_eden();
  4859       // Get dirty region starting at nextOffset (inclusive),
  4860       // simultaneously clearing it.
  4861       dirtyRegion =
  4862         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
  4863       assert(dirtyRegion.start() >= nextAddr,
  4864              "returned region inconsistent?");
  4866     // Remember where the next search should begin.
  4867     // The returned region (if non-empty) is a right open interval,
  4868     // so lastOffset is obtained from the right end of that
  4869     // interval.
  4870     lastAddr = dirtyRegion.end();
  4871     // Should do something more transparent and less hacky XXX
  4872     numDirtyCards =
  4873       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
  4875     // We'll scan the cards in the dirty region (with periodic
  4876     // yields for foreground GC as needed).
  4877     if (!dirtyRegion.is_empty()) {
  4878       assert(numDirtyCards > 0, "consistency check");
  4879       HeapWord* stop_point = NULL;
  4880       stopTimer();
  4881       // Potential yield point
  4882       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
  4883                                bitMapLock());
  4884       startTimer();
  4886         verify_work_stacks_empty();
  4887         verify_overflow_empty();
  4888         sample_eden();
  4889         stop_point =
  4890           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4892       if (stop_point != NULL) {
  4893         // The careful iteration stopped early either because it found an
  4894         // uninitialized object, or because we were in the midst of an
  4895         // "abortable preclean", which should now be aborted. Redirty
  4896         // the bits corresponding to the partially-scanned or unscanned
  4897         // cards. We'll either restart at the next block boundary or
  4898         // abort the preclean.
  4899         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
  4900                "Should only be AbortablePreclean.");
  4901         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
  4902         if (should_abort_preclean()) {
  4903           break; // out of preclean loop
  4904         } else {
  4905           // Compute the next address at which preclean should pick up;
  4906           // might need bitMapLock in order to read P-bits.
  4907           lastAddr = next_card_start_after_block(stop_point);
  4910     } else {
  4911       assert(lastAddr == endAddr, "consistency check");
  4912       assert(numDirtyCards == 0, "consistency check");
  4913       break;
  4916   verify_work_stacks_empty();
  4917   verify_overflow_empty();
  4918   return cumNumDirtyCards;
  4921 // NOTE: preclean_mod_union_table() above and preclean_card_table()
  4922 // below are largely identical; if you need to modify
  4923 // one of these methods, please check the other method too.
  4925 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
  4926   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4927   // strategy: it's similar to precleamModUnionTable above, in that
  4928   // we accumulate contiguous ranges of dirty cards, mark these cards
  4929   // precleaned, then scan the region covered by these cards.
  4930   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
  4931   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
  4933   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4935   size_t numDirtyCards, cumNumDirtyCards;
  4936   HeapWord *lastAddr, *nextAddr;
  4938   for (cumNumDirtyCards = numDirtyCards = 0,
  4939        nextAddr = lastAddr = startAddr;
  4940        nextAddr < endAddr;
  4941        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4943     ResourceMark rm;
  4944     HandleMark   hm;
  4946     MemRegion dirtyRegion;
  4948       // See comments in "Precleaning notes" above on why we
  4949       // do this locking. XXX Could the locking overheads be
  4950       // too high when dirty cards are sparse? [I don't think so.]
  4951       stopTimer();
  4952       CMSTokenSync x(true); // is cms thread
  4953       startTimer();
  4954       sample_eden();
  4955       // Get and clear dirty region from card table
  4956       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
  4957                                     MemRegion(nextAddr, endAddr),
  4958                                     true,
  4959                                     CardTableModRefBS::precleaned_card_val());
  4961       assert(dirtyRegion.start() >= nextAddr,
  4962              "returned region inconsistent?");
  4964     lastAddr = dirtyRegion.end();
  4965     numDirtyCards =
  4966       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
  4968     if (!dirtyRegion.is_empty()) {
  4969       stopTimer();
  4970       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
  4971       startTimer();
  4972       sample_eden();
  4973       verify_work_stacks_empty();
  4974       verify_overflow_empty();
  4975       HeapWord* stop_point =
  4976         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4977       if (stop_point != NULL) {
  4978         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
  4979                "Should only be AbortablePreclean.");
  4980         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
  4981         if (should_abort_preclean()) {
  4982           break; // out of preclean loop
  4983         } else {
  4984           // Compute the next address at which preclean should pick up.
  4985           lastAddr = next_card_start_after_block(stop_point);
  4988     } else {
  4989       break;
  4992   verify_work_stacks_empty();
  4993   verify_overflow_empty();
  4994   return cumNumDirtyCards;
  4997 class PrecleanKlassClosure : public KlassClosure {
  4998   KlassToOopClosure _cm_klass_closure;
  4999  public:
  5000   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
  5001   void do_klass(Klass* k) {
  5002     if (k->has_accumulated_modified_oops()) {
  5003       k->clear_accumulated_modified_oops();
  5005       _cm_klass_closure.do_klass(k);
  5008 };
  5010 // The freelist lock is needed to prevent asserts, is it really needed?
  5011 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
  5013   cl->set_freelistLock(freelistLock);
  5015   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
  5017   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
  5018   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
  5019   PrecleanKlassClosure preclean_klass_closure(cl);
  5020   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
  5022   verify_work_stacks_empty();
  5023   verify_overflow_empty();
  5026 void CMSCollector::checkpointRootsFinal(bool asynch,
  5027   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  5028   assert(_collectorState == FinalMarking, "incorrect state transition?");
  5029   check_correct_thread_executing();
  5030   // world is stopped at this checkpoint
  5031   assert(SafepointSynchronize::is_at_safepoint(),
  5032          "world should be stopped");
  5033   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
  5035   verify_work_stacks_empty();
  5036   verify_overflow_empty();
  5038   SpecializationStats::clear();
  5039   if (PrintGCDetails) {
  5040     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
  5041                         _young_gen->used() / K,
  5042                         _young_gen->capacity() / K);
  5044   if (asynch) {
  5045     if (CMSScavengeBeforeRemark) {
  5046       GenCollectedHeap* gch = GenCollectedHeap::heap();
  5047       // Temporarily set flag to false, GCH->do_collection will
  5048       // expect it to be false and set to true
  5049       FlagSetting fl(gch->_is_gc_active, false);
  5050       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
  5051         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
  5052       int level = _cmsGen->level() - 1;
  5053       if (level >= 0) {
  5054         gch->do_collection(true,        // full (i.e. force, see below)
  5055                            false,       // !clear_all_soft_refs
  5056                            0,           // size
  5057                            false,       // is_tlab
  5058                            level        // max_level
  5059                           );
  5062     FreelistLocker x(this);
  5063     MutexLockerEx y(bitMapLock(),
  5064                     Mutex::_no_safepoint_check_flag);
  5065     assert(!init_mark_was_synchronous, "but that's impossible!");
  5066     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
  5067   } else {
  5068     // already have all the locks
  5069     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
  5070                              init_mark_was_synchronous);
  5072   verify_work_stacks_empty();
  5073   verify_overflow_empty();
  5074   SpecializationStats::print();
  5077 void CMSCollector::checkpointRootsFinalWork(bool asynch,
  5078   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  5080   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
  5082   assert(haveFreelistLocks(), "must have free list locks");
  5083   assert_lock_strong(bitMapLock());
  5085   if (UseAdaptiveSizePolicy) {
  5086     size_policy()->checkpoint_roots_final_begin();
  5089   ResourceMark rm;
  5090   HandleMark   hm;
  5092   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5094   if (should_unload_classes()) {
  5095     CodeCache::gc_prologue();
  5097   assert(haveFreelistLocks(), "must have free list locks");
  5098   assert_lock_strong(bitMapLock());
  5100   if (!init_mark_was_synchronous) {
  5101     // We might assume that we need not fill TLAB's when
  5102     // CMSScavengeBeforeRemark is set, because we may have just done
  5103     // a scavenge which would have filled all TLAB's -- and besides
  5104     // Eden would be empty. This however may not always be the case --
  5105     // for instance although we asked for a scavenge, it may not have
  5106     // happened because of a JNI critical section. We probably need
  5107     // a policy for deciding whether we can in that case wait until
  5108     // the critical section releases and then do the remark following
  5109     // the scavenge, and skip it here. In the absence of that policy,
  5110     // or of an indication of whether the scavenge did indeed occur,
  5111     // we cannot rely on TLAB's having been filled and must do
  5112     // so here just in case a scavenge did not happen.
  5113     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
  5114     // Update the saved marks which may affect the root scans.
  5115     gch->save_marks();
  5117     if (CMSPrintEdenSurvivorChunks) {
  5118       print_eden_and_survivor_chunk_arrays();
  5122       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  5124       // Note on the role of the mod union table:
  5125       // Since the marker in "markFromRoots" marks concurrently with
  5126       // mutators, it is possible for some reachable objects not to have been
  5127       // scanned. For instance, an only reference to an object A was
  5128       // placed in object B after the marker scanned B. Unless B is rescanned,
  5129       // A would be collected. Such updates to references in marked objects
  5130       // are detected via the mod union table which is the set of all cards
  5131       // dirtied since the first checkpoint in this GC cycle and prior to
  5132       // the most recent young generation GC, minus those cleaned up by the
  5133       // concurrent precleaning.
  5134       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
  5135         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
  5136         do_remark_parallel();
  5137       } else {
  5138         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
  5139                     _gc_timer_cm, _gc_tracer_cm->gc_id());
  5140         do_remark_non_parallel();
  5143   } else {
  5144     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
  5145     // The initial mark was stop-world, so there's no rescanning to
  5146     // do; go straight on to the next step below.
  5148   verify_work_stacks_empty();
  5149   verify_overflow_empty();
  5152     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
  5153     refProcessingWork(asynch, clear_all_soft_refs);
  5155   verify_work_stacks_empty();
  5156   verify_overflow_empty();
  5158   if (should_unload_classes()) {
  5159     CodeCache::gc_epilogue();
  5161   JvmtiExport::gc_epilogue();
  5163   // If we encountered any (marking stack / work queue) overflow
  5164   // events during the current CMS cycle, take appropriate
  5165   // remedial measures, where possible, so as to try and avoid
  5166   // recurrence of that condition.
  5167   assert(_markStack.isEmpty(), "No grey objects");
  5168   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
  5169                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
  5170   if (ser_ovflw > 0) {
  5171     if (PrintCMSStatistics != 0) {
  5172       gclog_or_tty->print_cr("Marking stack overflow (benign) "
  5173         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
  5174         ", kac_preclean="SIZE_FORMAT")",
  5175         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
  5176         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
  5178     _markStack.expand();
  5179     _ser_pmc_remark_ovflw = 0;
  5180     _ser_pmc_preclean_ovflw = 0;
  5181     _ser_kac_preclean_ovflw = 0;
  5182     _ser_kac_ovflw = 0;
  5184   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
  5185     if (PrintCMSStatistics != 0) {
  5186       gclog_or_tty->print_cr("Work queue overflow (benign) "
  5187         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  5188         _par_pmc_remark_ovflw, _par_kac_ovflw);
  5190     _par_pmc_remark_ovflw = 0;
  5191     _par_kac_ovflw = 0;
  5193   if (PrintCMSStatistics != 0) {
  5194      if (_markStack._hit_limit > 0) {
  5195        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
  5196                               _markStack._hit_limit);
  5198      if (_markStack._failed_double > 0) {
  5199        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
  5200                               " current capacity "SIZE_FORMAT,
  5201                               _markStack._failed_double,
  5202                               _markStack.capacity());
  5205   _markStack._hit_limit = 0;
  5206   _markStack._failed_double = 0;
  5208   if ((VerifyAfterGC || VerifyDuringGC) &&
  5209       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  5210     verify_after_remark();
  5213   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
  5215   // Change under the freelistLocks.
  5216   _collectorState = Sweeping;
  5217   // Call isAllClear() under bitMapLock
  5218   assert(_modUnionTable.isAllClear(),
  5219       "Should be clear by end of the final marking");
  5220   assert(_ct->klass_rem_set()->mod_union_is_clear(),
  5221       "Should be clear by end of the final marking");
  5222   if (UseAdaptiveSizePolicy) {
  5223     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
  5227 void CMSParInitialMarkTask::work(uint worker_id) {
  5228   elapsedTimer _timer;
  5229   ResourceMark rm;
  5230   HandleMark   hm;
  5232   // ---------- scan from roots --------------
  5233   _timer.start();
  5234   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5235   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
  5237   // ---------- young gen roots --------------
  5239     work_on_young_gen_roots(worker_id, &par_mri_cl);
  5240     _timer.stop();
  5241     if (PrintCMSStatistics != 0) {
  5242       gclog_or_tty->print_cr(
  5243         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
  5244         worker_id, _timer.seconds());
  5248   // ---------- remaining roots --------------
  5249   _timer.reset();
  5250   _timer.start();
  5252   CLDToOopClosure cld_closure(&par_mri_cl, true);
  5254   gch->gen_process_roots(_collector->_cmsGen->level(),
  5255                          false,     // yg was scanned above
  5256                          false,     // this is parallel code
  5257                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
  5258                          _collector->should_unload_classes(),
  5259                          &par_mri_cl,
  5260                          NULL,
  5261                          &cld_closure);
  5262   assert(_collector->should_unload_classes()
  5263          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
  5264          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
  5265   _timer.stop();
  5266   if (PrintCMSStatistics != 0) {
  5267     gclog_or_tty->print_cr(
  5268       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
  5269       worker_id, _timer.seconds());
  5273 // Parallel remark task
  5274 class CMSParRemarkTask: public CMSParMarkTask {
  5275   CompactibleFreeListSpace* _cms_space;
  5277   // The per-thread work queues, available here for stealing.
  5278   OopTaskQueueSet*       _task_queues;
  5279   ParallelTaskTerminator _term;
  5281  public:
  5282   // A value of 0 passed to n_workers will cause the number of
  5283   // workers to be taken from the active workers in the work gang.
  5284   CMSParRemarkTask(CMSCollector* collector,
  5285                    CompactibleFreeListSpace* cms_space,
  5286                    int n_workers, FlexibleWorkGang* workers,
  5287                    OopTaskQueueSet* task_queues):
  5288     CMSParMarkTask("Rescan roots and grey objects in parallel",
  5289                    collector, n_workers),
  5290     _cms_space(cms_space),
  5291     _task_queues(task_queues),
  5292     _term(n_workers, task_queues) { }
  5294   OopTaskQueueSet* task_queues() { return _task_queues; }
  5296   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  5298   ParallelTaskTerminator* terminator() { return &_term; }
  5299   int n_workers() { return _n_workers; }
  5301   void work(uint worker_id);
  5303  private:
  5304   // ... of  dirty cards in old space
  5305   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
  5306                                   Par_MarkRefsIntoAndScanClosure* cl);
  5308   // ... work stealing for the above
  5309   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
  5310 };
  5312 class RemarkKlassClosure : public KlassClosure {
  5313   KlassToOopClosure _cm_klass_closure;
  5314  public:
  5315   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
  5316   void do_klass(Klass* k) {
  5317     // Check if we have modified any oops in the Klass during the concurrent marking.
  5318     if (k->has_accumulated_modified_oops()) {
  5319       k->clear_accumulated_modified_oops();
  5321       // We could have transfered the current modified marks to the accumulated marks,
  5322       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
  5323     } else if (k->has_modified_oops()) {
  5324       // Don't clear anything, this info is needed by the next young collection.
  5325     } else {
  5326       // No modified oops in the Klass.
  5327       return;
  5330     // The klass has modified fields, need to scan the klass.
  5331     _cm_klass_closure.do_klass(k);
  5333 };
  5335 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
  5336   DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
  5337   EdenSpace* eden_space = dng->eden();
  5338   ContiguousSpace* from_space = dng->from();
  5339   ContiguousSpace* to_space   = dng->to();
  5341   HeapWord** eca = _collector->_eden_chunk_array;
  5342   size_t     ect = _collector->_eden_chunk_index;
  5343   HeapWord** sca = _collector->_survivor_chunk_array;
  5344   size_t     sct = _collector->_survivor_chunk_index;
  5346   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
  5347   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
  5349   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
  5350   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
  5351   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
  5354 // work_queue(i) is passed to the closure
  5355 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
  5356 // also is passed to do_dirty_card_rescan_tasks() and to
  5357 // do_work_steal() to select the i-th task_queue.
  5359 void CMSParRemarkTask::work(uint worker_id) {
  5360   elapsedTimer _timer;
  5361   ResourceMark rm;
  5362   HandleMark   hm;
  5364   // ---------- rescan from roots --------------
  5365   _timer.start();
  5366   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5367   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
  5368     _collector->_span, _collector->ref_processor(),
  5369     &(_collector->_markBitMap),
  5370     work_queue(worker_id));
  5372   // Rescan young gen roots first since these are likely
  5373   // coarsely partitioned and may, on that account, constitute
  5374   // the critical path; thus, it's best to start off that
  5375   // work first.
  5376   // ---------- young gen roots --------------
  5378     work_on_young_gen_roots(worker_id, &par_mrias_cl);
  5379     _timer.stop();
  5380     if (PrintCMSStatistics != 0) {
  5381       gclog_or_tty->print_cr(
  5382         "Finished young gen rescan work in %dth thread: %3.3f sec",
  5383         worker_id, _timer.seconds());
  5387   // ---------- remaining roots --------------
  5388   _timer.reset();
  5389   _timer.start();
  5390   gch->gen_process_roots(_collector->_cmsGen->level(),
  5391                          false,     // yg was scanned above
  5392                          false,     // this is parallel code
  5393                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
  5394                          _collector->should_unload_classes(),
  5395                          &par_mrias_cl,
  5396                          NULL,
  5397                          NULL);     // The dirty klasses will be handled below
  5399   assert(_collector->should_unload_classes()
  5400          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
  5401          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
  5402   _timer.stop();
  5403   if (PrintCMSStatistics != 0) {
  5404     gclog_or_tty->print_cr(
  5405       "Finished remaining root rescan work in %dth thread: %3.3f sec",
  5406       worker_id, _timer.seconds());
  5409   // ---------- unhandled CLD scanning ----------
  5410   if (worker_id == 0) { // Single threaded at the moment.
  5411     _timer.reset();
  5412     _timer.start();
  5414     // Scan all new class loader data objects and new dependencies that were
  5415     // introduced during concurrent marking.
  5416     ResourceMark rm;
  5417     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
  5418     for (int i = 0; i < array->length(); i++) {
  5419       par_mrias_cl.do_class_loader_data(array->at(i));
  5422     // We don't need to keep track of new CLDs anymore.
  5423     ClassLoaderDataGraph::remember_new_clds(false);
  5425     _timer.stop();
  5426     if (PrintCMSStatistics != 0) {
  5427       gclog_or_tty->print_cr(
  5428           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
  5429           worker_id, _timer.seconds());
  5433   // ---------- dirty klass scanning ----------
  5434   if (worker_id == 0) { // Single threaded at the moment.
  5435     _timer.reset();
  5436     _timer.start();
  5438     // Scan all classes that was dirtied during the concurrent marking phase.
  5439     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
  5440     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
  5442     _timer.stop();
  5443     if (PrintCMSStatistics != 0) {
  5444       gclog_or_tty->print_cr(
  5445           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
  5446           worker_id, _timer.seconds());
  5450   // We might have added oops to ClassLoaderData::_handles during the
  5451   // concurrent marking phase. These oops point to newly allocated objects
  5452   // that are guaranteed to be kept alive. Either by the direct allocation
  5453   // code, or when the young collector processes the roots. Hence,
  5454   // we don't have to revisit the _handles block during the remark phase.
  5456   // ---------- rescan dirty cards ------------
  5457   _timer.reset();
  5458   _timer.start();
  5460   // Do the rescan tasks for each of the two spaces
  5461   // (cms_space) in turn.
  5462   // "worker_id" is passed to select the task_queue for "worker_id"
  5463   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
  5464   _timer.stop();
  5465   if (PrintCMSStatistics != 0) {
  5466     gclog_or_tty->print_cr(
  5467       "Finished dirty card rescan work in %dth thread: %3.3f sec",
  5468       worker_id, _timer.seconds());
  5471   // ---------- steal work from other threads ...
  5472   // ---------- ... and drain overflow list.
  5473   _timer.reset();
  5474   _timer.start();
  5475   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
  5476   _timer.stop();
  5477   if (PrintCMSStatistics != 0) {
  5478     gclog_or_tty->print_cr(
  5479       "Finished work stealing in %dth thread: %3.3f sec",
  5480       worker_id, _timer.seconds());
  5484 // Note that parameter "i" is not used.
  5485 void
  5486 CMSParMarkTask::do_young_space_rescan(uint worker_id,
  5487   OopsInGenClosure* cl, ContiguousSpace* space,
  5488   HeapWord** chunk_array, size_t chunk_top) {
  5489   // Until all tasks completed:
  5490   // . claim an unclaimed task
  5491   // . compute region boundaries corresponding to task claimed
  5492   //   using chunk_array
  5493   // . par_oop_iterate(cl) over that region
  5495   ResourceMark rm;
  5496   HandleMark   hm;
  5498   SequentialSubTasksDone* pst = space->par_seq_tasks();
  5500   uint nth_task = 0;
  5501   uint n_tasks  = pst->n_tasks();
  5503   if (n_tasks > 0) {
  5504     assert(pst->valid(), "Uninitialized use?");
  5505     HeapWord *start, *end;
  5506     while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5507       // We claimed task # nth_task; compute its boundaries.
