src/share/vm/opto/memnode.cpp

Mon, 12 Aug 2013 17:37:02 +0200

author
ehelin
date
Mon, 12 Aug 2013 17:37:02 +0200
changeset 5694
7944aba7ba41
parent 5317
3aa636f2a743
child 5710
884ed7a10f09
permissions
-rw-r--r--

8015107: NPG: Use consistent naming for metaspace concepts
Reviewed-by: coleenp, mgerdin, hseigel

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "oops/objArrayKlass.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/cfgnode.hpp"
    32 #include "opto/compile.hpp"
    33 #include "opto/connode.hpp"
    34 #include "opto/loopnode.hpp"
    35 #include "opto/machnode.hpp"
    36 #include "opto/matcher.hpp"
    37 #include "opto/memnode.hpp"
    38 #include "opto/mulnode.hpp"
    39 #include "opto/phaseX.hpp"
    40 #include "opto/regmask.hpp"
    42 // Portions of code courtesy of Clifford Click
    44 // Optimization - Graph Style
    46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    48 //=============================================================================
    49 uint MemNode::size_of() const { return sizeof(*this); }
    51 const TypePtr *MemNode::adr_type() const {
    52   Node* adr = in(Address);
    53   const TypePtr* cross_check = NULL;
    54   DEBUG_ONLY(cross_check = _adr_type);
    55   return calculate_adr_type(adr->bottom_type(), cross_check);
    56 }
    58 #ifndef PRODUCT
    59 void MemNode::dump_spec(outputStream *st) const {
    60   if (in(Address) == NULL)  return; // node is dead
    61 #ifndef ASSERT
    62   // fake the missing field
    63   const TypePtr* _adr_type = NULL;
    64   if (in(Address) != NULL)
    65     _adr_type = in(Address)->bottom_type()->isa_ptr();
    66 #endif
    67   dump_adr_type(this, _adr_type, st);
    69   Compile* C = Compile::current();
    70   if( C->alias_type(_adr_type)->is_volatile() )
    71     st->print(" Volatile!");
    72 }
    74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    75   st->print(" @");
    76   if (adr_type == NULL) {
    77     st->print("NULL");
    78   } else {
    79     adr_type->dump_on(st);
    80     Compile* C = Compile::current();
    81     Compile::AliasType* atp = NULL;
    82     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    83     if (atp == NULL)
    84       st->print(", idx=?\?;");
    85     else if (atp->index() == Compile::AliasIdxBot)
    86       st->print(", idx=Bot;");
    87     else if (atp->index() == Compile::AliasIdxTop)
    88       st->print(", idx=Top;");
    89     else if (atp->index() == Compile::AliasIdxRaw)
    90       st->print(", idx=Raw;");
    91     else {
    92       ciField* field = atp->field();
    93       if (field) {
    94         st->print(", name=");
    95         field->print_name_on(st);
    96       }
    97       st->print(", idx=%d;", atp->index());
    98     }
    99   }
   100 }
   102 extern void print_alias_types();
   104 #endif
   106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
   107   assert((t_oop != NULL), "sanity");
   108   bool is_instance = t_oop->is_known_instance_field();
   109   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
   110                              (load != NULL) && load->is_Load() &&
   111                              (phase->is_IterGVN() != NULL);
   112   if (!(is_instance || is_boxed_value_load))
   113     return mchain;  // don't try to optimize non-instance types
   114   uint instance_id = t_oop->instance_id();
   115   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
   116   Node *prev = NULL;
   117   Node *result = mchain;
   118   while (prev != result) {
   119     prev = result;
   120     if (result == start_mem)
   121       break;  // hit one of our sentinels
   122     // skip over a call which does not affect this memory slice
   123     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   124       Node *proj_in = result->in(0);
   125       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
   126         break;  // hit one of our sentinels
   127       } else if (proj_in->is_Call()) {
   128         CallNode *call = proj_in->as_Call();
   129         if (!call->may_modify(t_oop, phase)) { // returns false for instances
   130           result = call->in(TypeFunc::Memory);
   131         }
   132       } else if (proj_in->is_Initialize()) {
   133         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   134         // Stop if this is the initialization for the object instance which
   135         // which contains this memory slice, otherwise skip over it.
   136         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
   137           break;
   138         }
   139         if (is_instance) {
   140           result = proj_in->in(TypeFunc::Memory);
   141         } else if (is_boxed_value_load) {
   142           Node* klass = alloc->in(AllocateNode::KlassNode);
   143           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
   144           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
   145             result = proj_in->in(TypeFunc::Memory); // not related allocation
   146           }
   147         }
   148       } else if (proj_in->is_MemBar()) {
   149         result = proj_in->in(TypeFunc::Memory);
   150       } else {
   151         assert(false, "unexpected projection");
   152       }
   153     } else if (result->is_ClearArray()) {
   154       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
   155         // Can not bypass initialization of the instance
   156         // we are looking for.
   157         break;
   158       }
   159       // Otherwise skip it (the call updated 'result' value).
   160     } else if (result->is_MergeMem()) {
   161       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
   162     }
   163   }
   164   return result;
   165 }
   167 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
   168   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
   169   if (t_oop == NULL)
   170     return mchain;  // don't try to optimize non-oop types
   171   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
   172   bool is_instance = t_oop->is_known_instance_field();
   173   PhaseIterGVN *igvn = phase->is_IterGVN();
   174   if (is_instance && igvn != NULL  && result->is_Phi()) {
   175     PhiNode *mphi = result->as_Phi();
   176     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   177     const TypePtr *t = mphi->adr_type();
   178     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   179         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
   180         t->is_oopptr()->cast_to_exactness(true)
   181          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
   182          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
   183       // clone the Phi with our address type
   184       result = mphi->split_out_instance(t_adr, igvn);
   185     } else {
   186       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   187     }
   188   }
   189   return result;
   190 }
   192 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   193   uint alias_idx = phase->C->get_alias_index(tp);
   194   Node *mem = mmem;
   195 #ifdef ASSERT
   196   {
   197     // Check that current type is consistent with the alias index used during graph construction
   198     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   199     bool consistent =  adr_check == NULL || adr_check->empty() ||
   200                        phase->C->must_alias(adr_check, alias_idx );
   201     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   202     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   203                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
   204         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   205         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   206           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   207           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   208       // don't assert if it is dead code.
   209       consistent = true;
   210     }
   211     if( !consistent ) {
   212       st->print("alias_idx==%d, adr_check==", alias_idx);
   213       if( adr_check == NULL ) {
   214         st->print("NULL");
   215       } else {
   216         adr_check->dump();
   217       }
   218       st->cr();
   219       print_alias_types();
   220       assert(consistent, "adr_check must match alias idx");
   221     }
   222   }
   223 #endif
   224   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
   225   // means an array I have not precisely typed yet.  Do not do any
   226   // alias stuff with it any time soon.
   227   const TypeOopPtr *toop = tp->isa_oopptr();
   228   if( tp->base() != Type::AnyPtr &&
   229       !(toop &&
   230         toop->klass() != NULL &&
   231         toop->klass()->is_java_lang_Object() &&
   232         toop->offset() == Type::OffsetBot) ) {
   233     // compress paths and change unreachable cycles to TOP
   234     // If not, we can update the input infinitely along a MergeMem cycle
   235     // Equivalent code in PhiNode::Ideal
   236     Node* m  = phase->transform(mmem);
   237     // If transformed to a MergeMem, get the desired slice
   238     // Otherwise the returned node represents memory for every slice
   239     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   240     // Update input if it is progress over what we have now
   241   }
   242   return mem;
   243 }
   245 //--------------------------Ideal_common---------------------------------------
   246 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   247 // Unhook non-raw memories from complete (macro-expanded) initializations.
   248 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   249   // If our control input is a dead region, kill all below the region
   250   Node *ctl = in(MemNode::Control);
   251   if (ctl && remove_dead_region(phase, can_reshape))
   252     return this;
   253   ctl = in(MemNode::Control);
   254   // Don't bother trying to transform a dead node
   255   if (ctl && ctl->is_top())  return NodeSentinel;
   257   PhaseIterGVN *igvn = phase->is_IterGVN();
   258   // Wait if control on the worklist.
   259   if (ctl && can_reshape && igvn != NULL) {
   260     Node* bol = NULL;
   261     Node* cmp = NULL;
   262     if (ctl->in(0)->is_If()) {
   263       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
   264       bol = ctl->in(0)->in(1);
   265       if (bol->is_Bool())
   266         cmp = ctl->in(0)->in(1)->in(1);
   267     }
   268     if (igvn->_worklist.member(ctl) ||
   269         (bol != NULL && igvn->_worklist.member(bol)) ||
   270         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
   271       // This control path may be dead.
   272       // Delay this memory node transformation until the control is processed.
   273       phase->is_IterGVN()->_worklist.push(this);
   274       return NodeSentinel; // caller will return NULL
   275     }
   276   }
   277   // Ignore if memory is dead, or self-loop
   278   Node *mem = in(MemNode::Memory);
   279   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
   280   assert(mem != this, "dead loop in MemNode::Ideal");
   282   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
   283     // This memory slice may be dead.
   284     // Delay this mem node transformation until the memory is processed.
   285     phase->is_IterGVN()->_worklist.push(this);
   286     return NodeSentinel; // caller will return NULL
   287   }
   289   Node *address = in(MemNode::Address);
   290   const Type *t_adr = phase->type(address);
   291   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
   293   if (can_reshape && igvn != NULL &&
   294       (igvn->_worklist.member(address) ||
   295        igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
   296     // The address's base and type may change when the address is processed.
   297     // Delay this mem node transformation until the address is processed.
   298     phase->is_IterGVN()->_worklist.push(this);
   299     return NodeSentinel; // caller will return NULL
   300   }
   302   // Do NOT remove or optimize the next lines: ensure a new alias index
   303   // is allocated for an oop pointer type before Escape Analysis.
   304   // Note: C++ will not remove it since the call has side effect.
   305   if (t_adr->isa_oopptr()) {
   306     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
   307   }
   309 #ifdef ASSERT
   310   Node* base = NULL;
   311   if (address->is_AddP())
   312     base = address->in(AddPNode::Base);
   313   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
   314       !t_adr->isa_rawptr()) {
   315     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
   316     Compile* C = phase->C;
   317     tty->cr();
   318     tty->print_cr("===== NULL+offs not RAW address =====");
   319     if (C->is_dead_node(this->_idx))    tty->print_cr("'this' is dead");
   320     if ((ctl != NULL) && C->is_dead_node(ctl->_idx)) tty->print_cr("'ctl' is dead");
   321     if (C->is_dead_node(mem->_idx))     tty->print_cr("'mem' is dead");
   322     if (C->is_dead_node(address->_idx)) tty->print_cr("'address' is dead");
   323     if (C->is_dead_node(base->_idx))    tty->print_cr("'base' is dead");
   324     tty->cr();
   325     base->dump(1);
   326     tty->cr();
   327     this->dump(2);
   328     tty->print("this->adr_type():     "); adr_type()->dump(); tty->cr();
   329     tty->print("phase->type(address): "); t_adr->dump(); tty->cr();
   330     tty->print("phase->type(base):    "); phase->type(address)->dump(); tty->cr();
   331     tty->cr();
   332   }
   333   assert(base == NULL || t_adr->isa_rawptr() ||
   334         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
   335 #endif
   337   // Avoid independent memory operations
   338   Node* old_mem = mem;
   340   // The code which unhooks non-raw memories from complete (macro-expanded)
   341   // initializations was removed. After macro-expansion all stores catched
   342   // by Initialize node became raw stores and there is no information
   343   // which memory slices they modify. So it is unsafe to move any memory
   344   // operation above these stores. Also in most cases hooked non-raw memories
   345   // were already unhooked by using information from detect_ptr_independence()
   346   // and find_previous_store().
   348   if (mem->is_MergeMem()) {
   349     MergeMemNode* mmem = mem->as_MergeMem();
   350     const TypePtr *tp = t_adr->is_ptr();
   352     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   353   }
   355   if (mem != old_mem) {
   356     set_req(MemNode::Memory, mem);
   357     if (can_reshape && old_mem->outcnt() == 0) {
   358         igvn->_worklist.push(old_mem);
   359     }
   360     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
   361     return this;
   362   }
   364   // let the subclass continue analyzing...
   365   return NULL;
   366 }
   368 // Helper function for proving some simple control dominations.
   369 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   370 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   371 // is not a constant (dominated by the method's StartNode).
   372 // Used by MemNode::find_previous_store to prove that the
   373 // control input of a memory operation predates (dominates)
   374 // an allocation it wants to look past.
   375 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   376   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   377     return false; // Conservative answer for dead code
   379   // Check 'dom'. Skip Proj and CatchProj nodes.
   380   dom = dom->find_exact_control(dom);
   381   if (dom == NULL || dom->is_top())
   382     return false; // Conservative answer for dead code
   384   if (dom == sub) {
   385     // For the case when, for example, 'sub' is Initialize and the original
   386     // 'dom' is Proj node of the 'sub'.
   387     return false;
   388   }
   390   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
   391     return true;
   393   // 'dom' dominates 'sub' if its control edge and control edges
   394   // of all its inputs dominate or equal to sub's control edge.
   396   // Currently 'sub' is either Allocate, Initialize or Start nodes.
   397   // Or Region for the check in LoadNode::Ideal();
   398   // 'sub' should have sub->in(0) != NULL.
   399   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
   400          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
   402   // Get control edge of 'sub'.
   403   Node* orig_sub = sub;
   404   sub = sub->find_exact_control(sub->in(0));
   405   if (sub == NULL || sub->is_top())
   406     return false; // Conservative answer for dead code
   408   assert(sub->is_CFG(), "expecting control");
   410   if (sub == dom)
   411     return true;
   413   if (sub->is_Start() || sub->is_Root())
   414     return false;
   416   {
   417     // Check all control edges of 'dom'.
   419     ResourceMark rm;
   420     Arena* arena = Thread::current()->resource_area();
   421     Node_List nlist(arena);
   422     Unique_Node_List dom_list(arena);
   424     dom_list.push(dom);
   425     bool only_dominating_controls = false;
   427     for (uint next = 0; next < dom_list.size(); next++) {
   428       Node* n = dom_list.at(next);
   429       if (n == orig_sub)
   430         return false; // One of dom's inputs dominated by sub.
   431       if (!n->is_CFG() && n->pinned()) {
   432         // Check only own control edge for pinned non-control nodes.
   433         n = n->find_exact_control(n->in(0));
   434         if (n == NULL || n->is_top())
   435           return false; // Conservative answer for dead code
   436         assert(n->is_CFG(), "expecting control");
   437         dom_list.push(n);
   438       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
   439         only_dominating_controls = true;
   440       } else if (n->is_CFG()) {
   441         if (n->dominates(sub, nlist))
   442           only_dominating_controls = true;
   443         else
   444           return false;
   445       } else {
   446         // First, own control edge.
   447         Node* m = n->find_exact_control(n->in(0));
   448         if (m != NULL) {
   449           if (m->is_top())
   450             return false; // Conservative answer for dead code
   451           dom_list.push(m);
   452         }
   453         // Now, the rest of edges.
   454         uint cnt = n->req();
   455         for (uint i = 1; i < cnt; i++) {
   456           m = n->find_exact_control(n->in(i));
   457           if (m == NULL || m->is_top())
   458             continue;
   459           dom_list.push(m);
   460         }
   461       }
   462     }
   463     return only_dominating_controls;
   464   }
   465 }
   467 //---------------------detect_ptr_independence---------------------------------
   468 // Used by MemNode::find_previous_store to prove that two base
   469 // pointers are never equal.
   470 // The pointers are accompanied by their associated allocations,
   471 // if any, which have been previously discovered by the caller.
   472 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   473                                       Node* p2, AllocateNode* a2,
   474                                       PhaseTransform* phase) {
   475   // Attempt to prove that these two pointers cannot be aliased.
   476   // They may both manifestly be allocations, and they should differ.
   477   // Or, if they are not both allocations, they can be distinct constants.
   478   // Otherwise, one is an allocation and the other a pre-existing value.
   479   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   480     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   481   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   482     return (a1 != a2);
   483   } else if (a1 != NULL) {                  // one allocation a1
   484     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   485     return all_controls_dominate(p2, a1);
   486   } else { //(a2 != NULL)                   // one allocation a2
   487     return all_controls_dominate(p1, a2);
   488   }
   489   return false;
   490 }
   493 // The logic for reordering loads and stores uses four steps:
   494 // (a) Walk carefully past stores and initializations which we
   495 //     can prove are independent of this load.
   496 // (b) Observe that the next memory state makes an exact match
   497 //     with self (load or store), and locate the relevant store.
   498 // (c) Ensure that, if we were to wire self directly to the store,
   499 //     the optimizer would fold it up somehow.
   500 // (d) Do the rewiring, and return, depending on some other part of
   501 //     the optimizer to fold up the load.
   502 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   503 // specific to loads and stores, so they are handled by the callers.
   504 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   505 //
   506 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   507   Node*         ctrl   = in(MemNode::Control);
   508   Node*         adr    = in(MemNode::Address);
   509   intptr_t      offset = 0;
   510   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   511   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   513   if (offset == Type::OffsetBot)
   514     return NULL;            // cannot unalias unless there are precise offsets
   516   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   518   intptr_t size_in_bytes = memory_size();
   520   Node* mem = in(MemNode::Memory);   // start searching here...
   522   int cnt = 50;             // Cycle limiter
   523   for (;;) {                // While we can dance past unrelated stores...
   524     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   526     if (mem->is_Store()) {
   527       Node* st_adr = mem->in(MemNode::Address);
   528       intptr_t st_offset = 0;
   529       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   530       if (st_base == NULL)
   531         break;              // inscrutable pointer
   532       if (st_offset != offset && st_offset != Type::OffsetBot) {
   533         const int MAX_STORE = BytesPerLong;
   534         if (st_offset >= offset + size_in_bytes ||
   535             st_offset <= offset - MAX_STORE ||
   536             st_offset <= offset - mem->as_Store()->memory_size()) {
   537           // Success:  The offsets are provably independent.
   538           // (You may ask, why not just test st_offset != offset and be done?
   539           // The answer is that stores of different sizes can co-exist
   540           // in the same sequence of RawMem effects.  We sometimes initialize
   541           // a whole 'tile' of array elements with a single jint or jlong.)
   542           mem = mem->in(MemNode::Memory);
   543           continue;           // (a) advance through independent store memory
   544         }
   545       }
   546       if (st_base != base &&
   547           detect_ptr_independence(base, alloc,
   548                                   st_base,
   549                                   AllocateNode::Ideal_allocation(st_base, phase),
   550                                   phase)) {
   551         // Success:  The bases are provably independent.
   552         mem = mem->in(MemNode::Memory);
   553         continue;           // (a) advance through independent store memory
   554       }
   556       // (b) At this point, if the bases or offsets do not agree, we lose,
   557       // since we have not managed to prove 'this' and 'mem' independent.
   558       if (st_base == base && st_offset == offset) {
   559         return mem;         // let caller handle steps (c), (d)
   560       }
   562     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   563       InitializeNode* st_init = mem->in(0)->as_Initialize();
   564       AllocateNode*  st_alloc = st_init->allocation();
   565       if (st_alloc == NULL)
   566         break;              // something degenerated
   567       bool known_identical = false;
   568       bool known_independent = false;
   569       if (alloc == st_alloc)
   570         known_identical = true;
   571       else if (alloc != NULL)
   572         known_independent = true;
   573       else if (all_controls_dominate(this, st_alloc))
   574         known_independent = true;
   576       if (known_independent) {
   577         // The bases are provably independent: Either they are
   578         // manifestly distinct allocations, or else the control
   579         // of this load dominates the store's allocation.
