src/cpu/sparc/vm/sparc.ad

Mon, 12 Aug 2013 17:37:02 +0200

author
ehelin
date
Mon, 12 Aug 2013 17:37:02 +0200
changeset 5694
7944aba7ba41
parent 5528
740e263c80c6
child 5791
c9ccd7b85f20
permissions
-rw-r--r--

8015107: NPG: Use consistent naming for metaspace concepts
Reviewed-by: coleenp, mgerdin, hseigel

     1 //
     2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 extern bool use_block_zeroing(Node* count);
   465 // Macros to extract hi & lo halves from a long pair.
   466 // G0 is not part of any long pair, so assert on that.
   467 // Prevents accidentally using G1 instead of G0.
   468 #define LONG_HI_REG(x) (x)
   469 #define LONG_LO_REG(x) (x)
   471 %}
   473 source %{
   474 #define __ _masm.
   476 // tertiary op of a LoadP or StoreP encoding
   477 #define REGP_OP true
   479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   481 static Register reg_to_register_object(int register_encoding);
   483 // Used by the DFA in dfa_sparc.cpp.
   484 // Check for being able to use a V9 branch-on-register.  Requires a
   485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   486 // extended.  Doesn't work following an integer ADD, for example, because of
   487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   489 // replace them with zero, which could become sign-extension in a different OS
   490 // release.  There's no obvious reason why an interrupt will ever fill these
   491 // bits with non-zero junk (the registers are reloaded with standard LD
   492 // instructions which either zero-fill or sign-fill).
   493 bool can_branch_register( Node *bol, Node *cmp ) {
   494   if( !BranchOnRegister ) return false;
   495 #ifdef _LP64
   496   if( cmp->Opcode() == Op_CmpP )
   497     return true;  // No problems with pointer compares
   498 #endif
   499   if( cmp->Opcode() == Op_CmpL )
   500     return true;  // No problems with long compares
   502   if( !SparcV9RegsHiBitsZero ) return false;
   503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   504       bol->as_Bool()->_test._test != BoolTest::eq )
   505      return false;
   507   // Check for comparing against a 'safe' value.  Any operation which
   508   // clears out the high word is safe.  Thus, loads and certain shifts
   509   // are safe, as are non-negative constants.  Any operation which
   510   // preserves zero bits in the high word is safe as long as each of its
   511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   512   // inputs are safe.  At present, the only important case to recognize
   513   // seems to be loads.  Constants should fold away, and shifts &
   514   // logicals can use the 'cc' forms.
   515   Node *x = cmp->in(1);
   516   if( x->is_Load() ) return true;
   517   if( x->is_Phi() ) {
   518     for( uint i = 1; i < x->req(); i++ )
   519       if( !x->in(i)->is_Load() )
   520         return false;
   521     return true;
   522   }
   523   return false;
   524 }
   526 bool use_block_zeroing(Node* count) {
   527   // Use BIS for zeroing if count is not constant
   528   // or it is >= BlockZeroingLowLimit.
   529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   530 }
   532 // ****************************************************************************
   534 // REQUIRED FUNCTIONALITY
   536 // !!!!! Special hack to get all type of calls to specify the byte offset
   537 //       from the start of the call to the point where the return address
   538 //       will point.
   539 //       The "return address" is the address of the call instruction, plus 8.
   541 int MachCallStaticJavaNode::ret_addr_offset() {
   542   int offset = NativeCall::instruction_size;  // call; delay slot
   543   if (_method_handle_invoke)
   544     offset += 4;  // restore SP
   545   return offset;
   546 }
   548 int MachCallDynamicJavaNode::ret_addr_offset() {
   549   int vtable_index = this->_vtable_index;
   550   if (vtable_index < 0) {
   551     // must be invalid_vtable_index, not nonvirtual_vtable_index
   552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
   553     return (NativeMovConstReg::instruction_size +
   554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   555   } else {
   556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   559     int klass_load_size;
   560     if (UseCompressedClassPointers) {
   561       assert(Universe::heap() != NULL, "java heap should be initialized");
   562       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
   563     } else {
   564       klass_load_size = 1*BytesPerInstWord;
   565     }
   566     if (Assembler::is_simm13(v_off)) {
   567       return klass_load_size +
   568              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   569              NativeCall::instruction_size);  // call; delay slot
   570     } else {
   571       return klass_load_size +
   572              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   573              NativeCall::instruction_size);  // call; delay slot
   574     }
   575   }
   576 }
   578 int MachCallRuntimeNode::ret_addr_offset() {
   579 #ifdef _LP64
   580   if (MacroAssembler::is_far_target(entry_point())) {
   581     return NativeFarCall::instruction_size;
   582   } else {
   583     return NativeCall::instruction_size;
   584   }
   585 #else
   586   return NativeCall::instruction_size;  // call; delay slot
   587 #endif
   588 }
   590 // Indicate if the safepoint node needs the polling page as an input.
   591 // Since Sparc does not have absolute addressing, it does.
   592 bool SafePointNode::needs_polling_address_input() {
   593   return true;
   594 }
   596 // emit an interrupt that is caught by the debugger (for debugging compiler)
   597 void emit_break(CodeBuffer &cbuf) {
   598   MacroAssembler _masm(&cbuf);
   599   __ breakpoint_trap();
   600 }
   602 #ifndef PRODUCT
   603 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   604   st->print("TA");
   605 }
   606 #endif
   608 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   609   emit_break(cbuf);
   610 }
   612 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   613   return MachNode::size(ra_);
   614 }
   616 // Traceable jump
   617 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   618   MacroAssembler _masm(&cbuf);
   619   Register rdest = reg_to_register_object(jump_target);
   620   __ JMP(rdest, 0);
   621   __ delayed()->nop();
   622 }
   624 // Traceable jump and set exception pc
   625 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   626   MacroAssembler _masm(&cbuf);
   627   Register rdest = reg_to_register_object(jump_target);
   628   __ JMP(rdest, 0);
   629   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   630 }
   632 void emit_nop(CodeBuffer &cbuf) {
   633   MacroAssembler _masm(&cbuf);
   634   __ nop();
   635 }
   637 void emit_illtrap(CodeBuffer &cbuf) {
   638   MacroAssembler _masm(&cbuf);
   639   __ illtrap(0);
   640 }
   643 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   644   assert(n->rule() != loadUB_rule, "");
   646   intptr_t offset = 0;
   647   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   648   const Node* addr = n->get_base_and_disp(offset, adr_type);
   649   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   650   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   652   atype = atype->add_offset(offset);
   653   assert(disp32 == offset, "wrong disp32");
   654   return atype->_offset;
   655 }
   658 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   659   assert(n->rule() != loadUB_rule, "");
   661   intptr_t offset = 0;
   662   Node* addr = n->in(2);
   663   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   664   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   665     Node* a = addr->in(2/*AddPNode::Address*/);
   666     Node* o = addr->in(3/*AddPNode::Offset*/);
   667     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   668     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   669     assert(atype->isa_oop_ptr(), "still an oop");
   670   }
   671   offset = atype->is_ptr()->_offset;
   672   if (offset != Type::OffsetBot)  offset += disp32;
   673   return offset;
   674 }
   676 static inline jdouble replicate_immI(int con, int count, int width) {
   677   // Load a constant replicated "count" times with width "width"
   678   assert(count*width == 8 && width <= 4, "sanity");
   679   int bit_width = width * 8;
   680   jlong val = con;
   681   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   682   for (int i = 0; i < count - 1; i++) {
   683     val |= (val << bit_width);
   684   }
   685   jdouble dval = *((jdouble*) &val);  // coerce to double type
   686   return dval;
   687 }
   689 static inline jdouble replicate_immF(float con) {
   690   // Replicate float con 2 times and pack into vector.
   691   int val = *((int*)&con);
   692   jlong lval = val;
   693   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
   694   jdouble dval = *((jdouble*) &lval);  // coerce to double type
   695   return dval;
   696 }
   698 // Standard Sparc opcode form2 field breakdown
   699 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   700   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   701   int op = (f30 << 30) |
   702            (f29 << 29) |
   703            (f25 << 25) |
   704            (f22 << 22) |
   705            (f20 << 20) |
   706            (f19 << 19) |
   707            (f0  <<  0);
   708   cbuf.insts()->emit_int32(op);
   709 }
   711 // Standard Sparc opcode form2 field breakdown
   712 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   713   f0 >>= 10;           // Drop 10 bits
   714   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   715   int op = (f30 << 30) |
   716            (f25 << 25) |
   717            (f22 << 22) |
   718            (f0  <<  0);
   719   cbuf.insts()->emit_int32(op);
   720 }
   722 // Standard Sparc opcode form3 field breakdown
   723 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   724   int op = (f30 << 30) |
   725            (f25 << 25) |
   726            (f19 << 19) |
   727            (f14 << 14) |
   728            (f5  <<  5) |
   729            (f0  <<  0);
   730   cbuf.insts()->emit_int32(op);
   731 }
   733 // Standard Sparc opcode form3 field breakdown
   734 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   735   simm13 &= (1<<13)-1; // Mask to 13 bits
   736   int op = (f30 << 30) |
   737            (f25 << 25) |
   738            (f19 << 19) |
   739            (f14 << 14) |
   740            (1   << 13) | // bit to indicate immediate-mode
   741            (simm13<<0);
   742   cbuf.insts()->emit_int32(op);
   743 }
   745 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   746   simm10 &= (1<<10)-1; // Mask to 10 bits
   747   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   748 }
   750 #ifdef ASSERT
   751 // Helper function for VerifyOops in emit_form3_mem_reg
   752 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   753   warning("VerifyOops encountered unexpected instruction:");
   754   n->dump(2);
   755   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   756 }
   757 #endif
   760 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   761                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   763 #ifdef ASSERT
   764   // The following code implements the +VerifyOops feature.
   765   // It verifies oop values which are loaded into or stored out of
   766   // the current method activation.  +VerifyOops complements techniques
   767   // like ScavengeALot, because it eagerly inspects oops in transit,
   768   // as they enter or leave the stack, as opposed to ScavengeALot,
   769   // which inspects oops "at rest", in the stack or heap, at safepoints.
   770   // For this reason, +VerifyOops can sometimes detect bugs very close
   771   // to their point of creation.  It can also serve as a cross-check
   772   // on the validity of oop maps, when used toegether with ScavengeALot.
   774   // It would be good to verify oops at other points, especially
   775   // when an oop is used as a base pointer for a load or store.
   776   // This is presently difficult, because it is hard to know when
   777   // a base address is biased or not.  (If we had such information,
   778   // it would be easy and useful to make a two-argument version of
   779   // verify_oop which unbiases the base, and performs verification.)
   781   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   782   bool is_verified_oop_base  = false;
   783   bool is_verified_oop_load  = false;
   784   bool is_verified_oop_store = false;
   785   int tmp_enc = -1;
   786   if (VerifyOops && src1_enc != R_SP_enc) {
   787     // classify the op, mainly for an assert check
   788     int st_op = 0, ld_op = 0;
   789     switch (primary) {
   790     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   791     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   792     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   793     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   794     case Assembler::std_op3:  st_op = Op_StoreL; break;
   795     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   796     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   798     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   799     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
   800     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   801     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   802     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   803     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   804     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   805     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   806     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   807     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   808     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   810     default: ShouldNotReachHere();
   811     }
   812     if (tertiary == REGP_OP) {
   813       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   814       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   815       else                          ShouldNotReachHere();
   816       if (st_op) {
   817         // a store
   818         // inputs are (0:control, 1:memory, 2:address, 3:value)
   819         Node* n2 = n->in(3);
   820         if (n2 != NULL) {
   821           const Type* t = n2->bottom_type();
   822           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   823         }
   824       } else {
   825         // a load
   826         const Type* t = n->bottom_type();
   827         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   828       }
   829     }
   831     if (ld_op) {
   832       // a Load
   833       // inputs are (0:control, 1:memory, 2:address)
   834       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   835           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   836           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   837           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   838           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   839           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   840           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   841           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   842           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   843           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   844           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   845           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   846           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   847           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   848           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
   849           !(n->rule() == loadUB_rule)) {
   850         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   851       }
   852     } else if (st_op) {
   853       // a Store
   854       // inputs are (0:control, 1:memory, 2:address, 3:value)
   855       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   856           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   857           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   858           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   859           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   860           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
   861           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   862         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   863       }
   864     }
   866     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   867       Node* addr = n->in(2);
   868       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   869         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   870         if (atype != NULL) {
   871           intptr_t offset = get_offset_from_base(n, atype, disp32);
   872           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   873           if (offset != offset_2) {
   874             get_offset_from_base(n, atype, disp32);
   875             get_offset_from_base_2(n, atype, disp32);
   876           }
   877           assert(offset == offset_2, "different offsets");
   878           if (offset == disp32) {
   879             // we now know that src1 is a true oop pointer
   880             is_verified_oop_base = true;
   881             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   882               if( primary == Assembler::ldd_op3 ) {
   883                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   884               } else {
   885                 tmp_enc = dst_enc;
   886                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   887                 assert(src1_enc != dst_enc, "");
   888               }
   889             }
   890           }
   891           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   892                        || offset == oopDesc::mark_offset_in_bytes())) {
   893                       // loading the mark should not be allowed either, but
   894                       // we don't check this since it conflicts with InlineObjectHash
   895                       // usage of LoadINode to get the mark. We could keep the
   896                       // check if we create a new LoadMarkNode
   897             // but do not verify the object before its header is initialized
   898             ShouldNotReachHere();
   899           }
   900         }
   901       }
   902     }
   903   }
   904 #endif
   906   uint instr;
   907   instr = (Assembler::ldst_op << 30)
   908         | (dst_enc        << 25)
   909         | (primary        << 19)
   910         | (src1_enc       << 14);
   912   uint index = src2_enc;
   913   int disp = disp32;
   915   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   916     disp += STACK_BIAS;
   918   // We should have a compiler bailout here rather than a guarantee.
   919   // Better yet would be some mechanism to handle variable-size matches correctly.
   920   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   922   if( disp == 0 ) {
   923     // use reg-reg form
   924     // bit 13 is already zero
   925     instr |= index;
   926   } else {
   927     // use reg-imm form
   928     instr |= 0x00002000;          // set bit 13 to one
   929     instr |= disp & 0x1FFF;
   930   }
   932   cbuf.insts()->emit_int32(instr);
   934 #ifdef ASSERT
   935   {
   936     MacroAssembler _masm(&cbuf);
   937     if (is_verified_oop_base) {
   938       __ verify_oop(reg_to_register_object(src1_enc));
   939     }
   940     if (is_verified_oop_store) {
   941       __ verify_oop(reg_to_register_object(dst_enc));
   942     }
   943     if (tmp_enc != -1) {
   944       __ mov(O7, reg_to_register_object(tmp_enc));
   945     }
   946     if (is_verified_oop_load) {
   947       __ verify_oop(reg_to_register_object(dst_enc));
   948     }
   949   }
   950 #endif
   951 }
   953 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   954   // The method which records debug information at every safepoint
   955   // expects the call to be the first instruction in the snippet as
   956   // it creates a PcDesc structure which tracks the offset of a call
   957   // from the start of the codeBlob. This offset is computed as
   958   // code_end() - code_begin() of the code which has been emitted
   959   // so far.
   960   // In this particular case we have skirted around the problem by
   961   // putting the "mov" instruction in the delay slot but the problem
   962   // may bite us again at some other point and a cleaner/generic
   963   // solution using relocations would be needed.
   964   MacroAssembler _masm(&cbuf);
   965   __ set_inst_mark();
   967   // We flush the current window just so that there is a valid stack copy
   968   // the fact that the current window becomes active again instantly is
   969   // not a problem there is nothing live in it.
   971 #ifdef ASSERT
   972   int startpos = __ offset();
   973 #endif /* ASSERT */
   975   __ call((address)entry_point, rtype);
   977   if (preserve_g2)   __ delayed()->mov(G2, L7);
   978   else __ delayed()->nop();
   980   if (preserve_g2)   __ mov(L7, G2);
   982 #ifdef ASSERT
   983   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   984 #ifdef _LP64
   985     // Trash argument dump slots.
   986     __ set(0xb0b8ac0db0b8ac0d, G1);
   987     __ mov(G1, G5);
   988     __ stx(G1, SP, STACK_BIAS + 0x80);
   989     __ stx(G1, SP, STACK_BIAS + 0x88);
   990     __ stx(G1, SP, STACK_BIAS + 0x90);
   991     __ stx(G1, SP, STACK_BIAS + 0x98);
   992     __ stx(G1, SP, STACK_BIAS + 0xA0);
   993     __ stx(G1, SP, STACK_BIAS + 0xA8);
   994 #else // _LP64
   995     // this is also a native call, so smash the first 7 stack locations,
   996     // and the various registers
   998     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
   999     // while [SP+0x44..0x58] are the argument dump slots.
  1000     __ set((intptr_t)0xbaadf00d, G1);
  1001     __ mov(G1, G5);
  1002     __ sllx(G1, 32, G1);
  1003     __ or3(G1, G5, G1);
  1004     __ mov(G1, G5);
  1005     __ stx(G1, SP, 0x40);
  1006     __ stx(G1, SP, 0x48);
  1007     __ stx(G1, SP, 0x50);
  1008     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1009 #endif // _LP64
  1011 #endif /*ASSERT*/
  1014 //=============================================================================
  1015 // REQUIRED FUNCTIONALITY for encoding
  1016 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1017 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1020 //=============================================================================
  1021 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1023 int Compile::ConstantTable::calculate_table_base_offset() const {
  1024   if (UseRDPCForConstantTableBase) {
  1025     // The table base offset might be less but then it fits into
  1026     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1027     return Assembler::min_simm13();
  1028   } else {
  1029     int offset = -(size() / 2);
  1030     if (!Assembler::is_simm13(offset)) {
  1031       offset = Assembler::min_simm13();
  1033     return offset;
  1037 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1038   Compile* C = ra_->C;
  1039   Compile::ConstantTable& constant_table = C->constant_table();
  1040   MacroAssembler _masm(&cbuf);
  1042   Register r = as_Register(ra_->get_encode(this));
  1043   CodeSection* consts_section = __ code()->consts();
  1044   int consts_size = consts_section->align_at_start(consts_section->size());
  1045   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1047   if (UseRDPCForConstantTableBase) {
  1048     // For the following RDPC logic to work correctly the consts
  1049     // section must be allocated right before the insts section.  This
  1050     // assert checks for that.  The layout and the SECT_* constants
  1051     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1052     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1053     int insts_offset = __ offset();
  1055     // Layout:
  1056     //
  1057     // |----------- consts section ------------|----------- insts section -----------...
  1058     // |------ constant table -----|- padding -|------------------x----
  1059     //                                                            \ current PC (RDPC instruction)
  1060     // |<------------- consts_size ----------->|<- insts_offset ->|
  1061     //                                                            \ table base
  1062     // The table base offset is later added to the load displacement
  1063     // so it has to be negative.
  1064     int table_base_offset = -(consts_size + insts_offset);
  1065     int disp;
  1067     // If the displacement from the current PC to the constant table
  1068     // base fits into simm13 we set the constant table base to the
  1069     // current PC.
  1070     if (Assembler::is_simm13(table_base_offset)) {
  1071       constant_table.set_table_base_offset(table_base_offset);
  1072       disp = 0;
  1073     } else {
  1074       // Otherwise we set the constant table base offset to the
  1075       // maximum negative displacement of load instructions to keep
  1076       // the disp as small as possible:
  1077       //
  1078       // |<------------- consts_size ----------->|<- insts_offset ->|
  1079       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1080       //                                  \ table base
  1081       table_base_offset = Assembler::min_simm13();
  1082       constant_table.set_table_base_offset(table_base_offset);
  1083       disp = (consts_size + insts_offset) + table_base_offset;
  1086     __ rdpc(r);
  1088     if (disp != 0) {
  1089       assert(r != O7, "need temporary");
  1090       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1093   else {
  1094     // Materialize the constant table base.
  1095     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1096     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1097     AddressLiteral base(baseaddr, rspec);
  1098     __ set(base, r);
  1102 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1103   if (UseRDPCForConstantTableBase) {
  1104     // This is really the worst case but generally it's only 1 instruction.
  1105     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1106   } else {
  1107     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1111 #ifndef PRODUCT
  1112 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1113   char reg[128];
  1114   ra_->dump_register(this, reg);
  1115   if (UseRDPCForConstantTableBase) {
  1116     st->print("RDPC   %s\t! constant table base", reg);
  1117   } else {
  1118     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1121 #endif
  1124 //=============================================================================
  1126 #ifndef PRODUCT
  1127 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1128   Compile* C = ra_->C;
  1130   for (int i = 0; i < OptoPrologueNops; i++) {
  1131     st->print_cr("NOP"); st->print("\t");
  1134   if( VerifyThread ) {
  1135     st->print_cr("Verify_Thread"); st->print("\t");
  1138   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1140   // Calls to C2R adapters often do not accept exceptional returns.
  1141   // We require that their callers must bang for them.  But be careful, because
  1142   // some VM calls (such as call site linkage) can use several kilobytes of
  1143   // stack.  But the stack safety zone should account for that.
  1144   // See bugs 4446381, 4468289, 4497237.
  1145   if (C->need_stack_bang(framesize)) {
  1146     st->print_cr("! stack bang"); st->print("\t");
  1149   if (Assembler::is_simm13(-framesize)) {
  1150     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1151   } else {
  1152     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1153     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1154     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1158 #endif
  1160 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1161   Compile* C = ra_->C;
  1162   MacroAssembler _masm(&cbuf);
  1164   for (int i = 0; i < OptoPrologueNops; i++) {
  1165     __ nop();
  1168   __ verify_thread();
  1170   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1171   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1172   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1174   // Calls to C2R adapters often do not accept exceptional returns.
  1175   // We require that their callers must bang for them.  But be careful, because
  1176   // some VM calls (such as call site linkage) can use several kilobytes of
  1177   // stack.  But the stack safety zone should account for that.
  1178   // See bugs 4446381, 4468289, 4497237.
  1179   if (C->need_stack_bang(framesize)) {
  1180     __ generate_stack_overflow_check(framesize);
  1183   if (Assembler::is_simm13(-framesize)) {
  1184     __ save(SP, -framesize, SP);
  1185   } else {
  1186     __ sethi(-framesize & ~0x3ff, G3);
  1187     __ add(G3, -framesize & 0x3ff, G3);
  1188     __ save(SP, G3, SP);
  1190   C->set_frame_complete( __ offset() );
  1192   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1193     // NOTE: We set the table base offset here because users might be
  1194     // emitted before MachConstantBaseNode.
  1195     Compile::ConstantTable& constant_table = C->constant_table();
  1196     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1200 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1201   return MachNode::size(ra_);
  1204 int MachPrologNode::reloc() const {
  1205   return 10; // a large enough number
  1208 //=============================================================================
  1209 #ifndef PRODUCT
  1210 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1211   Compile* C = ra_->C;
  1213   if( do_polling() && ra_->C->is_method_compilation() ) {
  1214     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1215 #ifdef _LP64
  1216     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1217 #else
  1218     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1219 #endif
  1222   if( do_polling() )
  1223     st->print("RET\n\t");
  1225   st->print("RESTORE");
  1227 #endif
  1229 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1230   MacroAssembler _masm(&cbuf);
  1231   Compile* C = ra_->C;
  1233   __ verify_thread();
  1235   // If this does safepoint polling, then do it here
  1236   if( do_polling() && ra_->C->is_method_compilation() ) {
  1237     AddressLiteral polling_page(os::get_polling_page());
  1238     __ sethi(polling_page, L0);
  1239     __ relocate(relocInfo::poll_return_type);
  1240     __ ld_ptr( L0, 0, G0 );
  1243   // If this is a return, then stuff the restore in the delay slot
  1244   if( do_polling() ) {
  1245     __ ret();
  1246     __ delayed()->restore();
  1247   } else {
  1248     __ restore();
  1252 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1253   return MachNode::size(ra_);
  1256 int MachEpilogNode::reloc() const {
  1257   return 16; // a large enough number
  1260 const Pipeline * MachEpilogNode::pipeline() const {
  1261   return MachNode::pipeline_class();
  1264 int MachEpilogNode::safepoint_offset() const {
  1265   assert( do_polling(), "no return for this epilog node");
  1266   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1269 //=============================================================================
  1271 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1272 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1273 static enum RC rc_class( OptoReg::Name reg ) {
  1274   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1275   if (OptoReg::is_stack(reg)) return rc_stack;
  1276   VMReg r = OptoReg::as_VMReg(reg);
  1277   if (r->is_Register()) return rc_int;
  1278   assert(r->is_FloatRegister(), "must be");
  1279   return rc_float;
  1282 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1283   if( cbuf ) {
  1284     // Better yet would be some mechanism to handle variable-size matches correctly
  1285     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1286       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1287     } else {
  1288       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1291 #ifndef PRODUCT
  1292   else if( !do_size ) {
  1293     if( size != 0 ) st->print("\n\t");
  1294     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1295     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1297 #endif
  1298   return size+4;
  1301 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1302   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1303 #ifndef PRODUCT
  1304   else if( !do_size ) {
  1305     if( size != 0 ) st->print("\n\t");
  1306     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1308 #endif
  1309   return size+4;
  1312 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1313                                         PhaseRegAlloc *ra_,
  1314                                         bool do_size,
  1315                                         outputStream* st ) const {
  1316   // Get registers to move
  1317   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1318   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1319   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1320   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1322   enum RC src_second_rc = rc_class(src_second);
  1323   enum RC src_first_rc = rc_class(src_first);
  1324   enum RC dst_second_rc = rc_class(dst_second);
  1325   enum RC dst_first_rc = rc_class(dst_first);
  1327   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1329   // Generate spill code!
  1330   int size = 0;
  1332   if( src_first == dst_first && src_second == dst_second )
  1333     return size;            // Self copy, no move
  1335   // --------------------------------------
  1336   // Check for mem-mem move.  Load into unused float registers and fall into
  1337   // the float-store case.
  1338   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1339     int offset = ra_->reg2offset(src_first);
  1340     // Further check for aligned-adjacent pair, so we can use a double load
  1341     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1342       src_second    = OptoReg::Name(R_F31_num);
  1343       src_second_rc = rc_float;
  1344       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1345     } else {
  1346       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1348     src_first    = OptoReg::Name(R_F30_num);
  1349     src_first_rc = rc_float;
  1352   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1353     int offset = ra_->reg2offset(src_second);
  1354     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1355     src_second    = OptoReg::Name(R_F31_num);
  1356     src_second_rc = rc_float;
  1359   // --------------------------------------
  1360   // Check for float->int copy; requires a trip through memory
  1361   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1362     int offset = frame::register_save_words*wordSize;
  1363     if (cbuf) {
  1364       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1365       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1366       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1367       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1369 #ifndef PRODUCT
  1370     else if (!do_size) {
  1371       if (size != 0) st->print("\n\t");
  1372       st->print(  "SUB    R_SP,16,R_SP\n");
  1373       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1374       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1375       st->print("\tADD    R_SP,16,R_SP\n");
  1377 #endif
  1378     size += 16;
  1381   // Check for float->int copy on T4
  1382   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1383     // Further check for aligned-adjacent pair, so we can use a double move
  1384     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1385       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1386     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1388   // Check for int->float copy on T4
  1389   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1390     // Further check for aligned-adjacent pair, so we can use a double move
  1391     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1392       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1393     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1396   // --------------------------------------
  1397   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1398   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1399   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1400   // there.  Misaligned sources only come from native-long-returns (handled
  1401   // special below).
  1402 #ifndef _LP64
  1403   if( src_first_rc == rc_int &&     // source is already big-endian
  1404       src_second_rc != rc_bad &&    // 64-bit move
  1405       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1406     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1407     // Do the big-endian flop.
  1408     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1409     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1411 #endif
  1413   // --------------------------------------
  1414   // Check for integer reg-reg copy
  1415   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1416 #ifndef _LP64
  1417     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1418       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1419       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1420       //       operand contains the least significant word of the 64-bit value and vice versa.
  1421       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1422       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1423       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1424       if( cbuf ) {
  1425         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1426         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1427         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1428 #ifndef PRODUCT
  1429       } else if( !do_size ) {
  1430         if( size != 0 ) st->print("\n\t");
  1431         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1432         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1433         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1434 #endif
  1436       return size+12;
  1438     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1439       // returning a long value in I0/I1
  1440       // a SpillCopy must be able to target a return instruction's reg_class
  1441       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1442       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1443       //       operand contains the least significant word of the 64-bit value and vice versa.
  1444       OptoReg::Name tdest = dst_first;
  1446       if (src_first == dst_first) {
  1447         tdest = OptoReg::Name(R_O7_num);
  1448         size += 4;
  1451       if( cbuf ) {
  1452         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1453         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1454         // ShrL_reg_imm6
  1455         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1456         // ShrR_reg_imm6  src, 0, dst
  1457         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1458         if (tdest != dst_first) {
  1459           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1462 #ifndef PRODUCT
  1463       else if( !do_size ) {
  1464         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1465         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1466         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1467         if (tdest != dst_first) {
  1468           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1471 #endif // PRODUCT
  1472       return size+8;
  1474 #endif // !_LP64
  1475     // Else normal reg-reg copy
  1476     assert( src_second != dst_first, "smashed second before evacuating it" );
  1477     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1478     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1479     // This moves an aligned adjacent pair.
  1480     // See if we are done.
  1481     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1482       return size;
  1485   // Check for integer store
  1486   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1487     int offset = ra_->reg2offset(dst_first);
  1488     // Further check for aligned-adjacent pair, so we can use a double store
  1489     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1490       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1491     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1494   // Check for integer load
  1495   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1496     int offset = ra_->reg2offset(src_first);
  1497     // Further check for aligned-adjacent pair, so we can use a double load
  1498     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1499       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1500     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1503   // Check for float reg-reg copy
  1504   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1505     // Further check for aligned-adjacent pair, so we can use a double move
  1506     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1507       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1508     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1511   // Check for float store
  1512   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1513     int offset = ra_->reg2offset(dst_first);
  1514     // Further check for aligned-adjacent pair, so we can use a double store
  1515     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1516       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1517     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1520   // Check for float load
  1521   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1522     int offset = ra_->reg2offset(src_first);
  1523     // Further check for aligned-adjacent pair, so we can use a double load
  1524     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1525       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1526     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1529   // --------------------------------------------------------------------
  1530   // Check for hi bits still needing moving.  Only happens for misaligned
  1531   // arguments to native calls.
  1532   if( src_second == dst_second )
  1533     return size;               // Self copy; no move
  1534   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1536 #ifndef _LP64
  1537   // In the LP64 build, all registers can be moved as aligned/adjacent
  1538   // pairs, so there's never any need to move the high bits separately.
  1539   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1540   // all sorts of silly alignment problems.
  1542   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1543   // 32-bits of a 64-bit register, but are needed in low bits of another
  1544   // register (else it's a hi-bits-to-hi-bits copy which should have
  1545   // happened already as part of a 64-bit move)
  1546   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1547     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1548     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1549     // Shift src_second down to dst_second's low bits.
  1550     if( cbuf ) {
  1551       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1552 #ifndef PRODUCT
  1553     } else if( !do_size ) {
  1554       if( size != 0 ) st->print("\n\t");
  1555       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1556 #endif
  1558     return size+4;
  1561   // Check for high word integer store.  Must down-shift the hi bits
  1562   // into a temp register, then fall into the case of storing int bits.
  1563   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1564     // Shift src_second down to dst_second's low bits.
  1565     if( cbuf ) {
  1566       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1567 #ifndef PRODUCT
  1568     } else if( !do_size ) {
  1569       if( size != 0 ) st->print("\n\t");
  1570       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1571 #endif
  1573     size+=4;
  1574     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1577   // Check for high word integer load
  1578   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1579     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1581   // Check for high word integer store
  1582   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1583     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1585   // Check for high word float store
  1586   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1587     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1589 #endif // !_LP64
  1591   Unimplemented();
  1594 #ifndef PRODUCT
  1595 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1596   implementation( NULL, ra_, false, st );
  1598 #endif
  1600 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1601   implementation( &cbuf, ra_, false, NULL );
  1604 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1605   return implementation( NULL, ra_, true, NULL );
  1608 //=============================================================================
  1609 #ifndef PRODUCT
  1610 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1611   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1613 #endif
  1615 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1616   MacroAssembler _masm(&cbuf);
  1617   for(int i = 0; i < _count; i += 1) {
  1618     __ nop();
  1622 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1623   return 4 * _count;
  1627 //=============================================================================
  1628 #ifndef PRODUCT
  1629 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1630   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1631   int reg = ra_->get_reg_first(this);
  1632   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1634 #endif
  1636 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1637   MacroAssembler _masm(&cbuf);
  1638   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1639   int reg = ra_->get_encode(this);
  1641   if (Assembler::is_simm13(offset)) {
  1642      __ add(SP, offset, reg_to_register_object(reg));
  1643   } else {
  1644      __ set(offset, O7);
  1645      __ add(SP, O7, reg_to_register_object(reg));
  1649 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1650   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1651   assert(ra_ == ra_->C->regalloc(), "sanity");
  1652   return ra_->C->scratch_emit_size(this);
  1655 //=============================================================================
  1656 #ifndef PRODUCT
  1657 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1658   st->print_cr("\nUEP:");
  1659 #ifdef    _LP64
  1660   if (UseCompressedClassPointers) {
  1661     assert(Universe::heap() != NULL, "java heap should be initialized");
  1662     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1663     st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
  1664     if (Universe::narrow_klass_shift() != 0) {
  1665       st->print_cr("\tSLL    R_G5,3,R_G5");
  1667     st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1668     st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
  1669   } else {
  1670     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1672   st->print_cr("\tCMP    R_G5,R_G3" );
  1673   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1674 #else  // _LP64
  1675   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1676   st->print_cr("\tCMP    R_G5,R_G3" );
  1677   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1678 #endif // _LP64
  1680 #endif
  1682 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1683   MacroAssembler _masm(&cbuf);
  1684   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1685   Register temp_reg   = G3;
  1686   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1688   // Load klass from receiver
  1689   __ load_klass(O0, temp_reg);
  1690   // Compare against expected klass
  1691   __ cmp(temp_reg, G5_ic_reg);
  1692   // Branch to miss code, checks xcc or icc depending
  1693   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1696 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1697   return MachNode::size(ra_);
  1701 //=============================================================================
  1703 uint size_exception_handler() {
  1704   if (TraceJumps) {
  1705     return (400); // just a guess
  1707   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1710 uint size_deopt_handler() {
  1711   if (TraceJumps) {
  1712     return (400); // just a guess
  1714   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1717 // Emit exception handler code.
  1718 int emit_exception_handler(CodeBuffer& cbuf) {
  1719   Register temp_reg = G3;
  1720   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1721   MacroAssembler _masm(&cbuf);
  1723   address base =
  1724   __ start_a_stub(size_exception_handler());
  1725   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1727   int offset = __ offset();
  1729   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1730   __ delayed()->nop();
  1732   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1734   __ end_a_stub();
  1736   return offset;
  1739 int emit_deopt_handler(CodeBuffer& cbuf) {
  1740   // Can't use any of the current frame's registers as we may have deopted
  1741   // at a poll and everything (including G3) can be live.
  1742   Register temp_reg = L0;
  1743   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1744   MacroAssembler _masm(&cbuf);
  1746   address base =
  1747   __ start_a_stub(size_deopt_handler());
  1748   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1750   int offset = __ offset();
  1751   __ save_frame(0);
  1752   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1753   __ delayed()->restore();
  1755   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1757   __ end_a_stub();
  1758   return offset;
  1762 // Given a register encoding, produce a Integer Register object
  1763 static Register reg_to_register_object(int register_encoding) {
  1764   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1765   return as_Register(register_encoding);
  1768 // Given a register encoding, produce a single-precision Float Register object
  1769 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1770   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1771   return as_SingleFloatRegister(register_encoding);
  1774 // Given a register encoding, produce a double-precision Float Register object
  1775 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1776   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1777   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1778   return as_DoubleFloatRegister(register_encoding);
  1781 const bool Matcher::match_rule_supported(int opcode) {
  1782   if (!has_match_rule(opcode))
  1783     return false;
  1785   switch (opcode) {
  1786   case Op_CountLeadingZerosI:
  1787   case Op_CountLeadingZerosL:
  1788   case Op_CountTrailingZerosI:
  1789   case Op_CountTrailingZerosL:
  1790   case Op_PopCountI:
  1791   case Op_PopCountL:
  1792     if (!UsePopCountInstruction)
  1793       return false;
  1794   case Op_CompareAndSwapL:
  1795 #ifdef _LP64
  1796   case Op_CompareAndSwapP:
  1797 #endif
  1798     if (!VM_Version::supports_cx8())
  1799       return false;
  1800     break;
  1803   return true;  // Per default match rules are supported.
  1806 int Matcher::regnum_to_fpu_offset(int regnum) {
  1807   return regnum - 32; // The FP registers are in the second chunk
  1810 #ifdef ASSERT
  1811 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1812 #endif
  1814 // Vector width in bytes
  1815 const int Matcher::vector_width_in_bytes(BasicType bt) {
  1816   assert(MaxVectorSize == 8, "");
  1817   return 8;
  1820 // Vector ideal reg
  1821 const int Matcher::vector_ideal_reg(int size) {
  1822   assert(MaxVectorSize == 8, "");
  1823   return Op_RegD;
  1826 const int Matcher::vector_shift_count_ideal_reg(int size) {
  1827   fatal("vector shift is not supported");
  1828   return Node::NotAMachineReg;
  1831 // Limits on vector size (number of elements) loaded into vector.
  1832 const int Matcher::max_vector_size(const BasicType bt) {
  1833   assert(is_java_primitive(bt), "only primitive type vectors");
  1834   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  1837 const int Matcher::min_vector_size(const BasicType bt) {
  1838   return max_vector_size(bt); // Same as max.