  5508       if (chunk_top == 0) {  // no samples were taken
  5509         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
  5510         start = space->bottom();
  5511         end   = space->top();
  5512       } else if (nth_task == 0) {
  5513         start = space->bottom();
  5514         end   = chunk_array[nth_task];
  5515       } else if (nth_task < (uint)chunk_top) {
  5516         assert(nth_task >= 1, "Control point invariant");
  5517         start = chunk_array[nth_task - 1];
  5518         end   = chunk_array[nth_task];
  5519       } else {
  5520         assert(nth_task == (uint)chunk_top, "Control point invariant");
  5521         start = chunk_array[chunk_top - 1];
  5522         end   = space->top();
  5524       MemRegion mr(start, end);
  5525       // Verify that mr is in space
  5526       assert(mr.is_empty() || space->used_region().contains(mr),
  5527              "Should be in space");
  5528       // Verify that "start" is an object boundary
  5529       assert(mr.is_empty() || oop(mr.start())->is_oop(),
  5530              "Should be an oop");
  5531       space->par_oop_iterate(mr, cl);
  5533     pst->all_tasks_completed();
  5537 void
  5538 CMSParRemarkTask::do_dirty_card_rescan_tasks(
  5539   CompactibleFreeListSpace* sp, int i,
  5540   Par_MarkRefsIntoAndScanClosure* cl) {
  5541   // Until all tasks completed:
  5542   // . claim an unclaimed task
  5543   // . compute region boundaries corresponding to task claimed
  5544   // . transfer dirty bits ct->mut for that region
  5545   // . apply rescanclosure to dirty mut bits for that region
  5547   ResourceMark rm;
  5548   HandleMark   hm;
  5550   OopTaskQueue* work_q = work_queue(i);
  5551   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
  5552   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
  5553   // CAUTION: This closure has state that persists across calls to
  5554   // the work method dirty_range_iterate_clear() in that it has
  5555   // imbedded in it a (subtype of) UpwardsObjectClosure. The
  5556   // use of that state in the imbedded UpwardsObjectClosure instance
  5557   // assumes that the cards are always iterated (even if in parallel
  5558   // by several threads) in monotonically increasing order per each
  5559   // thread. This is true of the implementation below which picks
  5560   // card ranges (chunks) in monotonically increasing order globally
  5561   // and, a-fortiori, in monotonically increasing order per thread
  5562   // (the latter order being a subsequence of the former).
  5563   // If the work code below is ever reorganized into a more chaotic
  5564   // work-partitioning form than the current "sequential tasks"
  5565   // paradigm, the use of that persistent state will have to be
  5566   // revisited and modified appropriately. See also related
  5567   // bug 4756801 work on which should examine this code to make
  5568   // sure that the changes there do not run counter to the
  5569   // assumptions made here and necessary for correctness and
  5570   // efficiency. Note also that this code might yield inefficient
  5571   // behaviour in the case of very large objects that span one or
  5572   // more work chunks. Such objects would potentially be scanned
  5573   // several times redundantly. Work on 4756801 should try and
  5574   // address that performance anomaly if at all possible. XXX
  5575   MemRegion  full_span  = _collector->_span;
  5576   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
  5577   MarkFromDirtyCardsClosure
  5578     greyRescanClosure(_collector, full_span, // entire span of interest
  5579                       sp, bm, work_q, cl);
  5581   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  5582   assert(pst->valid(), "Uninitialized use?");
  5583   uint nth_task = 0;
  5584   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
  5585   MemRegion span = sp->used_region();
  5586   HeapWord* start_addr = span.start();
  5587   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
  5588                                            alignment);
  5589   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
  5590   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
  5591          start_addr, "Check alignment");
  5592   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
  5593          chunk_size, "Check alignment");
  5595   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5596     // Having claimed the nth_task, compute corresponding mem-region,
  5597     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
  5598     // The alignment restriction ensures that we do not need any
  5599     // synchronization with other gang-workers while setting or
  5600     // clearing bits in thus chunk of the MUT.
  5601     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
  5602                                     start_addr + (nth_task+1)*chunk_size);
  5603     // The last chunk's end might be way beyond end of the
  5604     // used region. In that case pull back appropriately.
  5605     if (this_span.end() > end_addr) {
  5606       this_span.set_end(end_addr);
  5607       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
  5609     // Iterate over the dirty cards covering this chunk, marking them
  5610     // precleaned, and setting the corresponding bits in the mod union
  5611     // table. Since we have been careful to partition at Card and MUT-word
  5612     // boundaries no synchronization is needed between parallel threads.
  5613     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
  5614                                                  &modUnionClosure);
  5616     // Having transferred these marks into the modUnionTable,
  5617     // rescan the marked objects on the dirty cards in the modUnionTable.
  5618     // Even if this is at a synchronous collection, the initial marking
  5619     // may have been done during an asynchronous collection so there
  5620     // may be dirty bits in the mod-union table.
  5621     _collector->_modUnionTable.dirty_range_iterate_clear(
  5622                   this_span, &greyRescanClosure);
  5623     _collector->_modUnionTable.verifyNoOneBitsInRange(
  5624                                  this_span.start(),
  5625                                  this_span.end());
  5627   pst->all_tasks_completed();  // declare that i am done
  5630 // . see if we can share work_queues with ParNew? XXX
  5631 void
  5632 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
  5633                                 int* seed) {
  5634   OopTaskQueue* work_q = work_queue(i);
  5635   NOT_PRODUCT(int num_steals = 0;)
  5636   oop obj_to_scan;
  5637   CMSBitMap* bm = &(_collector->_markBitMap);
  5639   while (true) {
  5640     // Completely finish any left over work from (an) earlier round(s)
  5641     cl->trim_queue(0);
  5642     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  5643                                          (size_t)ParGCDesiredObjsFromOverflowList);
  5644     // Now check if there's any work in the overflow list
  5645     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
  5646     // only affects the number of attempts made to get work from the
  5647     // overflow list and does not affect the number of workers.  Just
  5648     // pass ParallelGCThreads so this behavior is unchanged.
  5649     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5650                                                 work_q,
  5651                                                 ParallelGCThreads)) {
  5652       // found something in global overflow list;
  5653       // not yet ready to go stealing work from others.
  5654       // We'd like to assert(work_q->size() != 0, ...)
  5655       // because we just took work from the overflow list,
  5656       // but of course we can't since all of that could have
  5657       // been already stolen from us.
  5658       // "He giveth and He taketh away."
  5659       continue;
  5661     // Verify that we have no work before we resort to stealing
  5662     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5663     // Try to steal from other queues that have work
  5664     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5665       NOT_PRODUCT(num_steals++;)
  5666       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5667       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5668       // Do scanning work
  5669       obj_to_scan->oop_iterate(cl);
  5670       // Loop around, finish this work, and try to steal some more
  5671     } else if (terminator()->offer_termination()) {
  5672         break;  // nirvana from the infinite cycle
  5675   NOT_PRODUCT(
  5676     if (PrintCMSStatistics != 0) {
  5677       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5680   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
  5681          "Else our work is not yet done");
  5684 // Record object boundaries in _eden_chunk_array by sampling the eden
  5685 // top in the slow-path eden object allocation code path and record
  5686 // the boundaries, if CMSEdenChunksRecordAlways is true. If
  5687 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
  5688 // sampling in sample_eden() that activates during the part of the
  5689 // preclean phase.
  5690 void CMSCollector::sample_eden_chunk() {
  5691   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
  5692     if (_eden_chunk_lock->try_lock()) {
  5693       // Record a sample. This is the critical section. The contents
  5694       // of the _eden_chunk_array have to be non-decreasing in the
  5695       // address order.
  5696       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
  5697       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
  5698              "Unexpected state of Eden");
  5699       if (_eden_chunk_index == 0 ||
  5700           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
  5701            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
  5702                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
  5703         _eden_chunk_index++;  // commit sample
  5705       _eden_chunk_lock->unlock();
  5710 // Return a thread-local PLAB recording array, as appropriate.
  5711 void* CMSCollector::get_data_recorder(int thr_num) {
  5712   if (_survivor_plab_array != NULL &&
  5713       (CMSPLABRecordAlways ||
  5714        (_collectorState > Marking && _collectorState < FinalMarking))) {
  5715     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
  5716     ChunkArray* ca = &_survivor_plab_array[thr_num];
  5717     ca->reset();   // clear it so that fresh data is recorded
  5718     return (void*) ca;
  5719   } else {
  5720     return NULL;
  5724 // Reset all the thread-local PLAB recording arrays
  5725 void CMSCollector::reset_survivor_plab_arrays() {
  5726   for (uint i = 0; i < ParallelGCThreads; i++) {
  5727     _survivor_plab_array[i].reset();
  5731 // Merge the per-thread plab arrays into the global survivor chunk
  5732 // array which will provide the partitioning of the survivor space
  5733 // for CMS initial scan and rescan.
  5734 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
  5735                                               int no_of_gc_threads) {
  5736   assert(_survivor_plab_array  != NULL, "Error");
  5737   assert(_survivor_chunk_array != NULL, "Error");
  5738   assert(_collectorState == FinalMarking ||
  5739          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
  5740   for (int j = 0; j < no_of_gc_threads; j++) {
  5741     _cursor[j] = 0;
  5743   HeapWord* top = surv->top();
  5744   size_t i;
  5745   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
  5746     HeapWord* min_val = top;          // Higher than any PLAB address
  5747     uint      min_tid = 0;            // position of min_val this round
  5748     for (int j = 0; j < no_of_gc_threads; j++) {
  5749       ChunkArray* cur_sca = &_survivor_plab_array[j];
  5750       if (_cursor[j] == cur_sca->end()) {
  5751         continue;
  5753       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
  5754       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
  5755       assert(surv->used_region().contains(cur_val), "Out of bounds value");
  5756       if (cur_val < min_val) {
  5757         min_tid = j;
  5758         min_val = cur_val;
  5759       } else {
  5760         assert(cur_val < top, "All recorded addresses should be less");
  5763     // At this point min_val and min_tid are respectively
  5764     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
  5765     // and the thread (j) that witnesses that address.
  5766     // We record this address in the _survivor_chunk_array[i]
  5767     // and increment _cursor[min_tid] prior to the next round i.
  5768     if (min_val == top) {
  5769       break;
  5771     _survivor_chunk_array[i] = min_val;
  5772     _cursor[min_tid]++;
  5774   // We are all done; record the size of the _survivor_chunk_array
  5775   _survivor_chunk_index = i; // exclusive: [0, i)
  5776   if (PrintCMSStatistics > 0) {
  5777     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
  5779   // Verify that we used up all the recorded entries
  5780   #ifdef ASSERT
  5781     size_t total = 0;
  5782     for (int j = 0; j < no_of_gc_threads; j++) {
  5783       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
  5784       total += _cursor[j];
  5786     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
  5787     // Check that the merged array is in sorted order
  5788     if (total > 0) {
  5789       for (size_t i = 0; i < total - 1; i++) {
  5790         if (PrintCMSStatistics > 0) {
  5791           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
  5792                               i, _survivor_chunk_array[i]);
  5794         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
  5795                "Not sorted");
  5798   #endif // ASSERT
  5801 // Set up the space's par_seq_tasks structure for work claiming
  5802 // for parallel initial scan and rescan of young gen.
  5803 // See ParRescanTask where this is currently used.
  5804 void
  5805 CMSCollector::
  5806 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
  5807   assert(n_threads > 0, "Unexpected n_threads argument");
  5808   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  5810   // Eden space
  5811   if (!dng->eden()->is_empty()) {
  5812     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
  5813     assert(!pst->valid(), "Clobbering existing data?");
  5814     // Each valid entry in [0, _eden_chunk_index) represents a task.
  5815     size_t n_tasks = _eden_chunk_index + 1;
  5816     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
  5817     // Sets the condition for completion of the subtask (how many threads
  5818     // need to finish in order to be done).
  5819     pst->set_n_threads(n_threads);
  5820     pst->set_n_tasks((int)n_tasks);
  5823   // Merge the survivor plab arrays into _survivor_chunk_array
  5824   if (_survivor_plab_array != NULL) {
  5825     merge_survivor_plab_arrays(dng->from(), n_threads);
  5826   } else {
  5827     assert(_survivor_chunk_index == 0, "Error");
  5830   // To space
  5832     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
  5833     assert(!pst->valid(), "Clobbering existing data?");
  5834     // Sets the condition for completion of the subtask (how many threads
  5835     // need to finish in order to be done).
  5836     pst->set_n_threads(n_threads);
  5837     pst->set_n_tasks(1);
  5838     assert(pst->valid(), "Error");
  5841   // From space
  5843     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
  5844     assert(!pst->valid(), "Clobbering existing data?");
  5845     size_t n_tasks = _survivor_chunk_index + 1;
  5846     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
  5847     // Sets the condition for completion of the subtask (how many threads
  5848     // need to finish in order to be done).
  5849     pst->set_n_threads(n_threads);
  5850     pst->set_n_tasks((int)n_tasks);
  5851     assert(pst->valid(), "Error");
  5855 // Parallel version of remark
  5856 void CMSCollector::do_remark_parallel() {
  5857   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5858   FlexibleWorkGang* workers = gch->workers();
  5859   assert(workers != NULL, "Need parallel worker threads.");
  5860   // Choose to use the number of GC workers most recently set
  5861   // into "active_workers".  If active_workers is not set, set it
  5862   // to ParallelGCThreads.
  5863   int n_workers = workers->active_workers();
  5864   if (n_workers == 0) {
  5865     assert(n_workers > 0, "Should have been set during scavenge");
  5866     n_workers = ParallelGCThreads;
  5867     workers->set_active_workers(n_workers);
  5869   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  5871   CMSParRemarkTask tsk(this,
  5872     cms_space,
  5873     n_workers, workers, task_queues());
  5875   // Set up for parallel process_roots work.
  5876   gch->set_par_threads(n_workers);
  5877   // We won't be iterating over the cards in the card table updating
  5878   // the younger_gen cards, so we shouldn't call the following else
  5879   // the verification code as well as subsequent younger_refs_iterate
  5880   // code would get confused. XXX
  5881   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
  5883   // The young gen rescan work will not be done as part of
  5884   // process_roots (which currently doesn't know how to
  5885   // parallelize such a scan), but rather will be broken up into
  5886   // a set of parallel tasks (via the sampling that the [abortable]
  5887   // preclean phase did of EdenSpace, plus the [two] tasks of
  5888   // scanning the [two] survivor spaces. Further fine-grain
  5889   // parallelization of the scanning of the survivor spaces
  5890   // themselves, and of precleaning of the younger gen itself
  5891   // is deferred to the future.
  5892   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
  5894   // The dirty card rescan work is broken up into a "sequence"
  5895   // of parallel tasks (per constituent space) that are dynamically
  5896   // claimed by the parallel threads.
  5897   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5899   // It turns out that even when we're using 1 thread, doing the work in a
  5900   // separate thread causes wide variance in run times.  We can't help this
  5901   // in the multi-threaded case, but we special-case n=1 here to get
  5902   // repeatable measurements of the 1-thread overhead of the parallel code.
  5903   if (n_workers > 1) {
  5904     // Make refs discovery MT-safe, if it isn't already: it may not
  5905     // necessarily be so, since it's possible that we are doing
  5906     // ST marking.
  5907     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
  5908     GenCollectedHeap::StrongRootsScope srs(gch);
  5909     workers->run_task(&tsk);
  5910   } else {
  5911     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
  5912     GenCollectedHeap::StrongRootsScope srs(gch);
  5913     tsk.work(0);
  5916   gch->set_par_threads(0);  // 0 ==> non-parallel.
  5917   // restore, single-threaded for now, any preserved marks
  5918   // as a result of work_q overflow
  5919   restore_preserved_marks_if_any();
  5922 // Non-parallel version of remark
  5923 void CMSCollector::do_remark_non_parallel() {
  5924   ResourceMark rm;
  5925   HandleMark   hm;
  5926   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5927   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
  5929   MarkRefsIntoAndScanClosure
  5930     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
  5931              &_markStack, this,
  5932              false /* should_yield */, false /* not precleaning */);
  5933   MarkFromDirtyCardsClosure
  5934     markFromDirtyCardsClosure(this, _span,
  5935                               NULL,  // space is set further below
  5936                               &_markBitMap, &_markStack, &mrias_cl);
  5938     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
  5939     // Iterate over the dirty cards, setting the corresponding bits in the
  5940     // mod union table.
  5942       ModUnionClosure modUnionClosure(&_modUnionTable);
  5943       _ct->ct_bs()->dirty_card_iterate(
  5944                       _cmsGen->used_region(),
  5945                       &modUnionClosure);
  5947     // Having transferred these marks into the modUnionTable, we just need
  5948     // to rescan the marked objects on the dirty cards in the modUnionTable.
  5949     // The initial marking may have been done during an asynchronous
  5950     // collection so there may be dirty bits in the mod-union table.
  5951     const int alignment =
  5952       CardTableModRefBS::card_size * BitsPerWord;
  5954       // ... First handle dirty cards in CMS gen
  5955       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
  5956       MemRegion ur = _cmsGen->used_region();
  5957       HeapWord* lb = ur.start();
  5958       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5959       MemRegion cms_span(lb, ub);
  5960       _modUnionTable.dirty_range_iterate_clear(cms_span,
  5961                                                &markFromDirtyCardsClosure);
  5962       verify_work_stacks_empty();
  5963       if (PrintCMSStatistics != 0) {
  5964         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
  5965           markFromDirtyCardsClosure.num_dirty_cards());
  5969   if (VerifyDuringGC &&
  5970       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  5971     HandleMark hm;  // Discard invalid handles created during verification
  5972     Universe::verify();
  5975     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
  5977     verify_work_stacks_empty();
  5979     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  5980     GenCollectedHeap::StrongRootsScope srs(gch);
  5982     gch->gen_process_roots(_cmsGen->level(),
  5983                            true,  // younger gens as roots
  5984                            false, // use the local StrongRootsScope
  5985                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
  5986                            should_unload_classes(),
  5987                            &mrias_cl,
  5988                            NULL,
  5989                            NULL); // The dirty klasses will be handled below
  5991     assert(should_unload_classes()
  5992            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
  5993            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
  5997     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
  5999     verify_work_stacks_empty();
  6001     // Scan all class loader data objects that might have been introduced
  6002     // during concurrent marking.
  6003     ResourceMark rm;
  6004     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
  6005     for (int i = 0; i < array->length(); i++) {
  6006       mrias_cl.do_class_loader_data(array->at(i));
  6009     // We don't need to keep track of new CLDs anymore.
  6010     ClassLoaderDataGraph::remember_new_clds(false);
  6012     verify_work_stacks_empty();
  6016     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
  6018     verify_work_stacks_empty();
  6020     RemarkKlassClosure remark_klass_closure(&mrias_cl);
  6021     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
  6023     verify_work_stacks_empty();
  6026   // We might have added oops to ClassLoaderData::_handles during the
  6027   // concurrent marking phase. These oops point to newly allocated objects
  6028   // that are guaranteed to be kept alive. Either by the direct allocation
  6029   // code, or when the young collector processes the roots. Hence,
  6030   // we don't have to revisit the _handles block during the remark phase.
  6032   verify_work_stacks_empty();
  6033   // Restore evacuated mark words, if any, used for overflow list links
  6034   if (!CMSOverflowEarlyRestoration) {
  6035     restore_preserved_marks_if_any();
  6037   verify_overflow_empty();
  6040 ////////////////////////////////////////////////////////
  6041 // Parallel Reference Processing Task Proxy Class
  6042 ////////////////////////////////////////////////////////
  6043 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
  6044   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  6045   CMSCollector*          _collector;
  6046   CMSBitMap*             _mark_bit_map;
  6047   const MemRegion        _span;
  6048   ProcessTask&           _task;
  6050 public:
  6051   CMSRefProcTaskProxy(ProcessTask&     task,
  6052                       CMSCollector*    collector,
  6053                       const MemRegion& span,
  6054                       CMSBitMap*       mark_bit_map,
  6055                       AbstractWorkGang* workers,
  6056                       OopTaskQueueSet* task_queues):
  6057     // XXX Should superclass AGTWOQ also know about AWG since it knows
  6058     // about the task_queues used by the AWG? Then it could initialize
  6059     // the terminator() object. See 6984287. The set_for_termination()
  6060     // below is a temporary band-aid for the regression in 6984287.
