src/cpu/sparc/vm/macroAssembler_sparc.cpp

Mon, 12 Aug 2013 17:37:02 +0200

author
ehelin
date
Mon, 12 Aug 2013 17:37:02 +0200
changeset 5694
7944aba7ba41
parent 5528
740e263c80c6
child 5860
69944b868a32
permissions
-rw-r--r--

8015107: NPG: Use consistent naming for metaspace concepts
Reviewed-by: coleenp, mgerdin, hseigel

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.inline.hpp"
    27 #include "compiler/disassembler.hpp"
    28 #include "gc_interface/collectedHeap.inline.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "memory/universe.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/biasedLocking.hpp"
    35 #include "runtime/interfaceSupport.hpp"
    36 #include "runtime/objectMonitor.hpp"
    37 #include "runtime/os.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "utilities/macros.hpp"
    41 #if INCLUDE_ALL_GCS
    42 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    43 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    44 #include "gc_implementation/g1/heapRegion.hpp"
    45 #endif // INCLUDE_ALL_GCS
    47 #ifdef PRODUCT
    48 #define BLOCK_COMMENT(str) /* nothing */
    49 #define STOP(error) stop(error)
    50 #else
    51 #define BLOCK_COMMENT(str) block_comment(str)
    52 #define STOP(error) block_comment(error); stop(error)
    53 #endif
    55 // Convert the raw encoding form into the form expected by the
    56 // constructor for Address.
    57 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
    58   assert(scale == 0, "not supported");
    59   RelocationHolder rspec;
    60   if (disp_reloc != relocInfo::none) {
    61     rspec = Relocation::spec_simple(disp_reloc);
    62   }
    64   Register rindex = as_Register(index);
    65   if (rindex != G0) {
    66     Address madr(as_Register(base), rindex);
    67     madr._rspec = rspec;
    68     return madr;
    69   } else {
    70     Address madr(as_Register(base), disp);
    71     madr._rspec = rspec;
    72     return madr;
    73   }
    74 }
    76 Address Argument::address_in_frame() const {
    77   // Warning: In LP64 mode disp will occupy more than 10 bits, but
    78   //          op codes such as ld or ldx, only access disp() to get
    79   //          their simm13 argument.
    80   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
    81   if (is_in())
    82     return Address(FP, disp); // In argument.
    83   else
    84     return Address(SP, disp); // Out argument.
    85 }
    87 static const char* argumentNames[][2] = {
    88   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
    89   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
    90   {"A(n>9)","P(n>9)"}
    91 };
    93 const char* Argument::name() const {
    94   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
    95   int num = number();
    96   if (num >= nofArgs)  num = nofArgs - 1;
    97   return argumentNames[num][is_in() ? 1 : 0];
    98 }
   100 #ifdef ASSERT
   101 // On RISC, there's no benefit to verifying instruction boundaries.
   102 bool AbstractAssembler::pd_check_instruction_mark() { return false; }
   103 #endif
   105 // Patch instruction inst at offset inst_pos to refer to dest_pos
   106 // and return the resulting instruction.
   107 // We should have pcs, not offsets, but since all is relative, it will work out
   108 // OK.
   109 int MacroAssembler::patched_branch(int dest_pos, int inst, int inst_pos) {
   110   int m; // mask for displacement field
   111   int v; // new value for displacement field
   112   const int word_aligned_ones = -4;
   113   switch (inv_op(inst)) {
   114   default: ShouldNotReachHere();
   115   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
   116   case branch_op:
   117     switch (inv_op2(inst)) {
   118       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   119       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   120       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   121       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   122       case bpr_op2: {
   123         if (is_cbcond(inst)) {
   124           m = wdisp10(word_aligned_ones, 0);
   125           v = wdisp10(dest_pos, inst_pos);
   126         } else {
   127           m = wdisp16(word_aligned_ones, 0);
   128           v = wdisp16(dest_pos, inst_pos);
   129         }
   130         break;
   131       }
   132       default: ShouldNotReachHere();
   133     }
   134   }
   135   return  inst & ~m  |  v;
   136 }
   138 // Return the offset of the branch destionation of instruction inst
   139 // at offset pos.
   140 // Should have pcs, but since all is relative, it works out.
   141 int MacroAssembler::branch_destination(int inst, int pos) {
   142   int r;
   143   switch (inv_op(inst)) {
   144   default: ShouldNotReachHere();
   145   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
   146   case branch_op:
   147     switch (inv_op2(inst)) {
   148       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
   149       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
   150       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   151       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   152       case bpr_op2: {
   153         if (is_cbcond(inst)) {
   154           r = inv_wdisp10(inst, pos);
   155         } else {
   156           r = inv_wdisp16(inst, pos);
   157         }
   158         break;
   159       }
   160       default: ShouldNotReachHere();
   161     }
   162   }
   163   return r;
   164 }
   166 void MacroAssembler::null_check(Register reg, int offset) {
   167   if (needs_explicit_null_check((intptr_t)offset)) {
   168     // provoke OS NULL exception if reg = NULL by
   169     // accessing M[reg] w/o changing any registers
   170     ld_ptr(reg, 0, G0);
   171   }
   172   else {
   173     // nothing to do, (later) access of M[reg + offset]
   174     // will provoke OS NULL exception if reg = NULL
   175   }
   176 }
   178 // Ring buffer jumps
   180 #ifndef PRODUCT
   181 void MacroAssembler::ret(  bool trace )   { if (trace) {
   182                                                     mov(I7, O7); // traceable register
   183                                                     JMP(O7, 2 * BytesPerInstWord);
   184                                                   } else {
   185                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
   186                                                   }
   187                                                 }
   189 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
   190                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
   191 #endif /* PRODUCT */
   194 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
   195   assert_not_delayed();
   196   // This can only be traceable if r1 & r2 are visible after a window save
   197   if (TraceJumps) {
   198 #ifndef PRODUCT
   199     save_frame(0);
   200     verify_thread();
   201     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   202     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   203     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   204     add(O2, O1, O1);
   206     add(r1->after_save(), r2->after_save(), O2);
   207     set((intptr_t)file, O3);
   208     set(line, O4);
   209     Label L;
   210     // get nearby pc, store jmp target
   211     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   212     delayed()->st(O2, O1, 0);
   213     bind(L);
   215     // store nearby pc
   216     st(O7, O1, sizeof(intptr_t));
   217     // store file
   218     st(O3, O1, 2*sizeof(intptr_t));
   219     // store line
   220     st(O4, O1, 3*sizeof(intptr_t));
   221     add(O0, 1, O0);
   222     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   223     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   224     restore();
   225 #endif /* PRODUCT */
   226   }
   227   jmpl(r1, r2, G0);
   228 }
   229 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
   230   assert_not_delayed();
   231   // This can only be traceable if r1 is visible after a window save
   232   if (TraceJumps) {
   233 #ifndef PRODUCT
   234     save_frame(0);
   235     verify_thread();
   236     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   237     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   238     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   239     add(O2, O1, O1);
   241     add(r1->after_save(), offset, O2);
   242     set((intptr_t)file, O3);
   243     set(line, O4);
   244     Label L;
   245     // get nearby pc, store jmp target
   246     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   247     delayed()->st(O2, O1, 0);
   248     bind(L);
   250     // store nearby pc
   251     st(O7, O1, sizeof(intptr_t));
   252     // store file
   253     st(O3, O1, 2*sizeof(intptr_t));
   254     // store line
   255     st(O4, O1, 3*sizeof(intptr_t));
   256     add(O0, 1, O0);
   257     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   258     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   259     restore();
   260 #endif /* PRODUCT */
   261   }
   262   jmp(r1, offset);
   263 }
   265 // This code sequence is relocatable to any address, even on LP64.
