src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Mon, 12 Aug 2013 17:37:02 +0200

author
ehelin
date
Mon, 12 Aug 2013 17:37:02 +0200
changeset 5694
7944aba7ba41
parent 5628
f98f5d48f511
child 5737
da051ce490eb
permissions
-rw-r--r--

8015107: NPG: Use consistent naming for metaspace concepts
Reviewed-by: coleenp, mgerdin, hseigel

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "c1/c1_Compilation.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_MacroAssembler.hpp"
    31 #include "c1/c1_Runtime1.hpp"
    32 #include "c1/c1_ValueStack.hpp"
    33 #include "ci/ciArrayKlass.hpp"
    34 #include "ci/ciInstance.hpp"
    35 #include "gc_interface/collectedHeap.hpp"
    36 #include "memory/barrierSet.hpp"
    37 #include "memory/cardTableModRefBS.hpp"
    38 #include "nativeInst_x86.hpp"
    39 #include "oops/objArrayKlass.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    43 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    44 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    45 // fast versions of NegF/NegD and AbsF/AbsD.
    47 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    48 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    49   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    50   // of 128-bits operands for SSE instructions.
    51   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
    52   // Store the value to a 128-bits operand.
    53   operand[0] = lo;
    54   operand[1] = hi;
    55   return operand;
    56 }
    58 // Buffer for 128-bits masks used by SSE instructions.
    59 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    61 // Static initialization during VM startup.
    62 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    63 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    64 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    65 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    69 NEEDS_CLEANUP // remove this definitions ?
    70 const Register IC_Klass    = rax;   // where the IC klass is cached
    71 const Register SYNC_header = rax;   // synchronization header
    72 const Register SHIFT_count = rcx;   // where count for shift operations must be
    74 #define __ _masm->
    77 static void select_different_registers(Register preserve,
    78                                        Register extra,
    79                                        Register &tmp1,
    80                                        Register &tmp2) {
    81   if (tmp1 == preserve) {
    82     assert_different_registers(tmp1, tmp2, extra);
    83     tmp1 = extra;
    84   } else if (tmp2 == preserve) {
    85     assert_different_registers(tmp1, tmp2, extra);
    86     tmp2 = extra;
    87   }
    88   assert_different_registers(preserve, tmp1, tmp2);
    89 }
    93 static void select_different_registers(Register preserve,
    94                                        Register extra,
    95                                        Register &tmp1,
    96                                        Register &tmp2,
    97                                        Register &tmp3) {
    98   if (tmp1 == preserve) {
    99     assert_different_registers(tmp1, tmp2, tmp3, extra);
   100     tmp1 = extra;
   101   } else if (tmp2 == preserve) {
   102     assert_different_registers(tmp1, tmp2, tmp3, extra);
   103     tmp2 = extra;
   104   } else if (tmp3 == preserve) {
   105     assert_different_registers(tmp1, tmp2, tmp3, extra);
   106     tmp3 = extra;
   107   }
   108   assert_different_registers(preserve, tmp1, tmp2, tmp3);
   109 }
   113 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   114   if (opr->is_constant()) {
   115     LIR_Const* constant = opr->as_constant_ptr();
   116     switch (constant->type()) {
   117       case T_INT: {
   118         return true;
   119       }
   121       default:
   122         return false;
   123     }
   124   }
   125   return false;
   126 }
   129 LIR_Opr LIR_Assembler::receiverOpr() {
   130   return FrameMap::receiver_opr;
   131 }
   133 LIR_Opr LIR_Assembler::osrBufferPointer() {
   134   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   135 }
   137 //--------------fpu register translations-----------------------
   140 address LIR_Assembler::float_constant(float f) {
   141   address const_addr = __ float_constant(f);
   142   if (const_addr == NULL) {
   143     bailout("const section overflow");
   144     return __ code()->consts()->start();
   145   } else {
   146     return const_addr;
   147   }
   148 }
   151 address LIR_Assembler::double_constant(double d) {
   152   address const_addr = __ double_constant(d);
   153   if (const_addr == NULL) {
   154     bailout("const section overflow");
   155     return __ code()->consts()->start();
   156   } else {
   157     return const_addr;
   158   }
   159 }
   162 void LIR_Assembler::set_24bit_FPU() {
   163   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   164 }
   166 void LIR_Assembler::reset_FPU() {
   167   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   168 }
   170 void LIR_Assembler::fpop() {
   171   __ fpop();
   172 }
   174 void LIR_Assembler::fxch(int i) {
   175   __ fxch(i);
   176 }
   178 void LIR_Assembler::fld(int i) {
   179   __ fld_s(i);
   180 }
   182 void LIR_Assembler::ffree(int i) {
   183   __ ffree(i);
   184 }
   186 void LIR_Assembler::breakpoint() {
   187   __ int3();
   188 }
   190 void LIR_Assembler::push(LIR_Opr opr) {
   191   if (opr->is_single_cpu()) {
   192     __ push_reg(opr->as_register());
   193   } else if (opr->is_double_cpu()) {
   194     NOT_LP64(__ push_reg(opr->as_register_hi()));
   195     __ push_reg(opr->as_register_lo());
   196   } else if (opr->is_stack()) {
   197     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   198   } else if (opr->is_constant()) {
   199     LIR_Const* const_opr = opr->as_constant_ptr();
   200     if (const_opr->type() == T_OBJECT) {
   201       __ push_oop(const_opr->as_jobject());
   202     } else if (const_opr->type() == T_INT) {
   203       __ push_jint(const_opr->as_jint());
   204     } else {
   205       ShouldNotReachHere();
   206     }
   208   } else {
   209     ShouldNotReachHere();
   210   }
   211 }
   213 void LIR_Assembler::pop(LIR_Opr opr) {
   214   if (opr->is_single_cpu()) {
   215     __ pop_reg(opr->as_register());
   216   } else {
   217     ShouldNotReachHere();
   218   }
   219 }
   221 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   222   return addr->base()->is_illegal() && addr->index()->is_illegal();
   223 }
   225 //-------------------------------------------
   227 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   228   return as_Address(addr, rscratch1);
   229 }
   231 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   232   if (addr->base()->is_illegal()) {
   233     assert(addr->index()->is_illegal(), "must be illegal too");
   234     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   235     if (! __ reachable(laddr)) {
   236       __ movptr(tmp, laddr.addr());
   237       Address res(tmp, 0);
   238       return res;
   239     } else {
   240       return __ as_Address(laddr);
   241     }
   242   }
   244   Register base = addr->base()->as_pointer_register();
   246   if (addr->index()->is_illegal()) {
   247     return Address( base, addr->disp());
   248   } else if (addr->index()->is_cpu_register()) {
   249     Register index = addr->index()->as_pointer_register();
   250     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   251   } else if (addr->index()->is_constant()) {
   252     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   253     assert(Assembler::is_simm32(addr_offset), "must be");
   255     return Address(base, addr_offset);
   256   } else {
   257     Unimplemented();
   258     return Address();
   259   }
   260 }
   263 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   264   Address base = as_Address(addr);
   265   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   266 }
   269 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   270   return as_Address(addr);
   271 }
   274 void LIR_Assembler::osr_entry() {
   275   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   276   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   277   ValueStack* entry_state = osr_entry->state();
   278   int number_of_locks = entry_state->locks_size();
   280   // we jump here if osr happens with the interpreter
   281   // state set up to continue at the beginning of the
   282   // loop that triggered osr - in particular, we have
   283   // the following registers setup:
   284   //
   285   // rcx: osr buffer
   286   //
   288   // build frame
   289   ciMethod* m = compilation()->method();
   290   __ build_frame(initial_frame_size_in_bytes());
   292   // OSR buffer is
   293   //
   294   // locals[nlocals-1..0]
   295   // monitors[0..number_of_locks]
   296   //
   297   // locals is a direct copy of the interpreter frame so in the osr buffer
   298   // so first slot in the local array is the last local from the interpreter
   299   // and last slot is local[0] (receiver) from the interpreter
   300   //
   301   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   302   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   303   // in the interpreter frame (the method lock if a sync method)
   305   // Initialize monitors in the compiled activation.
   306   //   rcx: pointer to osr buffer
   307   //
   308   // All other registers are dead at this point and the locals will be
   309   // copied into place by code emitted in the IR.
   311   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   312   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   313     int monitor_offset = BytesPerWord * method()->max_locals() +
   314       (2 * BytesPerWord) * (number_of_locks - 1);
   315     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   316     // the OSR buffer using 2 word entries: first the lock and then
   317     // the oop.
   318     for (int i = 0; i < number_of_locks; i++) {
   319       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   320 #ifdef ASSERT
   321       // verify the interpreter's monitor has a non-null object
   322       {
   323         Label L;
   324         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
   325         __ jcc(Assembler::notZero, L);
   326         __ stop("locked object is NULL");
   327         __ bind(L);
   328       }
   329 #endif
   330       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
   331       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   332       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
   333       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   334     }
   335   }
   336 }
   339 // inline cache check; done before the frame is built.
   340 int LIR_Assembler::check_icache() {
   341   Register receiver = FrameMap::receiver_opr->as_register();
   342   Register ic_klass = IC_Klass;
   343   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   344   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
   345   if (!do_post_padding) {
   346     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   347     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   348       __ nop();
   349     }
   350   }
   351   int offset = __ offset();
   352   __ inline_cache_check(receiver, IC_Klass);
   353   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
   354   if (do_post_padding) {
   355     // force alignment after the cache check.
   356     // It's been verified to be aligned if !VerifyOops
   357     __ align(CodeEntryAlignment);
   358   }
   359   return offset;
   360 }
   363 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   364   jobject o = NULL;
   365   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
   366   __ movoop(reg, o);
   367   patching_epilog(patch, lir_patch_normal, reg, info);
   368 }
   370 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
   371   Metadata* o = NULL;
   372   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   373   __ mov_metadata(reg, o);
   374   patching_epilog(patch, lir_patch_normal, reg, info);
   375 }
   377 // This specifies the rsp decrement needed to build the frame
   378 int LIR_Assembler::initial_frame_size_in_bytes() {
   379   // if rounding, must let FrameMap know!
   381   // The frame_map records size in slots (32bit word)
   383   // subtract two words to account for return address and link
   384   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   385 }
   388 int LIR_Assembler::emit_exception_handler() {
   389   // if the last instruction is a call (typically to do a throw which
   390   // is coming at the end after block reordering) the return address
   391   // must still point into the code area in order to avoid assertion
   392   // failures when searching for the corresponding bci => add a nop
   393   // (was bug 5/14/1999 - gri)
   394   __ nop();
   396   // generate code for exception handler
   397   address handler_base = __ start_a_stub(exception_handler_size);
   398   if (handler_base == NULL) {
   399     // not enough space left for the handler
   400     bailout("exception handler overflow");
   401     return -1;
   402   }
   404   int offset = code_offset();
   406   // the exception oop and pc are in rax, and rdx
   407   // no other registers need to be preserved, so invalidate them
   408   __ invalidate_registers(false, true, true, false, true, true);
   410   // check that there is really an exception
   411   __ verify_not_null_oop(rax);
   413   // search an exception handler (rax: exception oop, rdx: throwing pc)
   414   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
   415   __ should_not_reach_here();
   416   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   417   __ end_a_stub();
   419   return offset;
   420 }
   423 // Emit the code to remove the frame from the stack in the exception
   424 // unwind path.
   425 int LIR_Assembler::emit_unwind_handler() {
   426 #ifndef PRODUCT
   427   if (CommentedAssembly) {
   428     _masm->block_comment("Unwind handler");
   429   }
   430 #endif
   432   int offset = code_offset();
   434   // Fetch the exception from TLS and clear out exception related thread state
   435   __ get_thread(rsi);
   436   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
   437   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
   438   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
   440   __ bind(_unwind_handler_entry);
   441   __ verify_not_null_oop(rax);
   442   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   443     __ mov(rsi, rax);  // Preserve the exception
   444   }
   446   // Preform needed unlocking
   447   MonitorExitStub* stub = NULL;
   448   if (method()->is_synchronized()) {
   449     monitor_address(0, FrameMap::rax_opr);
   450     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
   451     __ unlock_object(rdi, rbx, rax, *stub->entry());
   452     __ bind(*stub->continuation());
   453   }
   455   if (compilation()->env()->dtrace_method_probes()) {
   456     __ get_thread(rax);
   457     __ movptr(Address(rsp, 0), rax);
   458     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
   459     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
   460   }
   462   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   463     __ mov(rax, rsi);  // Restore the exception
   464   }
   466   // remove the activation and dispatch to the unwind handler
   467   __ remove_frame(initial_frame_size_in_bytes());
   468   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   470   // Emit the slow path assembly
   471   if (stub != NULL) {
   472     stub->emit_code(this);
   473   }
   475   return offset;
   476 }
   479 int LIR_Assembler::emit_deopt_handler() {
   480   // if the last instruction is a call (typically to do a throw which
   481   // is coming at the end after block reordering) the return address
   482   // must still point into the code area in order to avoid assertion
   483   // failures when searching for the corresponding bci => add a nop
   484   // (was bug 5/14/1999 - gri)
   485   __ nop();
   487   // generate code for exception handler
   488   address handler_base = __ start_a_stub(deopt_handler_size);
   489   if (handler_base == NULL) {
   490     // not enough space left for the handler
   491     bailout("deopt handler overflow");
   492     return -1;
   493   }
   495   int offset = code_offset();
   496   InternalAddress here(__ pc());
   498   __ pushptr(here.addr());
   499   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   500   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   501   __ end_a_stub();
   503   return offset;
   504 }
   507 // This is the fast version of java.lang.String.compare; it has not
   508 // OSR-entry and therefore, we generate a slow version for OSR's
   509 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   510   __ movptr (rbx, rcx); // receiver is in rcx
   511   __ movptr (rax, arg1->as_register());
   513   // Get addresses of first characters from both Strings
   514   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   515   if (java_lang_String::has_offset_field()) {
   516     __ movptr     (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   517     __ movl       (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   518     __ lea        (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   519   } else {
   520     __ movl       (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
   521     __ lea        (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   522   }
   524   // rbx, may be NULL
   525   add_debug_info_for_null_check_here(info);
   526   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   527   if (java_lang_String::has_offset_field()) {
   528     __ movptr     (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   529     __ movl       (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   530     __ lea        (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   531   } else {
   532     __ movl       (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
   533     __ lea        (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   534   }
   536   // compute minimum length (in rax) and difference of lengths (on top of stack)
   537   __ mov   (rcx, rbx);
   538   __ subptr(rbx, rax); // subtract lengths
   539   __ push  (rbx);      // result
   540   __ cmov  (Assembler::lessEqual, rax, rcx);
   542   // is minimum length 0?