   580         int alias_idx = phase->C->get_alias_index(adr_type());
   581         if (alias_idx == Compile::AliasIdxRaw) {
   582           mem = st_alloc->in(TypeFunc::Memory);
   583         } else {
   584           mem = st_init->memory(alias_idx);
   585         }
   586         continue;           // (a) advance through independent store memory
   587       }
   589       // (b) at this point, if we are not looking at a store initializing
   590       // the same allocation we are loading from, we lose.
   591       if (known_identical) {
   592         // From caller, can_see_stored_value will consult find_captured_store.
   593         return mem;         // let caller handle steps (c), (d)
   594       }
   596     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
   597       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   598       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   599         CallNode *call = mem->in(0)->as_Call();
   600         if (!call->may_modify(addr_t, phase)) {
   601           mem = call->in(TypeFunc::Memory);
   602           continue;         // (a) advance through independent call memory
   603         }
   604       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   605         mem = mem->in(0)->in(TypeFunc::Memory);
   606         continue;           // (a) advance through independent MemBar memory
   607       } else if (mem->is_ClearArray()) {
   608         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
   609           // (the call updated 'mem' value)
   610           continue;         // (a) advance through independent allocation memory
   611         } else {
   612           // Can not bypass initialization of the instance
   613           // we are looking for.
   614           return mem;
   615         }
   616       } else if (mem->is_MergeMem()) {
   617         int alias_idx = phase->C->get_alias_index(adr_type());
   618         mem = mem->as_MergeMem()->memory_at(alias_idx);
   619         continue;           // (a) advance through independent MergeMem memory
   620       }
   621     }
   623     // Unless there is an explicit 'continue', we must bail out here,
   624     // because 'mem' is an inscrutable memory state (e.g., a call).
   625     break;
   626   }
   628   return NULL;              // bail out
   629 }
   631 //----------------------calculate_adr_type-------------------------------------
   632 // Helper function.  Notices when the given type of address hits top or bottom.
   633 // Also, asserts a cross-check of the type against the expected address type.
   634 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   635   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   636   #ifdef PRODUCT
   637   cross_check = NULL;
   638   #else
   639   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   640   #endif
   641   const TypePtr* tp = t->isa_ptr();
   642   if (tp == NULL) {
   643     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   644     return TypePtr::BOTTOM;           // touches lots of memory
   645   } else {
   646     #ifdef ASSERT
   647     // %%%% [phh] We don't check the alias index if cross_check is
   648     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   649     if (cross_check != NULL &&
   650         cross_check != TypePtr::BOTTOM &&
   651         cross_check != TypeRawPtr::BOTTOM) {
   652       // Recheck the alias index, to see if it has changed (due to a bug).
   653       Compile* C = Compile::current();
   654       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   655              "must stay in the original alias category");
   656       // The type of the address must be contained in the adr_type,
   657       // disregarding "null"-ness.
   658       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   659       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   660       assert(cross_check->meet(tp_notnull) == cross_check,
   661              "real address must not escape from expected memory type");
   662     }
   663     #endif
   664     return tp;
   665   }
   666 }
   668 //------------------------adr_phi_is_loop_invariant----------------------------
   669 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   670 // loop is loop invariant. Make a quick traversal of Phi and associated
   671 // CastPP nodes, looking to see if they are a closed group within the loop.
   672 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   673   // The idea is that the phi-nest must boil down to only CastPP nodes
   674   // with the same data. This implies that any path into the loop already
   675   // includes such a CastPP, and so the original cast, whatever its input,
   676   // must be covered by an equivalent cast, with an earlier control input.
   677   ResourceMark rm;
   679   // The loop entry input of the phi should be the unique dominating
   680   // node for every Phi/CastPP in the loop.
   681   Unique_Node_List closure;
   682   closure.push(adr_phi->in(LoopNode::EntryControl));
   684   // Add the phi node and the cast to the worklist.
   685   Unique_Node_List worklist;
   686   worklist.push(adr_phi);
   687   if( cast != NULL ){
   688     if( !cast->is_ConstraintCast() ) return false;
   689     worklist.push(cast);
   690   }
   692   // Begin recursive walk of phi nodes.
   693   while( worklist.size() ){
   694     // Take a node off the worklist
   695     Node *n = worklist.pop();
   696     if( !closure.member(n) ){
   697       // Add it to the closure.
   698       closure.push(n);
   699       // Make a sanity check to ensure we don't waste too much time here.
   700       if( closure.size() > 20) return false;
   701       // This node is OK if:
   702       //  - it is a cast of an identical value
   703       //  - or it is a phi node (then we add its inputs to the worklist)
   704       // Otherwise, the node is not OK, and we presume the cast is not invariant
   705       if( n->is_ConstraintCast() ){
   706         worklist.push(n->in(1));
   707       } else if( n->is_Phi() ) {
   708         for( uint i = 1; i < n->req(); i++ ) {
   709           worklist.push(n->in(i));
   710         }
   711       } else {
   712         return false;
   713       }
   714     }
   715   }
   717   // Quit when the worklist is empty, and we've found no offending nodes.
   718   return true;
   719 }
   721 //------------------------------Ideal_DU_postCCP-------------------------------
   722 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   723 // going away in this pass and we need to make this memory op depend on the
   724 // gating null check.
   725 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   726   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
   727 }
   729 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   730 // some sense; we get to keep around the knowledge that an oop is not-null
   731 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   732 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   733 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   734 // some of the more trivial cases in the optimizer.  Removing more useless
   735 // Phi's started allowing Loads to illegally float above null checks.  I gave
   736 // up on this approach.  CNC 10/20/2000
   737 // This static method may be called not from MemNode (EncodePNode calls it).
   738 // Only the control edge of the node 'n' might be updated.
   739 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
   740   Node *skipped_cast = NULL;
   741   // Need a null check?  Regular static accesses do not because they are
   742   // from constant addresses.  Array ops are gated by the range check (which
   743   // always includes a NULL check).  Just check field ops.
   744   if( n->in(MemNode::Control) == NULL ) {
   745     // Scan upwards for the highest location we can place this memory op.
   746     while( true ) {
   747       switch( adr->Opcode() ) {
   749       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   750         adr = adr->in(AddPNode::Base);
   751         continue;
   753       case Op_DecodeN:         // No change to NULL-ness, so peek thru
   754       case Op_DecodeNKlass:
   755         adr = adr->in(1);
   756         continue;
   758       case Op_EncodeP:
   759       case Op_EncodePKlass:
   760         // EncodeP node's control edge could be set by this method
   761         // when EncodeP node depends on CastPP node.
   762         //
   763         // Use its control edge for memory op because EncodeP may go away
   764         // later when it is folded with following or preceding DecodeN node.
   765         if (adr->in(0) == NULL) {
   766           // Keep looking for cast nodes.
   767           adr = adr->in(1);
   768           continue;
   769         }
   770         ccp->hash_delete(n);
   771         n->set_req(MemNode::Control, adr->in(0));
   772         ccp->hash_insert(n);
   773         return n;
   775       case Op_CastPP:
   776         // If the CastPP is useless, just peek on through it.
   777         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   778           // Remember the cast that we've peeked though. If we peek
   779           // through more than one, then we end up remembering the highest
   780           // one, that is, if in a loop, the one closest to the top.
   781           skipped_cast = adr;
   782           adr = adr->in(1);
   783           continue;
   784         }
   785         // CastPP is going away in this pass!  We need this memory op to be
   786         // control-dependent on the test that is guarding the CastPP.
   787         ccp->hash_delete(n);
   788         n->set_req(MemNode::Control, adr->in(0));
   789         ccp->hash_insert(n);
   790         return n;
   792       case Op_Phi:
   793         // Attempt to float above a Phi to some dominating point.
   794         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   795           // If we've already peeked through a Cast (which could have set the
   796           // control), we can't float above a Phi, because the skipped Cast
   797           // may not be loop invariant.
   798           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   799             adr = adr->in(1);
   800             continue;
   801           }
   802         }
   804         // Intentional fallthrough!
   806         // No obvious dominating point.  The mem op is pinned below the Phi
   807         // by the Phi itself.  If the Phi goes away (no true value is merged)
   808         // then the mem op can float, but not indefinitely.  It must be pinned
   809         // behind the controls leading to the Phi.
   810       case Op_CheckCastPP:
   811         // These usually stick around to change address type, however a
   812         // useless one can be elided and we still need to pick up a control edge
   813         if (adr->in(0) == NULL) {
   814           // This CheckCastPP node has NO control and is likely useless. But we
   815           // need check further up the ancestor chain for a control input to keep
   816           // the node in place. 4959717.
   817           skipped_cast = adr;
   818           adr = adr->in(1);
   819           continue;
   820         }
   821         ccp->hash_delete(n);
   822         n->set_req(MemNode::Control, adr->in(0));
   823         ccp->hash_insert(n);
   824         return n;
   826         // List of "safe" opcodes; those that implicitly block the memory
   827         // op below any null check.
   828       case Op_CastX2P:          // no null checks on native pointers
   829       case Op_Parm:             // 'this' pointer is not null
   830       case Op_LoadP:            // Loading from within a klass
   831       case Op_LoadN:            // Loading from within a klass
   832       case Op_LoadKlass:        // Loading from within a klass
   833       case Op_LoadNKlass:       // Loading from within a klass
   834       case Op_ConP:             // Loading from a klass
   835       case Op_ConN:             // Loading from a klass
   836       case Op_ConNKlass:        // Loading from a klass
   837       case Op_CreateEx:         // Sucking up the guts of an exception oop
   838       case Op_Con:              // Reading from TLS
   839       case Op_CMoveP:           // CMoveP is pinned
   840       case Op_CMoveN:           // CMoveN is pinned
   841         break;                  // No progress
   843       case Op_Proj:             // Direct call to an allocation routine
   844       case Op_SCMemProj:        // Memory state from store conditional ops
   845 #ifdef ASSERT
   846         {
   847           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   848           const Node* call = adr->in(0);
   849           if (call->is_CallJava()) {
   850             const CallJavaNode* call_java = call->as_CallJava();
   851             const TypeTuple *r = call_java->tf()->range();
   852             assert(r->cnt() > TypeFunc::Parms, "must return value");
   853             const Type* ret_type = r->field_at(TypeFunc::Parms);
   854             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   855             // We further presume that this is one of
   856             // new_instance_Java, new_array_Java, or
   857             // the like, but do not assert for this.
   858           } else if (call->is_Allocate()) {
   859             // similar case to new_instance_Java, etc.
   860           } else if (!call->is_CallLeaf()) {
   861             // Projections from fetch_oop (OSR) are allowed as well.
   862             ShouldNotReachHere();
   863           }
   864         }
   865 #endif
   866         break;
   867       default:
   868         ShouldNotReachHere();
   869       }
   870       break;
   871     }
   872   }
   874   return  NULL;               // No progress
   875 }
   878 //=============================================================================
   879 uint LoadNode::size_of() const { return sizeof(*this); }
   880 uint LoadNode::cmp( const Node &n ) const
   881 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   882 const Type *LoadNode::bottom_type() const { return _type; }
   883 uint LoadNode::ideal_reg() const {
   884   return _type->ideal_reg();
   885 }
   887 #ifndef PRODUCT
   888 void LoadNode::dump_spec(outputStream *st) const {
   889   MemNode::dump_spec(st);
   890   if( !Verbose && !WizardMode ) {
   891     // standard dump does this in Verbose and WizardMode
   892     st->print(" #"); _type->dump_on(st);
   893   }
   894 }
   895 #endif
   897 #ifdef ASSERT
   898 //----------------------------is_immutable_value-------------------------------
   899 // Helper function to allow a raw load without control edge for some cases
   900 bool LoadNode::is_immutable_value(Node* adr) {
   901   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
   902           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   903           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
   904            in_bytes(JavaThread::osthread_offset())));
   905 }
   906 #endif
   908 //----------------------------LoadNode::make-----------------------------------
   909 // Polymorphic factory method:
   910 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   911   Compile* C = gvn.C;
   913   // sanity check the alias category against the created node type
   914   assert(!(adr_type->isa_oopptr() &&
   915            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   916          "use LoadKlassNode instead");
   917   assert(!(adr_type->isa_aryptr() &&
   918            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   919          "use LoadRangeNode instead");
   920   // Check control edge of raw loads
   921   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
   922           // oop will be recorded in oop map if load crosses safepoint
   923           rt->isa_oopptr() || is_immutable_value(adr),
   924           "raw memory operations should have control edge");
   925   switch (bt) {
   926   case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   927   case T_BYTE:    return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
   928   case T_INT:     return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
   929   case T_CHAR:    return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   930   case T_SHORT:   return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
   931   case T_LONG:    return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
   932   case T_FLOAT:   return new (C) LoadFNode (ctl, mem, adr, adr_type, rt              );
   933   case T_DOUBLE:  return new (C) LoadDNode (ctl, mem, adr, adr_type, rt              );
   934   case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
   935   case T_OBJECT:
   936 #ifdef _LP64
   937     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
   938       Node* load  = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
   939       return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
   940     } else
   941 #endif
   942     {
   943       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
   944       return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   945     }
   946   }
   947   ShouldNotReachHere();
   948   return (LoadNode*)NULL;
   949 }
   951 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   952   bool require_atomic = true;
   953   return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   954 }
   959 //------------------------------hash-------------------------------------------
   960 uint LoadNode::hash() const {
   961   // unroll addition of interesting fields
   962   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   963 }
   965 //---------------------------can_see_stored_value------------------------------
   966 // This routine exists to make sure this set of tests is done the same
   967 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   968 // will change the graph shape in a way which makes memory alive twice at the
   969 // same time (uses the Oracle model of aliasing), then some
   970 // LoadXNode::Identity will fold things back to the equivalence-class model
   971 // of aliasing.
   972 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   973   Node* ld_adr = in(MemNode::Address);
   974   intptr_t ld_off = 0;
   975   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   976   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   977   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
   978   // This is more general than load from boxing objects.
   979   if (phase->C->eliminate_boxing() && (atp != NULL) &&
   980       (atp->index() >= Compile::AliasIdxRaw) &&
   981       (atp->field() != NULL) && !atp->field()->is_volatile()) {
   982     uint alias_idx = atp->index();
   983     bool final = atp->field()->is_final();
   984     Node* result = NULL;
   985     Node* current = st;
   986     // Skip through chains of MemBarNodes checking the MergeMems for
   987     // new states for the slice of this load.  Stop once any other
   988     // kind of node is encountered.  Loads from final memory can skip
   989     // through any kind of MemBar but normal loads shouldn't skip
   990     // through MemBarAcquire since the could allow them to move out of
   991     // a synchronized region.
   992     while (current->is_Proj()) {
   993       int opc = current->in(0)->Opcode();
   994       if ((final && (opc == Op_MemBarAcquire || opc == Op_MemBarAcquireLock)) ||
   995           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder ||
   996           opc == Op_MemBarReleaseLock) {
   997         Node* mem = current->in(0)->in(TypeFunc::Memory);
   998         if (mem->is_MergeMem()) {
   999           MergeMemNode* merge = mem->as_MergeMem();
  1000           Node* new_st = merge->memory_at(alias_idx);
  1001           if (new_st == merge->base_memory()) {
  1002             // Keep searching
  1003             current = new_st;
  1004             continue;
  1006           // Save the new memory state for the slice and fall through
  1007           // to exit.
  1008           result = new_st;
  1011       break;
  1013     if (result != NULL) {
  1014       st = result;
  1019   // Loop around twice in the case Load -> Initialize -> Store.
  1020   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
  1021   for (int trip = 0; trip <= 1; trip++) {
  1023     if (st->is_Store()) {
  1024       Node* st_adr = st->in(MemNode::Address);
  1025       if (!phase->eqv(st_adr, ld_adr)) {
  1026         // Try harder before giving up...  Match raw and non-raw pointers.
  1027         intptr_t st_off = 0;
  1028         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
  1029         if (alloc == NULL)       return NULL;
  1030         if (alloc != ld_alloc)   return NULL;
  1031         if (ld_off != st_off)    return NULL;
  1032         // At this point we have proven something like this setup:
  1033         //  A = Allocate(...)
  1034         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
  1035         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
  1036         // (Actually, we haven't yet proven the Q's are the same.)
  1037         // In other words, we are loading from a casted version of
  1038         // the same pointer-and-offset that we stored to.
  1039         // Thus, we are able to replace L by V.
  1041       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
  1042       if (store_Opcode() != st->Opcode())
  1043         return NULL;
  1044       return st->in(MemNode::ValueIn);
  1047     // A load from a freshly-created object always returns zero.
  1048     // (This can happen after LoadNode::Ideal resets the load's memory input
  1049     // to find_captured_store, which returned InitializeNode::zero_memory.)
  1050     if (st->is_Proj() && st->in(0)->is_Allocate() &&
  1051         (st->in(0) == ld_alloc) &&
  1052         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
  1053       // return a zero value for the load's basic type
  1054       // (This is one of the few places where a generic PhaseTransform
  1055       // can create new nodes.  Think of it as lazily manifesting
  1056       // virtually pre-existing constants.)
  1057       return phase->zerocon(memory_type());
  1060     // A load from an initialization barrier can match a captured store.
  1061     if (st->is_Proj() && st->in(0)->is_Initialize()) {
  1062       InitializeNode* init = st->in(0)->as_Initialize();
  1063       AllocateNode* alloc = init->allocation();
  1064       if ((alloc != NULL) && (alloc == ld_alloc)) {
  1065         // examine a captured store value
  1066         st = init->find_captured_store(ld_off, memory_size(), phase);
  1067         if (st != NULL)
  1068           continue;             // take one more trip around
  1072     // Load boxed value from result of valueOf() call is input parameter.
  1073     if (this->is_Load() && ld_adr->is_AddP() &&
  1074         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
  1075       intptr_t ignore = 0;
  1076       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
  1077       if (base != NULL && base->is_Proj() &&
  1078           base->as_Proj()->_con == TypeFunc::Parms &&
  1079           base->in(0)->is_CallStaticJava() &&
  1080           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
  1081         return base->in(0)->in(TypeFunc::Parms);
  1085     break;
  1088   return NULL;
  1091 //----------------------is_instance_field_load_with_local_phi------------------
  1092 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
  1093   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
  1094       in(Address)->is_AddP() ) {
  1095     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
  1096     // Only instances and boxed values.
  1097     if( t_oop != NULL &&
  1098         (t_oop->is_ptr_to_boxed_value() ||
  1099          t_oop->is_known_instance_field()) &&
  1100         t_oop->offset() != Type::OffsetBot &&
  1101         t_oop->offset() != Type::OffsetTop) {
  1102       return true;
  1105   return false;
  1108 //------------------------------Identity---------------------------------------
  1109 // Loads are identity if previous store is to same address
  1110 Node *LoadNode::Identity( PhaseTransform *phase ) {
  1111   // If the previous store-maker is the right kind of Store, and the store is
  1112   // to the same address, then we are equal to the value stored.
  1113   Node* mem = in(Memory);
  1114   Node* value = can_see_stored_value(mem, phase);
  1115   if( value ) {
  1116     // byte, short & char stores truncate naturally.
  1117     // A load has to load the truncated value which requires
  1118     // some sort of masking operation and that requires an
  1119     // Ideal call instead of an Identity call.
  1120     if (memory_size() < BytesPerInt) {
  1121       // If the input to the store does not fit with the load's result type,
  1122       // it must be truncated via an Ideal call.
  1123       if (!phase->type(value)->higher_equal(phase->type(this)))
  1124         return this;
  1126     // (This works even when value is a Con, but LoadNode::Value
  1127     // usually runs first, producing the singleton type of the Con.)
  1128     return value;
  1131   // Search for an existing data phi which was generated before for the same
  1132   // instance's field to avoid infinite generation of phis in a loop.