   266 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
   267   assert_not_delayed();
   268   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   269   // variable length instruction streams.
   270   patchable_sethi(addrlit, temp);
   271   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
   272   if (TraceJumps) {
   273 #ifndef PRODUCT
   274     // Must do the add here so relocation can find the remainder of the
   275     // value to be relocated.
   276     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
   277     save_frame(0);
   278     verify_thread();
   279     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   280     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   281     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   282     add(O2, O1, O1);
   284     set((intptr_t)file, O3);
   285     set(line, O4);
   286     Label L;
   288     // get nearby pc, store jmp target
   289     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   290     delayed()->st(a.base()->after_save(), O1, 0);
   291     bind(L);
   293     // store nearby pc
   294     st(O7, O1, sizeof(intptr_t));
   295     // store file
   296     st(O3, O1, 2*sizeof(intptr_t));
   297     // store line
   298     st(O4, O1, 3*sizeof(intptr_t));
   299     add(O0, 1, O0);
   300     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   301     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   302     restore();
   303     jmpl(a.base(), G0, d);
   304 #else
   305     jmpl(a.base(), a.disp(), d);
   306 #endif /* PRODUCT */
   307   } else {
   308     jmpl(a.base(), a.disp(), d);
   309   }
   310 }
   312 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
   313   jumpl(addrlit, temp, G0, offset, file, line);
   314 }
   317 // Conditional breakpoint (for assertion checks in assembly code)
   318 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
   319   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
   320 }
   322 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
   323 void MacroAssembler::breakpoint_trap() {
   324   trap(ST_RESERVED_FOR_USER_0);
   325 }
   327 // Write serialization page so VM thread can do a pseudo remote membar
   328 // We use the current thread pointer to calculate a thread specific
   329 // offset to write to within the page. This minimizes bus traffic
   330 // due to cache line collision.
   331 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
   332   srl(thread, os::get_serialize_page_shift_count(), tmp2);
   333   if (Assembler::is_simm13(os::vm_page_size())) {
   334     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
   335   }
   336   else {
   337     set((os::vm_page_size() - sizeof(int)), tmp1);
   338     and3(tmp2, tmp1, tmp2);
   339   }
   340   set(os::get_memory_serialize_page(), tmp1);
   341   st(G0, tmp1, tmp2);
   342 }
   346 void MacroAssembler::enter() {
   347   Unimplemented();
   348 }
   350 void MacroAssembler::leave() {
   351   Unimplemented();
   352 }
   354 // Calls to C land
   356 #ifdef ASSERT
   357 // a hook for debugging
   358 static Thread* reinitialize_thread() {
   359   return ThreadLocalStorage::thread();
   360 }
   361 #else
   362 #define reinitialize_thread ThreadLocalStorage::thread
   363 #endif
   365 #ifdef ASSERT
   366 address last_get_thread = NULL;
   367 #endif
   369 // call this when G2_thread is not known to be valid
   370 void MacroAssembler::get_thread() {
   371   save_frame(0);                // to avoid clobbering O0
   372   mov(G1, L0);                  // avoid clobbering G1
   373   mov(G5_method, L1);           // avoid clobbering G5
   374   mov(G3, L2);                  // avoid clobbering G3 also
   375   mov(G4, L5);                  // avoid clobbering G4
   376 #ifdef ASSERT
   377   AddressLiteral last_get_thread_addrlit(&last_get_thread);
   378   set(last_get_thread_addrlit, L3);
   379   rdpc(L4);
   380   inc(L4, 3 * BytesPerInstWord); // skip rdpc + inc + st_ptr to point L4 at call  st_ptr(L4, L3, 0);
   381 #endif
   382   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
   383   delayed()->nop();
   384   mov(L0, G1);
   385   mov(L1, G5_method);
   386   mov(L2, G3);
   387   mov(L5, G4);
   388   restore(O0, 0, G2_thread);
   389 }
   391 static Thread* verify_thread_subroutine(Thread* gthread_value) {
   392   Thread* correct_value = ThreadLocalStorage::thread();
   393   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
   394   return correct_value;
   395 }
   397 void MacroAssembler::verify_thread() {
   398   if (VerifyThread) {
   399     // NOTE: this chops off the heads of the 64-bit O registers.
   400 #ifdef CC_INTERP
   401     save_frame(0);
   402 #else
   403     // make sure G2_thread contains the right value
   404     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
   405     mov(G1, L1);                // avoid clobbering G1
   406     // G2 saved below
   407     mov(G3, L3);                // avoid clobbering G3
   408     mov(G4, L4);                // avoid clobbering G4
   409     mov(G5_method, L5);         // avoid clobbering G5_method
   410 #endif /* CC_INTERP */
   411 #if defined(COMPILER2) && !defined(_LP64)
   412     // Save & restore possible 64-bit Long arguments in G-regs
   413     srlx(G1,32,L0);
   414     srlx(G4,32,L6);
   415 #endif
   416     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
   417     delayed()->mov(G2_thread, O0);
   419     mov(L1, G1);                // Restore G1
   420     // G2 restored below
   421     mov(L3, G3);                // restore G3
   422     mov(L4, G4);                // restore G4
   423     mov(L5, G5_method);         // restore G5_method
   424 #if defined(COMPILER2) && !defined(_LP64)
   425     // Save & restore possible 64-bit Long arguments in G-regs
   426     sllx(L0,32,G2);             // Move old high G1 bits high in G2
   427     srl(G1, 0,G1);              // Clear current high G1 bits
   428     or3 (G1,G2,G1);             // Recover 64-bit G1
   429     sllx(L6,32,G2);             // Move old high G4 bits high in G2
   430     srl(G4, 0,G4);              // Clear current high G4 bits
   431     or3 (G4,G2,G4);             // Recover 64-bit G4
   432 #endif
   433     restore(O0, 0, G2_thread);
   434   }
   435 }
   438 void MacroAssembler::save_thread(const Register thread_cache) {
   439   verify_thread();
   440   if (thread_cache->is_valid()) {
   441     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   442     mov(G2_thread, thread_cache);
   443   }
   444   if (VerifyThread) {
   445     // smash G2_thread, as if the VM were about to anyway
   446     set(0x67676767, G2_thread);
   447   }
   448 }
   451 void MacroAssembler::restore_thread(const Register thread_cache) {
   452   if (thread_cache->is_valid()) {
   453     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   454     mov(thread_cache, G2_thread);
   455     verify_thread();
   456   } else {
   457     // do it the slow way
   458     get_thread();
   459   }
   460 }
   463 // %%% maybe get rid of [re]set_last_Java_frame
   464 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
   465   assert_not_delayed();
   466   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
   467                            JavaFrameAnchor::flags_offset());
   468   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
   470   // Always set last_Java_pc and flags first because once last_Java_sp is visible
   471   // has_last_Java_frame is true and users will look at the rest of the fields.
