src/cpu/x86/vm/c1_LIRGenerator_x86.cpp

Mon, 12 Aug 2013 17:37:02 +0200

author
ehelin
date
Mon, 12 Aug 2013 17:37:02 +0200
changeset 5694
7944aba7ba41
parent 5353
b800986664f4
child 6051
946a8294ab15
permissions
-rw-r--r--

8015107: NPG: Use consistent naming for metaspace concepts
Reviewed-by: coleenp, mgerdin, hseigel

     1 /*
     2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_Instruction.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_LIRGenerator.hpp"
    31 #include "c1/c1_Runtime1.hpp"
    32 #include "c1/c1_ValueStack.hpp"
    33 #include "ci/ciArray.hpp"
    34 #include "ci/ciObjArrayKlass.hpp"
    35 #include "ci/ciTypeArrayKlass.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #include "vmreg_x86.inline.hpp"
    40 #ifdef ASSERT
    41 #define __ gen()->lir(__FILE__, __LINE__)->
    42 #else
    43 #define __ gen()->lir()->
    44 #endif
    46 // Item will be loaded into a byte register; Intel only
    47 void LIRItem::load_byte_item() {
    48   load_item();
    49   LIR_Opr res = result();
    51   if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
    52     // make sure that it is a byte register
    53     assert(!value()->type()->is_float() && !value()->type()->is_double(),
    54            "can't load floats in byte register");
    55     LIR_Opr reg = _gen->rlock_byte(T_BYTE);
    56     __ move(res, reg);
    58     _result = reg;
    59   }
    60 }
    63 void LIRItem::load_nonconstant() {
    64   LIR_Opr r = value()->operand();
    65   if (r->is_constant()) {
    66     _result = r;
    67   } else {
    68     load_item();
    69   }
    70 }
    72 //--------------------------------------------------------------
    73 //               LIRGenerator
    74 //--------------------------------------------------------------
    77 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
    78 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
    79 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
    80 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
    81 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
    82 LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
    83 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
    84 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
    87 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
    88   LIR_Opr opr;
    89   switch (type->tag()) {
    90     case intTag:     opr = FrameMap::rax_opr;          break;
    91     case objectTag:  opr = FrameMap::rax_oop_opr;      break;
    92     case longTag:    opr = FrameMap::long0_opr;        break;
    93     case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
    94     case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
    96     case addressTag:
    97     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
    98   }
   100   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
   101   return opr;
   102 }
   105 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
   106   LIR_Opr reg = new_register(T_INT);
   107   set_vreg_flag(reg, LIRGenerator::byte_reg);
   108   return reg;
   109 }
   112 //--------- loading items into registers --------------------------------
   115 // i486 instructions can inline constants
   116 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
   117   if (type == T_SHORT || type == T_CHAR) {
   118     // there is no immediate move of word values in asembler_i486.?pp
   119     return false;
   120   }
   121   Constant* c = v->as_Constant();
   122   if (c && c->state_before() == NULL) {
   123     // constants of any type can be stored directly, except for
   124     // unloaded object constants.
   125     return true;
   126   }
   127   return false;
   128 }
   131 bool LIRGenerator::can_inline_as_constant(Value v) const {
   132   if (v->type()->tag() == longTag) return false;
   133   return v->type()->tag() != objectTag ||
   134     (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
   135 }
   138 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
   139   if (c->type() == T_LONG) return false;
   140   return c->type() != T_OBJECT || c->as_jobject() == NULL;
   141 }
   144 LIR_Opr LIRGenerator::safepoint_poll_register() {
   145   return LIR_OprFact::illegalOpr;
   146 }
   149 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
   150                                             int shift, int disp, BasicType type) {
   151   assert(base->is_register(), "must be");
   152   if (index->is_constant()) {
   153     return new LIR_Address(base,
   154                            (index->as_constant_ptr()->as_jint() << shift) + disp,
   155                            type);
   156   } else {
   157     return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
   158   }
   159 }
   162 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
   163                                               BasicType type, bool needs_card_mark) {
   164   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
   166   LIR_Address* addr;
   167   if (index_opr->is_constant()) {
   168     int elem_size = type2aelembytes(type);
   169     addr = new LIR_Address(array_opr,
   170                            offset_in_bytes + index_opr->as_jint() * elem_size, type);
   171   } else {
   172 #ifdef _LP64
   173     if (index_opr->type() == T_INT) {
   174       LIR_Opr tmp = new_register(T_LONG);
   175       __ convert(Bytecodes::_i2l, index_opr, tmp);
   176       index_opr = tmp;
   177     }
   178 #endif // _LP64
   179     addr =  new LIR_Address(array_opr,
   180                             index_opr,
   181                             LIR_Address::scale(type),
   182                             offset_in_bytes, type);
   183   }
   184   if (needs_card_mark) {
   185     // This store will need a precise card mark, so go ahead and
   186     // compute the full adddres instead of computing once for the
   187     // store and again for the card mark.