  1841 // SPARC doesn't support misaligned vectors store/load.
  1842 const bool Matcher::misaligned_vectors_ok() {
  1843   return false;
  1846 // USII supports fxtof through the whole range of number, USIII doesn't
  1847 const bool Matcher::convL2FSupported(void) {
  1848   return VM_Version::has_fast_fxtof();
  1851 // Is this branch offset short enough that a short branch can be used?
  1852 //
  1853 // NOTE: If the platform does not provide any short branch variants, then
  1854 //       this method should return false for offset 0.
  1855 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1856   // The passed offset is relative to address of the branch.
  1857   // Don't need to adjust the offset.
  1858   return UseCBCond && Assembler::is_simm12(offset);
  1861 const bool Matcher::isSimpleConstant64(jlong value) {
  1862   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1863   // Depends on optimizations in MacroAssembler::setx.
  1864   int hi = (int)(value >> 32);
  1865   int lo = (int)(value & ~0);
  1866   return (hi == 0) || (hi == -1) || (lo == 0);
  1869 // No scaling for the parameter the ClearArray node.
  1870 const bool Matcher::init_array_count_is_in_bytes = true;
  1872 // Threshold size for cleararray.
  1873 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1875 // No additional cost for CMOVL.
  1876 const int Matcher::long_cmove_cost() { return 0; }
  1878 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1879 const int Matcher::float_cmove_cost() {
  1880   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1883 // Should the Matcher clone shifts on addressing modes, expecting them to
  1884 // be subsumed into complex addressing expressions or compute them into
  1885 // registers?  True for Intel but false for most RISCs
  1886 const bool Matcher::clone_shift_expressions = false;
  1888 // Do we need to mask the count passed to shift instructions or does
  1889 // the cpu only look at the lower 5/6 bits anyway?
  1890 const bool Matcher::need_masked_shift_count = false;
  1892 bool Matcher::narrow_oop_use_complex_address() {
  1893   NOT_LP64(ShouldNotCallThis());
  1894   assert(UseCompressedOops, "only for compressed oops code");
  1895   return false;
  1898 bool Matcher::narrow_klass_use_complex_address() {
  1899   NOT_LP64(ShouldNotCallThis());
  1900   assert(UseCompressedClassPointers, "only for compressed klass code");
  1901   return false;
  1904 // Is it better to copy float constants, or load them directly from memory?
  1905 // Intel can load a float constant from a direct address, requiring no
  1906 // extra registers.  Most RISCs will have to materialize an address into a
  1907 // register first, so they would do better to copy the constant from stack.
  1908 const bool Matcher::rematerialize_float_constants = false;
  1910 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1911 // needed.  Else we split the double into 2 integer pieces and move it
  1912 // piece-by-piece.  Only happens when passing doubles into C code as the
  1913 // Java calling convention forces doubles to be aligned.
  1914 #ifdef _LP64
  1915 const bool Matcher::misaligned_doubles_ok = true;
  1916 #else
  1917 const bool Matcher::misaligned_doubles_ok = false;
  1918 #endif
  1920 // No-op on SPARC.
  1921 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1924 // Advertise here if the CPU requires explicit rounding operations
  1925 // to implement the UseStrictFP mode.
  1926 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1928 // Are floats conerted to double when stored to stack during deoptimization?
  1929 // Sparc does not handle callee-save floats.
  1930 bool Matcher::float_in_double() { return false; }
  1932 // Do ints take an entire long register or just half?
  1933 // Note that we if-def off of _LP64.
  1934 // The relevant question is how the int is callee-saved.  In _LP64
  1935 // the whole long is written but de-opt'ing will have to extract
  1936 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1937 #ifdef _LP64
  1938 const bool Matcher::int_in_long = true;
  1939 #else
  1940 const bool Matcher::int_in_long = false;
  1941 #endif
  1943 // Return whether or not this register is ever used as an argument.  This
  1944 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1945 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1946 // arguments in those registers not be available to the callee.
  1947 bool Matcher::can_be_java_arg( int reg ) {
  1948   // Standard sparc 6 args in registers
  1949   if( reg == R_I0_num ||
  1950       reg == R_I1_num ||
  1951       reg == R_I2_num ||
  1952       reg == R_I3_num ||
  1953       reg == R_I4_num ||
  1954       reg == R_I5_num ) return true;
  1955 #ifdef _LP64
  1956   // 64-bit builds can pass 64-bit pointers and longs in
  1957   // the high I registers
  1958   if( reg == R_I0H_num ||
  1959       reg == R_I1H_num ||
  1960       reg == R_I2H_num ||
  1961       reg == R_I3H_num ||
  1962       reg == R_I4H_num ||
  1963       reg == R_I5H_num ) return true;
  1965   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1966     return true;
  1969 #else
  1970   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1971   // Longs cannot be passed in O regs, because O regs become I regs
  1972   // after a 'save' and I regs get their high bits chopped off on
  1973   // interrupt.
  1974   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1975   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1976 #endif
  1977   // A few float args in registers
  1978   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1980   return false;
  1983 bool Matcher::is_spillable_arg( int reg ) {
  1984   return can_be_java_arg(reg);
  1987 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1988   // Use hardware SDIVX instruction when it is
  1989   // faster than a code which use multiply.
  1990   return VM_Version::has_fast_idiv();
  1993 // Register for DIVI projection of divmodI
  1994 RegMask Matcher::divI_proj_mask() {
  1995   ShouldNotReachHere();
  1996   return RegMask();
  1999 // Register for MODI projection of divmodI
  2000 RegMask Matcher::modI_proj_mask() {
  2001   ShouldNotReachHere();
  2002   return RegMask();
  2005 // Register for DIVL projection of divmodL
  2006 RegMask Matcher::divL_proj_mask() {
  2007   ShouldNotReachHere();
  2008   return RegMask();
  2011 // Register for MODL projection of divmodL
  2012 RegMask Matcher::modL_proj_mask() {
  2013   ShouldNotReachHere();
  2014   return RegMask();
  2017 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2018   return L7_REGP_mask();
  2021 %}
  2024 // The intptr_t operand types, defined by textual substitution.
  2025 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2026 #ifdef _LP64
  2027 #define immX      immL
  2028 #define immX13    immL13
  2029 #define immX13m7  immL13m7
  2030 #define iRegX     iRegL
  2031 #define g1RegX    g1RegL
  2032 #else
  2033 #define immX      immI
  2034 #define immX13    immI13
  2035 #define immX13m7  immI13m7
  2036 #define iRegX     iRegI
  2037 #define g1RegX    g1RegI
  2038 #endif
  2040 //----------ENCODING BLOCK-----------------------------------------------------
  2041 // This block specifies the encoding classes used by the compiler to output
  2042 // byte streams.  Encoding classes are parameterized macros used by
  2043 // Machine Instruction Nodes in order to generate the bit encoding of the
  2044 // instruction.  Operands specify their base encoding interface with the
  2045 // interface keyword.  There are currently supported four interfaces,
  2046 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2047 // operand to generate a function which returns its register number when
  2048 // queried.   CONST_INTER causes an operand to generate a function which
  2049 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2050 // operand to generate four functions which return the Base Register, the
  2051 // Index Register, the Scale Value, and the Offset Value of the operand when
  2052 // queried.  COND_INTER causes an operand to generate six functions which
  2053 // return the encoding code (ie - encoding bits for the instruction)
  2054 // associated with each basic boolean condition for a conditional instruction.
  2055 //
  2056 // Instructions specify two basic values for encoding.  Again, a function
  2057 // is available to check if the constant displacement is an oop. They use the
  2058 // ins_encode keyword to specify their encoding classes (which must be
  2059 // a sequence of enc_class names, and their parameters, specified in
  2060 // the encoding block), and they use the
  2061 // opcode keyword to specify, in order, their primary, secondary, and
  2062 // tertiary opcode.  Only the opcode sections which a particular instruction
  2063 // needs for encoding need to be specified.
  2064 encode %{
  2065   enc_class enc_untested %{
  2066 #ifdef ASSERT
  2067     MacroAssembler _masm(&cbuf);
  2068     __ untested("encoding");
  2069 #endif
  2070   %}
  2072   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2073     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2074                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2075   %}
  2077   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2078     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2079                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2080   %}
  2082   enc_class form3_mem_prefetch_read( memory mem ) %{
  2083     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2084                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2085   %}
  2087   enc_class form3_mem_prefetch_write( memory mem ) %{
  2088     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2089                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2090   %}
  2092   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2093     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2094     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2095     guarantee($mem$$index == R_G0_enc, "double index?");
  2096     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2097     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2098     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2099     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2100   %}
  2102   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2103     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2104     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2105     guarantee($mem$$index == R_G0_enc, "double index?");
  2106     // Load long with 2 instructions
  2107     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2108     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2109   %}
  2111   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2112   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2113     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2114     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2115   %}
  2117   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2118     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2119     if( $rs2$$reg != $rd$$reg )
  2120       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2121   %}
  2123   // Target lo half of long
  2124   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2125     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2126     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2127       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2128   %}
  2130   // Source lo half of long
  2131   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2132     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2133     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2134       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2135   %}
  2137   // Target hi half of long
  2138   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2139     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2140   %}
  2142   // Source lo half of long, and leave it sign extended.
  2143   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2144     // Sign extend low half
  2145     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2146   %}
  2148   // Source hi half of long, and leave it sign extended.
  2149   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2150     // Shift high half to low half
  2151     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2152   %}
  2154   // Source hi half of long
  2155   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2156     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2157     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2158       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2159   %}
  2161   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2162     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2163   %}
  2165   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2166     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2167     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2168   %}
  2170   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2171     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2172     // clear if nothing else is happening
  2173     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2174     // blt,a,pn done
  2175     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2176     // mov dst,-1 in delay slot
  2177     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2178   %}
  2180   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2181     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2182   %}
  2184   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2185     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2186   %}
  2188   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2189     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2190   %}
  2192   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2193     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2194   %}
  2196   enc_class move_return_pc_to_o1() %{
  2197     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2198   %}
  2200 #ifdef _LP64
  2201   /* %%% merge with enc_to_bool */
  2202   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2203     MacroAssembler _masm(&cbuf);
  2205     Register   src_reg = reg_to_register_object($src$$reg);
  2206     Register   dst_reg = reg_to_register_object($dst$$reg);
  2207     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2208   %}
  2209 #endif
  2211   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2212     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2213     MacroAssembler _masm(&cbuf);
  2215     Register   p_reg = reg_to_register_object($p$$reg);
  2216     Register   q_reg = reg_to_register_object($q$$reg);
  2217     Register   y_reg = reg_to_register_object($y$$reg);
  2218     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2220     __ subcc( p_reg, q_reg,   p_reg );
  2221     __ add  ( p_reg, y_reg, tmp_reg );
  2222     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2223   %}
  2225   enc_class form_d2i_helper(regD src, regF dst) %{
  2226     // fcmp %fcc0,$src,$src
  2227     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2228     // branch %fcc0 not-nan, predict taken
  2229     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2230     // fdtoi $src,$dst
  2231     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2232     // fitos $dst,$dst (if nan)
  2233     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2234     // clear $dst (if nan)
  2235     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2236     // carry on here...
  2237   %}
  2239   enc_class form_d2l_helper(regD src, regD dst) %{
  2240     // fcmp %fcc0,$src,$src  check for NAN
  2241     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2242     // branch %fcc0 not-nan, predict taken
  2243     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2244     // fdtox $src,$dst   convert in delay slot
  2245     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2246     // fxtod $dst,$dst  (if nan)
  2247     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2248     // clear $dst (if nan)
  2249     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2250     // carry on here...
  2251   %}
  2253   enc_class form_f2i_helper(regF src, regF dst) %{
  2254     // fcmps %fcc0,$src,$src
  2255     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2256     // branch %fcc0 not-nan, predict taken
  2257     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2258     // fstoi $src,$dst
  2259     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2260     // fitos $dst,$dst (if nan)
  2261     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2262     // clear $dst (if nan)
  2263     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2264     // carry on here...
  2265   %}
  2267   enc_class form_f2l_helper(regF src, regD dst) %{
  2268     // fcmps %fcc0,$src,$src
  2269     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2270     // branch %fcc0 not-nan, predict taken
  2271     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2272     // fstox $src,$dst
  2273     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2274     // fxtod $dst,$dst (if nan)
  2275     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2276     // clear $dst (if nan)
  2277     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2278     // carry on here...
  2279   %}
  2281   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2282   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2283   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2284   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2286   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2288   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2289   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2291   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2292     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2293   %}
  2295   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2296     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2297   %}
  2299   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2300     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2301   %}
  2303   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2304     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2305   %}
  2307   enc_class form3_convI2F(regF rs2, regF rd) %{
  2308     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2309   %}
  2311   // Encloding class for traceable jumps
  2312   enc_class form_jmpl(g3RegP dest) %{
  2313     emit_jmpl(cbuf, $dest$$reg);
  2314   %}
  2316   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2317     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2318   %}
  2320   enc_class form2_nop() %{
  2321     emit_nop(cbuf);
  2322   %}
  2324   enc_class form2_illtrap() %{
  2325     emit_illtrap(cbuf);
  2326   %}
  2329   // Compare longs and convert into -1, 0, 1.
  2330   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2331     // CMP $src1,$src2
  2332     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2333     // blt,a,pn done
  2334     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2335     // mov dst,-1 in delay slot
  2336     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2337     // bgt,a,pn done
  2338     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2339     // mov dst,1 in delay slot
  2340     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2341     // CLR    $dst
  2342     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2343   %}
  2345   enc_class enc_PartialSubtypeCheck() %{
  2346     MacroAssembler _masm(&cbuf);
  2347     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2348     __ delayed()->nop();
  2349   %}
  2351   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2352     MacroAssembler _masm(&cbuf);
  2353     Label* L = $labl$$label;
  2354     Assembler::Predict predict_taken =
  2355       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2357     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2358     __ delayed()->nop();
  2359   %}
  2361   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2362     MacroAssembler _masm(&cbuf);
  2363     Label* L = $labl$$label;
  2364     Assembler::Predict predict_taken =
  2365       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2367     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2368     __ delayed()->nop();
  2369   %}
  2371   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2372     int op = (Assembler::arith_op << 30) |
  2373              ($dst$$reg << 25) |
  2374              (Assembler::movcc_op3 << 19) |
  2375              (1 << 18) |                    // cc2 bit for 'icc'
  2376              ($cmp$$cmpcode << 14) |
  2377              (0 << 13) |                    // select register move
  2378              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2379              ($src$$reg << 0);
  2380     cbuf.insts()->emit_int32(op);
  2381   %}
  2383   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2384     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2385     int op = (Assembler::arith_op << 30) |
  2386              ($dst$$reg << 25) |
  2387              (Assembler::movcc_op3 << 19) |
  2388              (1 << 18) |                    // cc2 bit for 'icc'
  2389              ($cmp$$cmpcode << 14) |
  2390              (1 << 13) |                    // select immediate move
  2391              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2392              (simm11 << 0);
  2393     cbuf.insts()->emit_int32(op);
  2394   %}
  2396   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2397     int op = (Assembler::arith_op << 30) |
  2398              ($dst$$reg << 25) |
  2399              (Assembler::movcc_op3 << 19) |
  2400              (0 << 18) |                    // cc2 bit for 'fccX'
  2401              ($cmp$$cmpcode << 14) |
  2402              (0 << 13) |                    // select register move
  2403              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2404              ($src$$reg << 0);
  2405     cbuf.insts()->emit_int32(op);
  2406   %}
  2408   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2409     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2410     int op = (Assembler::arith_op << 30) |
  2411              ($dst$$reg << 25) |
  2412              (Assembler::movcc_op3 << 19) |
  2413              (0 << 18) |                    // cc2 bit for 'fccX'
  2414              ($cmp$$cmpcode << 14) |
  2415              (1 << 13) |                    // select immediate move
  2416              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2417              (simm11 << 0);
  2418     cbuf.insts()->emit_int32(op);
  2419   %}
  2421   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2422     int op = (Assembler::arith_op << 30) |
  2423              ($dst$$reg << 25) |
  2424              (Assembler::fpop2_op3 << 19) |
  2425              (0 << 18) |
  2426              ($cmp$$cmpcode << 14) |
  2427              (1 << 13) |                    // select register move
  2428              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2429              ($primary << 5) |              // select single, double or quad
  2430              ($src$$reg << 0);
  2431     cbuf.insts()->emit_int32(op);
  2432   %}
  2434   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2435     int op = (Assembler::arith_op << 30) |
  2436              ($dst$$reg << 25) |
  2437              (Assembler::fpop2_op3 << 19) |
  2438              (0 << 18) |
  2439              ($cmp$$cmpcode << 14) |
  2440              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2441              ($primary << 5) |              // select single, double or quad
  2442              ($src$$reg << 0);
  2443     cbuf.insts()->emit_int32(op);
  2444   %}
  2446   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2447   // the condition comes from opcode-field instead of an argument.
  2448   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2449     int op = (Assembler::arith_op << 30) |
  2450              ($dst$$reg << 25) |
  2451              (Assembler::movcc_op3 << 19) |
  2452              (1 << 18) |                    // cc2 bit for 'icc'
  2453              ($primary << 14) |
  2454              (0 << 13) |                    // select register move
  2455              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2456              ($src$$reg << 0);
  2457     cbuf.insts()->emit_int32(op);
  2458   %}
  2460   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2461     int op = (Assembler::arith_op << 30) |
  2462              ($dst$$reg << 25) |
  2463              (Assembler::movcc_op3 << 19) |
  2464              (6 << 16) |                    // cc2 bit for 'xcc'
  2465              ($primary << 14) |
  2466              (0 << 13) |                    // select register move
  2467              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2468              ($src$$reg << 0);
  2469     cbuf.insts()->emit_int32(op);
  2470   %}
  2472   enc_class Set13( immI13 src, iRegI rd ) %{
  2473     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2474   %}
  2476   enc_class SetHi22( immI src, iRegI rd ) %{
  2477     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2478   %}
  2480   enc_class Set32( immI src, iRegI rd ) %{
  2481     MacroAssembler _masm(&cbuf);
  2482     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2483   %}
  2485   enc_class call_epilog %{
  2486     if( VerifyStackAtCalls ) {
  2487       MacroAssembler _masm(&cbuf);
  2488       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2489       Register temp_reg = G3;
  2490       __ add(SP, framesize, temp_reg);
  2491       __ cmp(temp_reg, FP);
  2492       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2494   %}
  2496   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2497   // to G1 so the register allocator will not have to deal with the misaligned register
  2498   // pair.
  2499   enc_class adjust_long_from_native_call %{
  2500 #ifndef _LP64
  2501     if (returns_long()) {
  2502       //    sllx  O0,32,O0
  2503       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2504       //    srl   O1,0,O1
  2505       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2506       //    or    O0,O1,G1
  2507       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2509 #endif
  2510   %}
  2512   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2513     // CALL directly to the runtime
  2514     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2515     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2516                     /*preserve_g2=*/true);
  2517   %}
  2519   enc_class preserve_SP %{
  2520     MacroAssembler _masm(&cbuf);
  2521     __ mov(SP, L7_mh_SP_save);
  2522   %}
  2524   enc_class restore_SP %{
  2525     MacroAssembler _masm(&cbuf);
  2526     __ mov(L7_mh_SP_save, SP);
  2527   %}
  2529   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2530     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2531     // who we intended to call.
  2532     if (!_method) {
  2533       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2534     } else if (_optimized_virtual) {
  2535       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2536     } else {
  2537       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2539     if (_method) {  // Emit stub for static call.
  2540       CompiledStaticCall::emit_to_interp_stub(cbuf);
  2542   %}
  2544   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2545     MacroAssembler _masm(&cbuf);
  2546     __ set_inst_mark();
  2547     int vtable_index = this->_vtable_index;
  2548     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2549     if (vtable_index < 0) {
  2550       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2551       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  2552       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2553       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2554       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2555       __ ic_call((address)$meth$$method);
  2556     } else {
  2557       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2558       // Just go thru the vtable
  2559       // get receiver klass (receiver already checked for non-null)
  2560       // If we end up going thru a c2i adapter interpreter expects method in G5
  2561       int off = __ offset();
  2562       __ load_klass(O0, G3_scratch);
  2563       int klass_load_size;
  2564       if (UseCompressedClassPointers) {
  2565         assert(Universe::heap() != NULL, "java heap should be initialized");
  2566         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
  2567       } else {
  2568         klass_load_size = 1*BytesPerInstWord;
  2570       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2571       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2572       if (Assembler::is_simm13(v_off)) {
  2573         __ ld_ptr(G3, v_off, G5_method);
  2574       } else {
  2575         // Generate 2 instructions
  2576         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2577         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2578         // ld_ptr, set_hi, set
  2579         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2580                "Unexpected instruction size(s)");
  2581         __ ld_ptr(G3, G5_method, G5_method);
  2583       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2584       // However it may very well end up in handle_wrong_method if the
  2585       // method is abstract for the particular class.
  2586       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
  2587       // jump to target (either compiled code or c2iadapter)
  2588       __ jmpl(G3_scratch, G0, O7);
  2589       __ delayed()->nop();
  2591   %}
  2593   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2594     MacroAssembler _masm(&cbuf);
  2596     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2597     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2598                               // we might be calling a C2I adapter which needs it.
  2600     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2601     // Load nmethod
  2602     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
  2604     // CALL to compiled java, indirect the contents of G3
  2605     __ set_inst_mark();
  2606     __ callr(temp_reg, G0);
  2607     __ delayed()->nop();
  2608   %}
  2610 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2611     MacroAssembler _masm(&cbuf);
  2612     Register Rdividend = reg_to_register_object($src1$$reg);
  2613     Register Rdivisor = reg_to_register_object($src2$$reg);
  2614     Register Rresult = reg_to_register_object($dst$$reg);
  2616     __ sra(Rdivisor, 0, Rdivisor);
  2617     __ sra(Rdividend, 0, Rdividend);
  2618     __ sdivx(Rdividend, Rdivisor, Rresult);
  2619 %}
  2621 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2622     MacroAssembler _masm(&cbuf);
  2624     Register Rdividend = reg_to_register_object($src1$$reg);
  2625     int divisor = $imm$$constant;
  2626     Register Rresult = reg_to_register_object($dst$$reg);
  2628     __ sra(Rdividend, 0, Rdividend);
  2629     __ sdivx(Rdividend, divisor, Rresult);
  2630 %}
  2632 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2633     MacroAssembler _masm(&cbuf);
  2634     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2635     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2636     Register Rdst  = reg_to_register_object($dst$$reg);
  2638     __ sra( Rsrc1, 0, Rsrc1 );
  2639     __ sra( Rsrc2, 0, Rsrc2 );
  2640     __ mulx( Rsrc1, Rsrc2, Rdst );
  2641     __ srlx( Rdst, 32, Rdst );
  2642 %}
  2644 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2645     MacroAssembler _masm(&cbuf);
  2646     Register Rdividend = reg_to_register_object($src1$$reg);
  2647     Register Rdivisor = reg_to_register_object($src2$$reg);
  2648     Register Rresult = reg_to_register_object($dst$$reg);
  2649     Register Rscratch = reg_to_register_object($scratch$$reg);
  2651     assert(Rdividend != Rscratch, "");
  2652     assert(Rdivisor  != Rscratch, "");
  2654     __ sra(Rdividend, 0, Rdividend);
  2655     __ sra(Rdivisor, 0, Rdivisor);
  2656     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2657     __ mulx(Rscratch, Rdivisor, Rscratch);
  2658     __ sub(Rdividend, Rscratch, Rresult);
  2659 %}
  2661 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2662     MacroAssembler _masm(&cbuf);
  2664     Register Rdividend = reg_to_register_object($src1$$reg);
  2665     int divisor = $imm$$constant;
  2666     Register Rresult = reg_to_register_object($dst$$reg);
  2667     Register Rscratch = reg_to_register_object($scratch$$reg);
  2669     assert(Rdividend != Rscratch, "");
  2671     __ sra(Rdividend, 0, Rdividend);
  2672     __ sdivx(Rdividend, divisor, Rscratch);
  2673     __ mulx(Rscratch, divisor, Rscratch);
  2674     __ sub(Rdividend, Rscratch, Rresult);
  2675 %}
  2677 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2678     MacroAssembler _masm(&cbuf);
  2680     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2681     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2683     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2684 %}
  2686 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2687     MacroAssembler _masm(&cbuf);
  2689     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2690     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2692     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2693 %}
  2695 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2696     MacroAssembler _masm(&cbuf);
  2698     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2699     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2701     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2702 %}
  2704 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2705     MacroAssembler _masm(&cbuf);
  2707     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2708     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2710     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2711 %}
  2713 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2714     MacroAssembler _masm(&cbuf);
  2716     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2717     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2719     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2720 %}
  2722 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2723     MacroAssembler _masm(&cbuf);
  2725     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2726     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2728     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2729 %}
  2731 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2732     MacroAssembler _masm(&cbuf);
  2734     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2735     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2737     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2738 %}
  2740 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2741     MacroAssembler _masm(&cbuf);
  2743     Register Roop  = reg_to_register_object($oop$$reg);
  2744     Register Rbox  = reg_to_register_object($box$$reg);
  2745     Register Rscratch = reg_to_register_object($scratch$$reg);
  2746     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2748     assert(Roop  != Rscratch, "");
  2749     assert(Roop  != Rmark, "");
  2750     assert(Rbox  != Rscratch, "");
  2751     assert(Rbox  != Rmark, "");
  2753     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2754 %}
  2756 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2757     MacroAssembler _masm(&cbuf);
  2759     Register Roop  = reg_to_register_object($oop$$reg);
  2760     Register Rbox  = reg_to_register_object($box$$reg);
  2761     Register Rscratch = reg_to_register_object($scratch$$reg);
  2762     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2764     assert(Roop  != Rscratch, "");
  2765     assert(Roop  != Rmark, "");
  2766     assert(Rbox  != Rscratch, "");
  2767     assert(Rbox  != Rmark, "");
  2769     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2770   %}
  2772   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2773     MacroAssembler _masm(&cbuf);
  2774     Register Rmem = reg_to_register_object($mem$$reg);
  2775     Register Rold = reg_to_register_object($old$$reg);
  2776     Register Rnew = reg_to_register_object($new$$reg);
  2778     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2779     __ cmp( Rold, Rnew );
  2780   %}
  2782   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2783     Register Rmem = reg_to_register_object($mem$$reg);
  2784     Register Rold = reg_to_register_object($old$$reg);
  2785     Register Rnew = reg_to_register_object($new$$reg);
  2787     MacroAssembler _masm(&cbuf);
  2788     __ mov(Rnew, O7);
  2789     __ casx(Rmem, Rold, O7);
  2790     __ cmp( Rold, O7 );
  2791   %}
  2793   // raw int cas, used for compareAndSwap
  2794   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2795     Register Rmem = reg_to_register_object($mem$$reg);
  2796     Register Rold = reg_to_register_object($old$$reg);
  2797     Register Rnew = reg_to_register_object($new$$reg);
  2799     MacroAssembler _masm(&cbuf);
  2800     __ mov(Rnew, O7);
  2801     __ cas(Rmem, Rold, O7);
  2802     __ cmp( Rold, O7 );
  2803   %}
  2805   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2806     Register Rres = reg_to_register_object($res$$reg);
  2808     MacroAssembler _masm(&cbuf);
  2809     __ mov(1, Rres);
  2810     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2811   %}
  2813   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2814     Register Rres = reg_to_register_object($res$$reg);
  2816     MacroAssembler _masm(&cbuf);
  2817     __ mov(1, Rres);
  2818     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2819   %}
  2821   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2822     MacroAssembler _masm(&cbuf);
  2823     Register Rdst = reg_to_register_object($dst$$reg);
  2824     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2825                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2826     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2827                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2829     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2830     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2831   %}
  2834   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2835     Label Ldone, Lloop;
  2836     MacroAssembler _masm(&cbuf);
  2838     Register   str1_reg = reg_to_register_object($str1$$reg);
  2839     Register   str2_reg = reg_to_register_object($str2$$reg);
  2840     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2841     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2842     Register result_reg = reg_to_register_object($result$$reg);
  2844     assert(result_reg != str1_reg &&
  2845            result_reg != str2_reg &&
  2846            result_reg != cnt1_reg &&
  2847            result_reg != cnt2_reg ,
  2848            "need different registers");
  2850     // Compute the minimum of the string lengths(str1_reg) and the
  2851     // difference of the string lengths (stack)
  2853     // See if the lengths are different, and calculate min in str1_reg.
  2854     // Stash diff in O7 in case we need it for a tie-breaker.
  2855     Label Lskip;
  2856     __ subcc(cnt1_reg, cnt2_reg, O7);
  2857     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2858     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2859     // cnt2 is shorter, so use its count:
  2860     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2861     __ bind(Lskip);
  2863     // reallocate cnt1_reg, cnt2_reg, result_reg
  2864     // Note:  limit_reg holds the string length pre-scaled by 2
  2865     Register limit_reg =   cnt1_reg;
  2866     Register  chr2_reg =   cnt2_reg;
  2867     Register  chr1_reg = result_reg;
  2868     // str{12} are the base pointers
  2870     // Is the minimum length zero?
  2871     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2872     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2873     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2875     // Load first characters
  2876     __ lduh(str1_reg, 0, chr1_reg);
  2877     __ lduh(str2_reg, 0, chr2_reg);
  2879     // Compare first characters
  2880     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2881     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2882     assert(chr1_reg == result_reg, "result must be pre-placed");
  2883     __ delayed()->nop();
  2886       // Check after comparing first character to see if strings are equivalent
  2887       Label LSkip2;
  2888       // Check if the strings start at same location
  2889       __ cmp(str1_reg, str2_reg);
  2890       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2891       __ delayed()->nop();
  2893       // Check if the length difference is zero (in O7)
  2894       __ cmp(G0, O7);
  2895       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2896       __ delayed()->mov(G0, result_reg);  // result is zero
  2898       // Strings might not be equal
  2899       __ bind(LSkip2);
  2902     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2903     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2904     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2906     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2907     __ add(str1_reg, limit_reg, str1_reg);
  2908     __ add(str2_reg, limit_reg, str2_reg);
  2909     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2911     // Compare the rest of the characters
  2912     __ lduh(str1_reg, limit_reg, chr1_reg);
  2913     __ bind(Lloop);
  2914     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2915     __ lduh(str2_reg, limit_reg, chr2_reg);
  2916     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2917     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2918     assert(chr1_reg == result_reg, "result must be pre-placed");
  2919     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2920     // annul LDUH if branch is not taken to prevent access past end of string
  2921     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2922     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2924     // If strings are equal up to min length, return the length difference.
  2925     __ mov(O7, result_reg);
  2927     // Otherwise, return the difference between the first mismatched chars.
  2928     __ bind(Ldone);
  2929   %}
  2931 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2932     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2933     MacroAssembler _masm(&cbuf);
  2935     Register   str1_reg = reg_to_register_object($str1$$reg);
  2936     Register   str2_reg = reg_to_register_object($str2$$reg);
  2937     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2938     Register   tmp1_reg = O7;
  2939     Register result_reg = reg_to_register_object($result$$reg);
  2941     assert(result_reg != str1_reg &&
  2942            result_reg != str2_reg &&
  2943            result_reg !=  cnt_reg &&
  2944            result_reg != tmp1_reg ,
  2945            "need different registers");
  2947     __ cmp(str1_reg, str2_reg); //same char[] ?
  2948     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2949     __ delayed()->add(G0, 1, result_reg);
  2951     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  2952     __ delayed()->add(G0, 1, result_reg); // count == 0
  2954     //rename registers
  2955     Register limit_reg =    cnt_reg;
  2956     Register  chr1_reg = result_reg;
  2957     Register  chr2_reg =   tmp1_reg;
  2959     //check for alignment and position the pointers to the ends
  2960     __ or3(str1_reg, str2_reg, chr1_reg);
  2961     __ andcc(chr1_reg, 0x3, chr1_reg);
  2962     // notZero means at least one not 4-byte aligned.
  2963     // We could optimize the case when both arrays are not aligned
  2964     // but it is not frequent case and it requires additional checks.
  2965     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2966     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2968     // Compare char[] arrays aligned to 4 bytes.
  2969     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2970                           chr1_reg, chr2_reg, Ldone);
  2971     __ ba(Ldone);
  2972     __ delayed()->add(G0, 1, result_reg);
  2974     // char by char compare
  2975     __ bind(Lchar);
  2976     __ add(str1_reg, limit_reg, str1_reg);
  2977     __ add(str2_reg, limit_reg, str2_reg);
  2978     __ neg(limit_reg); //negate count
  2980     __ lduh(str1_reg, limit_reg, chr1_reg);
  2981     // Lchar_loop
  2982     __ bind(Lchar_loop);
  2983     __ lduh(str2_reg, limit_reg, chr2_reg);
  2984     __ cmp(chr1_reg, chr2_reg);
  2985     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  2986     __ delayed()->mov(G0, result_reg); //not equal
  2987     __ inccc(limit_reg, sizeof(jchar));
  2988     // annul LDUH if branch is not taken to prevent access past end of string
  2989     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  2990     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2992     __ add(G0, 1, result_reg);  //equal
  2994     __ bind(Ldone);
  2995   %}
  2997 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  2998     Label Lvector, Ldone, Lloop;
  2999     MacroAssembler _masm(&cbuf);
  3001     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3002     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3003     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3004     Register   tmp2_reg = O7;
  3005     Register result_reg = reg_to_register_object($result$$reg);
  3007     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3008     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3010     // return true if the same array
  3011     __ cmp(ary1_reg, ary2_reg);
  3012     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3013     __ delayed()->add(G0, 1, result_reg); // equal
  3015     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3016     __ delayed()->mov(G0, result_reg);    // not equal
  3018     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3019     __ delayed()->mov(G0, result_reg);    // not equal
  3021     //load the lengths of arrays
  3022     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3023     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3025     // return false if the two arrays are not equal length
  3026     __ cmp(tmp1_reg, tmp2_reg);
  3027     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3028     __ delayed()->mov(G0, result_reg);     // not equal
  3030     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3031     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3033     // load array addresses
  3034     __ add(ary1_reg, base_offset, ary1_reg);
  3035     __ add(ary2_reg, base_offset, ary2_reg);
  3037     // renaming registers
  3038     Register chr1_reg  =  result_reg; // for characters in ary1
  3039     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3040     Register limit_reg =  tmp1_reg;   // length
  3042     // set byte count
  3043     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3045     // Compare char[] arrays aligned to 4 bytes.
  3046     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3047                           chr1_reg, chr2_reg, Ldone);
  3048     __ add(G0, 1, result_reg); // equals
  3050     __ bind(Ldone);
  3051   %}
  3053   enc_class enc_rethrow() %{
  3054     cbuf.set_insts_mark();
  3055     Register temp_reg = G3;
  3056     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3057     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3058     MacroAssembler _masm(&cbuf);
  3059 #ifdef ASSERT
  3060     __ save_frame(0);
  3061     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3062     __ sethi(last_rethrow_addrlit, L1);
  3063     Address addr(L1, last_rethrow_addrlit.low10());
  3064     __ rdpc(L2);
  3065     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3066     __ st_ptr(L2, addr);
  3067     __ restore();
  3068 #endif
  3069     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3070     __ delayed()->nop();
  3071   %}
  3073   enc_class emit_mem_nop() %{
  3074     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3075     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3076   %}
  3078   enc_class emit_fadd_nop() %{
  3079     // Generates the instruction FMOVS f31,f31
  3080     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3081   %}
  3083   enc_class emit_br_nop() %{
  3084     // Generates the instruction BPN,PN .
  3085     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3086   %}
  3088   enc_class enc_membar_acquire %{
  3089     MacroAssembler _masm(&cbuf);
  3090     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3091   %}
  3093   enc_class enc_membar_release %{
  3094     MacroAssembler _masm(&cbuf);
  3095     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3096   %}
  3098   enc_class enc_membar_volatile %{
  3099     MacroAssembler _masm(&cbuf);
  3100     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3101   %}
  3103 %}
  3105 //----------FRAME--------------------------------------------------------------
  3106 // Definition of frame structure and management information.
  3107 //
  3108 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3109 //                             |   (to get allocators register number
  3110 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3111 //  r   CALLER     |        |
  3112 //  o     |        +--------+      pad to even-align allocators stack-slot
  3113 //  w     V        |  pad0  |        numbers; owned by CALLER
  3114 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3115 //  h     ^        |   in   |  5
  3116 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3117 //  |     |        |        |  3
  3118 //  |     |        +--------+
  3119 //  V     |        | old out|      Empty on Intel, window on Sparc
  3120 //        |    old |preserve|      Must be even aligned.
  3121 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3122 //        |        |   in   |  3   area for Intel ret address
  3123 //     Owned by    |preserve|      Empty on Sparc.
  3124 //       SELF      +--------+
  3125 //        |        |  pad2  |  2   pad to align old SP
  3126 //        |        +--------+  1
  3127 //        |        | locks  |  0
  3128 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3129 //        |        |  pad1  | 11   pad to align new SP
  3130 //        |        +--------+
  3131 //        |        |        | 10
  3132 //        |        | spills |  9   spills
  3133 //        V        |        |  8   (pad0 slot for callee)
  3134 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3135 //        ^        |  out   |  7
  3136 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3137 //     Owned by    +--------+
  3138 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3139 //        |    new |preserve|      Must be even-aligned.
  3140 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3141 //        |        |        |
  3142 //
  3143 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3144 //         known from SELF's arguments and the Java calling convention.
  3145 //         Region 6-7 is determined per call site.
  3146 // Note 2: If the calling convention leaves holes in the incoming argument
  3147 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3148 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3149 //         incoming area, as the Java calling convention is completely under
  3150 //         the control of the AD file.  Doubles can be sorted and packed to
  3151 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3152 //         varargs C calling conventions.