  1133   Node *region = mem->in(0);
  1134   if (is_instance_field_load_with_local_phi(region)) {
  1135     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
  1136     int this_index  = phase->C->get_alias_index(addr_t);
  1137     int this_offset = addr_t->offset();
  1138     int this_iid    = addr_t->instance_id();
  1139     if (!addr_t->is_known_instance() &&
  1140          addr_t->is_ptr_to_boxed_value()) {
  1141       // Use _idx of address base (could be Phi node) for boxed values.
  1142       intptr_t   ignore = 0;
  1143       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
  1144       this_iid = base->_idx;
  1146     const Type* this_type = bottom_type();
  1147     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  1148       Node* phi = region->fast_out(i);
  1149       if (phi->is_Phi() && phi != mem &&
  1150           phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
  1151         return phi;
  1156   return this;
  1159 // We're loading from an object which has autobox behaviour.
  1160 // If this object is result of a valueOf call we'll have a phi
  1161 // merging a newly allocated object and a load from the cache.
  1162 // We want to replace this load with the original incoming
  1163 // argument to the valueOf call.
  1164 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1165   assert(phase->C->eliminate_boxing(), "sanity");
  1166   intptr_t ignore = 0;
  1167   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
  1168   if ((base == NULL) || base->is_Phi()) {
  1169     // Push the loads from the phi that comes from valueOf up
  1170     // through it to allow elimination of the loads and the recovery
  1171     // of the original value. It is done in split_through_phi().
  1172     return NULL;
  1173   } else if (base->is_Load() ||
  1174              base->is_DecodeN() && base->in(1)->is_Load()) {
  1175     // Eliminate the load of boxed value for integer types from the cache
  1176     // array by deriving the value from the index into the array.
  1177     // Capture the offset of the load and then reverse the computation.
  1179     // Get LoadN node which loads a boxing object from 'cache' array.
  1180     if (base->is_DecodeN()) {
  1181       base = base->in(1);
  1183     if (!base->in(Address)->is_AddP()) {
  1184       return NULL; // Complex address
  1186     AddPNode* address = base->in(Address)->as_AddP();
  1187     Node* cache_base = address->in(AddPNode::Base);
  1188     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
  1189       // Get ConP node which is static 'cache' field.
  1190       cache_base = cache_base->in(1);
  1192     if ((cache_base != NULL) && cache_base->is_Con()) {
  1193       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
  1194       if ((base_type != NULL) && base_type->is_autobox_cache()) {
  1195         Node* elements[4];
  1196         int shift = exact_log2(type2aelembytes(T_OBJECT));
  1197         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
  1198         if ((count >  0) && elements[0]->is_Con() &&
  1199             ((count == 1) ||
  1200              (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
  1201                              elements[1]->in(2) == phase->intcon(shift))) {
  1202           ciObjArray* array = base_type->const_oop()->as_obj_array();
  1203           // Fetch the box object cache[0] at the base of the array and get its value
  1204           ciInstance* box = array->obj_at(0)->as_instance();
  1205           ciInstanceKlass* ik = box->klass()->as_instance_klass();
  1206           assert(ik->is_box_klass(), "sanity");
  1207           assert(ik->nof_nonstatic_fields() == 1, "change following code");
  1208           if (ik->nof_nonstatic_fields() == 1) {
  1209             // This should be true nonstatic_field_at requires calling
  1210             // nof_nonstatic_fields so check it anyway
  1211             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
  1212             BasicType bt = c.basic_type();
  1213             // Only integer types have boxing cache.
  1214             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
  1215                    bt == T_BYTE    || bt == T_SHORT ||
  1216                    bt == T_INT     || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
  1217             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
  1218             if (cache_low != (int)cache_low) {
  1219               return NULL; // should not happen since cache is array indexed by value
  1221             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
  1222             if (offset != (int)offset) {
  1223               return NULL; // should not happen since cache is array indexed by value
  1225            // Add up all the offsets making of the address of the load
  1226             Node* result = elements[0];
  1227             for (int i = 1; i < count; i++) {
  1228               result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
  1230             // Remove the constant offset from the address and then
  1231             result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-(int)offset)));
  1232             // remove the scaling of the offset to recover the original index.
  1233             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1234               // Peel the shift off directly but wrap it in a dummy node
  1235               // since Ideal can't return existing nodes
  1236               result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
  1237             } else if (result->is_Add() && result->in(2)->is_Con() &&
  1238                        result->in(1)->Opcode() == Op_LShiftX &&
  1239                        result->in(1)->in(2) == phase->intcon(shift)) {
  1240               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
  1241               // but for boxing cache access we know that X<<Z will not overflow
  1242               // (there is range check) so we do this optimizatrion by hand here.
  1243               Node* add_con = new (phase->C) RShiftXNode(result->in(2), phase->intcon(shift));
  1244               result = new (phase->C) AddXNode(result->in(1)->in(1), phase->transform(add_con));
  1245             } else {
  1246               result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
  1248 #ifdef _LP64
  1249             if (bt != T_LONG) {
  1250               result = new (phase->C) ConvL2INode(phase->transform(result));
  1252 #else
  1253             if (bt == T_LONG) {
  1254               result = new (phase->C) ConvI2LNode(phase->transform(result));
  1256 #endif
  1257             return result;
  1263   return NULL;
  1266 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
  1267   Node* region = phi->in(0);
  1268   if (region == NULL) {
  1269     return false; // Wait stable graph
  1271   uint cnt = phi->req();
  1272   for (uint i = 1; i < cnt; i++) {
  1273     Node* rc = region->in(i);
  1274     if (rc == NULL || phase->type(rc) == Type::TOP)
  1275       return false; // Wait stable graph
  1276     Node* in = phi->in(i);
  1277     if (in == NULL || phase->type(in) == Type::TOP)
  1278       return false; // Wait stable graph
  1280   return true;
  1282 //------------------------------split_through_phi------------------------------
  1283 // Split instance or boxed field load through Phi.
  1284 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
  1285   Node* mem     = in(Memory);
  1286   Node* address = in(Address);
  1287   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
  1289   assert((t_oop != NULL) &&
  1290          (t_oop->is_known_instance_field() ||
  1291           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
  1293   Compile* C = phase->C;
  1294   intptr_t ignore = 0;
  1295   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1296   bool base_is_phi = (base != NULL) && base->is_Phi();
  1297   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
  1298                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
  1299                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
  1301   if (!((mem->is_Phi() || base_is_phi) &&
  1302         (load_boxed_values || t_oop->is_known_instance_field()))) {
  1303     return NULL; // memory is not Phi
  1306   if (mem->is_Phi()) {
  1307     if (!stable_phi(mem->as_Phi(), phase)) {
  1308       return NULL; // Wait stable graph
  1310     uint cnt = mem->req();
  1311     // Check for loop invariant memory.
  1312     if (cnt == 3) {
  1313       for (uint i = 1; i < cnt; i++) {
  1314         Node* in = mem->in(i);
  1315         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
  1316         if (m == mem) {
  1317           set_req(Memory, mem->in(cnt - i));
  1318           return this; // made change
  1323   if (base_is_phi) {
  1324     if (!stable_phi(base->as_Phi(), phase)) {
  1325       return NULL; // Wait stable graph
  1327     uint cnt = base->req();
  1328     // Check for loop invariant memory.
  1329     if (cnt == 3) {
  1330       for (uint i = 1; i < cnt; i++) {
  1331         if (base->in(i) == base) {
  1332           return NULL; // Wait stable graph
  1338   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
  1340   // Split through Phi (see original code in loopopts.cpp).
  1341   assert(C->have_alias_type(t_oop), "instance should have alias type");
  1343   // Do nothing here if Identity will find a value
  1344   // (to avoid infinite chain of value phis generation).
  1345   if (!phase->eqv(this, this->Identity(phase)))
  1346     return NULL;
  1348   // Select Region to split through.
  1349   Node* region;
  1350   if (!base_is_phi) {
  1351     assert(mem->is_Phi(), "sanity");
  1352     region = mem->in(0);
  1353     // Skip if the region dominates some control edge of the address.
  1354     if (!MemNode::all_controls_dominate(address, region))
  1355       return NULL;
  1356   } else if (!mem->is_Phi()) {
  1357     assert(base_is_phi, "sanity");
  1358     region = base->in(0);
  1359     // Skip if the region dominates some control edge of the memory.
  1360     if (!MemNode::all_controls_dominate(mem, region))
  1361       return NULL;
  1362   } else if (base->in(0) != mem->in(0)) {
  1363     assert(base_is_phi && mem->is_Phi(), "sanity");
  1364     if (MemNode::all_controls_dominate(mem, base->in(0))) {
  1365       region = base->in(0);
  1366     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
  1367       region = mem->in(0);
  1368     } else {
  1369       return NULL; // complex graph
  1371   } else {
  1372     assert(base->in(0) == mem->in(0), "sanity");
  1373     region = mem->in(0);
  1376   const Type* this_type = this->bottom_type();
  1377   int this_index  = C->get_alias_index(t_oop);
  1378   int this_offset = t_oop->offset();
  1379   int this_iid    = t_oop->instance_id();
  1380   if (!t_oop->is_known_instance() && load_boxed_values) {
  1381     // Use _idx of address base for boxed values.
  1382     this_iid = base->_idx;
  1384   PhaseIterGVN* igvn = phase->is_IterGVN();
  1385   Node* phi = new (C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1386   for (uint i = 1; i < region->req(); i++) {
  1387     Node* x;
  1388     Node* the_clone = NULL;
  1389     if (region->in(i) == C->top()) {
  1390       x = C->top();      // Dead path?  Use a dead data op
  1391     } else {
  1392       x = this->clone();        // Else clone up the data op
  1393       the_clone = x;            // Remember for possible deletion.
  1394       // Alter data node to use pre-phi inputs
  1395       if (this->in(0) == region) {
  1396         x->set_req(0, region->in(i));
  1397       } else {
  1398         x->set_req(0, NULL);
  1400       if (mem->is_Phi() && (mem->in(0) == region)) {
  1401         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
  1403       if (address->is_Phi() && address->in(0) == region) {
  1404         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
  1406       if (base_is_phi && (base->in(0) == region)) {
  1407         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
  1408         Node* adr_x = phase->transform(new (C) AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
  1409         x->set_req(Address, adr_x);
  1412     // Check for a 'win' on some paths
  1413     const Type *t = x->Value(igvn);
  1415     bool singleton = t->singleton();
  1417     // See comments in PhaseIdealLoop::split_thru_phi().
  1418     if (singleton && t == Type::TOP) {
  1419       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1422     if (singleton) {
  1423       x = igvn->makecon(t);
  1424     } else {
  1425       // We now call Identity to try to simplify the cloned node.
  1426       // Note that some Identity methods call phase->type(this).
  1427       // Make sure that the type array is big enough for
  1428       // our new node, even though we may throw the node away.
  1429       // (This tweaking with igvn only works because x is a new node.)
  1430       igvn->set_type(x, t);
  1431       // If x is a TypeNode, capture any more-precise type permanently into Node
  1432       // otherwise it will be not updated during igvn->transform since
  1433       // igvn->type(x) is set to x->Value() already.
  1434       x->raise_bottom_type(t);
  1435       Node *y = x->Identity(igvn);
  1436       if (y != x) {
  1437         x = y;
  1438       } else {
  1439         y = igvn->hash_find_insert(x);
  1440         if (y) {
  1441           x = y;
  1442         } else {
  1443           // Else x is a new node we are keeping
  1444           // We do not need register_new_node_with_optimizer
  1445           // because set_type has already been called.
  1446           igvn->_worklist.push(x);
  1450     if (x != the_clone && the_clone != NULL) {
  1451       igvn->remove_dead_node(the_clone);
  1453     phi->set_req(i, x);
  1455   // Record Phi
  1456   igvn->register_new_node_with_optimizer(phi);
  1457   return phi;
  1460 //------------------------------Ideal------------------------------------------
  1461 // If the load is from Field memory and the pointer is non-null, we can
  1462 // zero out the control input.
  1463 // If the offset is constant and the base is an object allocation,
  1464 // try to hook me up to the exact initializing store.
  1465 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1466   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1467   if (p)  return (p == NodeSentinel) ? NULL : p;
  1469   Node* ctrl    = in(MemNode::Control);
  1470   Node* address = in(MemNode::Address);
  1472   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1473   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1474   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1475       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1476     ctrl = ctrl->in(0);
  1477     set_req(MemNode::Control,ctrl);
  1480   intptr_t ignore = 0;
  1481   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1482   if (base != NULL
  1483       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
  1484     // Check for useless control edge in some common special cases
  1485     if (in(MemNode::Control) != NULL
  1486         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1487         && all_controls_dominate(base, phase->C->start())) {
  1488       // A method-invariant, non-null address (constant or 'this' argument).
  1489       set_req(MemNode::Control, NULL);
  1493   Node* mem = in(MemNode::Memory);
  1494   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1496   if (can_reshape && (addr_t != NULL)) {
  1497     // try to optimize our memory input
  1498     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
  1499     if (opt_mem != mem) {
  1500       set_req(MemNode::Memory, opt_mem);
  1501       if (phase->type( opt_mem ) == Type::TOP) return NULL;
  1502       return this;
  1504     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1505     if ((t_oop != NULL) &&
  1506         (t_oop->is_known_instance_field() ||
  1507          t_oop->is_ptr_to_boxed_value())) {
  1508       PhaseIterGVN *igvn = phase->is_IterGVN();
  1509       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
  1510         // Delay this transformation until memory Phi is processed.
  1511         phase->is_IterGVN()->_worklist.push(this);
  1512         return NULL;
  1514       // Split instance field load through Phi.
  1515       Node* result = split_through_phi(phase);
  1516       if (result != NULL) return result;
  1518       if (t_oop->is_ptr_to_boxed_value()) {
  1519         Node* result = eliminate_autobox(phase);
  1520         if (result != NULL) return result;
  1525   // Check for prior store with a different base or offset; make Load
  1526   // independent.  Skip through any number of them.  Bail out if the stores
  1527   // are in an endless dead cycle and report no progress.  This is a key
  1528   // transform for Reflection.  However, if after skipping through the Stores
  1529   // we can't then fold up against a prior store do NOT do the transform as
  1530   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1531   // array memory alive twice: once for the hoisted Load and again after the
  1532   // bypassed Store.  This situation only works if EVERYBODY who does
  1533   // anti-dependence work knows how to bypass.  I.e. we need all
  1534   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1535   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1536   // fold up, do so.
  1537   Node* prev_mem = find_previous_store(phase);
  1538   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1539   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1540     // (c) See if we can fold up on the spot, but don't fold up here.
  1541     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
  1542     // just return a prior value, which is done by Identity calls.
  1543     if (can_see_stored_value(prev_mem, phase)) {
  1544       // Make ready for step (d):
  1545       set_req(MemNode::Memory, prev_mem);
  1546       return this;
  1550   return NULL;                  // No further progress
  1553 // Helper to recognize certain Klass fields which are invariant across
  1554 // some group of array types (e.g., int[] or all T[] where T < Object).
  1555 const Type*
  1556 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1557                                  ciKlass* klass) const {
  1558   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
  1559     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1560     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1561     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1562     return TypeInt::make(klass->modifier_flags());
  1564   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
  1565     // The field is Klass::_access_flags.  Return its (constant) value.
  1566     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1567     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1568     return TypeInt::make(klass->access_flags());
  1570   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
  1571     // The field is Klass::_layout_helper.  Return its constant value if known.
  1572     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1573     return TypeInt::make(klass->layout_helper());
  1576   // No match.
  1577   return NULL;
  1580 //------------------------------Value-----------------------------------------
  1581 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1582   // Either input is TOP ==> the result is TOP
  1583   Node* mem = in(MemNode::Memory);
  1584   const Type *t1 = phase->type(mem);
  1585   if (t1 == Type::TOP)  return Type::TOP;
  1586   Node* adr = in(MemNode::Address);
  1587   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1588   if (tp == NULL || tp->empty())  return Type::TOP;
  1589   int off = tp->offset();
  1590   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1591   Compile* C = phase->C;
  1593   // Try to guess loaded type from pointer type
  1594   if (tp->base() == Type::AryPtr) {
  1595     const Type *t = tp->is_aryptr()->elem();
  1596     // Don't do this for integer types. There is only potential profit if
  1597     // the element type t is lower than _type; that is, for int types, if _type is
  1598     // more restrictive than t.  This only happens here if one is short and the other
  1599     // char (both 16 bits), and in those cases we've made an intentional decision
  1600     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1601     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1602     //
  1603     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1604     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1605     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1606     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1607     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1608     // In fact, that could have been the original type of p1, and p1 could have
  1609     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1610     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1611     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1612         && (_type->isa_vect() == NULL)
  1613         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
  1614       // t might actually be lower than _type, if _type is a unique
  1615       // concrete subclass of abstract class t.
  1616       // Make sure the reference is not into the header, by comparing
  1617       // the offset against the offset of the start of the array's data.
  1618       // Different array types begin at slightly different offsets (12 vs. 16).
  1619       // We choose T_BYTE as an example base type that is least restrictive
  1620       // as to alignment, which will therefore produce the smallest
  1621       // possible base offset.
  1622       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1623       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1624         const Type* jt = t->join(_type);
  1625         // In any case, do not allow the join, per se, to empty out the type.
  1626         if (jt->empty() && !t->empty()) {
  1627           // This can happen if a interface-typed array narrows to a class type.
  1628           jt = _type;
  1630 #ifdef ASSERT
  1631         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
  1632           // The pointers in the autobox arrays are always non-null
  1633           Node* base = adr->in(AddPNode::Base);
  1634           if ((base != NULL) && base->is_DecodeN()) {
  1635             // Get LoadN node which loads IntegerCache.cache field
  1636             base = base->in(1);
  1638           if ((base != NULL) && base->is_Con()) {
  1639             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
  1640             if ((base_type != NULL) && base_type->is_autobox_cache()) {
  1641               // It could be narrow oop
  1642               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
  1646 #endif
  1647         return jt;
  1650   } else if (tp->base() == Type::InstPtr) {
  1651     ciEnv* env = C->env();
  1652     const TypeInstPtr* tinst = tp->is_instptr();
  1653     ciKlass* klass = tinst->klass();
  1654     assert( off != Type::OffsetBot ||
  1655             // arrays can be cast to Objects
  1656             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1657             // unsafe field access may not have a constant offset
  1658             C->has_unsafe_access(),
  1659             "Field accesses must be precise" );
  1660     // For oop loads, we expect the _type to be precise
  1661     if (klass == env->String_klass() &&
  1662         adr->is_AddP() && off != Type::OffsetBot) {
  1663       // For constant Strings treat the final fields as compile time constants.
  1664       Node* base = adr->in(AddPNode::Base);
  1665       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
  1666       if (t != NULL && t->singleton()) {
  1667         ciField* field = env->String_klass()->get_field_by_offset(off, false);
  1668         if (field != NULL && field->is_final()) {
  1669           ciObject* string = t->const_oop();
  1670           ciConstant constant = string->as_instance()->field_value(field);
  1671           if (constant.basic_type() == T_INT) {
  1672             return TypeInt::make(constant.as_int());
  1673           } else if (constant.basic_type() == T_ARRAY) {
  1674             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1675               return TypeNarrowOop::make_from_constant(constant.as_object(), true);
  1676             } else {
  1677               return TypeOopPtr::make_from_constant(constant.as_object(), true);
  1683     // Optimizations for constant objects
  1684     ciObject* const_oop = tinst->const_oop();
  1685     if (const_oop != NULL) {
  1686       // For constant Boxed value treat the target field as a compile time constant.
  1687       if (tinst->is_ptr_to_boxed_value()) {
  1688         return tinst->get_const_boxed_value();
  1689       } else
  1690       // For constant CallSites treat the target field as a compile time constant.