   543   Label noLoop, haveResult;
   544   __ testptr (rax, rax);
   545   __ jcc (Assembler::zero, noLoop);
   547   // compare first characters
   548   __ load_unsigned_short(rcx, Address(rdi, 0));
   549   __ load_unsigned_short(rbx, Address(rsi, 0));
   550   __ subl(rcx, rbx);
   551   __ jcc(Assembler::notZero, haveResult);
   552   // starting loop
   553   __ decrement(rax); // we already tested index: skip one
   554   __ jcc(Assembler::zero, noLoop);
   556   // set rsi.edi to the end of the arrays (arrays have same length)
   557   // negate the index
   559   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   560   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   561   __ negptr(rax);
   563   // compare the strings in a loop
   565   Label loop;
   566   __ align(wordSize);
   567   __ bind(loop);
   568   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   569   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   570   __ subl(rcx, rbx);
   571   __ jcc(Assembler::notZero, haveResult);
   572   __ increment(rax);
   573   __ jcc(Assembler::notZero, loop);
   575   // strings are equal up to min length
   577   __ bind(noLoop);
   578   __ pop(rax);
   579   return_op(LIR_OprFact::illegalOpr);
   581   __ bind(haveResult);
   582   // leave instruction is going to discard the TOS value
   583   __ mov (rax, rcx); // result of call is in rax,
   584 }
   587 void LIR_Assembler::return_op(LIR_Opr result) {
   588   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   589   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   590     assert(result->fpu() == 0, "result must already be on TOS");
   591   }
   593   // Pop the stack before the safepoint code
   594   __ remove_frame(initial_frame_size_in_bytes());
   596   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   598   // Note: we do not need to round double result; float result has the right precision
   599   // the poll sets the condition code, but no data registers
   600   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   601                               relocInfo::poll_return_type);
   603   if (Assembler::is_polling_page_far()) {
   604     __ lea(rscratch1, polling_page);
   605     __ relocate(relocInfo::poll_return_type);
   606     __ testl(rax, Address(rscratch1, 0));
   607   } else {
   608     __ testl(rax, polling_page);
   609   }
   610   __ ret(0);
   611 }
   614 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   615   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   616                               relocInfo::poll_type);
   617   guarantee(info != NULL, "Shouldn't be NULL");
   618   int offset = __ offset();
   619   if (Assembler::is_polling_page_far()) {
   620     __ lea(rscratch1, polling_page);
   621     offset = __ offset();
   622     add_debug_info_for_branch(info);
   623     __ testl(rax, Address(rscratch1, 0));
   624   } else {
   625     add_debug_info_for_branch(info);
   626     __ testl(rax, polling_page);
   627   }
   628   return offset;
   629 }
   632 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   633   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   634 }
   636 void LIR_Assembler::swap_reg(Register a, Register b) {
   637   __ xchgptr(a, b);
   638 }
   641 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   642   assert(src->is_constant(), "should not call otherwise");
   643   assert(dest->is_register(), "should not call otherwise");
   644   LIR_Const* c = src->as_constant_ptr();
   646   switch (c->type()) {
   647     case T_INT: {
   648       assert(patch_code == lir_patch_none, "no patching handled here");
   649       __ movl(dest->as_register(), c->as_jint());
   650       break;
   651     }
   653     case T_ADDRESS: {
   654       assert(patch_code == lir_patch_none, "no patching handled here");
   655       __ movptr(dest->as_register(), c->as_jint());
   656       break;
   657     }
   659     case T_LONG: {
   660       assert(patch_code == lir_patch_none, "no patching handled here");
   661 #ifdef _LP64
   662       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   663 #else
   664       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   665       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   666 #endif // _LP64
   667       break;
   668     }
   670     case T_OBJECT: {
   671       if (patch_code != lir_patch_none) {
   672         jobject2reg_with_patching(dest->as_register(), info);
   673       } else {
   674         __ movoop(dest->as_register(), c->as_jobject());
   675       }
   676       break;
   677     }
   679     case T_METADATA: {
   680       if (patch_code != lir_patch_none) {
   681         klass2reg_with_patching(dest->as_register(), info);
   682       } else {
   683         __ mov_metadata(dest->as_register(), c->as_metadata());
   684       }
   685       break;
   686     }
   688     case T_FLOAT: {
   689       if (dest->is_single_xmm()) {
   690         if (c->is_zero_float()) {
   691           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   692         } else {
   693           __ movflt(dest->as_xmm_float_reg(),
   694                    InternalAddress(float_constant(c->as_jfloat())));
   695         }
   696       } else {
   697         assert(dest->is_single_fpu(), "must be");
   698         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   699         if (c->is_zero_float()) {
   700           __ fldz();
   701         } else if (c->is_one_float()) {
   702           __ fld1();
   703         } else {
   704           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   705         }
   706       }
   707       break;
   708     }
   710     case T_DOUBLE: {
   711       if (dest->is_double_xmm()) {
   712         if (c->is_zero_double()) {
   713           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   714         } else {
   715           __ movdbl(dest->as_xmm_double_reg(),
   716                     InternalAddress(double_constant(c->as_jdouble())));
   717         }
   718       } else {
   719         assert(dest->is_double_fpu(), "must be");
   720         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   721         if (c->is_zero_double()) {
   722           __ fldz();
   723         } else if (c->is_one_double()) {
   724           __ fld1();
   725         } else {
   726           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   727         }
   728       }
   729       break;
   730     }
   732     default:
   733       ShouldNotReachHere();
   734   }
   735 }
   737 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   738   assert(src->is_constant(), "should not call otherwise");
   739   assert(dest->is_stack(), "should not call otherwise");
   740   LIR_Const* c = src->as_constant_ptr();
   742   switch (c->type()) {
   743     case T_INT:  // fall through
   744     case T_FLOAT:
   745       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   746       break;
   748     case T_ADDRESS:
   749       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   750       break;
   752     case T_OBJECT:
   753       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   754       break;
   756     case T_LONG:  // fall through
   757     case T_DOUBLE:
   758 #ifdef _LP64
   759       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   760                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   761 #else
   762       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   763                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   764       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   765                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   766 #endif // _LP64
   767       break;
   769     default:
   770       ShouldNotReachHere();
   771   }
   772 }
   774 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
   775   assert(src->is_constant(), "should not call otherwise");
   776   assert(dest->is_address(), "should not call otherwise");
   777   LIR_Const* c = src->as_constant_ptr();
   778   LIR_Address* addr = dest->as_address_ptr();
   780   int null_check_here = code_offset();
   781   switch (type) {
   782     case T_INT:    // fall through
   783     case T_FLOAT:
   784       __ movl(as_Address(addr), c->as_jint_bits());
   785       break;
   787     case T_ADDRESS:
   788       __ movptr(as_Address(addr), c->as_jint_bits());
   789       break;
   791     case T_OBJECT:  // fall through
   792     case T_ARRAY:
   793       if (c->as_jobject() == NULL) {
   794         if (UseCompressedOops && !wide) {
   795           __ movl(as_Address(addr), (int32_t)NULL_WORD);
   796         } else {
   797           __ movptr(as_Address(addr), NULL_WORD);
   798         }
   799       } else {
   800         if (is_literal_address(addr)) {
   801           ShouldNotReachHere();
   802           __ movoop(as_Address(addr, noreg), c->as_jobject());
   803         } else {
   804 #ifdef _LP64
   805           __ movoop(rscratch1, c->as_jobject());
   806           if (UseCompressedOops && !wide) {
   807             __ encode_heap_oop(rscratch1);
   808             null_check_here = code_offset();
   809             __ movl(as_Address_lo(addr), rscratch1);
   810           } else {
   811             null_check_here = code_offset();
   812             __ movptr(as_Address_lo(addr), rscratch1);
   813           }
   814 #else
   815           __ movoop(as_Address(addr), c->as_jobject());
   816 #endif
   817         }
   818       }
   819       break;
   821     case T_LONG:    // fall through
   822     case T_DOUBLE:
   823 #ifdef _LP64
   824       if (is_literal_address(addr)) {
   825         ShouldNotReachHere();
   826         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   827       } else {
   828         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   829         null_check_here = code_offset();
   830         __ movptr(as_Address_lo(addr), r10);
   831       }
   832 #else
   833       // Always reachable in 32bit so this doesn't produce useless move literal
   834       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   835       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   836 #endif // _LP64
   837       break;
   839     case T_BOOLEAN: // fall through
   840     case T_BYTE:
   841       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   842       break;
   844     case T_CHAR:    // fall through
   845     case T_SHORT:
   846       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   847       break;
   849     default:
   850       ShouldNotReachHere();
   851   };
   853   if (info != NULL) {
   854     add_debug_info_for_null_check(null_check_here, info);
   855   }
   856 }
   859 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   860   assert(src->is_register(), "should not call otherwise");
   861   assert(dest->is_register(), "should not call otherwise");
   863   // move between cpu-registers
   864   if (dest->is_single_cpu()) {
   865 #ifdef _LP64
   866     if (src->type() == T_LONG) {
   867       // Can do LONG -> OBJECT
   868       move_regs(src->as_register_lo(), dest->as_register());
   869       return;
   870     }
   871 #endif
   872     assert(src->is_single_cpu(), "must match");
   873     if (src->type() == T_OBJECT) {
   874       __ verify_oop(src->as_register());
   875     }
   876     move_regs(src->as_register(), dest->as_register());
   878   } else if (dest->is_double_cpu()) {
   879 #ifdef _LP64
   880     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   881       // Surprising to me but we can see move of a long to t_object
   882       __ verify_oop(src->as_register());
   883       move_regs(src->as_register(), dest->as_register_lo());
   884       return;
   885     }
   886 #endif
   887     assert(src->is_double_cpu(), "must match");
   888     Register f_lo = src->as_register_lo();
   889     Register f_hi = src->as_register_hi();
   890     Register t_lo = dest->as_register_lo();
   891     Register t_hi = dest->as_register_hi();
   892 #ifdef _LP64
   893     assert(f_hi == f_lo, "must be same");
   894     assert(t_hi == t_lo, "must be same");
   895     move_regs(f_lo, t_lo);
   896 #else
   897     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   900     if (f_lo == t_hi && f_hi == t_lo) {
   901       swap_reg(f_lo, f_hi);
   902     } else if (f_hi == t_lo) {
   903       assert(f_lo != t_hi, "overwriting register");
   904       move_regs(f_hi, t_hi);
   905       move_regs(f_lo, t_lo);
   906     } else {
   907       assert(f_hi != t_lo, "overwriting register");
   908       move_regs(f_lo, t_lo);
   909       move_regs(f_hi, t_hi);
   910     }
   911 #endif // LP64
   913     // special moves from fpu-register to xmm-register
   914     // necessary for method results
   915   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   916     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   917     __ fld_s(Address(rsp, 0));
   918   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   919     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   920     __ fld_d(Address(rsp, 0));
   921   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   922     __ fstp_s(Address(rsp, 0));
   923     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   924   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   925     __ fstp_d(Address(rsp, 0));
   926     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   928     // move between xmm-registers
   929   } else if (dest->is_single_xmm()) {
   930     assert(src->is_single_xmm(), "must match");
   931     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   932   } else if (dest->is_double_xmm()) {
   933     assert(src->is_double_xmm(), "must match");
   934     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   936     // move between fpu-registers (no instruction necessary because of fpu-stack)
   937   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   938     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   939     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   940   } else {
   941     ShouldNotReachHere();
   942   }
   943 }
   945 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   946   assert(src->is_register(), "should not call otherwise");
   947   assert(dest->is_stack(), "should not call otherwise");
   949   if (src->is_single_cpu()) {
   950     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   951     if (type == T_OBJECT || type == T_ARRAY) {
   952       __ verify_oop(src->as_register());
   953       __ movptr (dst, src->as_register());
   954     } else if (type == T_METADATA) {
   955       __ movptr (dst, src->as_register());
   956     } else {
   957       __ movl (dst, src->as_register());
   958     }
   960   } else if (src->is_double_cpu()) {
   961     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   962     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   963     __ movptr (dstLO, src->as_register_lo());
   964     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   966   } else if (src->is_single_xmm()) {
   967     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   968     __ movflt(dst_addr, src->as_xmm_float_reg());
   970   } else if (src->is_double_xmm()) {
   971     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   972     __ movdbl(dst_addr, src->as_xmm_double_reg());
   974   } else if (src->is_single_fpu()) {
   975     assert(src->fpu_regnr() == 0, "argument must be on TOS");
   976     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   977     if (pop_fpu_stack)     __ fstp_s (dst_addr);
   978     else                   __ fst_s  (dst_addr);
   980   } else if (src->is_double_fpu()) {
   981     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   982     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   983     if (pop_fpu_stack)     __ fstp_d (dst_addr);
   984     else                   __ fst_d  (dst_addr);
   986   } else {
   987     ShouldNotReachHere();
   988   }
   989 }
   992 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
   993   LIR_Address* to_addr = dest->as_address_ptr();
   994   PatchingStub* patch = NULL;
   995   Register compressed_src = rscratch1;
   997   if (type == T_ARRAY || type == T_OBJECT) {
   998     __ verify_oop(src->as_register());
   999 #ifdef _LP64
  1000     if (UseCompressedOops && !wide) {
  1001       __ movptr(compressed_src, src->as_register());
  1002       __ encode_heap_oop(compressed_src);
  1004 #endif
  1007   if (patch_code != lir_patch_none) {
  1008     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1009     Address toa = as_Address(to_addr);
  1010     assert(toa.disp() != 0, "must have");
  1013   int null_check_here = code_offset();
  1014   switch (type) {
  1015     case T_FLOAT: {
  1016       if (src->is_single_xmm()) {
  1017         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
  1018       } else {
  1019         assert(src->is_single_fpu(), "must be");
  1020         assert(src->fpu_regnr() == 0, "argument must be on TOS");
  1021         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
  1022         else                    __ fst_s (as_Address(to_addr));
  1024       break;
  1027     case T_DOUBLE: {
  1028       if (src->is_double_xmm()) {
  1029         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
  1030       } else {
  1031         assert(src->is_double_fpu(), "must be");
  1032         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
  1033         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
  1034         else                    __ fst_d (as_Address(to_addr));
  1036       break;
  1039     case T_ARRAY:   // fall through
  1040     case T_OBJECT:  // fall through
  1041       if (UseCompressedOops && !wide) {
  1042         __ movl(as_Address(to_addr), compressed_src);
  1043       } else {
  1044         __ movptr(as_Address(to_addr), src->as_register());
  1046       break;
  1047     case T_METADATA:
  1048       // We get here to store a method pointer to the stack to pass to
  1049       // a dtrace runtime call. This can't work on 64 bit with
  1050       // compressed klass ptrs: T_METADATA can be a compressed klass
  1051       // ptr or a 64 bit method pointer.