  6061     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
  6062       task_queues),
  6063     _task(task),
  6064     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
  6066     assert(_collector->_span.equals(_span) && !_span.is_empty(),
  6067            "Inconsistency in _span");
  6068     set_for_termination(workers->active_workers());
  6071   OopTaskQueueSet* task_queues() { return queues(); }
  6073   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  6075   void do_work_steal(int i,
  6076                      CMSParDrainMarkingStackClosure* drain,
  6077                      CMSParKeepAliveClosure* keep_alive,
  6078                      int* seed);
  6080   virtual void work(uint worker_id);
  6081 };
  6083 void CMSRefProcTaskProxy::work(uint worker_id) {
  6084   ResourceMark rm;
  6085   HandleMark hm;
  6086   assert(_collector->_span.equals(_span), "Inconsistency in _span");
  6087   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
  6088                                         _mark_bit_map,
  6089                                         work_queue(worker_id));
  6090   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
  6091                                                  _mark_bit_map,
  6092                                                  work_queue(worker_id));
  6093   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
  6094   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
  6095   if (_task.marks_oops_alive()) {
  6096     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
  6097                   _collector->hash_seed(worker_id));
  6099   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
  6100   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
  6103 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
  6104   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  6105   EnqueueTask& _task;
  6107 public:
  6108   CMSRefEnqueueTaskProxy(EnqueueTask& task)
  6109     : AbstractGangTask("Enqueue reference objects in parallel"),
  6110       _task(task)
  6111   { }
  6113   virtual void work(uint worker_id)
  6115     _task.work(worker_id);
  6117 };
  6119 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
  6120   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
  6121    _span(span),
  6122    _bit_map(bit_map),
  6123    _work_queue(work_queue),
  6124    _mark_and_push(collector, span, bit_map, work_queue),
  6125    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  6126                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
  6127 { }
  6129 // . see if we can share work_queues with ParNew? XXX
  6130 void CMSRefProcTaskProxy::do_work_steal(int i,
  6131   CMSParDrainMarkingStackClosure* drain,
  6132   CMSParKeepAliveClosure* keep_alive,
  6133   int* seed) {
  6134   OopTaskQueue* work_q = work_queue(i);
  6135   NOT_PRODUCT(int num_steals = 0;)
  6136   oop obj_to_scan;
  6138   while (true) {
  6139     // Completely finish any left over work from (an) earlier round(s)
  6140     drain->trim_queue(0);
  6141     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  6142                                          (size_t)ParGCDesiredObjsFromOverflowList);
  6143     // Now check if there's any work in the overflow list
  6144     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
  6145     // only affects the number of attempts made to get work from the
  6146     // overflow list and does not affect the number of workers.  Just
  6147     // pass ParallelGCThreads so this behavior is unchanged.
  6148     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  6149                                                 work_q,
  6150                                                 ParallelGCThreads)) {
  6151       // Found something in global overflow list;
  6152       // not yet ready to go stealing work from others.
  6153       // We'd like to assert(work_q->size() != 0, ...)
  6154       // because we just took work from the overflow list,
  6155       // but of course we can't, since all of that might have
  6156       // been already stolen from us.
  6157       continue;
  6159     // Verify that we have no work before we resort to stealing
  6160     assert(work_q->size() == 0, "Have work, shouldn't steal");
  6161     // Try to steal from other queues that have work
  6162     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  6163       NOT_PRODUCT(num_steals++;)
  6164       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  6165       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  6166       // Do scanning work
  6167       obj_to_scan->oop_iterate(keep_alive);
  6168       // Loop around, finish this work, and try to steal some more
  6169     } else if (terminator()->offer_termination()) {
  6170       break;  // nirvana from the infinite cycle
  6173   NOT_PRODUCT(
  6174     if (PrintCMSStatistics != 0) {
  6175       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  6180 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
  6182   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6183   FlexibleWorkGang* workers = gch->workers();
  6184   assert(workers != NULL, "Need parallel worker threads.");
  6185   CMSRefProcTaskProxy rp_task(task, &_collector,
  6186                               _collector.ref_processor()->span(),
  6187                               _collector.markBitMap(),
  6188                               workers, _collector.task_queues());
  6189   workers->run_task(&rp_task);
  6192 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
  6195   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6196   FlexibleWorkGang* workers = gch->workers();
  6197   assert(workers != NULL, "Need parallel worker threads.");
  6198   CMSRefEnqueueTaskProxy enq_task(task);
  6199   workers->run_task(&enq_task);
  6202 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
  6204   ResourceMark rm;
  6205   HandleMark   hm;
  6207   ReferenceProcessor* rp = ref_processor();
  6208   assert(rp->span().equals(_span), "Spans should be equal");
  6209   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
  6210   // Process weak references.
  6211   rp->setup_policy(clear_all_soft_refs);
  6212   verify_work_stacks_empty();
  6214   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
  6215                                           &_markStack, false /* !preclean */);
  6216   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
  6217                                 _span, &_markBitMap, &_markStack,
  6218                                 &cmsKeepAliveClosure, false /* !preclean */);
  6220     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
  6222     ReferenceProcessorStats stats;
  6223     if (rp->processing_is_mt()) {
  6224       // Set the degree of MT here.  If the discovery is done MT, there
  6225       // may have been a different number of threads doing the discovery
  6226       // and a different number of discovered lists may have Ref objects.
  6227       // That is OK as long as the Reference lists are balanced (see
  6228       // balance_all_queues() and balance_queues()).
  6229       GenCollectedHeap* gch = GenCollectedHeap::heap();
  6230       int active_workers = ParallelGCThreads;
  6231       FlexibleWorkGang* workers = gch->workers();
  6232       if (workers != NULL) {
  6233         active_workers = workers->active_workers();
  6234         // The expectation is that active_workers will have already
  6235         // been set to a reasonable value.  If it has not been set,
  6236         // investigate.
  6237         assert(active_workers > 0, "Should have been set during scavenge");
  6239       rp->set_active_mt_degree(active_workers);
  6240       CMSRefProcTaskExecutor task_executor(*this);
  6241       stats = rp->process_discovered_references(&_is_alive_closure,
  6242                                         &cmsKeepAliveClosure,
  6243                                         &cmsDrainMarkingStackClosure,
  6244                                         &task_executor,
  6245                                         _gc_timer_cm,
  6246                                         _gc_tracer_cm->gc_id());
  6247     } else {
  6248       stats = rp->process_discovered_references(&_is_alive_closure,
  6249                                         &cmsKeepAliveClosure,
  6250                                         &cmsDrainMarkingStackClosure,
  6251                                         NULL,
  6252                                         _gc_timer_cm,
  6253                                         _gc_tracer_cm->gc_id());
  6255     _gc_tracer_cm->report_gc_reference_stats(stats);
  6259   // This is the point where the entire marking should have completed.
  6260   verify_work_stacks_empty();
  6262   if (should_unload_classes()) {
  6264       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
  6266       // Unload classes and purge the SystemDictionary.
  6267       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
  6269       // Unload nmethods.
  6270       CodeCache::do_unloading(&_is_alive_closure, purged_class);
  6272       // Prune dead klasses from subklass/sibling/implementor lists.
  6273       Klass::clean_weak_klass_links(&_is_alive_closure);
  6277       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
  6278       // Clean up unreferenced symbols in symbol table.
  6279       SymbolTable::unlink();
  6283       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
  6284       // Delete entries for dead interned strings.
  6285       StringTable::unlink(&_is_alive_closure);
  6290   // Restore any preserved marks as a result of mark stack or
  6291   // work queue overflow
  6292   restore_preserved_marks_if_any();  // done single-threaded for now
  6294   rp->set_enqueuing_is_done(true);
  6295   if (rp->processing_is_mt()) {
  6296     rp->balance_all_queues();
  6297     CMSRefProcTaskExecutor task_executor(*this);
  6298     rp->enqueue_discovered_references(&task_executor);
  6299   } else {
  6300     rp->enqueue_discovered_references(NULL);
  6302   rp->verify_no_references_recorded();
  6303   assert(!rp->discovery_enabled(), "should have been disabled");
  6306 #ifndef PRODUCT
  6307 void CMSCollector::check_correct_thread_executing() {
  6308   Thread* t = Thread::current();
  6309   // Only the VM thread or the CMS thread should be here.
  6310   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
  6311          "Unexpected thread type");
  6312   // If this is the vm thread, the foreground process
  6313   // should not be waiting.  Note that _foregroundGCIsActive is
  6314   // true while the foreground collector is waiting.
  6315   if (_foregroundGCShouldWait) {
  6316     // We cannot be the VM thread
  6317     assert(t->is_ConcurrentGC_thread(),
  6318            "Should be CMS thread");
  6319   } else {
  6320     // We can be the CMS thread only if we are in a stop-world
  6321     // phase of CMS collection.
  6322     if (t->is_ConcurrentGC_thread()) {
  6323       assert(_collectorState == InitialMarking ||
  6324              _collectorState == FinalMarking,
  6325              "Should be a stop-world phase");
  6326       // The CMS thread should be holding the CMS_token.
  6327       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6328              "Potential interference with concurrently "
  6329              "executing VM thread");
  6333 #endif
  6335 void CMSCollector::sweep(bool asynch) {
  6336   assert(_collectorState == Sweeping, "just checking");
  6337   check_correct_thread_executing();
  6338   verify_work_stacks_empty();
  6339   verify_overflow_empty();
  6340   increment_sweep_count();
  6341   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
  6343   _inter_sweep_timer.stop();
  6344   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
  6345   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
  6347   assert(!_intra_sweep_timer.is_active(), "Should not be active");
  6348   _intra_sweep_timer.reset();
  6349   _intra_sweep_timer.start();
  6350   if (asynch) {
  6351     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6352     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
  6353     // First sweep the old gen
  6355       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  6356                                bitMapLock());
  6357       sweepWork(_cmsGen, asynch);
  6360     // Update Universe::_heap_*_at_gc figures.
  6361     // We need all the free list locks to make the abstract state
  6362     // transition from Sweeping to Resetting. See detailed note
  6363     // further below.
  6365       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
  6366       // Update heap occupancy information which is used as
  6367       // input to soft ref clearing policy at the next gc.
  6368       Universe::update_heap_info_at_gc();
  6369       _collectorState = Resizing;
  6371   } else {
  6372     // already have needed locks
  6373     sweepWork(_cmsGen,  asynch);
  6374     // Update heap occupancy information which is used as
  6375     // input to soft ref clearing policy at the next gc.
  6376     Universe::update_heap_info_at_gc();
  6377     _collectorState = Resizing;
  6379   verify_work_stacks_empty();
  6380   verify_overflow_empty();
  6382   if (should_unload_classes()) {
  6383     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
  6384     // requires that the virtual spaces are stable and not deleted.
  6385     ClassLoaderDataGraph::set_should_purge(true);
  6388   _intra_sweep_timer.stop();
  6389   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
  6391   _inter_sweep_timer.reset();
  6392   _inter_sweep_timer.start();
  6394   // We need to use a monotonically non-deccreasing time in ms
  6395   // or we will see time-warp warnings and os::javaTimeMillis()
  6396   // does not guarantee monotonicity.
  6397   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  6398   update_time_of_last_gc(now);
  6400   // NOTE on abstract state transitions:
  6401   // Mutators allocate-live and/or mark the mod-union table dirty
  6402   // based on the state of the collection.  The former is done in
  6403   // the interval [Marking, Sweeping] and the latter in the interval
  6404   // [Marking, Sweeping).  Thus the transitions into the Marking state
  6405   // and out of the Sweeping state must be synchronously visible
  6406   // globally to the mutators.
  6407   // The transition into the Marking state happens with the world
  6408   // stopped so the mutators will globally see it.  Sweeping is
  6409   // done asynchronously by the background collector so the transition
  6410   // from the Sweeping state to the Resizing state must be done
  6411   // under the freelistLock (as is the check for whether to
  6412   // allocate-live and whether to dirty the mod-union table).
  6413   assert(_collectorState == Resizing, "Change of collector state to"
  6414     " Resizing must be done under the freelistLocks (plural)");
  6416   // Now that sweeping has been completed, we clear
  6417   // the incremental_collection_failed flag,
  6418   // thus inviting a younger gen collection to promote into
  6419   // this generation. If such a promotion may still fail,
  6420   // the flag will be set again when a young collection is
  6421   // attempted.
  6422   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6423   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
  6424   gch->update_full_collections_completed(_collection_count_start);
  6427 // FIX ME!!! Looks like this belongs in CFLSpace, with
  6428 // CMSGen merely delegating to it.
  6429 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
  6430   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
  6431   HeapWord*  minAddr        = _cmsSpace->bottom();
  6432   HeapWord*  largestAddr    =
  6433     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
  6434   if (largestAddr == NULL) {
  6435     // The dictionary appears to be empty.  In this case
  6436     // try to coalesce at the end of the heap.
  6437     largestAddr = _cmsSpace->end();
  6439   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
  6440   size_t nearLargestOffset =
  6441     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
  6442   if (PrintFLSStatistics != 0) {
  6443     gclog_or_tty->print_cr(
  6444       "CMS: Large Block: " PTR_FORMAT ";"
  6445       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
  6446       largestAddr,
  6447       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
  6449   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
  6452 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
  6453   return addr >= _cmsSpace->nearLargestChunk();
  6456 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
  6457   return _cmsSpace->find_chunk_at_end();
  6460 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
  6461                                                     bool full) {
  6462   // The next lower level has been collected.  Gather any statistics
  6463   // that are of interest at this point.
  6464   if (!full && (current_level + 1) == level()) {
  6465     // Gather statistics on the young generation collection.
  6466     collector()->stats().record_gc0_end(used());
  6470 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
  6471   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6472   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  6473     "Wrong type of heap");
  6474   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
  6475     gch->gen_policy()->size_policy();
  6476   assert(sp->is_gc_cms_adaptive_size_policy(),
  6477     "Wrong type of size policy");
  6478   return sp;
  6481 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
  6482   if (PrintGCDetails && Verbose) {
  6483     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
  6485   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
  6486   _debug_collection_type =
  6487     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
  6488   if (PrintGCDetails && Verbose) {
  6489     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
  6493 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
  6494   bool asynch) {
  6495   // We iterate over the space(s) underlying this generation,
  6496   // checking the mark bit map to see if the bits corresponding
  6497   // to specific blocks are marked or not. Blocks that are
  6498   // marked are live and are not swept up. All remaining blocks
  6499   // are swept up, with coalescing on-the-fly as we sweep up
  6500   // contiguous free and/or garbage blocks:
  6501   // We need to ensure that the sweeper synchronizes with allocators
  6502   // and stop-the-world collectors. In particular, the following
  6503   // locks are used:
  6504   // . CMS token: if this is held, a stop the world collection cannot occur
  6505   // . freelistLock: if this is held no allocation can occur from this
  6506   //                 generation by another thread
  6507   // . bitMapLock: if this is held, no other thread can access or update
  6508   //
  6510   // Note that we need to hold the freelistLock if we use
  6511   // block iterate below; else the iterator might go awry if
  6512   // a mutator (or promotion) causes block contents to change
  6513   // (for instance if the allocator divvies up a block).
  6514   // If we hold the free list lock, for all practical purposes
  6515   // young generation GC's can't occur (they'll usually need to
  6516   // promote), so we might as well prevent all young generation
  6517   // GC's while we do a sweeping step. For the same reason, we might
  6518   // as well take the bit map lock for the entire duration
  6520   // check that we hold the requisite locks
  6521   assert(have_cms_token(), "Should hold cms token");
  6522   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
  6523          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
  6524         "Should possess CMS token to sweep");
  6525   assert_lock_strong(gen->freelistLock());
  6526   assert_lock_strong(bitMapLock());
  6528   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
  6529   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
  6530   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
  6531                                       _inter_sweep_estimate.padded_average(),
  6532                                       _intra_sweep_estimate.padded_average());
  6533   gen->setNearLargestChunk();
  6536     SweepClosure sweepClosure(this, gen, &_markBitMap,
  6537                             CMSYield && asynch);
  6538     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
  6539     // We need to free-up/coalesce garbage/blocks from a
  6540     // co-terminal free run. This is done in the SweepClosure
  6541     // destructor; so, do not remove this scope, else the
  6542     // end-of-sweep-census below will be off by a little bit.
  6544   gen->cmsSpace()->sweep_completed();
  6545   gen->cmsSpace()->endSweepFLCensus(sweep_count());
  6546   if (should_unload_classes()) {                // unloaded classes this cycle,
  6547     _concurrent_cycles_since_last_unload = 0;   // ... reset count
  6548   } else {                                      // did not unload classes,
  6549     _concurrent_cycles_since_last_unload++;     // ... increment count
  6553 // Reset CMS data structures (for now just the marking bit map)
  6554 // preparatory for the next cycle.
  6555 void CMSCollector::reset(bool asynch) {
  6556   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6557   CMSAdaptiveSizePolicy* sp = size_policy();
  6558   AdaptiveSizePolicyOutput(sp, gch->total_collections());
  6559   if (asynch) {
  6560     CMSTokenSyncWithLocks ts(true, bitMapLock());
  6562     // If the state is not "Resetting", the foreground  thread
  6563     // has done a collection and the resetting.
  6564     if (_collectorState != Resetting) {
  6565       assert(_collectorState == Idling, "The state should only change"
  6566         " because the foreground collector has finished the collection");
  6567       return;
  6570     // Clear the mark bitmap (no grey objects to start with)
  6571     // for the next cycle.
  6572     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6573     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
  6575     HeapWord* curAddr = _markBitMap.startWord();
  6576     while (curAddr < _markBitMap.endWord()) {
  6577       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
  6578       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
  6579       _markBitMap.clear_large_range(chunk);
  6580       if (ConcurrentMarkSweepThread::should_yield() &&
  6581           !foregroundGCIsActive() &&
  6582           CMSYield) {
  6583         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6584                "CMS thread should hold CMS token");
  6585         assert_lock_strong(bitMapLock());
  6586         bitMapLock()->unlock();
  6587         ConcurrentMarkSweepThread::desynchronize(true);
  6588         ConcurrentMarkSweepThread::acknowledge_yield_request();
  6589         stopTimer();
  6590         if (PrintCMSStatistics != 0) {
  6591           incrementYields();
  6593         icms_wait();
  6595         // See the comment in coordinator_yield()
  6596         for (unsigned i = 0; i < CMSYieldSleepCount &&
  6597                          ConcurrentMarkSweepThread::should_yield() &&
  6598                          !CMSCollector::foregroundGCIsActive(); ++i) {
  6599           os::sleep(Thread::current(), 1, false);
  6600           ConcurrentMarkSweepThread::acknowledge_yield_request();
  6603         ConcurrentMarkSweepThread::synchronize(true);
  6604         bitMapLock()->lock_without_safepoint_check();
  6605         startTimer();
  6607       curAddr = chunk.end();
  6609     // A successful mostly concurrent collection has been done.
  6610     // Because only the full (i.e., concurrent mode failure) collections
  6611     // are being measured for gc overhead limits, clean the "near" flag
  6612     // and count.
  6613     sp->reset_gc_overhead_limit_count();
  6614     _collectorState = Idling;
  6615   } else {
  6616     // already have the lock
  6617     assert(_collectorState == Resetting, "just checking");
  6618     assert_lock_strong(bitMapLock());
  6619     _markBitMap.clear_all();
  6620     _collectorState = Idling;
  6623   // Stop incremental mode after a cycle completes, so that any future cycles
  6624   // are triggered by allocation.
  6625   stop_icms();
  6627   NOT_PRODUCT(
  6628     if (RotateCMSCollectionTypes) {
  6629       _cmsGen->rotate_debug_collection_type();
  6633   register_gc_end();
  6636 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
  6637   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  6638   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6639   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
  6640   TraceCollectorStats tcs(counters());
  6642   switch (op) {
  6643     case CMS_op_checkpointRootsInitial: {
  6644       SvcGCMarker sgcm(SvcGCMarker::OTHER);
  6645       checkpointRootsInitial(true);       // asynch
  6646       if (PrintGC) {
  6647         _cmsGen->printOccupancy("initial-mark");
  6649       break;
  6651     case CMS_op_checkpointRootsFinal: {
  6652       SvcGCMarker sgcm(SvcGCMarker::OTHER);
  6653       checkpointRootsFinal(true,    // asynch
  6654                            false,   // !clear_all_soft_refs
  6655                            false);  // !init_mark_was_synchronous
  6656       if (PrintGC) {
  6657         _cmsGen->printOccupancy("remark");
  6659       break;
  6661     default:
  6662       fatal("No such CMS_op");
  6666 #ifndef PRODUCT
  6667 size_t const CMSCollector::skip_header_HeapWords() {
  6668   return FreeChunk::header_size();
  6671 // Try and collect here conditions that should hold when
  6672 // CMS thread is exiting. The idea is that the foreground GC
  6673 // thread should not be blocked if it wants to terminate
  6674 // the CMS thread and yet continue to run the VM for a while
  6675 // after that.
  6676 void CMSCollector::verify_ok_to_terminate() const {
  6677   assert(Thread::current()->is_ConcurrentGC_thread(),
  6678          "should be called by CMS thread");
  6679   assert(!_foregroundGCShouldWait, "should be false");
  6680   // We could check here that all the various low-level locks
  6681   // are not held by the CMS thread, but that is overkill; see
  6682   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
  6683   // is checked.
  6685 #endif
  6687 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
  6688    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
  6689           "missing Printezis mark?");
  6690   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6691   size_t size = pointer_delta(nextOneAddr + 1, addr);
  6692   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6693          "alignment problem");
  6694   assert(size >= 3, "Necessary for Printezis marks to work");
  6695   return size;
  6698 // A variant of the above (block_size_using_printezis_bits()) except
  6699 // that we return 0 if the P-bits are not yet set.