  1691       if (const_oop->is_call_site()) {
  1692         ciCallSite* call_site = const_oop->as_call_site();
  1693         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
  1694         if (field != NULL && field->is_call_site_target()) {
  1695           ciMethodHandle* target = call_site->get_target();
  1696           if (target != NULL) {  // just in case
  1697             ciConstant constant(T_OBJECT, target);
  1698             const Type* t;
  1699             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1700               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
  1701             } else {
  1702               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
  1704             // Add a dependence for invalidation of the optimization.
  1705             if (!call_site->is_constant_call_site()) {
  1706               C->dependencies()->assert_call_site_target_value(call_site, target);
  1708             return t;
  1713   } else if (tp->base() == Type::KlassPtr) {
  1714     assert( off != Type::OffsetBot ||
  1715             // arrays can be cast to Objects
  1716             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1717             // also allow array-loading from the primary supertype
  1718             // array during subtype checks
  1719             Opcode() == Op_LoadKlass,
  1720             "Field accesses must be precise" );
  1721     // For klass/static loads, we expect the _type to be precise
  1724   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1725   if (tkls != NULL && !StressReflectiveCode) {
  1726     ciKlass* klass = tkls->klass();
  1727     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1728       // We are loading a field from a Klass metaobject whose identity
  1729       // is known at compile time (the type is "exact" or "precise").
  1730       // Check for fields we know are maintained as constants by the VM.
  1731       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
  1732         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1733         // (Folds up type checking code.)
  1734         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1735         return TypeInt::make(klass->super_check_offset());
  1737       // Compute index into primary_supers array
  1738       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
  1739       // Check for overflowing; use unsigned compare to handle the negative case.
  1740       if( depth < ciKlass::primary_super_limit() ) {
  1741         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1742         // (Folds up type checking code.)
  1743         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1744         ciKlass *ss = klass->super_of_depth(depth);
  1745         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1747       const Type* aift = load_array_final_field(tkls, klass);
  1748       if (aift != NULL)  return aift;
  1749       if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
  1750           && klass->is_array_klass()) {
  1751         // The field is ArrayKlass::_component_mirror.  Return its (constant) value.
  1752         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1753         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1754         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1756       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
  1757         // The field is Klass::_java_mirror.  Return its (constant) value.
  1758         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1759         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1760         return TypeInstPtr::make(klass->java_mirror());
  1764     // We can still check if we are loading from the primary_supers array at a
  1765     // shallow enough depth.  Even though the klass is not exact, entries less
  1766     // than or equal to its super depth are correct.
  1767     if (klass->is_loaded() ) {
  1768       ciType *inner = klass;
  1769       while( inner->is_obj_array_klass() )
  1770         inner = inner->as_obj_array_klass()->base_element_type();
  1771       if( inner->is_instance_klass() &&
  1772           !inner->as_instance_klass()->flags().is_interface() ) {
  1773         // Compute index into primary_supers array
  1774         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
  1775         // Check for overflowing; use unsigned compare to handle the negative case.
  1776         if( depth < ciKlass::primary_super_limit() &&
  1777             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1778           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1779           // (Folds up type checking code.)
  1780           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1781           ciKlass *ss = klass->super_of_depth(depth);
  1782           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1787     // If the type is enough to determine that the thing is not an array,
  1788     // we can give the layout_helper a positive interval type.
  1789     // This will help short-circuit some reflective code.
  1790     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
  1791         && !klass->is_array_klass() // not directly typed as an array
  1792         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1793         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1794         ) {
  1795       // Note:  When interfaces are reliable, we can narrow the interface
  1796       // test to (klass != Serializable && klass != Cloneable).
  1797       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1798       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1799       // The key property of this type is that it folds up tests
  1800       // for array-ness, since it proves that the layout_helper is positive.
  1801       // Thus, a generic value like the basic object layout helper works fine.
  1802       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1806   // If we are loading from a freshly-allocated object, produce a zero,
  1807   // if the load is provably beyond the header of the object.
  1808   // (Also allow a variable load from a fresh array to produce zero.)
  1809   const TypeOopPtr *tinst = tp->isa_oopptr();
  1810   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
  1811   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
  1812   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
  1813     Node* value = can_see_stored_value(mem,phase);
  1814     if (value != NULL && value->is_Con()) {
  1815       assert(value->bottom_type()->higher_equal(_type),"sanity");
  1816       return value->bottom_type();
  1820   if (is_instance) {
  1821     // If we have an instance type and our memory input is the
  1822     // programs's initial memory state, there is no matching store,
  1823     // so just return a zero of the appropriate type
  1824     Node *mem = in(MemNode::Memory);
  1825     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1826       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1827       return Type::get_zero_type(_type->basic_type());
  1830   return _type;
  1833 //------------------------------match_edge-------------------------------------
  1834 // Do we Match on this edge index or not?  Match only the address.
  1835 uint LoadNode::match_edge(uint idx) const {
  1836   return idx == MemNode::Address;
  1839 //--------------------------LoadBNode::Ideal--------------------------------------
  1840 //
  1841 //  If the previous store is to the same address as this load,
  1842 //  and the value stored was larger than a byte, replace this load
  1843 //  with the value stored truncated to a byte.  If no truncation is
  1844 //  needed, the replacement is done in LoadNode::Identity().
  1845 //
  1846 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1847   Node* mem = in(MemNode::Memory);
  1848   Node* value = can_see_stored_value(mem,phase);
  1849   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1850     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
  1851     return new (phase->C) RShiftINode(result, phase->intcon(24));
  1853   // Identity call will handle the case where truncation is not needed.
  1854   return LoadNode::Ideal(phase, can_reshape);
  1857 const Type* LoadBNode::Value(PhaseTransform *phase) const {
  1858   Node* mem = in(MemNode::Memory);
  1859   Node* value = can_see_stored_value(mem,phase);
  1860   if (value != NULL && value->is_Con() &&
  1861       !value->bottom_type()->higher_equal(_type)) {
  1862     // If the input to the store does not fit with the load's result type,
  1863     // it must be truncated. We can't delay until Ideal call since
  1864     // a singleton Value is needed for split_thru_phi optimization.
  1865     int con = value->get_int();
  1866     return TypeInt::make((con << 24) >> 24);
  1868   return LoadNode::Value(phase);
  1871 //--------------------------LoadUBNode::Ideal-------------------------------------
  1872 //
  1873 //  If the previous store is to the same address as this load,
  1874 //  and the value stored was larger than a byte, replace this load
  1875 //  with the value stored truncated to a byte.  If no truncation is
  1876 //  needed, the replacement is done in LoadNode::Identity().
  1877 //
  1878 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
  1879   Node* mem = in(MemNode::Memory);
  1880   Node* value = can_see_stored_value(mem, phase);
  1881   if (value && !phase->type(value)->higher_equal(_type))
  1882     return new (phase->C) AndINode(value, phase->intcon(0xFF));
  1883   // Identity call will handle the case where truncation is not needed.
  1884   return LoadNode::Ideal(phase, can_reshape);
  1887 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
  1888   Node* mem = in(MemNode::Memory);
  1889   Node* value = can_see_stored_value(mem,phase);
  1890   if (value != NULL && value->is_Con() &&
  1891       !value->bottom_type()->higher_equal(_type)) {
  1892     // If the input to the store does not fit with the load's result type,
  1893     // it must be truncated. We can't delay until Ideal call since
  1894     // a singleton Value is needed for split_thru_phi optimization.
  1895     int con = value->get_int();
  1896     return TypeInt::make(con & 0xFF);
  1898   return LoadNode::Value(phase);
  1901 //--------------------------LoadUSNode::Ideal-------------------------------------
  1902 //
  1903 //  If the previous store is to the same address as this load,
  1904 //  and the value stored was larger than a char, replace this load
  1905 //  with the value stored truncated to a char.  If no truncation is
  1906 //  needed, the replacement is done in LoadNode::Identity().
  1907 //
  1908 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1909   Node* mem = in(MemNode::Memory);
  1910   Node* value = can_see_stored_value(mem,phase);
  1911   if( value && !phase->type(value)->higher_equal( _type ) )
  1912     return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
  1913   // Identity call will handle the case where truncation is not needed.
  1914   return LoadNode::Ideal(phase, can_reshape);
  1917 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
  1918   Node* mem = in(MemNode::Memory);
  1919   Node* value = can_see_stored_value(mem,phase);
  1920   if (value != NULL && value->is_Con() &&
  1921       !value->bottom_type()->higher_equal(_type)) {
  1922     // If the input to the store does not fit with the load's result type,
  1923     // it must be truncated. We can't delay until Ideal call since
  1924     // a singleton Value is needed for split_thru_phi optimization.
  1925     int con = value->get_int();
  1926     return TypeInt::make(con & 0xFFFF);
  1928   return LoadNode::Value(phase);
  1931 //--------------------------LoadSNode::Ideal--------------------------------------
  1932 //
  1933 //  If the previous store is to the same address as this load,
  1934 //  and the value stored was larger than a short, replace this load
  1935 //  with the value stored truncated to a short.  If no truncation is
  1936 //  needed, the replacement is done in LoadNode::Identity().
  1937 //
  1938 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1939   Node* mem = in(MemNode::Memory);
  1940   Node* value = can_see_stored_value(mem,phase);
  1941   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1942     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
  1943     return new (phase->C) RShiftINode(result, phase->intcon(16));
  1945   // Identity call will handle the case where truncation is not needed.
  1946   return LoadNode::Ideal(phase, can_reshape);
  1949 const Type* LoadSNode::Value(PhaseTransform *phase) const {
  1950   Node* mem = in(MemNode::Memory);
  1951   Node* value = can_see_stored_value(mem,phase);
  1952   if (value != NULL && value->is_Con() &&
  1953       !value->bottom_type()->higher_equal(_type)) {
  1954     // If the input to the store does not fit with the load's result type,
  1955     // it must be truncated. We can't delay until Ideal call since
  1956     // a singleton Value is needed for split_thru_phi optimization.
  1957     int con = value->get_int();
  1958     return TypeInt::make((con << 16) >> 16);
  1960   return LoadNode::Value(phase);
  1963 //=============================================================================
  1964 //----------------------------LoadKlassNode::make------------------------------
  1965 // Polymorphic factory method:
  1966 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
  1967   Compile* C = gvn.C;
  1968   Node *ctl = NULL;
  1969   // sanity check the alias category against the created node type
  1970   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
  1971   assert(adr_type != NULL, "expecting TypeKlassPtr");
  1972 #ifdef _LP64
  1973   if (adr_type->is_ptr_to_narrowklass()) {
  1974     assert(UseCompressedClassPointers, "no compressed klasses");
  1975     Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass()));
  1976     return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
  1978 #endif
  1979   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
  1980   return new (C) LoadKlassNode(ctl, mem, adr, at, tk);
  1983 //------------------------------Value------------------------------------------
  1984 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1985   return klass_value_common(phase);
  1988 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
  1989   // Either input is TOP ==> the result is TOP
  1990   const Type *t1 = phase->type( in(MemNode::Memory) );
  1991   if (t1 == Type::TOP)  return Type::TOP;
  1992   Node *adr = in(MemNode::Address);
  1993   const Type *t2 = phase->type( adr );
  1994   if (t2 == Type::TOP)  return Type::TOP;
  1995   const TypePtr *tp = t2->is_ptr();
  1996   if (TypePtr::above_centerline(tp->ptr()) ||
  1997       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1999   // Return a more precise klass, if possible
  2000   const TypeInstPtr *tinst = tp->isa_instptr();
  2001   if (tinst != NULL) {
  2002     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  2003     int offset = tinst->offset();
  2004     if (ik == phase->C->env()->Class_klass()
  2005         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  2006             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2007       // We are loading a special hidden field from a Class mirror object,
  2008       // the field which points to the VM's Klass metaobject.
  2009       ciType* t = tinst->java_mirror_type();
  2010       // java_mirror_type returns non-null for compile-time Class constants.
  2011       if (t != NULL) {
  2012         // constant oop => constant klass
  2013         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  2014           return TypeKlassPtr::make(ciArrayKlass::make(t));
  2016         if (!t->is_klass()) {
  2017           // a primitive Class (e.g., int.class) has NULL for a klass field
  2018           return TypePtr::NULL_PTR;
  2020         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  2021         return TypeKlassPtr::make(t->as_klass());
  2023       // non-constant mirror, so we can't tell what's going on
  2025     if( !ik->is_loaded() )
  2026       return _type;             // Bail out if not loaded
  2027     if (offset == oopDesc::klass_offset_in_bytes()) {
  2028       if (tinst->klass_is_exact()) {
  2029         return TypeKlassPtr::make(ik);
  2031       // See if we can become precise: no subklasses and no interface
  2032       // (Note:  We need to support verified interfaces.)
  2033       if (!ik->is_interface() && !ik->has_subklass()) {
  2034         //assert(!UseExactTypes, "this code should be useless with exact types");
  2035         // Add a dependence; if any subclass added we need to recompile
  2036         if (!ik->is_final()) {
  2037           // %%% should use stronger assert_unique_concrete_subtype instead
  2038           phase->C->dependencies()->assert_leaf_type(ik);
  2040         // Return precise klass
  2041         return TypeKlassPtr::make(ik);
  2044       // Return root of possible klass
  2045       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  2049   // Check for loading klass from an array
  2050   const TypeAryPtr *tary = tp->isa_aryptr();
  2051   if( tary != NULL ) {
  2052     ciKlass *tary_klass = tary->klass();
  2053     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  2054         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  2055       if (tary->klass_is_exact()) {
  2056         return TypeKlassPtr::make(tary_klass);
  2058       ciArrayKlass *ak = tary->klass()->as_array_klass();
  2059       // If the klass is an object array, we defer the question to the
  2060       // array component klass.
  2061       if( ak->is_obj_array_klass() ) {
  2062         assert( ak->is_loaded(), "" );
  2063         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  2064         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  2065           ciInstanceKlass* ik = base_k->as_instance_klass();
  2066           // See if we can become precise: no subklasses and no interface
  2067           if (!ik->is_interface() && !ik->has_subklass()) {
  2068             //assert(!UseExactTypes, "this code should be useless with exact types");
  2069             // Add a dependence; if any subclass added we need to recompile
  2070             if (!ik->is_final()) {
  2071               phase->C->dependencies()->assert_leaf_type(ik);
  2073             // Return precise array klass
  2074             return TypeKlassPtr::make(ak);
  2077         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  2078       } else {                  // Found a type-array?
  2079         //assert(!UseExactTypes, "this code should be useless with exact types");
  2080         assert( ak->is_type_array_klass(), "" );
  2081         return TypeKlassPtr::make(ak); // These are always precise
  2086   // Check for loading klass from an array klass
  2087   const TypeKlassPtr *tkls = tp->isa_klassptr();
  2088   if (tkls != NULL && !StressReflectiveCode) {
  2089     ciKlass* klass = tkls->klass();
  2090     if( !klass->is_loaded() )
  2091       return _type;             // Bail out if not loaded
  2092     if( klass->is_obj_array_klass() &&
  2093         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
  2094       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  2095       // // Always returning precise element type is incorrect,
  2096       // // e.g., element type could be object and array may contain strings
  2097       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  2099       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  2100       // according to the element type's subclassing.
  2101       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  2103     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  2104         tkls->offset() == in_bytes(Klass::super_offset())) {
  2105       ciKlass* sup = klass->as_instance_klass()->super();
  2106       // The field is Klass::_super.  Return its (constant) value.
  2107       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  2108       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  2112   // Bailout case
  2113   return LoadNode::Value(phase);
  2116 //------------------------------Identity---------------------------------------
  2117 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  2118 // Also feed through the klass in Allocate(...klass...)._klass.
  2119 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  2120   return klass_identity_common(phase);
  2123 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
  2124   Node* x = LoadNode::Identity(phase);
  2125   if (x != this)  return x;
  2127   // Take apart the address into an oop and and offset.
  2128   // Return 'this' if we cannot.
  2129   Node*    adr    = in(MemNode::Address);
  2130   intptr_t offset = 0;
  2131   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  2132   if (base == NULL)     return this;
  2133   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  2134   if (toop == NULL)     return this;
  2136   // We can fetch the klass directly through an AllocateNode.
  2137   // This works even if the klass is not constant (clone or newArray).
  2138   if (offset == oopDesc::klass_offset_in_bytes()) {
  2139     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  2140     if (allocated_klass != NULL) {
  2141       return allocated_klass;
  2145   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
  2146   // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
  2147   // See inline_native_Class_query for occurrences of these patterns.
  2148   // Java Example:  x.getClass().isAssignableFrom(y)
  2149   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  2150   //
  2151   // This improves reflective code, often making the Class
  2152   // mirror go completely dead.  (Current exception:  Class
  2153   // mirrors may appear in debug info, but we could clean them out by
  2154   // introducing a new debug info operator for Klass*.java_mirror).
  2155   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  2156       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  2157           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2158     // We are loading a special hidden field from a Class mirror,
  2159     // the field which points to its Klass or ArrayKlass metaobject.
  2160     if (base->is_Load()) {
  2161       Node* adr2 = base->in(MemNode::Address);
  2162       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  2163       if (tkls != NULL && !tkls->empty()
  2164           && (tkls->klass()->is_instance_klass() ||
  2165               tkls->klass()->is_array_klass())
  2166           && adr2->is_AddP()
  2167           ) {
  2168         int mirror_field = in_bytes(Klass::java_mirror_offset());
  2169         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  2170           mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
  2172         if (tkls->offset() == mirror_field) {
  2173           return adr2->in(AddPNode::Base);
  2179   return this;
  2183 //------------------------------Value------------------------------------------
  2184 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
  2185   const Type *t = klass_value_common(phase);
  2186   if (t == Type::TOP)
  2187     return t;
  2189   return t->make_narrowklass();
  2192 //------------------------------Identity---------------------------------------
  2193 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
  2194 // Also feed through the klass in Allocate(...klass...)._klass.
  2195 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
  2196   Node *x = klass_identity_common(phase);
  2198   const Type *t = phase->type( x );
  2199   if( t == Type::TOP ) return x;
  2200   if( t->isa_narrowklass()) return x;
  2201   assert (!t->isa_narrowoop(), "no narrow oop here");
  2203   return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
  2206 //------------------------------Value-----------------------------------------
  2207 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  2208   // Either input is TOP ==> the result is TOP
  2209   const Type *t1 = phase->type( in(MemNode::Memory) );
  2210   if( t1 == Type::TOP ) return Type::TOP;
  2211   Node *adr = in(MemNode::Address);
  2212   const Type *t2 = phase->type( adr );
  2213   if( t2 == Type::TOP ) return Type::TOP;
  2214   const TypePtr *tp = t2->is_ptr();
  2215   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  2216   const TypeAryPtr *tap = tp->isa_aryptr();
  2217   if( !tap ) return _type;
  2218   return tap->size();
  2221 //-------------------------------Ideal---------------------------------------
  2222 // Feed through the length in AllocateArray(...length...)._length.
  2223 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2224   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2225   if (p)  return (p == NodeSentinel) ? NULL : p;
  2227   // Take apart the address into an oop and and offset.
  2228   // Return 'this' if we cannot.
  2229   Node*    adr    = in(MemNode::Address);
  2230   intptr_t offset = 0;
  2231   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
  2232   if (base == NULL)     return NULL;
  2233   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2234   if (tary == NULL)     return NULL;
  2236   // We can fetch the length directly through an AllocateArrayNode.
  2237   // This works even if the length is not constant (clone or newArray).
  2238   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2239     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2240     if (alloc != NULL) {
  2241       Node* allocated_length = alloc->Ideal_length();
  2242       Node* len = alloc->make_ideal_length(tary, phase);
  2243       if (allocated_length != len) {
  2244         // New CastII improves on this.