  1052       LP64_ONLY(ShouldNotReachHere());
  1053       __ movptr(as_Address(to_addr), src->as_register());
  1054       break;
  1055     case T_ADDRESS:
  1056       __ movptr(as_Address(to_addr), src->as_register());
  1057       break;
  1058     case T_INT:
  1059       __ movl(as_Address(to_addr), src->as_register());
  1060       break;
  1062     case T_LONG: {
  1063       Register from_lo = src->as_register_lo();
  1064       Register from_hi = src->as_register_hi();
  1065 #ifdef _LP64
  1066       __ movptr(as_Address_lo(to_addr), from_lo);
  1067 #else
  1068       Register base = to_addr->base()->as_register();
  1069       Register index = noreg;
  1070       if (to_addr->index()->is_register()) {
  1071         index = to_addr->index()->as_register();
  1073       if (base == from_lo || index == from_lo) {
  1074         assert(base != from_hi, "can't be");
  1075         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1076         __ movl(as_Address_hi(to_addr), from_hi);
  1077         if (patch != NULL) {
  1078           patching_epilog(patch, lir_patch_high, base, info);
  1079           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1080           patch_code = lir_patch_low;
  1082         __ movl(as_Address_lo(to_addr), from_lo);
  1083       } else {
  1084         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1085         __ movl(as_Address_lo(to_addr), from_lo);
  1086         if (patch != NULL) {
  1087           patching_epilog(patch, lir_patch_low, base, info);
  1088           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1089           patch_code = lir_patch_high;
  1091         __ movl(as_Address_hi(to_addr), from_hi);
  1093 #endif // _LP64
  1094       break;
  1097     case T_BYTE:    // fall through
  1098     case T_BOOLEAN: {
  1099       Register src_reg = src->as_register();
  1100       Address dst_addr = as_Address(to_addr);
  1101       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1102       __ movb(dst_addr, src_reg);
  1103       break;
  1106     case T_CHAR:    // fall through
  1107     case T_SHORT:
  1108       __ movw(as_Address(to_addr), src->as_register());
  1109       break;
  1111     default:
  1112       ShouldNotReachHere();
  1114   if (info != NULL) {
  1115     add_debug_info_for_null_check(null_check_here, info);
  1118   if (patch_code != lir_patch_none) {
  1119     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1124 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1125   assert(src->is_stack(), "should not call otherwise");
  1126   assert(dest->is_register(), "should not call otherwise");
  1128   if (dest->is_single_cpu()) {
  1129     if (type == T_ARRAY || type == T_OBJECT) {
  1130       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1131       __ verify_oop(dest->as_register());
  1132     } else if (type == T_METADATA) {
  1133       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1134     } else {
  1135       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1138   } else if (dest->is_double_cpu()) {
  1139     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1140     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1141     __ movptr(dest->as_register_lo(), src_addr_LO);
  1142     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1144   } else if (dest->is_single_xmm()) {
  1145     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1146     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1148   } else if (dest->is_double_xmm()) {
  1149     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1150     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1152   } else if (dest->is_single_fpu()) {
  1153     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1154     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1155     __ fld_s(src_addr);
  1157   } else if (dest->is_double_fpu()) {
  1158     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1159     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1160     __ fld_d(src_addr);
  1162   } else {
  1163     ShouldNotReachHere();
  1168 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1169   if (src->is_single_stack()) {
  1170     if (type == T_OBJECT || type == T_ARRAY) {
  1171       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1172       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1173     } else {
  1174 #ifndef _LP64
  1175       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1176       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1177 #else
  1178       //no pushl on 64bits
  1179       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
  1180       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
  1181 #endif
  1184   } else if (src->is_double_stack()) {
  1185 #ifdef _LP64
  1186     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1187     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1188 #else
  1189     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1190     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1191     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1192     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1193     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1194 #endif // _LP64
  1196   } else {
  1197     ShouldNotReachHere();
  1202 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
  1203   assert(src->is_address(), "should not call otherwise");
  1204   assert(dest->is_register(), "should not call otherwise");
  1206   LIR_Address* addr = src->as_address_ptr();
  1207   Address from_addr = as_Address(addr);
  1209   switch (type) {
  1210     case T_BOOLEAN: // fall through
  1211     case T_BYTE:    // fall through
  1212     case T_CHAR:    // fall through
  1213     case T_SHORT:
  1214       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1215         // on pre P6 processors we may get partial register stalls
  1216         // so blow away the value of to_rinfo before loading a
  1217         // partial word into it.  Do it here so that it precedes
  1218         // the potential patch point below.
  1219         __ xorptr(dest->as_register(), dest->as_register());
  1221       break;
  1224   PatchingStub* patch = NULL;
  1225   if (patch_code != lir_patch_none) {
  1226     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1227     assert(from_addr.disp() != 0, "must have");
  1229   if (info != NULL) {
  1230     add_debug_info_for_null_check_here(info);
  1233   switch (type) {
  1234     case T_FLOAT: {
  1235       if (dest->is_single_xmm()) {
  1236         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1237       } else {
  1238         assert(dest->is_single_fpu(), "must be");
  1239         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1240         __ fld_s(from_addr);
  1242       break;
  1245     case T_DOUBLE: {
  1246       if (dest->is_double_xmm()) {
  1247         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1248       } else {
  1249         assert(dest->is_double_fpu(), "must be");
  1250         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1251         __ fld_d(from_addr);
  1253       break;
  1256     case T_OBJECT:  // fall through
  1257     case T_ARRAY:   // fall through
  1258       if (UseCompressedOops && !wide) {
  1259         __ movl(dest->as_register(), from_addr);
  1260       } else {
  1261         __ movptr(dest->as_register(), from_addr);
  1263       break;
  1265     case T_ADDRESS:
  1266       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
  1267         __ movl(dest->as_register(), from_addr);
  1268       } else {
  1269         __ movptr(dest->as_register(), from_addr);
  1271       break;
  1272     case T_INT:
  1273       __ movl(dest->as_register(), from_addr);
  1274       break;
  1276     case T_LONG: {
  1277       Register to_lo = dest->as_register_lo();
  1278       Register to_hi = dest->as_register_hi();
  1279 #ifdef _LP64
  1280       __ movptr(to_lo, as_Address_lo(addr));
  1281 #else
  1282       Register base = addr->base()->as_register();
  1283       Register index = noreg;
  1284       if (addr->index()->is_register()) {
  1285         index = addr->index()->as_register();
  1287       if ((base == to_lo && index == to_hi) ||
  1288           (base == to_hi && index == to_lo)) {
  1289         // addresses with 2 registers are only formed as a result of
  1290         // array access so this code will never have to deal with
  1291         // patches or null checks.
  1292         assert(info == NULL && patch == NULL, "must be");
  1293         __ lea(to_hi, as_Address(addr));
  1294         __ movl(to_lo, Address(to_hi, 0));
  1295         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1296       } else if (base == to_lo || index == to_lo) {
  1297         assert(base != to_hi, "can't be");
  1298         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1299         __ movl(to_hi, as_Address_hi(addr));
  1300         if (patch != NULL) {
  1301           patching_epilog(patch, lir_patch_high, base, info);
  1302           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1303           patch_code = lir_patch_low;
  1305         __ movl(to_lo, as_Address_lo(addr));
  1306       } else {
  1307         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1308         __ movl(to_lo, as_Address_lo(addr));
  1309         if (patch != NULL) {
  1310           patching_epilog(patch, lir_patch_low, base, info);
  1311           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1312           patch_code = lir_patch_high;
  1314         __ movl(to_hi, as_Address_hi(addr));
  1316 #endif // _LP64
  1317       break;
  1320     case T_BOOLEAN: // fall through
  1321     case T_BYTE: {
  1322       Register dest_reg = dest->as_register();
  1323       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1324       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1325         __ movsbl(dest_reg, from_addr);
  1326       } else {
  1327         __ movb(dest_reg, from_addr);
  1328         __ shll(dest_reg, 24);
  1329         __ sarl(dest_reg, 24);
  1331       break;
  1334     case T_CHAR: {
  1335       Register dest_reg = dest->as_register();
  1336       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1337       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1338         __ movzwl(dest_reg, from_addr);
  1339       } else {
  1340         __ movw(dest_reg, from_addr);
  1342       break;
  1345     case T_SHORT: {
  1346       Register dest_reg = dest->as_register();
  1347       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1348         __ movswl(dest_reg, from_addr);
  1349       } else {
  1350         __ movw(dest_reg, from_addr);
  1351         __ shll(dest_reg, 16);
  1352         __ sarl(dest_reg, 16);
  1354       break;
  1357     default:
  1358       ShouldNotReachHere();
  1361   if (patch != NULL) {
  1362     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1365   if (type == T_ARRAY || type == T_OBJECT) {
  1366 #ifdef _LP64
  1367     if (UseCompressedOops && !wide) {
  1368       __ decode_heap_oop(dest->as_register());
  1370 #endif
  1371     __ verify_oop(dest->as_register());
  1372   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
  1373 #ifdef _LP64
  1374     if (UseCompressedClassPointers) {
  1375       __ decode_klass_not_null(dest->as_register());
  1377 #endif
  1382 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1383   LIR_Address* addr = src->as_address_ptr();
  1384   Address from_addr = as_Address(addr);
  1386   if (VM_Version::supports_sse()) {
  1387     switch (ReadPrefetchInstr) {
  1388       case 0:
  1389         __ prefetchnta(from_addr); break;
  1390       case 1:
  1391         __ prefetcht0(from_addr); break;
  1392       case 2:
  1393         __ prefetcht2(from_addr); break;
  1394       default:
  1395         ShouldNotReachHere(); break;
  1397   } else if (VM_Version::supports_3dnow_prefetch()) {
  1398     __ prefetchr(from_addr);
  1403 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1404   LIR_Address* addr = src->as_address_ptr();
  1405   Address from_addr = as_Address(addr);
  1407   if (VM_Version::supports_sse()) {
  1408     switch (AllocatePrefetchInstr) {
  1409       case 0:
  1410         __ prefetchnta(from_addr); break;
  1411       case 1:
  1412         __ prefetcht0(from_addr); break;
  1413       case 2:
  1414         __ prefetcht2(from_addr); break;
  1415       case 3:
  1416         __ prefetchw(from_addr); break;
  1417       default:
  1418         ShouldNotReachHere(); break;
  1420   } else if (VM_Version::supports_3dnow_prefetch()) {
  1421     __ prefetchw(from_addr);