  6700 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
  6701   if (_markBitMap.isMarked(addr + 1)) {
  6702     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
  6703     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6704     size_t size = pointer_delta(nextOneAddr + 1, addr);
  6705     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6706            "alignment problem");
  6707     assert(size >= 3, "Necessary for Printezis marks to work");
  6708     return size;
  6710   return 0;
  6713 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
  6714   size_t sz = 0;
  6715   oop p = (oop)addr;
  6716   if (p->klass_or_null() != NULL) {
  6717     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6718   } else {
  6719     sz = block_size_using_printezis_bits(addr);
  6721   assert(sz > 0, "size must be nonzero");
  6722   HeapWord* next_block = addr + sz;
  6723   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
  6724                                              CardTableModRefBS::card_size);
  6725   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
  6726          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
  6727          "must be different cards");
  6728   return next_card;
  6732 // CMS Bit Map Wrapper /////////////////////////////////////////
  6734 // Construct a CMS bit map infrastructure, but don't create the
  6735 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
  6736 // further below.
  6737 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
  6738   _bm(),
  6739   _shifter(shifter),
  6740   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
  6742   _bmStartWord = 0;
  6743   _bmWordSize  = 0;
  6746 bool CMSBitMap::allocate(MemRegion mr) {
  6747   _bmStartWord = mr.start();
  6748   _bmWordSize  = mr.word_size();
  6749   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
  6750                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  6751   if (!brs.is_reserved()) {
  6752     warning("CMS bit map allocation failure");
  6753     return false;
  6755   // For now we'll just commit all of the bit map up fromt.
  6756   // Later on we'll try to be more parsimonious with swap.
  6757   if (!_virtual_space.initialize(brs, brs.size())) {
  6758     warning("CMS bit map backing store failure");
  6759     return false;
  6761   assert(_virtual_space.committed_size() == brs.size(),
  6762          "didn't reserve backing store for all of CMS bit map?");
  6763   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
  6764   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
  6765          _bmWordSize, "inconsistency in bit map sizing");
  6766   _bm.set_size(_bmWordSize >> _shifter);
  6768   // bm.clear(); // can we rely on getting zero'd memory? verify below
  6769   assert(isAllClear(),
  6770          "Expected zero'd memory from ReservedSpace constructor");
  6771   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
  6772          "consistency check");
  6773   return true;
  6776 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
  6777   HeapWord *next_addr, *end_addr, *last_addr;
  6778   assert_locked();
  6779   assert(covers(mr), "out-of-range error");
  6780   // XXX assert that start and end are appropriately aligned
  6781   for (next_addr = mr.start(), end_addr = mr.end();
  6782        next_addr < end_addr; next_addr = last_addr) {
  6783     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
  6784     last_addr = dirty_region.end();
  6785     if (!dirty_region.is_empty()) {
  6786       cl->do_MemRegion(dirty_region);
  6787     } else {
  6788       assert(last_addr == end_addr, "program logic");
  6789       return;
  6794 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
  6795   _bm.print_on_error(st, prefix);
  6798 #ifndef PRODUCT
  6799 void CMSBitMap::assert_locked() const {
  6800   CMSLockVerifier::assert_locked(lock());
  6803 bool CMSBitMap::covers(MemRegion mr) const {
  6804   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  6805   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
  6806          "size inconsistency");
  6807   return (mr.start() >= _bmStartWord) &&
  6808          (mr.end()   <= endWord());
  6811 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
  6812     return (start >= _bmStartWord && (start + size) <= endWord());
  6815 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
  6816   // verify that there are no 1 bits in the interval [left, right)
  6817   FalseBitMapClosure falseBitMapClosure;
  6818   iterate(&falseBitMapClosure, left, right);
  6821 void CMSBitMap::region_invariant(MemRegion mr)
  6823   assert_locked();
  6824   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  6825   assert(!mr.is_empty(), "unexpected empty region");
  6826   assert(covers(mr), "mr should be covered by bit map");
  6827   // convert address range into offset range
  6828   size_t start_ofs = heapWordToOffset(mr.start());
  6829   // Make sure that end() is appropriately aligned
  6830   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
  6831                         (1 << (_shifter+LogHeapWordSize))),
  6832          "Misaligned mr.end()");
  6833   size_t end_ofs   = heapWordToOffset(mr.end());
  6834   assert(end_ofs > start_ofs, "Should mark at least one bit");
  6837 #endif
  6839 bool CMSMarkStack::allocate(size_t size) {
  6840   // allocate a stack of the requisite depth
  6841   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6842                    size * sizeof(oop)));
  6843   if (!rs.is_reserved()) {
  6844     warning("CMSMarkStack allocation failure");
  6845     return false;
  6847   if (!_virtual_space.initialize(rs, rs.size())) {
  6848     warning("CMSMarkStack backing store failure");
  6849     return false;
  6851   assert(_virtual_space.committed_size() == rs.size(),
  6852          "didn't reserve backing store for all of CMS stack?");
  6853   _base = (oop*)(_virtual_space.low());
  6854   _index = 0;
  6855   _capacity = size;
  6856   NOT_PRODUCT(_max_depth = 0);
  6857   return true;
  6860 // XXX FIX ME !!! In the MT case we come in here holding a
  6861 // leaf lock. For printing we need to take a further lock
  6862 // which has lower rank. We need to recallibrate the two
  6863 // lock-ranks involved in order to be able to rpint the
  6864 // messages below. (Or defer the printing to the caller.
  6865 // For now we take the expedient path of just disabling the
  6866 // messages for the problematic case.)
  6867 void CMSMarkStack::expand() {
  6868   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
  6869   if (_capacity == MarkStackSizeMax) {
  6870     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6871       // We print a warning message only once per CMS cycle.
  6872       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
  6874     return;
  6876   // Double capacity if possible
  6877   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
  6878   // Do not give up existing stack until we have managed to
  6879   // get the double capacity that we desired.
  6880   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6881                    new_capacity * sizeof(oop)));
  6882   if (rs.is_reserved()) {
  6883     // Release the backing store associated with old stack
  6884     _virtual_space.release();
  6885     // Reinitialize virtual space for new stack
  6886     if (!_virtual_space.initialize(rs, rs.size())) {
  6887       fatal("Not enough swap for expanded marking stack");
  6889     _base = (oop*)(_virtual_space.low());
  6890     _index = 0;
  6891     _capacity = new_capacity;
  6892   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6893     // Failed to double capacity, continue;
  6894     // we print a detail message only once per CMS cycle.
  6895     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
  6896             SIZE_FORMAT"K",
  6897             _capacity / K, new_capacity / K);
  6902 // Closures
  6903 // XXX: there seems to be a lot of code  duplication here;
  6904 // should refactor and consolidate common code.
  6906 // This closure is used to mark refs into the CMS generation in
  6907 // the CMS bit map. Called at the first checkpoint. This closure
  6908 // assumes that we do not need to re-mark dirty cards; if the CMS
  6909 // generation on which this is used is not an oldest
  6910 // generation then this will lose younger_gen cards!
  6912 MarkRefsIntoClosure::MarkRefsIntoClosure(
  6913   MemRegion span, CMSBitMap* bitMap):
  6914     _span(span),
  6915     _bitMap(bitMap)
  6917     assert(_ref_processor == NULL, "deliberately left NULL");
  6918     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
  6921 void MarkRefsIntoClosure::do_oop(oop obj) {
  6922   // if p points into _span, then mark corresponding bit in _markBitMap
  6923   assert(obj->is_oop(), "expected an oop");
  6924   HeapWord* addr = (HeapWord*)obj;
  6925   if (_span.contains(addr)) {
  6926     // this should be made more efficient
  6927     _bitMap->mark(addr);
  6931 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
  6932 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
  6934 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
  6935   MemRegion span, CMSBitMap* bitMap):
  6936     _span(span),
  6937     _bitMap(bitMap)
  6939     assert(_ref_processor == NULL, "deliberately left NULL");
  6940     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
  6943 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
  6944   // if p points into _span, then mark corresponding bit in _markBitMap
  6945   assert(obj->is_oop(), "expected an oop");
  6946   HeapWord* addr = (HeapWord*)obj;
  6947   if (_span.contains(addr)) {
  6948     // this should be made more efficient
  6949     _bitMap->par_mark(addr);
  6953 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
  6954 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
  6956 // A variant of the above, used for CMS marking verification.
  6957 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
  6958   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
  6959     _span(span),
  6960     _verification_bm(verification_bm),
  6961     _cms_bm(cms_bm)
  6963     assert(_ref_processor == NULL, "deliberately left NULL");
  6964     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
  6967 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
  6968   // if p points into _span, then mark corresponding bit in _markBitMap
  6969   assert(obj->is_oop(), "expected an oop");
  6970   HeapWord* addr = (HeapWord*)obj;
  6971   if (_span.contains(addr)) {
  6972     _verification_bm->mark(addr);
  6973     if (!_cms_bm->isMarked(addr)) {
  6974       oop(addr)->print();
  6975       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
  6976       fatal("... aborting");
  6981 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6982 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6984 //////////////////////////////////////////////////
  6985 // MarkRefsIntoAndScanClosure
  6986 //////////////////////////////////////////////////
  6988 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
  6989                                                        ReferenceProcessor* rp,
  6990                                                        CMSBitMap* bit_map,
  6991                                                        CMSBitMap* mod_union_table,
  6992                                                        CMSMarkStack*  mark_stack,
  6993                                                        CMSCollector* collector,
  6994                                                        bool should_yield,
  6995                                                        bool concurrent_precleaning):
  6996   _collector(collector),
  6997   _span(span),
  6998   _bit_map(bit_map),
  6999   _mark_stack(mark_stack),
  7000   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
  7001                       mark_stack, concurrent_precleaning),
  7002   _yield(should_yield),
  7003   _concurrent_precleaning(concurrent_precleaning),
  7004   _freelistLock(NULL)
  7006   _ref_processor = rp;
  7007   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7010 // This closure is used to mark refs into the CMS generation at the
  7011 // second (final) checkpoint, and to scan and transitively follow
  7012 // the unmarked oops. It is also used during the concurrent precleaning
  7013 // phase while scanning objects on dirty cards in the CMS generation.
  7014 // The marks are made in the marking bit map and the marking stack is
  7015 // used for keeping the (newly) grey objects during the scan.
  7016 // The parallel version (Par_...) appears further below.
  7017 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  7018   if (obj != NULL) {
  7019     assert(obj->is_oop(), "expected an oop");
  7020     HeapWord* addr = (HeapWord*)obj;
  7021     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  7022     assert(_collector->overflow_list_is_empty(),
  7023            "overflow list should be empty");
  7024     if (_span.contains(addr) &&
  7025         !_bit_map->isMarked(addr)) {
  7026       // mark bit map (object is now grey)
  7027       _bit_map->mark(addr);
  7028       // push on marking stack (stack should be empty), and drain the
  7029       // stack by applying this closure to the oops in the oops popped
  7030       // from the stack (i.e. blacken the grey objects)
  7031       bool res = _mark_stack->push(obj);
  7032       assert(res, "Should have space to push on empty stack");
  7033       do {
  7034         oop new_oop = _mark_stack->pop();
  7035         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  7036         assert(_bit_map->isMarked((HeapWord*)new_oop),
  7037                "only grey objects on this stack");
  7038         // iterate over the oops in this oop, marking and pushing
  7039         // the ones in CMS heap (i.e. in _span).
  7040         new_oop->oop_iterate(&_pushAndMarkClosure);
  7041         // check if it's time to yield
  7042         do_yield_check();
  7043       } while (!_mark_stack->isEmpty() ||
  7044                (!_concurrent_precleaning && take_from_overflow_list()));
  7045         // if marking stack is empty, and we are not doing this
  7046         // during precleaning, then check the overflow list
  7048     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  7049     assert(_collector->overflow_list_is_empty(),
  7050            "overflow list was drained above");
  7051     // We could restore evacuated mark words, if any, used for
  7052     // overflow list links here because the overflow list is
  7053     // provably empty here. That would reduce the maximum
  7054     // size requirements for preserved_{oop,mark}_stack.
  7055     // But we'll just postpone it until we are all done
  7056     // so we can just stream through.
  7057     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
  7058       _collector->restore_preserved_marks_if_any();
  7059       assert(_collector->no_preserved_marks(), "No preserved marks");
  7061     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
  7062            "All preserved marks should have been restored above");
  7066 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  7067 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  7069 void MarkRefsIntoAndScanClosure::do_yield_work() {
  7070   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7071          "CMS thread should hold CMS token");
  7072   assert_lock_strong(_freelistLock);
  7073   assert_lock_strong(_bit_map->lock());
  7074   // relinquish the free_list_lock and bitMaplock()
  7075   _bit_map->lock()->unlock();
  7076   _freelistLock->unlock();
  7077   ConcurrentMarkSweepThread::desynchronize(true);
  7078   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7079   _collector->stopTimer();
  7080   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7081   if (PrintCMSStatistics != 0) {
  7082     _collector->incrementYields();
  7084   _collector->icms_wait();
  7086   // See the comment in coordinator_yield()
  7087   for (unsigned i = 0;
  7088        i < CMSYieldSleepCount &&
  7089        ConcurrentMarkSweepThread::should_yield() &&
  7090        !CMSCollector::foregroundGCIsActive();
  7091        ++i) {
  7092     os::sleep(Thread::current(), 1, false);
  7093     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7096   ConcurrentMarkSweepThread::synchronize(true);
  7097   _freelistLock->lock_without_safepoint_check();
  7098   _bit_map->lock()->lock_without_safepoint_check();
  7099   _collector->startTimer();
  7102 ///////////////////////////////////////////////////////////
  7103 // Par_MarkRefsIntoAndScanClosure: a parallel version of
  7104 //                                 MarkRefsIntoAndScanClosure
  7105 ///////////////////////////////////////////////////////////
  7106 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
  7107   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
  7108   CMSBitMap* bit_map, OopTaskQueue* work_queue):
  7109   _span(span),
  7110   _bit_map(bit_map),
  7111   _work_queue(work_queue),
  7112   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  7113                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
  7114   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
  7116   _ref_processor = rp;
  7117   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7120 // This closure is used to mark refs into the CMS generation at the
  7121 // second (final) checkpoint, and to scan and transitively follow
  7122 // the unmarked oops. The marks are made in the marking bit map and
  7123 // the work_queue is used for keeping the (newly) grey objects during
  7124 // the scan phase whence they are also available for stealing by parallel
  7125 // threads. Since the marking bit map is shared, updates are
  7126 // synchronized (via CAS).
  7127 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  7128   if (obj != NULL) {
  7129     // Ignore mark word because this could be an already marked oop
  7130     // that may be chained at the end of the overflow list.
  7131     assert(obj->is_oop(true), "expected an oop");
  7132     HeapWord* addr = (HeapWord*)obj;
  7133     if (_span.contains(addr) &&
  7134         !_bit_map->isMarked(addr)) {
  7135       // mark bit map (object will become grey):
  7136       // It is possible for several threads to be
  7137       // trying to "claim" this object concurrently;
  7138       // the unique thread that succeeds in marking the
  7139       // object first will do the subsequent push on
  7140       // to the work queue (or overflow list).
  7141       if (_bit_map->par_mark(addr)) {
  7142         // push on work_queue (which may not be empty), and trim the
  7143         // queue to an appropriate length by applying this closure to
  7144         // the oops in the oops popped from the stack (i.e. blacken the
  7145         // grey objects)
  7146         bool res = _work_queue->push(obj);
  7147         assert(res, "Low water mark should be less than capacity?");
  7148         trim_queue(_low_water_mark);
  7149       } // Else, another thread claimed the object
  7154 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  7155 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  7157 // This closure is used to rescan the marked objects on the dirty cards
  7158 // in the mod union table and the card table proper.
  7159 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
  7160   oop p, MemRegion mr) {
  7162   size_t size = 0;
  7163   HeapWord* addr = (HeapWord*)p;
  7164   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  7165   assert(_span.contains(addr), "we are scanning the CMS generation");
  7166   // check if it's time to yield
  7167   if (do_yield_check()) {
  7168     // We yielded for some foreground stop-world work,
  7169     // and we have been asked to abort this ongoing preclean cycle.
  7170     return 0;
  7172   if (_bitMap->isMarked(addr)) {
  7173     // it's marked; is it potentially uninitialized?
  7174     if (p->klass_or_null() != NULL) {
  7175         // an initialized object; ignore mark word in verification below
  7176         // since we are running concurrent with mutators
  7177         assert(p->is_oop(true), "should be an oop");
  7178         if (p->is_objArray()) {
  7179           // objArrays are precisely marked; restrict scanning
  7180           // to dirty cards only.
  7181           size = CompactibleFreeListSpace::adjustObjectSize(
  7182                    p->oop_iterate(_scanningClosure, mr));
  7183         } else {
  7184           // A non-array may have been imprecisely marked; we need
  7185           // to scan object in its entirety.
  7186           size = CompactibleFreeListSpace::adjustObjectSize(
  7187                    p->oop_iterate(_scanningClosure));
  7189         #ifdef ASSERT
  7190           size_t direct_size =
  7191             CompactibleFreeListSpace::adjustObjectSize(p->size());
  7192           assert(size == direct_size, "Inconsistency in size");
  7193           assert(size >= 3, "Necessary for Printezis marks to work");
  7194           if (!_bitMap->isMarked(addr+1)) {
  7195             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
  7196           } else {
  7197             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
  7198             assert(_bitMap->isMarked(addr+size-1),
  7199                    "inconsistent Printezis mark");
  7201         #endif // ASSERT
  7202     } else {
  7203       // an unitialized object
  7204       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
  7205       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  7206       size = pointer_delta(nextOneAddr + 1, addr);
  7207       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  7208              "alignment problem");
  7209       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
  7210       // will dirty the card when the klass pointer is installed in the
  7211       // object (signalling the completion of initialization).
  7213   } else {
  7214     // Either a not yet marked object or an uninitialized object
  7215     if (p->klass_or_null() == NULL) {
  7216       // An uninitialized object, skip to the next card, since
  7217       // we may not be able to read its P-bits yet.
  7218       assert(size == 0, "Initial value");
  7219     } else {
  7220       // An object not (yet) reached by marking: we merely need to
  7221       // compute its size so as to go look at the next block.
  7222       assert(p->is_oop(true), "should be an oop");
  7223       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
  7226   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  7227   return size;
  7230 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
  7231   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7232          "CMS thread should hold CMS token");
  7233   assert_lock_strong(_freelistLock);
  7234   assert_lock_strong(_bitMap->lock());
  7235   // relinquish the free_list_lock and bitMaplock()
  7236   _bitMap->lock()->unlock();
  7237   _freelistLock->unlock();
  7238   ConcurrentMarkSweepThread::desynchronize(true);
  7239   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7240   _collector->stopTimer();
  7241   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7242   if (PrintCMSStatistics != 0) {
  7243     _collector->incrementYields();
  7245   _collector->icms_wait();
  7247   // See the comment in coordinator_yield()
  7248   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7249                    ConcurrentMarkSweepThread::should_yield() &&
  7250                    !CMSCollector::foregroundGCIsActive(); ++i) {
  7251     os::sleep(Thread::current(), 1, false);
  7252     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7255   ConcurrentMarkSweepThread::synchronize(true);
  7256   _freelistLock->lock_without_safepoint_check();
  7257   _bitMap->lock()->lock_without_safepoint_check();
  7258   _collector->startTimer();
  7262 //////////////////////////////////////////////////////////////////
  7263 // SurvivorSpacePrecleanClosure
  7264 //////////////////////////////////////////////////////////////////
  7265 // This (single-threaded) closure is used to preclean the oops in
  7266 // the survivor spaces.
  7267 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
  7269   HeapWord* addr = (HeapWord*)p;
  7270   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  7271   assert(!_span.contains(addr), "we are scanning the survivor spaces");
  7272   assert(p->klass_or_null() != NULL, "object should be initializd");
  7273   // an initialized object; ignore mark word in verification below
  7274   // since we are running concurrent with mutators
  7275   assert(p->is_oop(true), "should be an oop");
  7276   // Note that we do not yield while we iterate over
  7277   // the interior oops of p, pushing the relevant ones
  7278   // on our marking stack.
  7279   size_t size = p->oop_iterate(_scanning_closure);
  7280   do_yield_check();
  7281   // Observe that below, we do not abandon the preclean
  7282   // phase as soon as we should; rather we empty the
  7283   // marking stack before returning. This is to satisfy
  7284   // some existing assertions. In general, it may be a
  7285   // good idea to abort immediately and complete the marking
  7286   // from the grey objects at a later time.
  7287   while (!_mark_stack->isEmpty()) {
  7288     oop new_oop = _mark_stack->pop();
  7289     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  7290     assert(_bit_map->isMarked((HeapWord*)new_oop),
  7291            "only grey objects on this stack");
  7292     // iterate over the oops in this oop, marking and pushing
  7293     // the ones in CMS heap (i.e. in _span).