   472   // (Note: flags should always be zero before we get here so doesn't need to be set.)
   474 #ifdef ASSERT
   475   // Verify that flags was zeroed on return to Java
   476   Label PcOk;
   477   save_frame(0);                // to avoid clobbering O0
   478   ld_ptr(pc_addr, L0);
   479   br_null_short(L0, Assembler::pt, PcOk);
   480   STOP("last_Java_pc not zeroed before leaving Java");
   481   bind(PcOk);
   483   // Verify that flags was zeroed on return to Java
   484   Label FlagsOk;
   485   ld(flags, L0);
   486   tst(L0);
   487   br(Assembler::zero, false, Assembler::pt, FlagsOk);
   488   delayed() -> restore();
   489   STOP("flags not zeroed before leaving Java");
   490   bind(FlagsOk);
   491 #endif /* ASSERT */
   492   //
   493   // When returning from calling out from Java mode the frame anchor's last_Java_pc
   494   // will always be set to NULL. It is set here so that if we are doing a call to
   495   // native (not VM) that we capture the known pc and don't have to rely on the
   496   // native call having a standard frame linkage where we can find the pc.
   498   if (last_Java_pc->is_valid()) {
   499     st_ptr(last_Java_pc, pc_addr);
   500   }
   502 #ifdef _LP64
   503 #ifdef ASSERT
   504   // Make sure that we have an odd stack
   505   Label StackOk;
   506   andcc(last_java_sp, 0x01, G0);
   507   br(Assembler::notZero, false, Assembler::pt, StackOk);
   508   delayed()->nop();
   509   STOP("Stack Not Biased in set_last_Java_frame");
   510   bind(StackOk);
   511 #endif // ASSERT
   512   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
   513   add( last_java_sp, STACK_BIAS, G4_scratch );
   514   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
   515 #else
   516   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
   517 #endif // _LP64
   518 }
   520 void MacroAssembler::reset_last_Java_frame(void) {
   521   assert_not_delayed();
   523   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
   524   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
   525   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
   527 #ifdef ASSERT
   528   // check that it WAS previously set
   529 #ifdef CC_INTERP
   530     save_frame(0);
   531 #else
   532     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
   533 #endif /* CC_INTERP */
   534     ld_ptr(sp_addr, L0);
   535     tst(L0);
   536     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
   537     restore();
   538 #endif // ASSERT
   540   st_ptr(G0, sp_addr);
   541   // Always return last_Java_pc to zero
   542   st_ptr(G0, pc_addr);
   543   // Always null flags after return to Java
   544   st(G0, flags);
   545 }
   548 void MacroAssembler::call_VM_base(
   549   Register        oop_result,
   550   Register        thread_cache,
   551   Register        last_java_sp,
   552   address         entry_point,
   553   int             number_of_arguments,
   554   bool            check_exceptions)
   555 {
   556   assert_not_delayed();
   558   // determine last_java_sp register
   559   if (!last_java_sp->is_valid()) {
   560     last_java_sp = SP;
   561   }
   562   // debugging support
   563   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
   565   // 64-bit last_java_sp is biased!
   566   set_last_Java_frame(last_java_sp, noreg);
   567   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
   568   save_thread(thread_cache);
   569   // do the call
   570   call(entry_point, relocInfo::runtime_call_type);
   571   if (!VerifyThread)
   572     delayed()->mov(G2_thread, O0);  // pass thread as first argument
   573   else
   574     delayed()->nop();             // (thread already passed)
   575   restore_thread(thread_cache);
   576   reset_last_Java_frame();
   578   // check for pending exceptions. use Gtemp as scratch register.
   579   if (check_exceptions) {
   580     check_and_forward_exception(Gtemp);
   581   }
   583 #ifdef ASSERT
   584   set(badHeapWordVal, G3);
   585   set(badHeapWordVal, G4);
   586   set(badHeapWordVal, G5);
   587 #endif
   589   // get oop result if there is one and reset the value in the thread
   590   if (oop_result->is_valid()) {
   591     get_vm_result(oop_result);
   592   }
   593 }
   595 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
   596 {
   597   Label L;
   599   check_and_handle_popframe(scratch_reg);
   600   check_and_handle_earlyret(scratch_reg);
   602   Address exception_addr(G2_thread, Thread::pending_exception_offset());
   603   ld_ptr(exception_addr, scratch_reg);
   604   br_null_short(scratch_reg, pt, L);
   605   // we use O7 linkage so that forward_exception_entry has the issuing PC
   606   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
   607   delayed()->nop();
   608   bind(L);
   609 }
   612 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
   613 }
   616 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
   617 }
   620 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
   621   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
   622 }
   625 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
   626   // O0 is reserved for the thread
   627   mov(arg_1, O1);
   628   call_VM(oop_result, entry_point, 1, check_exceptions);
   629 }
   632 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
   633   // O0 is reserved for the thread
   634   mov(arg_1, O1);
   635   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
   636   call_VM(oop_result, entry_point, 2, check_exceptions);
   637 }
   640 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
   641   // O0 is reserved for the thread
   642   mov(arg_1, O1);
   643   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
   644   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
   645   call_VM(oop_result, entry_point, 3, check_exceptions);
   646 }
   650 // Note: The following call_VM overloadings are useful when a "save"
   651 // has already been performed by a stub, and the last Java frame is
   652 // the previous one.  In that case, last_java_sp must be passed as FP
   653 // instead of SP.
   656 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
   657   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
   658 }
   661 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
   662   // O0 is reserved for the thread
   663   mov(arg_1, O1);
   664   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
   665 }
   668 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
   669   // O0 is reserved for the thread
   670   mov(arg_1, O1);
   671   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
   672   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
   673 }
   676 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
   677   // O0 is reserved for the thread
   678   mov(arg_1, O1);
   679   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
   680   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
   681   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
   682 }
   686 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
   687   assert_not_delayed();
   688   save_thread(thread_cache);
   689   // do the call
   690   call(entry_point, relocInfo::runtime_call_type);
   691   delayed()->nop();
   692   restore_thread(thread_cache);
   693 #ifdef ASSERT
   694   set(badHeapWordVal, G3);
   695   set(badHeapWordVal, G4);
   696   set(badHeapWordVal, G5);
   697 #endif
   698 }
   701 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
   702   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
   703 }
   706 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
   707   mov(arg_1, O0);
   708   call_VM_leaf(thread_cache, entry_point, 1);
   709 }
   712 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
   713   mov(arg_1, O0);
   714   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
   715   call_VM_leaf(thread_cache, entry_point, 2);
   716 }
   719 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
   720   mov(arg_1, O0);
   721   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
   722   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
   723   call_VM_leaf(thread_cache, entry_point, 3);
   724 }
   727 void MacroAssembler::get_vm_result(Register oop_result) {
   728   verify_thread();
   729   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
   730   ld_ptr(    vm_result_addr, oop_result);
   731   st_ptr(G0, vm_result_addr);
   732   verify_oop(oop_result);
   733 }
   736 void MacroAssembler::get_vm_result_2(Register metadata_result) {
   737   verify_thread();
   738   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
   739   ld_ptr(vm_result_addr_2, metadata_result);
   740   st_ptr(G0, vm_result_addr_2);
   741 }
   744 // We require that C code which does not return a value in vm_result will
   745 // leave it undisturbed.