   188     LIR_Opr tmp = new_pointer_register();
   189     __ leal(LIR_OprFact::address(addr), tmp);
   190     return new LIR_Address(tmp, type);
   191   } else {
   192     return addr;
   193   }
   194 }
   197 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
   198   LIR_Opr r;
   199   if (type == T_LONG) {
   200     r = LIR_OprFact::longConst(x);
   201   } else if (type == T_INT) {
   202     r = LIR_OprFact::intConst(x);
   203   } else {
   204     ShouldNotReachHere();
   205   }
   206   return r;
   207 }
   209 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
   210   LIR_Opr pointer = new_pointer_register();
   211   __ move(LIR_OprFact::intptrConst(counter), pointer);
   212   LIR_Address* addr = new LIR_Address(pointer, type);
   213   increment_counter(addr, step);
   214 }
   217 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
   218   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
   219 }
   221 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
   222   __ cmp_mem_int(condition, base, disp, c, info);
   223 }
   226 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
   227   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
   228 }
   231 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
   232   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
   233 }
   236 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
   237   if (tmp->is_valid()) {
   238     if (is_power_of_2(c + 1)) {
   239       __ move(left, tmp);
   240       __ shift_left(left, log2_intptr(c + 1), left);
   241       __ sub(left, tmp, result);
   242       return true;
   243     } else if (is_power_of_2(c - 1)) {
   244       __ move(left, tmp);
   245       __ shift_left(left, log2_intptr(c - 1), left);
   246       __ add(left, tmp, result);
   247       return true;
   248     }
   249   }
   250   return false;
   251 }
   254 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
   255   BasicType type = item->type();
   256   __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
   257 }
   259 //----------------------------------------------------------------------
   260 //             visitor functions
   261 //----------------------------------------------------------------------
   264 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
   265   assert(x->is_pinned(),"");
   266   bool needs_range_check = x->compute_needs_range_check();
   267   bool use_length = x->length() != NULL;
   268   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
   269   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
   270                                          !get_jobject_constant(x->value())->is_null_object() ||
   271                                          x->should_profile());
   273   LIRItem array(x->array(), this);
   274   LIRItem index(x->index(), this);
   275   LIRItem value(x->value(), this);
   276   LIRItem length(this);
   278   array.load_item();
   279   index.load_nonconstant();
   281   if (use_length && needs_range_check) {
   282     length.set_instruction(x->length());
   283     length.load_item();
   285   }
   286   if (needs_store_check) {
   287     value.load_item();
   288   } else {
   289     value.load_for_store(x->elt_type());
   290   }
   292   set_no_result(x);
   294   // the CodeEmitInfo must be duplicated for each different
   295   // LIR-instruction because spilling can occur anywhere between two
   296   // instructions and so the debug information must be different
   297   CodeEmitInfo* range_check_info = state_for(x);
   298   CodeEmitInfo* null_check_info = NULL;
   299   if (x->needs_null_check()) {
   300     null_check_info = new CodeEmitInfo(range_check_info);
   301   }
   303   // emit array address setup early so it schedules better
   304   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
   306   if (GenerateRangeChecks && needs_range_check) {
   307     if (use_length) {
   308       __ cmp(lir_cond_belowEqual, length.result(), index.result());
   309       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
   310     } else {
   311       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
   312       // range_check also does the null check
   313       null_check_info = NULL;
   314     }
   315   }
   317   if (GenerateArrayStoreCheck && needs_store_check) {
   318     LIR_Opr tmp1 = new_register(objectType);
   319     LIR_Opr tmp2 = new_register(objectType);
   320     LIR_Opr tmp3 = new_register(objectType);
   322     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
   323     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
   324   }
   326   if (obj_store) {
   327     // Needs GC write barriers.
   328     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
   329                 true /* do_load */, false /* patch */, NULL);
   330     __ move(value.result(), array_addr, null_check_info);
   331     // Seems to be a precise
   332     post_barrier(LIR_OprFact::address(array_addr), value.result());
   333   } else {
   334     __ move(value.result(), array_addr, null_check_info);
   335   }
   336 }
   339 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
   340   assert(x->is_pinned(),"");
   341   LIRItem obj(x->obj(), this);
   342   obj.load_item();
   344   set_no_result(x);
   346   // "lock" stores the address of the monitor stack slot, so this is not an oop
   347   LIR_Opr lock = new_register(T_INT);
   348   // Need a scratch register for biased locking on x86
   349   LIR_Opr scratch = LIR_OprFact::illegalOpr;
   350   if (UseBiasedLocking) {
   351     scratch = new_register(T_INT);
   352   }
   354   CodeEmitInfo* info_for_exception = NULL;
   355   if (x->needs_null_check()) {
   356     info_for_exception = state_for(x);
   357   }
   358   // this CodeEmitInfo must not have the xhandlers because here the
   359   // object is already locked (xhandlers expect object to be unlocked)
   360   CodeEmitInfo* info = state_for(x, x->state(), true);
   361   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
   362                         x->monitor_no(), info_for_exception, info);
   363 }
   366 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
   367   assert(x->is_pinned(),"");
   369   LIRItem obj(x->obj(), this);
   370   obj.dont_load_item();
   372   LIR_Opr lock = new_register(T_INT);
   373   LIR_Opr obj_temp = new_register(T_INT);
   374   set_no_result(x);
   375   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
   376 }
   379 // _ineg, _lneg, _fneg, _dneg
   380 void LIRGenerator::do_NegateOp(NegateOp* x) {
   381   LIRItem value(x->x(), this);
   382   value.set_destroys_register();
   383   value.load_item();
   384   LIR_Opr reg = rlock(x);
   385   __ negate(value.result(), reg);
   387   set_result(x, round_item(reg));
   388 }
   391 // for  _fadd, _fmul, _fsub, _fdiv, _frem
   392 //      _dadd, _dmul, _dsub, _ddiv, _drem
   393 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
   394   LIRItem left(x->x(),  this);
   395   LIRItem right(x->y(), this);
   396   LIRItem* left_arg  = &left;
   397   LIRItem* right_arg = &right;
   398   assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
   399   bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
   400   if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
   401     left.load_item();
   402   } else {
   403     left.dont_load_item();
   404   }
   406   // do not load right operand if it is a constant.  only 0 and 1 are
   407   // loaded because there are special instructions for loading them
   408   // without memory access (not needed for SSE2 instructions)
   409   bool must_load_right = false;
   410   if (right.is_constant()) {
   411     LIR_Const* c = right.result()->as_constant_ptr();
   412     assert(c != NULL, "invalid constant");
   413     assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
   415     if (c->type() == T_FLOAT) {
   416       must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
   417     } else {
   418       must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
   419     }
   420   }
   422   if (must_load_both) {
   423     // frem and drem destroy also right operand, so move it to a new register
   424     right.set_destroys_register();
   425     right.load_item();
   426   } else if (right.is_register() || must_load_right) {
   427     right.load_item();
   428   } else {
   429     right.dont_load_item();
   430   }
   431   LIR_Opr reg = rlock(x);
   432   LIR_Opr tmp = LIR_OprFact::illegalOpr;
   433   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
   434     tmp = new_register(T_DOUBLE);
   435   }
   437   if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
   438     // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
   439     LIR_Opr fpu0, fpu1;
   440     if (x->op() == Bytecodes::_frem) {
   441       fpu0 = LIR_OprFact::single_fpu(0);
   442       fpu1 = LIR_OprFact::single_fpu(1);
   443     } else {
   444       fpu0 = LIR_OprFact::double_fpu(0);
   445       fpu1 = LIR_OprFact::double_fpu(1);
   446     }
   447     __ move(right.result(), fpu1); // order of left and right operand is important!