  1426 NEEDS_CLEANUP; // This could be static?
  1427 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1428   int elem_size = type2aelembytes(type);
  1429   switch (elem_size) {
  1430     case 1: return Address::times_1;
  1431     case 2: return Address::times_2;
  1432     case 4: return Address::times_4;
  1433     case 8: return Address::times_8;
  1435   ShouldNotReachHere();
  1436   return Address::no_scale;
  1440 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1441   switch (op->code()) {
  1442     case lir_idiv:
  1443     case lir_irem:
  1444       arithmetic_idiv(op->code(),
  1445                       op->in_opr1(),
  1446                       op->in_opr2(),
  1447                       op->in_opr3(),
  1448                       op->result_opr(),
  1449                       op->info());
  1450       break;
  1451     default:      ShouldNotReachHere(); break;
  1455 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1456 #ifdef ASSERT
  1457   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1458   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1459   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1460 #endif
  1462   if (op->cond() == lir_cond_always) {
  1463     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1464     __ jmp (*(op->label()));
  1465   } else {
  1466     Assembler::Condition acond = Assembler::zero;
  1467     if (op->code() == lir_cond_float_branch) {
  1468       assert(op->ublock() != NULL, "must have unordered successor");
  1469       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1470       switch(op->cond()) {
  1471         case lir_cond_equal:        acond = Assembler::equal;      break;
  1472         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1473         case lir_cond_less:         acond = Assembler::below;      break;
  1474         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1475         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1476         case lir_cond_greater:      acond = Assembler::above;      break;
  1477         default:                         ShouldNotReachHere();
  1479     } else {
  1480       switch (op->cond()) {
  1481         case lir_cond_equal:        acond = Assembler::equal;       break;
  1482         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1483         case lir_cond_less:         acond = Assembler::less;        break;
  1484         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1485         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1486         case lir_cond_greater:      acond = Assembler::greater;     break;
  1487         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1488         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1489         default:                         ShouldNotReachHere();
  1492     __ jcc(acond,*(op->label()));
  1496 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1497   LIR_Opr src  = op->in_opr();
  1498   LIR_Opr dest = op->result_opr();
  1500   switch (op->bytecode()) {
  1501     case Bytecodes::_i2l:
  1502 #ifdef _LP64
  1503       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1504 #else
  1505       move_regs(src->as_register(), dest->as_register_lo());
  1506       move_regs(src->as_register(), dest->as_register_hi());
  1507       __ sarl(dest->as_register_hi(), 31);
  1508 #endif // LP64
  1509       break;
  1511     case Bytecodes::_l2i:
  1512 #ifdef _LP64
  1513       __ movl(dest->as_register(), src->as_register_lo());
  1514 #else
  1515       move_regs(src->as_register_lo(), dest->as_register());
  1516 #endif
  1517       break;
  1519     case Bytecodes::_i2b:
  1520       move_regs(src->as_register(), dest->as_register());
  1521       __ sign_extend_byte(dest->as_register());
  1522       break;
  1524     case Bytecodes::_i2c:
  1525       move_regs(src->as_register(), dest->as_register());
  1526       __ andl(dest->as_register(), 0xFFFF);
  1527       break;
  1529     case Bytecodes::_i2s:
  1530       move_regs(src->as_register(), dest->as_register());
  1531       __ sign_extend_short(dest->as_register());
  1532       break;
  1535     case Bytecodes::_f2d:
  1536     case Bytecodes::_d2f:
  1537       if (dest->is_single_xmm()) {
  1538         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1539       } else if (dest->is_double_xmm()) {
  1540         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1541       } else {
  1542         assert(src->fpu() == dest->fpu(), "register must be equal");
  1543         // do nothing (float result is rounded later through spilling)
  1545       break;
  1547     case Bytecodes::_i2f:
  1548     case Bytecodes::_i2d:
  1549       if (dest->is_single_xmm()) {
  1550         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1551       } else if (dest->is_double_xmm()) {
  1552         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1553       } else {
  1554         assert(dest->fpu() == 0, "result must be on TOS");
  1555         __ movl(Address(rsp, 0), src->as_register());
  1556         __ fild_s(Address(rsp, 0));
  1558       break;
  1560     case Bytecodes::_f2i:
  1561     case Bytecodes::_d2i:
  1562       if (src->is_single_xmm()) {
  1563         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1564       } else if (src->is_double_xmm()) {
  1565         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1566       } else {
  1567         assert(src->fpu() == 0, "input must be on TOS");
  1568         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1569         __ fist_s(Address(rsp, 0));
  1570         __ movl(dest->as_register(), Address(rsp, 0));
  1571         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1574       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1575       assert(op->stub() != NULL, "stub required");
  1576       __ cmpl(dest->as_register(), 0x80000000);
  1577       __ jcc(Assembler::equal, *op->stub()->entry());
  1578       __ bind(*op->stub()->continuation());
  1579       break;
  1581     case Bytecodes::_l2f:
  1582     case Bytecodes::_l2d:
  1583       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1584       assert(dest->fpu() == 0, "result must be on TOS");
  1586       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1587       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1588       __ fild_d(Address(rsp, 0));
  1589       // float result is rounded later through spilling
  1590       break;
  1592     case Bytecodes::_f2l:
  1593     case Bytecodes::_d2l:
  1594       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1595       assert(src->fpu() == 0, "input must be on TOS");
  1596       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1598       // instruction sequence too long to inline it here
  1600         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1602       break;
  1604     default: ShouldNotReachHere();
  1608 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1609   if (op->init_check()) {
  1610     __ cmpb(Address(op->klass()->as_register(),
  1611                     InstanceKlass::init_state_offset()),
  1612                     InstanceKlass::fully_initialized);
  1613     add_debug_info_for_null_check_here(op->stub()->info());
  1614     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1616   __ allocate_object(op->obj()->as_register(),
  1617                      op->tmp1()->as_register(),
  1618                      op->tmp2()->as_register(),
  1619                      op->header_size(),
  1620                      op->object_size(),
  1621                      op->klass()->as_register(),
  1622                      *op->stub()->entry());
  1623   __ bind(*op->stub()->continuation());
  1626 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1627   Register len =  op->len()->as_register();
  1628   LP64_ONLY( __ movslq(len, len); )
  1630   if (UseSlowPath ||
  1631       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1632       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1633     __ jmp(*op->stub()->entry());
  1634   } else {
  1635     Register tmp1 = op->tmp1()->as_register();
  1636     Register tmp2 = op->tmp2()->as_register();
  1637     Register tmp3 = op->tmp3()->as_register();
  1638     if (len == tmp1) {
  1639       tmp1 = tmp3;
  1640     } else if (len == tmp2) {
  1641       tmp2 = tmp3;
  1642     } else if (len == tmp3) {
  1643       // everything is ok
  1644     } else {
  1645       __ mov(tmp3, len);
  1647     __ allocate_array(op->obj()->as_register(),
  1648                       len,
  1649                       tmp1,
  1650                       tmp2,
  1651                       arrayOopDesc::header_size(op->type()),
  1652                       array_element_size(op->type()),
  1653                       op->klass()->as_register(),
  1654                       *op->stub()->entry());
  1656   __ bind(*op->stub()->continuation());
  1659 void LIR_Assembler::type_profile_helper(Register mdo,
  1660                                         ciMethodData *md, ciProfileData *data,
  1661                                         Register recv, Label* update_done) {
  1662   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1663     Label next_test;
  1664     // See if the receiver is receiver[n].
  1665     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
  1666     __ jccb(Assembler::notEqual, next_test);
  1667     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
  1668     __ addptr(data_addr, DataLayout::counter_increment);
  1669     __ jmp(*update_done);
  1670     __ bind(next_test);
  1673   // Didn't find receiver; find next empty slot and fill it in
  1674   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1675     Label next_test;
  1676     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
  1677     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
  1678     __ jccb(Assembler::notEqual, next_test);
  1679     __ movptr(recv_addr, recv);
  1680     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
  1681     __ jmp(*update_done);
  1682     __ bind(next_test);
  1686 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  1687   // we always need a stub for the failure case.
  1688   CodeStub* stub = op->stub();
  1689   Register obj = op->object()->as_register();
  1690   Register k_RInfo = op->tmp1()->as_register();
  1691   Register klass_RInfo = op->tmp2()->as_register();
  1692   Register dst = op->result_opr()->as_register();
  1693   ciKlass* k = op->klass();
  1694   Register Rtmp1 = noreg;
  1696   // check if it needs to be profiled
  1697   ciMethodData* md;
  1698   ciProfileData* data;
  1700   if (op->should_profile()) {
  1701     ciMethod* method = op->profiled_method();
  1702     assert(method != NULL, "Should have method");
  1703     int bci = op->profiled_bci();
  1704     md = method->method_data_or_null();
  1705     assert(md != NULL, "Sanity");
  1706     data = md->bci_to_data(bci);
  1707     assert(data != NULL,                "need data for type check");
  1708     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1710   Label profile_cast_success, profile_cast_failure;
  1711   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  1712   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  1714   if (obj == k_RInfo) {
  1715     k_RInfo = dst;
  1716   } else if (obj == klass_RInfo) {
  1717     klass_RInfo = dst;
  1719   if (k->is_loaded() && !UseCompressedClassPointers) {
  1720     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1721   } else {
  1722     Rtmp1 = op->tmp3()->as_register();
  1723     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1726   assert_different_registers(obj, k_RInfo, klass_RInfo);
  1727   if (!k->is_loaded()) {
  1728     klass2reg_with_patching(k_RInfo, op->info_for_patch());
  1729   } else {
  1730 #ifdef _LP64
  1731     __ mov_metadata(k_RInfo, k->constant_encoding());
  1732 #endif // _LP64
  1734   assert(obj != k_RInfo, "must be different");
  1736   __ cmpptr(obj, (int32_t)NULL_WORD);
  1737   if (op->should_profile()) {
  1738     Label not_null;
  1739     __ jccb(Assembler::notEqual, not_null);
  1740     // Object is null; update MDO and exit
  1741     Register mdo  = klass_RInfo;
  1742     __ mov_metadata(mdo, md->constant_encoding());
  1743     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1744     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1745     __ orl(data_addr, header_bits);
  1746     __ jmp(*obj_is_null);
  1747     __ bind(not_null);
  1748   } else {
  1749     __ jcc(Assembler::equal, *obj_is_null);
  1751   __ verify_oop(obj);
  1753   if (op->fast_check()) {
  1754     // get object class
  1755     // not a safepoint as obj null check happens earlier
  1756 #ifdef _LP64
  1757     if (UseCompressedClassPointers) {
  1758       __ load_klass(Rtmp1, obj);
  1759       __ cmpptr(k_RInfo, Rtmp1);
  1760     } else {
  1761       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1763 #else
  1764     if (k->is_loaded()) {
  1765       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
  1766     } else {
  1767       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1769 #endif
  1770     __ jcc(Assembler::notEqual, *failure_target);
  1771     // successful cast, fall through to profile or jump
  1772   } else {
  1773     // get object class
  1774     // not a safepoint as obj null check happens earlier
  1775     __ load_klass(klass_RInfo, obj);
  1776     if (k->is_loaded()) {
  1777       // See if we get an immediate positive hit
  1778 #ifdef _LP64
  1779       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1780 #else
  1781       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1782 #endif // _LP64
  1783       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
  1784         __ jcc(Assembler::notEqual, *failure_target);
  1785         // successful cast, fall through to profile or jump
  1786       } else {
  1787         // See if we get an immediate positive hit
  1788         __ jcc(Assembler::equal, *success_target);
  1789         // check for self
  1790 #ifdef _LP64
  1791         __ cmpptr(klass_RInfo, k_RInfo);
  1792 #else
  1793         __ cmpklass(klass_RInfo, k->constant_encoding());
  1794 #endif // _LP64
  1795         __ jcc(Assembler::equal, *success_target);
  1797         __ push(klass_RInfo);
  1798 #ifdef _LP64
  1799         __ push(k_RInfo);
  1800 #else
  1801         __ pushklass(k->constant_encoding());
  1802 #endif // _LP64
  1803         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1804         __ pop(klass_RInfo);
  1805         __ pop(klass_RInfo);
  1806         // result is a boolean
  1807         __ cmpl(klass_RInfo, 0);
  1808         __ jcc(Assembler::equal, *failure_target);
  1809         // successful cast, fall through to profile or jump
  1811     } else {
  1812       // perform the fast part of the checking logic
  1813       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1814       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1815       __ push(klass_RInfo);
  1816       __ push(k_RInfo);
  1817       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1818       __ pop(klass_RInfo);
  1819       __ pop(k_RInfo);
  1820       // result is a boolean
  1821       __ cmpl(k_RInfo, 0);
  1822       __ jcc(Assembler::equal, *failure_target);
  1823       // successful cast, fall through to profile or jump
  1826   if (op->should_profile()) {
  1827     Register mdo  = klass_RInfo, recv = k_RInfo;
  1828     __ bind(profile_cast_success);
  1829     __ mov_metadata(mdo, md->constant_encoding());
  1830     __ load_klass(recv, obj);
  1831     Label update_done;
  1832     type_profile_helper(mdo, md, data, recv, success);
  1833     __ jmp(*success);
  1835     __ bind(profile_cast_failure);
  1836     __ mov_metadata(mdo, md->constant_encoding());
  1837     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1838     __ subptr(counter_addr, DataLayout::counter_increment);
  1839     __ jmp(*failure);
  1841   __ jmp(*success);
  1845 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1846   LIR_Code code = op->code();
  1847   if (code == lir_store_check) {
  1848     Register value = op->object()->as_register();
  1849     Register array = op->array()->as_register();
  1850     Register k_RInfo = op->tmp1()->as_register();
  1851     Register klass_RInfo = op->tmp2()->as_register();
  1852     Register Rtmp1 = op->tmp3()->as_register();
  1854     CodeStub* stub = op->stub();
  1856     // check if it needs to be profiled
  1857     ciMethodData* md;
  1858     ciProfileData* data;
  1860     if (op->should_profile()) {
  1861       ciMethod* method = op->profiled_method();
  1862       assert(method != NULL, "Should have method");
  1863       int bci = op->profiled_bci();
  1864       md = method->method_data_or_null();
  1865       assert(md != NULL, "Sanity");
  1866       data = md->bci_to_data(bci);
  1867       assert(data != NULL,                "need data for type check");
  1868       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1870     Label profile_cast_success, profile_cast_failure, done;
  1871     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  1872     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  1874     __ cmpptr(value, (int32_t)NULL_WORD);
  1875     if (op->should_profile()) {
  1876       Label not_null;
  1877       __ jccb(Assembler::notEqual, not_null);
  1878       // Object is null; update MDO and exit
  1879       Register mdo  = klass_RInfo;
  1880       __ mov_metadata(mdo, md->constant_encoding());
  1881       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1882       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1883       __ orl(data_addr, header_bits);
  1884       __ jmp(done);
  1885       __ bind(not_null);
  1886     } else {
  1887       __ jcc(Assembler::equal, done);
  1890     add_debug_info_for_null_check_here(op->info_for_exception());
  1891     __ load_klass(k_RInfo, array);
  1892     __ load_klass(klass_RInfo, value);
  1894     // get instance klass (it's already uncompressed)
  1895     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
  1896     // perform the fast part of the checking logic
  1897     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1898     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1899     __ push(klass_RInfo);
  1900     __ push(k_RInfo);
  1901     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1902     __ pop(klass_RInfo);
  1903     __ pop(k_RInfo);
  1904     // result is a boolean
  1905     __ cmpl(k_RInfo, 0);
  1906     __ jcc(Assembler::equal, *failure_target);
  1907     // fall through to the success case