  2245         return len;
  2250   return NULL;
  2253 //------------------------------Identity---------------------------------------
  2254 // Feed through the length in AllocateArray(...length...)._length.
  2255 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  2256   Node* x = LoadINode::Identity(phase);
  2257   if (x != this)  return x;
  2259   // Take apart the address into an oop and and offset.
  2260   // Return 'this' if we cannot.
  2261   Node*    adr    = in(MemNode::Address);
  2262   intptr_t offset = 0;
  2263   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  2264   if (base == NULL)     return this;
  2265   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2266   if (tary == NULL)     return this;
  2268   // We can fetch the length directly through an AllocateArrayNode.
  2269   // This works even if the length is not constant (clone or newArray).
  2270   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2271     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2272     if (alloc != NULL) {
  2273       Node* allocated_length = alloc->Ideal_length();
  2274       // Do not allow make_ideal_length to allocate a CastII node.
  2275       Node* len = alloc->make_ideal_length(tary, phase, false);
  2276       if (allocated_length == len) {
  2277         // Return allocated_length only if it would not be improved by a CastII.
  2278         return allocated_length;
  2283   return this;
  2287 //=============================================================================
  2288 //---------------------------StoreNode::make-----------------------------------
  2289 // Polymorphic factory method:
  2290 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  2291   Compile* C = gvn.C;
  2292   assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
  2293           ctl != NULL, "raw memory operations should have control edge");
  2295   switch (bt) {
  2296   case T_BOOLEAN:
  2297   case T_BYTE:    return new (C) StoreBNode(ctl, mem, adr, adr_type, val);
  2298   case T_INT:     return new (C) StoreINode(ctl, mem, adr, adr_type, val);
  2299   case T_CHAR:
  2300   case T_SHORT:   return new (C) StoreCNode(ctl, mem, adr, adr_type, val);
  2301   case T_LONG:    return new (C) StoreLNode(ctl, mem, adr, adr_type, val);
  2302   case T_FLOAT:   return new (C) StoreFNode(ctl, mem, adr, adr_type, val);
  2303   case T_DOUBLE:  return new (C) StoreDNode(ctl, mem, adr, adr_type, val);
  2304   case T_METADATA:
  2305   case T_ADDRESS:
  2306   case T_OBJECT:
  2307 #ifdef _LP64
  2308     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2309       val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
  2310       return new (C) StoreNNode(ctl, mem, adr, adr_type, val);
  2311     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
  2312                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
  2313                 adr->bottom_type()->isa_rawptr())) {
  2314       val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
  2315       return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val);
  2317 #endif
  2319       return new (C) StorePNode(ctl, mem, adr, adr_type, val);
  2322   ShouldNotReachHere();
  2323   return (StoreNode*)NULL;
  2326 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  2327   bool require_atomic = true;
  2328   return new (C) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  2332 //--------------------------bottom_type----------------------------------------
  2333 const Type *StoreNode::bottom_type() const {
  2334   return Type::MEMORY;
  2337 //------------------------------hash-------------------------------------------
  2338 uint StoreNode::hash() const {
  2339   // unroll addition of interesting fields
  2340   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  2342   // Since they are not commoned, do not hash them:
  2343   return NO_HASH;
  2346 //------------------------------Ideal------------------------------------------
  2347 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  2348 // When a store immediately follows a relevant allocation/initialization,
  2349 // try to capture it into the initialization, or hoist it above.
  2350 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2351   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2352   if (p)  return (p == NodeSentinel) ? NULL : p;
  2354   Node* mem     = in(MemNode::Memory);
  2355   Node* address = in(MemNode::Address);
  2357   // Back-to-back stores to same address?  Fold em up.  Generally
  2358   // unsafe if I have intervening uses...  Also disallowed for StoreCM
  2359   // since they must follow each StoreP operation.  Redundant StoreCMs
  2360   // are eliminated just before matching in final_graph_reshape.
  2361   if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
  2362       mem->Opcode() != Op_StoreCM) {
  2363     // Looking at a dead closed cycle of memory?
  2364     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  2366     assert(Opcode() == mem->Opcode() ||
  2367            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  2368            "no mismatched stores, except on raw memory");
  2370     if (mem->outcnt() == 1 &&           // check for intervening uses
  2371         mem->as_Store()->memory_size() <= this->memory_size()) {
  2372       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  2373       // For example, 'mem' might be the final state at a conditional return.
  2374       // Or, 'mem' might be used by some node which is live at the same time
  2375       // 'this' is live, which might be unschedulable.  So, require exactly
  2376       // ONE user, the 'this' store, until such time as we clone 'mem' for
  2377       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  2378       if (can_reshape) {  // (%%% is this an anachronism?)
  2379         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  2380                   phase->is_IterGVN());
  2381       } else {
  2382         // It's OK to do this in the parser, since DU info is always accurate,
  2383         // and the parser always refers to nodes via SafePointNode maps.
  2384         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2386       return this;
  2390   // Capture an unaliased, unconditional, simple store into an initializer.
  2391   // Or, if it is independent of the allocation, hoist it above the allocation.
  2392   if (ReduceFieldZeroing && /*can_reshape &&*/
  2393       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  2394     InitializeNode* init = mem->in(0)->as_Initialize();
  2395     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
  2396     if (offset > 0) {
  2397       Node* moved = init->capture_store(this, offset, phase, can_reshape);
  2398       // If the InitializeNode captured me, it made a raw copy of me,
  2399       // and I need to disappear.
  2400       if (moved != NULL) {
  2401         // %%% hack to ensure that Ideal returns a new node:
  2402         mem = MergeMemNode::make(phase->C, mem);
  2403         return mem;             // fold me away
  2408   return NULL;                  // No further progress
  2411 //------------------------------Value-----------------------------------------
  2412 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  2413   // Either input is TOP ==> the result is TOP
  2414   const Type *t1 = phase->type( in(MemNode::Memory) );
  2415   if( t1 == Type::TOP ) return Type::TOP;
  2416   const Type *t2 = phase->type( in(MemNode::Address) );
  2417   if( t2 == Type::TOP ) return Type::TOP;
  2418   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  2419   if( t3 == Type::TOP ) return Type::TOP;
  2420   return Type::MEMORY;
  2423 //------------------------------Identity---------------------------------------
  2424 // Remove redundant stores:
  2425 //   Store(m, p, Load(m, p)) changes to m.
  2426 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  2427 Node *StoreNode::Identity( PhaseTransform *phase ) {
  2428   Node* mem = in(MemNode::Memory);
  2429   Node* adr = in(MemNode::Address);
  2430   Node* val = in(MemNode::ValueIn);
  2432   // Load then Store?  Then the Store is useless
  2433   if (val->is_Load() &&
  2434       val->in(MemNode::Address)->eqv_uncast(adr) &&
  2435       val->in(MemNode::Memory )->eqv_uncast(mem) &&
  2436       val->as_Load()->store_Opcode() == Opcode()) {
  2437     return mem;
  2440   // Two stores in a row of the same value?
  2441   if (mem->is_Store() &&
  2442       mem->in(MemNode::Address)->eqv_uncast(adr) &&
  2443       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
  2444       mem->Opcode() == Opcode()) {
  2445     return mem;
  2448   // Store of zero anywhere into a freshly-allocated object?
  2449   // Then the store is useless.
  2450   // (It must already have been captured by the InitializeNode.)
  2451   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  2452     // a newly allocated object is already all-zeroes everywhere
  2453     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  2454       return mem;
  2457     // the store may also apply to zero-bits in an earlier object
  2458     Node* prev_mem = find_previous_store(phase);
  2459     // Steps (a), (b):  Walk past independent stores to find an exact match.
  2460     if (prev_mem != NULL) {
  2461       Node* prev_val = can_see_stored_value(prev_mem, phase);
  2462       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  2463         // prev_val and val might differ by a cast; it would be good
  2464         // to keep the more informative of the two.
  2465         return mem;
  2470   return this;
  2473 //------------------------------match_edge-------------------------------------
  2474 // Do we Match on this edge index or not?  Match only memory & value
  2475 uint StoreNode::match_edge(uint idx) const {
  2476   return idx == MemNode::Address || idx == MemNode::ValueIn;
  2479 //------------------------------cmp--------------------------------------------
  2480 // Do not common stores up together.  They generally have to be split
  2481 // back up anyways, so do not bother.
  2482 uint StoreNode::cmp( const Node &n ) const {
  2483   return (&n == this);          // Always fail except on self
  2486 //------------------------------Ideal_masked_input-----------------------------
  2487 // Check for a useless mask before a partial-word store
  2488 // (StoreB ... (AndI valIn conIa) )
  2489 // If (conIa & mask == mask) this simplifies to
  2490 // (StoreB ... (valIn) )
  2491 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  2492   Node *val = in(MemNode::ValueIn);
  2493   if( val->Opcode() == Op_AndI ) {
  2494     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2495     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  2496       set_req(MemNode::ValueIn, val->in(1));
  2497       return this;
  2500   return NULL;
  2504 //------------------------------Ideal_sign_extended_input----------------------
  2505 // Check for useless sign-extension before a partial-word store
  2506 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  2507 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  2508 // (StoreB ... (valIn) )
  2509 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  2510   Node *val = in(MemNode::ValueIn);
  2511   if( val->Opcode() == Op_RShiftI ) {
  2512     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2513     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  2514       Node *shl = val->in(1);
  2515       if( shl->Opcode() == Op_LShiftI ) {
  2516         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  2517         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  2518           set_req(MemNode::ValueIn, shl->in(1));
  2519           return this;
  2524   return NULL;
  2527 //------------------------------value_never_loaded-----------------------------------
  2528 // Determine whether there are any possible loads of the value stored.
  2529 // For simplicity, we actually check if there are any loads from the
  2530 // address stored to, not just for loads of the value stored by this node.
  2531 //
  2532 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  2533   Node *adr = in(Address);
  2534   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  2535   if (adr_oop == NULL)
  2536     return false;
  2537   if (!adr_oop->is_known_instance_field())
  2538     return false; // if not a distinct instance, there may be aliases of the address
  2539   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  2540     Node *use = adr->fast_out(i);
  2541     int opc = use->Opcode();
  2542     if (use->is_Load() || use->is_LoadStore()) {
  2543       return false;
  2546   return true;
  2549 //=============================================================================
  2550 //------------------------------Ideal------------------------------------------
  2551 // If the store is from an AND mask that leaves the low bits untouched, then
  2552 // we can skip the AND operation.  If the store is from a sign-extension
  2553 // (a left shift, then right shift) we can skip both.
  2554 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2555   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  2556   if( progress != NULL ) return progress;
  2558   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  2559   if( progress != NULL ) return progress;
  2561   // Finally check the default case
  2562   return StoreNode::Ideal(phase, can_reshape);
  2565 //=============================================================================
  2566 //------------------------------Ideal------------------------------------------
  2567 // If the store is from an AND mask that leaves the low bits untouched, then
  2568 // we can skip the AND operation
  2569 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2570   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2571   if( progress != NULL ) return progress;
  2573   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2574   if( progress != NULL ) return progress;
  2576   // Finally check the default case
  2577   return StoreNode::Ideal(phase, can_reshape);
  2580 //=============================================================================
  2581 //------------------------------Identity---------------------------------------
  2582 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2583   // No need to card mark when storing a null ptr
  2584   Node* my_store = in(MemNode::OopStore);
  2585   if (my_store->is_Store()) {
  2586     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2587     if( t1 == TypePtr::NULL_PTR ) {
  2588       return in(MemNode::Memory);
  2591   return this;
  2594 //=============================================================================
  2595 //------------------------------Ideal---------------------------------------
  2596 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2597   Node* progress = StoreNode::Ideal(phase, can_reshape);
  2598   if (progress != NULL) return progress;
  2600   Node* my_store = in(MemNode::OopStore);
  2601   if (my_store->is_MergeMem()) {
  2602     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
  2603     set_req(MemNode::OopStore, mem);
  2604     return this;
  2607   return NULL;
  2610 //------------------------------Value-----------------------------------------
  2611 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2612   // Either input is TOP ==> the result is TOP
  2613   const Type *t = phase->type( in(MemNode::Memory) );
  2614   if( t == Type::TOP ) return Type::TOP;
  2615   t = phase->type( in(MemNode::Address) );
  2616   if( t == Type::TOP ) return Type::TOP;
  2617   t = phase->type( in(MemNode::ValueIn) );
  2618   if( t == Type::TOP ) return Type::TOP;
  2619   // If extra input is TOP ==> the result is TOP
  2620   t = phase->type( in(MemNode::OopStore) );
  2621   if( t == Type::TOP ) return Type::TOP;
  2623   return StoreNode::Value( phase );
  2627 //=============================================================================
  2628 //----------------------------------SCMemProjNode------------------------------
  2629 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2631   return bottom_type();
  2634 //=============================================================================
  2635 //----------------------------------LoadStoreNode------------------------------
  2636 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
  2637   : Node(required),
  2638     _type(rt),
  2639     _adr_type(at)
  2641   init_req(MemNode::Control, c  );
  2642   init_req(MemNode::Memory , mem);
  2643   init_req(MemNode::Address, adr);
  2644   init_req(MemNode::ValueIn, val);
  2645   init_class_id(Class_LoadStore);
  2648 uint LoadStoreNode::ideal_reg() const {
  2649   return _type->ideal_reg();
  2652 bool LoadStoreNode::result_not_used() const {
  2653   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
  2654     Node *x = fast_out(i);
  2655     if (x->Opcode() == Op_SCMemProj) continue;
  2656     return false;
  2658   return true;
  2661 uint LoadStoreNode::size_of() const { return sizeof(*this); }
  2663 //=============================================================================
  2664 //----------------------------------LoadStoreConditionalNode--------------------
  2665 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
  2666   init_req(ExpectedIn, ex );
  2669 //=============================================================================
  2670 //-------------------------------adr_type--------------------------------------
  2671 // Do we Match on this edge index or not?  Do not match memory
  2672 const TypePtr* ClearArrayNode::adr_type() const {
  2673   Node *adr = in(3);
  2674   return MemNode::calculate_adr_type(adr->bottom_type());
  2677 //------------------------------match_edge-------------------------------------
  2678 // Do we Match on this edge index or not?  Do not match memory
  2679 uint ClearArrayNode::match_edge(uint idx) const {
  2680   return idx > 1;
  2683 //------------------------------Identity---------------------------------------
  2684 // Clearing a zero length array does nothing
  2685 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2686   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2689 //------------------------------Idealize---------------------------------------
  2690 // Clearing a short array is faster with stores
  2691 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2692   const int unit = BytesPerLong;
  2693   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2694   if (!t)  return NULL;
  2695   if (!t->is_con())  return NULL;
  2696   intptr_t raw_count = t->get_con();
  2697   intptr_t size = raw_count;
  2698   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2699   // Clearing nothing uses the Identity call.
  2700   // Negative clears are possible on dead ClearArrays
  2701   // (see jck test stmt114.stmt11402.val).
  2702   if (size <= 0 || size % unit != 0)  return NULL;
  2703   intptr_t count = size / unit;
  2704   // Length too long; use fast hardware clear
  2705   if (size > Matcher::init_array_short_size)  return NULL;
  2706   Node *mem = in(1);
  2707   if( phase->type(mem)==Type::TOP ) return NULL;
  2708   Node *adr = in(3);
  2709   const Type* at = phase->type(adr);
  2710   if( at==Type::TOP ) return NULL;
  2711   const TypePtr* atp = at->isa_ptr();
  2712   // adjust atp to be the correct array element address type
  2713   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2714   else              atp = atp->add_offset(Type::OffsetBot);
  2715   // Get base for derived pointer purposes
  2716   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2717   Node *base = adr->in(1);
  2719   Node *zero = phase->makecon(TypeLong::ZERO);
  2720   Node *off  = phase->MakeConX(BytesPerLong);
  2721   mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
  2722   count--;
  2723   while( count-- ) {
  2724     mem = phase->transform(mem);
  2725     adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
  2726     mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
  2728   return mem;
  2731 //----------------------------step_through----------------------------------
  2732 // Return allocation input memory edge if it is different instance
  2733 // or itself if it is the one we are looking for.
  2734 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
  2735   Node* n = *np;
  2736   assert(n->is_ClearArray(), "sanity");
  2737   intptr_t offset;
  2738   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
  2739   // This method is called only before Allocate nodes are expanded during
  2740   // macro nodes expansion. Before that ClearArray nodes are only generated
  2741   // in LibraryCallKit::generate_arraycopy() which follows allocations.
  2742   assert(alloc != NULL, "should have allocation");
  2743   if (alloc->_idx == instance_id) {
  2744     // Can not bypass initialization of the instance we are looking for.
  2745     return false;
  2747   // Otherwise skip it.
  2748   InitializeNode* init = alloc->initialization();
  2749   if (init != NULL)
  2750     *np = init->in(TypeFunc::Memory);
  2751   else
  2752     *np = alloc->in(TypeFunc::Memory);
  2753   return true;
  2756 //----------------------------clear_memory-------------------------------------
  2757 // Generate code to initialize object storage to zero.
  2758 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2759                                    intptr_t start_offset,
  2760                                    Node* end_offset,
  2761                                    PhaseGVN* phase) {
  2762   Compile* C = phase->C;
  2763   intptr_t offset = start_offset;
  2765   int unit = BytesPerLong;
  2766   if ((offset % unit) != 0) {
  2767     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
  2768     adr = phase->transform(adr);
  2769     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2770     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2771     mem = phase->transform(mem);
  2772     offset += BytesPerInt;
  2774   assert((offset % unit) == 0, "");
  2776   // Initialize the remaining stuff, if any, with a ClearArray.
  2777   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2780 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2781                                    Node* start_offset,
  2782                                    Node* end_offset,
  2783                                    PhaseGVN* phase) {
  2784   if (start_offset == end_offset) {
  2785     // nothing to do
  2786     return mem;
  2789   Compile* C = phase->C;
  2790   int unit = BytesPerLong;
  2791   Node* zbase = start_offset;
  2792   Node* zend  = end_offset;
  2794   // Scale to the unit required by the CPU:
  2795   if (!Matcher::init_array_count_is_in_bytes) {
  2796     Node* shift = phase->intcon(exact_log2(unit));
  2797     zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
  2798     zend  = phase->transform( new(C) URShiftXNode(zend,  shift) );
  2801   // Bulk clear double-words
  2802   Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
  2803   Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
  2804   mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
  2805   return phase->transform(mem);
  2808 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2809                                    intptr_t start_offset,
  2810                                    intptr_t end_offset,
  2811                                    PhaseGVN* phase) {
  2812   if (start_offset == end_offset) {
  2813     // nothing to do
  2814     return mem;
  2817   Compile* C = phase->C;
  2818   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2819   intptr_t done_offset = end_offset;
  2820   if ((done_offset % BytesPerLong) != 0) {
  2821     done_offset -= BytesPerInt;
  2823   if (done_offset > start_offset) {
  2824     mem = clear_memory(ctl, mem, dest,
  2825                        start_offset, phase->MakeConX(done_offset), phase);
  2827   if (done_offset < end_offset) { // emit the final 32-bit store
  2828     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2829     adr = phase->transform(adr);
  2830     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2831     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2832     mem = phase->transform(mem);
  2833     done_offset += BytesPerInt;
  2835   assert(done_offset == end_offset, "");
  2836   return mem;
  2839 //=============================================================================
  2840 // Do not match memory edge.