   448     __ move(left.result(), fpu0);
   449     __ rem (fpu0, fpu1, fpu0);
   450     __ move(fpu0, reg);
   452   } else {
   453     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
   454   }
   456   set_result(x, round_item(reg));
   457 }
   460 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
   461 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
   462   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
   463     // long division is implemented as a direct call into the runtime
   464     LIRItem left(x->x(), this);
   465     LIRItem right(x->y(), this);
   467     // the check for division by zero destroys the right operand
   468     right.set_destroys_register();
   470     BasicTypeList signature(2);
   471     signature.append(T_LONG);
   472     signature.append(T_LONG);
   473     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
   475     // check for division by zero (destroys registers of right operand!)
   476     CodeEmitInfo* info = state_for(x);
   478     const LIR_Opr result_reg = result_register_for(x->type());
   479     left.load_item_force(cc->at(1));
   480     right.load_item();
   482     __ move(right.result(), cc->at(0));
   484     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
   485     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
   487     address entry;
   488     switch (x->op()) {
   489     case Bytecodes::_lrem:
   490       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
   491       break; // check if dividend is 0 is done elsewhere
   492     case Bytecodes::_ldiv:
   493       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
   494       break; // check if dividend is 0 is done elsewhere
   495     case Bytecodes::_lmul:
   496       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
   497       break;
   498     default:
   499       ShouldNotReachHere();
   500     }
   502     LIR_Opr result = rlock_result(x);
   503     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
   504     __ move(result_reg, result);
   505   } else if (x->op() == Bytecodes::_lmul) {
   506     // missing test if instr is commutative and if we should swap
   507     LIRItem left(x->x(), this);
   508     LIRItem right(x->y(), this);
   510     // right register is destroyed by the long mul, so it must be
   511     // copied to a new register.
   512     right.set_destroys_register();
   514     left.load_item();
   515     right.load_item();
   517     LIR_Opr reg = FrameMap::long0_opr;
   518     arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
   519     LIR_Opr result = rlock_result(x);
   520     __ move(reg, result);
   521   } else {
   522     // missing test if instr is commutative and if we should swap
   523     LIRItem left(x->x(), this);
   524     LIRItem right(x->y(), this);
   526     left.load_item();
   527     // don't load constants to save register
   528     right.load_nonconstant();
   529     rlock_result(x);
   530     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
   531   }
   532 }
   536 // for: _iadd, _imul, _isub, _idiv, _irem
   537 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
   538   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
   539     // The requirements for division and modulo
   540     // input : rax,: dividend                         min_int
   541     //         reg: divisor   (may not be rax,/rdx)   -1
   542     //
   543     // output: rax,: quotient  (= rax, idiv reg)       min_int
   544     //         rdx: remainder (= rax, irem reg)       0
   546     // rax, and rdx will be destroyed
   548     // Note: does this invalidate the spec ???
   549     LIRItem right(x->y(), this);
   550     LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
   552     // call state_for before load_item_force because state_for may
   553     // force the evaluation of other instructions that are needed for
   554     // correct debug info.  Otherwise the live range of the fix
   555     // register might be too long.