  1909     if (op->should_profile()) {
  1910       Register mdo  = klass_RInfo, recv = k_RInfo;
  1911       __ bind(profile_cast_success);
  1912       __ mov_metadata(mdo, md->constant_encoding());
  1913       __ load_klass(recv, value);
  1914       Label update_done;
  1915       type_profile_helper(mdo, md, data, recv, &done);
  1916       __ jmpb(done);
  1918       __ bind(profile_cast_failure);
  1919       __ mov_metadata(mdo, md->constant_encoding());
  1920       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1921       __ subptr(counter_addr, DataLayout::counter_increment);
  1922       __ jmp(*stub->entry());
  1925     __ bind(done);
  1926   } else
  1927     if (code == lir_checkcast) {
  1928       Register obj = op->object()->as_register();
  1929       Register dst = op->result_opr()->as_register();
  1930       Label success;
  1931       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  1932       __ bind(success);
  1933       if (dst != obj) {
  1934         __ mov(dst, obj);
  1936     } else
  1937       if (code == lir_instanceof) {
  1938         Register obj = op->object()->as_register();
  1939         Register dst = op->result_opr()->as_register();
  1940         Label success, failure, done;
  1941         emit_typecheck_helper(op, &success, &failure, &failure);
  1942         __ bind(failure);
  1943         __ xorptr(dst, dst);
  1944         __ jmpb(done);
  1945         __ bind(success);
  1946         __ movptr(dst, 1);
  1947         __ bind(done);
  1948       } else {
  1949         ShouldNotReachHere();
  1955 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1956   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1957     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1958     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1959     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1960     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1961     Register addr = op->addr()->as_register();
  1962     if (os::is_MP()) {
  1963       __ lock();
  1965     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1967   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1968     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1969     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1970     Register newval = op->new_value()->as_register();
  1971     Register cmpval = op->cmp_value()->as_register();
  1972     assert(cmpval == rax, "wrong register");
  1973     assert(newval != NULL, "new val must be register");
  1974     assert(cmpval != newval, "cmp and new values must be in different registers");
  1975     assert(cmpval != addr, "cmp and addr must be in different registers");
  1976     assert(newval != addr, "new value and addr must be in different registers");
  1978     if ( op->code() == lir_cas_obj) {
  1979 #ifdef _LP64
  1980       if (UseCompressedOops) {
  1981         __ encode_heap_oop(cmpval);
  1982         __ mov(rscratch1, newval);
  1983         __ encode_heap_oop(rscratch1);
  1984         if (os::is_MP()) {
  1985           __ lock();
  1987         // cmpval (rax) is implicitly used by this instruction
  1988         __ cmpxchgl(rscratch1, Address(addr, 0));
  1989       } else
  1990 #endif
  1992         if (os::is_MP()) {
  1993           __ lock();
  1995         __ cmpxchgptr(newval, Address(addr, 0));
  1997     } else {
  1998       assert(op->code() == lir_cas_int, "lir_cas_int expected");
  1999       if (os::is_MP()) {
  2000         __ lock();
  2002       __ cmpxchgl(newval, Address(addr, 0));
  2004 #ifdef _LP64
  2005   } else if (op->code() == lir_cas_long) {
  2006     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  2007     Register newval = op->new_value()->as_register_lo();
  2008     Register cmpval = op->cmp_value()->as_register_lo();
  2009     assert(cmpval == rax, "wrong register");
  2010     assert(newval != NULL, "new val must be register");
  2011     assert(cmpval != newval, "cmp and new values must be in different registers");
  2012     assert(cmpval != addr, "cmp and addr must be in different registers");
  2013     assert(newval != addr, "new value and addr must be in different registers");
  2014     if (os::is_MP()) {
  2015       __ lock();
  2017     __ cmpxchgq(newval, Address(addr, 0));
  2018 #endif // _LP64
  2019   } else {
  2020     Unimplemented();
  2024 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  2025   Assembler::Condition acond, ncond;
  2026   switch (condition) {
  2027     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  2028     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  2029     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  2030     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  2031     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  2032     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  2033     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  2034     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  2035     default:                    ShouldNotReachHere();
  2038   if (opr1->is_cpu_register()) {
  2039     reg2reg(opr1, result);
  2040   } else if (opr1->is_stack()) {
  2041     stack2reg(opr1, result, result->type());
  2042   } else if (opr1->is_constant()) {
  2043     const2reg(opr1, result, lir_patch_none, NULL);
  2044   } else {
  2045     ShouldNotReachHere();
  2048   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  2049     // optimized version that does not require a branch
  2050     if (opr2->is_single_cpu()) {
  2051       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  2052       __ cmov(ncond, result->as_register(), opr2->as_register());
  2053     } else if (opr2->is_double_cpu()) {
  2054       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2055       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2056       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  2057       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  2058     } else if (opr2->is_single_stack()) {
  2059       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  2060     } else if (opr2->is_double_stack()) {
  2061       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  2062       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  2063     } else {
  2064       ShouldNotReachHere();
  2067   } else {
  2068     Label skip;
  2069     __ jcc (acond, skip);
  2070     if (opr2->is_cpu_register()) {
  2071       reg2reg(opr2, result);
  2072     } else if (opr2->is_stack()) {
  2073       stack2reg(opr2, result, result->type());
  2074     } else if (opr2->is_constant()) {
  2075       const2reg(opr2, result, lir_patch_none, NULL);
  2076     } else {
  2077       ShouldNotReachHere();
  2079     __ bind(skip);
  2084 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  2085   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  2087   if (left->is_single_cpu()) {
  2088     assert(left == dest, "left and dest must be equal");
  2089     Register lreg = left->as_register();
  2091     if (right->is_single_cpu()) {
  2092       // cpu register - cpu register
  2093       Register rreg = right->as_register();
  2094       switch (code) {
  2095         case lir_add: __ addl (lreg, rreg); break;
  2096         case lir_sub: __ subl (lreg, rreg); break;
  2097         case lir_mul: __ imull(lreg, rreg); break;
  2098         default:      ShouldNotReachHere();
  2101     } else if (right->is_stack()) {
  2102       // cpu register - stack
  2103       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2104       switch (code) {
  2105         case lir_add: __ addl(lreg, raddr); break;
  2106         case lir_sub: __ subl(lreg, raddr); break;
  2107         default:      ShouldNotReachHere();
  2110     } else if (right->is_constant()) {
  2111       // cpu register - constant
  2112       jint c = right->as_constant_ptr()->as_jint();
  2113       switch (code) {
  2114         case lir_add: {
  2115           __ incrementl(lreg, c);
  2116           break;
  2118         case lir_sub: {
  2119           __ decrementl(lreg, c);
  2120           break;
  2122         default: ShouldNotReachHere();
  2125     } else {
  2126       ShouldNotReachHere();
  2129   } else if (left->is_double_cpu()) {
  2130     assert(left == dest, "left and dest must be equal");
  2131     Register lreg_lo = left->as_register_lo();
  2132     Register lreg_hi = left->as_register_hi();
  2134     if (right->is_double_cpu()) {
  2135       // cpu register - cpu register
  2136       Register rreg_lo = right->as_register_lo();
  2137       Register rreg_hi = right->as_register_hi();
  2138       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2139       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2140       switch (code) {
  2141         case lir_add:
  2142           __ addptr(lreg_lo, rreg_lo);
  2143           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2144           break;
  2145         case lir_sub:
  2146           __ subptr(lreg_lo, rreg_lo);
  2147           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2148           break;
  2149         case lir_mul:
  2150 #ifdef _LP64
  2151           __ imulq(lreg_lo, rreg_lo);
  2152 #else
  2153           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2154           __ imull(lreg_hi, rreg_lo);
  2155           __ imull(rreg_hi, lreg_lo);
  2156           __ addl (rreg_hi, lreg_hi);
  2157           __ mull (rreg_lo);
  2158           __ addl (lreg_hi, rreg_hi);
  2159 #endif // _LP64
  2160           break;
  2161         default:
  2162           ShouldNotReachHere();
  2165     } else if (right->is_constant()) {
  2166       // cpu register - constant
  2167 #ifdef _LP64
  2168       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2169       __ movptr(r10, (intptr_t) c);
  2170       switch (code) {
  2171         case lir_add:
  2172           __ addptr(lreg_lo, r10);
  2173           break;
  2174         case lir_sub:
  2175           __ subptr(lreg_lo, r10);
  2176           break;
  2177         default:
  2178           ShouldNotReachHere();
  2180 #else
  2181       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2182       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2183       switch (code) {
  2184         case lir_add:
  2185           __ addptr(lreg_lo, c_lo);
  2186           __ adcl(lreg_hi, c_hi);
  2187           break;
  2188         case lir_sub:
  2189           __ subptr(lreg_lo, c_lo);
  2190           __ sbbl(lreg_hi, c_hi);
  2191           break;
  2192         default:
  2193           ShouldNotReachHere();
  2195 #endif // _LP64
  2197     } else {
  2198       ShouldNotReachHere();
  2201   } else if (left->is_single_xmm()) {
  2202     assert(left == dest, "left and dest must be equal");
  2203     XMMRegister lreg = left->as_xmm_float_reg();
  2205     if (right->is_single_xmm()) {
  2206       XMMRegister rreg = right->as_xmm_float_reg();
  2207       switch (code) {
  2208         case lir_add: __ addss(lreg, rreg);  break;
  2209         case lir_sub: __ subss(lreg, rreg);  break;
  2210         case lir_mul_strictfp: // fall through
  2211         case lir_mul: __ mulss(lreg, rreg);  break;
  2212         case lir_div_strictfp: // fall through
  2213         case lir_div: __ divss(lreg, rreg);  break;
  2214         default: ShouldNotReachHere();
  2216     } else {
  2217       Address raddr;
  2218       if (right->is_single_stack()) {
  2219         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2220       } else if (right->is_constant()) {
  2221         // hack for now
  2222         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2223       } else {
  2224         ShouldNotReachHere();
  2226       switch (code) {
  2227         case lir_add: __ addss(lreg, raddr);  break;
  2228         case lir_sub: __ subss(lreg, raddr);  break;
  2229         case lir_mul_strictfp: // fall through
  2230         case lir_mul: __ mulss(lreg, raddr);  break;
  2231         case lir_div_strictfp: // fall through
  2232         case lir_div: __ divss(lreg, raddr);  break;
  2233         default: ShouldNotReachHere();
  2237   } else if (left->is_double_xmm()) {
  2238     assert(left == dest, "left and dest must be equal");
  2240     XMMRegister lreg = left->as_xmm_double_reg();
  2241     if (right->is_double_xmm()) {
  2242       XMMRegister rreg = right->as_xmm_double_reg();
  2243       switch (code) {
  2244         case lir_add: __ addsd(lreg, rreg);  break;
  2245         case lir_sub: __ subsd(lreg, rreg);  break;
  2246         case lir_mul_strictfp: // fall through
  2247         case lir_mul: __ mulsd(lreg, rreg);  break;
  2248         case lir_div_strictfp: // fall through
  2249         case lir_div: __ divsd(lreg, rreg);  break;
  2250         default: ShouldNotReachHere();
  2252     } else {
  2253       Address raddr;
  2254       if (right->is_double_stack()) {
  2255         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2256       } else if (right->is_constant()) {
  2257         // hack for now
  2258         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2259       } else {
  2260         ShouldNotReachHere();
  2262       switch (code) {
  2263         case lir_add: __ addsd(lreg, raddr);  break;
  2264         case lir_sub: __ subsd(lreg, raddr);  break;
  2265         case lir_mul_strictfp: // fall through
  2266         case lir_mul: __ mulsd(lreg, raddr);  break;
  2267         case lir_div_strictfp: // fall through
  2268         case lir_div: __ divsd(lreg, raddr);  break;
  2269         default: ShouldNotReachHere();
  2273   } else if (left->is_single_fpu()) {
  2274     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2276     if (right->is_single_fpu()) {
  2277       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2279     } else {
  2280       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2281       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2283       Address raddr;
  2284       if (right->is_single_stack()) {
  2285         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2286       } else if (right->is_constant()) {
  2287         address const_addr = float_constant(right->as_jfloat());
  2288         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2289         // hack for now
  2290         raddr = __ as_Address(InternalAddress(const_addr));
  2291       } else {
  2292         ShouldNotReachHere();
  2295       switch (code) {
  2296         case lir_add: __ fadd_s(raddr); break;
  2297         case lir_sub: __ fsub_s(raddr); break;
  2298         case lir_mul_strictfp: // fall through
  2299         case lir_mul: __ fmul_s(raddr); break;
  2300         case lir_div_strictfp: // fall through
  2301         case lir_div: __ fdiv_s(raddr); break;
  2302         default:      ShouldNotReachHere();
  2306   } else if (left->is_double_fpu()) {
  2307     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2309     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2310       // Double values require special handling for strictfp mul/div on x86
  2311       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2312       __ fmulp(left->fpu_regnrLo() + 1);
  2315     if (right->is_double_fpu()) {
  2316       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2318     } else {
  2319       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2320       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2322       Address raddr;
  2323       if (right->is_double_stack()) {
  2324         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2325       } else if (right->is_constant()) {
  2326         // hack for now
  2327         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2328       } else {
  2329         ShouldNotReachHere();
  2332       switch (code) {
  2333         case lir_add: __ fadd_d(raddr); break;
  2334         case lir_sub: __ fsub_d(raddr); break;
  2335         case lir_mul_strictfp: // fall through
  2336         case lir_mul: __ fmul_d(raddr); break;
  2337         case lir_div_strictfp: // fall through
  2338         case lir_div: __ fdiv_d(raddr); break;
  2339         default: ShouldNotReachHere();
  2343     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2344       // Double values require special handling for strictfp mul/div on x86
  2345       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2346       __ fmulp(dest->fpu_regnrLo() + 1);
  2349   } else if (left->is_single_stack() || left->is_address()) {
  2350     assert(left == dest, "left and dest must be equal");
  2352     Address laddr;
  2353     if (left->is_single_stack()) {
  2354       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2355     } else if (left->is_address()) {
  2356       laddr = as_Address(left->as_address_ptr());
  2357     } else {
  2358       ShouldNotReachHere();
  2361     if (right->is_single_cpu()) {
  2362       Register rreg = right->as_register();
  2363       switch (code) {
  2364         case lir_add: __ addl(laddr, rreg); break;
  2365         case lir_sub: __ subl(laddr, rreg); break;
  2366         default:      ShouldNotReachHere();
  2368     } else if (right->is_constant()) {
  2369       jint c = right->as_constant_ptr()->as_jint();
  2370       switch (code) {
  2371         case lir_add: {
  2372           __ incrementl(laddr, c);
  2373           break;
  2375         case lir_sub: {
  2376           __ decrementl(laddr, c);
  2377           break;
  2379         default: ShouldNotReachHere();
  2381     } else {
  2382       ShouldNotReachHere();
  2385   } else {
  2386     ShouldNotReachHere();
  2390 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2391   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2392   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2393   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2395   bool left_is_tos = (left_index == 0);
  2396   bool dest_is_tos = (dest_index == 0);
  2397   int non_tos_index = (left_is_tos ? right_index : left_index);
  2399   switch (code) {
  2400     case lir_add:
  2401       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2402       else if (dest_is_tos)    __ fadd (non_tos_index);
  2403       else                     __ fadda(non_tos_index);
  2404       break;
  2406     case lir_sub:
  2407       if (left_is_tos) {
  2408         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2409         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2410         else                   __ fsubra(non_tos_index);
  2411       } else {
  2412         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2413         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2414         else                   __ fsuba (non_tos_index);