  7294     new_oop->oop_iterate(_scanning_closure);
  7295     // check if it's time to yield
  7296     do_yield_check();
  7298   unsigned int after_count =
  7299     GenCollectedHeap::heap()->total_collections();
  7300   bool abort = (_before_count != after_count) ||
  7301                _collector->should_abort_preclean();
  7302   return abort ? 0 : size;
  7305 void SurvivorSpacePrecleanClosure::do_yield_work() {
  7306   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7307          "CMS thread should hold CMS token");
  7308   assert_lock_strong(_bit_map->lock());
  7309   // Relinquish the bit map lock
  7310   _bit_map->lock()->unlock();
  7311   ConcurrentMarkSweepThread::desynchronize(true);
  7312   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7313   _collector->stopTimer();
  7314   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7315   if (PrintCMSStatistics != 0) {
  7316     _collector->incrementYields();
  7318   _collector->icms_wait();
  7320   // See the comment in coordinator_yield()
  7321   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7322                        ConcurrentMarkSweepThread::should_yield() &&
  7323                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7324     os::sleep(Thread::current(), 1, false);
  7325     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7328   ConcurrentMarkSweepThread::synchronize(true);
  7329   _bit_map->lock()->lock_without_safepoint_check();
  7330   _collector->startTimer();
  7333 // This closure is used to rescan the marked objects on the dirty cards
  7334 // in the mod union table and the card table proper. In the parallel
  7335 // case, although the bitMap is shared, we do a single read so the
  7336 // isMarked() query is "safe".
  7337 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
  7338   // Ignore mark word because we are running concurrent with mutators
  7339   assert(p->is_oop_or_null(true), "expected an oop or null");
  7340   HeapWord* addr = (HeapWord*)p;
  7341   assert(_span.contains(addr), "we are scanning the CMS generation");
  7342   bool is_obj_array = false;
  7343   #ifdef ASSERT
  7344     if (!_parallel) {
  7345       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  7346       assert(_collector->overflow_list_is_empty(),
  7347              "overflow list should be empty");
  7350   #endif // ASSERT
  7351   if (_bit_map->isMarked(addr)) {
  7352     // Obj arrays are precisely marked, non-arrays are not;
  7353     // so we scan objArrays precisely and non-arrays in their
  7354     // entirety.
  7355     if (p->is_objArray()) {
  7356       is_obj_array = true;
  7357       if (_parallel) {
  7358         p->oop_iterate(_par_scan_closure, mr);
  7359       } else {
  7360         p->oop_iterate(_scan_closure, mr);
  7362     } else {
  7363       if (_parallel) {
  7364         p->oop_iterate(_par_scan_closure);
  7365       } else {
  7366         p->oop_iterate(_scan_closure);
  7370   #ifdef ASSERT
  7371     if (!_parallel) {
  7372       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  7373       assert(_collector->overflow_list_is_empty(),
  7374              "overflow list should be empty");
  7377   #endif // ASSERT
  7378   return is_obj_array;
  7381 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
  7382                         MemRegion span,
  7383                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
  7384                         bool should_yield, bool verifying):
  7385   _collector(collector),
  7386   _span(span),
  7387   _bitMap(bitMap),
  7388   _mut(&collector->_modUnionTable),
  7389   _markStack(markStack),
  7390   _yield(should_yield),
  7391   _skipBits(0)
  7393   assert(_markStack->isEmpty(), "stack should be empty");
  7394   _finger = _bitMap->startWord();
  7395   _threshold = _finger;
  7396   assert(_collector->_restart_addr == NULL, "Sanity check");
  7397   assert(_span.contains(_finger), "Out of bounds _finger?");
  7398   DEBUG_ONLY(_verifying = verifying;)
  7401 void MarkFromRootsClosure::reset(HeapWord* addr) {
  7402   assert(_markStack->isEmpty(), "would cause duplicates on stack");
  7403   assert(_span.contains(addr), "Out of bounds _finger?");
  7404   _finger = addr;
  7405   _threshold = (HeapWord*)round_to(
  7406                  (intptr_t)_finger, CardTableModRefBS::card_size);
  7409 // Should revisit to see if this should be restructured for
  7410 // greater efficiency.
  7411 bool MarkFromRootsClosure::do_bit(size_t offset) {
  7412   if (_skipBits > 0) {
  7413     _skipBits--;
  7414     return true;
  7416   // convert offset into a HeapWord*
  7417   HeapWord* addr = _bitMap->startWord() + offset;
  7418   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
  7419          "address out of range");
  7420   assert(_bitMap->isMarked(addr), "tautology");
  7421   if (_bitMap->isMarked(addr+1)) {
  7422     // this is an allocated but not yet initialized object
  7423     assert(_skipBits == 0, "tautology");
  7424     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
  7425     oop p = oop(addr);
  7426     if (p->klass_or_null() == NULL) {
  7427       DEBUG_ONLY(if (!_verifying) {)
  7428         // We re-dirty the cards on which this object lies and increase
  7429         // the _threshold so that we'll come back to scan this object
  7430         // during the preclean or remark phase. (CMSCleanOnEnter)
  7431         if (CMSCleanOnEnter) {
  7432           size_t sz = _collector->block_size_using_printezis_bits(addr);
  7433           HeapWord* end_card_addr   = (HeapWord*)round_to(
  7434                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  7435           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  7436           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  7437           // Bump _threshold to end_card_addr; note that
  7438           // _threshold cannot possibly exceed end_card_addr, anyhow.
  7439           // This prevents future clearing of the card as the scan proceeds
  7440           // to the right.
  7441           assert(_threshold <= end_card_addr,
  7442                  "Because we are just scanning into this object");
  7443           if (_threshold < end_card_addr) {
  7444             _threshold = end_card_addr;
  7446           if (p->klass_or_null() != NULL) {
  7447             // Redirty the range of cards...
  7448             _mut->mark_range(redirty_range);
  7449           } // ...else the setting of klass will dirty the card anyway.
  7451       DEBUG_ONLY(})
  7452       return true;
  7455   scanOopsInOop(addr);
  7456   return true;
  7459 // We take a break if we've been at this for a while,
  7460 // so as to avoid monopolizing the locks involved.
  7461 void MarkFromRootsClosure::do_yield_work() {
  7462   // First give up the locks, then yield, then re-lock
  7463   // We should probably use a constructor/destructor idiom to
  7464   // do this unlock/lock or modify the MutexUnlocker class to
  7465   // serve our purpose. XXX
  7466   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7467          "CMS thread should hold CMS token");
  7468   assert_lock_strong(_bitMap->lock());
  7469   _bitMap->lock()->unlock();
  7470   ConcurrentMarkSweepThread::desynchronize(true);
  7471   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7472   _collector->stopTimer();
  7473   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7474   if (PrintCMSStatistics != 0) {
  7475     _collector->incrementYields();
  7477   _collector->icms_wait();
  7479   // See the comment in coordinator_yield()
  7480   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7481                        ConcurrentMarkSweepThread::should_yield() &&
  7482                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7483     os::sleep(Thread::current(), 1, false);
  7484     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7487   ConcurrentMarkSweepThread::synchronize(true);
  7488   _bitMap->lock()->lock_without_safepoint_check();
  7489   _collector->startTimer();
  7492 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
  7493   assert(_bitMap->isMarked(ptr), "expected bit to be set");
  7494   assert(_markStack->isEmpty(),
  7495          "should drain stack to limit stack usage");
  7496   // convert ptr to an oop preparatory to scanning
  7497   oop obj = oop(ptr);
  7498   // Ignore mark word in verification below, since we
  7499   // may be running concurrent with mutators.
  7500   assert(obj->is_oop(true), "should be an oop");
  7501   assert(_finger <= ptr, "_finger runneth ahead");
  7502   // advance the finger to right end of this object
  7503   _finger = ptr + obj->size();
  7504   assert(_finger > ptr, "we just incremented it above");
  7505   // On large heaps, it may take us some time to get through
  7506   // the marking phase (especially if running iCMS). During
  7507   // this time it's possible that a lot of mutations have
  7508   // accumulated in the card table and the mod union table --
  7509   // these mutation records are redundant until we have
  7510   // actually traced into the corresponding card.
  7511   // Here, we check whether advancing the finger would make
  7512   // us cross into a new card, and if so clear corresponding
  7513   // cards in the MUT (preclean them in the card-table in the
  7514   // future).
  7516   DEBUG_ONLY(if (!_verifying) {)
  7517     // The clean-on-enter optimization is disabled by default,
  7518     // until we fix 6178663.
  7519     if (CMSCleanOnEnter && (_finger > _threshold)) {
  7520       // [_threshold, _finger) represents the interval
  7521       // of cards to be cleared  in MUT (or precleaned in card table).
  7522       // The set of cards to be cleared is all those that overlap
  7523       // with the interval [_threshold, _finger); note that
  7524       // _threshold is always kept card-aligned but _finger isn't
  7525       // always card-aligned.
  7526       HeapWord* old_threshold = _threshold;
  7527       assert(old_threshold == (HeapWord*)round_to(
  7528               (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7529              "_threshold should always be card-aligned");
  7530       _threshold = (HeapWord*)round_to(
  7531                      (intptr_t)_finger, CardTableModRefBS::card_size);
  7532       MemRegion mr(old_threshold, _threshold);
  7533       assert(!mr.is_empty(), "Control point invariant");
  7534       assert(_span.contains(mr), "Should clear within span");
  7535       _mut->clear_range(mr);
  7537   DEBUG_ONLY(})
  7538   // Note: the finger doesn't advance while we drain
  7539   // the stack below.
  7540   PushOrMarkClosure pushOrMarkClosure(_collector,
  7541                                       _span, _bitMap, _markStack,
  7542                                       _finger, this);
  7543   bool res = _markStack->push(obj);
  7544   assert(res, "Empty non-zero size stack should have space for single push");
  7545   while (!_markStack->isEmpty()) {
  7546     oop new_oop = _markStack->pop();
  7547     // Skip verifying header mark word below because we are
  7548     // running concurrent with mutators.
  7549     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7550     // now scan this oop's oops
  7551     new_oop->oop_iterate(&pushOrMarkClosure);
  7552     do_yield_check();
  7554   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
  7557 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
  7558                        CMSCollector* collector, MemRegion span,
  7559                        CMSBitMap* bit_map,
  7560                        OopTaskQueue* work_queue,
  7561                        CMSMarkStack*  overflow_stack,
  7562                        bool should_yield):
  7563   _collector(collector),
  7564   _whole_span(collector->_span),
  7565   _span(span),
  7566   _bit_map(bit_map),
  7567   _mut(&collector->_modUnionTable),
  7568   _work_queue(work_queue),
  7569   _overflow_stack(overflow_stack),
  7570   _yield(should_yield),
  7571   _skip_bits(0),
  7572   _task(task)
  7574   assert(_work_queue->size() == 0, "work_queue should be empty");
  7575   _finger = span.start();
  7576   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
  7577   assert(_span.contains(_finger), "Out of bounds _finger?");
  7580 // Should revisit to see if this should be restructured for
  7581 // greater efficiency.
  7582 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
  7583   if (_skip_bits > 0) {
  7584     _skip_bits--;
  7585     return true;
  7587   // convert offset into a HeapWord*
  7588   HeapWord* addr = _bit_map->startWord() + offset;
  7589   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
  7590          "address out of range");
  7591   assert(_bit_map->isMarked(addr), "tautology");
  7592   if (_bit_map->isMarked(addr+1)) {
  7593     // this is an allocated object that might not yet be initialized
  7594     assert(_skip_bits == 0, "tautology");
  7595     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
  7596     oop p = oop(addr);
  7597     if (p->klass_or_null() == NULL) {
  7598       // in the case of Clean-on-Enter optimization, redirty card
  7599       // and avoid clearing card by increasing  the threshold.
  7600       return true;
  7603   scan_oops_in_oop(addr);
  7604   return true;
  7607 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
  7608   assert(_bit_map->isMarked(ptr), "expected bit to be set");
  7609   // Should we assert that our work queue is empty or
  7610   // below some drain limit?
  7611   assert(_work_queue->size() == 0,
  7612          "should drain stack to limit stack usage");
  7613   // convert ptr to an oop preparatory to scanning
  7614   oop obj = oop(ptr);
  7615   // Ignore mark word in verification below, since we
  7616   // may be running concurrent with mutators.
  7617   assert(obj->is_oop(true), "should be an oop");
  7618   assert(_finger <= ptr, "_finger runneth ahead");
  7619   // advance the finger to right end of this object
  7620   _finger = ptr + obj->size();
  7621   assert(_finger > ptr, "we just incremented it above");
  7622   // On large heaps, it may take us some time to get through
  7623   // the marking phase (especially if running iCMS). During
  7624   // this time it's possible that a lot of mutations have
  7625   // accumulated in the card table and the mod union table --
  7626   // these mutation records are redundant until we have
  7627   // actually traced into the corresponding card.
  7628   // Here, we check whether advancing the finger would make
  7629   // us cross into a new card, and if so clear corresponding
  7630   // cards in the MUT (preclean them in the card-table in the
  7631   // future).
  7633   // The clean-on-enter optimization is disabled by default,
  7634   // until we fix 6178663.
  7635   if (CMSCleanOnEnter && (_finger > _threshold)) {
  7636     // [_threshold, _finger) represents the interval
  7637     // of cards to be cleared  in MUT (or precleaned in card table).
  7638     // The set of cards to be cleared is all those that overlap
  7639     // with the interval [_threshold, _finger); note that
  7640     // _threshold is always kept card-aligned but _finger isn't
  7641     // always card-aligned.
  7642     HeapWord* old_threshold = _threshold;
  7643     assert(old_threshold == (HeapWord*)round_to(
  7644             (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7645            "_threshold should always be card-aligned");
  7646     _threshold = (HeapWord*)round_to(
  7647                    (intptr_t)_finger, CardTableModRefBS::card_size);
  7648     MemRegion mr(old_threshold, _threshold);
  7649     assert(!mr.is_empty(), "Control point invariant");
  7650     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
  7651     _mut->clear_range(mr);
  7654   // Note: the local finger doesn't advance while we drain
  7655   // the stack below, but the global finger sure can and will.
  7656   HeapWord** gfa = _task->global_finger_addr();
  7657   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
  7658                                       _span, _bit_map,
  7659                                       _work_queue,
  7660                                       _overflow_stack,
  7661                                       _finger,
  7662                                       gfa, this);
  7663   bool res = _work_queue->push(obj);   // overflow could occur here
  7664   assert(res, "Will hold once we use workqueues");
  7665   while (true) {
  7666     oop new_oop;
  7667     if (!_work_queue->pop_local(new_oop)) {
  7668       // We emptied our work_queue; check if there's stuff that can
  7669       // be gotten from the overflow stack.
  7670       if (CMSConcMarkingTask::get_work_from_overflow_stack(
  7671             _overflow_stack, _work_queue)) {
  7672         do_yield_check();
  7673         continue;
  7674       } else {  // done
  7675         break;
  7678     // Skip verifying header mark word below because we are
  7679     // running concurrent with mutators.
  7680     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7681     // now scan this oop's oops
  7682     new_oop->oop_iterate(&pushOrMarkClosure);
  7683     do_yield_check();
  7685   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
  7688 // Yield in response to a request from VM Thread or
  7689 // from mutators.
  7690 void Par_MarkFromRootsClosure::do_yield_work() {
  7691   assert(_task != NULL, "sanity");
  7692   _task->yield();
  7695 // A variant of the above used for verifying CMS marking work.
  7696 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
  7697                         MemRegion span,
  7698                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7699                         CMSMarkStack*  mark_stack):
  7700   _collector(collector),
  7701   _span(span),
  7702   _verification_bm(verification_bm),
  7703   _cms_bm(cms_bm),
  7704   _mark_stack(mark_stack),
  7705   _pam_verify_closure(collector, span, verification_bm, cms_bm,
  7706                       mark_stack)
  7708   assert(_mark_stack->isEmpty(), "stack should be empty");
  7709   _finger = _verification_bm->startWord();
  7710   assert(_collector->_restart_addr == NULL, "Sanity check");
  7711   assert(_span.contains(_finger), "Out of bounds _finger?");
  7714 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
  7715   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
  7716   assert(_span.contains(addr), "Out of bounds _finger?");
  7717   _finger = addr;
  7720 // Should revisit to see if this should be restructured for
  7721 // greater efficiency.
  7722 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
  7723   // convert offset into a HeapWord*
  7724   HeapWord* addr = _verification_bm->startWord() + offset;
  7725   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
  7726          "address out of range");
  7727   assert(_verification_bm->isMarked(addr), "tautology");
  7728   assert(_cms_bm->isMarked(addr), "tautology");
  7730   assert(_mark_stack->isEmpty(),
  7731          "should drain stack to limit stack usage");
  7732   // convert addr to an oop preparatory to scanning
  7733   oop obj = oop(addr);
  7734   assert(obj->is_oop(), "should be an oop");
  7735   assert(_finger <= addr, "_finger runneth ahead");
  7736   // advance the finger to right end of this object
  7737   _finger = addr + obj->size();
  7738   assert(_finger > addr, "we just incremented it above");
  7739   // Note: the finger doesn't advance while we drain
  7740   // the stack below.
  7741   bool res = _mark_stack->push(obj);
  7742   assert(res, "Empty non-zero size stack should have space for single push");
  7743   while (!_mark_stack->isEmpty()) {
  7744     oop new_oop = _mark_stack->pop();
  7745     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
  7746     // now scan this oop's oops
  7747     new_oop->oop_iterate(&_pam_verify_closure);
  7749   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
  7750   return true;
  7753 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
  7754   CMSCollector* collector, MemRegion span,
  7755   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7756   CMSMarkStack*  mark_stack):
  7757   MetadataAwareOopClosure(collector->ref_processor()),
  7758   _collector(collector),
  7759   _span(span),
  7760   _verification_bm(verification_bm),
  7761   _cms_bm(cms_bm),
  7762   _mark_stack(mark_stack)
  7763 { }
  7765 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
  7766 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
  7768 // Upon stack overflow, we discard (part of) the stack,
  7769 // remembering the least address amongst those discarded
  7770 // in CMSCollector's _restart_address.
  7771 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
  7772   // Remember the least grey address discarded
  7773   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
  7774   _collector->lower_restart_addr(ra);
  7775   _mark_stack->reset();  // discard stack contents
  7776   _mark_stack->expand(); // expand the stack if possible
  7779 void PushAndMarkVerifyClosure::do_oop(oop obj) {
  7780   assert(obj->is_oop_or_null(), "expected an oop or NULL");
  7781   HeapWord* addr = (HeapWord*)obj;
  7782   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
  7783     // Oop lies in _span and isn't yet grey or black
  7784     _verification_bm->mark(addr);            // now grey
  7785     if (!_cms_bm->isMarked(addr)) {
  7786       oop(addr)->print();
  7787       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
  7788                              addr);
  7789       fatal("... aborting");
  7792     if (!_mark_stack->push(obj)) { // stack overflow
  7793       if (PrintCMSStatistics != 0) {
  7794         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7795                                SIZE_FORMAT, _mark_stack->capacity());
  7797       assert(_mark_stack->isFull(), "Else push should have succeeded");
  7798       handle_stack_overflow(addr);
  7800     // anything including and to the right of _finger
  7801     // will be scanned as we iterate over the remainder of the
  7802     // bit map
  7806 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
  7807                      MemRegion span,
  7808                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
  7809                      HeapWord* finger, MarkFromRootsClosure* parent) :
  7810   MetadataAwareOopClosure(collector->ref_processor()),
  7811   _collector(collector),
  7812   _span(span),
  7813   _bitMap(bitMap),
  7814   _markStack(markStack),
  7815   _finger(finger),
  7816   _parent(parent)
  7817 { }
  7819 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
  7820                      MemRegion span,
  7821                      CMSBitMap* bit_map,
  7822                      OopTaskQueue* work_queue,
  7823                      CMSMarkStack*  overflow_stack,
  7824                      HeapWord* finger,
  7825                      HeapWord** global_finger_addr,
  7826                      Par_MarkFromRootsClosure* parent) :
  7827   MetadataAwareOopClosure(collector->ref_processor()),
  7828   _collector(collector),
  7829   _whole_span(collector->_span),
  7830   _span(span),
  7831   _bit_map(bit_map),
  7832   _work_queue(work_queue),
  7833   _overflow_stack(overflow_stack),
  7834   _finger(finger),
  7835   _global_finger_addr(global_finger_addr),
  7836   _parent(parent)
  7837 { }
  7839 // Assumes thread-safe access by callers, who are
  7840 // responsible for mutual exclusion.
  7841 void CMSCollector::lower_restart_addr(HeapWord* low) {
  7842   assert(_span.contains(low), "Out of bounds addr");
  7843   if (_restart_addr == NULL) {
  7844     _restart_addr = low;
  7845   } else {
  7846     _restart_addr = MIN2(_restart_addr, low);
  7850 // Upon stack overflow, we discard (part of) the stack,
  7851 // remembering the least address amongst those discarded
  7852 // in CMSCollector's _restart_address.
  7853 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7854   // Remember the least grey address discarded
  7855   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
  7856   _collector->lower_restart_addr(ra);
  7857   _markStack->reset();  // discard stack contents
  7858   _markStack->expand(); // expand the stack if possible
  7861 // Upon stack overflow, we discard (part of) the stack,
  7862 // remembering the least address amongst those discarded
  7863 // in CMSCollector's _restart_address.
  7864 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7865   // We need to do this under a mutex to prevent other
  7866   // workers from interfering with the work done below.