   556     CodeEmitInfo* info = state_for(x);
   558     left.load_item_force(divInOpr());
   560     right.load_item();
   562     LIR_Opr result = rlock_result(x);
   563     LIR_Opr result_reg;
   564     if (x->op() == Bytecodes::_idiv) {
   565       result_reg = divOutOpr();
   566     } else {
   567       result_reg = remOutOpr();
   568     }
   570     if (!ImplicitDiv0Checks) {
   571       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
   572       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
   573     }
   574     LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
   575     if (x->op() == Bytecodes::_irem) {
   576       __ irem(left.result(), right.result(), result_reg, tmp, info);
   577     } else if (x->op() == Bytecodes::_idiv) {
   578       __ idiv(left.result(), right.result(), result_reg, tmp, info);
   579     } else {
   580       ShouldNotReachHere();
   581     }
   583     __ move(result_reg, result);
   584   } else {
   585     // missing test if instr is commutative and if we should swap
   586     LIRItem left(x->x(),  this);
   587     LIRItem right(x->y(), this);
   588     LIRItem* left_arg = &left;
   589     LIRItem* right_arg = &right;
   590     if (x->is_commutative() && left.is_stack() && right.is_register()) {
   591       // swap them if left is real stack (or cached) and right is real register(not cached)
   592       left_arg = &right;
   593       right_arg = &left;
   594     }
   596     left_arg->load_item();
   598     // do not need to load right, as we can handle stack and constants
   599     if (x->op() == Bytecodes::_imul ) {
   600       // check if we can use shift instead
   601       bool use_constant = false;
   602       bool use_tmp = false;
   603       if (right_arg->is_constant()) {
   604         int iconst = right_arg->get_jint_constant();
   605         if (iconst > 0) {
   606           if (is_power_of_2(iconst)) {
   607             use_constant = true;
   608           } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
   609             use_constant = true;
   610             use_tmp = true;
   611           }
   612         }
   613       }
   614       if (use_constant) {
   615         right_arg->dont_load_item();
   616       } else {
   617         right_arg->load_item();
   618       }
   619       LIR_Opr tmp = LIR_OprFact::illegalOpr;
   620       if (use_tmp) {
   621         tmp = new_register(T_INT);
   622       }
   623       rlock_result(x);
   625       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
   626     } else {
   627       right_arg->dont_load_item();
   628       rlock_result(x);
   629       LIR_Opr tmp = LIR_OprFact::illegalOpr;
   630       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
   631     }
   632   }
   633 }
   636 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
   637   // when an operand with use count 1 is the left operand, then it is
   638   // likely that no move for 2-operand-LIR-form is necessary
   639   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
   640     x->swap_operands();
   641   }
   643   ValueTag tag = x->type()->tag();
   644   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
   645   switch (tag) {
   646     case floatTag:
   647     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
   648     case longTag:    do_ArithmeticOp_Long(x); return;
   649     case intTag:     do_ArithmeticOp_Int(x);  return;
   650   }
   651   ShouldNotReachHere();
   652 }
   655 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
   656 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
   657   // count must always be in rcx
   658   LIRItem value(x->x(), this);
   659   LIRItem count(x->y(), this);
   661   ValueTag elemType = x->type()->tag();
   662   bool must_load_count = !count.is_constant() || elemType == longTag;
   663   if (must_load_count) {
   664     // count for long must be in register
   665     count.load_item_force(shiftCountOpr());
   666   } else {
   667     count.dont_load_item();
   668   }
   669   value.load_item();
   670   LIR_Opr reg = rlock_result(x);
   672   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
   673 }
   676 // _iand, _land, _ior, _lor, _ixor, _lxor
   677 void LIRGenerator::do_LogicOp(LogicOp* x) {
   678   // when an operand with use count 1 is the left operand, then it is
   679   // likely that no move for 2-operand-LIR-form is necessary
   680   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
   681     x->swap_operands();
   682   }
   684   LIRItem left(x->x(), this);
   685   LIRItem right(x->y(), this);
   687   left.load_item();
   688   right.load_nonconstant();
   689   LIR_Opr reg = rlock_result(x);
   691   logic_op(x->op(), reg, left.result(), right.result());
   692 }
   696 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
   697 void LIRGenerator::do_CompareOp(CompareOp* x) {
   698   LIRItem left(x->x(), this);
   699   LIRItem right(x->y(), this);
   700   ValueTag tag = x->x()->type()->tag();
   701   if (tag == longTag) {
   702     left.set_destroys_register();
   703   }
   704   left.load_item();
   705   right.load_item();
   706   LIR_Opr reg = rlock_result(x);
   708   if (x->x()->type()->is_float_kind()) {
   709     Bytecodes::Code code = x->op();
   710     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
   711   } else if (x->x()->type()->tag() == longTag) {
   712     __ lcmp2int(left.result(), right.result(), reg);
   713   } else {
   714     Unimplemented();
   715   }
   716 }
   719 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
   720   assert(x->number_of_arguments() == 4, "wrong type");
   721   LIRItem obj   (x->argument_at(0), this);  // object
   722   LIRItem offset(x->argument_at(1), this);  // offset of field
   723   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
   724   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
   726   assert(obj.type()->tag() == objectTag, "invalid type");
   728   // In 64bit the type can be long, sparc doesn't have this assert
   729   // assert(offset.type()->tag() == intTag, "invalid type");
   731   assert(cmp.type()->tag() == type->tag(), "invalid type");
   732   assert(val.type()->tag() == type->tag(), "invalid type");
   734   // get address of field
   735   obj.load_item();
   736   offset.load_nonconstant();
   738   if (type == objectType) {
   739     cmp.load_item_force(FrameMap::rax_oop_opr);
   740     val.load_item();
   741   } else if (type == intType) {
   742     cmp.load_item_force(FrameMap::rax_opr);
   743     val.load_item();
   744   } else if (type == longType) {
   745     cmp.load_item_force(FrameMap::long0_opr);
   746     val.load_item_force(FrameMap::long1_opr);
   747   } else {
   748     ShouldNotReachHere();
   749   }
   751   LIR_Opr addr = new_pointer_register();
   752   LIR_Address* a;
   753   if(offset.result()->is_constant()) {
   754 #ifdef _LP64
   755     jlong c = offset.result()->as_jlong();
   756     if ((jlong)((jint)c) == c) {
   757       a = new LIR_Address(obj.result(),
   758                           (jint)c,
   759                           as_BasicType(type));
   760     } else {
   761       LIR_Opr tmp = new_register(T_LONG);
   762       __ move(offset.result(), tmp);
   763       a = new LIR_Address(obj.result(),
   764                           tmp,
   765                           as_BasicType(type));
   766     }
   767 #else
   768     a = new LIR_Address(obj.result(),
   769                         offset.result()->as_jint(),
   770                         as_BasicType(type));
   771 #endif
   772   } else {
   773     a = new LIR_Address(obj.result(),
   774                         offset.result(),
   775                         LIR_Address::times_1,
   776                         0,
   777                         as_BasicType(type));
   778   }
   779   __ leal(LIR_OprFact::address(a), addr);
   781   if (type == objectType) {  // Write-barrier needed for Object fields.
   782     // Do the pre-write barrier, if any.