  3153 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3154 //         even aligned with pad0 as needed.
  3155 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3156 //         region 6-11 is even aligned; it may be padded out more so that
  3157 //         the region from SP to FP meets the minimum stack alignment.
  3159 frame %{
  3160   // What direction does stack grow in (assumed to be same for native & Java)
  3161   stack_direction(TOWARDS_LOW);
  3163   // These two registers define part of the calling convention
  3164   // between compiled code and the interpreter.
  3165   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
  3166   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3168   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3169   cisc_spilling_operand_name(indOffset);
  3171   // Number of stack slots consumed by a Monitor enter
  3172 #ifdef _LP64
  3173   sync_stack_slots(2);
  3174 #else
  3175   sync_stack_slots(1);
  3176 #endif
  3178   // Compiled code's Frame Pointer
  3179   frame_pointer(R_SP);
  3181   // Stack alignment requirement
  3182   stack_alignment(StackAlignmentInBytes);
  3183   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3184   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3186   // Number of stack slots between incoming argument block and the start of
  3187   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3188   // EPILOG must remove this many slots.
  3189   in_preserve_stack_slots(0);
  3191   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3192   // for calls to C.  Supports the var-args backing area for register parms.
  3193   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3194 #ifdef _LP64
  3195   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3196   varargs_C_out_slots_killed(12);
  3197 #else
  3198   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3199   varargs_C_out_slots_killed( 7);
  3200 #endif
  3202   // The after-PROLOG location of the return address.  Location of
  3203   // return address specifies a type (REG or STACK) and a number
  3204   // representing the register number (i.e. - use a register name) or
  3205   // stack slot.
  3206   return_addr(REG R_I7);          // Ret Addr is in register I7
  3208   // Body of function which returns an OptoRegs array locating
  3209   // arguments either in registers or in stack slots for calling
  3210   // java
  3211   calling_convention %{
  3212     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3214   %}
  3216   // Body of function which returns an OptoRegs array locating
  3217   // arguments either in registers or in stack slots for callin
  3218   // C.
  3219   c_calling_convention %{
  3220     // This is obviously always outgoing
  3221     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3222   %}
  3224   // Location of native (C/C++) and interpreter return values.  This is specified to
  3225   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3226   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3227   // to and from the register pairs is done by the appropriate call and epilog
  3228   // opcodes.  This simplifies the register allocator.
  3229   c_return_value %{
  3230     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3231 #ifdef     _LP64
  3232     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3233     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3234     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3235     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3236 #else  // !_LP64
  3237     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3238     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3239     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3240     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3241 #endif
  3242     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3243                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3244   %}
  3246   // Location of compiled Java return values.  Same as C
  3247   return_value %{
  3248     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3249 #ifdef     _LP64
  3250     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3251     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3252     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3253     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3254 #else  // !_LP64
  3255     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3256     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3257     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3258     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3259 #endif
  3260     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3261                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3262   %}
  3264 %}
  3267 //----------ATTRIBUTES---------------------------------------------------------
  3268 //----------Operand Attributes-------------------------------------------------
  3269 op_attrib op_cost(1);          // Required cost attribute
  3271 //----------Instruction Attributes---------------------------------------------
  3272 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3273 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3274 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3275 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3276                                    // non-matching short branch variant of some
  3277                                                             // long branch?
  3279 //----------OPERANDS-----------------------------------------------------------
  3280 // Operand definitions must precede instruction definitions for correct parsing
  3281 // in the ADLC because operands constitute user defined types which are used in
  3282 // instruction definitions.
  3284 //----------Simple Operands----------------------------------------------------
  3285 // Immediate Operands
  3286 // Integer Immediate: 32-bit
  3287 operand immI() %{
  3288   match(ConI);
  3290   op_cost(0);
  3291   // formats are generated automatically for constants and base registers
  3292   format %{ %}
  3293   interface(CONST_INTER);
  3294 %}
  3296 // Integer Immediate: 8-bit
  3297 operand immI8() %{
  3298   predicate(Assembler::is_simm8(n->get_int()));
  3299   match(ConI);
  3300   op_cost(0);
  3301   format %{ %}
  3302   interface(CONST_INTER);
  3303 %}
  3305 // Integer Immediate: 13-bit
  3306 operand immI13() %{
  3307   predicate(Assembler::is_simm13(n->get_int()));
  3308   match(ConI);
  3309   op_cost(0);
  3311   format %{ %}
  3312   interface(CONST_INTER);
  3313 %}
  3315 // Integer Immediate: 13-bit minus 7
  3316 operand immI13m7() %{
  3317   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3318   match(ConI);
  3319   op_cost(0);
  3321   format %{ %}
  3322   interface(CONST_INTER);
  3323 %}
  3325 // Integer Immediate: 16-bit
  3326 operand immI16() %{
  3327   predicate(Assembler::is_simm16(n->get_int()));
  3328   match(ConI);
  3329   op_cost(0);
  3330   format %{ %}
  3331   interface(CONST_INTER);
  3332 %}
  3334 // Unsigned (positive) Integer Immediate: 13-bit
  3335 operand immU13() %{
  3336   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3337   match(ConI);
  3338   op_cost(0);
  3340   format %{ %}
  3341   interface(CONST_INTER);
  3342 %}
  3344 // Integer Immediate: 6-bit
  3345 operand immU6() %{
  3346   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3347   match(ConI);
  3348   op_cost(0);
  3349   format %{ %}
  3350   interface(CONST_INTER);
  3351 %}
  3353 // Integer Immediate: 11-bit
  3354 operand immI11() %{
  3355   predicate(Assembler::is_simm11(n->get_int()));
  3356   match(ConI);
  3357   op_cost(0);
  3358   format %{ %}
  3359   interface(CONST_INTER);
  3360 %}
  3362 // Integer Immediate: 5-bit
  3363 operand immI5() %{
  3364   predicate(Assembler::is_simm5(n->get_int()));
  3365   match(ConI);
  3366   op_cost(0);
  3367   format %{ %}
  3368   interface(CONST_INTER);
  3369 %}
  3371 // Integer Immediate: 0-bit
  3372 operand immI0() %{
  3373   predicate(n->get_int() == 0);
  3374   match(ConI);
  3375   op_cost(0);
  3377   format %{ %}
  3378   interface(CONST_INTER);
  3379 %}
  3381 // Integer Immediate: the value 10
  3382 operand immI10() %{
  3383   predicate(n->get_int() == 10);
  3384   match(ConI);
  3385   op_cost(0);
  3387   format %{ %}
  3388   interface(CONST_INTER);
  3389 %}
  3391 // Integer Immediate: the values 0-31
  3392 operand immU5() %{
  3393   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3394   match(ConI);
  3395   op_cost(0);
  3397   format %{ %}
  3398   interface(CONST_INTER);
  3399 %}
  3401 // Integer Immediate: the values 1-31
  3402 operand immI_1_31() %{
  3403   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3404   match(ConI);
  3405   op_cost(0);
  3407   format %{ %}
  3408   interface(CONST_INTER);
  3409 %}
  3411 // Integer Immediate: the values 32-63
  3412 operand immI_32_63() %{
  3413   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3414   match(ConI);
  3415   op_cost(0);
  3417   format %{ %}
  3418   interface(CONST_INTER);
  3419 %}
  3421 // Immediates for special shifts (sign extend)
  3423 // Integer Immediate: the value 16
  3424 operand immI_16() %{
  3425   predicate(n->get_int() == 16);
  3426   match(ConI);
  3427   op_cost(0);
  3429   format %{ %}
  3430   interface(CONST_INTER);
  3431 %}
  3433 // Integer Immediate: the value 24
  3434 operand immI_24() %{
  3435   predicate(n->get_int() == 24);
  3436   match(ConI);
  3437   op_cost(0);
  3439   format %{ %}
  3440   interface(CONST_INTER);
  3441 %}
  3443 // Integer Immediate: the value 255
  3444 operand immI_255() %{
  3445   predicate( n->get_int() == 255 );
  3446   match(ConI);
  3447   op_cost(0);
  3449   format %{ %}
  3450   interface(CONST_INTER);
  3451 %}
  3453 // Integer Immediate: the value 65535
  3454 operand immI_65535() %{
  3455   predicate(n->get_int() == 65535);
  3456   match(ConI);
  3457   op_cost(0);
  3459   format %{ %}
  3460   interface(CONST_INTER);
  3461 %}
  3463 // Long Immediate: the value FF
  3464 operand immL_FF() %{
  3465   predicate( n->get_long() == 0xFFL );
  3466   match(ConL);
  3467   op_cost(0);
  3469   format %{ %}
  3470   interface(CONST_INTER);
  3471 %}
  3473 // Long Immediate: the value FFFF
  3474 operand immL_FFFF() %{
  3475   predicate( n->get_long() == 0xFFFFL );
  3476   match(ConL);
  3477   op_cost(0);
  3479   format %{ %}
  3480   interface(CONST_INTER);
  3481 %}
  3483 // Pointer Immediate: 32 or 64-bit
  3484 operand immP() %{
  3485   match(ConP);
  3487   op_cost(5);
  3488   // formats are generated automatically for constants and base registers
  3489   format %{ %}
  3490   interface(CONST_INTER);
  3491 %}
  3493 #ifdef _LP64
  3494 // Pointer Immediate: 64-bit
  3495 operand immP_set() %{
  3496   predicate(!VM_Version::is_niagara_plus());
  3497   match(ConP);
  3499   op_cost(5);
  3500   // formats are generated automatically for constants and base registers
  3501   format %{ %}
  3502   interface(CONST_INTER);
  3503 %}
  3505 // Pointer Immediate: 64-bit
  3506 // From Niagara2 processors on a load should be better than materializing.
  3507 operand immP_load() %{
  3508   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3509   match(ConP);
  3511   op_cost(5);
  3512   // formats are generated automatically for constants and base registers
  3513   format %{ %}
  3514   interface(CONST_INTER);
  3515 %}
  3517 // Pointer Immediate: 64-bit
  3518 operand immP_no_oop_cheap() %{
  3519   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3520   match(ConP);
  3522   op_cost(5);
  3523   // formats are generated automatically for constants and base registers
  3524   format %{ %}
  3525   interface(CONST_INTER);
  3526 %}
  3527 #endif
  3529 operand immP13() %{
  3530   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3531   match(ConP);
  3532   op_cost(0);
  3534   format %{ %}
  3535   interface(CONST_INTER);
  3536 %}
  3538 operand immP0() %{
  3539   predicate(n->get_ptr() == 0);
  3540   match(ConP);
  3541   op_cost(0);
  3543   format %{ %}
  3544   interface(CONST_INTER);
  3545 %}
  3547 operand immP_poll() %{
  3548   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3549   match(ConP);
  3551   // formats are generated automatically for constants and base registers
  3552   format %{ %}
  3553   interface(CONST_INTER);
  3554 %}
  3556 // Pointer Immediate
  3557 operand immN()
  3558 %{
  3559   match(ConN);
  3561   op_cost(10);
  3562   format %{ %}
  3563   interface(CONST_INTER);
  3564 %}
  3566 operand immNKlass()
  3567 %{
  3568   match(ConNKlass);
  3570   op_cost(10);
  3571   format %{ %}
  3572   interface(CONST_INTER);
  3573 %}
  3575 // NULL Pointer Immediate
  3576 operand immN0()
  3577 %{
  3578   predicate(n->get_narrowcon() == 0);
  3579   match(ConN);
  3581   op_cost(0);
  3582   format %{ %}
  3583   interface(CONST_INTER);
  3584 %}
  3586 operand immL() %{
  3587   match(ConL);
  3588   op_cost(40);
  3589   // formats are generated automatically for constants and base registers
  3590   format %{ %}
  3591   interface(CONST_INTER);
  3592 %}
  3594 operand immL0() %{
  3595   predicate(n->get_long() == 0L);
  3596   match(ConL);
  3597   op_cost(0);
  3598   // formats are generated automatically for constants and base registers
  3599   format %{ %}
  3600   interface(CONST_INTER);
  3601 %}
  3603 // Integer Immediate: 5-bit
  3604 operand immL5() %{
  3605   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3606   match(ConL);
  3607   op_cost(0);
  3608   format %{ %}
  3609   interface(CONST_INTER);
  3610 %}
  3612 // Long Immediate: 13-bit
  3613 operand immL13() %{
  3614   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3615   match(ConL);
  3616   op_cost(0);
  3618   format %{ %}
  3619   interface(CONST_INTER);
  3620 %}
  3622 // Long Immediate: 13-bit minus 7
  3623 operand immL13m7() %{
  3624   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3625   match(ConL);
  3626   op_cost(0);
  3628   format %{ %}
  3629   interface(CONST_INTER);
  3630 %}
  3632 // Long Immediate: low 32-bit mask
  3633 operand immL_32bits() %{
  3634   predicate(n->get_long() == 0xFFFFFFFFL);
  3635   match(ConL);
  3636   op_cost(0);
  3638   format %{ %}
  3639   interface(CONST_INTER);
  3640 %}
  3642 // Long Immediate: cheap (materialize in <= 3 instructions)
  3643 operand immL_cheap() %{
  3644   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3645   match(ConL);
  3646   op_cost(0);
  3648   format %{ %}
  3649   interface(CONST_INTER);
  3650 %}
  3652 // Long Immediate: expensive (materialize in > 3 instructions)
  3653 operand immL_expensive() %{
  3654   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3655   match(ConL);
  3656   op_cost(0);
  3658   format %{ %}
  3659   interface(CONST_INTER);
  3660 %}
  3662 // Double Immediate
  3663 operand immD() %{
  3664   match(ConD);
  3666   op_cost(40);
  3667   format %{ %}
  3668   interface(CONST_INTER);
  3669 %}
  3671 operand immD0() %{
  3672 #ifdef _LP64
  3673   // on 64-bit architectures this comparision is faster
  3674   predicate(jlong_cast(n->getd()) == 0);
  3675 #else
  3676   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3677 #endif
  3678   match(ConD);
  3680   op_cost(0);
  3681   format %{ %}
  3682   interface(CONST_INTER);
  3683 %}
  3685 // Float Immediate
  3686 operand immF() %{
  3687   match(ConF);
  3689   op_cost(20);
  3690   format %{ %}
  3691   interface(CONST_INTER);
  3692 %}
  3694 // Float Immediate: 0
  3695 operand immF0() %{
  3696   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3697   match(ConF);
  3699   op_cost(0);
  3700   format %{ %}
  3701   interface(CONST_INTER);
  3702 %}
  3704 // Integer Register Operands
  3705 // Integer Register
  3706 operand iRegI() %{
  3707   constraint(ALLOC_IN_RC(int_reg));
  3708   match(RegI);
  3710   match(notemp_iRegI);
  3711   match(g1RegI);
  3712   match(o0RegI);
  3713   match(iRegIsafe);
  3715   format %{ %}
  3716   interface(REG_INTER);
  3717 %}
  3719 operand notemp_iRegI() %{
  3720   constraint(ALLOC_IN_RC(notemp_int_reg));
  3721   match(RegI);
  3723   match(o0RegI);
  3725   format %{ %}
  3726   interface(REG_INTER);
  3727 %}
  3729 operand o0RegI() %{
  3730   constraint(ALLOC_IN_RC(o0_regI));
  3731   match(iRegI);
  3733   format %{ %}
  3734   interface(REG_INTER);
  3735 %}
  3737 // Pointer Register
  3738 operand iRegP() %{
  3739   constraint(ALLOC_IN_RC(ptr_reg));
  3740   match(RegP);
  3742   match(lock_ptr_RegP);
  3743   match(g1RegP);
  3744   match(g2RegP);
  3745   match(g3RegP);
  3746   match(g4RegP);
  3747   match(i0RegP);
  3748   match(o0RegP);
  3749   match(o1RegP);
  3750   match(l7RegP);
  3752   format %{ %}
  3753   interface(REG_INTER);
  3754 %}
  3756 operand sp_ptr_RegP() %{
  3757   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3758   match(RegP);
  3759   match(iRegP);
  3761   format %{ %}
  3762   interface(REG_INTER);
  3763 %}
  3765 operand lock_ptr_RegP() %{
  3766   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3767   match(RegP);
  3768   match(i0RegP);
  3769   match(o0RegP);
  3770   match(o1RegP);
  3771   match(l7RegP);
  3773   format %{ %}
  3774   interface(REG_INTER);
  3775 %}
  3777 operand g1RegP() %{
  3778   constraint(ALLOC_IN_RC(g1_regP));
  3779   match(iRegP);
  3781   format %{ %}
  3782   interface(REG_INTER);
  3783 %}
  3785 operand g2RegP() %{
  3786   constraint(ALLOC_IN_RC(g2_regP));
  3787   match(iRegP);
  3789   format %{ %}
  3790   interface(REG_INTER);
  3791 %}
  3793 operand g3RegP() %{
  3794   constraint(ALLOC_IN_RC(g3_regP));
  3795   match(iRegP);
  3797   format %{ %}
  3798   interface(REG_INTER);
  3799 %}
  3801 operand g1RegI() %{
  3802   constraint(ALLOC_IN_RC(g1_regI));
  3803   match(iRegI);
  3805   format %{ %}
  3806   interface(REG_INTER);
  3807 %}
  3809 operand g3RegI() %{
  3810   constraint(ALLOC_IN_RC(g3_regI));
  3811   match(iRegI);
  3813   format %{ %}
  3814   interface(REG_INTER);
  3815 %}
  3817 operand g4RegI() %{
  3818   constraint(ALLOC_IN_RC(g4_regI));
  3819   match(iRegI);
  3821   format %{ %}
  3822   interface(REG_INTER);
  3823 %}
  3825 operand g4RegP() %{
  3826   constraint(ALLOC_IN_RC(g4_regP));
  3827   match(iRegP);
  3829   format %{ %}
  3830   interface(REG_INTER);
  3831 %}
  3833 operand i0RegP() %{
  3834   constraint(ALLOC_IN_RC(i0_regP));
  3835   match(iRegP);
  3837   format %{ %}
  3838   interface(REG_INTER);
  3839 %}
  3841 operand o0RegP() %{
  3842   constraint(ALLOC_IN_RC(o0_regP));
  3843   match(iRegP);
  3845   format %{ %}
  3846   interface(REG_INTER);
  3847 %}
  3849 operand o1RegP() %{
  3850   constraint(ALLOC_IN_RC(o1_regP));
  3851   match(iRegP);
  3853   format %{ %}
  3854   interface(REG_INTER);
  3855 %}
  3857 operand o2RegP() %{
  3858   constraint(ALLOC_IN_RC(o2_regP));
  3859   match(iRegP);
  3861   format %{ %}
  3862   interface(REG_INTER);
  3863 %}
  3865 operand o7RegP() %{
  3866   constraint(ALLOC_IN_RC(o7_regP));
  3867   match(iRegP);
  3869   format %{ %}
  3870   interface(REG_INTER);
  3871 %}
  3873 operand l7RegP() %{
  3874   constraint(ALLOC_IN_RC(l7_regP));
  3875   match(iRegP);
  3877   format %{ %}
  3878   interface(REG_INTER);
  3879 %}
  3881 operand o7RegI() %{
  3882   constraint(ALLOC_IN_RC(o7_regI));
  3883   match(iRegI);
  3885   format %{ %}
  3886   interface(REG_INTER);
  3887 %}
  3889 operand iRegN() %{
  3890   constraint(ALLOC_IN_RC(int_reg));
  3891   match(RegN);
  3893   format %{ %}
  3894   interface(REG_INTER);
  3895 %}
  3897 // Long Register
  3898 operand iRegL() %{
  3899   constraint(ALLOC_IN_RC(long_reg));
  3900   match(RegL);
  3902   format %{ %}
  3903   interface(REG_INTER);
  3904 %}
  3906 operand o2RegL() %{
  3907   constraint(ALLOC_IN_RC(o2_regL));
  3908   match(iRegL);
  3910   format %{ %}
  3911   interface(REG_INTER);
  3912 %}
  3914 operand o7RegL() %{
  3915   constraint(ALLOC_IN_RC(o7_regL));
  3916   match(iRegL);
  3918   format %{ %}
  3919   interface(REG_INTER);
  3920 %}
  3922 operand g1RegL() %{
  3923   constraint(ALLOC_IN_RC(g1_regL));
  3924   match(iRegL);
  3926   format %{ %}
  3927   interface(REG_INTER);
  3928 %}
  3930 operand g3RegL() %{
  3931   constraint(ALLOC_IN_RC(g3_regL));
  3932   match(iRegL);
  3934   format %{ %}
  3935   interface(REG_INTER);
  3936 %}
  3938 // Int Register safe
  3939 // This is 64bit safe
  3940 operand iRegIsafe() %{
  3941   constraint(ALLOC_IN_RC(long_reg));
  3943   match(iRegI);
  3945   format %{ %}
  3946   interface(REG_INTER);
  3947 %}
  3949 // Condition Code Flag Register
  3950 operand flagsReg() %{
  3951   constraint(ALLOC_IN_RC(int_flags));
  3952   match(RegFlags);
  3954   format %{ "ccr" %} // both ICC and XCC
  3955   interface(REG_INTER);
  3956 %}
  3958 // Condition Code Register, unsigned comparisons.
  3959 operand flagsRegU() %{
  3960   constraint(ALLOC_IN_RC(int_flags));
  3961   match(RegFlags);
  3963   format %{ "icc_U" %}
  3964   interface(REG_INTER);
  3965 %}
  3967 // Condition Code Register, pointer comparisons.
  3968 operand flagsRegP() %{
  3969   constraint(ALLOC_IN_RC(int_flags));
  3970   match(RegFlags);
  3972 #ifdef _LP64
  3973   format %{ "xcc_P" %}
  3974 #else
  3975   format %{ "icc_P" %}
  3976 #endif
  3977   interface(REG_INTER);
  3978 %}
  3980 // Condition Code Register, long comparisons.
  3981 operand flagsRegL() %{
  3982   constraint(ALLOC_IN_RC(int_flags));
  3983   match(RegFlags);
  3985   format %{ "xcc_L" %}
  3986   interface(REG_INTER);
  3987 %}
  3989 // Condition Code Register, floating comparisons, unordered same as "less".
  3990 operand flagsRegF() %{
  3991   constraint(ALLOC_IN_RC(float_flags));
  3992   match(RegFlags);
  3993   match(flagsRegF0);
  3995   format %{ %}
  3996   interface(REG_INTER);
  3997 %}
  3999 operand flagsRegF0() %{
  4000   constraint(ALLOC_IN_RC(float_flag0));
  4001   match(RegFlags);
  4003   format %{ %}
  4004   interface(REG_INTER);
  4005 %}
  4008 // Condition Code Flag Register used by long compare
  4009 operand flagsReg_long_LTGE() %{
  4010   constraint(ALLOC_IN_RC(int_flags));
  4011   match(RegFlags);
  4012   format %{ "icc_LTGE" %}
  4013   interface(REG_INTER);
  4014 %}
  4015 operand flagsReg_long_EQNE() %{
  4016   constraint(ALLOC_IN_RC(int_flags));
  4017   match(RegFlags);
  4018   format %{ "icc_EQNE" %}
  4019   interface(REG_INTER);
  4020 %}
  4021 operand flagsReg_long_LEGT() %{
  4022   constraint(ALLOC_IN_RC(int_flags));
  4023   match(RegFlags);
  4024   format %{ "icc_LEGT" %}
  4025   interface(REG_INTER);
  4026 %}
  4029 operand regD() %{
  4030   constraint(ALLOC_IN_RC(dflt_reg));
  4031   match(RegD);
  4033   match(regD_low);
  4035   format %{ %}
  4036   interface(REG_INTER);
  4037 %}
  4039 operand regF() %{
  4040   constraint(ALLOC_IN_RC(sflt_reg));
  4041   match(RegF);
  4043   format %{ %}
  4044   interface(REG_INTER);
  4045 %}
  4047 operand regD_low() %{
  4048   constraint(ALLOC_IN_RC(dflt_low_reg));
  4049   match(regD);
  4051   format %{ %}
  4052   interface(REG_INTER);
  4053 %}
  4055 // Special Registers
  4057 // Method Register
  4058 operand inline_cache_regP(iRegP reg) %{
  4059   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4060   match(reg);
  4061   format %{ %}
  4062   interface(REG_INTER);
  4063 %}
  4065 operand interpreter_method_oop_regP(iRegP reg) %{
  4066   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4067   match(reg);
  4068   format %{ %}
  4069   interface(REG_INTER);
  4070 %}
  4073 //----------Complex Operands---------------------------------------------------
  4074 // Indirect Memory Reference
  4075 operand indirect(sp_ptr_RegP reg) %{
  4076   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4077   match(reg);
  4079   op_cost(100);
  4080   format %{ "[$reg]" %}
  4081   interface(MEMORY_INTER) %{
  4082     base($reg);
  4083     index(0x0);
  4084     scale(0x0);
  4085     disp(0x0);
  4086   %}
  4087 %}
  4089 // Indirect with simm13 Offset
  4090 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4091   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4092   match(AddP reg offset);
  4094   op_cost(100);
  4095   format %{ "[$reg + $offset]" %}
  4096   interface(MEMORY_INTER) %{
  4097     base($reg);
  4098     index(0x0);
  4099     scale(0x0);
  4100     disp($offset);
  4101   %}
  4102 %}
  4104 // Indirect with simm13 Offset minus 7
  4105 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4106   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4107   match(AddP reg offset);
  4109   op_cost(100);
  4110   format %{ "[$reg + $offset]" %}
  4111   interface(MEMORY_INTER) %{
  4112     base($reg);
  4113     index(0x0);
  4114     scale(0x0);
  4115     disp($offset);
  4116   %}
  4117 %}
  4119 // Note:  Intel has a swapped version also, like this:
  4120 //operand indOffsetX(iRegI reg, immP offset) %{
  4121 //  constraint(ALLOC_IN_RC(int_reg));
  4122 //  match(AddP offset reg);
  4123 //
  4124 //  op_cost(100);
  4125 //  format %{ "[$reg + $offset]" %}
  4126 //  interface(MEMORY_INTER) %{
  4127 //    base($reg);
  4128 //    index(0x0);
  4129 //    scale(0x0);
  4130 //    disp($offset);
  4131 //  %}
  4132 //%}
  4133 //// However, it doesn't make sense for SPARC, since
  4134 // we have no particularly good way to embed oops in
  4135 // single instructions.
  4137 // Indirect with Register Index
  4138 operand indIndex(iRegP addr, iRegX index) %{
  4139   constraint(ALLOC_IN_RC(ptr_reg));
  4140   match(AddP addr index);
  4142   op_cost(100);
  4143   format %{ "[$addr + $index]" %}
  4144   interface(MEMORY_INTER) %{
  4145     base($addr);
  4146     index($index);
  4147     scale(0x0);
  4148     disp(0x0);
  4149   %}
  4150 %}
  4152 //----------Special Memory Operands--------------------------------------------
  4153 // Stack Slot Operand - This operand is used for loading and storing temporary
  4154 //                      values on the stack where a match requires a value to
  4155 //                      flow through memory.
  4156 operand stackSlotI(sRegI reg) %{
  4157   constraint(ALLOC_IN_RC(stack_slots));
  4158   op_cost(100);
  4159   //match(RegI);
  4160   format %{ "[$reg]" %}
  4161   interface(MEMORY_INTER) %{
  4162     base(0xE);   // R_SP
  4163     index(0x0);
  4164     scale(0x0);
  4165     disp($reg);  // Stack Offset
  4166   %}
  4167 %}
  4169 operand stackSlotP(sRegP reg) %{
  4170   constraint(ALLOC_IN_RC(stack_slots));
  4171   op_cost(100);
  4172   //match(RegP);
  4173   format %{ "[$reg]" %}
  4174   interface(MEMORY_INTER) %{
  4175     base(0xE);   // R_SP
  4176     index(0x0);
  4177     scale(0x0);
  4178     disp($reg);  // Stack Offset
  4179   %}
  4180 %}
  4182 operand stackSlotF(sRegF reg) %{
  4183   constraint(ALLOC_IN_RC(stack_slots));
  4184   op_cost(100);
  4185   //match(RegF);
  4186   format %{ "[$reg]" %}
  4187   interface(MEMORY_INTER) %{
  4188     base(0xE);   // R_SP
  4189     index(0x0);
  4190     scale(0x0);
  4191     disp($reg);  // Stack Offset
  4192   %}
  4193 %}
  4194 operand stackSlotD(sRegD reg) %{
  4195   constraint(ALLOC_IN_RC(stack_slots));
  4196   op_cost(100);
  4197   //match(RegD);
  4198   format %{ "[$reg]" %}
  4199   interface(MEMORY_INTER) %{
  4200     base(0xE);   // R_SP
  4201     index(0x0);
  4202     scale(0x0);
  4203     disp($reg);  // Stack Offset
  4204   %}
  4205 %}
  4206 operand stackSlotL(sRegL reg) %{
  4207   constraint(ALLOC_IN_RC(stack_slots));
  4208   op_cost(100);
  4209   //match(RegL);
  4210   format %{ "[$reg]" %}
  4211   interface(MEMORY_INTER) %{
  4212     base(0xE);   // R_SP
  4213     index(0x0);
  4214     scale(0x0);
  4215     disp($reg);  // Stack Offset
  4216   %}
  4217 %}
  4219 // Operands for expressing Control Flow
  4220 // NOTE:  Label is a predefined operand which should not be redefined in
  4221 //        the AD file.  It is generically handled within the ADLC.
  4223 //----------Conditional Branch Operands----------------------------------------
  4224 // Comparison Op  - This is the operation of the comparison, and is limited to
  4225 //                  the following set of codes:
  4226 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4227 //
  4228 // Other attributes of the comparison, such as unsignedness, are specified
  4229 // by the comparison instruction that sets a condition code flags register.
  4230 // That result is represented by a flags operand whose subtype is appropriate
  4231 // to the unsignedness (etc.) of the comparison.
  4232 //
  4233 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4234 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4235 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4237 operand cmpOp() %{
  4238   match(Bool);
  4240   format %{ "" %}
  4241   interface(COND_INTER) %{
  4242     equal(0x1);
  4243     not_equal(0x9);
  4244     less(0x3);
  4245     greater_equal(0xB);
  4246     less_equal(0x2);
  4247     greater(0xA);
  4248   %}
  4249 %}
  4251 // Comparison Op, unsigned
  4252 operand cmpOpU() %{
  4253   match(Bool);
  4255   format %{ "u" %}
  4256   interface(COND_INTER) %{
  4257     equal(0x1);
  4258     not_equal(0x9);
  4259     less(0x5);
  4260     greater_equal(0xD);
  4261     less_equal(0x4);
  4262     greater(0xC);
  4263   %}
  4264 %}
  4266 // Comparison Op, pointer (same as unsigned)
  4267 operand cmpOpP() %{
  4268   match(Bool);
  4270   format %{ "p" %}
  4271   interface(COND_INTER) %{
  4272     equal(0x1);
  4273     not_equal(0x9);
  4274     less(0x5);
  4275     greater_equal(0xD);
  4276     less_equal(0x4);
  4277     greater(0xC);
  4278   %}
  4279 %}
  4281 // Comparison Op, branch-register encoding
  4282 operand cmpOp_reg() %{
  4283   match(Bool);
  4285   format %{ "" %}
  4286   interface(COND_INTER) %{
  4287     equal        (0x1);
  4288     not_equal    (0x5);
  4289     less         (0x3);
  4290     greater_equal(0x7);
  4291     less_equal   (0x2);
  4292     greater      (0x6);
  4293   %}
  4294 %}
  4296 // Comparison Code, floating, unordered same as less
  4297 operand cmpOpF() %{
  4298   match(Bool);
  4300   format %{ "fl" %}
  4301   interface(COND_INTER) %{
  4302     equal(0x9);
  4303     not_equal(0x1);
  4304     less(0x3);
  4305     greater_equal(0xB);
  4306     less_equal(0xE);
  4307     greater(0x6);
  4308   %}
  4309 %}
  4311 // Used by long compare
  4312 operand cmpOp_commute() %{
  4313   match(Bool);
  4315   format %{ "" %}
  4316   interface(COND_INTER) %{
  4317     equal(0x1);
  4318     not_equal(0x9);
  4319     less(0xA);
  4320     greater_equal(0x2);
  4321     less_equal(0xB);
  4322     greater(0x3);
  4323   %}
  4324 %}
  4326 //----------OPERAND CLASSES----------------------------------------------------
  4327 // Operand Classes are groups of operands that are used to simplify
  4328 // instruction definitions by not requiring the AD writer to specify separate
  4329 // instructions for every form of operand when the instruction accepts
  4330 // multiple operand types with the same basic encoding and format.  The classic
  4331 // case of this is memory operands.
  4332 opclass memory( indirect, indOffset13, indIndex );
  4333 opclass indIndexMemory( indIndex );
  4335 //----------PIPELINE-----------------------------------------------------------
  4336 pipeline %{
  4338 //----------ATTRIBUTES---------------------------------------------------------
  4339 attributes %{
  4340   fixed_size_instructions;           // Fixed size instructions
  4341   branch_has_delay_slot;             // Branch has delay slot following
  4342   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4343   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4344   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4345   instruction_fetch_units = 1;       // of 16 bytes
  4347   // List of nop instructions
  4348   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4349 %}
  4351 //----------RESOURCES----------------------------------------------------------
  4352 // Resources are the functional units available to the machine
  4353 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4355 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4356 // Pipeline Description specifies the stages in the machine's pipeline
  4358 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4360 //----------PIPELINE CLASSES---------------------------------------------------
  4361 // Pipeline Classes describe the stages in which input and output are
  4362 // referenced by the hardware pipeline.
  4364 // Integer ALU reg-reg operation
  4365 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4366     single_instruction;
  4367     dst   : E(write);
  4368     src1  : R(read);
  4369     src2  : R(read);
  4370     IALU  : R;
  4371 %}
  4373 // Integer ALU reg-reg long operation
  4374 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4375     instruction_count(2);
  4376     dst   : E(write);
  4377     src1  : R(read);
  4378     src2  : R(read);
  4379     IALU  : R;
  4380     IALU  : R;
  4381 %}
  4383 // Integer ALU reg-reg long dependent operation
  4384 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4385     instruction_count(1); multiple_bundles;
  4386     dst   : E(write);
  4387     src1  : R(read);
  4388     src2  : R(read);
  4389     cr    : E(write);
  4390     IALU  : R(2);
  4391 %}
  4393 // Integer ALU reg-imm operaion
  4394 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4395     single_instruction;
  4396     dst   : E(write);
  4397     src1  : R(read);
  4398     IALU  : R;
  4399 %}
  4401 // Integer ALU reg-reg operation with condition code
  4402 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4403     single_instruction;
  4404     dst   : E(write);
  4405     cr    : E(write);
  4406     src1  : R(read);
  4407     src2  : R(read);
  4408     IALU  : R;
  4409 %}
  4411 // Integer ALU reg-imm operation with condition code
  4412 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4413     single_instruction;
  4414     dst   : E(write);
  4415     cr    : E(write);
  4416     src1  : R(read);
  4417     IALU  : R;
  4418 %}
  4420 // Integer ALU zero-reg operation
  4421 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4422     single_instruction;
  4423     dst   : E(write);
  4424     src2  : R(read);
  4425     IALU  : R;
  4426 %}
  4428 // Integer ALU zero-reg operation with condition code only
  4429 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4430     single_instruction;
  4431     cr    : E(write);
  4432     src   : R(read);
  4433     IALU  : R;
  4434 %}
  4436 // Integer ALU reg-reg operation with condition code only
  4437 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4438     single_instruction;
  4439     cr    : E(write);
  4440     src1  : R(read);
  4441     src2  : R(read);
  4442     IALU  : R;
  4443 %}
  4445 // Integer ALU reg-imm operation with condition code only
  4446 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4447     single_instruction;
  4448     cr    : E(write);
  4449     src1  : R(read);
  4450     IALU  : R;
  4451 %}
  4453 // Integer ALU reg-reg-zero operation with condition code only
  4454 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4455     single_instruction;
  4456     cr    : E(write);
  4457     src1  : R(read);
  4458     src2  : R(read);
  4459     IALU  : R;
  4460 %}
  4462 // Integer ALU reg-imm-zero operation with condition code only
  4463 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4464     single_instruction;
  4465     cr    : E(write);
  4466     src1  : R(read);
  4467     IALU  : R;
  4468 %}
  4470 // Integer ALU reg-reg operation with condition code, src1 modified
  4471 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4472     single_instruction;
  4473     cr    : E(write);
  4474     src1  : E(write);
  4475     src1  : R(read);
  4476     src2  : R(read);
  4477     IALU  : R;
  4478 %}
  4480 // Integer ALU reg-imm operation with condition code, src1 modified
  4481 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4482     single_instruction;
  4483     cr    : E(write);
  4484     src1  : E(write);
  4485     src1  : R(read);
  4486     IALU  : R;
  4487 %}
  4489 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4490     multiple_bundles;
  4491     dst   : E(write)+4;
  4492     cr    : E(write);
  4493     src1  : R(read);
  4494     src2  : R(read);
  4495     IALU  : R(3);
  4496     BR    : R(2);
  4497 %}
  4499 // Integer ALU operation
  4500 pipe_class ialu_none(iRegI dst) %{
  4501     single_instruction;
  4502     dst   : E(write);
  4503     IALU  : R;
  4504 %}
  4506 // Integer ALU reg operation
  4507 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4508     single_instruction; may_have_no_code;
  4509     dst   : E(write);
  4510     src   : R(read);
  4511     IALU  : R;
  4512 %}
  4514 // Integer ALU reg conditional operation
  4515 // This instruction has a 1 cycle stall, and cannot execute
  4516 // in the same cycle as the instruction setting the condition
  4517 // code. We kludge this by pretending to read the condition code
  4518 // 1 cycle earlier, and by marking the functional units as busy
  4519 // for 2 cycles with the result available 1 cycle later than
  4520 // is really the case.