   746 void MacroAssembler::set_vm_result(Register oop_result) {
   747   verify_thread();
   748   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
   749   verify_oop(oop_result);
   751 # ifdef ASSERT
   752     // Check that we are not overwriting any other oop.
   753 #ifdef CC_INTERP
   754     save_frame(0);
   755 #else
   756     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
   757 #endif /* CC_INTERP */
   758     ld_ptr(vm_result_addr, L0);
   759     tst(L0);
   760     restore();
   761     breakpoint_trap(notZero, Assembler::ptr_cc);
   762     // }
   763 # endif
   765   st_ptr(oop_result, vm_result_addr);
   766 }
   769 void MacroAssembler::ic_call(address entry, bool emit_delay) {
   770   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
   771   patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
   772   relocate(rspec);
   773   call(entry, relocInfo::none);
   774   if (emit_delay) {
   775     delayed()->nop();
   776   }
   777 }
   780 void MacroAssembler::card_table_write(jbyte* byte_map_base,
   781                                       Register tmp, Register obj) {
   782 #ifdef _LP64
   783   srlx(obj, CardTableModRefBS::card_shift, obj);
   784 #else
   785   srl(obj, CardTableModRefBS::card_shift, obj);
   786 #endif
   787   assert(tmp != obj, "need separate temp reg");
   788   set((address) byte_map_base, tmp);
   789   stb(G0, tmp, obj);
   790 }
   793 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
   794   address save_pc;
   795   int shiftcnt;
   796 #ifdef _LP64
   797 # ifdef CHECK_DELAY
   798   assert_not_delayed((char*) "cannot put two instructions in delay slot");
   799 # endif
   800   v9_dep();
   801   save_pc = pc();
   803   int msb32 = (int) (addrlit.value() >> 32);
   804   int lsb32 = (int) (addrlit.value());
   806   if (msb32 == 0 && lsb32 >= 0) {
   807     Assembler::sethi(lsb32, d, addrlit.rspec());
   808   }
   809   else if (msb32 == -1) {
   810     Assembler::sethi(~lsb32, d, addrlit.rspec());
   811     xor3(d, ~low10(~0), d);
   812   }
   813   else {
   814     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
   815     if (msb32 & 0x3ff)                            // Any bits?
   816       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
   817     if (lsb32 & 0xFFFFFC00) {                     // done?
   818       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
   819         sllx(d, 12, d);                           // Make room for next 12 bits
   820         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
   821         shiftcnt = 0;                             // We already shifted
   822       }
   823       else
   824         shiftcnt = 12;
   825       if ((lsb32 >> 10) & 0x3ff) {
   826         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
   827         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
   828         shiftcnt = 0;
   829       }
   830       else
   831         shiftcnt = 10;
   832       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
   833     }
   834     else
   835       sllx(d, 32, d);
   836   }
   837   // Pad out the instruction sequence so it can be patched later.
   838   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
   839                            addrlit.rtype() != relocInfo::runtime_call_type)) {
   840     while (pc() < (save_pc + (7 * BytesPerInstWord)))
   841       nop();
   842   }
   843 #else
   844   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
   845 #endif
   846 }
   849 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
   850   internal_sethi(addrlit, d, false);
   851 }
   854 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
   855   internal_sethi(addrlit, d, true);
   856 }
   859 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
   860 #ifdef _LP64
   861   if (worst_case)  return 7;
   862   intptr_t iaddr = (intptr_t) a;
   863   int msb32 = (int) (iaddr >> 32);
   864   int lsb32 = (int) (iaddr);
   865   int count;
   866   if (msb32 == 0 && lsb32 >= 0)
   867     count = 1;
   868   else if (msb32 == -1)
   869     count = 2;
   870   else {
   871     count = 2;
   872     if (msb32 & 0x3ff)
   873       count++;
   874     if (lsb32 & 0xFFFFFC00 ) {
   875       if ((lsb32 >> 20) & 0xfff)  count += 2;
   876       if ((lsb32 >> 10) & 0x3ff)  count += 2;
   877     }
   878   }
   879   return count;
   880 #else
   881   return 1;
   882 #endif
   883 }
   885 int MacroAssembler::worst_case_insts_for_set() {
   886   return insts_for_sethi(NULL, true) + 1;
   887 }
   890 // Keep in sync with MacroAssembler::insts_for_internal_set
   891 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
   892   intptr_t value = addrlit.value();
   894   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
   895     // can optimize
   896     if (-4096 <= value && value <= 4095) {
   897       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
   898       return;
   899     }
   900     if (inv_hi22(hi22(value)) == value) {
   901       sethi(addrlit, d);
   902       return;
   903     }
   904   }
   905   assert_not_delayed((char*) "cannot put two instructions in delay slot");
   906   internal_sethi(addrlit, d, ForceRelocatable);
   907   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
   908     add(d, addrlit.low10(), d, addrlit.rspec());
   909   }
   910 }
   912 // Keep in sync with MacroAssembler::internal_set
   913 int MacroAssembler::insts_for_internal_set(intptr_t value) {
   914   // can optimize
   915   if (-4096 <= value && value <= 4095) {
   916     return 1;
   917   }
   918   if (inv_hi22(hi22(value)) == value) {
   919     return insts_for_sethi((address) value);
   920   }
   921   int count = insts_for_sethi((address) value);
   922   AddressLiteral al(value);
   923   if (al.low10() != 0) {
   924     count++;
   925   }
   926   return count;
   927 }
   929 void MacroAssembler::set(const AddressLiteral& al, Register d) {
   930   internal_set(al, d, false);
   931 }
   933 void MacroAssembler::set(intptr_t value, Register d) {
   934   AddressLiteral al(value);
   935   internal_set(al, d, false);
   936 }
   938 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
   939   AddressLiteral al(addr, rspec);
   940   internal_set(al, d, false);
   941 }
   943 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
   944   internal_set(al, d, true);
   945 }