   783     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
   784                 true /* do_load */, false /* patch */, NULL);
   785   }
   787   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
   788   if (type == objectType)
   789     __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
   790   else if (type == intType)
   791     __ cas_int(addr, cmp.result(), val.result(), ill, ill);
   792   else if (type == longType)
   793     __ cas_long(addr, cmp.result(), val.result(), ill, ill);
   794   else {
   795     ShouldNotReachHere();
   796   }
   798   // generate conditional move of boolean result
   799   LIR_Opr result = rlock_result(x);
   800   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
   801            result, as_BasicType(type));
   802   if (type == objectType) {   // Write-barrier needed for Object fields.
   803     // Seems to be precise
   804     post_barrier(addr, val.result());
   805   }
   806 }
   809 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
   810   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
   811   LIRItem value(x->argument_at(0), this);
   813   bool use_fpu = false;
   814   if (UseSSE >= 2) {
   815     switch(x->id()) {
   816       case vmIntrinsics::_dsin:
   817       case vmIntrinsics::_dcos:
   818       case vmIntrinsics::_dtan:
   819       case vmIntrinsics::_dlog:
   820       case vmIntrinsics::_dlog10:
   821       case vmIntrinsics::_dexp:
   822       case vmIntrinsics::_dpow:
   823         use_fpu = true;
   824     }
   825   } else {
   826     value.set_destroys_register();
   827   }
   829   value.load_item();
   831   LIR_Opr calc_input = value.result();
   832   LIR_Opr calc_input2 = NULL;
   833   if (x->id() == vmIntrinsics::_dpow) {
   834     LIRItem extra_arg(x->argument_at(1), this);
   835     if (UseSSE < 2) {
   836       extra_arg.set_destroys_register();
   837     }
   838     extra_arg.load_item();
   839     calc_input2 = extra_arg.result();
   840   }
   841   LIR_Opr calc_result = rlock_result(x);
   843   // sin, cos, pow and exp need two free fpu stack slots, so register
   844   // two temporary operands
   845   LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
   846   LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
   848   if (use_fpu) {
   849     LIR_Opr tmp = FrameMap::fpu0_double_opr;
   850     int tmp_start = 1;
   851     if (calc_input2 != NULL) {
   852       __ move(calc_input2, tmp);
   853       tmp_start = 2;
   854       calc_input2 = tmp;
   855     }
   856     __ move(calc_input, tmp);
   858     calc_input = tmp;
   859     calc_result = tmp;
   861     tmp1 = FrameMap::caller_save_fpu_reg_at(tmp_start);
   862     tmp2 = FrameMap::caller_save_fpu_reg_at(tmp_start + 1);
   863   }
   865   switch(x->id()) {
   866     case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   867     case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   868     case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
   869     case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
   870     case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
   871     case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, tmp1);                    break;
   872     case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1);                    break;
   873     case vmIntrinsics::_dexp:   __ exp  (calc_input, calc_result,              tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
   874     case vmIntrinsics::_dpow:   __ pow  (calc_input, calc_input2, calc_result, tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
   875     default:                    ShouldNotReachHere();
   876   }
   878   if (use_fpu) {
   879     __ move(calc_result, x->operand());
   880   }
   881 }
   884 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
   885   assert(x->number_of_arguments() == 5, "wrong type");
   887   // Make all state_for calls early since they can emit code
   888   CodeEmitInfo* info = state_for(x, x->state());
   890   LIRItem src(x->argument_at(0), this);
   891   LIRItem src_pos(x->argument_at(1), this);
   892   LIRItem dst(x->argument_at(2), this);
   893   LIRItem dst_pos(x->argument_at(3), this);
   894   LIRItem length(x->argument_at(4), this);
   896   // operands for arraycopy must use fixed registers, otherwise
   897   // LinearScan will fail allocation (because arraycopy always needs a
   898   // call)
   900 #ifndef _LP64
   901   src.load_item_force     (FrameMap::rcx_oop_opr);
   902   src_pos.load_item_force (FrameMap::rdx_opr);
   903   dst.load_item_force     (FrameMap::rax_oop_opr);
   904   dst_pos.load_item_force (FrameMap::rbx_opr);
   905   length.load_item_force  (FrameMap::rdi_opr);
   906   LIR_Opr tmp =           (FrameMap::rsi_opr);
   907 #else
   909   // The java calling convention will give us enough registers
   910   // so that on the stub side the args will be perfect already.
   911   // On the other slow/special case side we call C and the arg
   912   // positions are not similar enough to pick one as the best.