  4521 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4522     single_instruction;
  4523     op2_out : C(write);
  4524     op1     : R(read);
  4525     cr      : R(read);       // This is really E, with a 1 cycle stall
  4526     BR      : R(2);
  4527     MS      : R(2);
  4528 %}
  4530 #ifdef _LP64
  4531 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4532     instruction_count(1); multiple_bundles;
  4533     dst     : C(write)+1;
  4534     src     : R(read)+1;
  4535     IALU    : R(1);
  4536     BR      : E(2);
  4537     MS      : E(2);
  4538 %}
  4539 #endif
  4541 // Integer ALU reg operation
  4542 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4543     single_instruction; may_have_no_code;
  4544     dst   : E(write);
  4545     src   : R(read);
  4546     IALU  : R;
  4547 %}
  4548 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4549     single_instruction; may_have_no_code;
  4550     dst   : E(write);
  4551     src   : R(read);
  4552     IALU  : R;
  4553 %}
  4555 // Two integer ALU reg operations
  4556 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4557     instruction_count(2);
  4558     dst   : E(write);
  4559     src   : R(read);
  4560     A0    : R;
  4561     A1    : R;
  4562 %}
  4564 // Two integer ALU reg operations
  4565 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4566     instruction_count(2); may_have_no_code;
  4567     dst   : E(write);
  4568     src   : R(read);
  4569     A0    : R;
  4570     A1    : R;
  4571 %}
  4573 // Integer ALU imm operation
  4574 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4575     single_instruction;
  4576     dst   : E(write);
  4577     IALU  : R;
  4578 %}
  4580 // Integer ALU reg-reg with carry operation
  4581 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4582     single_instruction;
  4583     dst   : E(write);
  4584     src1  : R(read);
  4585     src2  : R(read);
  4586     IALU  : R;
  4587 %}
  4589 // Integer ALU cc operation
  4590 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4591     single_instruction;
  4592     dst   : E(write);
  4593     cc    : R(read);
  4594     IALU  : R;
  4595 %}
  4597 // Integer ALU cc / second IALU operation
  4598 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4599     instruction_count(1); multiple_bundles;
  4600     dst   : E(write)+1;
  4601     src   : R(read);
  4602     IALU  : R;
  4603 %}
  4605 // Integer ALU cc / second IALU operation
  4606 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4607     instruction_count(1); multiple_bundles;
  4608     dst   : E(write)+1;
  4609     p     : R(read);
  4610     q     : R(read);
  4611     IALU  : R;
  4612 %}
  4614 // Integer ALU hi-lo-reg operation
  4615 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4616     instruction_count(1); multiple_bundles;
  4617     dst   : E(write)+1;
  4618     IALU  : R(2);
  4619 %}
  4621 // Float ALU hi-lo-reg operation (with temp)
  4622 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4623     instruction_count(1); multiple_bundles;
  4624     dst   : E(write)+1;
  4625     IALU  : R(2);
  4626 %}
  4628 // Long Constant
  4629 pipe_class loadConL( iRegL dst, immL src ) %{
  4630     instruction_count(2); multiple_bundles;
  4631     dst   : E(write)+1;
  4632     IALU  : R(2);
  4633     IALU  : R(2);
  4634 %}
  4636 // Pointer Constant
  4637 pipe_class loadConP( iRegP dst, immP src ) %{
  4638     instruction_count(0); multiple_bundles;
  4639     fixed_latency(6);
  4640 %}
  4642 // Polling Address
  4643 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4644 #ifdef _LP64
  4645     instruction_count(0); multiple_bundles;
  4646     fixed_latency(6);
  4647 #else
  4648     dst   : E(write);
  4649     IALU  : R;
  4650 #endif
  4651 %}
  4653 // Long Constant small
  4654 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4655     instruction_count(2);
  4656     dst   : E(write);
  4657     IALU  : R;
  4658     IALU  : R;
  4659 %}
  4661 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4662 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4663     instruction_count(1); multiple_bundles;
  4664     src   : R(read);
  4665     dst   : M(write)+1;
  4666     IALU  : R;
  4667     MS    : E;
  4668 %}
  4670 // Integer ALU nop operation
  4671 pipe_class ialu_nop() %{
  4672     single_instruction;
  4673     IALU  : R;
  4674 %}
  4676 // Integer ALU nop operation
  4677 pipe_class ialu_nop_A0() %{
  4678     single_instruction;
  4679     A0    : R;
  4680 %}
  4682 // Integer ALU nop operation
  4683 pipe_class ialu_nop_A1() %{
  4684     single_instruction;
  4685     A1    : R;
  4686 %}
  4688 // Integer Multiply reg-reg operation
  4689 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4690     single_instruction;
  4691     dst   : E(write);
  4692     src1  : R(read);
  4693     src2  : R(read);
  4694     MS    : R(5);
  4695 %}
  4697 // Integer Multiply reg-imm operation
  4698 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4699     single_instruction;
  4700     dst   : E(write);
  4701     src1  : R(read);
  4702     MS    : R(5);
  4703 %}
  4705 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4706     single_instruction;
  4707     dst   : E(write)+4;
  4708     src1  : R(read);
  4709     src2  : R(read);
  4710     MS    : R(6);
  4711 %}
  4713 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4714     single_instruction;
  4715     dst   : E(write)+4;
  4716     src1  : R(read);
  4717     MS    : R(6);
  4718 %}
  4720 // Integer Divide reg-reg
  4721 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4722     instruction_count(1); multiple_bundles;
  4723     dst   : E(write);
  4724     temp  : E(write);
  4725     src1  : R(read);
  4726     src2  : R(read);
  4727     temp  : R(read);
  4728     MS    : R(38);
  4729 %}
  4731 // Integer Divide reg-imm
  4732 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4733     instruction_count(1); multiple_bundles;
  4734     dst   : E(write);
  4735     temp  : E(write);
  4736     src1  : R(read);
  4737     temp  : R(read);
  4738     MS    : R(38);
  4739 %}
  4741 // Long Divide
  4742 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4743     dst  : E(write)+71;
  4744     src1 : R(read);
  4745     src2 : R(read)+1;
  4746     MS   : R(70);
  4747 %}
  4749 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4750     dst  : E(write)+71;
  4751     src1 : R(read);
  4752     MS   : R(70);
  4753 %}
  4755 // Floating Point Add Float
  4756 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4757     single_instruction;
  4758     dst   : X(write);
  4759     src1  : E(read);
  4760     src2  : E(read);
  4761     FA    : R;
  4762 %}
  4764 // Floating Point Add Double
  4765 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4766     single_instruction;
  4767     dst   : X(write);
  4768     src1  : E(read);
  4769     src2  : E(read);
  4770     FA    : R;
  4771 %}
  4773 // Floating Point Conditional Move based on integer flags
  4774 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4775     single_instruction;
  4776     dst   : X(write);
  4777     src   : E(read);
  4778     cr    : R(read);
  4779     FA    : R(2);
  4780     BR    : R(2);
  4781 %}
  4783 // Floating Point Conditional Move based on integer flags
  4784 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4785     single_instruction;
  4786     dst   : X(write);
  4787     src   : E(read);
  4788     cr    : R(read);
  4789     FA    : R(2);
  4790     BR    : R(2);
  4791 %}
  4793 // Floating Point Multiply Float
  4794 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4795     single_instruction;
  4796     dst   : X(write);
  4797     src1  : E(read);
  4798     src2  : E(read);
  4799     FM    : R;
  4800 %}
  4802 // Floating Point Multiply Double
  4803 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4804     single_instruction;
  4805     dst   : X(write);
  4806     src1  : E(read);
  4807     src2  : E(read);
  4808     FM    : R;
  4809 %}
  4811 // Floating Point Divide Float
  4812 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4813     single_instruction;
  4814     dst   : X(write);
  4815     src1  : E(read);
  4816     src2  : E(read);
  4817     FM    : R;
  4818     FDIV  : C(14);
  4819 %}
  4821 // Floating Point Divide Double
  4822 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4823     single_instruction;
  4824     dst   : X(write);
  4825     src1  : E(read);
  4826     src2  : E(read);
  4827     FM    : R;
  4828     FDIV  : C(17);
  4829 %}
  4831 // Floating Point Move/Negate/Abs Float
  4832 pipe_class faddF_reg(regF dst, regF src) %{
  4833     single_instruction;
  4834     dst   : W(write);
  4835     src   : E(read);
  4836     FA    : R(1);
  4837 %}
  4839 // Floating Point Move/Negate/Abs Double
  4840 pipe_class faddD_reg(regD dst, regD src) %{
  4841     single_instruction;
  4842     dst   : W(write);
  4843     src   : E(read);
  4844     FA    : R;
  4845 %}
  4847 // Floating Point Convert F->D
  4848 pipe_class fcvtF2D(regD dst, regF src) %{
  4849     single_instruction;
  4850     dst   : X(write);
  4851     src   : E(read);
  4852     FA    : R;
  4853 %}
  4855 // Floating Point Convert I->D
  4856 pipe_class fcvtI2D(regD dst, regF src) %{
  4857     single_instruction;
  4858     dst   : X(write);
  4859     src   : E(read);
  4860     FA    : R;
  4861 %}
  4863 // Floating Point Convert LHi->D
  4864 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4865     single_instruction;
  4866     dst   : X(write);
  4867     src   : E(read);
  4868     FA    : R;
  4869 %}
  4871 // Floating Point Convert L->D
  4872 pipe_class fcvtL2D(regD dst, regF src) %{
  4873     single_instruction;
  4874     dst   : X(write);
  4875     src   : E(read);
  4876     FA    : R;
  4877 %}
  4879 // Floating Point Convert L->F
  4880 pipe_class fcvtL2F(regD dst, regF src) %{
  4881     single_instruction;
  4882     dst   : X(write);
  4883     src   : E(read);
  4884     FA    : R;
  4885 %}
  4887 // Floating Point Convert D->F
  4888 pipe_class fcvtD2F(regD dst, regF src) %{
  4889     single_instruction;
  4890     dst   : X(write);
  4891     src   : E(read);
  4892     FA    : R;
  4893 %}
  4895 // Floating Point Convert I->L
  4896 pipe_class fcvtI2L(regD dst, regF src) %{
  4897     single_instruction;
  4898     dst   : X(write);
  4899     src   : E(read);
  4900     FA    : R;
  4901 %}
  4903 // Floating Point Convert D->F
  4904 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4905     instruction_count(1); multiple_bundles;
  4906     dst   : X(write)+6;
  4907     src   : E(read);
  4908     FA    : R;
  4909 %}
  4911 // Floating Point Convert D->L
  4912 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4913     instruction_count(1); multiple_bundles;
  4914     dst   : X(write)+6;
  4915     src   : E(read);
  4916     FA    : R;
  4917 %}
  4919 // Floating Point Convert F->I
  4920 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4921     instruction_count(1); multiple_bundles;
  4922     dst   : X(write)+6;
  4923     src   : E(read);
  4924     FA    : R;
  4925 %}
  4927 // Floating Point Convert F->L
  4928 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4929     instruction_count(1); multiple_bundles;
  4930     dst   : X(write)+6;
  4931     src   : E(read);
  4932     FA    : R;
  4933 %}
  4935 // Floating Point Convert I->F
  4936 pipe_class fcvtI2F(regF dst, regF src) %{
  4937     single_instruction;
  4938     dst   : X(write);
  4939     src   : E(read);
  4940     FA    : R;
  4941 %}
  4943 // Floating Point Compare
  4944 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4945     single_instruction;
  4946     cr    : X(write);
  4947     src1  : E(read);
  4948     src2  : E(read);
  4949     FA    : R;
  4950 %}
  4952 // Floating Point Compare
  4953 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4954     single_instruction;
  4955     cr    : X(write);
  4956     src1  : E(read);
  4957     src2  : E(read);
  4958     FA    : R;
  4959 %}
  4961 // Floating Add Nop
  4962 pipe_class fadd_nop() %{
  4963     single_instruction;
  4964     FA  : R;
  4965 %}
  4967 // Integer Store to Memory
  4968 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  4969     single_instruction;
  4970     mem   : R(read);
  4971     src   : C(read);
  4972     MS    : R;
  4973 %}
  4975 // Integer Store to Memory
  4976 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  4977     single_instruction;
  4978     mem   : R(read);
  4979     src   : C(read);
  4980     MS    : R;
  4981 %}
  4983 // Integer Store Zero to Memory
  4984 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  4985     single_instruction;
  4986     mem   : R(read);
  4987     MS    : R;
  4988 %}
  4990 // Special Stack Slot Store
  4991 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  4992     single_instruction;
  4993     stkSlot : R(read);
  4994     src     : C(read);
  4995     MS      : R;
  4996 %}
  4998 // Special Stack Slot Store
  4999 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5000     instruction_count(2); multiple_bundles;
  5001     stkSlot : R(read);
  5002     src     : C(read);
  5003     MS      : R(2);
  5004 %}
  5006 // Float Store
  5007 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5008     single_instruction;
  5009     mem : R(read);
  5010     src : C(read);
  5011     MS  : R;
  5012 %}
  5014 // Float Store
  5015 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5016     single_instruction;
  5017     mem : R(read);
  5018     MS  : R;
  5019 %}
  5021 // Double Store
  5022 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5023     instruction_count(1);
  5024     mem : R(read);
  5025     src : C(read);
  5026     MS  : R;
  5027 %}
  5029 // Double Store
  5030 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5031     single_instruction;
  5032     mem : R(read);
  5033     MS  : R;
  5034 %}
  5036 // Special Stack Slot Float Store
  5037 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5038     single_instruction;
  5039     stkSlot : R(read);
  5040     src     : C(read);
  5041     MS      : R;
  5042 %}
  5044 // Special Stack Slot Double Store
  5045 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5046     single_instruction;
  5047     stkSlot : R(read);
  5048     src     : C(read);
  5049     MS      : R;
  5050 %}
  5052 // Integer Load (when sign bit propagation not needed)
  5053 pipe_class iload_mem(iRegI dst, memory mem) %{
  5054     single_instruction;
  5055     mem : R(read);
  5056     dst : C(write);
  5057     MS  : R;
  5058 %}
  5060 // Integer Load from stack operand
  5061 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5062     single_instruction;
  5063     mem : R(read);
  5064     dst : C(write);
  5065     MS  : R;
  5066 %}
  5068 // Integer Load (when sign bit propagation or masking is needed)
  5069 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5070     single_instruction;
  5071     mem : R(read);
  5072     dst : M(write);
  5073     MS  : R;
  5074 %}
  5076 // Float Load
  5077 pipe_class floadF_mem(regF dst, memory mem) %{
  5078     single_instruction;
  5079     mem : R(read);
  5080     dst : M(write);
  5081     MS  : R;
  5082 %}
  5084 // Float Load
  5085 pipe_class floadD_mem(regD dst, memory mem) %{
  5086     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5087     mem : R(read);
  5088     dst : M(write);
  5089     MS  : R;
  5090 %}
  5092 // Float Load
  5093 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5094     single_instruction;
  5095     stkSlot : R(read);
  5096     dst : M(write);
  5097     MS  : R;
  5098 %}
  5100 // Float Load
  5101 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5102     single_instruction;
  5103     stkSlot : R(read);
  5104     dst : M(write);
  5105     MS  : R;
  5106 %}
  5108 // Memory Nop
  5109 pipe_class mem_nop() %{
  5110     single_instruction;
  5111     MS  : R;
  5112 %}
  5114 pipe_class sethi(iRegP dst, immI src) %{
  5115     single_instruction;
  5116     dst  : E(write);
  5117     IALU : R;
  5118 %}
  5120 pipe_class loadPollP(iRegP poll) %{
  5121     single_instruction;
  5122     poll : R(read);
  5123     MS   : R;
  5124 %}
  5126 pipe_class br(Universe br, label labl) %{
  5127     single_instruction_with_delay_slot;
  5128     BR  : R;
  5129 %}
  5131 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5132     single_instruction_with_delay_slot;
  5133     cr    : E(read);
  5134     BR    : R;
  5135 %}
  5137 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5138     single_instruction_with_delay_slot;
  5139     op1 : E(read);
  5140     BR  : R;
  5141     MS  : R;
  5142 %}
  5144 // Compare and branch
  5145 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5146     instruction_count(2); has_delay_slot;
  5147     cr    : E(write);
  5148     src1  : R(read);
  5149     src2  : R(read);
  5150     IALU  : R;
  5151     BR    : R;
  5152 %}
  5154 // Compare and branch
  5155 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5156     instruction_count(2); has_delay_slot;
  5157     cr    : E(write);
  5158     src1  : R(read);
  5159     IALU  : R;
  5160     BR    : R;
  5161 %}
  5163 // Compare and branch using cbcond
  5164 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5165     single_instruction;
  5166     src1  : E(read);
  5167     src2  : E(read);
  5168     IALU  : R;
  5169     BR    : R;
  5170 %}
  5172 // Compare and branch using cbcond
  5173 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5174     single_instruction;
  5175     src1  : E(read);
  5176     IALU  : R;
  5177     BR    : R;
  5178 %}
  5180 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5181     single_instruction_with_delay_slot;
  5182     cr    : E(read);
  5183     BR    : R;
  5184 %}
  5186 pipe_class br_nop() %{
  5187     single_instruction;
  5188     BR  : R;
  5189 %}
  5191 pipe_class simple_call(method meth) %{
  5192     instruction_count(2); multiple_bundles; force_serialization;
  5193     fixed_latency(100);
  5194     BR  : R(1);
  5195     MS  : R(1);
  5196     A0  : R(1);
  5197 %}
  5199 pipe_class compiled_call(method meth) %{
  5200     instruction_count(1); multiple_bundles; force_serialization;
  5201     fixed_latency(100);
  5202     MS  : R(1);
  5203 %}
  5205 pipe_class call(method meth) %{
  5206     instruction_count(0); multiple_bundles; force_serialization;
  5207     fixed_latency(100);
  5208 %}
  5210 pipe_class tail_call(Universe ignore, label labl) %{
  5211     single_instruction; has_delay_slot;
  5212     fixed_latency(100);
  5213     BR  : R(1);
  5214     MS  : R(1);
  5215 %}
  5217 pipe_class ret(Universe ignore) %{
  5218     single_instruction; has_delay_slot;
  5219     BR  : R(1);
  5220     MS  : R(1);
  5221 %}
  5223 pipe_class ret_poll(g3RegP poll) %{
  5224     instruction_count(3); has_delay_slot;
  5225     poll : E(read);
  5226     MS   : R;
  5227 %}
  5229 // The real do-nothing guy
  5230 pipe_class empty( ) %{
  5231     instruction_count(0);
  5232 %}
  5234 pipe_class long_memory_op() %{
  5235     instruction_count(0); multiple_bundles; force_serialization;
  5236     fixed_latency(25);
  5237     MS  : R(1);
  5238 %}
  5240 // Check-cast
  5241 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5242     array : R(read);
  5243     match  : R(read);
  5244     IALU   : R(2);
  5245     BR     : R(2);
  5246     MS     : R;
  5247 %}
  5249 // Convert FPU flags into +1,0,-1
  5250 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5251     src1  : E(read);
  5252     src2  : E(read);
  5253     dst   : E(write);
  5254     FA    : R;
  5255     MS    : R(2);
  5256     BR    : R(2);
  5257 %}
  5259 // Compare for p < q, and conditionally add y
  5260 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5261     p     : E(read);
  5262     q     : E(read);
  5263     y     : E(read);
  5264     IALU  : R(3)
  5265 %}
  5267 // Perform a compare, then move conditionally in a branch delay slot.
  5268 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5269     src2   : E(read);
  5270     srcdst : E(read);
  5271     IALU   : R;
  5272     BR     : R;
  5273 %}
  5275 // Define the class for the Nop node
  5276 define %{
  5277    MachNop = ialu_nop;
  5278 %}
  5280 %}
  5282 //----------INSTRUCTIONS-------------------------------------------------------
  5284 //------------Special Stack Slot instructions - no match rules-----------------
  5285 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5286   // No match rule to avoid chain rule match.
  5287   effect(DEF dst, USE src);
  5288   ins_cost(MEMORY_REF_COST);
  5289   size(4);
  5290   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5291   opcode(Assembler::ldf_op3);
  5292   ins_encode(simple_form3_mem_reg(src, dst));
  5293   ins_pipe(floadF_stk);
  5294 %}
  5296 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5297   // No match rule to avoid chain rule match.
  5298   effect(DEF dst, USE src);
  5299   ins_cost(MEMORY_REF_COST);
  5300   size(4);
  5301   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5302   opcode(Assembler::lddf_op3);
  5303   ins_encode(simple_form3_mem_reg(src, dst));
  5304   ins_pipe(floadD_stk);
  5305 %}
  5307 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5308   // No match rule to avoid chain rule match.
  5309   effect(DEF dst, USE src);
  5310   ins_cost(MEMORY_REF_COST);
  5311   size(4);
  5312   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5313   opcode(Assembler::stf_op3);
  5314   ins_encode(simple_form3_mem_reg(dst, src));
  5315   ins_pipe(fstoreF_stk_reg);
  5316 %}
  5318 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5319   // No match rule to avoid chain rule match.
  5320   effect(DEF dst, USE src);
  5321   ins_cost(MEMORY_REF_COST);
  5322   size(4);
  5323   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5324   opcode(Assembler::stdf_op3);
  5325   ins_encode(simple_form3_mem_reg(dst, src));
  5326   ins_pipe(fstoreD_stk_reg);
  5327 %}
  5329 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5330   effect(DEF dst, USE src);
  5331   ins_cost(MEMORY_REF_COST*2);
  5332   size(8);
  5333   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5334             "STW    R_G0,$dst.lo" %}
  5335   opcode(Assembler::stw_op3);
  5336   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5337   ins_pipe(lstoreI_stk_reg);
  5338 %}
  5340 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5341   // No match rule to avoid chain rule match.
  5342   effect(DEF dst, USE src);
  5343   ins_cost(MEMORY_REF_COST);
  5344   size(4);
  5345   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5346   opcode(Assembler::stx_op3);
  5347   ins_encode(simple_form3_mem_reg( dst, src ) );
  5348   ins_pipe(istore_stk_reg);
  5349 %}
  5351 //---------- Chain stack slots between similar types --------
  5353 // Load integer from stack slot
  5354 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5355   match(Set dst src);
  5356   ins_cost(MEMORY_REF_COST);
  5358   size(4);
  5359   format %{ "LDUW   $src,$dst\t!stk" %}
  5360   opcode(Assembler::lduw_op3);
  5361   ins_encode(simple_form3_mem_reg( src, dst ) );
  5362   ins_pipe(iload_mem);
  5363 %}
  5365 // Store integer to stack slot
  5366 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5367   match(Set dst src);
  5368   ins_cost(MEMORY_REF_COST);
  5370   size(4);
  5371   format %{ "STW    $src,$dst\t!stk" %}
  5372   opcode(Assembler::stw_op3);
  5373   ins_encode(simple_form3_mem_reg( dst, src ) );
  5374   ins_pipe(istore_mem_reg);
  5375 %}
  5377 // Load long from stack slot
  5378 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5379   match(Set dst src);
  5381   ins_cost(MEMORY_REF_COST);
  5382   size(4);
  5383   format %{ "LDX    $src,$dst\t! long" %}
  5384   opcode(Assembler::ldx_op3);
  5385   ins_encode(simple_form3_mem_reg( src, dst ) );
  5386   ins_pipe(iload_mem);
  5387 %}
  5389 // Store long to stack slot
  5390 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5391   match(Set dst src);
  5393   ins_cost(MEMORY_REF_COST);
  5394   size(4);
  5395   format %{ "STX    $src,$dst\t! long" %}
  5396   opcode(Assembler::stx_op3);
  5397   ins_encode(simple_form3_mem_reg( dst, src ) );
  5398   ins_pipe(istore_mem_reg);
  5399 %}
  5401 #ifdef _LP64
  5402 // Load pointer from stack slot, 64-bit encoding
  5403 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5404   match(Set dst src);
  5405   ins_cost(MEMORY_REF_COST);
  5406   size(4);
  5407   format %{ "LDX    $src,$dst\t!ptr" %}
  5408   opcode(Assembler::ldx_op3);
  5409   ins_encode(simple_form3_mem_reg( src, dst ) );
  5410   ins_pipe(iload_mem);
  5411 %}
  5413 // Store pointer to stack slot
  5414 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5415   match(Set dst src);
  5416   ins_cost(MEMORY_REF_COST);
  5417   size(4);
  5418   format %{ "STX    $src,$dst\t!ptr" %}
  5419   opcode(Assembler::stx_op3);
  5420   ins_encode(simple_form3_mem_reg( dst, src ) );
  5421   ins_pipe(istore_mem_reg);
  5422 %}
  5423 #else // _LP64
  5424 // Load pointer from stack slot, 32-bit encoding
  5425 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5426   match(Set dst src);
  5427   ins_cost(MEMORY_REF_COST);
  5428   format %{ "LDUW   $src,$dst\t!ptr" %}
  5429   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5430   ins_encode(simple_form3_mem_reg( src, dst ) );
  5431   ins_pipe(iload_mem);
  5432 %}
  5434 // Store pointer to stack slot
  5435 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5436   match(Set dst src);
  5437   ins_cost(MEMORY_REF_COST);
  5438   format %{ "STW    $src,$dst\t!ptr" %}
  5439   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5440   ins_encode(simple_form3_mem_reg( dst, src ) );
  5441   ins_pipe(istore_mem_reg);
  5442 %}
  5443 #endif // _LP64
  5445 //------------Special Nop instructions for bundling - no match rules-----------
  5446 // Nop using the A0 functional unit
  5447 instruct Nop_A0() %{
  5448   ins_cost(0);
  5450   format %{ "NOP    ! Alu Pipeline" %}
  5451   opcode(Assembler::or_op3, Assembler::arith_op);
  5452   ins_encode( form2_nop() );
  5453   ins_pipe(ialu_nop_A0);
  5454 %}
  5456 // Nop using the A1 functional unit
  5457 instruct Nop_A1( ) %{
  5458   ins_cost(0);
  5460   format %{ "NOP    ! Alu Pipeline" %}
  5461   opcode(Assembler::or_op3, Assembler::arith_op);
  5462   ins_encode( form2_nop() );
  5463   ins_pipe(ialu_nop_A1);
  5464 %}
  5466 // Nop using the memory functional unit
  5467 instruct Nop_MS( ) %{
  5468   ins_cost(0);
  5470   format %{ "NOP    ! Memory Pipeline" %}
  5471   ins_encode( emit_mem_nop );
  5472   ins_pipe(mem_nop);
  5473 %}
  5475 // Nop using the floating add functional unit
  5476 instruct Nop_FA( ) %{
  5477   ins_cost(0);
  5479   format %{ "NOP    ! Floating Add Pipeline" %}
  5480   ins_encode( emit_fadd_nop );
  5481   ins_pipe(fadd_nop);
  5482 %}
  5484 // Nop using the branch functional unit
  5485 instruct Nop_BR( ) %{
  5486   ins_cost(0);
  5488   format %{ "NOP    ! Branch Pipeline" %}
  5489   ins_encode( emit_br_nop );
  5490   ins_pipe(br_nop);
  5491 %}
  5493 //----------Load/Store/Move Instructions---------------------------------------
  5494 //----------Load Instructions--------------------------------------------------
  5495 // Load Byte (8bit signed)
  5496 instruct loadB(iRegI dst, memory mem) %{
  5497   match(Set dst (LoadB mem));
  5498   ins_cost(MEMORY_REF_COST);
  5500   size(4);
  5501   format %{ "LDSB   $mem,$dst\t! byte" %}
  5502   ins_encode %{
  5503     __ ldsb($mem$$Address, $dst$$Register);
  5504   %}
  5505   ins_pipe(iload_mask_mem);
  5506 %}
  5508 // Load Byte (8bit signed) into a Long Register
  5509 instruct loadB2L(iRegL dst, memory mem) %{
  5510   match(Set dst (ConvI2L (LoadB mem)));
  5511   ins_cost(MEMORY_REF_COST);
  5513   size(4);
  5514   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5515   ins_encode %{
  5516     __ ldsb($mem$$Address, $dst$$Register);
  5517   %}
  5518   ins_pipe(iload_mask_mem);
  5519 %}
  5521 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5522 instruct loadUB(iRegI dst, memory mem) %{
  5523   match(Set dst (LoadUB mem));
  5524   ins_cost(MEMORY_REF_COST);
  5526   size(4);
  5527   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5528   ins_encode %{
  5529     __ ldub($mem$$Address, $dst$$Register);
  5530   %}
  5531   ins_pipe(iload_mem);
  5532 %}
  5534 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5535 instruct loadUB2L(iRegL dst, memory mem) %{
  5536   match(Set dst (ConvI2L (LoadUB mem)));
  5537   ins_cost(MEMORY_REF_COST);
  5539   size(4);
  5540   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5541   ins_encode %{
  5542     __ ldub($mem$$Address, $dst$$Register);
  5543   %}
  5544   ins_pipe(iload_mem);
  5545 %}
  5547 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5548 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5549   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5550   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5552   size(2*4);
  5553   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5554             "AND    $dst,$mask,$dst" %}
  5555   ins_encode %{
  5556     __ ldub($mem$$Address, $dst$$Register);
  5557     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5558   %}
  5559   ins_pipe(iload_mem);
  5560 %}
  5562 // Load Short (16bit signed)
  5563 instruct loadS(iRegI dst, memory mem) %{
  5564   match(Set dst (LoadS mem));
  5565   ins_cost(MEMORY_REF_COST);
  5567   size(4);
  5568   format %{ "LDSH   $mem,$dst\t! short" %}
  5569   ins_encode %{
  5570     __ ldsh($mem$$Address, $dst$$Register);
  5571   %}
  5572   ins_pipe(iload_mask_mem);
  5573 %}
  5575 // Load Short (16 bit signed) to Byte (8 bit signed)
  5576 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5577   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5578   ins_cost(MEMORY_REF_COST);
  5580   size(4);
  5582   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5583   ins_encode %{
  5584     __ ldsb($mem$$Address, $dst$$Register, 1);
  5585   %}
  5586   ins_pipe(iload_mask_mem);
  5587 %}
  5589 // Load Short (16bit signed) into a Long Register
  5590 instruct loadS2L(iRegL dst, memory mem) %{
  5591   match(Set dst (ConvI2L (LoadS mem)));
  5592   ins_cost(MEMORY_REF_COST);
  5594   size(4);
  5595   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5596   ins_encode %{
  5597     __ ldsh($mem$$Address, $dst$$Register);
  5598   %}
  5599   ins_pipe(iload_mask_mem);
  5600 %}
  5602 // Load Unsigned Short/Char (16bit UNsigned)
  5603 instruct loadUS(iRegI dst, memory mem) %{
  5604   match(Set dst (LoadUS mem));
  5605   ins_cost(MEMORY_REF_COST);
  5607   size(4);
  5608   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5609   ins_encode %{
  5610     __ lduh($mem$$Address, $dst$$Register);
  5611   %}
  5612   ins_pipe(iload_mem);
  5613 %}
  5615 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5616 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5617   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5618   ins_cost(MEMORY_REF_COST);
  5620   size(4);
  5621   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5622   ins_encode %{
  5623     __ ldsb($mem$$Address, $dst$$Register, 1);
  5624   %}
  5625   ins_pipe(iload_mask_mem);
  5626 %}
  5628 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5629 instruct loadUS2L(iRegL dst, memory mem) %{
  5630   match(Set dst (ConvI2L (LoadUS mem)));
  5631   ins_cost(MEMORY_REF_COST);
  5633   size(4);
  5634   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5635   ins_encode %{
  5636     __ lduh($mem$$Address, $dst$$Register);
  5637   %}
  5638   ins_pipe(iload_mem);
  5639 %}
  5641 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5642 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5643   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5644   ins_cost(MEMORY_REF_COST);
  5646   size(4);
  5647   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5648   ins_encode %{
  5649     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5650   %}
  5651   ins_pipe(iload_mem);
  5652 %}
  5654 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5655 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5656   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5657   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5659   size(2*4);
  5660   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5661             "AND    $dst,$mask,$dst" %}
  5662   ins_encode %{
  5663     Register Rdst = $dst$$Register;
  5664     __ lduh($mem$$Address, Rdst);
  5665     __ and3(Rdst, $mask$$constant, Rdst);
  5666   %}
  5667   ins_pipe(iload_mem);
  5668 %}
  5670 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5671 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5672   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5673   effect(TEMP dst, TEMP tmp);
  5674   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5676   size((3+1)*4);  // set may use two instructions.
  5677   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5678             "SET    $mask,$tmp\n\t"
  5679             "AND    $dst,$tmp,$dst" %}
  5680   ins_encode %{
  5681     Register Rdst = $dst$$Register;
  5682     Register Rtmp = $tmp$$Register;
  5683     __ lduh($mem$$Address, Rdst);
  5684     __ set($mask$$constant, Rtmp);
  5685     __ and3(Rdst, Rtmp, Rdst);
  5686   %}
  5687   ins_pipe(iload_mem);
  5688 %}
  5690 // Load Integer
  5691 instruct loadI(iRegI dst, memory mem) %{
  5692   match(Set dst (LoadI mem));
  5693   ins_cost(MEMORY_REF_COST);
  5695   size(4);
  5696   format %{ "LDUW   $mem,$dst\t! int" %}
  5697   ins_encode %{
  5698     __ lduw($mem$$Address, $dst$$Register);
  5699   %}
  5700   ins_pipe(iload_mem);
  5701 %}
  5703 // Load Integer to Byte (8 bit signed)
  5704 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5705   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5706   ins_cost(MEMORY_REF_COST);
  5708   size(4);
  5710   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5711   ins_encode %{
  5712     __ ldsb($mem$$Address, $dst$$Register, 3);
  5713   %}
  5714   ins_pipe(iload_mask_mem);
  5715 %}
  5717 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5718 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5719   match(Set dst (AndI (LoadI mem) mask));
  5720   ins_cost(MEMORY_REF_COST);
  5722   size(4);
  5724   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5725   ins_encode %{
  5726     __ ldub($mem$$Address, $dst$$Register, 3);
  5727   %}
  5728   ins_pipe(iload_mask_mem);
  5729 %}
  5731 // Load Integer to Short (16 bit signed)
  5732 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5733   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5734   ins_cost(MEMORY_REF_COST);
  5736   size(4);
  5738   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5739   ins_encode %{
  5740     __ ldsh($mem$$Address, $dst$$Register, 2);
  5741   %}
  5742   ins_pipe(iload_mask_mem);
  5743 %}
  5745 // Load Integer to Unsigned Short (16 bit UNsigned)
  5746 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5747   match(Set dst (AndI (LoadI mem) mask));
  5748   ins_cost(MEMORY_REF_COST);
  5750   size(4);
  5752   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5753   ins_encode %{
  5754     __ lduh($mem$$Address, $dst$$Register, 2);
  5755   %}
  5756   ins_pipe(iload_mask_mem);
  5757 %}
  5759 // Load Integer into a Long Register
  5760 instruct loadI2L(iRegL dst, memory mem) %{
  5761   match(Set dst (ConvI2L (LoadI mem)));
  5762   ins_cost(MEMORY_REF_COST);
  5764   size(4);
  5765   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5766   ins_encode %{
  5767     __ ldsw($mem$$Address, $dst$$Register);
  5768   %}
  5769   ins_pipe(iload_mask_mem);
  5770 %}
  5772 // Load Integer with mask 0xFF into a Long Register
  5773 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5774   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5775   ins_cost(MEMORY_REF_COST);
  5777   size(4);
  5778   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5779   ins_encode %{
  5780     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5781   %}
  5782   ins_pipe(iload_mem);
  5783 %}
  5785 // Load Integer with mask 0xFFFF into a Long Register
  5786 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5787   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5788   ins_cost(MEMORY_REF_COST);
  5790   size(4);
  5791   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5792   ins_encode %{
  5793     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5794   %}
  5795   ins_pipe(iload_mem);
  5796 %}
  5798 // Load Integer with a 13-bit mask into a Long Register
  5799 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5800   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5801   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5803   size(2*4);
  5804   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5805             "AND    $dst,$mask,$dst" %}
  5806   ins_encode %{
  5807     Register Rdst = $dst$$Register;
  5808     __ lduw($mem$$Address, Rdst);
  5809     __ and3(Rdst, $mask$$constant, Rdst);
  5810   %}
  5811   ins_pipe(iload_mem);
  5812 %}
  5814 // Load Integer with a 32-bit mask into a Long Register
  5815 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5816   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5817   effect(TEMP dst, TEMP tmp);
  5818   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5820   size((3+1)*4);  // set may use two instructions.