  2416       break;
  2418     case lir_mul_strictfp: // fall through
  2419     case lir_mul:
  2420       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2421       else if (dest_is_tos)    __ fmul (non_tos_index);
  2422       else                     __ fmula(non_tos_index);
  2423       break;
  2425     case lir_div_strictfp: // fall through
  2426     case lir_div:
  2427       if (left_is_tos) {
  2428         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2429         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2430         else                   __ fdivra(non_tos_index);
  2431       } else {
  2432         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2433         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2434         else                   __ fdiva (non_tos_index);
  2436       break;
  2438     case lir_rem:
  2439       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2440       __ fremr(noreg);
  2441       break;
  2443     default:
  2444       ShouldNotReachHere();
  2449 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2450   if (value->is_double_xmm()) {
  2451     switch(code) {
  2452       case lir_abs :
  2454           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2455             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2457           __ andpd(dest->as_xmm_double_reg(),
  2458                     ExternalAddress((address)double_signmask_pool));
  2460         break;
  2462       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2463       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2464       default      : ShouldNotReachHere();
  2467   } else if (value->is_double_fpu()) {
  2468     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2469     switch(code) {
  2470       case lir_log   : __ flog() ; break;
  2471       case lir_log10 : __ flog10() ; break;
  2472       case lir_abs   : __ fabs() ; break;
  2473       case lir_sqrt  : __ fsqrt(); break;
  2474       case lir_sin   :
  2475         // Should consider not saving rbx, if not necessary
  2476         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2477         break;
  2478       case lir_cos :
  2479         // Should consider not saving rbx, if not necessary
  2480         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2481         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2482         break;
  2483       case lir_tan :
  2484         // Should consider not saving rbx, if not necessary
  2485         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2486         break;
  2487       case lir_exp :
  2488         __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
  2489         break;
  2490       case lir_pow :
  2491         __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
  2492         break;
  2493       default      : ShouldNotReachHere();
  2495   } else {
  2496     Unimplemented();
  2500 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2501   // assert(left->destroys_register(), "check");
  2502   if (left->is_single_cpu()) {
  2503     Register reg = left->as_register();
  2504     if (right->is_constant()) {
  2505       int val = right->as_constant_ptr()->as_jint();
  2506       switch (code) {
  2507         case lir_logic_and: __ andl (reg, val); break;
  2508         case lir_logic_or:  __ orl  (reg, val); break;
  2509         case lir_logic_xor: __ xorl (reg, val); break;
  2510         default: ShouldNotReachHere();
  2512     } else if (right->is_stack()) {
  2513       // added support for stack operands
  2514       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2515       switch (code) {
  2516         case lir_logic_and: __ andl (reg, raddr); break;
  2517         case lir_logic_or:  __ orl  (reg, raddr); break;
  2518         case lir_logic_xor: __ xorl (reg, raddr); break;
  2519         default: ShouldNotReachHere();
  2521     } else {
  2522       Register rright = right->as_register();
  2523       switch (code) {
  2524         case lir_logic_and: __ andptr (reg, rright); break;
  2525         case lir_logic_or : __ orptr  (reg, rright); break;
  2526         case lir_logic_xor: __ xorptr (reg, rright); break;
  2527         default: ShouldNotReachHere();
  2530     move_regs(reg, dst->as_register());
  2531   } else {
  2532     Register l_lo = left->as_register_lo();
  2533     Register l_hi = left->as_register_hi();
  2534     if (right->is_constant()) {
  2535 #ifdef _LP64
  2536       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2537       switch (code) {
  2538         case lir_logic_and:
  2539           __ andq(l_lo, rscratch1);
  2540           break;
  2541         case lir_logic_or:
  2542           __ orq(l_lo, rscratch1);
  2543           break;
  2544         case lir_logic_xor:
  2545           __ xorq(l_lo, rscratch1);
  2546           break;
  2547         default: ShouldNotReachHere();
  2549 #else
  2550       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2551       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2552       switch (code) {
  2553         case lir_logic_and:
  2554           __ andl(l_lo, r_lo);
  2555           __ andl(l_hi, r_hi);
  2556           break;
  2557         case lir_logic_or:
  2558           __ orl(l_lo, r_lo);
  2559           __ orl(l_hi, r_hi);
  2560           break;
  2561         case lir_logic_xor:
  2562           __ xorl(l_lo, r_lo);
  2563           __ xorl(l_hi, r_hi);
  2564           break;
  2565         default: ShouldNotReachHere();
  2567 #endif // _LP64
  2568     } else {
  2569 #ifdef _LP64
  2570       Register r_lo;
  2571       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
  2572         r_lo = right->as_register();
  2573       } else {
  2574         r_lo = right->as_register_lo();
  2576 #else
  2577       Register r_lo = right->as_register_lo();
  2578       Register r_hi = right->as_register_hi();
  2579       assert(l_lo != r_hi, "overwriting registers");
  2580 #endif
  2581       switch (code) {
  2582         case lir_logic_and:
  2583           __ andptr(l_lo, r_lo);
  2584           NOT_LP64(__ andptr(l_hi, r_hi);)
  2585           break;
  2586         case lir_logic_or:
  2587           __ orptr(l_lo, r_lo);
  2588           NOT_LP64(__ orptr(l_hi, r_hi);)
  2589           break;
  2590         case lir_logic_xor:
  2591           __ xorptr(l_lo, r_lo);
  2592           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2593           break;
  2594         default: ShouldNotReachHere();
  2598     Register dst_lo = dst->as_register_lo();
  2599     Register dst_hi = dst->as_register_hi();
  2601 #ifdef _LP64
  2602     move_regs(l_lo, dst_lo);
  2603 #else
  2604     if (dst_lo == l_hi) {
  2605       assert(dst_hi != l_lo, "overwriting registers");
  2606       move_regs(l_hi, dst_hi);
  2607       move_regs(l_lo, dst_lo);
  2608     } else {
  2609       assert(dst_lo != l_hi, "overwriting registers");
  2610       move_regs(l_lo, dst_lo);
  2611       move_regs(l_hi, dst_hi);
  2613 #endif // _LP64
  2618 // we assume that rax, and rdx can be overwritten
  2619 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2621   assert(left->is_single_cpu(),   "left must be register");
  2622   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2623   assert(result->is_single_cpu(), "result must be register");
  2625   //  assert(left->destroys_register(), "check");
  2626   //  assert(right->destroys_register(), "check");
  2628   Register lreg = left->as_register();
  2629   Register dreg = result->as_register();
  2631   if (right->is_constant()) {
  2632     int divisor = right->as_constant_ptr()->as_jint();
  2633     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2634     if (code == lir_idiv) {
  2635       assert(lreg == rax, "must be rax,");
  2636       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2637       __ cdql(); // sign extend into rdx:rax
  2638       if (divisor == 2) {
  2639         __ subl(lreg, rdx);
  2640       } else {
  2641         __ andl(rdx, divisor - 1);
  2642         __ addl(lreg, rdx);
  2644       __ sarl(lreg, log2_intptr(divisor));
  2645       move_regs(lreg, dreg);
  2646     } else if (code == lir_irem) {
  2647       Label done;
  2648       __ mov(dreg, lreg);
  2649       __ andl(dreg, 0x80000000 | (divisor - 1));
  2650       __ jcc(Assembler::positive, done);
  2651       __ decrement(dreg);
  2652       __ orl(dreg, ~(divisor - 1));
  2653       __ increment(dreg);
  2654       __ bind(done);
  2655     } else {
  2656       ShouldNotReachHere();
  2658   } else {
  2659     Register rreg = right->as_register();
  2660     assert(lreg == rax, "left register must be rax,");
  2661     assert(rreg != rdx, "right register must not be rdx");
  2662     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2664     move_regs(lreg, rax);
  2666     int idivl_offset = __ corrected_idivl(rreg);
  2667     add_debug_info_for_div0(idivl_offset, info);
  2668     if (code == lir_irem) {
  2669       move_regs(rdx, dreg); // result is in rdx
  2670     } else {
  2671       move_regs(rax, dreg);
  2677 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2678   if (opr1->is_single_cpu()) {
  2679     Register reg1 = opr1->as_register();
  2680     if (opr2->is_single_cpu()) {
  2681       // cpu register - cpu register
  2682       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2683         __ cmpptr(reg1, opr2->as_register());
  2684       } else {
  2685         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2686         __ cmpl(reg1, opr2->as_register());
  2688     } else if (opr2->is_stack()) {
  2689       // cpu register - stack
  2690       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2691         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2692       } else {
  2693         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2695     } else if (opr2->is_constant()) {
  2696       // cpu register - constant
  2697       LIR_Const* c = opr2->as_constant_ptr();
  2698       if (c->type() == T_INT) {
  2699         __ cmpl(reg1, c->as_jint());
  2700       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2701         // In 64bit oops are single register
  2702         jobject o = c->as_jobject();
  2703         if (o == NULL) {
  2704           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2705         } else {
  2706 #ifdef _LP64
  2707           __ movoop(rscratch1, o);
  2708           __ cmpptr(reg1, rscratch1);
  2709 #else
  2710           __ cmpoop(reg1, c->as_jobject());
  2711 #endif // _LP64
  2713       } else {
  2714         fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
  2716       // cpu register - address
  2717     } else if (opr2->is_address()) {
  2718       if (op->info() != NULL) {
  2719         add_debug_info_for_null_check_here(op->info());
  2721       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2722     } else {
  2723       ShouldNotReachHere();
  2726   } else if(opr1->is_double_cpu()) {
  2727     Register xlo = opr1->as_register_lo();
  2728     Register xhi = opr1->as_register_hi();
  2729     if (opr2->is_double_cpu()) {
  2730 #ifdef _LP64
  2731       __ cmpptr(xlo, opr2->as_register_lo());
  2732 #else
  2733       // cpu register - cpu register
  2734       Register ylo = opr2->as_register_lo();
  2735       Register yhi = opr2->as_register_hi();
  2736       __ subl(xlo, ylo);
  2737       __ sbbl(xhi, yhi);
  2738       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2739         __ orl(xhi, xlo);
  2741 #endif // _LP64
  2742     } else if (opr2->is_constant()) {
  2743       // cpu register - constant 0
  2744       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2745 #ifdef _LP64
  2746       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2747 #else
  2748       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2749       __ orl(xhi, xlo);
  2750 #endif // _LP64
  2751     } else {
  2752       ShouldNotReachHere();
  2755   } else if (opr1->is_single_xmm()) {
  2756     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2757     if (opr2->is_single_xmm()) {
  2758       // xmm register - xmm register
  2759       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2760     } else if (opr2->is_stack()) {
  2761       // xmm register - stack
  2762       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2763     } else if (opr2->is_constant()) {
  2764       // xmm register - constant
  2765       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2766     } else if (opr2->is_address()) {
  2767       // xmm register - address
  2768       if (op->info() != NULL) {
  2769         add_debug_info_for_null_check_here(op->info());
  2771       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2772     } else {
  2773       ShouldNotReachHere();
  2776   } else if (opr1->is_double_xmm()) {
  2777     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2778     if (opr2->is_double_xmm()) {
  2779       // xmm register - xmm register
  2780       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2781     } else if (opr2->is_stack()) {
  2782       // xmm register - stack
  2783       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2784     } else if (opr2->is_constant()) {
  2785       // xmm register - constant
  2786       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2787     } else if (opr2->is_address()) {
  2788       // xmm register - address
  2789       if (op->info() != NULL) {
  2790         add_debug_info_for_null_check_here(op->info());
  2792       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2793     } else {
  2794       ShouldNotReachHere();
  2797   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2798     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2799     assert(opr2->is_fpu_register(), "both must be registers");
  2800     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2802   } else if (opr1->is_address() && opr2->is_constant()) {
  2803     LIR_Const* c = opr2->as_constant_ptr();
  2804 #ifdef _LP64
  2805     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2806       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2807       __ movoop(rscratch1, c->as_jobject());
  2809 #endif // LP64
  2810     if (op->info() != NULL) {
  2811       add_debug_info_for_null_check_here(op->info());
  2813     // special case: address - constant
  2814     LIR_Address* addr = opr1->as_address_ptr();
  2815     if (c->type() == T_INT) {
  2816       __ cmpl(as_Address(addr), c->as_jint());
  2817     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2818 #ifdef _LP64
  2819       // %%% Make this explode if addr isn't reachable until we figure out a
  2820       // better strategy by giving noreg as the temp for as_Address
  2821       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2822 #else
  2823       __ cmpoop(as_Address(addr), c->as_jobject());
  2824 #endif // _LP64
  2825     } else {
  2826       ShouldNotReachHere();
  2829   } else {
  2830     ShouldNotReachHere();
  2834 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2835   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2836     if (left->is_single_xmm()) {
  2837       assert(right->is_single_xmm(), "must match");
  2838       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2839     } else if (left->is_double_xmm()) {
  2840       assert(right->is_double_xmm(), "must match");
  2841       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2843     } else {
  2844       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2845       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2847       assert(left->fpu() == 0, "left must be on TOS");
  2848       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2849                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2851   } else {
  2852     assert(code == lir_cmp_l2i, "check");
  2853 #ifdef _LP64
  2854     Label done;
  2855     Register dest = dst->as_register();
  2856     __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2857     __ movl(dest, -1);
  2858     __ jccb(Assembler::less, done);
  2859     __ set_byte_if_not_zero(dest);
  2860     __ movzbl(dest, dest);
  2861     __ bind(done);
  2862 #else
  2863     __ lcmp2int(left->as_register_hi(),
  2864                 left->as_register_lo(),
  2865                 right->as_register_hi(),
  2866                 right->as_register_lo());
  2867     move_regs(left->as_register_hi(), dst->as_register());
  2868 #endif // _LP64
  2873 void LIR_Assembler::align_call(LIR_Code code) {
  2874   if (os::is_MP()) {
  2875     // make sure that the displacement word of the call ends up word aligned
  2876     int offset = __ offset();
  2877     switch (code) {
  2878       case lir_static_call:
  2879       case lir_optvirtual_call:
  2880       case lir_dynamic_call:
  2881         offset += NativeCall::displacement_offset;
  2882         break;
  2883       case lir_icvirtual_call:
  2884         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2885       break;
  2886       case lir_virtual_call:  // currently, sparc-specific for niagara
  2887       default: ShouldNotReachHere();
  2889     while (offset++ % BytesPerWord != 0) {
  2890       __ nop();
  2896 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
  2897   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2898          "must be aligned");
  2899   __ call(AddressLiteral(op->addr(), rtype));
  2900   add_call_info(code_offset(), op->info());
  2904 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
  2905   __ ic_call(op->addr());
  2906   add_call_info(code_offset(), op->info());
  2907   assert(!os::is_MP() ||
  2908          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
  2909          "must be aligned");
  2913 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2914 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
  2915   ShouldNotReachHere();
  2919 void LIR_Assembler::emit_static_call_stub() {
  2920   address call_pc = __ pc();
  2921   address stub = __ start_a_stub(call_stub_size);
  2922   if (stub == NULL) {
  2923     bailout("static call stub overflow");
  2924     return;
  2927   int start = __ offset();
  2928   if (os::is_MP()) {
  2929     // make sure that the displacement word of the call ends up word aligned
  2930     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2931     while (offset++ % BytesPerWord != 0) {
  2932       __ nop();
  2935   __ relocate(static_stub_Relocation::spec(call_pc));
  2936   __ mov_metadata(rbx, (Metadata*)NULL);
  2937   // must be set to -1 at code generation time