   913   // Also because the java calling convention is a "shifted" version
   914   // of the C convention we can process the java args trivially into C
   915   // args without worry of overwriting during the xfer
   917   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
   918   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
   919   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
   920   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
   921   length.load_item_force  (FrameMap::as_opr(j_rarg4));
   923   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
   924 #endif // LP64
   926   set_no_result(x);
   928   int flags;
   929   ciArrayKlass* expected_type;
   930   arraycopy_helper(x, &flags, &expected_type);
   932   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
   933 }
   935 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
   936   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
   937   // Make all state_for calls early since they can emit code
   938   LIR_Opr result = rlock_result(x);
   939   int flags = 0;
   940   switch (x->id()) {
   941     case vmIntrinsics::_updateCRC32: {
   942       LIRItem crc(x->argument_at(0), this);
   943       LIRItem val(x->argument_at(1), this);
   944       crc.load_item();
   945       val.load_item();
   946       __ update_crc32(crc.result(), val.result(), result);
   947       break;
   948     }
   949     case vmIntrinsics::_updateBytesCRC32:
   950     case vmIntrinsics::_updateByteBufferCRC32: {
   951       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
   953       LIRItem crc(x->argument_at(0), this);
   954       LIRItem buf(x->argument_at(1), this);
   955       LIRItem off(x->argument_at(2), this);
   956       LIRItem len(x->argument_at(3), this);
   957       buf.load_item();
   958       off.load_nonconstant();
   960       LIR_Opr index = off.result();
   961       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
   962       if(off.result()->is_constant()) {
   963         index = LIR_OprFact::illegalOpr;
   964        offset += off.result()->as_jint();
   965       }
   966       LIR_Opr base_op = buf.result();
   968 #ifndef _LP64
   969       if (!is_updateBytes) { // long b raw address
   970          base_op = new_register(T_INT);
   971          __ convert(Bytecodes::_l2i, buf.result(), base_op);
   972       }
   973 #else
   974       if (index->is_valid()) {
   975         LIR_Opr tmp = new_register(T_LONG);
   976         __ convert(Bytecodes::_i2l, index, tmp);
   977         index = tmp;
   978       }
   979 #endif
   981       LIR_Address* a = new LIR_Address(base_op,
   982                                        index,
   983                                        LIR_Address::times_1,
   984                                        offset,
   985                                        T_BYTE);
   986       BasicTypeList signature(3);
   987       signature.append(T_INT);
   988       signature.append(T_ADDRESS);
   989       signature.append(T_INT);
   990       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
   991       const LIR_Opr result_reg = result_register_for(x->type());
   993       LIR_Opr addr = new_pointer_register();
   994       __ leal(LIR_OprFact::address(a), addr);
   996       crc.load_item_force(cc->at(0));
   997       __ move(addr, cc->at(1));
   998       len.load_item_force(cc->at(2));
  1000       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
  1001       __ move(result_reg, result);
  1003       break;
  1005     default: {
  1006       ShouldNotReachHere();
  1011 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
  1012 // _i2b, _i2c, _i2s
  1013 LIR_Opr fixed_register_for(BasicType type) {
  1014   switch (type) {
  1015     case T_FLOAT:  return FrameMap::fpu0_float_opr;
  1016     case T_DOUBLE: return FrameMap::fpu0_double_opr;
  1017     case T_INT:    return FrameMap::rax_opr;
  1018     case T_LONG:   return FrameMap::long0_opr;
  1019     default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  1023 void LIRGenerator::do_Convert(Convert* x) {
  1024   // flags that vary for the different operations and different SSE-settings
  1025   bool fixed_input, fixed_result, round_result, needs_stub;
  1027   switch (x->op()) {
  1028     case Bytecodes::_i2l: // fall through
  1029     case Bytecodes::_l2i: // fall through
  1030     case Bytecodes::_i2b: // fall through
  1031     case Bytecodes::_i2c: // fall through
  1032     case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
  1034     case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
  1035     case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
  1036     case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
  1037     case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
  1038     case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
  1039     case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
  1040     case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
  1041     case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
  1042     case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
  1043     case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
  1044     default: ShouldNotReachHere();
  1047   LIRItem value(x->value(), this);
  1048   value.load_item();
  1049   LIR_Opr input = value.result();
  1050   LIR_Opr result = rlock(x);
  1052   // arguments of lir_convert
  1053   LIR_Opr conv_input = input;
  1054   LIR_Opr conv_result = result;
  1055   ConversionStub* stub = NULL;
  1057   if (fixed_input) {
  1058     conv_input = fixed_register_for(input->type());
  1059     __ move(input, conv_input);
  1062   assert(fixed_result == false || round_result == false, "cannot set both");
  1063   if (fixed_result) {
  1064     conv_result = fixed_register_for(result->type());
  1065   } else if (round_result) {
  1066     result = new_register(result->type());
  1067     set_vreg_flag(result, must_start_in_memory);
  1070   if (needs_stub) {
  1071     stub = new ConversionStub(x->op(), conv_input, conv_result);
  1074   __ convert(x->op(), conv_input, conv_result, stub);
  1076   if (result != conv_result) {
  1077     __ move(conv_result, result);
  1080   assert(result->is_virtual(), "result must be virtual register");
  1081   set_result(x, result);
  1085 void LIRGenerator::do_NewInstance(NewInstance* x) {
  1086 #ifndef PRODUCT
  1087   if (PrintNotLoaded && !x->klass()->is_loaded()) {
  1088     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
  1090 #endif
  1091   CodeEmitInfo* info = state_for(x, x->state());
  1092   LIR_Opr reg = result_register_for(x->type());
  1093   new_instance(reg, x->klass(),
  1094                        FrameMap::rcx_oop_opr,
  1095                        FrameMap::rdi_oop_opr,
  1096                        FrameMap::rsi_oop_opr,
  1097                        LIR_OprFact::illegalOpr,
  1098                        FrameMap::rdx_metadata_opr, info);
  1099   LIR_Opr result = rlock_result(x);
  1100   __ move(reg, result);
  1104 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
  1105   CodeEmitInfo* info = state_for(x, x->state());
  1107   LIRItem length(x->length(), this);
  1108   length.load_item_force(FrameMap::rbx_opr);
  1110   LIR_Opr reg = result_register_for(x->type());
  1111   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
  1112   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
  1113   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
  1114   LIR_Opr tmp4 = reg;
  1115   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
  1116   LIR_Opr len = length.result();
  1117   BasicType elem_type = x->elt_type();
  1119   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
  1121   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
  1122   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
  1124   LIR_Opr result = rlock_result(x);
  1125   __ move(reg, result);
  1129 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
  1130   LIRItem length(x->length(), this);
  1131   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
  1132   // and therefore provide the state before the parameters have been consumed
  1133   CodeEmitInfo* patching_info = NULL;
  1134   if (!x->klass()->is_loaded() || PatchALot) {
  1135     patching_info =  state_for(x, x->state_before());
  1138   CodeEmitInfo* info = state_for(x, x->state());
  1140   const LIR_Opr reg = result_register_for(x->type());
  1141   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
  1142   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
  1143   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
  1144   LIR_Opr tmp4 = reg;
  1145   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
  1147   length.load_item_force(FrameMap::rbx_opr);
  1148   LIR_Opr len = length.result();
  1150   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
  1151   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
  1152   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
  1153     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
  1155   klass2reg_with_patching(klass_reg, obj, patching_info);
  1156   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
  1158   LIR_Opr result = rlock_result(x);
  1159   __ move(reg, result);
  1163 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
  1164   Values* dims = x->dims();
  1165   int i = dims->length();
  1166   LIRItemList* items = new LIRItemList(dims->length(), NULL);
  1167   while (i-- > 0) {
  1168     LIRItem* size = new LIRItem(dims->at(i), this);
  1169     items->at_put(i, size);
  1172   // Evaluate state_for early since it may emit code.