   947 void MacroAssembler::patchable_set(intptr_t value, Register d) {
   948   AddressLiteral al(value);
   949   internal_set(al, d, true);
   950 }
   953 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
   954   assert_not_delayed();
   955   v9_dep();
   957   int hi = (int)(value >> 32);
   958   int lo = (int)(value & ~0);
   959   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
   960   if (Assembler::is_simm13(lo) && value == lo) {
   961     or3(G0, lo, d);
   962   } else if (hi == 0) {
   963     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
   964     if (low10(lo) != 0)
   965       or3(d, low10(lo), d);
   966   }
   967   else if (hi == -1) {
   968     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
   969     xor3(d, low10(lo) ^ ~low10(~0), d);
   970   }
   971   else if (lo == 0) {
   972     if (Assembler::is_simm13(hi)) {
   973       or3(G0, hi, d);
   974     } else {
   975       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
   976       if (low10(hi) != 0)
   977         or3(d, low10(hi), d);
   978     }
   979     sllx(d, 32, d);
   980   }
   981   else {
   982     Assembler::sethi(hi, tmp);
   983     Assembler::sethi(lo,   d); // macro assembler version sign-extends
   984     if (low10(hi) != 0)
   985       or3 (tmp, low10(hi), tmp);
   986     if (low10(lo) != 0)
   987       or3 (  d, low10(lo),   d);
   988     sllx(tmp, 32, tmp);
   989     or3 (d, tmp, d);
   990   }
   991 }
   993 int MacroAssembler::insts_for_set64(jlong value) {
   994   v9_dep();
   996   int hi = (int) (value >> 32);
   997   int lo = (int) (value & ~0);
   998   int count = 0;
  1000   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1001   if (Assembler::is_simm13(lo) && value == lo) {
  1002     count++;
  1003   } else if (hi == 0) {
  1004     count++;
  1005     if (low10(lo) != 0)
  1006       count++;
  1008   else if (hi == -1) {
  1009     count += 2;
  1011   else if (lo == 0) {
  1012     if (Assembler::is_simm13(hi)) {
  1013       count++;
  1014     } else {
  1015       count++;
  1016       if (low10(hi) != 0)
  1017         count++;
  1019     count++;
  1021   else {
  1022     count += 2;
  1023     if (low10(hi) != 0)
  1024       count++;
  1025     if (low10(lo) != 0)
  1026       count++;
  1027     count += 2;
  1029   return count;
  1032 // compute size in bytes of sparc frame, given
  1033 // number of extraWords
  1034 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
  1036   int nWords = frame::memory_parameter_word_sp_offset;
  1038   nWords += extraWords;
  1040   if (nWords & 1) ++nWords; // round up to double-word
  1042   return nWords * BytesPerWord;
  1046 // save_frame: given number of "extra" words in frame,
  1047 // issue approp. save instruction (p 200, v8 manual)
  1049 void MacroAssembler::save_frame(int extraWords) {
  1050   int delta = -total_frame_size_in_bytes(extraWords);
  1051   if (is_simm13(delta)) {
  1052     save(SP, delta, SP);
  1053   } else {
  1054     set(delta, G3_scratch);
  1055     save(SP, G3_scratch, SP);
  1060 void MacroAssembler::save_frame_c1(int size_in_bytes) {
  1061   if (is_simm13(-size_in_bytes)) {
  1062     save(SP, -size_in_bytes, SP);
  1063   } else {
  1064     set(-size_in_bytes, G3_scratch);
  1065     save(SP, G3_scratch, SP);
  1070 void MacroAssembler::save_frame_and_mov(int extraWords,
  1071                                         Register s1, Register d1,
  1072                                         Register s2, Register d2) {
  1073   assert_not_delayed();
  1075   // The trick here is to use precisely the same memory word
  1076   // that trap handlers also use to save the register.
  1077   // This word cannot be used for any other purpose, but
  1078   // it works fine to save the register's value, whether or not
  1079   // an interrupt flushes register windows at any given moment!
  1080   Address s1_addr;
  1081   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
  1082     s1_addr = s1->address_in_saved_window();
  1083     st_ptr(s1, s1_addr);
  1086   Address s2_addr;
  1087   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
  1088     s2_addr = s2->address_in_saved_window();
  1089     st_ptr(s2, s2_addr);
  1092   save_frame(extraWords);
  1094   if (s1_addr.base() == SP) {
  1095     ld_ptr(s1_addr.after_save(), d1);
  1096   } else if (s1->is_valid()) {
  1097     mov(s1->after_save(), d1);
  1100   if (s2_addr.base() == SP) {
  1101     ld_ptr(s2_addr.after_save(), d2);
  1102   } else if (s2->is_valid()) {
  1103     mov(s2->after_save(), d2);
  1108 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
  1109   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
  1110   int index = oop_recorder()->allocate_metadata_index(obj);
  1111   RelocationHolder rspec = metadata_Relocation::spec(index);
  1112   return AddressLiteral((address)obj, rspec);
  1115 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
  1116   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
  1117   int index = oop_recorder()->find_index(obj);
  1118   RelocationHolder rspec = metadata_Relocation::spec(index);
  1119   return AddressLiteral((address)obj, rspec);
  1123 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
  1124   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1125   assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
  1126   int oop_index = oop_recorder()->find_index(obj);
  1127   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
  1130 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
  1131   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1132   int oop_index = oop_recorder()->find_index(obj);
  1133   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  1135   assert_not_delayed();
  1136   // Relocation with special format (see relocInfo_sparc.hpp).
  1137   relocate(rspec, 1);
  1138   // Assembler::sethi(0x3fffff, d);
  1139   emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
  1140   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
  1141   add(d, 0x3ff, d);
  1145 void  MacroAssembler::set_narrow_klass(Klass* k, Register d) {
  1146   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1147   int klass_index = oop_recorder()->find_index(k);
  1148   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  1149   narrowOop encoded_k = Klass::encode_klass(k);
  1151   assert_not_delayed();
  1152   // Relocation with special format (see relocInfo_sparc.hpp).