  2938   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2939   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2940   __ jump(RuntimeAddress(__ pc()));
  2942   assert(__ offset() - start <= call_stub_size, "stub too big");
  2943   __ end_a_stub();
  2947 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2948   assert(exceptionOop->as_register() == rax, "must match");
  2949   assert(exceptionPC->as_register() == rdx, "must match");
  2951   // exception object is not added to oop map by LinearScan
  2952   // (LinearScan assumes that no oops are in fixed registers)
  2953   info->add_register_oop(exceptionOop);
  2954   Runtime1::StubID unwind_id;
  2956   // get current pc information
  2957   // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2958   int pc_for_athrow_offset = __ offset();
  2959   InternalAddress pc_for_athrow(__ pc());
  2960   __ lea(exceptionPC->as_register(), pc_for_athrow);
  2961   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2963   __ verify_not_null_oop(rax);
  2964   // search an exception handler (rax: exception oop, rdx: throwing pc)
  2965   if (compilation()->has_fpu_code()) {
  2966     unwind_id = Runtime1::handle_exception_id;
  2967   } else {
  2968     unwind_id = Runtime1::handle_exception_nofpu_id;
  2970   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2972   // enough room for two byte trap
  2973   __ nop();
  2977 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2978   assert(exceptionOop->as_register() == rax, "must match");
  2980   __ jmp(_unwind_handler_entry);
  2984 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2986   // optimized version for linear scan:
  2987   // * count must be already in ECX (guaranteed by LinearScan)
  2988   // * left and dest must be equal
  2989   // * tmp must be unused
  2990   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  2991   assert(left == dest, "left and dest must be equal");
  2992   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  2994   if (left->is_single_cpu()) {
  2995     Register value = left->as_register();
  2996     assert(value != SHIFT_count, "left cannot be ECX");
  2998     switch (code) {
  2999       case lir_shl:  __ shll(value); break;
  3000       case lir_shr:  __ sarl(value); break;
  3001       case lir_ushr: __ shrl(value); break;
  3002       default: ShouldNotReachHere();
  3004   } else if (left->is_double_cpu()) {
  3005     Register lo = left->as_register_lo();
  3006     Register hi = left->as_register_hi();
  3007     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  3008 #ifdef _LP64
  3009     switch (code) {
  3010       case lir_shl:  __ shlptr(lo);        break;
  3011       case lir_shr:  __ sarptr(lo);        break;
  3012       case lir_ushr: __ shrptr(lo);        break;
  3013       default: ShouldNotReachHere();
  3015 #else
  3017     switch (code) {
  3018       case lir_shl:  __ lshl(hi, lo);        break;
  3019       case lir_shr:  __ lshr(hi, lo, true);  break;
  3020       case lir_ushr: __ lshr(hi, lo, false); break;
  3021       default: ShouldNotReachHere();
  3023 #endif // LP64
  3024   } else {
  3025     ShouldNotReachHere();
  3030 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  3031   if (dest->is_single_cpu()) {
  3032     // first move left into dest so that left is not destroyed by the shift
  3033     Register value = dest->as_register();
  3034     count = count & 0x1F; // Java spec
  3036     move_regs(left->as_register(), value);
  3037     switch (code) {
  3038       case lir_shl:  __ shll(value, count); break;
  3039       case lir_shr:  __ sarl(value, count); break;
  3040       case lir_ushr: __ shrl(value, count); break;
  3041       default: ShouldNotReachHere();
  3043   } else if (dest->is_double_cpu()) {
  3044 #ifndef _LP64
  3045     Unimplemented();
  3046 #else
  3047     // first move left into dest so that left is not destroyed by the shift
  3048     Register value = dest->as_register_lo();
  3049     count = count & 0x1F; // Java spec
  3051     move_regs(left->as_register_lo(), value);
  3052     switch (code) {
  3053       case lir_shl:  __ shlptr(value, count); break;
  3054       case lir_shr:  __ sarptr(value, count); break;
  3055       case lir_ushr: __ shrptr(value, count); break;
  3056       default: ShouldNotReachHere();
  3058 #endif // _LP64
  3059   } else {
  3060     ShouldNotReachHere();
  3065 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  3066   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3067   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3068   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3069   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  3073 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  3074   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3075   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3076   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3077   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  3081 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  3082   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3083   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3084   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3085   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  3089 // This code replaces a call to arraycopy; no exception may
  3090 // be thrown in this code, they must be thrown in the System.arraycopy
  3091 // activation frame; we could save some checks if this would not be the case
  3092 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  3093   ciArrayKlass* default_type = op->expected_type();
  3094   Register src = op->src()->as_register();
  3095   Register dst = op->dst()->as_register();
  3096   Register src_pos = op->src_pos()->as_register();
  3097   Register dst_pos = op->dst_pos()->as_register();
  3098   Register length  = op->length()->as_register();
  3099   Register tmp = op->tmp()->as_register();
  3101   CodeStub* stub = op->stub();
  3102   int flags = op->flags();
  3103   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  3104   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  3106   // if we don't know anything, just go through the generic arraycopy
  3107   if (default_type == NULL) {
  3108     Label done;
  3109     // save outgoing arguments on stack in case call to System.arraycopy is needed
  3110     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  3111     // for interpreter calling conventions. Now we have to do it in new style conventions.
  3112     // For the moment until C1 gets the new register allocator I just force all the
  3113     // args to the right place (except the register args) and then on the back side
  3114     // reload the register args properly if we go slow path. Yuck
  3116     // These are proper for the calling convention
  3117     store_parameter(length, 2);
  3118     store_parameter(dst_pos, 1);
  3119     store_parameter(dst, 0);
  3121     // these are just temporary placements until we need to reload
  3122     store_parameter(src_pos, 3);
  3123     store_parameter(src, 4);
  3124     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  3126     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  3128     address copyfunc_addr = StubRoutines::generic_arraycopy();
  3130     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  3131 #ifdef _LP64
  3132     // The arguments are in java calling convention so we can trivially shift them to C
  3133     // convention
  3134     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3135     __ mov(c_rarg0, j_rarg0);
  3136     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3137     __ mov(c_rarg1, j_rarg1);
  3138     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  3139     __ mov(c_rarg2, j_rarg2);
  3140     assert_different_registers(c_rarg3, j_rarg4);
  3141     __ mov(c_rarg3, j_rarg3);
  3142 #ifdef _WIN64
  3143     // Allocate abi space for args but be sure to keep stack aligned
  3144     __ subptr(rsp, 6*wordSize);
  3145     store_parameter(j_rarg4, 4);
  3146     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3147       __ call(RuntimeAddress(C_entry));
  3148     } else {
  3149 #ifndef PRODUCT
  3150       if (PrintC1Statistics) {
  3151         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3153 #endif
  3154       __ call(RuntimeAddress(copyfunc_addr));
  3156     __ addptr(rsp, 6*wordSize);
  3157 #else
  3158     __ mov(c_rarg4, j_rarg4);
  3159     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3160       __ call(RuntimeAddress(C_entry));
  3161     } else {
  3162 #ifndef PRODUCT
  3163       if (PrintC1Statistics) {
  3164         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3166 #endif
  3167       __ call(RuntimeAddress(copyfunc_addr));
  3169 #endif // _WIN64
  3170 #else
  3171     __ push(length);
  3172     __ push(dst_pos);
  3173     __ push(dst);
  3174     __ push(src_pos);
  3175     __ push(src);
  3177     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3178       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
  3179     } else {
  3180 #ifndef PRODUCT
  3181       if (PrintC1Statistics) {
  3182         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3184 #endif
  3185       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
  3188 #endif // _LP64
  3190     __ cmpl(rax, 0);
  3191     __ jcc(Assembler::equal, *stub->continuation());
  3193     if (copyfunc_addr != NULL) {
  3194       __ mov(tmp, rax);
  3195       __ xorl(tmp, -1);
  3198     // Reload values from the stack so they are where the stub
  3199     // expects them.
  3200     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3201     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3202     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3203     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3204     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3206     if (copyfunc_addr != NULL) {
  3207       __ subl(length, tmp);
  3208       __ addl(src_pos, tmp);
  3209       __ addl(dst_pos, tmp);
  3211     __ jmp(*stub->entry());
  3213     __ bind(*stub->continuation());
  3214     return;
  3217   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3219   int elem_size = type2aelembytes(basic_type);
  3220   int shift_amount;
  3221   Address::ScaleFactor scale;
  3223   switch (elem_size) {
  3224     case 1 :
  3225       shift_amount = 0;
  3226       scale = Address::times_1;
  3227       break;
  3228     case 2 :
  3229       shift_amount = 1;
  3230       scale = Address::times_2;
  3231       break;
  3232     case 4 :
  3233       shift_amount = 2;
  3234       scale = Address::times_4;
  3235       break;
  3236     case 8 :
  3237       shift_amount = 3;
  3238       scale = Address::times_8;
  3239       break;
  3240     default:
  3241       ShouldNotReachHere();
  3244   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3245   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3246   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3247   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3249   // length and pos's are all sign extended at this point on 64bit
  3251   // test for NULL
  3252   if (flags & LIR_OpArrayCopy::src_null_check) {
  3253     __ testptr(src, src);
  3254     __ jcc(Assembler::zero, *stub->entry());
  3256   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3257     __ testptr(dst, dst);
  3258     __ jcc(Assembler::zero, *stub->entry());
  3261   // check if negative
  3262   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3263     __ testl(src_pos, src_pos);
  3264     __ jcc(Assembler::less, *stub->entry());
  3266   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3267     __ testl(dst_pos, dst_pos);
  3268     __ jcc(Assembler::less, *stub->entry());
  3271   if (flags & LIR_OpArrayCopy::src_range_check) {
  3272     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3273     __ cmpl(tmp, src_length_addr);
  3274     __ jcc(Assembler::above, *stub->entry());
  3276   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3277     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3278     __ cmpl(tmp, dst_length_addr);
  3279     __ jcc(Assembler::above, *stub->entry());
  3282   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3283     __ testl(length, length);
  3284     __ jcc(Assembler::less, *stub->entry());
  3285     __ jcc(Assembler::zero, *stub->continuation());
  3288 #ifdef _LP64
  3289   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
  3290   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
  3291 #endif
  3293   if (flags & LIR_OpArrayCopy::type_check) {
  3294     // We don't know the array types are compatible
  3295     if (basic_type != T_OBJECT) {
  3296       // Simple test for basic type arrays
  3297       if (UseCompressedClassPointers) {
  3298         __ movl(tmp, src_klass_addr);
  3299         __ cmpl(tmp, dst_klass_addr);
  3300       } else {
  3301         __ movptr(tmp, src_klass_addr);
  3302         __ cmpptr(tmp, dst_klass_addr);
  3304       __ jcc(Assembler::notEqual, *stub->entry());
  3305     } else {
  3306       // For object arrays, if src is a sub class of dst then we can
  3307       // safely do the copy.
  3308       Label cont, slow;
  3310       __ push(src);
  3311       __ push(dst);
  3313       __ load_klass(src, src);
  3314       __ load_klass(dst, dst);
  3316       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
  3318       __ push(src);
  3319       __ push(dst);
  3320       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  3321       __ pop(dst);
  3322       __ pop(src);
  3324       __ cmpl(src, 0);
  3325       __ jcc(Assembler::notEqual, cont);
  3327       __ bind(slow);
  3328       __ pop(dst);
  3329       __ pop(src);
  3331       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  3332       if (copyfunc_addr != NULL) { // use stub if available
  3333         // src is not a sub class of dst so we have to do a
  3334         // per-element check.
  3336         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  3337         if ((flags & mask) != mask) {
  3338           // Check that at least both of them object arrays.
  3339           assert(flags & mask, "one of the two should be known to be an object array");
  3341           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  3342             __ load_klass(tmp, src);
  3343           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  3344             __ load_klass(tmp, dst);
  3346           int lh_offset = in_bytes(Klass::layout_helper_offset());
  3347           Address klass_lh_addr(tmp, lh_offset);
  3348           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  3349           __ cmpl(klass_lh_addr, objArray_lh);
  3350           __ jcc(Assembler::notEqual, *stub->entry());
  3353        // Spill because stubs can use any register they like and it's
  3354        // easier to restore just those that we care about.
  3355        store_parameter(dst, 0);
  3356        store_parameter(dst_pos, 1);
  3357        store_parameter(length, 2);
  3358        store_parameter(src_pos, 3);
  3359        store_parameter(src, 4);
  3361 #ifndef _LP64
  3362         __ movptr(tmp, dst_klass_addr);
  3363         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
  3364         __ push(tmp);
  3365         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
  3366         __ push(tmp);
  3367         __ push(length);
  3368         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3369         __ push(tmp);
  3370         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3371         __ push(tmp);
  3373         __ call_VM_leaf(copyfunc_addr, 5);
  3374 #else
  3375         __ movl2ptr(length, length); //higher 32bits must be null
  3377         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3378         assert_different_registers(c_rarg0, dst, dst_pos, length);
  3379         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3380         assert_different_registers(c_rarg1, dst, length);
  3382         __ mov(c_rarg2, length);
  3383         assert_different_registers(c_rarg2, dst);
  3385 #ifdef _WIN64
  3386         // Allocate abi space for args but be sure to keep stack aligned
  3387         __ subptr(rsp, 6*wordSize);
  3388         __ load_klass(c_rarg3, dst);
  3389         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
  3390         store_parameter(c_rarg3, 4);
  3391         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
  3392         __ call(RuntimeAddress(copyfunc_addr));
  3393         __ addptr(rsp, 6*wordSize);
  3394 #else
  3395         __ load_klass(c_rarg4, dst);
  3396         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
  3397         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
  3398         __ call(RuntimeAddress(copyfunc_addr));
  3399 #endif
  3401 #endif
  3403 #ifndef PRODUCT
  3404         if (PrintC1Statistics) {
  3405           Label failed;
  3406           __ testl(rax, rax);
  3407           __ jcc(Assembler::notZero, failed);
  3408           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
  3409           __ bind(failed);
  3411 #endif
  3413         __ testl(rax, rax);
  3414         __ jcc(Assembler::zero, *stub->continuation());
  3416 #ifndef PRODUCT
  3417         if (PrintC1Statistics) {
  3418           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
  3420 #endif
  3422         __ mov(tmp, rax);
  3424         __ xorl(tmp, -1);
  3426         // Restore previously spilled arguments
  3427         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3428         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3429         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3430         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3431         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3434         __ subl(length, tmp);
  3435         __ addl(src_pos, tmp);
  3436         __ addl(dst_pos, tmp);
  3439       __ jmp(*stub->entry());
  3441       __ bind(cont);
  3442       __ pop(dst);
  3443       __ pop(src);
  3447 #ifdef ASSERT
  3448   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3449     // Sanity check the known type with the incoming class.  For the
  3450     // primitive case the types must match exactly with src.klass and
  3451     // dst.klass each exactly matching the default type.  For the
  3452     // object array case, if no type check is needed then either the
  3453     // dst type is exactly the expected type and the src type is a
  3454     // subtype which we can't check or src is the same array as dst
  3455     // but not necessarily exactly of type default_type.