  1173   CodeEmitInfo* patching_info = NULL;
  1174   if (!x->klass()->is_loaded() || PatchALot) {
  1175     patching_info = state_for(x, x->state_before());
  1177     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
  1178     // clone all handlers (NOTE: Usually this is handled transparently
  1179     // by the CodeEmitInfo cloning logic in CodeStub constructors but
  1180     // is done explicitly here because a stub isn't being used).
  1181     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
  1183   CodeEmitInfo* info = state_for(x, x->state());
  1185   i = dims->length();
  1186   while (i-- > 0) {
  1187     LIRItem* size = items->at(i);
  1188     size->load_nonconstant();
  1190     store_stack_parameter(size->result(), in_ByteSize(i*4));
  1193   LIR_Opr klass_reg = FrameMap::rax_metadata_opr;
  1194   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
  1196   LIR_Opr rank = FrameMap::rbx_opr;
  1197   __ move(LIR_OprFact::intConst(x->rank()), rank);
  1198   LIR_Opr varargs = FrameMap::rcx_opr;
  1199   __ move(FrameMap::rsp_opr, varargs);
  1200   LIR_OprList* args = new LIR_OprList(3);
  1201   args->append(klass_reg);
  1202   args->append(rank);
  1203   args->append(varargs);
  1204   LIR_Opr reg = result_register_for(x->type());
  1205   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
  1206                   LIR_OprFact::illegalOpr,
  1207                   reg, args, info);
  1209   LIR_Opr result = rlock_result(x);
  1210   __ move(reg, result);
  1214 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
  1215   // nothing to do for now
  1219 void LIRGenerator::do_CheckCast(CheckCast* x) {
  1220   LIRItem obj(x->obj(), this);
  1222   CodeEmitInfo* patching_info = NULL;
  1223   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
  1224     // must do this before locking the destination register as an oop register,
  1225     // and before the obj is loaded (the latter is for deoptimization)
  1226     patching_info = state_for(x, x->state_before());
  1228   obj.load_item();
  1230   // info for exceptions
  1231   CodeEmitInfo* info_for_exception = state_for(x);
  1233   CodeStub* stub;
  1234   if (x->is_incompatible_class_change_check()) {
  1235     assert(patching_info == NULL, "can't patch this");
  1236     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
  1237   } else {
  1238     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
  1240   LIR_Opr reg = rlock_result(x);
  1241   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
  1242   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
  1243     tmp3 = new_register(objectType);
  1245   __ checkcast(reg, obj.result(), x->klass(),
  1246                new_register(objectType), new_register(objectType), tmp3,
  1247                x->direct_compare(), info_for_exception, patching_info, stub,
  1248                x->profiled_method(), x->profiled_bci());
  1252 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
  1253   LIRItem obj(x->obj(), this);
  1255   // result and test object may not be in same register
  1256   LIR_Opr reg = rlock_result(x);
  1257   CodeEmitInfo* patching_info = NULL;
  1258   if ((!x->klass()->is_loaded() || PatchALot)) {
  1259     // must do this before locking the destination register as an oop register
  1260     patching_info = state_for(x, x->state_before());
  1262   obj.load_item();
  1263   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
  1264   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
  1265     tmp3 = new_register(objectType);
  1267   __ instanceof(reg, obj.result(), x->klass(),
  1268                 new_register(objectType), new_register(objectType), tmp3,
  1269                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
  1273 void LIRGenerator::do_If(If* x) {
  1274   assert(x->number_of_sux() == 2, "inconsistency");
  1275   ValueTag tag = x->x()->type()->tag();
  1276   bool is_safepoint = x->is_safepoint();
  1278   If::Condition cond = x->cond();
  1280   LIRItem xitem(x->x(), this);
  1281   LIRItem yitem(x->y(), this);
  1282   LIRItem* xin = &xitem;
  1283   LIRItem* yin = &yitem;
  1285   if (tag == longTag) {
  1286     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
  1287     // mirror for other conditions
  1288     if (cond == If::gtr || cond == If::leq) {
  1289       cond = Instruction::mirror(cond);
  1290       xin = &yitem;
  1291       yin = &xitem;
  1293     xin->set_destroys_register();
  1295   xin->load_item();
  1296   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
  1297     // inline long zero
  1298     yin->dont_load_item();
  1299   } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
  1300     // longs cannot handle constants at right side
  1301     yin->load_item();
  1302   } else {
  1303     yin->dont_load_item();
  1306   // add safepoint before generating condition code so it can be recomputed
  1307   if (x->is_safepoint()) {
  1308     // increment backedge counter if needed
  1309     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
  1310     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
  1312   set_no_result(x);
  1314   LIR_Opr left = xin->result();
  1315   LIR_Opr right = yin->result();
  1316   __ cmp(lir_cond(cond), left, right);
  1317   // Generate branch profiling. Profiling code doesn't kill flags.