  1153   relocate(rspec, 1);
  1154   // Assembler::sethi(encoded_k, d);
  1155   emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) );
  1156   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
  1157   add(d, low10(encoded_k), d);
  1161 void MacroAssembler::align(int modulus) {
  1162   while (offset() % modulus != 0) nop();
  1165 void RegistersForDebugging::print(outputStream* s) {
  1166   FlagSetting fs(Debugging, true);
  1167   int j;
  1168   for (j = 0; j < 8; ++j) {
  1169     if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
  1170     else        { s->print( "fp = "   ); os::print_location(s, i[j]); }
  1172   s->cr();
  1174   for (j = 0;  j < 8;  ++j) {
  1175     s->print("l%d = ", j); os::print_location(s, l[j]);
  1177   s->cr();
  1179   for (j = 0; j < 8; ++j) {
  1180     if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
  1181     else        { s->print( "sp = "   ); os::print_location(s, o[j]); }
  1183   s->cr();
  1185   for (j = 0; j < 8; ++j) {
  1186     s->print("g%d = ", j); os::print_location(s, g[j]);
  1188   s->cr();
  1190   // print out floats with compression
  1191   for (j = 0; j < 32; ) {
  1192     jfloat val = f[j];
  1193     int last = j;
  1194     for ( ;  last+1 < 32;  ++last ) {
  1195       char b1[1024], b2[1024];
  1196       sprintf(b1, "%f", val);
  1197       sprintf(b2, "%f", f[last+1]);
  1198       if (strcmp(b1, b2))
  1199         break;
  1201     s->print("f%d", j);
  1202     if ( j != last )  s->print(" - f%d", last);
  1203     s->print(" = %f", val);
  1204     s->fill_to(25);
  1205     s->print_cr(" (0x%x)", val);
  1206     j = last + 1;
  1208   s->cr();
  1210   // and doubles (evens only)
  1211   for (j = 0; j < 32; ) {
  1212     jdouble val = d[j];
  1213     int last = j;
  1214     for ( ;  last+1 < 32;  ++last ) {
  1215       char b1[1024], b2[1024];
  1216       sprintf(b1, "%f", val);
  1217       sprintf(b2, "%f", d[last+1]);
  1218       if (strcmp(b1, b2))
  1219         break;
  1221     s->print("d%d", 2 * j);
  1222     if ( j != last )  s->print(" - d%d", last);
  1223     s->print(" = %f", val);
  1224     s->fill_to(30);
  1225     s->print("(0x%x)", *(int*)&val);
  1226     s->fill_to(42);
  1227     s->print_cr("(0x%x)", *(1 + (int*)&val));
  1228     j = last + 1;
  1230   s->cr();
  1233 void RegistersForDebugging::save_registers(MacroAssembler* a) {
  1234   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
  1235   a->flushw();
  1236   int i;
  1237   for (i = 0; i < 8; ++i) {
  1238     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
  1239     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
  1240     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
  1241     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
  1243   for (i = 0;  i < 32; ++i) {
  1244     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
  1246   for (i = 0; i < 64; i += 2) {
  1247     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
  1251 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
  1252   for (int i = 1; i < 8;  ++i) {
  1253     a->ld_ptr(r, g_offset(i), as_gRegister(i));
  1255   for (int j = 0; j < 32; ++j) {
  1256     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
  1258   for (int k = 0; k < 64; k += 2) {
  1259     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
  1264 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1265 void MacroAssembler::push_fTOS() {
  1266   // %%%%%% need to implement this
  1269 // pops double TOS element from CPU stack and pushes on FPU stack
  1270 void MacroAssembler::pop_fTOS() {
  1271   // %%%%%% need to implement this
  1274 void MacroAssembler::empty_FPU_stack() {
  1275   // %%%%%% need to implement this
  1278 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
  1279   // plausibility check for oops
  1280   if (!VerifyOops) return;
  1282   if (reg == G0)  return;       // always NULL, which is always an oop
  1284   BLOCK_COMMENT("verify_oop {");
  1285   char buffer[64];
  1286 #ifdef COMPILER1
  1287   if (CommentedAssembly) {
  1288     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
  1289     block_comment(buffer);
  1291 #endif
  1293   const char* real_msg = NULL;
  1295     ResourceMark rm;
  1296     stringStream ss;
  1297     ss.print("%s at offset %d (%s:%d)", msg, offset(), file, line);
  1298     real_msg = code_string(ss.as_string());
  1301   // Call indirectly to solve generation ordering problem
  1302   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1304   // Make some space on stack above the current register window.
  1305   // Enough to hold 8 64-bit registers.
  1306   add(SP,-8*8,SP);
  1308   // Save some 64-bit registers; a normal 'save' chops the heads off
  1309   // of 64-bit longs in the 32-bit build.
  1310   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1311   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1312   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
  1313   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1315   // Size of set() should stay the same
  1316   patchable_set((intptr_t)real_msg, O1);
  1317   // Load address to call to into O7
  1318   load_ptr_contents(a, O7);
  1319   // Register call to verify_oop_subroutine
  1320   callr(O7, G0);
  1321   delayed()->nop();
  1322   // recover frame size
  1323   add(SP, 8*8,SP);
  1324   BLOCK_COMMENT("} verify_oop");
  1327 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
  1328   // plausibility check for oops
  1329   if (!VerifyOops) return;
  1331   const char* real_msg = NULL;
  1333     ResourceMark rm;
  1334     stringStream ss;
  1335     ss.print("%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
  1336     real_msg = code_string(ss.as_string());
  1339   // Call indirectly to solve generation ordering problem
  1340   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1342   // Make some space on stack above the current register window.
  1343   // Enough to hold 8 64-bit registers.
  1344   add(SP,-8*8,SP);
  1346   // Save some 64-bit registers; a normal 'save' chops the heads off
  1347   // of 64-bit longs in the 32-bit build.
  1348   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1349   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1350   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
  1351   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1353   // Size of set() should stay the same
  1354   patchable_set((intptr_t)real_msg, O1);
  1355   // Load address to call to into O7
  1356   load_ptr_contents(a, O7);
  1357   // Register call to verify_oop_subroutine
  1358   callr(O7, G0);
  1359   delayed()->nop();
  1360   // recover frame size
  1361   add(SP, 8*8,SP);
  1364 // side-door communication with signalHandler in os_solaris.cpp
  1365 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
  1367 // This macro is expanded just once; it creates shared code.  Contract:
  1368 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
  1369 // registers, including flags.  May not use a register 'save', as this blows
  1370 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
  1371 // call.
  1372 void MacroAssembler::verify_oop_subroutine() {
  1373   // Leaf call; no frame.
  1374   Label succeed, fail, null_or_fail;
  1376   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
  1377   // O0 is now the oop to be checked.  O7 is the return address.
  1378   Register O0_obj = O0;
  1380   // Save some more registers for temps.
  1381   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
  1382   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
  1383   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
  1384   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
  1386   // Save flags
  1387   Register O5_save_flags = O5;
  1388   rdccr( O5_save_flags );
  1390   { // count number of verifies
  1391     Register O2_adr   = O2;
  1392     Register O3_accum = O3;
  1393     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
  1396   Register O2_mask = O2;
  1397   Register O3_bits = O3;
  1398   Register O4_temp = O4;
  1400   // mark lower end of faulting range
  1401   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
  1402   _verify_oop_implicit_branch[0] = pc();
  1404   // We can't check the mark oop because it could be in the process of
  1405   // locking or unlocking while this is running.
  1406   set(Universe::verify_oop_mask (), O2_mask);
  1407   set(Universe::verify_oop_bits (), O3_bits);
  1409   // assert((obj & oop_mask) == oop_bits);
  1410   and3(O0_obj, O2_mask, O4_temp);
  1411   cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
  1413   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
  1414     // the null_or_fail case is useless; must test for null separately
  1415     br_null_short(O0_obj, pn, succeed);
  1418   // Check the Klass* of this object for being in the right area of memory.
  1419   // Cannot do the load in the delay above slot in case O0 is null
  1420   load_klass(O0_obj, O0_obj);
  1421   // assert((klass != NULL)
  1422   br_null_short(O0_obj, pn, fail);
  1424   wrccr( O5_save_flags ); // Restore CCR's
  1426   // mark upper end of faulting range
  1427   _verify_oop_implicit_branch[1] = pc();
  1429   //-----------------------
  1430   // all tests pass
  1431   bind(succeed);
  1433   // Restore prior 64-bit registers
  1434   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
  1435   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
  1436   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
  1437   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
  1438   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
  1439   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
  1441   retl();                       // Leaf return; restore prior O7 in delay slot
  1442   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
  1444   //-----------------------
  1445   bind(null_or_fail);           // nulls are less common but OK
  1446   br_null(O0_obj, false, pt, succeed);
  1447   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1449   //-----------------------
  1450   // report failure:
  1451   bind(fail);
  1452   _verify_oop_implicit_branch[2] = pc();
  1454   wrccr( O5_save_flags ); // Restore CCR's
  1456   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1458   // stop_subroutine expects message pointer in I1.