  5821   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5822             "SET    $mask,$tmp\n\t"
  5823             "AND    $dst,$tmp,$dst" %}
  5824   ins_encode %{
  5825     Register Rdst = $dst$$Register;
  5826     Register Rtmp = $tmp$$Register;
  5827     __ lduw($mem$$Address, Rdst);
  5828     __ set($mask$$constant, Rtmp);
  5829     __ and3(Rdst, Rtmp, Rdst);
  5830   %}
  5831   ins_pipe(iload_mem);
  5832 %}
  5834 // Load Unsigned Integer into a Long Register
  5835 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
  5836   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5837   ins_cost(MEMORY_REF_COST);
  5839   size(4);
  5840   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5841   ins_encode %{
  5842     __ lduw($mem$$Address, $dst$$Register);
  5843   %}
  5844   ins_pipe(iload_mem);
  5845 %}
  5847 // Load Long - aligned
  5848 instruct loadL(iRegL dst, memory mem ) %{
  5849   match(Set dst (LoadL mem));
  5850   ins_cost(MEMORY_REF_COST);
  5852   size(4);
  5853   format %{ "LDX    $mem,$dst\t! long" %}
  5854   ins_encode %{
  5855     __ ldx($mem$$Address, $dst$$Register);
  5856   %}
  5857   ins_pipe(iload_mem);
  5858 %}
  5860 // Load Long - UNaligned
  5861 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5862   match(Set dst (LoadL_unaligned mem));
  5863   effect(KILL tmp);
  5864   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5865   size(16);
  5866   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5867           "\tLDUW   $mem  ,$dst\n"
  5868           "\tSLLX   #32, $dst, $dst\n"
  5869           "\tOR     $dst, R_O7, $dst" %}
  5870   opcode(Assembler::lduw_op3);
  5871   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5872   ins_pipe(iload_mem);
  5873 %}
  5875 // Load Range
  5876 instruct loadRange(iRegI dst, memory mem) %{
  5877   match(Set dst (LoadRange mem));
  5878   ins_cost(MEMORY_REF_COST);
  5880   size(4);
  5881   format %{ "LDUW   $mem,$dst\t! range" %}
  5882   opcode(Assembler::lduw_op3);
  5883   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5884   ins_pipe(iload_mem);
  5885 %}
  5887 // Load Integer into %f register (for fitos/fitod)
  5888 instruct loadI_freg(regF dst, memory mem) %{
  5889   match(Set dst (LoadI mem));
  5890   ins_cost(MEMORY_REF_COST);
  5891   size(4);
  5893   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5894   opcode(Assembler::ldf_op3);
  5895   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5896   ins_pipe(floadF_mem);
  5897 %}
  5899 // Load Pointer
  5900 instruct loadP(iRegP dst, memory mem) %{
  5901   match(Set dst (LoadP mem));
  5902   ins_cost(MEMORY_REF_COST);
  5903   size(4);
  5905 #ifndef _LP64
  5906   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5907   ins_encode %{
  5908     __ lduw($mem$$Address, $dst$$Register);
  5909   %}
  5910 #else
  5911   format %{ "LDX    $mem,$dst\t! ptr" %}
  5912   ins_encode %{
  5913     __ ldx($mem$$Address, $dst$$Register);
  5914   %}
  5915 #endif
  5916   ins_pipe(iload_mem);
  5917 %}
  5919 // Load Compressed Pointer
  5920 instruct loadN(iRegN dst, memory mem) %{
  5921   match(Set dst (LoadN mem));
  5922   ins_cost(MEMORY_REF_COST);
  5923   size(4);
  5925   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5926   ins_encode %{
  5927     __ lduw($mem$$Address, $dst$$Register);
  5928   %}
  5929   ins_pipe(iload_mem);
  5930 %}
  5932 // Load Klass Pointer
  5933 instruct loadKlass(iRegP dst, memory mem) %{
  5934   match(Set dst (LoadKlass mem));
  5935   ins_cost(MEMORY_REF_COST);
  5936   size(4);
  5938 #ifndef _LP64
  5939   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5940   ins_encode %{
  5941     __ lduw($mem$$Address, $dst$$Register);
  5942   %}
  5943 #else
  5944   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5945   ins_encode %{
  5946     __ ldx($mem$$Address, $dst$$Register);
  5947   %}
  5948 #endif
  5949   ins_pipe(iload_mem);
  5950 %}
  5952 // Load narrow Klass Pointer
  5953 instruct loadNKlass(iRegN dst, memory mem) %{
  5954   match(Set dst (LoadNKlass mem));
  5955   ins_cost(MEMORY_REF_COST);
  5956   size(4);
  5958   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  5959   ins_encode %{
  5960     __ lduw($mem$$Address, $dst$$Register);
  5961   %}
  5962   ins_pipe(iload_mem);
  5963 %}
  5965 // Load Double
  5966 instruct loadD(regD dst, memory mem) %{
  5967   match(Set dst (LoadD mem));
  5968   ins_cost(MEMORY_REF_COST);
  5970   size(4);
  5971   format %{ "LDDF   $mem,$dst" %}
  5972   opcode(Assembler::lddf_op3);
  5973   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5974   ins_pipe(floadD_mem);
  5975 %}
  5977 // Load Double - UNaligned
  5978 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  5979   match(Set dst (LoadD_unaligned mem));
  5980   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5981   size(8);
  5982   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  5983           "\tLDF    $mem+4,$dst.lo\t!" %}
  5984   opcode(Assembler::ldf_op3);
  5985   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  5986   ins_pipe(iload_mem);
  5987 %}
  5989 // Load Float
  5990 instruct loadF(regF dst, memory mem) %{
  5991   match(Set dst (LoadF mem));
  5992   ins_cost(MEMORY_REF_COST);
  5994   size(4);
  5995   format %{ "LDF    $mem,$dst" %}
  5996   opcode(Assembler::ldf_op3);
  5997   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5998   ins_pipe(floadF_mem);
  5999 %}
  6001 // Load Constant
  6002 instruct loadConI( iRegI dst, immI src ) %{
  6003   match(Set dst src);
  6004   ins_cost(DEFAULT_COST * 3/2);
  6005   format %{ "SET    $src,$dst" %}
  6006   ins_encode( Set32(src, dst) );
  6007   ins_pipe(ialu_hi_lo_reg);
  6008 %}
  6010 instruct loadConI13( iRegI dst, immI13 src ) %{
  6011   match(Set dst src);
  6013   size(4);
  6014   format %{ "MOV    $src,$dst" %}
  6015   ins_encode( Set13( src, dst ) );
  6016   ins_pipe(ialu_imm);
  6017 %}
  6019 #ifndef _LP64
  6020 instruct loadConP(iRegP dst, immP con) %{
  6021   match(Set dst con);
  6022   ins_cost(DEFAULT_COST * 3/2);
  6023   format %{ "SET    $con,$dst\t!ptr" %}
  6024   ins_encode %{
  6025     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6026       intptr_t val = $con$$constant;
  6027     if (constant_reloc == relocInfo::oop_type) {
  6028       __ set_oop_constant((jobject) val, $dst$$Register);
  6029     } else if (constant_reloc == relocInfo::metadata_type) {
  6030       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6031     } else {          // non-oop pointers, e.g. card mark base, heap top
  6032       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6033       __ set(val, $dst$$Register);
  6035   %}
  6036   ins_pipe(loadConP);
  6037 %}
  6038 #else
  6039 instruct loadConP_set(iRegP dst, immP_set con) %{
  6040   match(Set dst con);
  6041   ins_cost(DEFAULT_COST * 3/2);
  6042   format %{ "SET    $con,$dst\t! ptr" %}
  6043   ins_encode %{
  6044     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6045       intptr_t val = $con$$constant;
  6046     if (constant_reloc == relocInfo::oop_type) {
  6047       __ set_oop_constant((jobject) val, $dst$$Register);
  6048     } else if (constant_reloc == relocInfo::metadata_type) {
  6049       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6050     } else {          // non-oop pointers, e.g. card mark base, heap top
  6051       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6052       __ set(val, $dst$$Register);
  6054   %}
  6055   ins_pipe(loadConP);
  6056 %}
  6058 instruct loadConP_load(iRegP dst, immP_load con) %{
  6059   match(Set dst con);
  6060   ins_cost(MEMORY_REF_COST);
  6061   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6062   ins_encode %{
  6063     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6064     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6065   %}
  6066   ins_pipe(loadConP);
  6067 %}
  6069 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6070   match(Set dst con);
  6071   ins_cost(DEFAULT_COST * 3/2);
  6072   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6073   ins_encode %{
  6074     __ set($con$$constant, $dst$$Register);
  6075   %}
  6076   ins_pipe(loadConP);
  6077 %}
  6078 #endif // _LP64
  6080 instruct loadConP0(iRegP dst, immP0 src) %{
  6081   match(Set dst src);
  6083   size(4);
  6084   format %{ "CLR    $dst\t!ptr" %}
  6085   ins_encode %{
  6086     __ clr($dst$$Register);
  6087   %}
  6088   ins_pipe(ialu_imm);
  6089 %}
  6091 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6092   match(Set dst src);
  6093   ins_cost(DEFAULT_COST);
  6094   format %{ "SET    $src,$dst\t!ptr" %}
  6095   ins_encode %{
  6096     AddressLiteral polling_page(os::get_polling_page());
  6097     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6098   %}
  6099   ins_pipe(loadConP_poll);
  6100 %}
  6102 instruct loadConN0(iRegN dst, immN0 src) %{
  6103   match(Set dst src);
  6105   size(4);
  6106   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6107   ins_encode %{
  6108     __ clr($dst$$Register);
  6109   %}
  6110   ins_pipe(ialu_imm);
  6111 %}
  6113 instruct loadConN(iRegN dst, immN src) %{
  6114   match(Set dst src);
  6115   ins_cost(DEFAULT_COST * 3/2);
  6116   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6117   ins_encode %{
  6118     Register dst = $dst$$Register;
  6119     __ set_narrow_oop((jobject)$src$$constant, dst);
  6120   %}
  6121   ins_pipe(ialu_hi_lo_reg);
  6122 %}
  6124 instruct loadConNKlass(iRegN dst, immNKlass src) %{
  6125   match(Set dst src);
  6126   ins_cost(DEFAULT_COST * 3/2);
  6127   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
  6128   ins_encode %{
  6129     Register dst = $dst$$Register;
  6130     __ set_narrow_klass((Klass*)$src$$constant, dst);
  6131   %}
  6132   ins_pipe(ialu_hi_lo_reg);
  6133 %}
  6135 // Materialize long value (predicated by immL_cheap).
  6136 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6137   match(Set dst con);
  6138   effect(KILL tmp);
  6139   ins_cost(DEFAULT_COST * 3);
  6140   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6141   ins_encode %{
  6142     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6143   %}
  6144   ins_pipe(loadConL);
  6145 %}
  6147 // Load long value from constant table (predicated by immL_expensive).
  6148 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6149   match(Set dst con);
  6150   ins_cost(MEMORY_REF_COST);
  6151   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6152   ins_encode %{
  6153       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6154     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6155   %}
  6156   ins_pipe(loadConL);
  6157 %}
  6159 instruct loadConL0( iRegL dst, immL0 src ) %{
  6160   match(Set dst src);
  6161   ins_cost(DEFAULT_COST);
  6162   size(4);
  6163   format %{ "CLR    $dst\t! long" %}
  6164   ins_encode( Set13( src, dst ) );
  6165   ins_pipe(ialu_imm);
  6166 %}
  6168 instruct loadConL13( iRegL dst, immL13 src ) %{
  6169   match(Set dst src);
  6170   ins_cost(DEFAULT_COST * 2);
  6172   size(4);
  6173   format %{ "MOV    $src,$dst\t! long" %}
  6174   ins_encode( Set13( src, dst ) );
  6175   ins_pipe(ialu_imm);
  6176 %}
  6178 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6179   match(Set dst con);
  6180   effect(KILL tmp);
  6181   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6182   ins_encode %{
  6183       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6184     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6185   %}
  6186   ins_pipe(loadConFD);
  6187 %}
  6189 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6190   match(Set dst con);
  6191   effect(KILL tmp);
  6192   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6193   ins_encode %{
  6194     // XXX This is a quick fix for 6833573.
  6195     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6196     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6197     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6198   %}
  6199   ins_pipe(loadConFD);
  6200 %}
  6202 // Prefetch instructions.
  6203 // Must be safe to execute with invalid address (cannot fault).
  6205 instruct prefetchr( memory mem ) %{
  6206   match( PrefetchRead mem );
  6207   ins_cost(MEMORY_REF_COST);
  6208   size(4);
  6210   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6211   opcode(Assembler::prefetch_op3);
  6212   ins_encode( form3_mem_prefetch_read( mem ) );
  6213   ins_pipe(iload_mem);
  6214 %}
  6216 instruct prefetchw( memory mem ) %{
  6217   match( PrefetchWrite mem );
  6218   ins_cost(MEMORY_REF_COST);
  6219   size(4);
  6221   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6222   opcode(Assembler::prefetch_op3);
  6223   ins_encode( form3_mem_prefetch_write( mem ) );
  6224   ins_pipe(iload_mem);
  6225 %}
  6227 // Prefetch instructions for allocation.
  6229 instruct prefetchAlloc( memory mem ) %{
  6230   predicate(AllocatePrefetchInstr == 0);
  6231   match( PrefetchAllocation mem );
  6232   ins_cost(MEMORY_REF_COST);
  6233   size(4);
  6235   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6236   opcode(Assembler::prefetch_op3);
  6237   ins_encode( form3_mem_prefetch_write( mem ) );
  6238   ins_pipe(iload_mem);
  6239 %}
  6241 // Use BIS instruction to prefetch for allocation.
  6242 // Could fault, need space at the end of TLAB.
  6243 instruct prefetchAlloc_bis( iRegP dst ) %{
  6244   predicate(AllocatePrefetchInstr == 1);
  6245   match( PrefetchAllocation dst );
  6246   ins_cost(MEMORY_REF_COST);
  6247   size(4);
  6249   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6250   ins_encode %{
  6251     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6252   %}
  6253   ins_pipe(istore_mem_reg);
  6254 %}
  6256 // Next code is used for finding next cache line address to prefetch.
  6257 #ifndef _LP64
  6258 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6259   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6260   ins_cost(DEFAULT_COST);
  6261   size(4);
  6263   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6264   ins_encode %{
  6265     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6266   %}
  6267   ins_pipe(ialu_reg_imm);
  6268 %}
  6269 #else
  6270 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6271   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6272   ins_cost(DEFAULT_COST);
  6273   size(4);
  6275   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6276   ins_encode %{
  6277     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6278   %}
  6279   ins_pipe(ialu_reg_imm);
  6280 %}
  6281 #endif
  6283 //----------Store Instructions-------------------------------------------------
  6284 // Store Byte
  6285 instruct storeB(memory mem, iRegI src) %{
  6286   match(Set mem (StoreB mem src));
  6287   ins_cost(MEMORY_REF_COST);
  6289   size(4);
  6290   format %{ "STB    $src,$mem\t! byte" %}
  6291   opcode(Assembler::stb_op3);
  6292   ins_encode(simple_form3_mem_reg( mem, src ) );
  6293   ins_pipe(istore_mem_reg);
  6294 %}
  6296 instruct storeB0(memory mem, immI0 src) %{
  6297   match(Set mem (StoreB mem src));
  6298   ins_cost(MEMORY_REF_COST);
  6300   size(4);
  6301   format %{ "STB    $src,$mem\t! byte" %}
  6302   opcode(Assembler::stb_op3);
  6303   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6304   ins_pipe(istore_mem_zero);
  6305 %}
  6307 instruct storeCM0(memory mem, immI0 src) %{
  6308   match(Set mem (StoreCM mem src));
  6309   ins_cost(MEMORY_REF_COST);
  6311   size(4);
  6312   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6313   opcode(Assembler::stb_op3);
  6314   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6315   ins_pipe(istore_mem_zero);
  6316 %}
  6318 // Store Char/Short
  6319 instruct storeC(memory mem, iRegI src) %{
  6320   match(Set mem (StoreC mem src));
  6321   ins_cost(MEMORY_REF_COST);
  6323   size(4);
  6324   format %{ "STH    $src,$mem\t! short" %}
  6325   opcode(Assembler::sth_op3);
  6326   ins_encode(simple_form3_mem_reg( mem, src ) );
  6327   ins_pipe(istore_mem_reg);
  6328 %}
  6330 instruct storeC0(memory mem, immI0 src) %{
  6331   match(Set mem (StoreC mem src));
  6332   ins_cost(MEMORY_REF_COST);
  6334   size(4);
  6335   format %{ "STH    $src,$mem\t! short" %}
  6336   opcode(Assembler::sth_op3);
  6337   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6338   ins_pipe(istore_mem_zero);
  6339 %}
  6341 // Store Integer
  6342 instruct storeI(memory mem, iRegI src) %{
  6343   match(Set mem (StoreI mem src));
  6344   ins_cost(MEMORY_REF_COST);
  6346   size(4);
  6347   format %{ "STW    $src,$mem" %}
  6348   opcode(Assembler::stw_op3);
  6349   ins_encode(simple_form3_mem_reg( mem, src ) );
  6350   ins_pipe(istore_mem_reg);
  6351 %}
  6353 // Store Long
  6354 instruct storeL(memory mem, iRegL src) %{
  6355   match(Set mem (StoreL mem src));
  6356   ins_cost(MEMORY_REF_COST);
  6357   size(4);
  6358   format %{ "STX    $src,$mem\t! long" %}
  6359   opcode(Assembler::stx_op3);
  6360   ins_encode(simple_form3_mem_reg( mem, src ) );
  6361   ins_pipe(istore_mem_reg);
  6362 %}
  6364 instruct storeI0(memory mem, immI0 src) %{
  6365   match(Set mem (StoreI mem src));
  6366   ins_cost(MEMORY_REF_COST);
  6368   size(4);
  6369   format %{ "STW    $src,$mem" %}
  6370   opcode(Assembler::stw_op3);
  6371   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6372   ins_pipe(istore_mem_zero);
  6373 %}
  6375 instruct storeL0(memory mem, immL0 src) %{
  6376   match(Set mem (StoreL mem src));
  6377   ins_cost(MEMORY_REF_COST);
  6379   size(4);
  6380   format %{ "STX    $src,$mem" %}
  6381   opcode(Assembler::stx_op3);
  6382   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6383   ins_pipe(istore_mem_zero);
  6384 %}
  6386 // Store Integer from float register (used after fstoi)
  6387 instruct storeI_Freg(memory mem, regF src) %{
  6388   match(Set mem (StoreI mem src));
  6389   ins_cost(MEMORY_REF_COST);
  6391   size(4);
  6392   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6393   opcode(Assembler::stf_op3);
  6394   ins_encode(simple_form3_mem_reg( mem, src ) );
  6395   ins_pipe(fstoreF_mem_reg);
  6396 %}
  6398 // Store Pointer
  6399 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6400   match(Set dst (StoreP dst src));
  6401   ins_cost(MEMORY_REF_COST);
  6402   size(4);
  6404 #ifndef _LP64
  6405   format %{ "STW    $src,$dst\t! ptr" %}
  6406   opcode(Assembler::stw_op3, 0, REGP_OP);
  6407 #else
  6408   format %{ "STX    $src,$dst\t! ptr" %}
  6409   opcode(Assembler::stx_op3, 0, REGP_OP);
  6410 #endif
  6411   ins_encode( form3_mem_reg( dst, src ) );
  6412   ins_pipe(istore_mem_spORreg);
  6413 %}
  6415 instruct storeP0(memory dst, immP0 src) %{
  6416   match(Set dst (StoreP dst src));
  6417   ins_cost(MEMORY_REF_COST);
  6418   size(4);
  6420 #ifndef _LP64
  6421   format %{ "STW    $src,$dst\t! ptr" %}
  6422   opcode(Assembler::stw_op3, 0, REGP_OP);
  6423 #else
  6424   format %{ "STX    $src,$dst\t! ptr" %}
  6425   opcode(Assembler::stx_op3, 0, REGP_OP);
  6426 #endif
  6427   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6428   ins_pipe(istore_mem_zero);
  6429 %}
  6431 // Store Compressed Pointer
  6432 instruct storeN(memory dst, iRegN src) %{
  6433    match(Set dst (StoreN dst src));
  6434    ins_cost(MEMORY_REF_COST);
  6435    size(4);
  6437    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6438    ins_encode %{
  6439      Register base = as_Register($dst$$base);
  6440      Register index = as_Register($dst$$index);
  6441      Register src = $src$$Register;
  6442      if (index != G0) {
  6443        __ stw(src, base, index);
  6444      } else {
  6445        __ stw(src, base, $dst$$disp);
  6447    %}
  6448    ins_pipe(istore_mem_spORreg);
  6449 %}
  6451 instruct storeNKlass(memory dst, iRegN src) %{
  6452    match(Set dst (StoreNKlass dst src));
  6453    ins_cost(MEMORY_REF_COST);
  6454    size(4);
  6456    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
  6457    ins_encode %{
  6458      Register base = as_Register($dst$$base);
  6459      Register index = as_Register($dst$$index);
  6460      Register src = $src$$Register;
  6461      if (index != G0) {
  6462        __ stw(src, base, index);
  6463      } else {
  6464        __ stw(src, base, $dst$$disp);
  6466    %}
  6467    ins_pipe(istore_mem_spORreg);
  6468 %}
  6470 instruct storeN0(memory dst, immN0 src) %{
  6471    match(Set dst (StoreN dst src));
  6472    ins_cost(MEMORY_REF_COST);
  6473    size(4);
  6475    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6476    ins_encode %{
  6477      Register base = as_Register($dst$$base);
  6478      Register index = as_Register($dst$$index);
  6479      if (index != G0) {
  6480        __ stw(0, base, index);
  6481      } else {
  6482        __ stw(0, base, $dst$$disp);
  6484    %}
  6485    ins_pipe(istore_mem_zero);
  6486 %}
  6488 // Store Double
  6489 instruct storeD( memory mem, regD src) %{
  6490   match(Set mem (StoreD mem src));
  6491   ins_cost(MEMORY_REF_COST);
  6493   size(4);
  6494   format %{ "STDF   $src,$mem" %}
  6495   opcode(Assembler::stdf_op3);
  6496   ins_encode(simple_form3_mem_reg( mem, src ) );
  6497   ins_pipe(fstoreD_mem_reg);
  6498 %}
  6500 instruct storeD0( memory mem, immD0 src) %{
  6501   match(Set mem (StoreD mem src));
  6502   ins_cost(MEMORY_REF_COST);
  6504   size(4);
  6505   format %{ "STX    $src,$mem" %}
  6506   opcode(Assembler::stx_op3);
  6507   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6508   ins_pipe(fstoreD_mem_zero);
  6509 %}
  6511 // Store Float
  6512 instruct storeF( memory mem, regF src) %{
  6513   match(Set mem (StoreF mem src));
  6514   ins_cost(MEMORY_REF_COST);
  6516   size(4);
  6517   format %{ "STF    $src,$mem" %}
  6518   opcode(Assembler::stf_op3);
  6519   ins_encode(simple_form3_mem_reg( mem, src ) );
  6520   ins_pipe(fstoreF_mem_reg);
  6521 %}
  6523 instruct storeF0( memory mem, immF0 src) %{
  6524   match(Set mem (StoreF mem src));
  6525   ins_cost(MEMORY_REF_COST);
  6527   size(4);
  6528   format %{ "STW    $src,$mem\t! storeF0" %}
  6529   opcode(Assembler::stw_op3);
  6530   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6531   ins_pipe(fstoreF_mem_zero);
  6532 %}
  6534 // Convert oop pointer into compressed form
  6535 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6536   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6537   match(Set dst (EncodeP src));
  6538   format %{ "encode_heap_oop $src, $dst" %}
  6539   ins_encode %{
  6540     __ encode_heap_oop($src$$Register, $dst$$Register);
  6541   %}
  6542   ins_pipe(ialu_reg);
  6543 %}
  6545 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6546   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6547   match(Set dst (EncodeP src));
  6548   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6549   ins_encode %{
  6550     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6551   %}
  6552   ins_pipe(ialu_reg);
  6553 %}
  6555 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6556   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6557             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6558   match(Set dst (DecodeN src));
  6559   format %{ "decode_heap_oop $src, $dst" %}
  6560   ins_encode %{
  6561     __ decode_heap_oop($src$$Register, $dst$$Register);
  6562   %}
  6563   ins_pipe(ialu_reg);
  6564 %}
  6566 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6567   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6568             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6569   match(Set dst (DecodeN src));
  6570   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6571   ins_encode %{
  6572     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6573   %}
  6574   ins_pipe(ialu_reg);
  6575 %}
  6577 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
  6578   match(Set dst (EncodePKlass src));
  6579   format %{ "encode_klass_not_null $src, $dst" %}
  6580   ins_encode %{
  6581     __ encode_klass_not_null($src$$Register, $dst$$Register);
  6582   %}
  6583   ins_pipe(ialu_reg);
  6584 %}
  6586 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
  6587   match(Set dst (DecodeNKlass src));
  6588   format %{ "decode_klass_not_null $src, $dst" %}
  6589   ins_encode %{
  6590     __ decode_klass_not_null($src$$Register, $dst$$Register);
  6591   %}
  6592   ins_pipe(ialu_reg);
  6593 %}
  6595 //----------MemBar Instructions-----------------------------------------------
  6596 // Memory barrier flavors
  6598 instruct membar_acquire() %{
  6599   match(MemBarAcquire);
  6600   ins_cost(4*MEMORY_REF_COST);
  6602   size(0);
  6603   format %{ "MEMBAR-acquire" %}
  6604   ins_encode( enc_membar_acquire );
  6605   ins_pipe(long_memory_op);
  6606 %}
  6608 instruct membar_acquire_lock() %{
  6609   match(MemBarAcquireLock);
  6610   ins_cost(0);
  6612   size(0);
  6613   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6614   ins_encode( );
  6615   ins_pipe(empty);
  6616 %}
  6618 instruct membar_release() %{
  6619   match(MemBarRelease);
  6620   ins_cost(4*MEMORY_REF_COST);
  6622   size(0);
  6623   format %{ "MEMBAR-release" %}
  6624   ins_encode( enc_membar_release );
  6625   ins_pipe(long_memory_op);
  6626 %}
  6628 instruct membar_release_lock() %{
  6629   match(MemBarReleaseLock);
  6630   ins_cost(0);
  6632   size(0);
  6633   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6634   ins_encode( );
  6635   ins_pipe(empty);
  6636 %}
  6638 instruct membar_volatile() %{
  6639   match(MemBarVolatile);
  6640   ins_cost(4*MEMORY_REF_COST);
  6642   size(4);
  6643   format %{ "MEMBAR-volatile" %}
  6644   ins_encode( enc_membar_volatile );
  6645   ins_pipe(long_memory_op);
  6646 %}
  6648 instruct unnecessary_membar_volatile() %{
  6649   match(MemBarVolatile);
  6650   predicate(Matcher::post_store_load_barrier(n));
  6651   ins_cost(0);
  6653   size(0);
  6654   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6655   ins_encode( );
  6656   ins_pipe(empty);
  6657 %}
  6659 instruct membar_storestore() %{
  6660   match(MemBarStoreStore);
  6661   ins_cost(0);
  6663   size(0);
  6664   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6665   ins_encode( );
  6666   ins_pipe(empty);
  6667 %}
  6669 //----------Register Move Instructions-----------------------------------------
  6670 instruct roundDouble_nop(regD dst) %{
  6671   match(Set dst (RoundDouble dst));
  6672   ins_cost(0);
  6673   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6674   ins_encode( );
  6675   ins_pipe(empty);
  6676 %}
  6679 instruct roundFloat_nop(regF dst) %{
  6680   match(Set dst (RoundFloat dst));
  6681   ins_cost(0);
  6682   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6683   ins_encode( );
  6684   ins_pipe(empty);
  6685 %}
  6688 // Cast Index to Pointer for unsafe natives
  6689 instruct castX2P(iRegX src, iRegP dst) %{
  6690   match(Set dst (CastX2P src));
  6692   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6693   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6694   ins_pipe(ialu_reg);
  6695 %}
  6697 // Cast Pointer to Index for unsafe natives
  6698 instruct castP2X(iRegP src, iRegX dst) %{
  6699   match(Set dst (CastP2X src));
  6701   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6702   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6703   ins_pipe(ialu_reg);
  6704 %}
  6706 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6707   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6708   match(Set stkSlot src);   // chain rule
  6709   ins_cost(MEMORY_REF_COST);
  6710   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6711   opcode(Assembler::stdf_op3);
  6712   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6713   ins_pipe(fstoreD_stk_reg);
  6714 %}
  6716 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6717   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6718   match(Set dst stkSlot);   // chain rule
  6719   ins_cost(MEMORY_REF_COST);
  6720   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6721   opcode(Assembler::lddf_op3);
  6722   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6723   ins_pipe(floadD_stk);
  6724 %}
  6726 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6727   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6728   match(Set stkSlot src);   // chain rule
  6729   ins_cost(MEMORY_REF_COST);
  6730   format %{ "STF   $src,$stkSlot\t!stk" %}
  6731   opcode(Assembler::stf_op3);
  6732   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6733   ins_pipe(fstoreF_stk_reg);
  6734 %}
  6736 //----------Conditional Move---------------------------------------------------
  6737 // Conditional move
  6738 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6739   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6740   ins_cost(150);
  6741   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6742   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6743   ins_pipe(ialu_reg);
  6744 %}
  6746 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6747   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6748   ins_cost(140);
  6749   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6750   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6751   ins_pipe(ialu_imm);
  6752 %}
  6754 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6755   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6756   ins_cost(150);
  6757   size(4);
  6758   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6759   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6760   ins_pipe(ialu_reg);
  6761 %}
  6763 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6764   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6765   ins_cost(140);
  6766   size(4);
  6767   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6768   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6769   ins_pipe(ialu_imm);
  6770 %}
  6772 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6773   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6774   ins_cost(150);
  6775   size(4);
  6776   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6777   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6778   ins_pipe(ialu_reg);
  6779 %}
  6781 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6782   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6783   ins_cost(140);
  6784   size(4);
  6785   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6786   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6787   ins_pipe(ialu_imm);
  6788 %}
  6790 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6791   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6792   ins_cost(150);
  6793   size(4);
  6794   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6795   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6796   ins_pipe(ialu_reg);
  6797 %}
  6799 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6800   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6801   ins_cost(140);
  6802   size(4);
  6803   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6804   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6805   ins_pipe(ialu_imm);
  6806 %}
  6808 // Conditional move for RegN. Only cmov(reg,reg).
  6809 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6810   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6811   ins_cost(150);
  6812   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6813   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6814   ins_pipe(ialu_reg);
  6815 %}
  6817 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6818 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6819   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6820   ins_cost(150);
  6821   size(4);
  6822   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6823   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6824   ins_pipe(ialu_reg);
  6825 %}
  6827 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6828 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6829   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6830   ins_cost(150);
  6831   size(4);
  6832   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6833   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6834   ins_pipe(ialu_reg);
  6835 %}
  6837 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6838   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6839   ins_cost(150);
  6840   size(4);
  6841   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6842   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6843   ins_pipe(ialu_reg);
  6844 %}
  6846 // Conditional move
  6847 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6848   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6849   ins_cost(150);
  6850   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6851   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6852   ins_pipe(ialu_reg);
  6853 %}
  6855 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6856   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6857   ins_cost(140);
  6858   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6859   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6860   ins_pipe(ialu_imm);
  6861 %}
  6863 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6864 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6865   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6866   ins_cost(150);
  6868   size(4);
  6869   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6870   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6871   ins_pipe(ialu_reg);
  6872 %}
  6874 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6875   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6876   ins_cost(150);
  6878   size(4);
  6879   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6880   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6881   ins_pipe(ialu_reg);
  6882 %}
  6884 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6885   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6886   ins_cost(140);
  6888   size(4);
  6889   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6890   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6891   ins_pipe(ialu_imm);
  6892 %}
  6894 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6895   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6896   ins_cost(140);
  6898   size(4);
  6899   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6900   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6901   ins_pipe(ialu_imm);
  6902 %}
  6904 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6905   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6906   ins_cost(150);
  6907   size(4);
  6908   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6909   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6910   ins_pipe(ialu_imm);
  6911 %}
  6913 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6914   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6915   ins_cost(140);
  6916   size(4);
  6917   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6918   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6919   ins_pipe(ialu_imm);
  6920 %}
  6922 // Conditional move
  6923 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6924   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6925   ins_cost(150);
  6926   opcode(0x101);
  6927   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6928   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6929   ins_pipe(int_conditional_float_move);
  6930 %}
  6932 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6933   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6934   ins_cost(150);
  6936   size(4);
  6937   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6938   opcode(0x101);
  6939   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6940   ins_pipe(int_conditional_float_move);
  6941 %}
  6943 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6944   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6945   ins_cost(150);
  6947   size(4);
  6948   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6949   opcode(0x101);
  6950   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6951   ins_pipe(int_conditional_float_move);
  6952 %}
  6954 // Conditional move,
  6955 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6956   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6957   ins_cost(150);
  6958   size(4);
  6959   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6960   opcode(0x1);
  6961   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6962   ins_pipe(int_conditional_double_move);
  6963 %}
  6965 // Conditional move
  6966 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6967   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6968   ins_cost(150);
  6969   size(4);
  6970   opcode(0x102);
  6971   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6972   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6973   ins_pipe(int_conditional_double_move);
  6974 %}
  6976 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6977   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6978   ins_cost(150);
  6980   size(4);
  6981   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6982   opcode(0x102);
  6983   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6984   ins_pipe(int_conditional_double_move);
  6985 %}
  6987 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  6988   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6989   ins_cost(150);
  6991   size(4);
  6992   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6993   opcode(0x102);
  6994   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6995   ins_pipe(int_conditional_double_move);
  6996 %}
  6998 // Conditional move,
  6999 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7000   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7001   ins_cost(150);
  7002   size(4);
  7003   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7004   opcode(0x2);
  7005   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7006   ins_pipe(int_conditional_double_move);
  7007 %}
  7009 // Conditional move
  7010 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7011   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7012   ins_cost(150);
  7013   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7014   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7015   ins_pipe(ialu_reg);
  7016 %}
  7018 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7019   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7020   ins_cost(140);
  7021   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7022   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7023   ins_pipe(ialu_imm);
  7024 %}
  7026 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7027   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7028   ins_cost(150);
  7030   size(4);
  7031   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7032   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7033   ins_pipe(ialu_reg);
  7034 %}
  7037 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7038   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7039   ins_cost(150);
  7041   size(4);
  7042   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7043   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7044   ins_pipe(ialu_reg);
  7045 %}
  7048 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7049   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7050   ins_cost(150);
  7052   size(4);
  7053   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7054   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7055   ins_pipe(ialu_reg);
  7056 %}
  7060 //----------OS and Locking Instructions----------------------------------------
  7062 // This name is KNOWN by the ADLC and cannot be changed.
  7063 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7064 // for this guy.
  7065 instruct tlsLoadP(g2RegP dst) %{
  7066   match(Set dst (ThreadLocal));
  7068   size(0);
  7069   ins_cost(0);
  7070   format %{ "# TLS is in G2" %}
  7071   ins_encode( /*empty encoding*/ );
  7072   ins_pipe(ialu_none);
  7073 %}
  7075 instruct checkCastPP( iRegP dst ) %{
  7076   match(Set dst (CheckCastPP dst));
  7078   size(0);
  7079   format %{ "# checkcastPP of $dst" %}
  7080   ins_encode( /*empty encoding*/ );
  7081   ins_pipe(empty);
  7082 %}
  7085 instruct castPP( iRegP dst ) %{
  7086   match(Set dst (CastPP dst));
  7087   format %{ "# castPP of $dst" %}
  7088   ins_encode( /*empty encoding*/ );
  7089   ins_pipe(empty);
  7090 %}
  7092 instruct castII( iRegI dst ) %{
  7093   match(Set dst (CastII dst));
  7094   format %{ "# castII of $dst" %}
  7095   ins_encode( /*empty encoding*/ );
  7096   ins_cost(0);
  7097   ins_pipe(empty);
  7098 %}
  7100 //----------Arithmetic Instructions--------------------------------------------
  7101 // Addition Instructions
  7102 // Register Addition
  7103 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7104   match(Set dst (AddI src1 src2));
  7106   size(4);
  7107   format %{ "ADD    $src1,$src2,$dst" %}
  7108   ins_encode %{
  7109     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7110   %}
  7111   ins_pipe(ialu_reg_reg);
  7112 %}
  7114 // Immediate Addition
  7115 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7116   match(Set dst (AddI src1 src2));
  7118   size(4);
  7119   format %{ "ADD    $src1,$src2,$dst" %}
  7120   opcode(Assembler::add_op3, Assembler::arith_op);
  7121   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7122   ins_pipe(ialu_reg_imm);
  7123 %}
  7125 // Pointer Register Addition
  7126 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7127   match(Set dst (AddP src1 src2));
  7129   size(4);
  7130   format %{ "ADD    $src1,$src2,$dst" %}
  7131   opcode(Assembler::add_op3, Assembler::arith_op);
  7132   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7133   ins_pipe(ialu_reg_reg);
  7134 %}
  7136 // Pointer Immediate Addition
  7137 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7138   match(Set dst (AddP src1 src2));
  7140   size(4);
  7141   format %{ "ADD    $src1,$src2,$dst" %}
  7142   opcode(Assembler::add_op3, Assembler::arith_op);
  7143   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7144   ins_pipe(ialu_reg_imm);
  7145 %}
  7147 // Long Addition
  7148 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7149   match(Set dst (AddL src1 src2));
  7151   size(4);
  7152   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7153   opcode(Assembler::add_op3, Assembler::arith_op);
  7154   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7155   ins_pipe(ialu_reg_reg);
  7156 %}
  7158 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7159   match(Set dst (AddL src1 con));
  7161   size(4);
  7162   format %{ "ADD    $src1,$con,$dst" %}
  7163   opcode(Assembler::add_op3, Assembler::arith_op);
  7164   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7165   ins_pipe(ialu_reg_imm);
  7166 %}
  7168 //----------Conditional_store--------------------------------------------------
  7169 // Conditional-store of the updated heap-top.
  7170 // Used during allocation of the shared heap.
  7171 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7173 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7174 instruct loadPLocked(iRegP dst, memory mem) %{
  7175   match(Set dst (LoadPLocked mem));
  7176   ins_cost(MEMORY_REF_COST);
  7178 #ifndef _LP64
  7179   size(4);
  7180   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7181   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7182 #else
  7183   format %{ "LDX    $mem,$dst\t! ptr" %}
  7184   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7185 #endif
  7186   ins_encode( form3_mem_reg( mem, dst ) );
  7187   ins_pipe(iload_mem);
  7188 %}
  7190 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7191   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7192   effect( KILL newval );
  7193   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7194             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7195   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7196   ins_pipe( long_memory_op );
  7197 %}
  7199 // Conditional-store of an int value.