  3456     Label known_ok, halt;
  3457     __ mov_metadata(tmp, default_type->constant_encoding());
  3458 #ifdef _LP64
  3459     if (UseCompressedClassPointers) {
  3460       __ encode_klass_not_null(tmp);
  3462 #endif
  3464     if (basic_type != T_OBJECT) {
  3466       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
  3467       else                   __ cmpptr(tmp, dst_klass_addr);
  3468       __ jcc(Assembler::notEqual, halt);
  3469       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
  3470       else                   __ cmpptr(tmp, src_klass_addr);
  3471       __ jcc(Assembler::equal, known_ok);
  3472     } else {
  3473       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
  3474       else                   __ cmpptr(tmp, dst_klass_addr);
  3475       __ jcc(Assembler::equal, known_ok);
  3476       __ cmpptr(src, dst);
  3477       __ jcc(Assembler::equal, known_ok);
  3479     __ bind(halt);
  3480     __ stop("incorrect type information in arraycopy");
  3481     __ bind(known_ok);
  3483 #endif
  3485 #ifndef PRODUCT
  3486   if (PrintC1Statistics) {
  3487     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
  3489 #endif
  3491 #ifdef _LP64
  3492   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3493   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3494   assert_different_registers(c_rarg1, length);
  3495   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3496   __ mov(c_rarg2, length);
  3498 #else
  3499   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3500   store_parameter(tmp, 0);
  3501   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3502   store_parameter(tmp, 1);
  3503   store_parameter(length, 2);
  3504 #endif // _LP64
  3506   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  3507   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  3508   const char *name;
  3509   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  3510   __ call_VM_leaf(entry, 0);
  3512   __ bind(*stub->continuation());
  3515 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
  3516   assert(op->crc()->is_single_cpu(),  "crc must be register");
  3517   assert(op->val()->is_single_cpu(),  "byte value must be register");
  3518   assert(op->result_opr()->is_single_cpu(), "result must be register");
  3519   Register crc = op->crc()->as_register();
  3520   Register val = op->val()->as_register();
  3521   Register res = op->result_opr()->as_register();
  3523   assert_different_registers(val, crc, res);
  3525   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
  3526   __ notl(crc); // ~crc
  3527   __ update_byte_crc32(crc, val, res);
  3528   __ notl(crc); // ~crc
  3529   __ mov(res, crc);
  3532 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3533   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3534   Register hdr = op->hdr_opr()->as_register();
  3535   Register lock = op->lock_opr()->as_register();
  3536   if (!UseFastLocking) {
  3537     __ jmp(*op->stub()->entry());
  3538   } else if (op->code() == lir_lock) {
  3539     Register scratch = noreg;
  3540     if (UseBiasedLocking) {
  3541       scratch = op->scratch_opr()->as_register();
  3543     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3544     // add debug info for NullPointerException only if one is possible
  3545     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3546     if (op->info() != NULL) {
  3547       add_debug_info_for_null_check(null_check_offset, op->info());
  3549     // done
  3550   } else if (op->code() == lir_unlock) {
  3551     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3552     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3553   } else {
  3554     Unimplemented();
  3556   __ bind(*op->stub()->continuation());
  3560 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3561   ciMethod* method = op->profiled_method();
  3562   int bci          = op->profiled_bci();
  3563   ciMethod* callee = op->profiled_callee();
  3565   // Update counter for all call types
  3566   ciMethodData* md = method->method_data_or_null();
  3567   assert(md != NULL, "Sanity");
  3568   ciProfileData* data = md->bci_to_data(bci);
  3569   assert(data->is_CounterData(), "need CounterData for calls");
  3570   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3571   Register mdo  = op->mdo()->as_register();
  3572   __ mov_metadata(mdo, md->constant_encoding());
  3573   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3574   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3575   const bool callee_is_static = callee->is_loaded() && callee->is_static();
  3576   // Perform additional virtual call profiling for invokevirtual and
  3577   // invokeinterface bytecodes
  3578   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3579       !callee_is_static &&  // required for optimized MH invokes
  3580       C1ProfileVirtualCalls) {
  3581     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3582     Register recv = op->recv()->as_register();
  3583     assert_different_registers(mdo, recv);
  3584     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3585     ciKlass* known_klass = op->known_holder();
  3586     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3587       // We know the type that will be seen at this call site; we can
  3588       // statically update the MethodData* rather than needing to do
  3589       // dynamic tests on the receiver type
  3591       // NOTE: we should probably put a lock around this search to
  3592       // avoid collisions by concurrent compilations
  3593       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3594       uint i;
  3595       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3596         ciKlass* receiver = vc_data->receiver(i);
  3597         if (known_klass->equals(receiver)) {
  3598           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3599           __ addptr(data_addr, DataLayout::counter_increment);
  3600           return;
  3604       // Receiver type not found in profile data; select an empty slot
  3606       // Note that this is less efficient than it should be because it
  3607       // always does a write to the receiver part of the
  3608       // VirtualCallData rather than just the first time
  3609       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3610         ciKlass* receiver = vc_data->receiver(i);
  3611         if (receiver == NULL) {
  3612           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3613           __ mov_metadata(recv_addr, known_klass->constant_encoding());
  3614           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3615           __ addptr(data_addr, DataLayout::counter_increment);
  3616           return;
  3619     } else {
  3620       __ load_klass(recv, recv);
  3621       Label update_done;
  3622       type_profile_helper(mdo, md, data, recv, &update_done);
  3623       // Receiver did not match any saved receiver and there is no empty row for it.
  3624       // Increment total counter to indicate polymorphic case.
  3625       __ addptr(counter_addr, DataLayout::counter_increment);
  3627       __ bind(update_done);
  3629   } else {
  3630     // Static call
  3631     __ addptr(counter_addr, DataLayout::counter_increment);
  3635 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3636   Unimplemented();
  3640 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3641   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3645 void LIR_Assembler::align_backward_branch_target() {
  3646   __ align(BytesPerWord);
  3650 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3651   if (left->is_single_cpu()) {
  3652     __ negl(left->as_register());
  3653     move_regs(left->as_register(), dest->as_register());
  3655   } else if (left->is_double_cpu()) {
  3656     Register lo = left->as_register_lo();
  3657 #ifdef _LP64
  3658     Register dst = dest->as_register_lo();
  3659     __ movptr(dst, lo);
  3660     __ negptr(dst);
  3661 #else
  3662     Register hi = left->as_register_hi();
  3663     __ lneg(hi, lo);
  3664     if (dest->as_register_lo() == hi) {
  3665       assert(dest->as_register_hi() != lo, "destroying register");
  3666       move_regs(hi, dest->as_register_hi());
  3667       move_regs(lo, dest->as_register_lo());
  3668     } else {
  3669       move_regs(lo, dest->as_register_lo());
  3670       move_regs(hi, dest->as_register_hi());
  3672 #endif // _LP64
  3674   } else if (dest->is_single_xmm()) {
  3675     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3676       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3678     __ xorps(dest->as_xmm_float_reg(),
  3679              ExternalAddress((address)float_signflip_pool));
  3681   } else if (dest->is_double_xmm()) {
  3682     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3683       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3685     __ xorpd(dest->as_xmm_double_reg(),
  3686              ExternalAddress((address)double_signflip_pool));
  3688   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3689     assert(left->fpu() == 0, "arg must be on TOS");
  3690     assert(dest->fpu() == 0, "dest must be TOS");
  3691     __ fchs();
  3693   } else {
  3694     ShouldNotReachHere();
  3699 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3700   assert(addr->is_address() && dest->is_register(), "check");
  3701   Register reg;
  3702   reg = dest->as_pointer_register();
  3703   __ lea(reg, as_Address(addr->as_address_ptr()));
  3708 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3709   assert(!tmp->is_valid(), "don't need temporary");
  3710   __ call(RuntimeAddress(dest));
  3711   if (info != NULL) {
  3712     add_call_info_here(info);
  3717 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3718   assert(type == T_LONG, "only for volatile long fields");
  3720   if (info != NULL) {
  3721     add_debug_info_for_null_check_here(info);
  3724   if (src->is_double_xmm()) {
  3725     if (dest->is_double_cpu()) {
  3726 #ifdef _LP64
  3727       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3728 #else
  3729       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3730       __ psrlq(src->as_xmm_double_reg(), 32);
  3731       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3732 #endif // _LP64
  3733     } else if (dest->is_double_stack()) {
  3734       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3735     } else if (dest->is_address()) {
  3736       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3737     } else {
  3738       ShouldNotReachHere();
  3741   } else if (dest->is_double_xmm()) {
  3742     if (src->is_double_stack()) {
  3743       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3744     } else if (src->is_address()) {
  3745       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3746     } else {
  3747       ShouldNotReachHere();
  3750   } else if (src->is_double_fpu()) {
  3751     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3752     if (dest->is_double_stack()) {
  3753       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3754     } else if (dest->is_address()) {
  3755       __ fistp_d(as_Address(dest->as_address_ptr()));
  3756     } else {
  3757       ShouldNotReachHere();
  3760   } else if (dest->is_double_fpu()) {
  3761     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3762     if (src->is_double_stack()) {
  3763       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3764     } else if (src->is_address()) {
  3765       __ fild_d(as_Address(src->as_address_ptr()));
  3766     } else {
  3767       ShouldNotReachHere();
  3769   } else {
  3770     ShouldNotReachHere();
  3774 #ifdef ASSERT
  3775 // emit run-time assertion
  3776 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
  3777   assert(op->code() == lir_assert, "must be");
  3779   if (op->in_opr1()->is_valid()) {
  3780     assert(op->in_opr2()->is_valid(), "both operands must be valid");
  3781     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
  3782   } else {
  3783     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
  3784     assert(op->condition() == lir_cond_always, "no other conditions allowed");
  3787   Label ok;
  3788   if (op->condition() != lir_cond_always) {
  3789     Assembler::Condition acond = Assembler::zero;
  3790     switch (op->condition()) {
  3791       case lir_cond_equal:        acond = Assembler::equal;       break;
  3792       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  3793       case lir_cond_less:         acond = Assembler::less;        break;
  3794       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  3795       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  3796       case lir_cond_greater:      acond = Assembler::greater;     break;
  3797       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  3798       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  3799       default:                    ShouldNotReachHere();
  3801     __ jcc(acond, ok);
  3803   if (op->halt()) {
  3804     const char* str = __ code_string(op->msg());
  3805     __ stop(str);
  3806   } else {
  3807     breakpoint();
  3809   __ bind(ok);
  3811 #endif
  3813 void LIR_Assembler::membar() {
  3814   // QQQ sparc TSO uses this,
  3815   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3818 void LIR_Assembler::membar_acquire() {
  3819   // No x86 machines currently require load fences
  3820   // __ load_fence();
  3823 void LIR_Assembler::membar_release() {
  3824   // No x86 machines currently require store fences
  3825   // __ store_fence();
  3828 void LIR_Assembler::membar_loadload() {
  3829   // no-op
  3830   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
  3833 void LIR_Assembler::membar_storestore() {
  3834   // no-op
  3835   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
  3838 void LIR_Assembler::membar_loadstore() {
  3839   // no-op
  3840   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
  3843 void LIR_Assembler::membar_storeload() {
  3844   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3847 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3848   assert(result_reg->is_register(), "check");
  3849 #ifdef _LP64
  3850   // __ get_thread(result_reg->as_register_lo());
  3851   __ mov(result_reg->as_register(), r15_thread);
  3852 #else
  3853   __ get_thread(result_reg->as_register());
  3854 #endif // _LP64
  3858 void LIR_Assembler::peephole(LIR_List*) {
  3859   // do nothing for now
  3862 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
  3863   assert(data == dest, "xchg/xadd uses only 2 operands");
  3865   if (data->type() == T_INT) {
  3866     if (code == lir_xadd) {
  3867       if (os::is_MP()) {
  3868         __ lock();
  3870       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
  3871     } else {
  3872       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
  3874   } else if (data->is_oop()) {
  3875     assert (code == lir_xchg, "xadd for oops");
  3876     Register obj = data->as_register();
  3877 #ifdef _LP64
  3878     if (UseCompressedOops) {
  3879       __ encode_heap_oop(obj);
  3880       __ xchgl(obj, as_Address(src->as_address_ptr()));
  3881       __ decode_heap_oop(obj);
  3882     } else {
  3883       __ xchgptr(obj, as_Address(src->as_address_ptr()));
  3885 #else
  3886     __ xchgl(obj, as_Address(src->as_address_ptr()));
  3887 #endif
  3888   } else if (data->type() == T_LONG) {
  3889 #ifdef _LP64
  3890     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
  3891     if (code == lir_xadd) {
  3892       if (os::is_MP()) {
  3893         __ lock();
  3895       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
  3896     } else {
  3897       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
  3899 #else
  3900     ShouldNotReachHere();
  3901 #endif
  3902   } else {
  3903     ShouldNotReachHere();
  3907 #undef __

mercurial