  1459   mov(I1, O1);
  1461   // Restore prior 64-bit registers
  1462   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
  1463   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
  1464   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
  1465   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
  1466   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
  1467   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
  1469   // factor long stop-sequence into subroutine to save space
  1470   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1472   // call indirectly to solve generation ordering problem
  1473   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
  1474   load_ptr_contents(al, O5);
  1475   jmpl(O5, 0, O7);
  1476   delayed()->nop();
  1480 void MacroAssembler::stop(const char* msg) {
  1481   // save frame first to get O7 for return address
  1482   // add one word to size in case struct is odd number of words long
  1483   // It must be doubleword-aligned for storing doubles into it.
  1485     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1487     // stop_subroutine expects message pointer in I1.
  1488     // Size of set() should stay the same
  1489     patchable_set((intptr_t)msg, O1);
  1491     // factor long stop-sequence into subroutine to save space
  1492     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1494     // call indirectly to solve generation ordering problem
  1495     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
  1496     load_ptr_contents(a, O5);
  1497     jmpl(O5, 0, O7);
  1498     delayed()->nop();
  1500     breakpoint_trap();   // make stop actually stop rather than writing
  1501                          // unnoticeable results in the output files.
  1503     // restore(); done in callee to save space!
  1507 void MacroAssembler::warn(const char* msg) {
  1508   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1509   RegistersForDebugging::save_registers(this);
  1510   mov(O0, L0);
  1511   // Size of set() should stay the same
  1512   patchable_set((intptr_t)msg, O0);
  1513   call( CAST_FROM_FN_PTR(address, warning) );
  1514   delayed()->nop();
  1515 //  ret();
  1516 //  delayed()->restore();
  1517   RegistersForDebugging::restore_registers(this, L0);
  1518   restore();
  1522 void MacroAssembler::untested(const char* what) {
  1523   // We must be able to turn interactive prompting off
  1524   // in order to run automated test scripts on the VM
  1525   // Use the flag ShowMessageBoxOnError
  1527   const char* b = NULL;
  1529     ResourceMark rm;
  1530     stringStream ss;
  1531     ss.print("untested: %s", what);
  1532     b = code_string(ss.as_string());
  1534   if (ShowMessageBoxOnError) { STOP(b); }
  1535   else                       { warn(b); }
  1539 void MacroAssembler::stop_subroutine() {
  1540   RegistersForDebugging::save_registers(this);
  1542   // for the sake of the debugger, stick a PC on the current frame
  1543   // (this assumes that the caller has performed an extra "save")
  1544   mov(I7, L7);
  1545   add(O7, -7 * BytesPerInt, I7);
  1547   save_frame(); // one more save to free up another O7 register
  1548   mov(I0, O1); // addr of reg save area
  1550   // We expect pointer to message in I1. Caller must set it up in O1
  1551   mov(I1, O0); // get msg
  1552   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  1553   delayed()->nop();
  1555   restore();
  1557   RegistersForDebugging::restore_registers(this, O0);
  1559   save_frame(0);
  1560   call(CAST_FROM_FN_PTR(address,breakpoint));
  1561   delayed()->nop();
  1562   restore();
  1564   mov(L7, I7);
  1565   retl();
  1566   delayed()->restore(); // see stop above
  1570 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
  1571   if ( ShowMessageBoxOnError ) {
  1572     JavaThread* thread = JavaThread::current();
  1573     JavaThreadState saved_state = thread->thread_state();
  1574     thread->set_thread_state(_thread_in_vm);
  1576         // In order to get locks work, we need to fake a in_VM state
  1577         ttyLocker ttyl;
  1578         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
  1579         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  1580         BytecodeCounter::print();
  1582         if (os::message_box(msg, "Execution stopped, print registers?"))
  1583           regs->print(::tty);
  1585     BREAKPOINT;
  1586       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
  1588   else {
  1589      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  1591   assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  1595 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
  1596   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
  1597   Label no_extras;
  1598   br( negative, true, pt, no_extras ); // if neg, clear reg
  1599   delayed()->set(0, Rresult);          // annuled, so only if taken
  1600   bind( no_extras );
  1604 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
  1605 #ifdef _LP64
  1606   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
  1607 #else
  1608   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
  1609 #endif
  1610   bclr(1, Rresult);
  1611   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
  1615 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
  1616   calc_frame_size(Rextra_words, Rresult);
  1617   neg(Rresult);
  1618   save(SP, Rresult, SP);
  1622 // ---------------------------------------------------------
  1623 Assembler::RCondition cond2rcond(Assembler::Condition c) {
  1624   switch (c) {
  1625     /*case zero: */
  1626     case Assembler::equal:        return Assembler::rc_z;
  1627     case Assembler::lessEqual:    return Assembler::rc_lez;
  1628     case Assembler::less:         return Assembler::rc_lz;
  1629     /*case notZero:*/
  1630     case Assembler::notEqual:     return Assembler::rc_nz;
  1631     case Assembler::greater:      return Assembler::rc_gz;
  1632     case Assembler::greaterEqual: return Assembler::rc_gez;
  1634   ShouldNotReachHere();
  1635   return Assembler::rc_z;
  1638 // compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
  1639 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
  1640   tst(s1);
  1641   br (c, a, p, L);
  1644 // Compares a pointer register with zero and branches on null.
  1645 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  1646 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
  1647   assert_not_delayed();
  1648 #ifdef _LP64
  1649   bpr( rc_z, a, p, s1, L );
  1650 #else
  1651   tst(s1);
  1652   br ( zero, a, p, L );
  1653 #endif
  1656 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
  1657   assert_not_delayed();
  1658 #ifdef _LP64
  1659   bpr( rc_nz, a, p, s1, L );
  1660 #else
  1661   tst(s1);
  1662   br ( notZero, a, p, L );
  1663 #endif
  1666 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
  1668 // Compare integer (32 bit) values (icc only).
  1669 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
  1670                                       Predict p, Label& L) {
  1671   assert_not_delayed();
  1672   if (use_cbcond(L)) {
  1673     Assembler::cbcond(c, icc, s1, s2, L);
  1674   } else {
  1675     cmp(s1, s2);
  1676     br(c, false, p, L);
  1677     delayed()->nop();
  1681 // Compare integer (32 bit) values (icc only).