  7867   MutexLockerEx ml(_overflow_stack->par_lock(),
  7868                    Mutex::_no_safepoint_check_flag);
  7869   // Remember the least grey address discarded
  7870   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  7871   _collector->lower_restart_addr(ra);
  7872   _overflow_stack->reset();  // discard stack contents
  7873   _overflow_stack->expand(); // expand the stack if possible
  7876 void PushOrMarkClosure::do_oop(oop obj) {
  7877   // Ignore mark word because we are running concurrent with mutators.
  7878   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7879   HeapWord* addr = (HeapWord*)obj;
  7880   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
  7881     // Oop lies in _span and isn't yet grey or black
  7882     _bitMap->mark(addr);            // now grey
  7883     if (addr < _finger) {
  7884       // the bit map iteration has already either passed, or
  7885       // sampled, this bit in the bit map; we'll need to
  7886       // use the marking stack to scan this oop's oops.
  7887       bool simulate_overflow = false;
  7888       NOT_PRODUCT(
  7889         if (CMSMarkStackOverflowALot &&
  7890             _collector->simulate_overflow()) {
  7891           // simulate a stack overflow
  7892           simulate_overflow = true;
  7895       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
  7896         if (PrintCMSStatistics != 0) {
  7897           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7898                                  SIZE_FORMAT, _markStack->capacity());
  7900         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
  7901         handle_stack_overflow(addr);
  7904     // anything including and to the right of _finger
  7905     // will be scanned as we iterate over the remainder of the
  7906     // bit map
  7907     do_yield_check();
  7911 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
  7912 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
  7914 void Par_PushOrMarkClosure::do_oop(oop obj) {
  7915   // Ignore mark word because we are running concurrent with mutators.
  7916   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7917   HeapWord* addr = (HeapWord*)obj;
  7918   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7919     // Oop lies in _span and isn't yet grey or black
  7920     // We read the global_finger (volatile read) strictly after marking oop
  7921     bool res = _bit_map->par_mark(addr);    // now grey
  7922     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
  7923     // Should we push this marked oop on our stack?
  7924     // -- if someone else marked it, nothing to do
  7925     // -- if target oop is above global finger nothing to do
  7926     // -- if target oop is in chunk and above local finger
  7927     //      then nothing to do
  7928     // -- else push on work queue
  7929     if (   !res       // someone else marked it, they will deal with it
  7930         || (addr >= *gfa)  // will be scanned in a later task
  7931         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
  7932       return;
  7934     // the bit map iteration has already either passed, or
  7935     // sampled, this bit in the bit map; we'll need to
  7936     // use the marking stack to scan this oop's oops.
  7937     bool simulate_overflow = false;
  7938     NOT_PRODUCT(
  7939       if (CMSMarkStackOverflowALot &&
  7940           _collector->simulate_overflow()) {
  7941         // simulate a stack overflow
  7942         simulate_overflow = true;
  7945     if (simulate_overflow ||
  7946         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  7947       // stack overflow
  7948       if (PrintCMSStatistics != 0) {
  7949         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7950                                SIZE_FORMAT, _overflow_stack->capacity());
  7952       // We cannot assert that the overflow stack is full because
  7953       // it may have been emptied since.
  7954       assert(simulate_overflow ||
  7955              _work_queue->size() == _work_queue->max_elems(),
  7956             "Else push should have succeeded");
  7957       handle_stack_overflow(addr);
  7959     do_yield_check();
  7963 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
  7964 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
  7966 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
  7967                                        MemRegion span,
  7968                                        ReferenceProcessor* rp,
  7969                                        CMSBitMap* bit_map,
  7970                                        CMSBitMap* mod_union_table,
  7971                                        CMSMarkStack*  mark_stack,
  7972                                        bool           concurrent_precleaning):
  7973   MetadataAwareOopClosure(rp),
  7974   _collector(collector),
  7975   _span(span),
  7976   _bit_map(bit_map),
  7977   _mod_union_table(mod_union_table),
  7978   _mark_stack(mark_stack),
  7979   _concurrent_precleaning(concurrent_precleaning)
  7981   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7984 // Grey object rescan during pre-cleaning and second checkpoint phases --
  7985 // the non-parallel version (the parallel version appears further below.)
  7986 void PushAndMarkClosure::do_oop(oop obj) {
  7987   // Ignore mark word verification. If during concurrent precleaning,
  7988   // the object monitor may be locked. If during the checkpoint
  7989   // phases, the object may already have been reached by a  different
  7990   // path and may be at the end of the global overflow list (so
  7991   // the mark word may be NULL).
  7992   assert(obj->is_oop_or_null(true /* ignore mark word */),
  7993          "expected an oop or NULL");
  7994   HeapWord* addr = (HeapWord*)obj;
  7995   // Check if oop points into the CMS generation
  7996   // and is not marked
  7997   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7998     // a white object ...
  7999     _bit_map->mark(addr);         // ... now grey
  8000     // push on the marking stack (grey set)
  8001     bool simulate_overflow = false;
  8002     NOT_PRODUCT(
  8003       if (CMSMarkStackOverflowALot &&
  8004           _collector->simulate_overflow()) {
  8005         // simulate a stack overflow
  8006         simulate_overflow = true;
  8009     if (simulate_overflow || !_mark_stack->push(obj)) {
  8010       if (_concurrent_precleaning) {
  8011          // During precleaning we can just dirty the appropriate card(s)
  8012          // in the mod union table, thus ensuring that the object remains
  8013          // in the grey set  and continue. In the case of object arrays
  8014          // we need to dirty all of the cards that the object spans,
  8015          // since the rescan of object arrays will be limited to the
  8016          // dirty cards.
  8017          // Note that no one can be intefering with us in this action
  8018          // of dirtying the mod union table, so no locking or atomics
  8019          // are required.
  8020          if (obj->is_objArray()) {
  8021            size_t sz = obj->size();
  8022            HeapWord* end_card_addr = (HeapWord*)round_to(
  8023                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  8024            MemRegion redirty_range = MemRegion(addr, end_card_addr);
  8025            assert(!redirty_range.is_empty(), "Arithmetical tautology");
  8026            _mod_union_table->mark_range(redirty_range);
  8027          } else {
  8028            _mod_union_table->mark(addr);
  8030          _collector->_ser_pmc_preclean_ovflw++;
  8031       } else {
  8032          // During the remark phase, we need to remember this oop
  8033          // in the overflow list.
  8034          _collector->push_on_overflow_list(obj);
  8035          _collector->_ser_pmc_remark_ovflw++;
  8041 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
  8042                                                MemRegion span,
  8043                                                ReferenceProcessor* rp,
  8044                                                CMSBitMap* bit_map,
  8045                                                OopTaskQueue* work_queue):
  8046   MetadataAwareOopClosure(rp),
  8047   _collector(collector),
  8048   _span(span),
  8049   _bit_map(bit_map),
  8050   _work_queue(work_queue)
  8052   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  8055 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
  8056 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
  8058 // Grey object rescan during second checkpoint phase --
  8059 // the parallel version.
  8060 void Par_PushAndMarkClosure::do_oop(oop obj) {
  8061   // In the assert below, we ignore the mark word because
  8062   // this oop may point to an already visited object that is
  8063   // on the overflow stack (in which case the mark word has
  8064   // been hijacked for chaining into the overflow stack --
  8065   // if this is the last object in the overflow stack then
  8066   // its mark word will be NULL). Because this object may
  8067   // have been subsequently popped off the global overflow
  8068   // stack, and the mark word possibly restored to the prototypical
  8069   // value, by the time we get to examined this failing assert in
  8070   // the debugger, is_oop_or_null(false) may subsequently start
  8071   // to hold.
  8072   assert(obj->is_oop_or_null(true),
  8073          "expected an oop or NULL");
  8074   HeapWord* addr = (HeapWord*)obj;
  8075   // Check if oop points into the CMS generation
  8076   // and is not marked
  8077   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  8078     // a white object ...
  8079     // If we manage to "claim" the object, by being the
  8080     // first thread to mark it, then we push it on our
  8081     // marking stack
  8082     if (_bit_map->par_mark(addr)) {     // ... now grey
  8083       // push on work queue (grey set)
  8084       bool simulate_overflow = false;
  8085       NOT_PRODUCT(
  8086         if (CMSMarkStackOverflowALot &&
  8087             _collector->par_simulate_overflow()) {
  8088           // simulate a stack overflow
  8089           simulate_overflow = true;
  8092       if (simulate_overflow || !_work_queue->push(obj)) {
  8093         _collector->par_push_on_overflow_list(obj);
  8094         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
  8096     } // Else, some other thread got there first
  8100 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
  8101 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
  8103 void CMSPrecleanRefsYieldClosure::do_yield_work() {
  8104   Mutex* bml = _collector->bitMapLock();
  8105   assert_lock_strong(bml);
  8106   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  8107          "CMS thread should hold CMS token");
  8109   bml->unlock();
  8110   ConcurrentMarkSweepThread::desynchronize(true);
  8112   ConcurrentMarkSweepThread::acknowledge_yield_request();
  8114   _collector->stopTimer();
  8115   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  8116   if (PrintCMSStatistics != 0) {
  8117     _collector->incrementYields();
  8119   _collector->icms_wait();
  8121   // See the comment in coordinator_yield()
  8122   for (unsigned i = 0; i < CMSYieldSleepCount &&
  8123                        ConcurrentMarkSweepThread::should_yield() &&
  8124                        !CMSCollector::foregroundGCIsActive(); ++i) {
  8125     os::sleep(Thread::current(), 1, false);
  8126     ConcurrentMarkSweepThread::acknowledge_yield_request();
  8129   ConcurrentMarkSweepThread::synchronize(true);
  8130   bml->lock();
  8132   _collector->startTimer();
  8135 bool CMSPrecleanRefsYieldClosure::should_return() {
  8136   if (ConcurrentMarkSweepThread::should_yield()) {
  8137     do_yield_work();
  8139   return _collector->foregroundGCIsActive();
  8142 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
  8143   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
  8144          "mr should be aligned to start at a card boundary");
  8145   // We'd like to assert:
  8146   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
  8147   //        "mr should be a range of cards");
  8148   // However, that would be too strong in one case -- the last
  8149   // partition ends at _unallocated_block which, in general, can be
  8150   // an arbitrary boundary, not necessarily card aligned.
  8151   if (PrintCMSStatistics != 0) {
  8152     _num_dirty_cards +=
  8153          mr.word_size()/CardTableModRefBS::card_size_in_words;
  8155   _space->object_iterate_mem(mr, &_scan_cl);
  8158 SweepClosure::SweepClosure(CMSCollector* collector,
  8159                            ConcurrentMarkSweepGeneration* g,
  8160                            CMSBitMap* bitMap, bool should_yield) :
  8161   _collector(collector),
  8162   _g(g),
  8163   _sp(g->cmsSpace()),
  8164   _limit(_sp->sweep_limit()),
  8165   _freelistLock(_sp->freelistLock()),
  8166   _bitMap(bitMap),
  8167   _yield(should_yield),
  8168   _inFreeRange(false),           // No free range at beginning of sweep
  8169   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
  8170   _lastFreeRangeCoalesced(false),
  8171   _freeFinger(g->used_region().start())
  8173   NOT_PRODUCT(
  8174     _numObjectsFreed = 0;
  8175     _numWordsFreed   = 0;
  8176     _numObjectsLive = 0;
  8177     _numWordsLive = 0;
  8178     _numObjectsAlreadyFree = 0;
  8179     _numWordsAlreadyFree = 0;
  8180     _last_fc = NULL;
  8182     _sp->initializeIndexedFreeListArrayReturnedBytes();
  8183     _sp->dictionary()->initialize_dict_returned_bytes();
  8185   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  8186          "sweep _limit out of bounds");
  8187   if (CMSTraceSweeper) {
  8188     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
  8189                         _limit);
  8193 void SweepClosure::print_on(outputStream* st) const {
  8194   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
  8195                 _sp->bottom(), _sp->end());
  8196   tty->print_cr("_limit = " PTR_FORMAT, _limit);
  8197   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
  8198   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
  8199   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
  8200                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
  8203 #ifndef PRODUCT
  8204 // Assertion checking only:  no useful work in product mode --
  8205 // however, if any of the flags below become product flags,
  8206 // you may need to review this code to see if it needs to be
  8207 // enabled in product mode.
  8208 SweepClosure::~SweepClosure() {
  8209   assert_lock_strong(_freelistLock);
  8210   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  8211          "sweep _limit out of bounds");
  8212   if (inFreeRange()) {
  8213     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
  8214     print();
  8215     ShouldNotReachHere();
  8217   if (Verbose && PrintGC) {
  8218     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
  8219                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
  8220     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
  8221                            SIZE_FORMAT" bytes  "
  8222       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
  8223       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
  8224       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
  8225     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
  8226                         * sizeof(HeapWord);
  8227     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
  8229     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
  8230       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
  8231       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
  8232       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
  8233       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
  8234       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
  8235         indexListReturnedBytes);
  8236       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
  8237         dict_returned_bytes);
  8240   if (CMSTraceSweeper) {
  8241     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
  8242                            _limit);
  8245 #endif  // PRODUCT
  8247 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
  8248     bool freeRangeInFreeLists) {
  8249   if (CMSTraceSweeper) {
  8250     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
  8251                freeFinger, freeRangeInFreeLists);
  8253   assert(!inFreeRange(), "Trampling existing free range");
  8254   set_inFreeRange(true);
  8255   set_lastFreeRangeCoalesced(false);
  8257   set_freeFinger(freeFinger);
  8258   set_freeRangeInFreeLists(freeRangeInFreeLists);
  8259   if (CMSTestInFreeList) {
  8260     if (freeRangeInFreeLists) {
  8261       FreeChunk* fc = (FreeChunk*) freeFinger;
  8262       assert(fc->is_free(), "A chunk on the free list should be free.");
  8263       assert(fc->size() > 0, "Free range should have a size");
  8264       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
  8269 // Note that the sweeper runs concurrently with mutators. Thus,
  8270 // it is possible for direct allocation in this generation to happen
  8271 // in the middle of the sweep. Note that the sweeper also coalesces
  8272 // contiguous free blocks. Thus, unless the sweeper and the allocator
  8273 // synchronize appropriately freshly allocated blocks may get swept up.
  8274 // This is accomplished by the sweeper locking the free lists while
  8275 // it is sweeping. Thus blocks that are determined to be free are
  8276 // indeed free. There is however one additional complication:
  8277 // blocks that have been allocated since the final checkpoint and
  8278 // mark, will not have been marked and so would be treated as
  8279 // unreachable and swept up. To prevent this, the allocator marks
  8280 // the bit map when allocating during the sweep phase. This leads,
  8281 // however, to a further complication -- objects may have been allocated
  8282 // but not yet initialized -- in the sense that the header isn't yet
  8283 // installed. The sweeper can not then determine the size of the block
  8284 // in order to skip over it. To deal with this case, we use a technique
  8285 // (due to Printezis) to encode such uninitialized block sizes in the
  8286 // bit map. Since the bit map uses a bit per every HeapWord, but the
  8287 // CMS generation has a minimum object size of 3 HeapWords, it follows
  8288 // that "normal marks" won't be adjacent in the bit map (there will
  8289 // always be at least two 0 bits between successive 1 bits). We make use
  8290 // of these "unused" bits to represent uninitialized blocks -- the bit
  8291 // corresponding to the start of the uninitialized object and the next
  8292 // bit are both set. Finally, a 1 bit marks the end of the object that
  8293 // started with the two consecutive 1 bits to indicate its potentially
  8294 // uninitialized state.
  8296 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
  8297   FreeChunk* fc = (FreeChunk*)addr;
  8298   size_t res;
  8300   // Check if we are done sweeping. Below we check "addr >= _limit" rather
  8301   // than "addr == _limit" because although _limit was a block boundary when
  8302   // we started the sweep, it may no longer be one because heap expansion
  8303   // may have caused us to coalesce the block ending at the address _limit
  8304   // with a newly expanded chunk (this happens when _limit was set to the
  8305   // previous _end of the space), so we may have stepped past _limit:
  8306   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
  8307   if (addr >= _limit) { // we have swept up to or past the limit: finish up
  8308     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  8309            "sweep _limit out of bounds");
  8310     assert(addr < _sp->end(), "addr out of bounds");
  8311     // Flush any free range we might be holding as a single
  8312     // coalesced chunk to the appropriate free list.
  8313     if (inFreeRange()) {
  8314       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
  8315              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
  8316       flush_cur_free_chunk(freeFinger(),
  8317                            pointer_delta(addr, freeFinger()));
  8318       if (CMSTraceSweeper) {
  8319         gclog_or_tty->print("Sweep: last chunk: ");
  8320         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
  8321                    "[coalesced:"SIZE_FORMAT"]\n",
  8322                    freeFinger(), pointer_delta(addr, freeFinger()),
  8323                    lastFreeRangeCoalesced());
  8327     // help the iterator loop finish
  8328     return pointer_delta(_sp->end(), addr);
  8331   assert(addr < _limit, "sweep invariant");
  8332   // check if we should yield
  8333   do_yield_check(addr);
  8334   if (fc->is_free()) {
  8335     // Chunk that is already free
  8336     res = fc->size();
  8337     do_already_free_chunk(fc);
  8338     debug_only(_sp->verifyFreeLists());
  8339     // If we flush the chunk at hand in lookahead_and_flush()
  8340     // and it's coalesced with a preceding chunk, then the
  8341     // process of "mangling" the payload of the coalesced block
  8342     // will cause erasure of the size information from the
  8343     // (erstwhile) header of all the coalesced blocks but the
  8344     // first, so the first disjunct in the assert will not hold
  8345     // in that specific case (in which case the second disjunct
  8346     // will hold).
  8347     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
  8348            "Otherwise the size info doesn't change at this step");
  8349     NOT_PRODUCT(
  8350       _numObjectsAlreadyFree++;
  8351       _numWordsAlreadyFree += res;
  8353     NOT_PRODUCT(_last_fc = fc;)
  8354   } else if (!_bitMap->isMarked(addr)) {
  8355     // Chunk is fresh garbage
  8356     res = do_garbage_chunk(fc);
  8357     debug_only(_sp->verifyFreeLists());
  8358     NOT_PRODUCT(
  8359       _numObjectsFreed++;
  8360       _numWordsFreed += res;
  8362   } else {
  8363     // Chunk that is alive.
  8364     res = do_live_chunk(fc);
  8365     debug_only(_sp->verifyFreeLists());
  8366     NOT_PRODUCT(
  8367         _numObjectsLive++;
  8368         _numWordsLive += res;
  8371   return res;
  8374 // For the smart allocation, record following
  8375 //  split deaths - a free chunk is removed from its free list because
  8376 //      it is being split into two or more chunks.
  8377 //  split birth - a free chunk is being added to its free list because
  8378 //      a larger free chunk has been split and resulted in this free chunk.
  8379 //  coal death - a free chunk is being removed from its free list because
  8380 //      it is being coalesced into a large free chunk.
  8381 //  coal birth - a free chunk is being added to its free list because
  8382 //      it was created when two or more free chunks where coalesced into
  8383 //      this free chunk.
  8384 //
  8385 // These statistics are used to determine the desired number of free
  8386 // chunks of a given size.  The desired number is chosen to be relative
  8387 // to the end of a CMS sweep.  The desired number at the end of a sweep
  8388 // is the
  8389 //      count-at-end-of-previous-sweep (an amount that was enough)
  8390 //              - count-at-beginning-of-current-sweep  (the excess)
  8391 //              + split-births  (gains in this size during interval)
  8392 //              - split-deaths  (demands on this size during interval)
  8393 // where the interval is from the end of one sweep to the end of the
  8394 // next.
  8395 //
  8396 // When sweeping the sweeper maintains an accumulated chunk which is
  8397 // the chunk that is made up of chunks that have been coalesced.  That
  8398 // will be termed the left-hand chunk.  A new chunk of garbage that
  8399 // is being considered for coalescing will be referred to as the
  8400 // right-hand chunk.
  8401 //
  8402 // When making a decision on whether to coalesce a right-hand chunk with
  8403 // the current left-hand chunk, the current count vs. the desired count
  8404 // of the left-hand chunk is considered.  Also if the right-hand chunk
  8405 // is near the large chunk at the end of the heap (see
  8406 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
  8407 // left-hand chunk is coalesced.
  8408 //
  8409 // When making a decision about whether to split a chunk, the desired count
  8410 // vs. the current count of the candidate to be split is also considered.
  8411 // If the candidate is underpopulated (currently fewer chunks than desired)
  8412 // a chunk of an overpopulated (currently more chunks than desired) size may
  8413 // be chosen.  The "hint" associated with a free list, if non-null, points
  8414 // to a free list which may be overpopulated.
  8415 //
  8417 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
  8418   const size_t size = fc->size();
  8419   // Chunks that cannot be coalesced are not in the
  8420   // free lists.
  8421   if (CMSTestInFreeList && !fc->cantCoalesce()) {
  8422     assert(_sp->verify_chunk_in_free_list(fc),
  8423       "free chunk should be in free lists");
  8425   // a chunk that is already free, should not have been
  8426   // marked in the bit map
  8427   HeapWord* const addr = (HeapWord*) fc;
  8428   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
  8429   // Verify that the bit map has no bits marked between
  8430   // addr and purported end of this block.