  2841 uint StrIntrinsicNode::match_edge(uint idx) const {
  2842   return idx == 2 || idx == 3;
  2845 //------------------------------Ideal------------------------------------------
  2846 // Return a node which is more "ideal" than the current node.  Strip out
  2847 // control copies
  2848 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2849   if (remove_dead_region(phase, can_reshape)) return this;
  2850   // Don't bother trying to transform a dead node
  2851   if (in(0) && in(0)->is_top())  return NULL;
  2853   if (can_reshape) {
  2854     Node* mem = phase->transform(in(MemNode::Memory));
  2855     // If transformed to a MergeMem, get the desired slice
  2856     uint alias_idx = phase->C->get_alias_index(adr_type());
  2857     mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
  2858     if (mem != in(MemNode::Memory)) {
  2859       set_req(MemNode::Memory, mem);
  2860       return this;
  2863   return NULL;
  2866 //------------------------------Value------------------------------------------
  2867 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
  2868   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
  2869   return bottom_type();
  2872 //=============================================================================
  2873 //------------------------------match_edge-------------------------------------
  2874 // Do not match memory edge
  2875 uint EncodeISOArrayNode::match_edge(uint idx) const {
  2876   return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
  2879 //------------------------------Ideal------------------------------------------
  2880 // Return a node which is more "ideal" than the current node.  Strip out
  2881 // control copies
  2882 Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2883   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2886 //------------------------------Value------------------------------------------
  2887 const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
  2888   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
  2889   return bottom_type();
  2892 //=============================================================================
  2893 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2894   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2895     _adr_type(C->get_adr_type(alias_idx))
  2897   init_class_id(Class_MemBar);
  2898   Node* top = C->top();
  2899   init_req(TypeFunc::I_O,top);
  2900   init_req(TypeFunc::FramePtr,top);
  2901   init_req(TypeFunc::ReturnAdr,top);
  2902   if (precedent != NULL)
  2903     init_req(TypeFunc::Parms, precedent);
  2906 //------------------------------cmp--------------------------------------------
  2907 uint MemBarNode::hash() const { return NO_HASH; }
  2908 uint MemBarNode::cmp( const Node &n ) const {
  2909   return (&n == this);          // Always fail except on self
  2912 //------------------------------make-------------------------------------------
  2913 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2914   switch (opcode) {
  2915   case Op_MemBarAcquire:   return new(C) MemBarAcquireNode(C,  atp, pn);
  2916   case Op_MemBarRelease:   return new(C) MemBarReleaseNode(C,  atp, pn);
  2917   case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C,  atp, pn);
  2918   case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C,  atp, pn);
  2919   case Op_MemBarVolatile:  return new(C) MemBarVolatileNode(C, atp, pn);
  2920   case Op_MemBarCPUOrder:  return new(C) MemBarCPUOrderNode(C, atp, pn);
  2921   case Op_Initialize:      return new(C) InitializeNode(C,     atp, pn);
  2922   case Op_MemBarStoreStore: return new(C) MemBarStoreStoreNode(C,  atp, pn);
  2923   default:                 ShouldNotReachHere(); return NULL;
  2927 //------------------------------Ideal------------------------------------------
  2928 // Return a node which is more "ideal" than the current node.  Strip out
  2929 // control copies
  2930 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2931   if (remove_dead_region(phase, can_reshape)) return this;
  2932   // Don't bother trying to transform a dead node
  2933   if (in(0) && in(0)->is_top()) {
  2934     return NULL;
  2937   // Eliminate volatile MemBars for scalar replaced objects.
  2938   if (can_reshape && req() == (Precedent+1)) {
  2939     bool eliminate = false;
  2940     int opc = Opcode();
  2941     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
  2942       // Volatile field loads and stores.
  2943       Node* my_mem = in(MemBarNode::Precedent);
  2944       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
  2945       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
  2946         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
  2947         // replace this Precedent (decodeN) with the Load instead.
  2948         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
  2949           Node* load_node = my_mem->in(1);
  2950           set_req(MemBarNode::Precedent, load_node);
  2951           phase->is_IterGVN()->_worklist.push(my_mem);
  2952           my_mem = load_node;
  2953         } else {
  2954           assert(my_mem->unique_out() == this, "sanity");
  2955           del_req(Precedent);
  2956           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
  2957           my_mem = NULL;
  2960       if (my_mem != NULL && my_mem->is_Mem()) {
  2961         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
  2962         // Check for scalar replaced object reference.
  2963         if( t_oop != NULL && t_oop->is_known_instance_field() &&
  2964             t_oop->offset() != Type::OffsetBot &&
  2965             t_oop->offset() != Type::OffsetTop) {
  2966           eliminate = true;
  2969     } else if (opc == Op_MemBarRelease) {
  2970       // Final field stores.
  2971       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
  2972       if ((alloc != NULL) && alloc->is_Allocate() &&
  2973           alloc->as_Allocate()->_is_non_escaping) {
  2974         // The allocated object does not escape.
  2975         eliminate = true;
  2978     if (eliminate) {
  2979       // Replace MemBar projections by its inputs.
  2980       PhaseIterGVN* igvn = phase->is_IterGVN();
  2981       igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
  2982       igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
  2983       // Must return either the original node (now dead) or a new node
  2984       // (Do not return a top here, since that would break the uniqueness of top.)
  2985       return new (phase->C) ConINode(TypeInt::ZERO);
  2988   return NULL;
  2991 //------------------------------Value------------------------------------------
  2992 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2993   if( !in(0) ) return Type::TOP;
  2994   if( phase->type(in(0)) == Type::TOP )
  2995     return Type::TOP;
  2996   return TypeTuple::MEMBAR;
  2999 //------------------------------match------------------------------------------
  3000 // Construct projections for memory.
  3001 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  3002   switch (proj->_con) {
  3003   case TypeFunc::Control:
  3004   case TypeFunc::Memory:
  3005     return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  3007   ShouldNotReachHere();
  3008   return NULL;
  3011 //===========================InitializeNode====================================
  3012 // SUMMARY:
  3013 // This node acts as a memory barrier on raw memory, after some raw stores.
  3014 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  3015 // The Initialize can 'capture' suitably constrained stores as raw inits.
  3016 // It can coalesce related raw stores into larger units (called 'tiles').
  3017 // It can avoid zeroing new storage for memory units which have raw inits.
  3018 // At macro-expansion, it is marked 'complete', and does not optimize further.
  3019 //
  3020 // EXAMPLE:
  3021 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  3022 //   ctl = incoming control; mem* = incoming memory
  3023 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  3024 // First allocate uninitialized memory and fill in the header:
  3025 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  3026 //   ctl := alloc.Control; mem* := alloc.Memory*
  3027 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  3028 // Then initialize to zero the non-header parts of the raw memory block:
  3029 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  3030 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  3031 // After the initialize node executes, the object is ready for service:
  3032 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  3033 // Suppose its body is immediately initialized as {1,2}:
  3034 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  3035 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  3036 //   mem.SLICE(#short[*]) := store2
  3037 //
  3038 // DETAILS:
  3039 // An InitializeNode collects and isolates object initialization after
  3040 // an AllocateNode and before the next possible safepoint.  As a
  3041 // memory barrier (MemBarNode), it keeps critical stores from drifting
  3042 // down past any safepoint or any publication of the allocation.
  3043 // Before this barrier, a newly-allocated object may have uninitialized bits.
  3044 // After this barrier, it may be treated as a real oop, and GC is allowed.
  3045 //
  3046 // The semantics of the InitializeNode include an implicit zeroing of
  3047 // the new object from object header to the end of the object.
  3048 // (The object header and end are determined by the AllocateNode.)
  3049 //
  3050 // Certain stores may be added as direct inputs to the InitializeNode.
  3051 // These stores must update raw memory, and they must be to addresses
  3052 // derived from the raw address produced by AllocateNode, and with
  3053 // a constant offset.  They must be ordered by increasing offset.
  3054 // The first one is at in(RawStores), the last at in(req()-1).
  3055 // Unlike most memory operations, they are not linked in a chain,
  3056 // but are displayed in parallel as users of the rawmem output of
  3057 // the allocation.
  3058 //
  3059 // (See comments in InitializeNode::capture_store, which continue
  3060 // the example given above.)
  3061 //
  3062 // When the associated Allocate is macro-expanded, the InitializeNode
  3063 // may be rewritten to optimize collected stores.  A ClearArrayNode
  3064 // may also be created at that point to represent any required zeroing.
  3065 // The InitializeNode is then marked 'complete', prohibiting further
  3066 // capturing of nearby memory operations.
  3067 //
  3068 // During macro-expansion, all captured initializations which store
  3069 // constant values of 32 bits or smaller are coalesced (if advantageous)
  3070 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  3071 // initialized in fewer memory operations.  Memory words which are
  3072 // covered by neither tiles nor non-constant stores are pre-zeroed
  3073 // by explicit stores of zero.  (The code shape happens to do all
  3074 // zeroing first, then all other stores, with both sequences occurring
  3075 // in order of ascending offsets.)
  3076 //
  3077 // Alternatively, code may be inserted between an AllocateNode and its
  3078 // InitializeNode, to perform arbitrary initialization of the new object.
  3079 // E.g., the object copying intrinsics insert complex data transfers here.
  3080 // The initialization must then be marked as 'complete' disable the
  3081 // built-in zeroing semantics and the collection of initializing stores.
  3082 //
  3083 // While an InitializeNode is incomplete, reads from the memory state
  3084 // produced by it are optimizable if they match the control edge and
  3085 // new oop address associated with the allocation/initialization.
  3086 // They return a stored value (if the offset matches) or else zero.
  3087 // A write to the memory state, if it matches control and address,
  3088 // and if it is to a constant offset, may be 'captured' by the
  3089 // InitializeNode.  It is cloned as a raw memory operation and rewired
  3090 // inside the initialization, to the raw oop produced by the allocation.
  3091 // Operations on addresses which are provably distinct (e.g., to
  3092 // other AllocateNodes) are allowed to bypass the initialization.
  3093 //
  3094 // The effect of all this is to consolidate object initialization
  3095 // (both arrays and non-arrays, both piecewise and bulk) into a
  3096 // single location, where it can be optimized as a unit.
  3097 //
  3098 // Only stores with an offset less than TrackedInitializationLimit words
  3099 // will be considered for capture by an InitializeNode.  This puts a
  3100 // reasonable limit on the complexity of optimized initializations.
  3102 //---------------------------InitializeNode------------------------------------
  3103 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  3104   : _is_complete(Incomplete), _does_not_escape(false),
  3105     MemBarNode(C, adr_type, rawoop)
  3107   init_class_id(Class_Initialize);
  3109   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  3110   assert(in(RawAddress) == rawoop, "proper init");
  3111   // Note:  allocation() can be NULL, for secondary initialization barriers
  3114 // Since this node is not matched, it will be processed by the
  3115 // register allocator.  Declare that there are no constraints
  3116 // on the allocation of the RawAddress edge.
  3117 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  3118   // This edge should be set to top, by the set_complete.  But be conservative.
  3119   if (idx == InitializeNode::RawAddress)
  3120     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  3121   return RegMask::Empty;
  3124 Node* InitializeNode::memory(uint alias_idx) {
  3125   Node* mem = in(Memory);
  3126   if (mem->is_MergeMem()) {
  3127     return mem->as_MergeMem()->memory_at(alias_idx);
  3128   } else {
  3129     // incoming raw memory is not split
  3130     return mem;
  3134 bool InitializeNode::is_non_zero() {
  3135   if (is_complete())  return false;
  3136   remove_extra_zeroes();
  3137   return (req() > RawStores);
  3140 void InitializeNode::set_complete(PhaseGVN* phase) {
  3141   assert(!is_complete(), "caller responsibility");
  3142   _is_complete = Complete;
  3144   // After this node is complete, it contains a bunch of
  3145   // raw-memory initializations.  There is no need for
  3146   // it to have anything to do with non-raw memory effects.
  3147   // Therefore, tell all non-raw users to re-optimize themselves,
  3148   // after skipping the memory effects of this initialization.
  3149   PhaseIterGVN* igvn = phase->is_IterGVN();
  3150   if (igvn)  igvn->add_users_to_worklist(this);
  3153 // convenience function
  3154 // return false if the init contains any stores already
  3155 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  3156   InitializeNode* init = initialization();
  3157   if (init == NULL || init->is_complete())  return false;
  3158   init->remove_extra_zeroes();
  3159   // for now, if this allocation has already collected any inits, bail:
  3160   if (init->is_non_zero())  return false;
  3161   init->set_complete(phase);
  3162   return true;
  3165 void InitializeNode::remove_extra_zeroes() {
  3166   if (req() == RawStores)  return;
  3167   Node* zmem = zero_memory();
  3168   uint fill = RawStores;
  3169   for (uint i = fill; i < req(); i++) {
  3170     Node* n = in(i);
  3171     if (n->is_top() || n == zmem)  continue;  // skip
  3172     if (fill < i)  set_req(fill, n);          // compact
  3173     ++fill;
  3175   // delete any empty spaces created:
  3176   while (fill < req()) {
  3177     del_req(fill);
  3181 // Helper for remembering which stores go with which offsets.
  3182 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  3183   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  3184   intptr_t offset = -1;
  3185   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  3186                                                phase, offset);
  3187   if (base == NULL)     return -1;  // something is dead,
  3188   if (offset < 0)       return -1;  //        dead, dead
  3189   return offset;
  3192 // Helper for proving that an initialization expression is
  3193 // "simple enough" to be folded into an object initialization.
  3194 // Attempts to prove that a store's initial value 'n' can be captured
  3195 // within the initialization without creating a vicious cycle, such as:
  3196 //     { Foo p = new Foo(); p.next = p; }
  3197 // True for constants and parameters and small combinations thereof.
  3198 bool InitializeNode::detect_init_independence(Node* n, int& count) {
  3199   if (n == NULL)      return true;   // (can this really happen?)
  3200   if (n->is_Proj())   n = n->in(0);
  3201   if (n == this)      return false;  // found a cycle
  3202   if (n->is_Con())    return true;
  3203   if (n->is_Start())  return true;   // params, etc., are OK
  3204   if (n->is_Root())   return true;   // even better
  3206   Node* ctl = n->in(0);
  3207   if (ctl != NULL && !ctl->is_top()) {
  3208     if (ctl->is_Proj())  ctl = ctl->in(0);
  3209     if (ctl == this)  return false;
  3211     // If we already know that the enclosing memory op is pinned right after
  3212     // the init, then any control flow that the store has picked up
  3213     // must have preceded the init, or else be equal to the init.
  3214     // Even after loop optimizations (which might change control edges)
  3215     // a store is never pinned *before* the availability of its inputs.
  3216     if (!MemNode::all_controls_dominate(n, this))
  3217       return false;                  // failed to prove a good control
  3220   // Check data edges for possible dependencies on 'this'.
  3221   if ((count += 1) > 20)  return false;  // complexity limit
  3222   for (uint i = 1; i < n->req(); i++) {
  3223     Node* m = n->in(i);
  3224     if (m == NULL || m == n || m->is_top())  continue;
  3225     uint first_i = n->find_edge(m);
  3226     if (i != first_i)  continue;  // process duplicate edge just once
  3227     if (!detect_init_independence(m, count)) {
  3228       return false;
  3232   return true;
  3235 // Here are all the checks a Store must pass before it can be moved into
  3236 // an initialization.  Returns zero if a check fails.
  3237 // On success, returns the (constant) offset to which the store applies,
  3238 // within the initialized memory.
  3239 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
  3240   const int FAIL = 0;
  3241   if (st->req() != MemNode::ValueIn + 1)
  3242     return FAIL;                // an inscrutable StoreNode (card mark?)
  3243   Node* ctl = st->in(MemNode::Control);
  3244   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  3245     return FAIL;                // must be unconditional after the initialization
  3246   Node* mem = st->in(MemNode::Memory);
  3247   if (!(mem->is_Proj() && mem->in(0) == this))
  3248     return FAIL;                // must not be preceded by other stores
  3249   Node* adr = st->in(MemNode::Address);
  3250   intptr_t offset;
  3251   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  3252   if (alloc == NULL)
  3253     return FAIL;                // inscrutable address
  3254   if (alloc != allocation())
  3255     return FAIL;                // wrong allocation!  (store needs to float up)
  3256   Node* val = st->in(MemNode::ValueIn);
  3257   int complexity_count = 0;
  3258   if (!detect_init_independence(val, complexity_count))
  3259     return FAIL;                // stored value must be 'simple enough'
  3261   // The Store can be captured only if nothing after the allocation
  3262   // and before the Store is using the memory location that the store
  3263   // overwrites.
  3264   bool failed = false;
  3265   // If is_complete_with_arraycopy() is true the shape of the graph is
  3266   // well defined and is safe so no need for extra checks.
  3267   if (!is_complete_with_arraycopy()) {
  3268     // We are going to look at each use of the memory state following
  3269     // the allocation to make sure nothing reads the memory that the
  3270     // Store writes.
  3271     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
  3272     int alias_idx = phase->C->get_alias_index(t_adr);
  3273     ResourceMark rm;
  3274     Unique_Node_List mems;
  3275     mems.push(mem);
  3276     Node* unique_merge = NULL;
  3277     for (uint next = 0; next < mems.size(); ++next) {
  3278       Node *m  = mems.at(next);
  3279       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  3280         Node *n = m->fast_out(j);
  3281         if (n->outcnt() == 0) {
  3282           continue;
  3284         if (n == st) {
  3285           continue;
  3286         } else if (n->in(0) != NULL && n->in(0) != ctl) {
  3287           // If the control of this use is different from the control
  3288           // of the Store which is right after the InitializeNode then
  3289           // this node cannot be between the InitializeNode and the
  3290           // Store.
  3291           continue;
  3292         } else if (n->is_MergeMem()) {
  3293           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
  3294             // We can hit a MergeMemNode (that will likely go away
  3295             // later) that is a direct use of the memory state
  3296             // following the InitializeNode on the same slice as the
  3297             // store node that we'd like to capture. We need to check
  3298             // the uses of the MergeMemNode.
  3299             mems.push(n);
  3301         } else if (n->is_Mem()) {
  3302           Node* other_adr = n->in(MemNode::Address);
  3303           if (other_adr == adr) {
  3304             failed = true;
  3305             break;
  3306           } else {
  3307             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
  3308             if (other_t_adr != NULL) {
  3309               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
  3310               if (other_alias_idx == alias_idx) {
  3311                 // A load from the same memory slice as the store right
  3312                 // after the InitializeNode. We check the control of the
  3313                 // object/array that is loaded from. If it's the same as
  3314                 // the store control then we cannot capture the store.
  3315                 assert(!n->is_Store(), "2 stores to same slice on same control?");
  3316                 Node* base = other_adr;
  3317                 assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
  3318                 base = base->in(AddPNode::Base);
  3319                 if (base != NULL) {
  3320                   base = base->uncast();
  3321                   if (base->is_Proj() && base->in(0) == alloc) {
  3322                     failed = true;
  3323                     break;
  3329         } else {
  3330           failed = true;
  3331           break;
  3336   if (failed) {
  3337     if (!can_reshape) {
  3338       // We decided we couldn't capture the store during parsing. We
  3339       // should try again during the next IGVN once the graph is
  3340       // cleaner.
  3341       phase->C->record_for_igvn(st);
  3343     return FAIL;
  3346   return offset;                // success
  3349 // Find the captured store in(i) which corresponds to the range
  3350 // [start..start+size) in the initialized object.
  3351 // If there is one, return its index i.  If there isn't, return the
  3352 // negative of the index where it should be inserted.
  3353 // Return 0 if the queried range overlaps an initialization boundary
  3354 // or if dead code is encountered.
  3355 // If size_in_bytes is zero, do not bother with overlap checks.