  7200 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7201   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7202   effect( KILL newval );
  7203   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7204             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7205   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7206   ins_pipe( long_memory_op );
  7207 %}
  7209 // Conditional-store of a long value.
  7210 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7211   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7212   effect( KILL newval );
  7213   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7214             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7215   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7216   ins_pipe( long_memory_op );
  7217 %}
  7219 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7221 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7222   predicate(VM_Version::supports_cx8());
  7223   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7224   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7225   format %{
  7226             "MOV    $newval,O7\n\t"
  7227             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7228             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7229             "MOV    1,$res\n\t"
  7230             "MOVne  xcc,R_G0,$res"
  7231   %}
  7232   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7233               enc_lflags_ne_to_boolean(res) );
  7234   ins_pipe( long_memory_op );
  7235 %}
  7238 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7239   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7240   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7241   format %{
  7242             "MOV    $newval,O7\n\t"
  7243             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7244             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7245             "MOV    1,$res\n\t"
  7246             "MOVne  icc,R_G0,$res"
  7247   %}
  7248   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7249               enc_iflags_ne_to_boolean(res) );
  7250   ins_pipe( long_memory_op );
  7251 %}
  7253 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7254 #ifdef _LP64
  7255   predicate(VM_Version::supports_cx8());
  7256 #endif
  7257   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7258   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7259   format %{
  7260             "MOV    $newval,O7\n\t"
  7261             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7262             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7263             "MOV    1,$res\n\t"
  7264             "MOVne  xcc,R_G0,$res"
  7265   %}
  7266 #ifdef _LP64
  7267   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7268               enc_lflags_ne_to_boolean(res) );
  7269 #else
  7270   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7271               enc_iflags_ne_to_boolean(res) );
  7272 #endif
  7273   ins_pipe( long_memory_op );
  7274 %}
  7276 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7277   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7278   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7279   format %{
  7280             "MOV    $newval,O7\n\t"
  7281             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7282             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7283             "MOV    1,$res\n\t"
  7284             "MOVne  icc,R_G0,$res"
  7285   %}
  7286   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7287               enc_iflags_ne_to_boolean(res) );
  7288   ins_pipe( long_memory_op );
  7289 %}
  7291 instruct xchgI( memory mem, iRegI newval) %{
  7292   match(Set newval (GetAndSetI mem newval));
  7293   format %{ "SWAP  [$mem],$newval" %}
  7294   size(4);
  7295   ins_encode %{
  7296     __ swap($mem$$Address, $newval$$Register);
  7297   %}
  7298   ins_pipe( long_memory_op );
  7299 %}
  7301 #ifndef _LP64
  7302 instruct xchgP( memory mem, iRegP newval) %{
  7303   match(Set newval (GetAndSetP mem newval));
  7304   format %{ "SWAP  [$mem],$newval" %}
  7305   size(4);
  7306   ins_encode %{
  7307     __ swap($mem$$Address, $newval$$Register);
  7308   %}
  7309   ins_pipe( long_memory_op );
  7310 %}
  7311 #endif
  7313 instruct xchgN( memory mem, iRegN newval) %{
  7314   match(Set newval (GetAndSetN mem newval));
  7315   format %{ "SWAP  [$mem],$newval" %}
  7316   size(4);
  7317   ins_encode %{
  7318     __ swap($mem$$Address, $newval$$Register);
  7319   %}
  7320   ins_pipe( long_memory_op );
  7321 %}
  7323 //---------------------
  7324 // Subtraction Instructions
  7325 // Register Subtraction
  7326 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7327   match(Set dst (SubI src1 src2));
  7329   size(4);
  7330   format %{ "SUB    $src1,$src2,$dst" %}
  7331   opcode(Assembler::sub_op3, Assembler::arith_op);
  7332   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7333   ins_pipe(ialu_reg_reg);
  7334 %}
  7336 // Immediate Subtraction
  7337 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7338   match(Set dst (SubI src1 src2));
  7340   size(4);
  7341   format %{ "SUB    $src1,$src2,$dst" %}
  7342   opcode(Assembler::sub_op3, Assembler::arith_op);
  7343   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7344   ins_pipe(ialu_reg_imm);
  7345 %}
  7347 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7348   match(Set dst (SubI zero src2));
  7350   size(4);
  7351   format %{ "NEG    $src2,$dst" %}
  7352   opcode(Assembler::sub_op3, Assembler::arith_op);
  7353   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7354   ins_pipe(ialu_zero_reg);
  7355 %}
  7357 // Long subtraction
  7358 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7359   match(Set dst (SubL src1 src2));
  7361   size(4);
  7362   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7363   opcode(Assembler::sub_op3, Assembler::arith_op);
  7364   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7365   ins_pipe(ialu_reg_reg);
  7366 %}
  7368 // Immediate Subtraction
  7369 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7370   match(Set dst (SubL src1 con));
  7372   size(4);
  7373   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7374   opcode(Assembler::sub_op3, Assembler::arith_op);
  7375   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7376   ins_pipe(ialu_reg_imm);
  7377 %}
  7379 // Long negation
  7380 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7381   match(Set dst (SubL zero src2));
  7383   size(4);
  7384   format %{ "NEG    $src2,$dst\t! long" %}
  7385   opcode(Assembler::sub_op3, Assembler::arith_op);
  7386   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7387   ins_pipe(ialu_zero_reg);
  7388 %}
  7390 // Multiplication Instructions
  7391 // Integer Multiplication
  7392 // Register Multiplication
  7393 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7394   match(Set dst (MulI src1 src2));
  7396   size(4);
  7397   format %{ "MULX   $src1,$src2,$dst" %}
  7398   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7399   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7400   ins_pipe(imul_reg_reg);
  7401 %}
  7403 // Immediate Multiplication
  7404 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7405   match(Set dst (MulI src1 src2));
  7407   size(4);
  7408   format %{ "MULX   $src1,$src2,$dst" %}
  7409   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7410   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7411   ins_pipe(imul_reg_imm);
  7412 %}
  7414 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7415   match(Set dst (MulL src1 src2));
  7416   ins_cost(DEFAULT_COST * 5);
  7417   size(4);
  7418   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7419   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7420   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7421   ins_pipe(mulL_reg_reg);
  7422 %}
  7424 // Immediate Multiplication
  7425 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7426   match(Set dst (MulL src1 src2));
  7427   ins_cost(DEFAULT_COST * 5);
  7428   size(4);
  7429   format %{ "MULX   $src1,$src2,$dst" %}
  7430   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7431   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7432   ins_pipe(mulL_reg_imm);
  7433 %}
  7435 // Integer Division
  7436 // Register Division
  7437 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7438   match(Set dst (DivI src1 src2));
  7439   ins_cost((2+71)*DEFAULT_COST);
  7441   format %{ "SRA     $src2,0,$src2\n\t"
  7442             "SRA     $src1,0,$src1\n\t"
  7443             "SDIVX   $src1,$src2,$dst" %}
  7444   ins_encode( idiv_reg( src1, src2, dst ) );
  7445   ins_pipe(sdiv_reg_reg);
  7446 %}
  7448 // Immediate Division
  7449 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7450   match(Set dst (DivI src1 src2));
  7451   ins_cost((2+71)*DEFAULT_COST);
  7453   format %{ "SRA     $src1,0,$src1\n\t"
  7454             "SDIVX   $src1,$src2,$dst" %}
  7455   ins_encode( idiv_imm( src1, src2, dst ) );
  7456   ins_pipe(sdiv_reg_imm);
  7457 %}
  7459 //----------Div-By-10-Expansion------------------------------------------------
  7460 // Extract hi bits of a 32x32->64 bit multiply.
  7461 // Expand rule only, not matched
  7462 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7463   effect( DEF dst, USE src1, USE src2 );
  7464   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7465             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7466   ins_encode( enc_mul_hi(dst,src1,src2));
  7467   ins_pipe(sdiv_reg_reg);
  7468 %}
  7470 // Magic constant, reciprocal of 10
  7471 instruct loadConI_x66666667(iRegIsafe dst) %{
  7472   effect( DEF dst );
  7474   size(8);
  7475   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7476   ins_encode( Set32(0x66666667, dst) );
  7477   ins_pipe(ialu_hi_lo_reg);
  7478 %}
  7480 // Register Shift Right Arithmetic Long by 32-63
  7481 instruct sra_31( iRegI dst, iRegI src ) %{
  7482   effect( DEF dst, USE src );
  7483   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7484   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7485   ins_pipe(ialu_reg_reg);
  7486 %}
  7488 // Arithmetic Shift Right by 8-bit immediate
  7489 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7490   effect( DEF dst, USE src );
  7491   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7492   opcode(Assembler::sra_op3, Assembler::arith_op);
  7493   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7494   ins_pipe(ialu_reg_imm);
  7495 %}
  7497 // Integer DIV with 10
  7498 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7499   match(Set dst (DivI src div));
  7500   ins_cost((6+6)*DEFAULT_COST);
  7501   expand %{
  7502     iRegIsafe tmp1;               // Killed temps;
  7503     iRegIsafe tmp2;               // Killed temps;
  7504     iRegI tmp3;                   // Killed temps;
  7505     iRegI tmp4;                   // Killed temps;
  7506     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7507     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7508     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7509     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7510     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7511   %}
  7512 %}
  7514 // Register Long Division
  7515 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7516   match(Set dst (DivL src1 src2));
  7517   ins_cost(DEFAULT_COST*71);
  7518   size(4);
  7519   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7520   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7521   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7522   ins_pipe(divL_reg_reg);
  7523 %}
  7525 // Register Long Division
  7526 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7527   match(Set dst (DivL src1 src2));
  7528   ins_cost(DEFAULT_COST*71);
  7529   size(4);
  7530   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7531   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7532   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7533   ins_pipe(divL_reg_imm);
  7534 %}
  7536 // Integer Remainder
  7537 // Register Remainder
  7538 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7539   match(Set dst (ModI src1 src2));
  7540   effect( KILL ccr, KILL temp);
  7542   format %{ "SREM   $src1,$src2,$dst" %}
  7543   ins_encode( irem_reg(src1, src2, dst, temp) );
  7544   ins_pipe(sdiv_reg_reg);
  7545 %}
  7547 // Immediate Remainder
  7548 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7549   match(Set dst (ModI src1 src2));
  7550   effect( KILL ccr, KILL temp);
  7552   format %{ "SREM   $src1,$src2,$dst" %}
  7553   ins_encode( irem_imm(src1, src2, dst, temp) );
  7554   ins_pipe(sdiv_reg_imm);
  7555 %}
  7557 // Register Long Remainder
  7558 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7559   effect(DEF dst, USE src1, USE src2);
  7560   size(4);
  7561   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7562   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7563   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7564   ins_pipe(divL_reg_reg);
  7565 %}
  7567 // Register Long Division
  7568 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7569   effect(DEF dst, USE src1, USE src2);
  7570   size(4);
  7571   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7572   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7573   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7574   ins_pipe(divL_reg_imm);
  7575 %}
  7577 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7578   effect(DEF dst, USE src1, USE src2);
  7579   size(4);
  7580   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7581   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7582   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7583   ins_pipe(mulL_reg_reg);
  7584 %}
  7586 // Immediate Multiplication
  7587 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7588   effect(DEF dst, USE src1, USE src2);
  7589   size(4);
  7590   format %{ "MULX   $src1,$src2,$dst" %}
  7591   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7592   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7593   ins_pipe(mulL_reg_imm);
  7594 %}
  7596 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7597   effect(DEF dst, USE src1, USE src2);
  7598   size(4);
  7599   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7600   opcode(Assembler::sub_op3, Assembler::arith_op);
  7601   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7602   ins_pipe(ialu_reg_reg);
  7603 %}
  7605 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7606   effect(DEF dst, USE src1, USE src2);
  7607   size(4);
  7608   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7609   opcode(Assembler::sub_op3, Assembler::arith_op);
  7610   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7611   ins_pipe(ialu_reg_reg);
  7612 %}
  7614 // Register Long Remainder
  7615 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7616   match(Set dst (ModL src1 src2));
  7617   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7618   expand %{
  7619     iRegL tmp1;
  7620     iRegL tmp2;
  7621     divL_reg_reg_1(tmp1, src1, src2);
  7622     mulL_reg_reg_1(tmp2, tmp1, src2);
  7623     subL_reg_reg_1(dst,  src1, tmp2);
  7624   %}
  7625 %}
  7627 // Register Long Remainder
  7628 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7629   match(Set dst (ModL src1 src2));
  7630   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7631   expand %{
  7632     iRegL tmp1;
  7633     iRegL tmp2;
  7634     divL_reg_imm13_1(tmp1, src1, src2);
  7635     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7636     subL_reg_reg_2  (dst,  src1, tmp2);
  7637   %}
  7638 %}
  7640 // Integer Shift Instructions
  7641 // Register Shift Left
  7642 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7643   match(Set dst (LShiftI src1 src2));
  7645   size(4);
  7646   format %{ "SLL    $src1,$src2,$dst" %}
  7647   opcode(Assembler::sll_op3, Assembler::arith_op);
  7648   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7649   ins_pipe(ialu_reg_reg);
  7650 %}
  7652 // Register Shift Left Immediate
  7653 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7654   match(Set dst (LShiftI src1 src2));
  7656   size(4);
  7657   format %{ "SLL    $src1,$src2,$dst" %}
  7658   opcode(Assembler::sll_op3, Assembler::arith_op);
  7659   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7660   ins_pipe(ialu_reg_imm);
  7661 %}
  7663 // Register Shift Left
  7664 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7665   match(Set dst (LShiftL src1 src2));
  7667   size(4);
  7668   format %{ "SLLX   $src1,$src2,$dst" %}
  7669   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7670   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7671   ins_pipe(ialu_reg_reg);
  7672 %}
  7674 // Register Shift Left Immediate
  7675 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7676   match(Set dst (LShiftL src1 src2));
  7678   size(4);
  7679   format %{ "SLLX   $src1,$src2,$dst" %}
  7680   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7681   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7682   ins_pipe(ialu_reg_imm);
  7683 %}
  7685 // Register Arithmetic Shift Right
  7686 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7687   match(Set dst (RShiftI src1 src2));
  7688   size(4);
  7689   format %{ "SRA    $src1,$src2,$dst" %}
  7690   opcode(Assembler::sra_op3, Assembler::arith_op);
  7691   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7692   ins_pipe(ialu_reg_reg);
  7693 %}
  7695 // Register Arithmetic Shift Right Immediate
  7696 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7697   match(Set dst (RShiftI src1 src2));
  7699   size(4);
  7700   format %{ "SRA    $src1,$src2,$dst" %}
  7701   opcode(Assembler::sra_op3, Assembler::arith_op);
  7702   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7703   ins_pipe(ialu_reg_imm);
  7704 %}
  7706 // Register Shift Right Arithmatic Long
  7707 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7708   match(Set dst (RShiftL src1 src2));
  7710   size(4);
  7711   format %{ "SRAX   $src1,$src2,$dst" %}
  7712   opcode(Assembler::srax_op3, Assembler::arith_op);
  7713   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7714   ins_pipe(ialu_reg_reg);
  7715 %}
  7717 // Register Shift Left Immediate
  7718 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7719   match(Set dst (RShiftL src1 src2));
  7721   size(4);
  7722   format %{ "SRAX   $src1,$src2,$dst" %}
  7723   opcode(Assembler::srax_op3, Assembler::arith_op);
  7724   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7725   ins_pipe(ialu_reg_imm);
  7726 %}
  7728 // Register Shift Right
  7729 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7730   match(Set dst (URShiftI src1 src2));
  7732   size(4);
  7733   format %{ "SRL    $src1,$src2,$dst" %}
  7734   opcode(Assembler::srl_op3, Assembler::arith_op);
  7735   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7736   ins_pipe(ialu_reg_reg);
  7737 %}
  7739 // Register Shift Right Immediate
  7740 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7741   match(Set dst (URShiftI src1 src2));
  7743   size(4);
  7744   format %{ "SRL    $src1,$src2,$dst" %}
  7745   opcode(Assembler::srl_op3, Assembler::arith_op);
  7746   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7747   ins_pipe(ialu_reg_imm);
  7748 %}
  7750 // Register Shift Right
  7751 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7752   match(Set dst (URShiftL src1 src2));
  7754   size(4);
  7755   format %{ "SRLX   $src1,$src2,$dst" %}
  7756   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7757   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7758   ins_pipe(ialu_reg_reg);
  7759 %}
  7761 // Register Shift Right Immediate
  7762 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7763   match(Set dst (URShiftL src1 src2));
  7765   size(4);
  7766   format %{ "SRLX   $src1,$src2,$dst" %}
  7767   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7768   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7769   ins_pipe(ialu_reg_imm);
  7770 %}
  7772 // Register Shift Right Immediate with a CastP2X
  7773 #ifdef _LP64
  7774 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7775   match(Set dst (URShiftL (CastP2X src1) src2));
  7776   size(4);
  7777   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7778   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7779   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7780   ins_pipe(ialu_reg_imm);
  7781 %}
  7782 #else
  7783 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7784   match(Set dst (URShiftI (CastP2X src1) src2));
  7785   size(4);
  7786   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7787   opcode(Assembler::srl_op3, Assembler::arith_op);
  7788   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7789   ins_pipe(ialu_reg_imm);
  7790 %}
  7791 #endif
  7794 //----------Floating Point Arithmetic Instructions-----------------------------
  7796 //  Add float single precision
  7797 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7798   match(Set dst (AddF src1 src2));
  7800   size(4);
  7801   format %{ "FADDS  $src1,$src2,$dst" %}
  7802   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7803   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7804   ins_pipe(faddF_reg_reg);
  7805 %}
  7807 //  Add float double precision
  7808 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7809   match(Set dst (AddD src1 src2));
  7811   size(4);
  7812   format %{ "FADDD  $src1,$src2,$dst" %}
  7813   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7814   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7815   ins_pipe(faddD_reg_reg);
  7816 %}
  7818 //  Sub float single precision
  7819 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7820   match(Set dst (SubF src1 src2));
  7822   size(4);
  7823   format %{ "FSUBS  $src1,$src2,$dst" %}
  7824   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7825   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7826   ins_pipe(faddF_reg_reg);
  7827 %}
  7829 //  Sub float double precision
  7830 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7831   match(Set dst (SubD src1 src2));
  7833   size(4);
  7834   format %{ "FSUBD  $src1,$src2,$dst" %}
  7835   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7836   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7837   ins_pipe(faddD_reg_reg);
  7838 %}
  7840 //  Mul float single precision
  7841 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7842   match(Set dst (MulF src1 src2));
  7844   size(4);
  7845   format %{ "FMULS  $src1,$src2,$dst" %}
  7846   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7847   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7848   ins_pipe(fmulF_reg_reg);
  7849 %}
  7851 //  Mul float double precision
  7852 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7853   match(Set dst (MulD src1 src2));
  7855   size(4);
  7856   format %{ "FMULD  $src1,$src2,$dst" %}
  7857   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7858   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7859   ins_pipe(fmulD_reg_reg);
  7860 %}
  7862 //  Div float single precision
  7863 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7864   match(Set dst (DivF src1 src2));
  7866   size(4);
  7867   format %{ "FDIVS  $src1,$src2,$dst" %}
  7868   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7869   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7870   ins_pipe(fdivF_reg_reg);
  7871 %}
  7873 //  Div float double precision
  7874 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7875   match(Set dst (DivD src1 src2));
  7877   size(4);
  7878   format %{ "FDIVD  $src1,$src2,$dst" %}
  7879   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7880   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7881   ins_pipe(fdivD_reg_reg);
  7882 %}
  7884 //  Absolute float double precision
  7885 instruct absD_reg(regD dst, regD src) %{
  7886   match(Set dst (AbsD src));
  7888   format %{ "FABSd  $src,$dst" %}
  7889   ins_encode(fabsd(dst, src));
  7890   ins_pipe(faddD_reg);
  7891 %}
  7893 //  Absolute float single precision
  7894 instruct absF_reg(regF dst, regF src) %{
  7895   match(Set dst (AbsF src));
  7897   format %{ "FABSs  $src,$dst" %}
  7898   ins_encode(fabss(dst, src));
  7899   ins_pipe(faddF_reg);
  7900 %}
  7902 instruct negF_reg(regF dst, regF src) %{
  7903   match(Set dst (NegF src));
  7905   size(4);
  7906   format %{ "FNEGs  $src,$dst" %}
  7907   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7908   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7909   ins_pipe(faddF_reg);
  7910 %}
  7912 instruct negD_reg(regD dst, regD src) %{
  7913   match(Set dst (NegD src));
  7915   format %{ "FNEGd  $src,$dst" %}
  7916   ins_encode(fnegd(dst, src));
  7917   ins_pipe(faddD_reg);
  7918 %}
  7920 //  Sqrt float double precision
  7921 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7922   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7924   size(4);
  7925   format %{ "FSQRTS $src,$dst" %}
  7926   ins_encode(fsqrts(dst, src));
  7927   ins_pipe(fdivF_reg_reg);
  7928 %}
  7930 //  Sqrt float double precision
  7931 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7932   match(Set dst (SqrtD src));
  7934   size(4);
  7935   format %{ "FSQRTD $src,$dst" %}
  7936   ins_encode(fsqrtd(dst, src));
  7937   ins_pipe(fdivD_reg_reg);
  7938 %}
  7940 //----------Logical Instructions-----------------------------------------------
  7941 // And Instructions
  7942 // Register And
  7943 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7944   match(Set dst (AndI src1 src2));
  7946   size(4);
  7947   format %{ "AND    $src1,$src2,$dst" %}
  7948   opcode(Assembler::and_op3, Assembler::arith_op);
  7949   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7950   ins_pipe(ialu_reg_reg);
  7951 %}
  7953 // Immediate And
  7954 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7955   match(Set dst (AndI src1 src2));
  7957   size(4);
  7958   format %{ "AND    $src1,$src2,$dst" %}
  7959   opcode(Assembler::and_op3, Assembler::arith_op);
  7960   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7961   ins_pipe(ialu_reg_imm);
  7962 %}
  7964 // Register And Long
  7965 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7966   match(Set dst (AndL src1 src2));
  7968   ins_cost(DEFAULT_COST);
  7969   size(4);
  7970   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7971   opcode(Assembler::and_op3, Assembler::arith_op);
  7972   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7973   ins_pipe(ialu_reg_reg);
  7974 %}
  7976 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7977   match(Set dst (AndL src1 con));
  7979   ins_cost(DEFAULT_COST);
  7980   size(4);
  7981   format %{ "AND    $src1,$con,$dst\t! long" %}
  7982   opcode(Assembler::and_op3, Assembler::arith_op);
  7983   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7984   ins_pipe(ialu_reg_imm);
  7985 %}
  7987 // Or Instructions
  7988 // Register Or
  7989 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7990   match(Set dst (OrI src1 src2));
  7992   size(4);
  7993   format %{ "OR     $src1,$src2,$dst" %}
  7994   opcode(Assembler::or_op3, Assembler::arith_op);
  7995   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7996   ins_pipe(ialu_reg_reg);
  7997 %}
  7999 // Immediate Or
  8000 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8001   match(Set dst (OrI src1 src2));
  8003   size(4);
  8004   format %{ "OR     $src1,$src2,$dst" %}
  8005   opcode(Assembler::or_op3, Assembler::arith_op);
  8006   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8007   ins_pipe(ialu_reg_imm);
  8008 %}
  8010 // Register Or Long
  8011 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8012   match(Set dst (OrL src1 src2));
  8014   ins_cost(DEFAULT_COST);
  8015   size(4);
  8016   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8017   opcode(Assembler::or_op3, Assembler::arith_op);
  8018   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8019   ins_pipe(ialu_reg_reg);
  8020 %}
  8022 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8023   match(Set dst (OrL src1 con));
  8024   ins_cost(DEFAULT_COST*2);
  8026   ins_cost(DEFAULT_COST);
  8027   size(4);
  8028   format %{ "OR     $src1,$con,$dst\t! long" %}
  8029   opcode(Assembler::or_op3, Assembler::arith_op);
  8030   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8031   ins_pipe(ialu_reg_imm);
  8032 %}
  8034 #ifndef _LP64
  8036 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8037 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8038   match(Set dst (OrI src1 (CastP2X src2)));
  8040   size(4);
  8041   format %{ "OR     $src1,$src2,$dst" %}
  8042   opcode(Assembler::or_op3, Assembler::arith_op);
  8043   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8044   ins_pipe(ialu_reg_reg);
  8045 %}
  8047 #else
  8049 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8050   match(Set dst (OrL src1 (CastP2X src2)));
  8052   ins_cost(DEFAULT_COST);
  8053   size(4);
  8054   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8055   opcode(Assembler::or_op3, Assembler::arith_op);
  8056   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8057   ins_pipe(ialu_reg_reg);
  8058 %}
  8060 #endif
  8062 // Xor Instructions
  8063 // Register Xor
  8064 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8065   match(Set dst (XorI src1 src2));
  8067   size(4);
  8068   format %{ "XOR    $src1,$src2,$dst" %}
  8069   opcode(Assembler::xor_op3, Assembler::arith_op);
  8070   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8071   ins_pipe(ialu_reg_reg);
  8072 %}
  8074 // Immediate Xor
  8075 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8076   match(Set dst (XorI src1 src2));
  8078   size(4);
  8079   format %{ "XOR    $src1,$src2,$dst" %}
  8080   opcode(Assembler::xor_op3, Assembler::arith_op);
  8081   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8082   ins_pipe(ialu_reg_imm);
  8083 %}
  8085 // Register Xor Long
  8086 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8087   match(Set dst (XorL src1 src2));
  8089   ins_cost(DEFAULT_COST);
  8090   size(4);
  8091   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8092   opcode(Assembler::xor_op3, Assembler::arith_op);
  8093   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8094   ins_pipe(ialu_reg_reg);
  8095 %}
  8097 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8098   match(Set dst (XorL src1 con));
  8100   ins_cost(DEFAULT_COST);
  8101   size(4);
  8102   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8103   opcode(Assembler::xor_op3, Assembler::arith_op);
  8104   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8105   ins_pipe(ialu_reg_imm);
  8106 %}
  8108 //----------Convert to Boolean-------------------------------------------------
  8109 // Nice hack for 32-bit tests but doesn't work for
  8110 // 64-bit pointers.
  8111 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8112   match(Set dst (Conv2B src));
  8113   effect( KILL ccr );
  8114   ins_cost(DEFAULT_COST*2);
  8115   format %{ "CMP    R_G0,$src\n\t"
  8116             "ADDX   R_G0,0,$dst" %}
  8117   ins_encode( enc_to_bool( src, dst ) );
  8118   ins_pipe(ialu_reg_ialu);
  8119 %}
  8121 #ifndef _LP64
  8122 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8123   match(Set dst (Conv2B src));
  8124   effect( KILL ccr );
  8125   ins_cost(DEFAULT_COST*2);
  8126   format %{ "CMP    R_G0,$src\n\t"
  8127             "ADDX   R_G0,0,$dst" %}
  8128   ins_encode( enc_to_bool( src, dst ) );
  8129   ins_pipe(ialu_reg_ialu);
  8130 %}
  8131 #else
  8132 instruct convP2B( iRegI dst, iRegP src ) %{
  8133   match(Set dst (Conv2B src));
  8134   ins_cost(DEFAULT_COST*2);
  8135   format %{ "MOV    $src,$dst\n\t"
  8136             "MOVRNZ $src,1,$dst" %}
  8137   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8138   ins_pipe(ialu_clr_and_mover);
  8139 %}
  8140 #endif
  8142 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8143   match(Set dst (CmpLTMask src zero));
  8144   effect(KILL ccr);
  8145   size(4);
  8146   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8147   ins_encode %{
  8148     __ sra($src$$Register, 31, $dst$$Register);
  8149   %}
  8150   ins_pipe(ialu_reg_imm);
  8151 %}
  8153 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8154   match(Set dst (CmpLTMask p q));
  8155   effect( KILL ccr );
  8156   ins_cost(DEFAULT_COST*4);
  8157   format %{ "CMP    $p,$q\n\t"
  8158             "MOV    #0,$dst\n\t"
  8159             "BLT,a  .+8\n\t"
  8160             "MOV    #-1,$dst" %}
  8161   ins_encode( enc_ltmask(p,q,dst) );
  8162   ins_pipe(ialu_reg_reg_ialu);
  8163 %}
  8165 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8166   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8167   effect(KILL ccr, TEMP tmp);
  8168   ins_cost(DEFAULT_COST*3);
  8170   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8171             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8172             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8173   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
  8174   ins_pipe(cadd_cmpltmask);
  8175 %}
  8177 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
  8178   match(Set p (AndI (CmpLTMask p q) y));
  8179   effect(KILL ccr);
  8180   ins_cost(DEFAULT_COST*3);
  8182   format %{ "CMP  $p,$q\n\t"
  8183             "MOV  $y,$p\n\t"
  8184             "MOVge G0,$p" %}
  8185   ins_encode %{
  8186     __ cmp($p$$Register, $q$$Register);
  8187     __ mov($y$$Register, $p$$Register);
  8188     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
  8189   %}
  8190   ins_pipe(ialu_reg_reg_ialu);
  8191 %}
  8193 //-----------------------------------------------------------------
  8194 // Direct raw moves between float and general registers using VIS3.
  8196 //  ins_pipe(faddF_reg);
  8197 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8198   predicate(UseVIS >= 3);
  8199   match(Set dst (MoveF2I src));
  8201   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8202   ins_encode %{
  8203     __ movstouw($src$$FloatRegister, $dst$$Register);
  8204   %}
  8205   ins_pipe(ialu_reg_reg);
  8206 %}
  8208 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8209   predicate(UseVIS >= 3);
  8210   match(Set dst (MoveI2F src));
  8212   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8213   ins_encode %{
  8214     __ movwtos($src$$Register, $dst$$FloatRegister);
  8215   %}
  8216   ins_pipe(ialu_reg_reg);
  8217 %}
  8219 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8220   predicate(UseVIS >= 3);
  8221   match(Set dst (MoveD2L src));
  8223   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8224   ins_encode %{
  8225     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8226   %}
  8227   ins_pipe(ialu_reg_reg);
  8228 %}
  8230 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8231   predicate(UseVIS >= 3);
  8232   match(Set dst (MoveL2D src));
  8234   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8235   ins_encode %{
  8236     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8237   %}
  8238   ins_pipe(ialu_reg_reg);
  8239 %}
  8242 // Raw moves between float and general registers using stack.
  8244 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8245   match(Set dst (MoveF2I src));
  8246   effect(DEF dst, USE src);
  8247   ins_cost(MEMORY_REF_COST);
  8249   size(4);
  8250   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8251   opcode(Assembler::lduw_op3);
  8252   ins_encode(simple_form3_mem_reg( src, dst ) );
  8253   ins_pipe(iload_mem);
  8254 %}
  8256 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8257   match(Set dst (MoveI2F src));
  8258   effect(DEF dst, USE src);
  8259   ins_cost(MEMORY_REF_COST);
  8261   size(4);
  8262   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8263   opcode(Assembler::ldf_op3);
  8264   ins_encode(simple_form3_mem_reg(src, dst));
  8265   ins_pipe(floadF_stk);
  8266 %}
  8268 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8269   match(Set dst (MoveD2L src));
  8270   effect(DEF dst, USE src);
  8271   ins_cost(MEMORY_REF_COST);
  8273   size(4);
  8274   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8275   opcode(Assembler::ldx_op3);
  8276   ins_encode(simple_form3_mem_reg( src, dst ) );
  8277   ins_pipe(iload_mem);
  8278 %}
  8280 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8281   match(Set dst (MoveL2D src));
  8282   effect(DEF dst, USE src);
  8283   ins_cost(MEMORY_REF_COST);
  8285   size(4);
  8286   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8287   opcode(Assembler::lddf_op3);
  8288   ins_encode(simple_form3_mem_reg(src, dst));
  8289   ins_pipe(floadD_stk);
  8290 %}
  8292 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8293   match(Set dst (MoveF2I src));
  8294   effect(DEF dst, USE src);
  8295   ins_cost(MEMORY_REF_COST);
  8297   size(4);
  8298   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8299   opcode(Assembler::stf_op3);
  8300   ins_encode(simple_form3_mem_reg(dst, src));
  8301   ins_pipe(fstoreF_stk_reg);
  8302 %}
  8304 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8305   match(Set dst (MoveI2F src));
  8306   effect(DEF dst, USE src);
  8307   ins_cost(MEMORY_REF_COST);
  8309   size(4);
  8310   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8311   opcode(Assembler::stw_op3);
  8312   ins_encode(simple_form3_mem_reg( dst, src ) );
  8313   ins_pipe(istore_mem_reg);
  8314 %}
  8316 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8317   match(Set dst (MoveD2L src));
  8318   effect(DEF dst, USE src);
  8319   ins_cost(MEMORY_REF_COST);
  8321   size(4);
  8322   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8323   opcode(Assembler::stdf_op3);
  8324   ins_encode(simple_form3_mem_reg(dst, src));
  8325   ins_pipe(fstoreD_stk_reg);
  8326 %}
  8328 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8329   match(Set dst (MoveL2D src));
  8330   effect(DEF dst, USE src);
  8331   ins_cost(MEMORY_REF_COST);
  8333   size(4);
  8334   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8335   opcode(Assembler::stx_op3);
  8336   ins_encode(simple_form3_mem_reg( dst, src ) );
  8337   ins_pipe(istore_mem_reg);
  8338 %}
  8341 //----------Arithmetic Conversion Instructions---------------------------------
  8342 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8344 instruct convD2F_reg(regF dst, regD src) %{
  8345   match(Set dst (ConvD2F src));
  8346   size(4);
  8347   format %{ "FDTOS  $src,$dst" %}
  8348   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8349   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8350   ins_pipe(fcvtD2F);
  8351 %}
  8354 // Convert a double to an int in a float register.
  8355 // If the double is a NAN, stuff a zero in instead.
  8356 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8357   effect(DEF dst, USE src, KILL fcc0);
  8358   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8359             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8360             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8361             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8362             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8363       "skip:" %}
  8364   ins_encode(form_d2i_helper(src,dst));
  8365   ins_pipe(fcvtD2I);
  8366 %}
  8368 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8369   match(Set dst (ConvD2I src));
  8370   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8371   expand %{
  8372     regF tmp;
  8373     convD2I_helper(tmp, src);
  8374     regF_to_stkI(dst, tmp);
  8375   %}
  8376 %}
  8378 instruct convD2I_reg(iRegI dst, regD src) %{
  8379   predicate(UseVIS >= 3);
  8380   match(Set dst (ConvD2I src));
  8381   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8382   expand %{
  8383     regF tmp;
  8384     convD2I_helper(tmp, src);
  8385     MoveF2I_reg_reg(dst, tmp);
  8386   %}
  8387 %}
  8390 // Convert a double to a long in a double register.
  8391 // If the double is a NAN, stuff a zero in instead.
  8392 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8393   effect(DEF dst, USE src, KILL fcc0);
  8394   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8395             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8396             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8397             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8398             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8399       "skip:" %}
  8400   ins_encode(form_d2l_helper(src,dst));
  8401   ins_pipe(fcvtD2L);
  8402 %}
  8404 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8405   match(Set dst (ConvD2L src));
  8406   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8407   expand %{
  8408     regD tmp;
  8409     convD2L_helper(tmp, src);
  8410     regD_to_stkL(dst, tmp);
  8411   %}
  8412 %}
  8414 instruct convD2L_reg(iRegL dst, regD src) %{
  8415   predicate(UseVIS >= 3);
  8416   match(Set dst (ConvD2L src));
  8417   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8418   expand %{
  8419     regD tmp;
  8420     convD2L_helper(tmp, src);
  8421     MoveD2L_reg_reg(dst, tmp);
  8422   %}
  8423 %}
  8426 instruct convF2D_reg(regD dst, regF src) %{
  8427   match(Set dst (ConvF2D src));
  8428   format %{ "FSTOD  $src,$dst" %}
  8429   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8430   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8431   ins_pipe(fcvtF2D);
  8432 %}
  8435 // Convert a float to an int in a float register.
  8436 // If the float is a NAN, stuff a zero in instead.
  8437 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8438   effect(DEF dst, USE src, KILL fcc0);
  8439   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8440             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8441             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8442             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8443             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8444       "skip:" %}
  8445   ins_encode(form_f2i_helper(src,dst));
  8446   ins_pipe(fcvtF2I);
  8447 %}
  8449 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8450   match(Set dst (ConvF2I src));
  8451   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8452   expand %{
  8453     regF tmp;
  8454     convF2I_helper(tmp, src);
  8455     regF_to_stkI(dst, tmp);
  8456   %}
  8457 %}
  8459 instruct convF2I_reg(iRegI dst, regF src) %{
  8460   predicate(UseVIS >= 3);
  8461   match(Set dst (ConvF2I src));
  8462   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8463   expand %{
  8464     regF tmp;
  8465     convF2I_helper(tmp, src);
  8466     MoveF2I_reg_reg(dst, tmp);
  8467   %}
  8468 %}
  8471 // Convert a float to a long in a float register.
  8472 // If the float is a NAN, stuff a zero in instead.