  8431   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8433   // Some chunks cannot be coalesced under any circumstances.
  8434   // See the definition of cantCoalesce().
  8435   if (!fc->cantCoalesce()) {
  8436     // This chunk can potentially be coalesced.
  8437     if (_sp->adaptive_freelists()) {
  8438       // All the work is done in
  8439       do_post_free_or_garbage_chunk(fc, size);
  8440     } else {  // Not adaptive free lists
  8441       // this is a free chunk that can potentially be coalesced by the sweeper;
  8442       if (!inFreeRange()) {
  8443         // if the next chunk is a free block that can't be coalesced
  8444         // it doesn't make sense to remove this chunk from the free lists
  8445         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
  8446         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
  8447         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
  8448             nextChunk->is_free()               &&     // ... which is free...
  8449             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
  8450           // nothing to do
  8451         } else {
  8452           // Potentially the start of a new free range:
  8453           // Don't eagerly remove it from the free lists.
  8454           // No need to remove it if it will just be put
  8455           // back again.  (Also from a pragmatic point of view
  8456           // if it is a free block in a region that is beyond
  8457           // any allocated blocks, an assertion will fail)
  8458           // Remember the start of a free run.
  8459           initialize_free_range(addr, true);
  8460           // end - can coalesce with next chunk
  8462       } else {
  8463         // the midst of a free range, we are coalescing
  8464         print_free_block_coalesced(fc);
  8465         if (CMSTraceSweeper) {
  8466           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
  8468         // remove it from the free lists
  8469         _sp->removeFreeChunkFromFreeLists(fc);
  8470         set_lastFreeRangeCoalesced(true);
  8471         // If the chunk is being coalesced and the current free range is
  8472         // in the free lists, remove the current free range so that it
  8473         // will be returned to the free lists in its entirety - all
  8474         // the coalesced pieces included.
  8475         if (freeRangeInFreeLists()) {
  8476           FreeChunk* ffc = (FreeChunk*) freeFinger();
  8477           assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8478             "Size of free range is inconsistent with chunk size.");
  8479           if (CMSTestInFreeList) {
  8480             assert(_sp->verify_chunk_in_free_list(ffc),
  8481               "free range is not in free lists");
  8483           _sp->removeFreeChunkFromFreeLists(ffc);
  8484           set_freeRangeInFreeLists(false);
  8488     // Note that if the chunk is not coalescable (the else arm
  8489     // below), we unconditionally flush, without needing to do
  8490     // a "lookahead," as we do below.
  8491     if (inFreeRange()) lookahead_and_flush(fc, size);
  8492   } else {
  8493     // Code path common to both original and adaptive free lists.
  8495     // cant coalesce with previous block; this should be treated
  8496     // as the end of a free run if any
  8497     if (inFreeRange()) {
  8498       // we kicked some butt; time to pick up the garbage
  8499       assert(freeFinger() < addr, "freeFinger points too high");
  8500       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8502     // else, nothing to do, just continue
  8506 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
  8507   // This is a chunk of garbage.  It is not in any free list.
  8508   // Add it to a free list or let it possibly be coalesced into
  8509   // a larger chunk.
  8510   HeapWord* const addr = (HeapWord*) fc;
  8511   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8513   if (_sp->adaptive_freelists()) {
  8514     // Verify that the bit map has no bits marked between
  8515     // addr and purported end of just dead object.
  8516     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8518     do_post_free_or_garbage_chunk(fc, size);
  8519   } else {
  8520     if (!inFreeRange()) {
  8521       // start of a new free range
  8522       assert(size > 0, "A free range should have a size");
  8523       initialize_free_range(addr, false);
  8524     } else {
  8525       // this will be swept up when we hit the end of the
  8526       // free range
  8527       if (CMSTraceSweeper) {
  8528         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
  8530       // If the chunk is being coalesced and the current free range is
  8531       // in the free lists, remove the current free range so that it
  8532       // will be returned to the free lists in its entirety - all
  8533       // the coalesced pieces included.
  8534       if (freeRangeInFreeLists()) {
  8535         FreeChunk* ffc = (FreeChunk*)freeFinger();
  8536         assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8537           "Size of free range is inconsistent with chunk size.");
  8538         if (CMSTestInFreeList) {
  8539           assert(_sp->verify_chunk_in_free_list(ffc),
  8540             "free range is not in free lists");
  8542         _sp->removeFreeChunkFromFreeLists(ffc);
  8543         set_freeRangeInFreeLists(false);
  8545       set_lastFreeRangeCoalesced(true);
  8547     // this will be swept up when we hit the end of the free range
  8549     // Verify that the bit map has no bits marked between
  8550     // addr and purported end of just dead object.
  8551     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8553   assert(_limit >= addr + size,
  8554          "A freshly garbage chunk can't possibly straddle over _limit");
  8555   if (inFreeRange()) lookahead_and_flush(fc, size);
  8556   return size;
  8559 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
  8560   HeapWord* addr = (HeapWord*) fc;
  8561   // The sweeper has just found a live object. Return any accumulated
  8562   // left hand chunk to the free lists.
  8563   if (inFreeRange()) {
  8564     assert(freeFinger() < addr, "freeFinger points too high");
  8565     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8568   // This object is live: we'd normally expect this to be
  8569   // an oop, and like to assert the following:
  8570   // assert(oop(addr)->is_oop(), "live block should be an oop");
  8571   // However, as we commented above, this may be an object whose
  8572   // header hasn't yet been initialized.
  8573   size_t size;
  8574   assert(_bitMap->isMarked(addr), "Tautology for this control point");
  8575   if (_bitMap->isMarked(addr + 1)) {
  8576     // Determine the size from the bit map, rather than trying to
  8577     // compute it from the object header.
  8578     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  8579     size = pointer_delta(nextOneAddr + 1, addr);
  8580     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  8581            "alignment problem");
  8583 #ifdef ASSERT
  8584       if (oop(addr)->klass_or_null() != NULL) {
  8585         // Ignore mark word because we are running concurrent with mutators
  8586         assert(oop(addr)->is_oop(true), "live block should be an oop");
  8587         assert(size ==
  8588                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
  8589                "P-mark and computed size do not agree");
  8591 #endif
  8593   } else {
  8594     // This should be an initialized object that's alive.
  8595     assert(oop(addr)->klass_or_null() != NULL,
  8596            "Should be an initialized object");
  8597     // Ignore mark word because we are running concurrent with mutators
  8598     assert(oop(addr)->is_oop(true), "live block should be an oop");
  8599     // Verify that the bit map has no bits marked between
  8600     // addr and purported end of this block.
  8601     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8602     assert(size >= 3, "Necessary for Printezis marks to work");
  8603     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
  8604     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
  8606   return size;
  8609 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
  8610                                                  size_t chunkSize) {
  8611   // do_post_free_or_garbage_chunk() should only be called in the case
  8612   // of the adaptive free list allocator.
  8613   const bool fcInFreeLists = fc->is_free();
  8614   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
  8615   assert((HeapWord*)fc <= _limit, "sweep invariant");
  8616   if (CMSTestInFreeList && fcInFreeLists) {
  8617     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
  8620   if (CMSTraceSweeper) {
  8621     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
  8624   HeapWord* const fc_addr = (HeapWord*) fc;
  8626   bool coalesce;
  8627   const size_t left  = pointer_delta(fc_addr, freeFinger());
  8628   const size_t right = chunkSize;
  8629   switch (FLSCoalescePolicy) {
  8630     // numeric value forms a coalition aggressiveness metric
  8631     case 0:  { // never coalesce
  8632       coalesce = false;
  8633       break;
  8635     case 1: { // coalesce if left & right chunks on overpopulated lists
  8636       coalesce = _sp->coalOverPopulated(left) &&
  8637                  _sp->coalOverPopulated(right);
  8638       break;
  8640     case 2: { // coalesce if left chunk on overpopulated list (default)
  8641       coalesce = _sp->coalOverPopulated(left);
  8642       break;
  8644     case 3: { // coalesce if left OR right chunk on overpopulated list
  8645       coalesce = _sp->coalOverPopulated(left) ||
  8646                  _sp->coalOverPopulated(right);
  8647       break;
  8649     case 4: { // always coalesce
  8650       coalesce = true;
  8651       break;
  8653     default:
  8654      ShouldNotReachHere();
  8657   // Should the current free range be coalesced?
  8658   // If the chunk is in a free range and either we decided to coalesce above
  8659   // or the chunk is near the large block at the end of the heap
  8660   // (isNearLargestChunk() returns true), then coalesce this chunk.
  8661   const bool doCoalesce = inFreeRange()
  8662                           && (coalesce || _g->isNearLargestChunk(fc_addr));
  8663   if (doCoalesce) {
  8664     // Coalesce the current free range on the left with the new
  8665     // chunk on the right.  If either is on a free list,
  8666     // it must be removed from the list and stashed in the closure.
  8667     if (freeRangeInFreeLists()) {
  8668       FreeChunk* const ffc = (FreeChunk*)freeFinger();
  8669       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
  8670         "Size of free range is inconsistent with chunk size.");
  8671       if (CMSTestInFreeList) {
  8672         assert(_sp->verify_chunk_in_free_list(ffc),
  8673           "Chunk is not in free lists");
  8675       _sp->coalDeath(ffc->size());
  8676       _sp->removeFreeChunkFromFreeLists(ffc);
  8677       set_freeRangeInFreeLists(false);
  8679     if (fcInFreeLists) {
  8680       _sp->coalDeath(chunkSize);
  8681       assert(fc->size() == chunkSize,
  8682         "The chunk has the wrong size or is not in the free lists");
  8683       _sp->removeFreeChunkFromFreeLists(fc);
  8685     set_lastFreeRangeCoalesced(true);
  8686     print_free_block_coalesced(fc);
  8687   } else {  // not in a free range and/or should not coalesce
  8688     // Return the current free range and start a new one.
  8689     if (inFreeRange()) {
  8690       // In a free range but cannot coalesce with the right hand chunk.
  8691       // Put the current free range into the free lists.
  8692       flush_cur_free_chunk(freeFinger(),
  8693                            pointer_delta(fc_addr, freeFinger()));
  8695     // Set up for new free range.  Pass along whether the right hand
  8696     // chunk is in the free lists.
  8697     initialize_free_range((HeapWord*)fc, fcInFreeLists);
  8701 // Lookahead flush:
  8702 // If we are tracking a free range, and this is the last chunk that
  8703 // we'll look at because its end crosses past _limit, we'll preemptively
  8704 // flush it along with any free range we may be holding on to. Note that
  8705 // this can be the case only for an already free or freshly garbage
  8706 // chunk. If this block is an object, it can never straddle
  8707 // over _limit. The "straddling" occurs when _limit is set at
  8708 // the previous end of the space when this cycle started, and
  8709 // a subsequent heap expansion caused the previously co-terminal
  8710 // free block to be coalesced with the newly expanded portion,
  8711 // thus rendering _limit a non-block-boundary making it dangerous
  8712 // for the sweeper to step over and examine.
  8713 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
  8714   assert(inFreeRange(), "Should only be called if currently in a free range.");
  8715   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
  8716   assert(_sp->used_region().contains(eob - 1),
  8717          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
  8718                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
  8719                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
  8720                  eob, eob-1, _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
  8721   if (eob >= _limit) {
  8722     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
  8723     if (CMSTraceSweeper) {
  8724       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
  8725                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
  8726                              "[" PTR_FORMAT "," PTR_FORMAT ")",
  8727                              _limit, fc, eob, _sp->bottom(), _sp->end());
  8729     // Return the storage we are tracking back into the free lists.
  8730     if (CMSTraceSweeper) {
  8731       gclog_or_tty->print_cr("Flushing ... ");
  8733     assert(freeFinger() < eob, "Error");
  8734     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
  8738 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
  8739   assert(inFreeRange(), "Should only be called if currently in a free range.");
  8740   assert(size > 0,
  8741     "A zero sized chunk cannot be added to the free lists.");
  8742   if (!freeRangeInFreeLists()) {
  8743     if (CMSTestInFreeList) {
  8744       FreeChunk* fc = (FreeChunk*) chunk;
  8745       fc->set_size(size);
  8746       assert(!_sp->verify_chunk_in_free_list(fc),
  8747         "chunk should not be in free lists yet");
  8749     if (CMSTraceSweeper) {
  8750       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
  8751                     chunk, size);
  8753     // A new free range is going to be starting.  The current
  8754     // free range has not been added to the free lists yet or
  8755     // was removed so add it back.
  8756     // If the current free range was coalesced, then the death
  8757     // of the free range was recorded.  Record a birth now.
  8758     if (lastFreeRangeCoalesced()) {
  8759       _sp->coalBirth(size);
  8761     _sp->addChunkAndRepairOffsetTable(chunk, size,
  8762             lastFreeRangeCoalesced());
  8763   } else if (CMSTraceSweeper) {
  8764     gclog_or_tty->print_cr("Already in free list: nothing to flush");
  8766   set_inFreeRange(false);
  8767   set_freeRangeInFreeLists(false);
  8770 // We take a break if we've been at this for a while,
  8771 // so as to avoid monopolizing the locks involved.
  8772 void SweepClosure::do_yield_work(HeapWord* addr) {
  8773   // Return current free chunk being used for coalescing (if any)
  8774   // to the appropriate freelist.  After yielding, the next
  8775   // free block encountered will start a coalescing range of
  8776   // free blocks.  If the next free block is adjacent to the
  8777   // chunk just flushed, they will need to wait for the next
  8778   // sweep to be coalesced.
  8779   if (inFreeRange()) {
  8780     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8783   // First give up the locks, then yield, then re-lock.
  8784   // We should probably use a constructor/destructor idiom to
  8785   // do this unlock/lock or modify the MutexUnlocker class to
  8786   // serve our purpose. XXX
  8787   assert_lock_strong(_bitMap->lock());
  8788   assert_lock_strong(_freelistLock);
  8789   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  8790          "CMS thread should hold CMS token");
  8791   _bitMap->lock()->unlock();
  8792   _freelistLock->unlock();
  8793   ConcurrentMarkSweepThread::desynchronize(true);
  8794   ConcurrentMarkSweepThread::acknowledge_yield_request();
  8795   _collector->stopTimer();
  8796   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  8797   if (PrintCMSStatistics != 0) {
  8798     _collector->incrementYields();
  8800   _collector->icms_wait();
  8802   // See the comment in coordinator_yield()
  8803   for (unsigned i = 0; i < CMSYieldSleepCount &&
  8804                        ConcurrentMarkSweepThread::should_yield() &&
  8805                        !CMSCollector::foregroundGCIsActive(); ++i) {
  8806     os::sleep(Thread::current(), 1, false);
  8807     ConcurrentMarkSweepThread::acknowledge_yield_request();
  8810   ConcurrentMarkSweepThread::synchronize(true);
  8811   _freelistLock->lock();
  8812   _bitMap->lock()->lock_without_safepoint_check();
  8813   _collector->startTimer();
  8816 #ifndef PRODUCT
  8817 // This is actually very useful in a product build if it can
  8818 // be called from the debugger.  Compile it into the product
  8819 // as needed.
  8820 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
  8821   return debug_cms_space->verify_chunk_in_free_list(fc);
  8823 #endif
  8825 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
  8826   if (CMSTraceSweeper) {
  8827     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
  8828                            fc, fc->size());
  8832 // CMSIsAliveClosure
  8833 bool CMSIsAliveClosure::do_object_b(oop obj) {
  8834   HeapWord* addr = (HeapWord*)obj;
  8835   return addr != NULL &&
  8836          (!_span.contains(addr) || _bit_map->isMarked(addr));
  8840 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
  8841                       MemRegion span,
  8842                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
  8843                       bool cpc):
  8844   _collector(collector),
  8845   _span(span),
  8846   _bit_map(bit_map),
  8847   _mark_stack(mark_stack),
  8848   _concurrent_precleaning(cpc) {
  8849   assert(!_span.is_empty(), "Empty span could spell trouble");
  8853 // CMSKeepAliveClosure: the serial version
  8854 void CMSKeepAliveClosure::do_oop(oop obj) {
  8855   HeapWord* addr = (HeapWord*)obj;
  8856   if (_span.contains(addr) &&
  8857       !_bit_map->isMarked(addr)) {
  8858     _bit_map->mark(addr);
  8859     bool simulate_overflow = false;
  8860     NOT_PRODUCT(
  8861       if (CMSMarkStackOverflowALot &&
  8862           _collector->simulate_overflow()) {
  8863         // simulate a stack overflow
  8864         simulate_overflow = true;
  8867     if (simulate_overflow || !_mark_stack->push(obj)) {
  8868       if (_concurrent_precleaning) {
  8869         // We dirty the overflown object and let the remark
  8870         // phase deal with it.
  8871         assert(_collector->overflow_list_is_empty(), "Error");
  8872         // In the case of object arrays, we need to dirty all of
  8873         // the cards that the object spans. No locking or atomics
  8874         // are needed since no one else can be mutating the mod union
  8875         // table.
  8876         if (obj->is_objArray()) {
  8877           size_t sz = obj->size();
  8878           HeapWord* end_card_addr =
  8879             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
  8880           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  8881           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  8882           _collector->_modUnionTable.mark_range(redirty_range);
  8883         } else {
  8884           _collector->_modUnionTable.mark(addr);
  8886         _collector->_ser_kac_preclean_ovflw++;
  8887       } else {
  8888         _collector->push_on_overflow_list(obj);
  8889         _collector->_ser_kac_ovflw++;
  8895 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
  8896 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
  8898 // CMSParKeepAliveClosure: a parallel version of the above.
  8899 // The work queues are private to each closure (thread),
  8900 // but (may be) available for stealing by other threads.
  8901 void CMSParKeepAliveClosure::do_oop(oop obj) {
  8902   HeapWord* addr = (HeapWord*)obj;
  8903   if (_span.contains(addr) &&
  8904       !_bit_map->isMarked(addr)) {
  8905     // In general, during recursive tracing, several threads
  8906     // may be concurrently getting here; the first one to
  8907     // "tag" it, claims it.
  8908     if (_bit_map->par_mark(addr)) {
  8909       bool res = _work_queue->push(obj);
  8910       assert(res, "Low water mark should be much less than capacity");
  8911       // Do a recursive trim in the hope that this will keep
  8912       // stack usage lower, but leave some oops for potential stealers
  8913       trim_queue(_low_water_mark);
  8914     } // Else, another thread got there first
  8918 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
  8919 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
  8921 void CMSParKeepAliveClosure::trim_queue(uint max) {
  8922   while (_work_queue->size() > max) {
  8923     oop new_oop;
  8924     if (_work_queue->pop_local(new_oop)) {
  8925       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  8926       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8927              "no white objects on this stack!");
  8928       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8929       // iterate over the oops in this oop, marking and pushing
  8930       // the ones in CMS heap (i.e. in _span).
  8931       new_oop->oop_iterate(&_mark_and_push);
  8936 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
  8937                                 CMSCollector* collector,
  8938                                 MemRegion span, CMSBitMap* bit_map,
  8939                                 OopTaskQueue* work_queue):
  8940   _collector(collector),
  8941   _span(span),
  8942   _bit_map(bit_map),
  8943   _work_queue(work_queue) { }
  8945 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
  8946   HeapWord* addr = (HeapWord*)obj;
  8947   if (_span.contains(addr) &&
  8948       !_bit_map->isMarked(addr)) {
  8949     if (_bit_map->par_mark(addr)) {
  8950       bool simulate_overflow = false;
  8951       NOT_PRODUCT(
  8952         if (CMSMarkStackOverflowALot &&
  8953             _collector->par_simulate_overflow()) {
  8954           // simulate a stack overflow
  8955           simulate_overflow = true;
  8958       if (simulate_overflow || !_work_queue->push(obj)) {
  8959         _collector->par_push_on_overflow_list(obj);
  8960         _collector->_par_kac_ovflw++;
  8962     } // Else another thread got there already
  8966 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8967 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8969 //////////////////////////////////////////////////////////////////
  8970 //  CMSExpansionCause                /////////////////////////////
  8971 //////////////////////////////////////////////////////////////////
  8972 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
  8973   switch (cause) {
  8974     case _no_expansion:
  8975       return "No expansion";
  8976     case _satisfy_free_ratio:
  8977       return "Free ratio";
  8978     case _satisfy_promotion:
  8979       return "Satisfy promotion";
  8980     case _satisfy_allocation:
  8981       return "allocation";
  8982     case _allocate_par_lab:
  8983       return "Par LAB";
  8984     case _allocate_par_spooling_space:
  8985       return "Par Spooling Space";
  8986     case _adaptive_size_policy:
  8987       return "Ergonomics";
  8988     default:
  8989       return "unknown";
  8993 void CMSDrainMarkingStackClosure::do_void() {
  8994   // the max number to take from overflow list at a time
  8995   const size_t num = _mark_stack->capacity()/4;
  8996   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
  8997          "Overflow list should be NULL during concurrent phases");
  8998   while (!_mark_stack->isEmpty() ||
  8999          // if stack is empty, check the overflow list
  9000          _collector->take_from_overflow_list(num, _mark_stack)) {
  9001     oop obj = _mark_stack->pop();
  9002     HeapWord* addr = (HeapWord*)obj;
  9003     assert(_span.contains(addr), "Should be within span");
  9004     assert(_bit_map->isMarked(addr), "Should be marked");
  9005     assert(obj->is_oop(), "Should be an oop");
  9006     obj->oop_iterate(_keep_alive);
  9010 void CMSParDrainMarkingStackClosure::do_void() {
  9011   // drain queue
  9012   trim_queue(0);
  9015 // Trim our work_queue so its length is below max at return
  9016 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
  9017   while (_work_queue->size() > max) {
  9018     oop new_oop;
  9019     if (_work_queue->pop_local(new_oop)) {
  9020       assert(new_oop->is_oop(), "Expected an oop");
  9021       assert(_bit_map->isMarked((HeapWord*)new_oop),
  9022              "no white objects on this stack!");
  9023       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  9024       // iterate over the oops in this oop, marking and pushing
  9025       // the ones in CMS heap (i.e. in _span).