  3356 int InitializeNode::captured_store_insertion_point(intptr_t start,
  3357                                                    int size_in_bytes,
  3358                                                    PhaseTransform* phase) {
  3359   const int FAIL = 0, MAX_STORE = BytesPerLong;
  3361   if (is_complete())
  3362     return FAIL;                // arraycopy got here first; punt
  3364   assert(allocation() != NULL, "must be present");
  3366   // no negatives, no header fields:
  3367   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  3369   // after a certain size, we bail out on tracking all the stores:
  3370   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3371   if (start >= ti_limit)  return FAIL;
  3373   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  3374     if (i >= limit)  return -(int)i; // not found; here is where to put it
  3376     Node*    st     = in(i);
  3377     intptr_t st_off = get_store_offset(st, phase);
  3378     if (st_off < 0) {
  3379       if (st != zero_memory()) {
  3380         return FAIL;            // bail out if there is dead garbage
  3382     } else if (st_off > start) {
  3383       // ...we are done, since stores are ordered
  3384       if (st_off < start + size_in_bytes) {
  3385         return FAIL;            // the next store overlaps
  3387       return -(int)i;           // not found; here is where to put it
  3388     } else if (st_off < start) {
  3389       if (size_in_bytes != 0 &&
  3390           start < st_off + MAX_STORE &&
  3391           start < st_off + st->as_Store()->memory_size()) {
  3392         return FAIL;            // the previous store overlaps
  3394     } else {
  3395       if (size_in_bytes != 0 &&
  3396           st->as_Store()->memory_size() != size_in_bytes) {
  3397         return FAIL;            // mismatched store size
  3399       return i;
  3402     ++i;
  3406 // Look for a captured store which initializes at the offset 'start'
  3407 // with the given size.  If there is no such store, and no other
  3408 // initialization interferes, then return zero_memory (the memory
  3409 // projection of the AllocateNode).
  3410 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  3411                                           PhaseTransform* phase) {
  3412   assert(stores_are_sane(phase), "");
  3413   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3414   if (i == 0) {
  3415     return NULL;                // something is dead
  3416   } else if (i < 0) {
  3417     return zero_memory();       // just primordial zero bits here
  3418   } else {
  3419     Node* st = in(i);           // here is the store at this position
  3420     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  3421     return st;
  3425 // Create, as a raw pointer, an address within my new object at 'offset'.
  3426 Node* InitializeNode::make_raw_address(intptr_t offset,
  3427                                        PhaseTransform* phase) {
  3428   Node* addr = in(RawAddress);
  3429   if (offset != 0) {
  3430     Compile* C = phase->C;
  3431     addr = phase->transform( new (C) AddPNode(C->top(), addr,
  3432                                                  phase->MakeConX(offset)) );
  3434   return addr;
  3437 // Clone the given store, converting it into a raw store
  3438 // initializing a field or element of my new object.
  3439 // Caller is responsible for retiring the original store,
  3440 // with subsume_node or the like.
  3441 //
  3442 // From the example above InitializeNode::InitializeNode,
  3443 // here are the old stores to be captured:
  3444 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  3445 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  3446 //
  3447 // Here is the changed code; note the extra edges on init:
  3448 //   alloc = (Allocate ...)
  3449 //   rawoop = alloc.RawAddress
  3450 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  3451 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  3452 //   init = (Initialize alloc.Control alloc.Memory rawoop
  3453 //                      rawstore1 rawstore2)
  3454 //
  3455 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  3456                                     PhaseTransform* phase, bool can_reshape) {
  3457   assert(stores_are_sane(phase), "");
  3459   if (start < 0)  return NULL;
  3460   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
  3462   Compile* C = phase->C;
  3463   int size_in_bytes = st->memory_size();
  3464   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3465   if (i == 0)  return NULL;     // bail out
  3466   Node* prev_mem = NULL;        // raw memory for the captured store
  3467   if (i > 0) {
  3468     prev_mem = in(i);           // there is a pre-existing store under this one
  3469     set_req(i, C->top());       // temporarily disconnect it
  3470     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  3471   } else {
  3472     i = -i;                     // no pre-existing store
  3473     prev_mem = zero_memory();   // a slice of the newly allocated object
  3474     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  3475       set_req(--i, C->top());   // reuse this edge; it has been folded away
  3476     else
  3477       ins_req(i, C->top());     // build a new edge
  3479   Node* new_st = st->clone();
  3480   new_st->set_req(MemNode::Control, in(Control));
  3481   new_st->set_req(MemNode::Memory,  prev_mem);
  3482   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  3483   new_st = phase->transform(new_st);
  3485   // At this point, new_st might have swallowed a pre-existing store
  3486   // at the same offset, or perhaps new_st might have disappeared,
  3487   // if it redundantly stored the same value (or zero to fresh memory).
  3489   // In any case, wire it in:
  3490   set_req(i, new_st);
  3492   // The caller may now kill the old guy.
  3493   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  3494   assert(check_st == new_st || check_st == NULL, "must be findable");
  3495   assert(!is_complete(), "");
  3496   return new_st;
  3499 static bool store_constant(jlong* tiles, int num_tiles,
  3500                            intptr_t st_off, int st_size,
  3501                            jlong con) {
  3502   if ((st_off & (st_size-1)) != 0)
  3503     return false;               // strange store offset (assume size==2**N)
  3504   address addr = (address)tiles + st_off;
  3505   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  3506   switch (st_size) {
  3507   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  3508   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  3509   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  3510   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  3511   default: return false;        // strange store size (detect size!=2**N here)
  3513   return true;                  // return success to caller
  3516 // Coalesce subword constants into int constants and possibly
  3517 // into long constants.  The goal, if the CPU permits,
  3518 // is to initialize the object with a small number of 64-bit tiles.
  3519 // Also, convert floating-point constants to bit patterns.
  3520 // Non-constants are not relevant to this pass.
  3521 //
  3522 // In terms of the running example on InitializeNode::InitializeNode
  3523 // and InitializeNode::capture_store, here is the transformation
  3524 // of rawstore1 and rawstore2 into rawstore12:
  3525 //   alloc = (Allocate ...)
  3526 //   rawoop = alloc.RawAddress
  3527 //   tile12 = 0x00010002
  3528 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  3529 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  3530 //
  3531 void
  3532 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  3533                                         Node* size_in_bytes,
  3534                                         PhaseGVN* phase) {
  3535   Compile* C = phase->C;
  3537   assert(stores_are_sane(phase), "");
  3538   // Note:  After this pass, they are not completely sane,
  3539   // since there may be some overlaps.
  3541   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  3543   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3544   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  3545   size_limit = MIN2(size_limit, ti_limit);
  3546   size_limit = align_size_up(size_limit, BytesPerLong);
  3547   int num_tiles = size_limit / BytesPerLong;
  3549   // allocate space for the tile map:
  3550   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  3551   jlong  tiles_buf[small_len];
  3552   Node*  nodes_buf[small_len];
  3553   jlong  inits_buf[small_len];
  3554   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  3555                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3556   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  3557                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  3558   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  3559                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3560   // tiles: exact bitwise model of all primitive constants
  3561   // nodes: last constant-storing node subsumed into the tiles model
  3562   // inits: which bytes (in each tile) are touched by any initializations
  3564   //// Pass A: Fill in the tile model with any relevant stores.
  3566   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  3567   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  3568   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  3569   Node* zmem = zero_memory(); // initially zero memory state
  3570   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3571     Node* st = in(i);
  3572     intptr_t st_off = get_store_offset(st, phase);
  3574     // Figure out the store's offset and constant value:
  3575     if (st_off < header_size)             continue; //skip (ignore header)
  3576     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  3577     int st_size = st->as_Store()->memory_size();
  3578     if (st_off + st_size > size_limit)    break;
  3580     // Record which bytes are touched, whether by constant or not.
  3581     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  3582       continue;                 // skip (strange store size)
  3584     const Type* val = phase->type(st->in(MemNode::ValueIn));
  3585     if (!val->singleton())                continue; //skip (non-con store)
  3586     BasicType type = val->basic_type();
  3588     jlong con = 0;
  3589     switch (type) {
  3590     case T_INT:    con = val->is_int()->get_con();  break;
  3591     case T_LONG:   con = val->is_long()->get_con(); break;
  3592     case T_FLOAT:  con = jint_cast(val->getf());    break;
  3593     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  3594     default:                              continue; //skip (odd store type)
  3597     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  3598         st->Opcode() == Op_StoreL) {
  3599       continue;                 // This StoreL is already optimal.
  3602     // Store down the constant.
  3603     store_constant(tiles, num_tiles, st_off, st_size, con);
  3605     intptr_t j = st_off >> LogBytesPerLong;
  3607     if (type == T_INT && st_size == BytesPerInt
  3608         && (st_off & BytesPerInt) == BytesPerInt) {
  3609       jlong lcon = tiles[j];
  3610       if (!Matcher::isSimpleConstant64(lcon) &&
  3611           st->Opcode() == Op_StoreI) {
  3612         // This StoreI is already optimal by itself.
  3613         jint* intcon = (jint*) &tiles[j];
  3614         intcon[1] = 0;  // undo the store_constant()
  3616         // If the previous store is also optimal by itself, back up and
  3617         // undo the action of the previous loop iteration... if we can.
  3618         // But if we can't, just let the previous half take care of itself.
  3619         st = nodes[j];
  3620         st_off -= BytesPerInt;
  3621         con = intcon[0];
  3622         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  3623           assert(st_off >= header_size, "still ignoring header");
  3624           assert(get_store_offset(st, phase) == st_off, "must be");
  3625           assert(in(i-1) == zmem, "must be");
  3626           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  3627           assert(con == tcon->is_int()->get_con(), "must be");
  3628           // Undo the effects of the previous loop trip, which swallowed st:
  3629           intcon[0] = 0;        // undo store_constant()
  3630           set_req(i-1, st);     // undo set_req(i, zmem)
  3631           nodes[j] = NULL;      // undo nodes[j] = st
  3632           --old_subword;        // undo ++old_subword
  3634         continue;               // This StoreI is already optimal.
  3638     // This store is not needed.
  3639     set_req(i, zmem);
  3640     nodes[j] = st;              // record for the moment
  3641     if (st_size < BytesPerLong) // something has changed
  3642           ++old_subword;        // includes int/float, but who's counting...
  3643     else  ++old_long;
  3646   if ((old_subword + old_long) == 0)
  3647     return;                     // nothing more to do
  3649   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  3650   // Be sure to insert them before overlapping non-constant stores.
  3651   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  3652   for (int j = 0; j < num_tiles; j++) {
  3653     jlong con  = tiles[j];
  3654     jlong init = inits[j];
  3655     if (con == 0)  continue;
  3656     jint con0,  con1;           // split the constant, address-wise
  3657     jint init0, init1;          // split the init map, address-wise
  3658     { union { jlong con; jint intcon[2]; } u;
  3659       u.con = con;
  3660       con0  = u.intcon[0];
  3661       con1  = u.intcon[1];
  3662       u.con = init;
  3663       init0 = u.intcon[0];
  3664       init1 = u.intcon[1];
  3667     Node* old = nodes[j];
  3668     assert(old != NULL, "need the prior store");
  3669     intptr_t offset = (j * BytesPerLong);
  3671     bool split = !Matcher::isSimpleConstant64(con);
  3673     if (offset < header_size) {
  3674       assert(offset + BytesPerInt >= header_size, "second int counts");
  3675       assert(*(jint*)&tiles[j] == 0, "junk in header");
  3676       split = true;             // only the second word counts
  3677       // Example:  int a[] = { 42 ... }
  3678     } else if (con0 == 0 && init0 == -1) {
  3679       split = true;             // first word is covered by full inits
  3680       // Example:  int a[] = { ... foo(), 42 ... }
  3681     } else if (con1 == 0 && init1 == -1) {
  3682       split = true;             // second word is covered by full inits
  3683       // Example:  int a[] = { ... 42, foo() ... }
  3686     // Here's a case where init0 is neither 0 nor -1:
  3687     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  3688     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  3689     // In this case the tile is not split; it is (jlong)42.
  3690     // The big tile is stored down, and then the foo() value is inserted.
  3691     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  3693     Node* ctl = old->in(MemNode::Control);
  3694     Node* adr = make_raw_address(offset, phase);
  3695     const TypePtr* atp = TypeRawPtr::BOTTOM;
  3697     // One or two coalesced stores to plop down.
  3698     Node*    st[2];
  3699     intptr_t off[2];
  3700     int  nst = 0;
  3701     if (!split) {
  3702       ++new_long;
  3703       off[nst] = offset;
  3704       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3705                                   phase->longcon(con), T_LONG);
  3706     } else {
  3707       // Omit either if it is a zero.
  3708       if (con0 != 0) {
  3709         ++new_int;
  3710         off[nst]  = offset;
  3711         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3712                                     phase->intcon(con0), T_INT);
  3714       if (con1 != 0) {
  3715         ++new_int;
  3716         offset += BytesPerInt;
  3717         adr = make_raw_address(offset, phase);
  3718         off[nst]  = offset;
  3719         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3720                                     phase->intcon(con1), T_INT);
  3724     // Insert second store first, then the first before the second.
  3725     // Insert each one just before any overlapping non-constant stores.
  3726     while (nst > 0) {
  3727       Node* st1 = st[--nst];
  3728       C->copy_node_notes_to(st1, old);
  3729       st1 = phase->transform(st1);
  3730       offset = off[nst];
  3731       assert(offset >= header_size, "do not smash header");
  3732       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  3733       guarantee(ins_idx != 0, "must re-insert constant store");
  3734       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  3735       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  3736         set_req(--ins_idx, st1);
  3737       else
  3738         ins_req(ins_idx, st1);
  3742   if (PrintCompilation && WizardMode)
  3743     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  3744                   old_subword, old_long, new_int, new_long);
  3745   if (C->log() != NULL)
  3746     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  3747                    old_subword, old_long, new_int, new_long);
  3749   // Clean up any remaining occurrences of zmem:
  3750   remove_extra_zeroes();
  3753 // Explore forward from in(start) to find the first fully initialized
  3754 // word, and return its offset.  Skip groups of subword stores which
  3755 // together initialize full words.  If in(start) is itself part of a
  3756 // fully initialized word, return the offset of in(start).  If there
  3757 // are no following full-word stores, or if something is fishy, return
  3758 // a negative value.
  3759 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  3760   int       int_map = 0;
  3761   intptr_t  int_map_off = 0;
  3762   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  3764   for (uint i = start, limit = req(); i < limit; i++) {
  3765     Node* st = in(i);
  3767     intptr_t st_off = get_store_offset(st, phase);
  3768     if (st_off < 0)  break;  // return conservative answer
  3770     int st_size = st->as_Store()->memory_size();
  3771     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  3772       return st_off;            // we found a complete word init
  3775     // update the map:
  3777     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  3778     if (this_int_off != int_map_off) {
  3779       // reset the map:
  3780       int_map = 0;
  3781       int_map_off = this_int_off;
  3784     int subword_off = st_off - this_int_off;
  3785     int_map |= right_n_bits(st_size) << subword_off;
  3786     if ((int_map & FULL_MAP) == FULL_MAP) {
  3787       return this_int_off;      // we found a complete word init
  3790     // Did this store hit or cross the word boundary?
  3791     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  3792     if (next_int_off == this_int_off + BytesPerInt) {
  3793       // We passed the current int, without fully initializing it.
  3794       int_map_off = next_int_off;
  3795       int_map >>= BytesPerInt;
  3796     } else if (next_int_off > this_int_off + BytesPerInt) {
  3797       // We passed the current and next int.
  3798       return this_int_off + BytesPerInt;
  3802   return -1;
  3806 // Called when the associated AllocateNode is expanded into CFG.
  3807 // At this point, we may perform additional optimizations.
  3808 // Linearize the stores by ascending offset, to make memory
  3809 // activity as coherent as possible.
  3810 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3811                                       intptr_t header_size,
  3812                                       Node* size_in_bytes,
  3813                                       PhaseGVN* phase) {
  3814   assert(!is_complete(), "not already complete");
  3815   assert(stores_are_sane(phase), "");
  3816   assert(allocation() != NULL, "must be present");
  3818   remove_extra_zeroes();
  3820   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3821     // reduce instruction count for common initialization patterns
  3822     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3824   Node* zmem = zero_memory();   // initially zero memory state
  3825   Node* inits = zmem;           // accumulating a linearized chain of inits
  3826   #ifdef ASSERT
  3827   intptr_t first_offset = allocation()->minimum_header_size();
  3828   intptr_t last_init_off = first_offset;  // previous init offset
  3829   intptr_t last_init_end = first_offset;  // previous init offset+size
  3830   intptr_t last_tile_end = first_offset;  // previous tile offset+size
  3831   #endif
  3832   intptr_t zeroes_done = header_size;
  3834   bool do_zeroing = true;       // we might give up if inits are very sparse
  3835   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3837   if (ZeroTLAB)  do_zeroing = false;
  3838   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3840   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3841     Node* st = in(i);
  3842     intptr_t st_off = get_store_offset(st, phase);
  3843     if (st_off < 0)
  3844       break;                    // unknown junk in the inits
  3845     if (st->in(MemNode::Memory) != zmem)
  3846       break;                    // complicated store chains somehow in list
  3848     int st_size = st->as_Store()->memory_size();
  3849     intptr_t next_init_off = st_off + st_size;
  3851     if (do_zeroing && zeroes_done < next_init_off) {
  3852       // See if this store needs a zero before it or under it.
  3853       intptr_t zeroes_needed = st_off;
  3855       if (st_size < BytesPerInt) {
  3856         // Look for subword stores which only partially initialize words.
  3857         // If we find some, we must lay down some word-level zeroes first,
  3858         // underneath the subword stores.
  3859         //
  3860         // Examples:
  3861         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3862         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3863         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3864         //
  3865         // Note:  coalesce_subword_stores may have already done this,
  3866         // if it was prompted by constant non-zero subword initializers.
  3867         // But this case can still arise with non-constant stores.
  3869         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3871         // In the examples above:
  3872         //   in(i)          p   q   r   s     x   y     z
  3873         //   st_off        12  13  14  15    12  13    14
  3874         //   st_size        1   1   1   1     1   1     1
  3875         //   next_full_s.  12  16  16  16    16  16    16
  3876         //   z's_done      12  16  16  16    12  16    12
  3877         //   z's_needed    12  16  16  16    16  16    16
  3878         //   zsize          0   0   0   0     4   0     4
  3879         if (next_full_store < 0) {
  3880           // Conservative tack:  Zero to end of current word.
  3881           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3882         } else {
  3883           // Zero to beginning of next fully initialized word.
  3884           // Or, don't zero at all, if we are already in that word.
  3885           assert(next_full_store >= zeroes_needed, "must go forward");
  3886           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3887           zeroes_needed = next_full_store;
  3891       if (zeroes_needed > zeroes_done) {
  3892         intptr_t zsize = zeroes_needed - zeroes_done;
  3893         // Do some incremental zeroing on rawmem, in parallel with inits.
  3894         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3895         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3896                                               zeroes_done, zeroes_needed,
  3897                                               phase);
  3898         zeroes_done = zeroes_needed;
  3899         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3900           do_zeroing = false;   // leave the hole, next time
  3904     // Collect the store and move on:
  3905     st->set_req(MemNode::Memory, inits);
  3906     inits = st;                 // put it on the linearized chain
  3907     set_req(i, zmem);           // unhook from previous position
  3909     if (zeroes_done == st_off)
  3910       zeroes_done = next_init_off;
  3912     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3914     #ifdef ASSERT
  3915     // Various order invariants.  Weaker than stores_are_sane because
  3916     // a large constant tile can be filled in by smaller non-constant stores.