  8473 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8474   effect(DEF dst, USE src, KILL fcc0);
  8475   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8476             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8477             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8478             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8479             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8480       "skip:" %}
  8481   ins_encode(form_f2l_helper(src,dst));
  8482   ins_pipe(fcvtF2L);
  8483 %}
  8485 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8486   match(Set dst (ConvF2L src));
  8487   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8488   expand %{
  8489     regD tmp;
  8490     convF2L_helper(tmp, src);
  8491     regD_to_stkL(dst, tmp);
  8492   %}
  8493 %}
  8495 instruct convF2L_reg(iRegL dst, regF src) %{
  8496   predicate(UseVIS >= 3);
  8497   match(Set dst (ConvF2L src));
  8498   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8499   expand %{
  8500     regD tmp;
  8501     convF2L_helper(tmp, src);
  8502     MoveD2L_reg_reg(dst, tmp);
  8503   %}
  8504 %}
  8507 instruct convI2D_helper(regD dst, regF tmp) %{
  8508   effect(USE tmp, DEF dst);
  8509   format %{ "FITOD  $tmp,$dst" %}
  8510   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8511   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8512   ins_pipe(fcvtI2D);
  8513 %}
  8515 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8516   match(Set dst (ConvI2D src));
  8517   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8518   expand %{
  8519     regF tmp;
  8520     stkI_to_regF(tmp, src);
  8521     convI2D_helper(dst, tmp);
  8522   %}
  8523 %}
  8525 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8526   predicate(UseVIS >= 3);
  8527   match(Set dst (ConvI2D src));
  8528   expand %{
  8529     regF tmp;
  8530     MoveI2F_reg_reg(tmp, src);
  8531     convI2D_helper(dst, tmp);
  8532   %}
  8533 %}
  8535 instruct convI2D_mem(regD_low dst, memory mem) %{
  8536   match(Set dst (ConvI2D (LoadI mem)));
  8537   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8538   size(8);
  8539   format %{ "LDF    $mem,$dst\n\t"
  8540             "FITOD  $dst,$dst" %}
  8541   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8542   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8543   ins_pipe(floadF_mem);
  8544 %}
  8547 instruct convI2F_helper(regF dst, regF tmp) %{
  8548   effect(DEF dst, USE tmp);
  8549   format %{ "FITOS  $tmp,$dst" %}
  8550   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8551   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8552   ins_pipe(fcvtI2F);
  8553 %}
  8555 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8556   match(Set dst (ConvI2F src));
  8557   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8558   expand %{
  8559     regF tmp;
  8560     stkI_to_regF(tmp,src);
  8561     convI2F_helper(dst, tmp);
  8562   %}
  8563 %}
  8565 instruct convI2F_reg(regF dst, iRegI src) %{
  8566   predicate(UseVIS >= 3);
  8567   match(Set dst (ConvI2F src));
  8568   ins_cost(DEFAULT_COST);
  8569   expand %{
  8570     regF tmp;
  8571     MoveI2F_reg_reg(tmp, src);
  8572     convI2F_helper(dst, tmp);
  8573   %}
  8574 %}
  8576 instruct convI2F_mem( regF dst, memory mem ) %{
  8577   match(Set dst (ConvI2F (LoadI mem)));
  8578   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8579   size(8);
  8580   format %{ "LDF    $mem,$dst\n\t"
  8581             "FITOS  $dst,$dst" %}
  8582   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8583   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8584   ins_pipe(floadF_mem);
  8585 %}
  8588 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8589   match(Set dst (ConvI2L src));
  8590   size(4);
  8591   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8592   opcode(Assembler::sra_op3, Assembler::arith_op);
  8593   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8594   ins_pipe(ialu_reg_reg);
  8595 %}
  8597 // Zero-extend convert int to long
  8598 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8599   match(Set dst (AndL (ConvI2L src) mask) );
  8600   size(4);
  8601   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8602   opcode(Assembler::srl_op3, Assembler::arith_op);
  8603   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8604   ins_pipe(ialu_reg_reg);
  8605 %}
  8607 // Zero-extend long
  8608 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8609   match(Set dst (AndL src mask) );
  8610   size(4);
  8611   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8612   opcode(Assembler::srl_op3, Assembler::arith_op);
  8613   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8614   ins_pipe(ialu_reg_reg);
  8615 %}
  8618 //-----------
  8619 // Long to Double conversion using V8 opcodes.
  8620 // Still useful because cheetah traps and becomes
  8621 // amazingly slow for some common numbers.
  8623 // Magic constant, 0x43300000
  8624 instruct loadConI_x43300000(iRegI dst) %{
  8625   effect(DEF dst);
  8626   size(4);
  8627   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8628   ins_encode(SetHi22(0x43300000, dst));
  8629   ins_pipe(ialu_none);
  8630 %}
  8632 // Magic constant, 0x41f00000
  8633 instruct loadConI_x41f00000(iRegI dst) %{
  8634   effect(DEF dst);
  8635   size(4);
  8636   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8637   ins_encode(SetHi22(0x41f00000, dst));
  8638   ins_pipe(ialu_none);
  8639 %}
  8641 // Construct a double from two float halves
  8642 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8643   effect(DEF dst, USE src1, USE src2);
  8644   size(8);
  8645   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8646             "FMOVS  $src2.lo,$dst.lo" %}
  8647   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8648   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8649   ins_pipe(faddD_reg_reg);
  8650 %}
  8652 // Convert integer in high half of a double register (in the lower half of
  8653 // the double register file) to double
  8654 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8655   effect(DEF dst, USE src);
  8656   size(4);
  8657   format %{ "FITOD  $src,$dst" %}
  8658   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8659   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8660   ins_pipe(fcvtLHi2D);
  8661 %}
  8663 // Add float double precision
  8664 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8665   effect(DEF dst, USE src1, USE src2);
  8666   size(4);
  8667   format %{ "FADDD  $src1,$src2,$dst" %}
  8668   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8669   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8670   ins_pipe(faddD_reg_reg);
  8671 %}
  8673 // Sub float double precision
  8674 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8675   effect(DEF dst, USE src1, USE src2);
  8676   size(4);
  8677   format %{ "FSUBD  $src1,$src2,$dst" %}
  8678   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8679   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8680   ins_pipe(faddD_reg_reg);
  8681 %}
  8683 // Mul float double precision
  8684 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8685   effect(DEF dst, USE src1, USE src2);
  8686   size(4);
  8687   format %{ "FMULD  $src1,$src2,$dst" %}
  8688   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8689   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8690   ins_pipe(fmulD_reg_reg);
  8691 %}
  8693 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8694   match(Set dst (ConvL2D src));
  8695   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8697   expand %{
  8698     regD_low   tmpsrc;
  8699     iRegI      ix43300000;
  8700     iRegI      ix41f00000;
  8701     stackSlotL lx43300000;
  8702     stackSlotL lx41f00000;
  8703     regD_low   dx43300000;
  8704     regD       dx41f00000;
  8705     regD       tmp1;
  8706     regD_low   tmp2;
  8707     regD       tmp3;
  8708     regD       tmp4;
  8710     stkL_to_regD(tmpsrc, src);
  8712     loadConI_x43300000(ix43300000);
  8713     loadConI_x41f00000(ix41f00000);
  8714     regI_to_stkLHi(lx43300000, ix43300000);
  8715     regI_to_stkLHi(lx41f00000, ix41f00000);
  8716     stkL_to_regD(dx43300000, lx43300000);
  8717     stkL_to_regD(dx41f00000, lx41f00000);
  8719     convI2D_regDHi_regD(tmp1, tmpsrc);
  8720     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8721     subD_regD_regD(tmp3, tmp2, dx43300000);
  8722     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8723     addD_regD_regD(dst, tmp3, tmp4);
  8724   %}
  8725 %}
  8727 // Long to Double conversion using fast fxtof
  8728 instruct convL2D_helper(regD dst, regD tmp) %{
  8729   effect(DEF dst, USE tmp);
  8730   size(4);
  8731   format %{ "FXTOD  $tmp,$dst" %}
  8732   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8733   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8734   ins_pipe(fcvtL2D);
  8735 %}
  8737 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8738   predicate(VM_Version::has_fast_fxtof());
  8739   match(Set dst (ConvL2D src));
  8740   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8741   expand %{
  8742     regD tmp;
  8743     stkL_to_regD(tmp, src);
  8744     convL2D_helper(dst, tmp);
  8745   %}
  8746 %}
  8748 instruct convL2D_reg(regD dst, iRegL src) %{
  8749   predicate(UseVIS >= 3);
  8750   match(Set dst (ConvL2D src));
  8751   expand %{
  8752     regD tmp;
  8753     MoveL2D_reg_reg(tmp, src);
  8754     convL2D_helper(dst, tmp);
  8755   %}
  8756 %}
  8758 // Long to Float conversion using fast fxtof
  8759 instruct convL2F_helper(regF dst, regD tmp) %{
  8760   effect(DEF dst, USE tmp);
  8761   size(4);
  8762   format %{ "FXTOS  $tmp,$dst" %}
  8763   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8764   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8765   ins_pipe(fcvtL2F);
  8766 %}
  8768 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8769   match(Set dst (ConvL2F src));
  8770   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8771   expand %{
  8772     regD tmp;
  8773     stkL_to_regD(tmp, src);
  8774     convL2F_helper(dst, tmp);
  8775   %}
  8776 %}
  8778 instruct convL2F_reg(regF dst, iRegL src) %{
  8779   predicate(UseVIS >= 3);
  8780   match(Set dst (ConvL2F src));
  8781   ins_cost(DEFAULT_COST);
  8782   expand %{
  8783     regD tmp;
  8784     MoveL2D_reg_reg(tmp, src);
  8785     convL2F_helper(dst, tmp);
  8786   %}
  8787 %}
  8789 //-----------
  8791 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8792   match(Set dst (ConvL2I src));
  8793 #ifndef _LP64
  8794   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8795   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8796   ins_pipe(ialu_move_reg_I_to_L);
  8797 #else
  8798   size(4);
  8799   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8800   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8801   ins_pipe(ialu_reg);
  8802 #endif
  8803 %}
  8805 // Register Shift Right Immediate
  8806 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8807   match(Set dst (ConvL2I (RShiftL src cnt)));
  8809   size(4);
  8810   format %{ "SRAX   $src,$cnt,$dst" %}
  8811   opcode(Assembler::srax_op3, Assembler::arith_op);
  8812   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8813   ins_pipe(ialu_reg_imm);
  8814 %}
  8816 //----------Control Flow Instructions------------------------------------------
  8817 // Compare Instructions
  8818 // Compare Integers
  8819 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8820   match(Set icc (CmpI op1 op2));
  8821   effect( DEF icc, USE op1, USE op2 );
  8823   size(4);
  8824   format %{ "CMP    $op1,$op2" %}
  8825   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8826   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8827   ins_pipe(ialu_cconly_reg_reg);
  8828 %}
  8830 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8831   match(Set icc (CmpU op1 op2));
  8833   size(4);
  8834   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8835   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8836   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8837   ins_pipe(ialu_cconly_reg_reg);
  8838 %}
  8840 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8841   match(Set icc (CmpI op1 op2));
  8842   effect( DEF icc, USE op1 );
  8844   size(4);
  8845   format %{ "CMP    $op1,$op2" %}
  8846   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8847   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8848   ins_pipe(ialu_cconly_reg_imm);
  8849 %}
  8851 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8852   match(Set icc (CmpI (AndI op1 op2) zero));
  8854   size(4);
  8855   format %{ "BTST   $op2,$op1" %}
  8856   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8857   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8858   ins_pipe(ialu_cconly_reg_reg_zero);
  8859 %}
  8861 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8862   match(Set icc (CmpI (AndI op1 op2) zero));
  8864   size(4);
  8865   format %{ "BTST   $op2,$op1" %}
  8866   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8867   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8868   ins_pipe(ialu_cconly_reg_imm_zero);
  8869 %}
  8871 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8872   match(Set xcc (CmpL op1 op2));
  8873   effect( DEF xcc, USE op1, USE op2 );
  8875   size(4);
  8876   format %{ "CMP    $op1,$op2\t\t! long" %}
  8877   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8878   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8879   ins_pipe(ialu_cconly_reg_reg);
  8880 %}
  8882 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8883   match(Set xcc (CmpL op1 con));
  8884   effect( DEF xcc, USE op1, USE con );
  8886   size(4);
  8887   format %{ "CMP    $op1,$con\t\t! long" %}
  8888   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8889   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8890   ins_pipe(ialu_cconly_reg_reg);
  8891 %}
  8893 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8894   match(Set xcc (CmpL (AndL op1 op2) zero));
  8895   effect( DEF xcc, USE op1, USE op2 );
  8897   size(4);
  8898   format %{ "BTST   $op1,$op2\t\t! long" %}
  8899   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8900   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8901   ins_pipe(ialu_cconly_reg_reg);
  8902 %}
  8904 // useful for checking the alignment of a pointer:
  8905 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8906   match(Set xcc (CmpL (AndL op1 con) zero));
  8907   effect( DEF xcc, USE op1, USE con );
  8909   size(4);
  8910   format %{ "BTST   $op1,$con\t\t! long" %}
  8911   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8912   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8913   ins_pipe(ialu_cconly_reg_reg);
  8914 %}
  8916 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8917   match(Set icc (CmpU op1 op2));
  8919   size(4);
  8920   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8921   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8922   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8923   ins_pipe(ialu_cconly_reg_imm);
  8924 %}
  8926 // Compare Pointers
  8927 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8928   match(Set pcc (CmpP op1 op2));
  8930   size(4);
  8931   format %{ "CMP    $op1,$op2\t! ptr" %}
  8932   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8933   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8934   ins_pipe(ialu_cconly_reg_reg);
  8935 %}
  8937 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8938   match(Set pcc (CmpP op1 op2));
  8940   size(4);
  8941   format %{ "CMP    $op1,$op2\t! ptr" %}
  8942   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8943   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8944   ins_pipe(ialu_cconly_reg_imm);
  8945 %}
  8947 // Compare Narrow oops
  8948 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8949   match(Set icc (CmpN op1 op2));
  8951   size(4);
  8952   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8953   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8954   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8955   ins_pipe(ialu_cconly_reg_reg);
  8956 %}
  8958 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8959   match(Set icc (CmpN op1 op2));
  8961   size(4);
  8962   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8963   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8964   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8965   ins_pipe(ialu_cconly_reg_imm);
  8966 %}
  8968 //----------Max and Min--------------------------------------------------------
  8969 // Min Instructions
  8970 // Conditional move for min
  8971 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8972   effect( USE_DEF op2, USE op1, USE icc );
  8974   size(4);
  8975   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8976   opcode(Assembler::less);
  8977   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8978   ins_pipe(ialu_reg_flags);
  8979 %}
  8981 // Min Register with Register.
  8982 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8983   match(Set op2 (MinI op1 op2));
  8984   ins_cost(DEFAULT_COST*2);
  8985   expand %{
  8986     flagsReg icc;
  8987     compI_iReg(icc,op1,op2);
  8988     cmovI_reg_lt(op2,op1,icc);
  8989   %}
  8990 %}
  8992 // Max Instructions
  8993 // Conditional move for max
  8994 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8995   effect( USE_DEF op2, USE op1, USE icc );
  8996   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8997   opcode(Assembler::greater);
  8998   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8999   ins_pipe(ialu_reg_flags);
  9000 %}
  9002 // Max Register with Register
  9003 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9004   match(Set op2 (MaxI op1 op2));
  9005   ins_cost(DEFAULT_COST*2);
  9006   expand %{
  9007     flagsReg icc;
  9008     compI_iReg(icc,op1,op2);
  9009     cmovI_reg_gt(op2,op1,icc);
  9010   %}
  9011 %}
  9014 //----------Float Compares----------------------------------------------------
  9015 // Compare floating, generate condition code
  9016 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9017   match(Set fcc (CmpF src1 src2));
  9019   size(4);
  9020   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9021   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9022   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9023   ins_pipe(faddF_fcc_reg_reg_zero);
  9024 %}
  9026 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9027   match(Set fcc (CmpD src1 src2));
  9029   size(4);
  9030   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9031   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9032   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9033   ins_pipe(faddD_fcc_reg_reg_zero);
  9034 %}
  9037 // Compare floating, generate -1,0,1
  9038 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9039   match(Set dst (CmpF3 src1 src2));
  9040   effect(KILL fcc0);
  9041   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9042   format %{ "fcmpl  $dst,$src1,$src2" %}
  9043   // Primary = float
  9044   opcode( true );
  9045   ins_encode( floating_cmp( dst, src1, src2 ) );
  9046   ins_pipe( floating_cmp );
  9047 %}
  9049 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9050   match(Set dst (CmpD3 src1 src2));
  9051   effect(KILL fcc0);
  9052   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9053   format %{ "dcmpl  $dst,$src1,$src2" %}
  9054   // Primary = double (not float)
  9055   opcode( false );
  9056   ins_encode( floating_cmp( dst, src1, src2 ) );
  9057   ins_pipe( floating_cmp );
  9058 %}
  9060 //----------Branches---------------------------------------------------------
  9061 // Jump
  9062 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9063 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9064   match(Jump switch_val);
  9065   effect(TEMP table);
  9067   ins_cost(350);
  9069   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9070              "LD     [O7 + $switch_val], O7\n\t"
  9071              "JUMP   O7" %}
  9072   ins_encode %{
  9073     // Calculate table address into a register.
  9074     Register table_reg;
  9075     Register label_reg = O7;
  9076     // If we are calculating the size of this instruction don't trust
  9077     // zero offsets because they might change when
  9078     // MachConstantBaseNode decides to optimize the constant table
  9079     // base.
  9080     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9081       table_reg = $constanttablebase;
  9082     } else {
  9083       table_reg = O7;
  9084       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9085       __ add($constanttablebase, con_offset, table_reg);
  9088     // Jump to base address + switch value
  9089     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9090     __ jmp(label_reg, G0);
  9091     __ delayed()->nop();
  9092   %}
  9093   ins_pipe(ialu_reg_reg);
  9094 %}
  9096 // Direct Branch.  Use V8 version with longer range.
  9097 instruct branch(label labl) %{
  9098   match(Goto);
  9099   effect(USE labl);
  9101   size(8);
  9102   ins_cost(BRANCH_COST);
  9103   format %{ "BA     $labl" %}
  9104   ins_encode %{
  9105     Label* L = $labl$$label;
  9106     __ ba(*L);
  9107     __ delayed()->nop();
  9108   %}
  9109   ins_pipe(br);
  9110 %}
  9112 // Direct Branch, short with no delay slot
  9113 instruct branch_short(label labl) %{
  9114   match(Goto);
  9115   predicate(UseCBCond);
  9116   effect(USE labl);
  9118   size(4);
  9119   ins_cost(BRANCH_COST);
  9120   format %{ "BA     $labl\t! short branch" %}
  9121   ins_encode %{ 
  9122     Label* L = $labl$$label;
  9123     assert(__ use_cbcond(*L), "back to back cbcond");
  9124     __ ba_short(*L);
  9125   %}
  9126   ins_short_branch(1);
  9127   ins_avoid_back_to_back(1);
  9128   ins_pipe(cbcond_reg_imm);
  9129 %}
  9131 // Conditional Direct Branch
  9132 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9133   match(If cmp icc);
  9134   effect(USE labl);
  9136   size(8);
  9137   ins_cost(BRANCH_COST);
  9138   format %{ "BP$cmp   $icc,$labl" %}
  9139   // Prim = bits 24-22, Secnd = bits 31-30
  9140   ins_encode( enc_bp( labl, cmp, icc ) );
  9141   ins_pipe(br_cc);
  9142 %}
  9144 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9145   match(If cmp icc);
  9146   effect(USE labl);
  9148   ins_cost(BRANCH_COST);
  9149   format %{ "BP$cmp  $icc,$labl" %}
  9150   // Prim = bits 24-22, Secnd = bits 31-30
  9151   ins_encode( enc_bp( labl, cmp, icc ) );
  9152   ins_pipe(br_cc);
  9153 %}
  9155 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9156   match(If cmp pcc);
  9157   effect(USE labl);
  9159   size(8);
  9160   ins_cost(BRANCH_COST);
  9161   format %{ "BP$cmp  $pcc,$labl" %}
  9162   ins_encode %{
  9163     Label* L = $labl$$label;
  9164     Assembler::Predict predict_taken =
  9165       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9167     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9168     __ delayed()->nop();
  9169   %}
  9170   ins_pipe(br_cc);
  9171 %}
  9173 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9174   match(If cmp fcc);
  9175   effect(USE labl);
  9177   size(8);
  9178   ins_cost(BRANCH_COST);
  9179   format %{ "FBP$cmp $fcc,$labl" %}
  9180   ins_encode %{
  9181     Label* L = $labl$$label;
  9182     Assembler::Predict predict_taken =
  9183       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9185     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9186     __ delayed()->nop();
  9187   %}
  9188   ins_pipe(br_fcc);
  9189 %}
  9191 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9192   match(CountedLoopEnd cmp icc);
  9193   effect(USE labl);
  9195   size(8);
  9196   ins_cost(BRANCH_COST);
  9197   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9198   // Prim = bits 24-22, Secnd = bits 31-30
  9199   ins_encode( enc_bp( labl, cmp, icc ) );
  9200   ins_pipe(br_cc);
  9201 %}
  9203 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9204   match(CountedLoopEnd cmp icc);
  9205   effect(USE labl);
  9207   size(8);
  9208   ins_cost(BRANCH_COST);
  9209   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9210   // Prim = bits 24-22, Secnd = bits 31-30
  9211   ins_encode( enc_bp( labl, cmp, icc ) );
  9212   ins_pipe(br_cc);
  9213 %}
  9215 // Compare and branch instructions
  9216 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9217   match(If cmp (CmpI op1 op2));
  9218   effect(USE labl, KILL icc);
  9220   size(12);
  9221   ins_cost(BRANCH_COST);
  9222   format %{ "CMP    $op1,$op2\t! int\n\t"
  9223             "BP$cmp   $labl" %}
  9224   ins_encode %{
  9225     Label* L = $labl$$label;
  9226     Assembler::Predict predict_taken =
  9227       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9228     __ cmp($op1$$Register, $op2$$Register);
  9229     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9230     __ delayed()->nop();
  9231   %}
  9232   ins_pipe(cmp_br_reg_reg);
  9233 %}
  9235 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9236   match(If cmp (CmpI op1 op2));
  9237   effect(USE labl, KILL icc);
  9239   size(12);
  9240   ins_cost(BRANCH_COST);
  9241   format %{ "CMP    $op1,$op2\t! int\n\t"
  9242             "BP$cmp   $labl" %}
  9243   ins_encode %{
  9244     Label* L = $labl$$label;
  9245     Assembler::Predict predict_taken =
  9246       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9247     __ cmp($op1$$Register, $op2$$constant);
  9248     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9249     __ delayed()->nop();
  9250   %}
  9251   ins_pipe(cmp_br_reg_imm);
  9252 %}
  9254 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9255   match(If cmp (CmpU op1 op2));
  9256   effect(USE labl, KILL icc);
  9258   size(12);
  9259   ins_cost(BRANCH_COST);
  9260   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9261             "BP$cmp  $labl" %}
  9262   ins_encode %{
  9263     Label* L = $labl$$label;
  9264     Assembler::Predict predict_taken =
  9265       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9266     __ cmp($op1$$Register, $op2$$Register);
  9267     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9268     __ delayed()->nop();
  9269   %}
  9270   ins_pipe(cmp_br_reg_reg);
  9271 %}
  9273 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9274   match(If cmp (CmpU op1 op2));
  9275   effect(USE labl, KILL icc);
  9277   size(12);
  9278   ins_cost(BRANCH_COST);
  9279   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9280             "BP$cmp  $labl" %}
  9281   ins_encode %{
  9282     Label* L = $labl$$label;
  9283     Assembler::Predict predict_taken =
  9284       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9285     __ cmp($op1$$Register, $op2$$constant);
  9286     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9287     __ delayed()->nop();
  9288   %}
  9289   ins_pipe(cmp_br_reg_imm);
  9290 %}
  9292 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9293   match(If cmp (CmpL op1 op2));
  9294   effect(USE labl, KILL xcc);
  9296   size(12);
  9297   ins_cost(BRANCH_COST);
  9298   format %{ "CMP    $op1,$op2\t! long\n\t"
  9299             "BP$cmp   $labl" %}
  9300   ins_encode %{
  9301     Label* L = $labl$$label;
  9302     Assembler::Predict predict_taken =
  9303       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9304     __ cmp($op1$$Register, $op2$$Register);
  9305     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9306     __ delayed()->nop();
  9307   %}
  9308   ins_pipe(cmp_br_reg_reg);
  9309 %}
  9311 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9312   match(If cmp (CmpL op1 op2));
  9313   effect(USE labl, KILL xcc);
  9315   size(12);
  9316   ins_cost(BRANCH_COST);
  9317   format %{ "CMP    $op1,$op2\t! long\n\t"
  9318             "BP$cmp   $labl" %}
  9319   ins_encode %{
  9320     Label* L = $labl$$label;
  9321     Assembler::Predict predict_taken =
  9322       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9323     __ cmp($op1$$Register, $op2$$constant);
  9324     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9325     __ delayed()->nop();
  9326   %}
  9327   ins_pipe(cmp_br_reg_imm);
  9328 %}
  9330 // Compare Pointers and branch
  9331 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9332   match(If cmp (CmpP op1 op2));
  9333   effect(USE labl, KILL pcc);
  9335   size(12);
  9336   ins_cost(BRANCH_COST);
  9337   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9338             "B$cmp   $labl" %}
  9339   ins_encode %{
  9340     Label* L = $labl$$label;
  9341     Assembler::Predict predict_taken =
  9342       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9343     __ cmp($op1$$Register, $op2$$Register);
  9344     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9345     __ delayed()->nop();
  9346   %}
  9347   ins_pipe(cmp_br_reg_reg);
  9348 %}
  9350 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9351   match(If cmp (CmpP op1 null));
  9352   effect(USE labl, KILL pcc);
  9354   size(12);
  9355   ins_cost(BRANCH_COST);
  9356   format %{ "CMP    $op1,0\t! ptr\n\t"
  9357             "B$cmp   $labl" %}
  9358   ins_encode %{
  9359     Label* L = $labl$$label;
  9360     Assembler::Predict predict_taken =
  9361       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9362     __ cmp($op1$$Register, G0);
  9363     // bpr() is not used here since it has shorter distance.
  9364     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9365     __ delayed()->nop();
  9366   %}
  9367   ins_pipe(cmp_br_reg_reg);
  9368 %}
  9370 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9371   match(If cmp (CmpN op1 op2));
  9372   effect(USE labl, KILL icc);
  9374   size(12);
  9375   ins_cost(BRANCH_COST);
  9376   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9377             "BP$cmp   $labl" %}
  9378   ins_encode %{
  9379     Label* L = $labl$$label;
  9380     Assembler::Predict predict_taken =
  9381       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9382     __ cmp($op1$$Register, $op2$$Register);
  9383     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9384     __ delayed()->nop();
  9385   %}
  9386   ins_pipe(cmp_br_reg_reg);
  9387 %}
  9389 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9390   match(If cmp (CmpN op1 null));
  9391   effect(USE labl, KILL icc);
  9393   size(12);
  9394   ins_cost(BRANCH_COST);
  9395   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9396             "BP$cmp   $labl" %}
  9397   ins_encode %{
  9398     Label* L = $labl$$label;
  9399     Assembler::Predict predict_taken =
  9400       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9401     __ cmp($op1$$Register, G0);
  9402     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9403     __ delayed()->nop();
  9404   %}
  9405   ins_pipe(cmp_br_reg_reg);
  9406 %}
  9408 // Loop back branch
  9409 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9410   match(CountedLoopEnd cmp (CmpI op1 op2));
  9411   effect(USE labl, KILL icc);
  9413   size(12);
  9414   ins_cost(BRANCH_COST);
  9415   format %{ "CMP    $op1,$op2\t! int\n\t"
  9416             "BP$cmp   $labl\t! Loop end" %}
  9417   ins_encode %{
  9418     Label* L = $labl$$label;
  9419     Assembler::Predict predict_taken =
  9420       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9421     __ cmp($op1$$Register, $op2$$Register);
  9422     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9423     __ delayed()->nop();
  9424   %}
  9425   ins_pipe(cmp_br_reg_reg);
  9426 %}
  9428 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9429   match(CountedLoopEnd cmp (CmpI op1 op2));
  9430   effect(USE labl, KILL icc);
  9432   size(12);
  9433   ins_cost(BRANCH_COST);
  9434   format %{ "CMP    $op1,$op2\t! int\n\t"
  9435             "BP$cmp   $labl\t! Loop end" %}
  9436   ins_encode %{
  9437     Label* L = $labl$$label;
  9438     Assembler::Predict predict_taken =
  9439       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9440     __ cmp($op1$$Register, $op2$$constant);
  9441     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9442     __ delayed()->nop();
  9443   %}
  9444   ins_pipe(cmp_br_reg_imm);
  9445 %}
  9447 // Short compare and branch instructions
  9448 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9449   match(If cmp (CmpI op1 op2));
  9450   predicate(UseCBCond);
  9451   effect(USE labl, KILL icc);
  9453   size(4);
  9454   ins_cost(BRANCH_COST);
  9455   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9456   ins_encode %{
  9457     Label* L = $labl$$label;
  9458     assert(__ use_cbcond(*L), "back to back cbcond");
  9459     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9460   %}
  9461   ins_short_branch(1);
  9462   ins_avoid_back_to_back(1);
  9463   ins_pipe(cbcond_reg_reg);
  9464 %}
  9466 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9467   match(If cmp (CmpI op1 op2));
  9468   predicate(UseCBCond);
  9469   effect(USE labl, KILL icc);
  9471   size(4);
  9472   ins_cost(BRANCH_COST);
  9473   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9474   ins_encode %{
  9475     Label* L = $labl$$label;
  9476     assert(__ use_cbcond(*L), "back to back cbcond");
  9477     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9478   %}
  9479   ins_short_branch(1);
  9480   ins_avoid_back_to_back(1);
  9481   ins_pipe(cbcond_reg_imm);
  9482 %}
  9484 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9485   match(If cmp (CmpU op1 op2));
  9486   predicate(UseCBCond);
  9487   effect(USE labl, KILL icc);
  9489   size(4);
  9490   ins_cost(BRANCH_COST);
  9491   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9492   ins_encode %{
  9493     Label* L = $labl$$label;
  9494     assert(__ use_cbcond(*L), "back to back cbcond");
  9495     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9496   %}
  9497   ins_short_branch(1);
  9498   ins_avoid_back_to_back(1);
  9499   ins_pipe(cbcond_reg_reg);
  9500 %}
  9502 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9503   match(If cmp (CmpU op1 op2));
  9504   predicate(UseCBCond);
  9505   effect(USE labl, KILL icc);
  9507   size(4);
  9508   ins_cost(BRANCH_COST);
  9509   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9510   ins_encode %{
  9511     Label* L = $labl$$label;
  9512     assert(__ use_cbcond(*L), "back to back cbcond");
  9513     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9514   %}
  9515   ins_short_branch(1);
  9516   ins_avoid_back_to_back(1);
  9517   ins_pipe(cbcond_reg_imm);
  9518 %}
  9520 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9521   match(If cmp (CmpL op1 op2));
  9522   predicate(UseCBCond);
  9523   effect(USE labl, KILL xcc);
  9525   size(4);
  9526   ins_cost(BRANCH_COST);
  9527   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9528   ins_encode %{
  9529     Label* L = $labl$$label;
  9530     assert(__ use_cbcond(*L), "back to back cbcond");
  9531     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9532   %}
  9533   ins_short_branch(1);
  9534   ins_avoid_back_to_back(1);
  9535   ins_pipe(cbcond_reg_reg);
  9536 %}
  9538 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9539   match(If cmp (CmpL op1 op2));
  9540   predicate(UseCBCond);
  9541   effect(USE labl, KILL xcc);
  9543   size(4);
  9544   ins_cost(BRANCH_COST);
  9545   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9546   ins_encode %{
  9547     Label* L = $labl$$label;
  9548     assert(__ use_cbcond(*L), "back to back cbcond");
  9549     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9550   %}
  9551   ins_short_branch(1);
  9552   ins_avoid_back_to_back(1);
  9553   ins_pipe(cbcond_reg_imm);
  9554 %}
  9556 // Compare Pointers and branch
  9557 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9558   match(If cmp (CmpP op1 op2));
  9559   predicate(UseCBCond);
  9560   effect(USE labl, KILL pcc);
  9562   size(4);
  9563   ins_cost(BRANCH_COST);
  9564 #ifdef _LP64
  9565   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9566 #else
  9567   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9568 #endif
  9569   ins_encode %{
  9570     Label* L = $labl$$label;
  9571     assert(__ use_cbcond(*L), "back to back cbcond");
  9572     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9573   %}
  9574   ins_short_branch(1);
  9575   ins_avoid_back_to_back(1);
  9576   ins_pipe(cbcond_reg_reg);
  9577 %}
  9579 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9580   match(If cmp (CmpP op1 null));
  9581   predicate(UseCBCond);
  9582   effect(USE labl, KILL pcc);
  9584   size(4);
  9585   ins_cost(BRANCH_COST);
  9586 #ifdef _LP64
  9587   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9588 #else
  9589   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9590 #endif
  9591   ins_encode %{
  9592     Label* L = $labl$$label;
  9593     assert(__ use_cbcond(*L), "back to back cbcond");
  9594     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9595   %}
  9596   ins_short_branch(1);
  9597   ins_avoid_back_to_back(1);
  9598   ins_pipe(cbcond_reg_reg);
  9599 %}
  9601 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9602   match(If cmp (CmpN op1 op2));
  9603   predicate(UseCBCond);
  9604   effect(USE labl, KILL icc);
  9606   size(4);
  9607   ins_cost(BRANCH_COST);
  9608   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9609   ins_encode %{
  9610     Label* L = $labl$$label;
  9611     assert(__ use_cbcond(*L), "back to back cbcond");
  9612     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9613   %}
  9614   ins_short_branch(1);
  9615   ins_avoid_back_to_back(1);
  9616   ins_pipe(cbcond_reg_reg);
  9617 %}
  9619 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9620   match(If cmp (CmpN op1 null));
  9621   predicate(UseCBCond);
  9622   effect(USE labl, KILL icc);
  9624   size(4);
  9625   ins_cost(BRANCH_COST);
  9626   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9627   ins_encode %{
  9628     Label* L = $labl$$label;
  9629     assert(__ use_cbcond(*L), "back to back cbcond");
  9630     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9631   %}
  9632   ins_short_branch(1);
  9633   ins_avoid_back_to_back(1);
  9634   ins_pipe(cbcond_reg_reg);
  9635 %}
  9637 // Loop back branch
  9638 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9639   match(CountedLoopEnd cmp (CmpI op1 op2));
  9640   predicate(UseCBCond);
  9641   effect(USE labl, KILL icc);
  9643   size(4);
  9644   ins_cost(BRANCH_COST);
  9645   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9646   ins_encode %{
  9647     Label* L = $labl$$label;
  9648     assert(__ use_cbcond(*L), "back to back cbcond");
  9649     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9650   %}
  9651   ins_short_branch(1);
  9652   ins_avoid_back_to_back(1);
  9653   ins_pipe(cbcond_reg_reg);
  9654 %}
  9656 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9657   match(CountedLoopEnd cmp (CmpI op1 op2));
  9658   predicate(UseCBCond);
  9659   effect(USE labl, KILL icc);
  9661   size(4);
  9662   ins_cost(BRANCH_COST);
  9663   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9664   ins_encode %{
  9665     Label* L = $labl$$label;
  9666     assert(__ use_cbcond(*L), "back to back cbcond");
  9667     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9668   %}
  9669   ins_short_branch(1);
  9670   ins_avoid_back_to_back(1);
  9671   ins_pipe(cbcond_reg_imm);
  9672 %}
  9674 // Branch-on-register tests all 64 bits.  We assume that values
  9675 // in 64-bit registers always remains zero or sign extended
  9676 // unless our code munges the high bits.  Interrupts can chop
  9677 // the high order bits to zero or sign at any time.
  9678 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9679   match(If cmp (CmpI op1 zero));
  9680   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9681   effect(USE labl);
  9683   size(8);
  9684   ins_cost(BRANCH_COST);
  9685   format %{ "BR$cmp   $op1,$labl" %}
  9686   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9687   ins_pipe(br_reg);
  9688 %}
  9690 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9691   match(If cmp (CmpP op1 null));
  9692   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9693   effect(USE labl);
  9695   size(8);
  9696   ins_cost(BRANCH_COST);
  9697   format %{ "BR$cmp   $op1,$labl" %}
  9698   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9699   ins_pipe(br_reg);
  9700 %}
  9702 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9703   match(If cmp (CmpL op1 zero));
  9704   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9705   effect(USE labl);
  9707   size(8);
  9708   ins_cost(BRANCH_COST);
  9709   format %{ "BR$cmp   $op1,$labl" %}
  9710   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9711   ins_pipe(br_reg);
  9712 %}
  9715 // ============================================================================
  9716 // Long Compare
  9717 //
  9718 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9719 // is tricky.  The flavor of compare used depends on whether we are testing
  9720 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9721 // The GE test is the negated LT test.  The LE test can be had by commuting
  9722 // the operands (yielding a GE test) and then negating; negate again for the
  9723 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9724 // NE test is negated from that.
  9726 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9727 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9728 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9729 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9730 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9731 // foo match ends up with the wrong leaf.  One fix is to not match both
  9732 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9733 // both forms beat the trinary form of long-compare and both are very useful
  9734 // on Intel which has so few registers.
  9736 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9737   match(If cmp xcc);
  9738   effect(USE labl);
  9740   size(8);
  9741   ins_cost(BRANCH_COST);
  9742   format %{ "BP$cmp   $xcc,$labl" %}
  9743   ins_encode %{
  9744     Label* L = $labl$$label;
  9745     Assembler::Predict predict_taken =
  9746       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9748     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9749     __ delayed()->nop();
  9750   %}
  9751   ins_pipe(br_cc);
  9752 %}
  9754 // Manifest a CmpL3 result in an integer register.  Very painful.
  9755 // This is the test to avoid.