  9026       new_oop->oop_iterate(&_mark_and_push);
  9031 ////////////////////////////////////////////////////////////////////
  9032 // Support for Marking Stack Overflow list handling and related code
  9033 ////////////////////////////////////////////////////////////////////
  9034 // Much of the following code is similar in shape and spirit to the
  9035 // code used in ParNewGC. We should try and share that code
  9036 // as much as possible in the future.
  9038 #ifndef PRODUCT
  9039 // Debugging support for CMSStackOverflowALot
  9041 // It's OK to call this multi-threaded;  the worst thing
  9042 // that can happen is that we'll get a bunch of closely
  9043 // spaced simulated oveflows, but that's OK, in fact
  9044 // probably good as it would exercise the overflow code
  9045 // under contention.
  9046 bool CMSCollector::simulate_overflow() {
  9047   if (_overflow_counter-- <= 0) { // just being defensive
  9048     _overflow_counter = CMSMarkStackOverflowInterval;
  9049     return true;
  9050   } else {
  9051     return false;
  9055 bool CMSCollector::par_simulate_overflow() {
  9056   return simulate_overflow();
  9058 #endif
  9060 // Single-threaded
  9061 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
  9062   assert(stack->isEmpty(), "Expected precondition");
  9063   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
  9064   size_t i = num;
  9065   oop  cur = _overflow_list;
  9066   const markOop proto = markOopDesc::prototype();
  9067   NOT_PRODUCT(ssize_t n = 0;)
  9068   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
  9069     next = oop(cur->mark());
  9070     cur->set_mark(proto);   // until proven otherwise
  9071     assert(cur->is_oop(), "Should be an oop");
  9072     bool res = stack->push(cur);
  9073     assert(res, "Bit off more than can chew?");
  9074     NOT_PRODUCT(n++;)
  9076   _overflow_list = cur;
  9077 #ifndef PRODUCT
  9078   assert(_num_par_pushes >= n, "Too many pops?");
  9079   _num_par_pushes -=n;
  9080 #endif
  9081   return !stack->isEmpty();
  9084 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
  9085 // (MT-safe) Get a prefix of at most "num" from the list.
  9086 // The overflow list is chained through the mark word of
  9087 // each object in the list. We fetch the entire list,
  9088 // break off a prefix of the right size and return the
  9089 // remainder. If other threads try to take objects from
  9090 // the overflow list at that time, they will wait for
  9091 // some time to see if data becomes available. If (and
  9092 // only if) another thread places one or more object(s)
  9093 // on the global list before we have returned the suffix
  9094 // to the global list, we will walk down our local list
  9095 // to find its end and append the global list to
  9096 // our suffix before returning it. This suffix walk can
  9097 // prove to be expensive (quadratic in the amount of traffic)
  9098 // when there are many objects in the overflow list and
  9099 // there is much producer-consumer contention on the list.
  9100 // *NOTE*: The overflow list manipulation code here and
  9101 // in ParNewGeneration:: are very similar in shape,
  9102 // except that in the ParNew case we use the old (from/eden)
  9103 // copy of the object to thread the list via its klass word.
  9104 // Because of the common code, if you make any changes in
  9105 // the code below, please check the ParNew version to see if
  9106 // similar changes might be needed.
  9107 // CR 6797058 has been filed to consolidate the common code.
  9108 bool CMSCollector::par_take_from_overflow_list(size_t num,
  9109                                                OopTaskQueue* work_q,
  9110                                                int no_of_gc_threads) {
  9111   assert(work_q->size() == 0, "First empty local work queue");
  9112   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
  9113   if (_overflow_list == NULL) {
  9114     return false;
  9116   // Grab the entire list; we'll put back a suffix
  9117   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
  9118   Thread* tid = Thread::current();
  9119   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
  9120   // set to ParallelGCThreads.
  9121   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
  9122   size_t sleep_time_millis = MAX2((size_t)1, num/100);
  9123   // If the list is busy, we spin for a short while,
  9124   // sleeping between attempts to get the list.
  9125   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
  9126     os::sleep(tid, sleep_time_millis, false);
  9127     if (_overflow_list == NULL) {
  9128       // Nothing left to take
  9129       return false;
  9130     } else if (_overflow_list != BUSY) {
  9131       // Try and grab the prefix
  9132       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
  9135   // If the list was found to be empty, or we spun long
  9136   // enough, we give up and return empty-handed. If we leave
  9137   // the list in the BUSY state below, it must be the case that
  9138   // some other thread holds the overflow list and will set it
  9139   // to a non-BUSY state in the future.
  9140   if (prefix == NULL || prefix == BUSY) {
  9141      // Nothing to take or waited long enough
  9142      if (prefix == NULL) {
  9143        // Write back the NULL in case we overwrote it with BUSY above
  9144        // and it is still the same value.
  9145        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  9147      return false;
  9149   assert(prefix != NULL && prefix != BUSY, "Error");
  9150   size_t i = num;
  9151   oop cur = prefix;
  9152   // Walk down the first "num" objects, unless we reach the end.
  9153   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
  9154   if (cur->mark() == NULL) {
  9155     // We have "num" or fewer elements in the list, so there
  9156     // is nothing to return to the global list.
  9157     // Write back the NULL in lieu of the BUSY we wrote
  9158     // above, if it is still the same value.
  9159     if (_overflow_list == BUSY) {
  9160       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  9162   } else {
  9163     // Chop off the suffix and rerturn it to the global list.
  9164     assert(cur->mark() != BUSY, "Error");
  9165     oop suffix_head = cur->mark(); // suffix will be put back on global list
  9166     cur->set_mark(NULL);           // break off suffix
  9167     // It's possible that the list is still in the empty(busy) state
  9168     // we left it in a short while ago; in that case we may be
  9169     // able to place back the suffix without incurring the cost
  9170     // of a walk down the list.
  9171     oop observed_overflow_list = _overflow_list;
  9172     oop cur_overflow_list = observed_overflow_list;
  9173     bool attached = false;
  9174     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
  9175       observed_overflow_list =
  9176         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
  9177       if (cur_overflow_list == observed_overflow_list) {
  9178         attached = true;
  9179         break;
  9180       } else cur_overflow_list = observed_overflow_list;
  9182     if (!attached) {
  9183       // Too bad, someone else sneaked in (at least) an element; we'll need
  9184       // to do a splice. Find tail of suffix so we can prepend suffix to global
  9185       // list.
  9186       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
  9187       oop suffix_tail = cur;
  9188       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
  9189              "Tautology");
  9190       observed_overflow_list = _overflow_list;
  9191       do {
  9192         cur_overflow_list = observed_overflow_list;
  9193         if (cur_overflow_list != BUSY) {
  9194           // Do the splice ...
  9195           suffix_tail->set_mark(markOop(cur_overflow_list));
  9196         } else { // cur_overflow_list == BUSY
  9197           suffix_tail->set_mark(NULL);
  9199         // ... and try to place spliced list back on overflow_list ...
  9200         observed_overflow_list =
  9201           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
  9202       } while (cur_overflow_list != observed_overflow_list);
  9203       // ... until we have succeeded in doing so.
  9207   // Push the prefix elements on work_q
  9208   assert(prefix != NULL, "control point invariant");
  9209   const markOop proto = markOopDesc::prototype();
  9210   oop next;
  9211   NOT_PRODUCT(ssize_t n = 0;)
  9212   for (cur = prefix; cur != NULL; cur = next) {
  9213     next = oop(cur->mark());
  9214     cur->set_mark(proto);   // until proven otherwise
  9215     assert(cur->is_oop(), "Should be an oop");
  9216     bool res = work_q->push(cur);
  9217     assert(res, "Bit off more than we can chew?");
  9218     NOT_PRODUCT(n++;)
  9220 #ifndef PRODUCT
  9221   assert(_num_par_pushes >= n, "Too many pops?");
  9222   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  9223 #endif
  9224   return true;
  9227 // Single-threaded
  9228 void CMSCollector::push_on_overflow_list(oop p) {
  9229   NOT_PRODUCT(_num_par_pushes++;)
  9230   assert(p->is_oop(), "Not an oop");
  9231   preserve_mark_if_necessary(p);
  9232   p->set_mark((markOop)_overflow_list);
  9233   _overflow_list = p;
  9236 // Multi-threaded; use CAS to prepend to overflow list
  9237 void CMSCollector::par_push_on_overflow_list(oop p) {
  9238   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
  9239   assert(p->is_oop(), "Not an oop");
  9240   par_preserve_mark_if_necessary(p);
  9241   oop observed_overflow_list = _overflow_list;
  9242   oop cur_overflow_list;
  9243   do {
  9244     cur_overflow_list = observed_overflow_list;
  9245     if (cur_overflow_list != BUSY) {
  9246       p->set_mark(markOop(cur_overflow_list));
  9247     } else {
  9248       p->set_mark(NULL);
  9250     observed_overflow_list =
  9251       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
  9252   } while (cur_overflow_list != observed_overflow_list);
  9254 #undef BUSY
  9256 // Single threaded
  9257 // General Note on GrowableArray: pushes may silently fail
  9258 // because we are (temporarily) out of C-heap for expanding
  9259 // the stack. The problem is quite ubiquitous and affects
  9260 // a lot of code in the JVM. The prudent thing for GrowableArray
  9261 // to do (for now) is to exit with an error. However, that may
  9262 // be too draconian in some cases because the caller may be
  9263 // able to recover without much harm. For such cases, we
  9264 // should probably introduce a "soft_push" method which returns
  9265 // an indication of success or failure with the assumption that
  9266 // the caller may be able to recover from a failure; code in
  9267 // the VM can then be changed, incrementally, to deal with such
  9268 // failures where possible, thus, incrementally hardening the VM
  9269 // in such low resource situations.
  9270 void CMSCollector::preserve_mark_work(oop p, markOop m) {
  9271   _preserved_oop_stack.push(p);
  9272   _preserved_mark_stack.push(m);
  9273   assert(m == p->mark(), "Mark word changed");
  9274   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
  9275          "bijection");
  9278 // Single threaded
  9279 void CMSCollector::preserve_mark_if_necessary(oop p) {
  9280   markOop m = p->mark();
  9281   if (m->must_be_preserved(p)) {
  9282     preserve_mark_work(p, m);
  9286 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
  9287   markOop m = p->mark();
  9288   if (m->must_be_preserved(p)) {
  9289     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  9290     // Even though we read the mark word without holding
  9291     // the lock, we are assured that it will not change
  9292     // because we "own" this oop, so no other thread can
  9293     // be trying to push it on the overflow list; see
  9294     // the assertion in preserve_mark_work() that checks
  9295     // that m == p->mark().
  9296     preserve_mark_work(p, m);
  9300 // We should be able to do this multi-threaded,
  9301 // a chunk of stack being a task (this is
  9302 // correct because each oop only ever appears
  9303 // once in the overflow list. However, it's
  9304 // not very easy to completely overlap this with
  9305 // other operations, so will generally not be done
  9306 // until all work's been completed. Because we
  9307 // expect the preserved oop stack (set) to be small,
  9308 // it's probably fine to do this single-threaded.
  9309 // We can explore cleverer concurrent/overlapped/parallel
  9310 // processing of preserved marks if we feel the
  9311 // need for this in the future. Stack overflow should
  9312 // be so rare in practice and, when it happens, its
  9313 // effect on performance so great that this will
  9314 // likely just be in the noise anyway.
  9315 void CMSCollector::restore_preserved_marks_if_any() {
  9316   assert(SafepointSynchronize::is_at_safepoint(),
  9317          "world should be stopped");
  9318   assert(Thread::current()->is_ConcurrentGC_thread() ||
  9319          Thread::current()->is_VM_thread(),
  9320          "should be single-threaded");
  9321   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
  9322          "bijection");
  9324   while (!_preserved_oop_stack.is_empty()) {
  9325     oop p = _preserved_oop_stack.pop();
  9326     assert(p->is_oop(), "Should be an oop");
  9327     assert(_span.contains(p), "oop should be in _span");
  9328     assert(p->mark() == markOopDesc::prototype(),
  9329            "Set when taken from overflow list");
  9330     markOop m = _preserved_mark_stack.pop();
  9331     p->set_mark(m);
  9333   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
  9334          "stacks were cleared above");
  9337 #ifndef PRODUCT
  9338 bool CMSCollector::no_preserved_marks() const {
  9339   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
  9341 #endif
  9343 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
  9345   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  9346   CMSAdaptiveSizePolicy* size_policy =
  9347     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
  9348   assert(size_policy->is_gc_cms_adaptive_size_policy(),
  9349     "Wrong type for size policy");
  9350   return size_policy;
  9353 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
  9354                                            size_t desired_promo_size) {
  9355   if (cur_promo_size < desired_promo_size) {
  9356     size_t expand_bytes = desired_promo_size - cur_promo_size;
  9357     if (PrintAdaptiveSizePolicy && Verbose) {
  9358       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  9359         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
  9360         expand_bytes);
  9362     expand(expand_bytes,
  9363            MinHeapDeltaBytes,
  9364            CMSExpansionCause::_adaptive_size_policy);
  9365   } else if (desired_promo_size < cur_promo_size) {
  9366     size_t shrink_bytes = cur_promo_size - desired_promo_size;
  9367     if (PrintAdaptiveSizePolicy && Verbose) {
  9368       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  9369         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
  9370         shrink_bytes);
  9372     shrink(shrink_bytes);
  9376 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
  9377   GenCollectedHeap* gch = GenCollectedHeap::heap();
  9378   CMSGCAdaptivePolicyCounters* counters =
  9379     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
  9380   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
  9381     "Wrong kind of counters");
  9382   return counters;
  9386 void ASConcurrentMarkSweepGeneration::update_counters() {
  9387   if (UsePerfData) {
  9388     _space_counters->update_all();
  9389     _gen_counters->update_all();
  9390     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  9391     GenCollectedHeap* gch = GenCollectedHeap::heap();
  9392     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  9393     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  9394       "Wrong gc statistics type");
  9395     counters->update_counters(gc_stats_l);
  9399 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
  9400   if (UsePerfData) {
  9401     _space_counters->update_used(used);
  9402     _space_counters->update_capacity();
  9403     _gen_counters->update_all();
  9405     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  9406     GenCollectedHeap* gch = GenCollectedHeap::heap();
  9407     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  9408     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  9409       "Wrong gc statistics type");
  9410     counters->update_counters(gc_stats_l);
  9414 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
  9415   assert_locked_or_safepoint(Heap_lock);
  9416   assert_lock_strong(freelistLock());
  9417   HeapWord* old_end = _cmsSpace->end();
  9418   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
  9419   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
  9420   FreeChunk* chunk_at_end = find_chunk_at_end();
  9421   if (chunk_at_end == NULL) {
  9422     // No room to shrink
  9423     if (PrintGCDetails && Verbose) {
  9424       gclog_or_tty->print_cr("No room to shrink: old_end  "
  9425         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
  9426         " chunk_at_end  " PTR_FORMAT,
  9427         old_end, unallocated_start, chunk_at_end);
  9429     return;
  9430   } else {
  9432     // Find the chunk at the end of the space and determine
  9433     // how much it can be shrunk.
  9434     size_t shrinkable_size_in_bytes = chunk_at_end->size();
  9435     size_t aligned_shrinkable_size_in_bytes =
  9436       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
  9437     assert(unallocated_start <= (HeapWord*) chunk_at_end->end(),
  9438       "Inconsistent chunk at end of space");
  9439     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
  9440     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
  9442     // Shrink the underlying space
  9443     _virtual_space.shrink_by(bytes);
  9444     if (PrintGCDetails && Verbose) {
  9445       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
  9446         " desired_bytes " SIZE_FORMAT
  9447         " shrinkable_size_in_bytes " SIZE_FORMAT
  9448         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
  9449         "  bytes  " SIZE_FORMAT,
  9450         desired_bytes, shrinkable_size_in_bytes,
  9451         aligned_shrinkable_size_in_bytes, bytes);
  9452       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
  9453         "  unallocated_start  " SIZE_FORMAT,
  9454         old_end, unallocated_start);
  9457     // If the space did shrink (shrinking is not guaranteed),
  9458     // shrink the chunk at the end by the appropriate amount.
  9459     if (((HeapWord*)_virtual_space.high()) < old_end) {
  9460       size_t new_word_size =
  9461         heap_word_size(_virtual_space.committed_size());
  9463       // Have to remove the chunk from the dictionary because it is changing
  9464       // size and might be someplace elsewhere in the dictionary.
  9466       // Get the chunk at end, shrink it, and put it
  9467       // back.
  9468       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
  9469       size_t word_size_change = word_size_before - new_word_size;
  9470       size_t chunk_at_end_old_size = chunk_at_end->size();
  9471       assert(chunk_at_end_old_size >= word_size_change,
  9472         "Shrink is too large");
  9473       chunk_at_end->set_size(chunk_at_end_old_size -
  9474                           word_size_change);
  9475       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
  9476         word_size_change);
  9478       _cmsSpace->returnChunkToDictionary(chunk_at_end);
  9480       MemRegion mr(_cmsSpace->bottom(), new_word_size);
  9481       _bts->resize(new_word_size);  // resize the block offset shared array
  9482       Universe::heap()->barrier_set()->resize_covered_region(mr);
  9483       _cmsSpace->assert_locked();
  9484       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  9486       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
  9488       // update the space and generation capacity counters
  9489       if (UsePerfData) {
  9490         _space_counters->update_capacity();
  9491         _gen_counters->update_all();
  9494       if (Verbose && PrintGCDetails) {
  9495         size_t new_mem_size = _virtual_space.committed_size();
  9496         size_t old_mem_size = new_mem_size + bytes;
  9497         gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
  9498                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
  9502     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
  9503       "Inconsistency at end of space");
  9504     assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(),
  9505       "Shrinking is inconsistent");
  9506     return;
  9509 // Transfer some number of overflown objects to usual marking
  9510 // stack. Return true if some objects were transferred.
  9511 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
  9512   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
  9513                     (size_t)ParGCDesiredObjsFromOverflowList);
  9515   bool res = _collector->take_from_overflow_list(num, _mark_stack);
  9516   assert(_collector->overflow_list_is_empty() || res,
  9517          "If list is not empty, we should have taken something");
  9518   assert(!res || !_mark_stack->isEmpty(),
  9519          "If we took something, it should now be on our stack");
  9520   return res;
  9523 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
  9524   size_t res = _sp->block_size_no_stall(addr, _collector);
  9525   if (_sp->block_is_obj(addr)) {
  9526     if (_live_bit_map->isMarked(addr)) {
  9527       // It can't have been dead in a previous cycle
  9528       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
  9529     } else {
  9530       _dead_bit_map->mark(addr);      // mark the dead object
  9533   // Could be 0, if the block size could not be computed without stalling.
  9534   return res;
  9537 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
  9539   switch (phase) {
  9540     case CMSCollector::InitialMarking:
  9541       initialize(true  /* fullGC */ ,
  9542                  cause /* cause of the GC */,
  9543                  true  /* recordGCBeginTime */,
  9544                  true  /* recordPreGCUsage */,
  9545                  false /* recordPeakUsage */,
  9546                  false /* recordPostGCusage */,
  9547                  true  /* recordAccumulatedGCTime */,
  9548                  false /* recordGCEndTime */,
  9549                  false /* countCollection */  );
  9550       break;
  9552     case CMSCollector::FinalMarking:
  9553       initialize(true  /* fullGC */ ,
  9554                  cause /* cause of the GC */,
  9555                  false /* recordGCBeginTime */,
  9556                  false /* recordPreGCUsage */,
  9557                  false /* recordPeakUsage */,
  9558                  false /* recordPostGCusage */,
  9559                  true  /* recordAccumulatedGCTime */,
  9560                  false /* recordGCEndTime */,
  9561                  false /* countCollection */  );
  9562       break;
  9564     case CMSCollector::Sweeping:
  9565       initialize(true  /* fullGC */ ,
  9566                  cause /* cause of the GC */,
  9567                  false /* recordGCBeginTime */,
  9568                  false /* recordPreGCUsage */,
  9569                  true  /* recordPeakUsage */,
  9570                  true  /* recordPostGCusage */,
  9571                  false /* recordAccumulatedGCTime */,
  9572                  true  /* recordGCEndTime */,
  9573                  true  /* countCollection */  );
  9574       break;
  9576     default:
  9577       ShouldNotReachHere();

mercurial