  3917     assert(st_off >= last_init_off, "inits do not reverse");
  3918     last_init_off = st_off;
  3919     const Type* val = NULL;
  3920     if (st_size >= BytesPerInt &&
  3921         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3922         (int)val->basic_type() < (int)T_OBJECT) {
  3923       assert(st_off >= last_tile_end, "tiles do not overlap");
  3924       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3925       last_tile_end = MAX2(last_tile_end, next_init_off);
  3926     } else {
  3927       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  3928       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  3929       assert(st_off      >= last_init_end, "inits do not overlap");
  3930       last_init_end = next_init_off;  // it's a non-tile
  3932     #endif //ASSERT
  3935   remove_extra_zeroes();        // clear out all the zmems left over
  3936   add_req(inits);
  3938   if (!ZeroTLAB) {
  3939     // If anything remains to be zeroed, zero it all now.
  3940     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3941     // if it is the last unused 4 bytes of an instance, forget about it
  3942     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  3943     if (zeroes_done + BytesPerLong >= size_limit) {
  3944       assert(allocation() != NULL, "");
  3945       if (allocation()->Opcode() == Op_Allocate) {
  3946         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  3947         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  3948         if (zeroes_done == k->layout_helper())
  3949           zeroes_done = size_limit;
  3952     if (zeroes_done < size_limit) {
  3953       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3954                                             zeroes_done, size_in_bytes, phase);
  3958   set_complete(phase);
  3959   return rawmem;
  3963 #ifdef ASSERT
  3964 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  3965   if (is_complete())
  3966     return true;                // stores could be anything at this point
  3967   assert(allocation() != NULL, "must be present");
  3968   intptr_t last_off = allocation()->minimum_header_size();
  3969   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  3970     Node* st = in(i);
  3971     intptr_t st_off = get_store_offset(st, phase);
  3972     if (st_off < 0)  continue;  // ignore dead garbage
  3973     if (last_off > st_off) {
  3974       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  3975       this->dump(2);
  3976       assert(false, "ascending store offsets");
  3977       return false;
  3979     last_off = st_off + st->as_Store()->memory_size();
  3981   return true;
  3983 #endif //ASSERT
  3988 //============================MergeMemNode=====================================
  3989 //
  3990 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  3991 // contributing store or call operations.  Each contributor provides the memory
  3992 // state for a particular "alias type" (see Compile::alias_type).  For example,
  3993 // if a MergeMem has an input X for alias category #6, then any memory reference
  3994 // to alias category #6 may use X as its memory state input, as an exact equivalent
  3995 // to using the MergeMem as a whole.
  3996 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  3997 //
  3998 // (Here, the <N> notation gives the index of the relevant adr_type.)
  3999 //
  4000 // In one special case (and more cases in the future), alias categories overlap.
  4001 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  4002 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  4003 // it is exactly equivalent to that state W:
  4004 //   MergeMem(<Bot>: W) <==> W
  4005 //
  4006 // Usually, the merge has more than one input.  In that case, where inputs
  4007 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  4008 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  4009 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  4010 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  4011 //
  4012 // A merge can take a "wide" memory state as one of its narrow inputs.
  4013 // This simply means that the merge observes out only the relevant parts of
  4014 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  4015 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  4016 //
  4017 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  4018 // and that memory slices "leak through":
  4019 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  4020 //
  4021 // But, in such a cascade, repeated memory slices can "block the leak":
  4022 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  4023 //
  4024 // In the last example, Y is not part of the combined memory state of the
  4025 // outermost MergeMem.  The system must, of course, prevent unschedulable
  4026 // memory states from arising, so you can be sure that the state Y is somehow
  4027 // a precursor to state Y'.
  4028 //
  4029 //
  4030 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  4031 // of each MergeMemNode array are exactly the numerical alias indexes, including
  4032 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  4033 // Compile::alias_type (and kin) produce and manage these indexes.
  4034 //
  4035 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  4036 // (Note that this provides quick access to the top node inside MergeMem methods,
  4037 // without the need to reach out via TLS to Compile::current.)
  4038 //
  4039 // As a consequence of what was just described, a MergeMem that represents a full
  4040 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  4041 // containing all alias categories.
  4042 //
  4043 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  4044 //
  4045 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  4046 // a memory state for the alias type <N>, or else the top node, meaning that
  4047 // there is no particular input for that alias type.  Note that the length of
  4048 // a MergeMem is variable, and may be extended at any time to accommodate new
  4049 // memory states at larger alias indexes.  When merges grow, they are of course
  4050 // filled with "top" in the unused in() positions.
  4051 //
  4052 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  4053 // (Top was chosen because it works smoothly with passes like GCM.)
  4054 //
  4055 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  4056 // the type of random VM bits like TLS references.)  Since it is always the
  4057 // first non-Bot memory slice, some low-level loops use it to initialize an
  4058 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  4059 //
  4060 //
  4061 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  4062 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  4063 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  4064 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  4065 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  4066 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  4067 //
  4068 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  4069 // really that different from the other memory inputs.  An abbreviation called
  4070 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  4071 //
  4072 //
  4073 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  4074 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  4075 // that "emerges though" the base memory will be marked as excluding the alias types
  4076 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  4077 //
  4078 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  4079 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  4080 //
  4081 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  4082 // (It is currently unimplemented.)  As you can see, the resulting merge is
  4083 // actually a disjoint union of memory states, rather than an overlay.
  4084 //
  4086 //------------------------------MergeMemNode-----------------------------------
  4087 Node* MergeMemNode::make_empty_memory() {
  4088   Node* empty_memory = (Node*) Compile::current()->top();
  4089   assert(empty_memory->is_top(), "correct sentinel identity");
  4090   return empty_memory;
  4093 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  4094   init_class_id(Class_MergeMem);
  4095   // all inputs are nullified in Node::Node(int)
  4096   // set_input(0, NULL);  // no control input
  4098   // Initialize the edges uniformly to top, for starters.
  4099   Node* empty_mem = make_empty_memory();
  4100   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  4101     init_req(i,empty_mem);
  4103   assert(empty_memory() == empty_mem, "");
  4105   if( new_base != NULL && new_base->is_MergeMem() ) {
  4106     MergeMemNode* mdef = new_base->as_MergeMem();
  4107     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  4108     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  4109       mms.set_memory(mms.memory2());
  4111     assert(base_memory() == mdef->base_memory(), "");
  4112   } else {
  4113     set_base_memory(new_base);
  4117 // Make a new, untransformed MergeMem with the same base as 'mem'.
  4118 // If mem is itself a MergeMem, populate the result with the same edges.
  4119 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  4120   return new(C) MergeMemNode(mem);
  4123 //------------------------------cmp--------------------------------------------
  4124 uint MergeMemNode::hash() const { return NO_HASH; }
  4125 uint MergeMemNode::cmp( const Node &n ) const {
  4126   return (&n == this);          // Always fail except on self
  4129 //------------------------------Identity---------------------------------------
  4130 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  4131   // Identity if this merge point does not record any interesting memory
  4132   // disambiguations.
  4133   Node* base_mem = base_memory();
  4134   Node* empty_mem = empty_memory();
  4135   if (base_mem != empty_mem) {  // Memory path is not dead?
  4136     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4137       Node* mem = in(i);
  4138       if (mem != empty_mem && mem != base_mem) {
  4139         return this;            // Many memory splits; no change
  4143   return base_mem;              // No memory splits; ID on the one true input
  4146 //------------------------------Ideal------------------------------------------
  4147 // This method is invoked recursively on chains of MergeMem nodes
  4148 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  4149   // Remove chain'd MergeMems
  4150   //
  4151   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  4152   // relative to the "in(Bot)".  Since we are patching both at the same time,
  4153   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  4154   // but rewrite each "in(i)" relative to the new "in(Bot)".
  4155   Node *progress = NULL;
  4158   Node* old_base = base_memory();
  4159   Node* empty_mem = empty_memory();
  4160   if (old_base == empty_mem)
  4161     return NULL; // Dead memory path.
  4163   MergeMemNode* old_mbase;
  4164   if (old_base != NULL && old_base->is_MergeMem())
  4165     old_mbase = old_base->as_MergeMem();
  4166   else
  4167     old_mbase = NULL;
  4168   Node* new_base = old_base;
  4170   // simplify stacked MergeMems in base memory
  4171   if (old_mbase)  new_base = old_mbase->base_memory();
  4173   // the base memory might contribute new slices beyond my req()
  4174   if (old_mbase)  grow_to_match(old_mbase);
  4176   // Look carefully at the base node if it is a phi.
  4177   PhiNode* phi_base;
  4178   if (new_base != NULL && new_base->is_Phi())
  4179     phi_base = new_base->as_Phi();
  4180   else
  4181     phi_base = NULL;
  4183   Node*    phi_reg = NULL;
  4184   uint     phi_len = (uint)-1;
  4185   if (phi_base != NULL && !phi_base->is_copy()) {
  4186     // do not examine phi if degraded to a copy
  4187     phi_reg = phi_base->region();
  4188     phi_len = phi_base->req();
  4189     // see if the phi is unfinished
  4190     for (uint i = 1; i < phi_len; i++) {
  4191       if (phi_base->in(i) == NULL) {
  4192         // incomplete phi; do not look at it yet!
  4193         phi_reg = NULL;
  4194         phi_len = (uint)-1;
  4195         break;
  4200   // Note:  We do not call verify_sparse on entry, because inputs
  4201   // can normalize to the base_memory via subsume_node or similar
  4202   // mechanisms.  This method repairs that damage.
  4204   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  4206   // Look at each slice.
  4207   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4208     Node* old_in = in(i);
  4209     // calculate the old memory value
  4210     Node* old_mem = old_in;
  4211     if (old_mem == empty_mem)  old_mem = old_base;
  4212     assert(old_mem == memory_at(i), "");
  4214     // maybe update (reslice) the old memory value
  4216     // simplify stacked MergeMems
  4217     Node* new_mem = old_mem;
  4218     MergeMemNode* old_mmem;
  4219     if (old_mem != NULL && old_mem->is_MergeMem())
  4220       old_mmem = old_mem->as_MergeMem();
  4221     else
  4222       old_mmem = NULL;
  4223     if (old_mmem == this) {
  4224       // This can happen if loops break up and safepoints disappear.
  4225       // A merge of BotPtr (default) with a RawPtr memory derived from a
  4226       // safepoint can be rewritten to a merge of the same BotPtr with
  4227       // the BotPtr phi coming into the loop.  If that phi disappears
  4228       // also, we can end up with a self-loop of the mergemem.
  4229       // In general, if loops degenerate and memory effects disappear,
  4230       // a mergemem can be left looking at itself.  This simply means
  4231       // that the mergemem's default should be used, since there is
  4232       // no longer any apparent effect on this slice.
  4233       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  4234       //       from start.  Update the input to TOP.
  4235       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  4237     else if (old_mmem != NULL) {
  4238       new_mem = old_mmem->memory_at(i);
  4240     // else preceding memory was not a MergeMem
  4242     // replace equivalent phis (unfortunately, they do not GVN together)
  4243     if (new_mem != NULL && new_mem != new_base &&
  4244         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  4245       if (new_mem->is_Phi()) {
  4246         PhiNode* phi_mem = new_mem->as_Phi();
  4247         for (uint i = 1; i < phi_len; i++) {
  4248           if (phi_base->in(i) != phi_mem->in(i)) {
  4249             phi_mem = NULL;
  4250             break;
  4253         if (phi_mem != NULL) {
  4254           // equivalent phi nodes; revert to the def
  4255           new_mem = new_base;
  4260     // maybe store down a new value
  4261     Node* new_in = new_mem;
  4262     if (new_in == new_base)  new_in = empty_mem;
  4264     if (new_in != old_in) {
  4265       // Warning:  Do not combine this "if" with the previous "if"
  4266       // A memory slice might have be be rewritten even if it is semantically
  4267       // unchanged, if the base_memory value has changed.
  4268       set_req(i, new_in);
  4269       progress = this;          // Report progress
  4273   if (new_base != old_base) {
  4274     set_req(Compile::AliasIdxBot, new_base);
  4275     // Don't use set_base_memory(new_base), because we need to update du.
  4276     assert(base_memory() == new_base, "");
  4277     progress = this;
  4280   if( base_memory() == this ) {
  4281     // a self cycle indicates this memory path is dead
  4282     set_req(Compile::AliasIdxBot, empty_mem);
  4285   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  4286   // Recursion must occur after the self cycle check above
  4287   if( base_memory()->is_MergeMem() ) {
  4288     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  4289     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  4290     if( m != NULL && (m->is_top() ||
  4291         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  4292       // propagate rollup of dead cycle to self
  4293       set_req(Compile::AliasIdxBot, empty_mem);
  4297   if( base_memory() == empty_mem ) {
  4298     progress = this;
  4299     // Cut inputs during Parse phase only.
  4300     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  4301     if( !can_reshape ) {
  4302       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4303         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  4308   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  4309     // Check if PhiNode::Ideal's "Split phis through memory merges"
  4310     // transform should be attempted. Look for this->phi->this cycle.
  4311     uint merge_width = req();
  4312     if (merge_width > Compile::AliasIdxRaw) {
  4313       PhiNode* phi = base_memory()->as_Phi();
  4314       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  4315         if (phi->in(i) == this) {
  4316           phase->is_IterGVN()->_worklist.push(phi);
  4317           break;
  4323   assert(progress || verify_sparse(), "please, no dups of base");
  4324   return progress;
  4327 //-------------------------set_base_memory-------------------------------------
  4328 void MergeMemNode::set_base_memory(Node *new_base) {
  4329   Node* empty_mem = empty_memory();
  4330   set_req(Compile::AliasIdxBot, new_base);
  4331   assert(memory_at(req()) == new_base, "must set default memory");
  4332   // Clear out other occurrences of new_base:
  4333   if (new_base != empty_mem) {
  4334     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4335       if (in(i) == new_base)  set_req(i, empty_mem);
  4340 //------------------------------out_RegMask------------------------------------
  4341 const RegMask &MergeMemNode::out_RegMask() const {
  4342   return RegMask::Empty;
  4345 //------------------------------dump_spec--------------------------------------
  4346 #ifndef PRODUCT
  4347 void MergeMemNode::dump_spec(outputStream *st) const {
  4348   st->print(" {");
  4349   Node* base_mem = base_memory();
  4350   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  4351     Node* mem = memory_at(i);
  4352     if (mem == base_mem) { st->print(" -"); continue; }
  4353     st->print( " N%d:", mem->_idx );
  4354     Compile::current()->get_adr_type(i)->dump_on(st);
  4356   st->print(" }");
  4358 #endif // !PRODUCT
  4361 #ifdef ASSERT
  4362 static bool might_be_same(Node* a, Node* b) {
  4363   if (a == b)  return true;
  4364   if (!(a->is_Phi() || b->is_Phi()))  return false;
  4365   // phis shift around during optimization
  4366   return true;  // pretty stupid...
  4369 // verify a narrow slice (either incoming or outgoing)
  4370 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  4371   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  4372   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  4373   if (Node::in_dump())      return;  // muzzle asserts when printing
  4374   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  4375   assert(n != NULL, "");
  4376   // Elide intervening MergeMem's
  4377   while (n->is_MergeMem()) {
  4378     n = n->as_MergeMem()->memory_at(alias_idx);
  4380   Compile* C = Compile::current();
  4381   const TypePtr* n_adr_type = n->adr_type();
  4382   if (n == m->empty_memory()) {
  4383     // Implicit copy of base_memory()
  4384   } else if (n_adr_type != TypePtr::BOTTOM) {
  4385     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  4386     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  4387   } else {
  4388     // A few places like make_runtime_call "know" that VM calls are narrow,
  4389     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  4390     bool expected_wide_mem = false;
  4391     if (n == m->base_memory()) {
  4392       expected_wide_mem = true;
  4393     } else if (alias_idx == Compile::AliasIdxRaw ||
  4394                n == m->memory_at(Compile::AliasIdxRaw)) {
  4395       expected_wide_mem = true;
  4396     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  4397       // memory can "leak through" calls on channels that
  4398       // are write-once.  Allow this also.
  4399       expected_wide_mem = true;
  4401     assert(expected_wide_mem, "expected narrow slice replacement");
  4404 #else // !ASSERT
  4405 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
  4406 #endif
  4409 //-----------------------------memory_at---------------------------------------
  4410 Node* MergeMemNode::memory_at(uint alias_idx) const {
  4411   assert(alias_idx >= Compile::AliasIdxRaw ||
  4412          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  4413          "must avoid base_memory and AliasIdxTop");
  4415   // Otherwise, it is a narrow slice.
  4416   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  4417   Compile *C = Compile::current();
  4418   if (is_empty_memory(n)) {
  4419     // the array is sparse; empty slots are the "top" node
  4420     n = base_memory();
  4421     assert(Node::in_dump()
  4422            || n == NULL || n->bottom_type() == Type::TOP
  4423            || n->adr_type() == NULL // address is TOP
  4424            || n->adr_type() == TypePtr::BOTTOM
  4425            || n->adr_type() == TypeRawPtr::BOTTOM
  4426            || Compile::current()->AliasLevel() == 0,
  4427            "must be a wide memory");
  4428     // AliasLevel == 0 if we are organizing the memory states manually.
  4429     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  4430   } else {
  4431     // make sure the stored slice is sane
  4432     #ifdef ASSERT
  4433     if (is_error_reported() || Node::in_dump()) {
  4434     } else if (might_be_same(n, base_memory())) {
  4435       // Give it a pass:  It is a mostly harmless repetition of the base.
  4436       // This can arise normally from node subsumption during optimization.
  4437     } else {
  4438       verify_memory_slice(this, alias_idx, n);
  4440     #endif
  4442   return n;
  4445 //---------------------------set_memory_at-------------------------------------
  4446 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  4447   verify_memory_slice(this, alias_idx, n);
  4448   Node* empty_mem = empty_memory();
  4449   if (n == base_memory())  n = empty_mem;  // collapse default
  4450   uint need_req = alias_idx+1;
  4451   if (req() < need_req) {
  4452     if (n == empty_mem)  return;  // already the default, so do not grow me
  4453     // grow the sparse array
  4454     do {
  4455       add_req(empty_mem);
  4456     } while (req() < need_req);
  4458   set_req( alias_idx, n );
  4463 //--------------------------iteration_setup------------------------------------
  4464 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  4465   if (other != NULL) {
  4466     grow_to_match(other);
  4467     // invariant:  the finite support of mm2 is within mm->req()
  4468     #ifdef ASSERT
  4469     for (uint i = req(); i < other->req(); i++) {
  4470       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  4472     #endif
  4474   // Replace spurious copies of base_memory by top.
  4475   Node* base_mem = base_memory();
  4476   if (base_mem != NULL && !base_mem->is_top()) {
  4477     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  4478       if (in(i) == base_mem)
  4479         set_req(i, empty_memory());
  4484 //---------------------------grow_to_match-------------------------------------
  4485 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  4486   Node* empty_mem = empty_memory();
  4487   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  4488   // look for the finite support of the other memory
  4489   for (uint i = other->req(); --i >= req(); ) {
  4490     if (other->in(i) != empty_mem) {
  4491       uint new_len = i+1;
  4492       while (req() < new_len)  add_req(empty_mem);
  4493       break;
  4498 //---------------------------verify_sparse-------------------------------------
  4499 #ifndef PRODUCT
  4500 bool MergeMemNode::verify_sparse() const {
  4501   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  4502   Node* base_mem = base_memory();
  4503   // The following can happen in degenerate cases, since empty==top.
  4504   if (is_empty_memory(base_mem))  return true;
  4505   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4506     assert(in(i) != NULL, "sane slice");
  4507     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  4509   return true;
  4512 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  4513   Node* n;
  4514   n = mm->in(idx);
  4515   if (mem == n)  return true;  // might be empty_memory()
  4516   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  4517   if (mem == n)  return true;
  4518   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  4519     if (mem == n)  return true;
  4520     if (n == NULL)  break;
  4522   return false;
  4524 #endif // !PRODUCT

mercurial