  9756 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9757   match(Set dst (CmpL3 src1 src2) );
  9758   effect( KILL ccr );
  9759   ins_cost(6*DEFAULT_COST);
  9760   size(24);
  9761   format %{ "CMP    $src1,$src2\t\t! long\n"
  9762           "\tBLT,a,pn done\n"
  9763           "\tMOV    -1,$dst\t! delay slot\n"
  9764           "\tBGT,a,pn done\n"
  9765           "\tMOV    1,$dst\t! delay slot\n"
  9766           "\tCLR    $dst\n"
  9767     "done:"     %}
  9768   ins_encode( cmpl_flag(src1,src2,dst) );
  9769   ins_pipe(cmpL_reg);
  9770 %}
  9772 // Conditional move
  9773 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9774   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9775   ins_cost(150);
  9776   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9777   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9778   ins_pipe(ialu_reg);
  9779 %}
  9781 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9782   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9783   ins_cost(140);
  9784   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9785   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9786   ins_pipe(ialu_imm);
  9787 %}
  9789 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9790   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9791   ins_cost(150);
  9792   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9793   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9794   ins_pipe(ialu_reg);
  9795 %}
  9797 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9798   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9799   ins_cost(140);
  9800   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9801   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9802   ins_pipe(ialu_imm);
  9803 %}
  9805 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9806   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9807   ins_cost(150);
  9808   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9809   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9810   ins_pipe(ialu_reg);
  9811 %}
  9813 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9814   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9815   ins_cost(150);
  9816   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9817   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9818   ins_pipe(ialu_reg);
  9819 %}
  9821 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9822   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9823   ins_cost(140);
  9824   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9825   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9826   ins_pipe(ialu_imm);
  9827 %}
  9829 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9830   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9831   ins_cost(150);
  9832   opcode(0x101);
  9833   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9834   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9835   ins_pipe(int_conditional_float_move);
  9836 %}
  9838 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9839   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9840   ins_cost(150);
  9841   opcode(0x102);
  9842   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9843   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9844   ins_pipe(int_conditional_float_move);
  9845 %}
  9847 // ============================================================================
  9848 // Safepoint Instruction
  9849 instruct safePoint_poll(iRegP poll) %{
  9850   match(SafePoint poll);
  9851   effect(USE poll);
  9853   size(4);
  9854 #ifdef _LP64
  9855   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9856 #else
  9857   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9858 #endif
  9859   ins_encode %{
  9860     __ relocate(relocInfo::poll_type);
  9861     __ ld_ptr($poll$$Register, 0, G0);
  9862   %}
  9863   ins_pipe(loadPollP);
  9864 %}
  9866 // ============================================================================
  9867 // Call Instructions
  9868 // Call Java Static Instruction
  9869 instruct CallStaticJavaDirect( method meth ) %{
  9870   match(CallStaticJava);
  9871   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9872   effect(USE meth);
  9874   size(8);
  9875   ins_cost(CALL_COST);
  9876   format %{ "CALL,static  ; NOP ==> " %}
  9877   ins_encode( Java_Static_Call( meth ), call_epilog );
  9878   ins_pipe(simple_call);
  9879 %}
  9881 // Call Java Static Instruction (method handle version)
  9882 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9883   match(CallStaticJava);
  9884   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9885   effect(USE meth, KILL l7_mh_SP_save);
  9887   size(16);
  9888   ins_cost(CALL_COST);
  9889   format %{ "CALL,static/MethodHandle" %}
  9890   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9891   ins_pipe(simple_call);
  9892 %}
  9894 // Call Java Dynamic Instruction
  9895 instruct CallDynamicJavaDirect( method meth ) %{
  9896   match(CallDynamicJava);
  9897   effect(USE meth);
  9899   ins_cost(CALL_COST);
  9900   format %{ "SET    (empty),R_G5\n\t"
  9901             "CALL,dynamic  ; NOP ==> " %}
  9902   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9903   ins_pipe(call);
  9904 %}
  9906 // Call Runtime Instruction
  9907 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9908   match(CallRuntime);
  9909   effect(USE meth, KILL l7);
  9910   ins_cost(CALL_COST);
  9911   format %{ "CALL,runtime" %}
  9912   ins_encode( Java_To_Runtime( meth ),
  9913               call_epilog, adjust_long_from_native_call );
  9914   ins_pipe(simple_call);
  9915 %}
  9917 // Call runtime without safepoint - same as CallRuntime
  9918 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9919   match(CallLeaf);
  9920   effect(USE meth, KILL l7);
  9921   ins_cost(CALL_COST);
  9922   format %{ "CALL,runtime leaf" %}
  9923   ins_encode( Java_To_Runtime( meth ),
  9924               call_epilog,
  9925               adjust_long_from_native_call );
  9926   ins_pipe(simple_call);
  9927 %}
  9929 // Call runtime without safepoint - same as CallLeaf
  9930 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9931   match(CallLeafNoFP);
  9932   effect(USE meth, KILL l7);
  9933   ins_cost(CALL_COST);
  9934   format %{ "CALL,runtime leaf nofp" %}
  9935   ins_encode( Java_To_Runtime( meth ),
  9936               call_epilog,
  9937               adjust_long_from_native_call );
  9938   ins_pipe(simple_call);
  9939 %}
  9941 // Tail Call; Jump from runtime stub to Java code.
  9942 // Also known as an 'interprocedural jump'.
  9943 // Target of jump will eventually return to caller.
  9944 // TailJump below removes the return address.
  9945 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9946   match(TailCall jump_target method_oop );
  9948   ins_cost(CALL_COST);
  9949   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9950   ins_encode(form_jmpl(jump_target));
  9951   ins_pipe(tail_call);
  9952 %}
  9955 // Return Instruction
  9956 instruct Ret() %{
  9957   match(Return);
  9959   // The epilogue node did the ret already.
  9960   size(0);
  9961   format %{ "! return" %}
  9962   ins_encode();
  9963   ins_pipe(empty);
  9964 %}
  9967 // Tail Jump; remove the return address; jump to target.
  9968 // TailCall above leaves the return address around.
  9969 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  9970 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  9971 // "restore" before this instruction (in Epilogue), we need to materialize it
  9972 // in %i0.
  9973 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  9974   match( TailJump jump_target ex_oop );
  9975   ins_cost(CALL_COST);
  9976   format %{ "! discard R_O7\n\t"
  9977             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  9978   ins_encode(form_jmpl_set_exception_pc(jump_target));
  9979   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  9980   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  9981   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  9982   ins_pipe(tail_call);
  9983 %}
  9985 // Create exception oop: created by stack-crawling runtime code.
  9986 // Created exception is now available to this handler, and is setup
  9987 // just prior to jumping to this handler.  No code emitted.
  9988 instruct CreateException( o0RegP ex_oop )
  9989 %{
  9990   match(Set ex_oop (CreateEx));
  9991   ins_cost(0);
  9993   size(0);
  9994   // use the following format syntax
  9995   format %{ "! exception oop is in R_O0; no code emitted" %}
  9996   ins_encode();
  9997   ins_pipe(empty);
  9998 %}
 10001 // Rethrow exception:
 10002 // The exception oop will come in the first argument position.
 10003 // Then JUMP (not call) to the rethrow stub code.
 10004 instruct RethrowException()
 10005 %{
 10006   match(Rethrow);
 10007   ins_cost(CALL_COST);
 10009   // use the following format syntax
 10010   format %{ "Jmp    rethrow_stub" %}
 10011   ins_encode(enc_rethrow);
 10012   ins_pipe(tail_call);
 10013 %}
 10016 // Die now
 10017 instruct ShouldNotReachHere( )
 10018 %{
 10019   match(Halt);
 10020   ins_cost(CALL_COST);
 10022   size(4);
 10023   // Use the following format syntax
 10024   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10025   ins_encode( form2_illtrap() );
 10026   ins_pipe(tail_call);
 10027 %}
 10029 // ============================================================================
 10030 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10031 // array for an instance of the superklass.  Set a hidden internal cache on a
 10032 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10033 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10034 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10035   match(Set index (PartialSubtypeCheck sub super));
 10036   effect( KILL pcc, KILL o7 );
 10037   ins_cost(DEFAULT_COST*10);
 10038   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10039   ins_encode( enc_PartialSubtypeCheck() );
 10040   ins_pipe(partial_subtype_check_pipe);
 10041 %}
 10043 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10044   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10045   effect( KILL idx, KILL o7 );
 10046   ins_cost(DEFAULT_COST*10);
 10047   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10048   ins_encode( enc_PartialSubtypeCheck() );
 10049   ins_pipe(partial_subtype_check_pipe);
 10050 %}
 10053 // ============================================================================
 10054 // inlined locking and unlocking
 10056 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10057   match(Set pcc (FastLock object box));
 10059   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10060   ins_cost(100);
 10062   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10063   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10064   ins_pipe(long_memory_op);
 10065 %}
 10068 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10069   match(Set pcc (FastUnlock object box));
 10070   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10071   ins_cost(100);
 10073   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10074   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10075   ins_pipe(long_memory_op);
 10076 %}
 10078 // The encodings are generic.
 10079 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10080   predicate(!use_block_zeroing(n->in(2)) );
 10081   match(Set dummy (ClearArray cnt base));
 10082   effect(TEMP temp, KILL ccr);
 10083   ins_cost(300);
 10084   format %{ "MOV    $cnt,$temp\n"
 10085     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10086     "        BRge   loop\t\t! Clearing loop\n"
 10087     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10089   ins_encode %{
 10090     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10091     Register nof_bytes_arg    = $cnt$$Register;
 10092     Register nof_bytes_tmp    = $temp$$Register;
 10093     Register base_pointer_arg = $base$$Register;
 10095     Label loop;
 10096     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10098     // Loop and clear, walking backwards through the array.
 10099     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10100     __ bind(loop);
 10101     __ deccc(nof_bytes_tmp, 8);
 10102     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10103     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10104     // %%%% this mini-loop must not cross a cache boundary!
 10105   %}
 10106   ins_pipe(long_memory_op);
 10107 %}
 10109 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10110   predicate(use_block_zeroing(n->in(2)));
 10111   match(Set dummy (ClearArray cnt base));
 10112   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10113   ins_cost(300);
 10114   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10116   ins_encode %{
 10118     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10119     Register to    = $base$$Register;
 10120     Register count = $cnt$$Register;
 10122     Label Ldone;
 10123     __ nop(); // Separate short branches
 10124     // Use BIS for zeroing (temp is not used).
 10125     __ bis_zeroing(to, count, G0, Ldone);
 10126     __ bind(Ldone);
 10128   %}
 10129   ins_pipe(long_memory_op);
 10130 %}
 10132 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10133   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10134   match(Set dummy (ClearArray cnt base));
 10135   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10136   ins_cost(300);
 10137   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10139   ins_encode %{
 10141     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10142     Register to    = $base$$Register;
 10143     Register count = $cnt$$Register;
 10144     Register temp  = $tmp$$Register;
 10146     Label Ldone;
 10147     __ nop(); // Separate short branches
 10148     // Use BIS for zeroing
 10149     __ bis_zeroing(to, count, temp, Ldone);
 10150     __ bind(Ldone);
 10152   %}
 10153   ins_pipe(long_memory_op);
 10154 %}
 10156 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10157                         o7RegI tmp, flagsReg ccr) %{
 10158   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10159   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10160   ins_cost(300);
 10161   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10162   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10163   ins_pipe(long_memory_op);
 10164 %}
 10166 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10167                        o7RegI tmp, flagsReg ccr) %{
 10168   match(Set result (StrEquals (Binary str1 str2) cnt));
 10169   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10170   ins_cost(300);
 10171   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10172   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10173   ins_pipe(long_memory_op);
 10174 %}
 10176 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10177                       o7RegI tmp2, flagsReg ccr) %{
 10178   match(Set result (AryEq ary1 ary2));
 10179   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10180   ins_cost(300);
 10181   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10182   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10183   ins_pipe(long_memory_op);
 10184 %}
 10187 //---------- Zeros Count Instructions ------------------------------------------
 10189 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10190   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10191   match(Set dst (CountLeadingZerosI src));
 10192   effect(TEMP dst, TEMP tmp, KILL cr);
 10194   // x |= (x >> 1);
 10195   // x |= (x >> 2);
 10196   // x |= (x >> 4);
 10197   // x |= (x >> 8);
 10198   // x |= (x >> 16);
 10199   // return (WORDBITS - popc(x));
 10200   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10201             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10202             "OR      $dst,$tmp,$dst\n\t"
 10203             "SRL     $dst,2,$tmp\n\t"
 10204             "OR      $dst,$tmp,$dst\n\t"
 10205             "SRL     $dst,4,$tmp\n\t"
 10206             "OR      $dst,$tmp,$dst\n\t"
 10207             "SRL     $dst,8,$tmp\n\t"
 10208             "OR      $dst,$tmp,$dst\n\t"
 10209             "SRL     $dst,16,$tmp\n\t"
 10210             "OR      $dst,$tmp,$dst\n\t"
 10211             "POPC    $dst,$dst\n\t"
 10212             "MOV     32,$tmp\n\t"
 10213             "SUB     $tmp,$dst,$dst" %}
 10214   ins_encode %{
 10215     Register Rdst = $dst$$Register;
 10216     Register Rsrc = $src$$Register;
 10217     Register Rtmp = $tmp$$Register;
 10218     __ srl(Rsrc, 1,    Rtmp);
 10219     __ srl(Rsrc, 0,    Rdst);
 10220     __ or3(Rdst, Rtmp, Rdst);
 10221     __ srl(Rdst, 2,    Rtmp);
 10222     __ or3(Rdst, Rtmp, Rdst);
 10223     __ srl(Rdst, 4,    Rtmp);
 10224     __ or3(Rdst, Rtmp, Rdst);
 10225     __ srl(Rdst, 8,    Rtmp);
 10226     __ or3(Rdst, Rtmp, Rdst);
 10227     __ srl(Rdst, 16,   Rtmp);
 10228     __ or3(Rdst, Rtmp, Rdst);
 10229     __ popc(Rdst, Rdst);
 10230     __ mov(BitsPerInt, Rtmp);
 10231     __ sub(Rtmp, Rdst, Rdst);
 10232   %}
 10233   ins_pipe(ialu_reg);
 10234 %}
 10236 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10237   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10238   match(Set dst (CountLeadingZerosL src));
 10239   effect(TEMP dst, TEMP tmp, KILL cr);
 10241   // x |= (x >> 1);
 10242   // x |= (x >> 2);
 10243   // x |= (x >> 4);
 10244   // x |= (x >> 8);
 10245   // x |= (x >> 16);
 10246   // x |= (x >> 32);
 10247   // return (WORDBITS - popc(x));
 10248   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10249             "OR      $src,$tmp,$dst\n\t"
 10250             "SRLX    $dst,2,$tmp\n\t"
 10251             "OR      $dst,$tmp,$dst\n\t"
 10252             "SRLX    $dst,4,$tmp\n\t"
 10253             "OR      $dst,$tmp,$dst\n\t"
 10254             "SRLX    $dst,8,$tmp\n\t"
 10255             "OR      $dst,$tmp,$dst\n\t"
 10256             "SRLX    $dst,16,$tmp\n\t"
 10257             "OR      $dst,$tmp,$dst\n\t"
 10258             "SRLX    $dst,32,$tmp\n\t"
 10259             "OR      $dst,$tmp,$dst\n\t"
 10260             "POPC    $dst,$dst\n\t"
 10261             "MOV     64,$tmp\n\t"
 10262             "SUB     $tmp,$dst,$dst" %}
 10263   ins_encode %{
 10264     Register Rdst = $dst$$Register;
 10265     Register Rsrc = $src$$Register;
 10266     Register Rtmp = $tmp$$Register;
 10267     __ srlx(Rsrc, 1,    Rtmp);
 10268     __ or3( Rsrc, Rtmp, Rdst);
 10269     __ srlx(Rdst, 2,    Rtmp);
 10270     __ or3( Rdst, Rtmp, Rdst);
 10271     __ srlx(Rdst, 4,    Rtmp);
 10272     __ or3( Rdst, Rtmp, Rdst);
 10273     __ srlx(Rdst, 8,    Rtmp);
 10274     __ or3( Rdst, Rtmp, Rdst);
 10275     __ srlx(Rdst, 16,   Rtmp);
 10276     __ or3( Rdst, Rtmp, Rdst);
 10277     __ srlx(Rdst, 32,   Rtmp);
 10278     __ or3( Rdst, Rtmp, Rdst);
 10279     __ popc(Rdst, Rdst);
 10280     __ mov(BitsPerLong, Rtmp);
 10281     __ sub(Rtmp, Rdst, Rdst);
 10282   %}
 10283   ins_pipe(ialu_reg);
 10284 %}
 10286 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
 10287   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10288   match(Set dst (CountTrailingZerosI src));
 10289   effect(TEMP dst, KILL cr);
 10291   // return popc(~x & (x - 1));
 10292   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10293             "ANDN    $dst,$src,$dst\n\t"
 10294             "SRL     $dst,R_G0,$dst\n\t"
 10295             "POPC    $dst,$dst" %}
 10296   ins_encode %{
 10297     Register Rdst = $dst$$Register;
 10298     Register Rsrc = $src$$Register;
 10299     __ sub(Rsrc, 1, Rdst);
 10300     __ andn(Rdst, Rsrc, Rdst);
 10301     __ srl(Rdst, G0, Rdst);
 10302     __ popc(Rdst, Rdst);
 10303   %}
 10304   ins_pipe(ialu_reg);
 10305 %}
 10307 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10308   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10309   match(Set dst (CountTrailingZerosL src));
 10310   effect(TEMP dst, KILL cr);
 10312   // return popc(~x & (x - 1));
 10313   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10314             "ANDN    $dst,$src,$dst\n\t"
 10315             "POPC    $dst,$dst" %}
 10316   ins_encode %{
 10317     Register Rdst = $dst$$Register;
 10318     Register Rsrc = $src$$Register;
 10319     __ sub(Rsrc, 1, Rdst);
 10320     __ andn(Rdst, Rsrc, Rdst);
 10321     __ popc(Rdst, Rdst);
 10322   %}
 10323   ins_pipe(ialu_reg);
 10324 %}
 10327 //---------- Population Count Instructions -------------------------------------
 10329 instruct popCountI(iRegIsafe dst, iRegI src) %{
 10330   predicate(UsePopCountInstruction);
 10331   match(Set dst (PopCountI src));
 10333   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
 10334             "POPC   $dst, $dst" %}
 10335   ins_encode %{
 10336     __ srl($src$$Register, G0, $dst$$Register);
 10337     __ popc($dst$$Register, $dst$$Register);
 10338   %}
 10339   ins_pipe(ialu_reg);
 10340 %}
 10342 // Note: Long.bitCount(long) returns an int.
 10343 instruct popCountL(iRegIsafe dst, iRegL src) %{
 10344   predicate(UsePopCountInstruction);
 10345   match(Set dst (PopCountL src));
 10347   format %{ "POPC   $src, $dst" %}
 10348   ins_encode %{
 10349     __ popc($src$$Register, $dst$$Register);
 10350   %}
 10351   ins_pipe(ialu_reg);
 10352 %}
 10355 // ============================================================================
 10356 //------------Bytes reverse--------------------------------------------------
 10358 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10359   match(Set dst (ReverseBytesI src));
 10361   // Op cost is artificially doubled to make sure that load or store
 10362   // instructions are preferred over this one which requires a spill
 10363   // onto a stack slot.
 10364   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10365   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10367   ins_encode %{
 10368     __ set($src$$disp + STACK_BIAS, O7);
 10369     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10370   %}
 10371   ins_pipe( iload_mem );
 10372 %}
 10374 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10375   match(Set dst (ReverseBytesL src));
 10377   // Op cost is artificially doubled to make sure that load or store
 10378   // instructions are preferred over this one which requires a spill
 10379   // onto a stack slot.
 10380   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10381   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10383   ins_encode %{
 10384     __ set($src$$disp + STACK_BIAS, O7);
 10385     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10386   %}
 10387   ins_pipe( iload_mem );
 10388 %}
 10390 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10391   match(Set dst (ReverseBytesUS src));
 10393   // Op cost is artificially doubled to make sure that load or store
 10394   // instructions are preferred over this one which requires a spill
 10395   // onto a stack slot.
 10396   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10397   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10399   ins_encode %{
 10400     // the value was spilled as an int so bias the load
 10401     __ set($src$$disp + STACK_BIAS + 2, O7);
 10402     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10403   %}
 10404   ins_pipe( iload_mem );
 10405 %}
 10407 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10408   match(Set dst (ReverseBytesS src));
 10410   // Op cost is artificially doubled to make sure that load or store
 10411   // instructions are preferred over this one which requires a spill
 10412   // onto a stack slot.
 10413   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10414   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10416   ins_encode %{
 10417     // the value was spilled as an int so bias the load
 10418     __ set($src$$disp + STACK_BIAS + 2, O7);
 10419     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10420   %}
 10421   ins_pipe( iload_mem );
 10422 %}
 10424 // Load Integer reversed byte order
 10425 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10426   match(Set dst (ReverseBytesI (LoadI src)));
 10428   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10429   size(4);
 10430   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10432   ins_encode %{
 10433     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10434   %}
 10435   ins_pipe(iload_mem);
 10436 %}
 10438 // Load Long - aligned and reversed
 10439 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10440   match(Set dst (ReverseBytesL (LoadL src)));
 10442   ins_cost(MEMORY_REF_COST);
 10443   size(4);
 10444   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10446   ins_encode %{
 10447     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10448   %}
 10449   ins_pipe(iload_mem);
 10450 %}
 10452 // Load unsigned short / char reversed byte order
 10453 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10454   match(Set dst (ReverseBytesUS (LoadUS src)));
 10456   ins_cost(MEMORY_REF_COST);
 10457   size(4);
 10458   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10460   ins_encode %{
 10461     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10462   %}
 10463   ins_pipe(iload_mem);
 10464 %}
 10466 // Load short reversed byte order
 10467 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10468   match(Set dst (ReverseBytesS (LoadS src)));
 10470   ins_cost(MEMORY_REF_COST);
 10471   size(4);
 10472   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10474   ins_encode %{
 10475     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10476   %}
 10477   ins_pipe(iload_mem);
 10478 %}
 10480 // Store Integer reversed byte order
 10481 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10482   match(Set dst (StoreI dst (ReverseBytesI src)));
 10484   ins_cost(MEMORY_REF_COST);
 10485   size(4);
 10486   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10488   ins_encode %{
 10489     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10490   %}
 10491   ins_pipe(istore_mem_reg);
 10492 %}
 10494 // Store Long reversed byte order
 10495 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10496   match(Set dst (StoreL dst (ReverseBytesL src)));
 10498   ins_cost(MEMORY_REF_COST);
 10499   size(4);
 10500   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10502   ins_encode %{
 10503     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10504   %}
 10505   ins_pipe(istore_mem_reg);
 10506 %}
 10508 // Store unsighed short/char reversed byte order
 10509 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10510   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10512   ins_cost(MEMORY_REF_COST);
 10513   size(4);
 10514   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10516   ins_encode %{
 10517     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10518   %}
 10519   ins_pipe(istore_mem_reg);
 10520 %}
 10522 // Store short reversed byte order
 10523 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10524   match(Set dst (StoreC dst (ReverseBytesS src)));
 10526   ins_cost(MEMORY_REF_COST);
 10527   size(4);
 10528   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10530   ins_encode %{
 10531     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10532   %}
 10533   ins_pipe(istore_mem_reg);
 10534 %}
 10536 // ====================VECTOR INSTRUCTIONS=====================================
 10538 // Load Aligned Packed values into a Double Register
 10539 instruct loadV8(regD dst, memory mem) %{
 10540   predicate(n->as_LoadVector()->memory_size() == 8);
 10541   match(Set dst (LoadVector mem));
 10542   ins_cost(MEMORY_REF_COST);
 10543   size(4);
 10544   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
 10545   ins_encode %{
 10546     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
 10547   %}
 10548   ins_pipe(floadD_mem);
 10549 %}
 10551 // Store Vector in Double register to memory
 10552 instruct storeV8(memory mem, regD src) %{
 10553   predicate(n->as_StoreVector()->memory_size() == 8);
 10554   match(Set mem (StoreVector mem src));
 10555   ins_cost(MEMORY_REF_COST);
 10556   size(4);
 10557   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
 10558   ins_encode %{
 10559     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
 10560   %}
 10561   ins_pipe(fstoreD_mem_reg);
 10562 %}
 10564 // Store Zero into vector in memory
 10565 instruct storeV8B_zero(memory mem, immI0 zero) %{
 10566   predicate(n->as_StoreVector()->memory_size() == 8);
 10567   match(Set mem (StoreVector mem (ReplicateB zero)));
 10568   ins_cost(MEMORY_REF_COST);
 10569   size(4);
 10570   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
 10571   ins_encode %{
 10572     __ stx(G0, $mem$$Address);
 10573   %}
 10574   ins_pipe(fstoreD_mem_zero);
 10575 %}
 10577 instruct storeV4S_zero(memory mem, immI0 zero) %{
 10578   predicate(n->as_StoreVector()->memory_size() == 8);
 10579   match(Set mem (StoreVector mem (ReplicateS zero)));
 10580   ins_cost(MEMORY_REF_COST);
 10581   size(4);
 10582   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
 10583   ins_encode %{
 10584     __ stx(G0, $mem$$Address);
 10585   %}
 10586   ins_pipe(fstoreD_mem_zero);
 10587 %}
 10589 instruct storeV2I_zero(memory mem, immI0 zero) %{
 10590   predicate(n->as_StoreVector()->memory_size() == 8);
 10591   match(Set mem (StoreVector mem (ReplicateI zero)));
 10592   ins_cost(MEMORY_REF_COST);
 10593   size(4);
 10594   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
 10595   ins_encode %{
 10596     __ stx(G0, $mem$$Address);
 10597   %}
 10598   ins_pipe(fstoreD_mem_zero);
 10599 %}
 10601 instruct storeV2F_zero(memory mem, immF0 zero) %{
 10602   predicate(n->as_StoreVector()->memory_size() == 8);
 10603   match(Set mem (StoreVector mem (ReplicateF zero)));
 10604   ins_cost(MEMORY_REF_COST);
 10605   size(4);
 10606   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
 10607   ins_encode %{
 10608     __ stx(G0, $mem$$Address);
 10609   %}
 10610   ins_pipe(fstoreD_mem_zero);
 10611 %}
 10613 // Replicate scalar to packed byte values into Double register
 10614 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10615   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
 10616   match(Set dst (ReplicateB src));
 10617   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10618   format %{ "SLLX  $src,56,$tmp\n\t"
 10619             "SRLX  $tmp, 8,$tmp2\n\t"
 10620             "OR    $tmp,$tmp2,$tmp\n\t"
 10621             "SRLX  $tmp,16,$tmp2\n\t"
 10622             "OR    $tmp,$tmp2,$tmp\n\t"
 10623             "SRLX  $tmp,32,$tmp2\n\t"
 10624             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10625             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10626   ins_encode %{
 10627     Register Rsrc = $src$$Register;
 10628     Register Rtmp = $tmp$$Register;
 10629     Register Rtmp2 = $tmp2$$Register;
 10630     __ sllx(Rsrc,    56, Rtmp);
 10631     __ srlx(Rtmp,     8, Rtmp2);
 10632     __ or3 (Rtmp, Rtmp2, Rtmp);
 10633     __ srlx(Rtmp,    16, Rtmp2);
 10634     __ or3 (Rtmp, Rtmp2, Rtmp);
 10635     __ srlx(Rtmp,    32, Rtmp2);
 10636     __ or3 (Rtmp, Rtmp2, Rtmp);
 10637     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10638   %}
 10639   ins_pipe(ialu_reg);
 10640 %}
 10642 // Replicate scalar to packed byte values into Double stack
 10643 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10644   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
 10645   match(Set dst (ReplicateB src));
 10646   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10647   format %{ "SLLX  $src,56,$tmp\n\t"
 10648             "SRLX  $tmp, 8,$tmp2\n\t"
 10649             "OR    $tmp,$tmp2,$tmp\n\t"
 10650             "SRLX  $tmp,16,$tmp2\n\t"
 10651             "OR    $tmp,$tmp2,$tmp\n\t"
 10652             "SRLX  $tmp,32,$tmp2\n\t"
 10653             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10654             "STX   $tmp,$dst\t! regL to stkD" %}
 10655   ins_encode %{
 10656     Register Rsrc = $src$$Register;
 10657     Register Rtmp = $tmp$$Register;
 10658     Register Rtmp2 = $tmp2$$Register;
 10659     __ sllx(Rsrc,    56, Rtmp);
 10660     __ srlx(Rtmp,     8, Rtmp2);
 10661     __ or3 (Rtmp, Rtmp2, Rtmp);
 10662     __ srlx(Rtmp,    16, Rtmp2);
 10663     __ or3 (Rtmp, Rtmp2, Rtmp);
 10664     __ srlx(Rtmp,    32, Rtmp2);
 10665     __ or3 (Rtmp, Rtmp2, Rtmp);
 10666     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10667     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10668   %}
 10669   ins_pipe(ialu_reg);
 10670 %}
 10672 // Replicate scalar constant to packed byte values in Double register
 10673 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
 10674   predicate(n->as_Vector()->length() == 8);
 10675   match(Set dst (ReplicateB con));
 10676   effect(KILL tmp);
 10677   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
 10678   ins_encode %{
 10679     // XXX This is a quick fix for 6833573.
 10680     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
 10681     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
 10682     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10683   %}
 10684   ins_pipe(loadConFD);
 10685 %}
 10687 // Replicate scalar to packed char/short values into Double register
 10688 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10689   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
 10690   match(Set dst (ReplicateS src));
 10691   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10692   format %{ "SLLX  $src,48,$tmp\n\t"
 10693             "SRLX  $tmp,16,$tmp2\n\t"
 10694             "OR    $tmp,$tmp2,$tmp\n\t"
 10695             "SRLX  $tmp,32,$tmp2\n\t"
 10696             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10697             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10698   ins_encode %{
 10699     Register Rsrc = $src$$Register;
 10700     Register Rtmp = $tmp$$Register;
 10701     Register Rtmp2 = $tmp2$$Register;
 10702     __ sllx(Rsrc,    48, Rtmp);
 10703     __ srlx(Rtmp,    16, Rtmp2);
 10704     __ or3 (Rtmp, Rtmp2, Rtmp);
 10705     __ srlx(Rtmp,    32, Rtmp2);
 10706     __ or3 (Rtmp, Rtmp2, Rtmp);
 10707     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10708   %}
 10709   ins_pipe(ialu_reg);
 10710 %}
 10712 // Replicate scalar to packed char/short values into Double stack
 10713 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10714   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
 10715   match(Set dst (ReplicateS src));
 10716   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10717   format %{ "SLLX  $src,48,$tmp\n\t"
 10718             "SRLX  $tmp,16,$tmp2\n\t"
 10719             "OR    $tmp,$tmp2,$tmp\n\t"
 10720             "SRLX  $tmp,32,$tmp2\n\t"
 10721             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10722             "STX   $tmp,$dst\t! regL to stkD" %}
 10723   ins_encode %{
 10724     Register Rsrc = $src$$Register;
 10725     Register Rtmp = $tmp$$Register;
 10726     Register Rtmp2 = $tmp2$$Register;
 10727     __ sllx(Rsrc,    48, Rtmp);
 10728     __ srlx(Rtmp,    16, Rtmp2);
 10729     __ or3 (Rtmp, Rtmp2, Rtmp);
 10730     __ srlx(Rtmp,    32, Rtmp2);
 10731     __ or3 (Rtmp, Rtmp2, Rtmp);
 10732     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10733     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10734   %}
 10735   ins_pipe(ialu_reg);
 10736 %}
 10738 // Replicate scalar constant to packed char/short values in Double register
 10739 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
 10740   predicate(n->as_Vector()->length() == 4);
 10741   match(Set dst (ReplicateS con));
 10742   effect(KILL tmp);
 10743   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
 10744   ins_encode %{
 10745     // XXX This is a quick fix for 6833573.
 10746     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
 10747     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
 10748     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10749   %}
 10750   ins_pipe(loadConFD);
 10751 %}
 10753 // Replicate scalar to packed int values into Double register
 10754 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10755   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
 10756   match(Set dst (ReplicateI src));
 10757   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10758   format %{ "SLLX  $src,32,$tmp\n\t"
 10759             "SRLX  $tmp,32,$tmp2\n\t"
 10760             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10761             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10762   ins_encode %{
 10763     Register Rsrc = $src$$Register;
 10764     Register Rtmp = $tmp$$Register;
 10765     Register Rtmp2 = $tmp2$$Register;
 10766     __ sllx(Rsrc,    32, Rtmp);
 10767     __ srlx(Rtmp,    32, Rtmp2);
 10768     __ or3 (Rtmp, Rtmp2, Rtmp);
 10769     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10770   %}
 10771   ins_pipe(ialu_reg);
 10772 %}
 10774 // Replicate scalar to packed int values into Double stack
 10775 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10776   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
 10777   match(Set dst (ReplicateI src));
 10778   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10779   format %{ "SLLX  $src,32,$tmp\n\t"
 10780             "SRLX  $tmp,32,$tmp2\n\t"
 10781             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10782             "STX   $tmp,$dst\t! regL to stkD" %}
 10783   ins_encode %{
 10784     Register Rsrc = $src$$Register;
 10785     Register Rtmp = $tmp$$Register;
 10786     Register Rtmp2 = $tmp2$$Register;
 10787     __ sllx(Rsrc,    32, Rtmp);
 10788     __ srlx(Rtmp,    32, Rtmp2);
 10789     __ or3 (Rtmp, Rtmp2, Rtmp);
 10790     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10791     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10792   %}
 10793   ins_pipe(ialu_reg);
 10794 %}
 10796 // Replicate scalar zero constant to packed int values in Double register
 10797 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
 10798   predicate(n->as_Vector()->length() == 2);
 10799   match(Set dst (ReplicateI con));
 10800   effect(KILL tmp);
 10801   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
 10802   ins_encode %{
 10803     // XXX This is a quick fix for 6833573.
 10804     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
 10805     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
 10806     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10807   %}
 10808   ins_pipe(loadConFD);
 10809 %}
 10811 // Replicate scalar to packed float values into Double stack
 10812 instruct Repl2F_stk(stackSlotD dst, regF src) %{
 10813   predicate(n->as_Vector()->length() == 2);
 10814   match(Set dst (ReplicateF src));
 10815   ins_cost(MEMORY_REF_COST*2);
 10816   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
 10817             "STF    $src,$dst.lo" %}
 10818   opcode(Assembler::stf_op3);
 10819   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
 10820   ins_pipe(fstoreF_stk_reg);
 10821 %}
 10823 // Replicate scalar zero constant to packed float values in Double register
 10824 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
 10825   predicate(n->as_Vector()->length() == 2);
 10826   match(Set dst (ReplicateF con));
 10827   effect(KILL tmp);
 10828   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
 10829   ins_encode %{
 10830     // XXX This is a quick fix for 6833573.
 10831     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
 10832     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
 10833     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10834   %}
 10835   ins_pipe(loadConFD);
 10836 %}
 10838 //----------PEEPHOLE RULES-----------------------------------------------------
 10839 // These must follow all instruction definitions as they use the names
 10840 // defined in the instructions definitions.
 10841 //
 10842 // peepmatch ( root_instr_name [preceding_instruction]* );
 10843 //
 10844 // peepconstraint %{
 10845 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10846 //  [, ...] );
 10847 // // instruction numbers are zero-based using left to right order in peepmatch
 10848 //
 10849 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10850 // // provide an instruction_number.operand_name for each operand that appears
 10851 // // in the replacement instruction's match rule
 10852 //
 10853 // ---------VM FLAGS---------------------------------------------------------
 10854 //
 10855 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10856 //
 10857 // Each peephole rule is given an identifying number starting with zero and
 10858 // increasing by one in the order seen by the parser.  An individual peephole
 10859 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10860 // on the command-line.
 10861 //
 10862 // ---------CURRENT LIMITATIONS----------------------------------------------
 10863 //
 10864 // Only match adjacent instructions in same basic block
 10865 // Only equality constraints
 10866 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10867 // Only one replacement instruction
 10868 //
 10869 // ---------EXAMPLE----------------------------------------------------------
 10870 //
 10871 // // pertinent parts of existing instructions in architecture description
 10872 // instruct movI(eRegI dst, eRegI src) %{
 10873 //   match(Set dst (CopyI src));
 10874 // %}
 10875 //
 10876 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10877 //   match(Set dst (AddI dst src));
 10878 //   effect(KILL cr);
 10879 // %}
 10880 //
 10881 // // Change (inc mov) to lea
 10882 // peephole %{
 10883 //   // increment preceeded by register-register move
 10884 //   peepmatch ( incI_eReg movI );
 10885 //   // require that the destination register of the increment
 10886 //   // match the destination register of the move
 10887 //   peepconstraint ( 0.dst == 1.dst );
 10888 //   // construct a replacement instruction that sets
 10889 //   // the destination to ( move's source register + one )
 10890 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10891 // %}
 10892 //
 10894 // // Change load of spilled value to only a spill
 10895 // instruct storeI(memory mem, eRegI src) %{
 10896 //   match(Set mem (StoreI mem src));
 10897 // %}
 10898 //
 10899 // instruct loadI(eRegI dst, memory mem) %{
 10900 //   match(Set dst (LoadI mem));
 10901 // %}
 10902 //
 10903 // peephole %{
 10904 //   peepmatch ( loadI storeI );
 10905 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10906 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10907 // %}
 10909 //----------SMARTSPILL RULES---------------------------------------------------
 10910 // These must follow all instruction definitions as they use the names
 10911 // defined in the instructions definitions.
 10912 //
 10913 // SPARC will probably not have any of these rules due to RISC instruction set.
 10915 //----------PIPELINE-----------------------------------------------------------
 10916 // Rules which define the behavior of the target architectures pipeline.

mercurial