  1318   profile_branch(x, cond);
  1319   move_to_phi(x->state());
  1320   if (x->x()->type()->is_float_kind()) {
  1321     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
  1322   } else {
  1323     __ branch(lir_cond(cond), right->type(), x->tsux());
  1325   assert(x->default_sux() == x->fsux(), "wrong destination above");
  1326   __ jump(x->default_sux());
  1330 LIR_Opr LIRGenerator::getThreadPointer() {
  1331 #ifdef _LP64
  1332   return FrameMap::as_pointer_opr(r15_thread);
  1333 #else
  1334   LIR_Opr result = new_register(T_INT);
  1335   __ get_thread(result);
  1336   return result;
  1337 #endif //
  1340 void LIRGenerator::trace_block_entry(BlockBegin* block) {
  1341   store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
  1342   LIR_OprList* args = new LIR_OprList();
  1343   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
  1344   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
  1348 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
  1349                                         CodeEmitInfo* info) {
  1350   if (address->type() == T_LONG) {
  1351     address = new LIR_Address(address->base(),
  1352                               address->index(), address->scale(),
  1353                               address->disp(), T_DOUBLE);
  1354     // Transfer the value atomically by using FP moves.  This means
  1355     // the value has to be moved between CPU and FPU registers.  It
  1356     // always has to be moved through spill slot since there's no
  1357     // quick way to pack the value into an SSE register.
  1358     LIR_Opr temp_double = new_register(T_DOUBLE);
  1359     LIR_Opr spill = new_register(T_LONG);
  1360     set_vreg_flag(spill, must_start_in_memory);
  1361     __ move(value, spill);
  1362     __ volatile_move(spill, temp_double, T_LONG);
  1363     __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
  1364   } else {
  1365     __ store(value, address, info);
  1371 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
  1372                                        CodeEmitInfo* info) {
  1373   if (address->type() == T_LONG) {
  1374     address = new LIR_Address(address->base(),
  1375                               address->index(), address->scale(),
  1376                               address->disp(), T_DOUBLE);
  1377     // Transfer the value atomically by using FP moves.  This means
  1378     // the value has to be moved between CPU and FPU registers.  In
  1379     // SSE0 and SSE1 mode it has to be moved through spill slot but in
  1380     // SSE2+ mode it can be moved directly.
  1381     LIR_Opr temp_double = new_register(T_DOUBLE);
  1382     __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
  1383     __ volatile_move(temp_double, result, T_LONG);
  1384     if (UseSSE < 2) {
  1385       // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
  1386       set_vreg_flag(result, must_start_in_memory);
  1388   } else {
  1389     __ load(address, result, info);
  1393 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
  1394                                      BasicType type, bool is_volatile) {
  1395   if (is_volatile && type == T_LONG) {
  1396     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
  1397     LIR_Opr tmp = new_register(T_DOUBLE);
  1398     __ load(addr, tmp);
  1399     LIR_Opr spill = new_register(T_LONG);
  1400     set_vreg_flag(spill, must_start_in_memory);
  1401     __ move(tmp, spill);
  1402     __ move(spill, dst);
  1403   } else {
  1404     LIR_Address* addr = new LIR_Address(src, offset, type);
  1405     __ load(addr, dst);
  1410 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
  1411                                      BasicType type, bool is_volatile) {
  1412   if (is_volatile && type == T_LONG) {
  1413     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
  1414     LIR_Opr tmp = new_register(T_DOUBLE);
  1415     LIR_Opr spill = new_register(T_DOUBLE);
  1416     set_vreg_flag(spill, must_start_in_memory);
  1417     __ move(data, spill);
  1418     __ move(spill, tmp);
  1419     __ move(tmp, addr);
  1420   } else {
  1421     LIR_Address* addr = new LIR_Address(src, offset, type);
  1422     bool is_obj = (type == T_ARRAY || type == T_OBJECT);
  1423     if (is_obj) {
  1424       // Do the pre-write barrier, if any.
  1425       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
  1426                   true /* do_load */, false /* patch */, NULL);
  1427       __ move(data, addr);
  1428       assert(src->is_register(), "must be register");
  1429       // Seems to be a precise address
  1430       post_barrier(LIR_OprFact::address(addr), data);
  1431     } else {
  1432       __ move(data, addr);
  1437 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
  1438   BasicType type = x->basic_type();
  1439   LIRItem src(x->object(), this);
  1440   LIRItem off(x->offset(), this);
  1441   LIRItem value(x->value(), this);
  1443   src.load_item();
  1444   value.load_item();
  1445   off.load_nonconstant();
  1447   LIR_Opr dst = rlock_result(x, type);
  1448   LIR_Opr data = value.result();
  1449   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
  1450   LIR_Opr offset = off.result();
  1452   assert (type == T_INT || (!x->is_add() && is_obj) LP64_ONLY( || type == T_LONG ), "unexpected type");
  1453   LIR_Address* addr;
  1454   if (offset->is_constant()) {
  1455 #ifdef _LP64
  1456     jlong c = offset->as_jlong();
  1457     if ((jlong)((jint)c) == c) {
  1458       addr = new LIR_Address(src.result(), (jint)c, type);
  1459     } else {
  1460       LIR_Opr tmp = new_register(T_LONG);
  1461       __ move(offset, tmp);
  1462       addr = new LIR_Address(src.result(), tmp, type);
  1464 #else
  1465     addr = new LIR_Address(src.result(), offset->as_jint(), type);
  1466 #endif
  1467   } else {
  1468     addr = new LIR_Address(src.result(), offset, type);
  1471   if (data != dst) {
  1472     __ move(data, dst);
  1473     data = dst;
  1475   if (x->is_add()) {
  1476     __ xadd(LIR_OprFact::address(addr), data, dst, LIR_OprFact::illegalOpr);
  1477   } else {
  1478     if (is_obj) {
  1479       // Do the pre-write barrier, if any.
  1480       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
  1481                   true /* do_load */, false /* patch */, NULL);
  1483     __ xchg(LIR_OprFact::address(addr), data, dst, LIR_OprFact::illegalOpr);
  1484     if (is_obj) {
  1485       // Seems to be a precise address
  1486       post_barrier(LIR_OprFact::address(addr), data);

mercurial