  1682 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
  1683                                       Predict p, Label& L) {
  1684   assert_not_delayed();
  1685   if (is_simm(simm13a,5) && use_cbcond(L)) {
  1686     Assembler::cbcond(c, icc, s1, simm13a, L);
  1687   } else {
  1688     cmp(s1, simm13a);
  1689     br(c, false, p, L);
  1690     delayed()->nop();
  1694 // Branch that tests xcc in LP64 and icc in !LP64
  1695 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
  1696                                        Predict p, Label& L) {
  1697   assert_not_delayed();
  1698   if (use_cbcond(L)) {
  1699     Assembler::cbcond(c, ptr_cc, s1, s2, L);
  1700   } else {
  1701     cmp(s1, s2);
  1702     brx(c, false, p, L);
  1703     delayed()->nop();
  1707 // Branch that tests xcc in LP64 and icc in !LP64
  1708 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
  1709                                        Predict p, Label& L) {
  1710   assert_not_delayed();
  1711   if (is_simm(simm13a,5) && use_cbcond(L)) {
  1712     Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
  1713   } else {
  1714     cmp(s1, simm13a);
  1715     brx(c, false, p, L);
  1716     delayed()->nop();
  1720 // Short branch version for compares a pointer with zero.
  1722 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
  1723   assert_not_delayed();
  1724   if (use_cbcond(L)) {
  1725     Assembler::cbcond(zero, ptr_cc, s1, 0, L);
  1726     return;
  1728   br_null(s1, false, p, L);
  1729   delayed()->nop();
  1732 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
  1733   assert_not_delayed();
  1734   if (use_cbcond(L)) {
  1735     Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
  1736     return;
  1738   br_notnull(s1, false, p, L);
  1739   delayed()->nop();
  1742 // Unconditional short branch
  1743 void MacroAssembler::ba_short(Label& L) {
  1744   if (use_cbcond(L)) {
  1745     Assembler::cbcond(equal, icc, G0, G0, L);
  1746     return;
  1748   br(always, false, pt, L);
  1749   delayed()->nop();
  1752 // instruction sequences factored across compiler & interpreter
  1755 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
  1756                            Register Rb_hi, Register Rb_low,
  1757                            Register Rresult) {
  1759   Label check_low_parts, done;
  1761   cmp(Ra_hi, Rb_hi );  // compare hi parts
  1762   br(equal, true, pt, check_low_parts);
  1763   delayed()->cmp(Ra_low, Rb_low); // test low parts
  1765   // And, with an unsigned comparison, it does not matter if the numbers
  1766   // are negative or not.
  1767   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
  1768   // The second one is bigger (unsignedly).
  1770   // Other notes:  The first move in each triplet can be unconditional
  1771   // (and therefore probably prefetchable).
  1772   // And the equals case for the high part does not need testing,
  1773   // since that triplet is reached only after finding the high halves differ.
  1775   mov(-1, Rresult);
  1776   ba(done);
  1777   delayed()->movcc(greater, false, icc,  1, Rresult);
  1779   bind(check_low_parts);
  1781   mov(                               -1, Rresult);
  1782   movcc(equal,           false, icc,  0, Rresult);
  1783   movcc(greaterUnsigned, false, icc,  1, Rresult);
  1785   bind(done);
  1788 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
  1789   subcc(  G0, Rlow, Rlow );
  1790   subc(   G0, Rhi,  Rhi  );
  1793 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
  1794                            Register Rcount,
  1795                            Register Rout_high, Register Rout_low,
  1796                            Register Rtemp ) {
  1799   Register Ralt_count = Rtemp;
  1800   Register Rxfer_bits = Rtemp;
  1802   assert( Ralt_count != Rin_high
  1803       &&  Ralt_count != Rin_low
  1804       &&  Ralt_count != Rcount
  1805       &&  Rxfer_bits != Rin_low
  1806       &&  Rxfer_bits != Rin_high
  1807       &&  Rxfer_bits != Rcount
  1808       &&  Rxfer_bits != Rout_low
  1809       &&  Rout_low   != Rin_high,
  1810         "register alias checks");
  1812   Label big_shift, done;
  1814   // This code can be optimized to use the 64 bit shifts in V9.
  1815   // Here we use the 32 bit shifts.
  1817   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  1818   subcc(Rcount,   31, Ralt_count);
  1819   br(greater, true, pn, big_shift);
  1820   delayed()->dec(Ralt_count);
  1822   // shift < 32 bits, Ralt_count = Rcount-31
  1824   // We get the transfer bits by shifting right by 32-count the low
  1825   // register. This is done by shifting right by 31-count and then by one
  1826   // more to take care of the special (rare) case where count is zero
  1827   // (shifting by 32 would not work).
  1829   neg(Ralt_count);
  1831   // The order of the next two instructions is critical in the case where
  1832   // Rin and Rout are the same and should not be reversed.
  1834   srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
  1835   if (Rcount != Rout_low) {
  1836     sll(Rin_low, Rcount, Rout_low); // low half
  1838   sll(Rin_high, Rcount, Rout_high);
  1839   if (Rcount == Rout_low) {
  1840     sll(Rin_low, Rcount, Rout_low); // low half
  1842   srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
  1843   ba(done);
  1844   delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
  1846   // shift >= 32 bits, Ralt_count = Rcount-32
  1847   bind(big_shift);
  1848   sll(Rin_low, Ralt_count, Rout_high  );
  1849   clr(Rout_low);
  1851   bind(done);
  1855 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
  1856                            Register Rcount,
  1857                            Register Rout_high, Register Rout_low,
  1858                            Register Rtemp ) {
  1860   Register Ralt_count = Rtemp;
  1861   Register Rxfer_bits = Rtemp;
  1863   assert( Ralt_count != Rin_high
  1864       &&  Ralt_count != Rin_low
  1865       &&  Ralt_count != Rcount
  1866       &&  Rxfer_bits != Rin_low
  1867       &&  Rxfer_bits != Rin_high
  1868       &&  Rxfer_bits != Rcount
  1869       &&  Rxfer_bits != Rout_high
  1870       &&  Rout_high  != Rin_low,
  1871         "register alias checks");
  1873   Label big_shift, done;
  1875   // This code can be optimized to use the 64 bit shifts in V9.
  1876   // Here we use the 32 bit shifts.
  1878   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  1879   subcc(Rcount,   31, Ralt_count);
  1880   br(greater, true, pn, big_shift);
  1881   delayed()->dec(Ralt_count);
  1883   // shift < 32 bits, Ralt_count = Rcount-31
  1885   // We get the transfer bits by shifting left by 32-count the high
  1886   // register. This is done by shifting left by 31-count and then by one
  1887   // more to take care of the special (rare) case where count is zero
  1888   // (shifting by 32 would not work).
  1890   neg(Ralt_count);
  1891   if (Rcount != Rout_low) {
  1892     srl(Rin_low, Rcount, Rout_low);
  1895   // The order of the next two instructions is critical in the case where
  1896   // Rin and Rout are the same and should not be reversed.
  1898   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
  1899   sra(Rin_high,     Rcount, Rout_high ); // high half
  1900   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
  1901   if (Rcount == Rout_low) {
  1902     srl(Rin_low, Rcount, Rout_low);
  1904   ba(done);
  1905   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
  1907   // shift >= 32 bits, Ralt_count = Rcount-32
  1908   bind(big_shift);
  1910   sra(Rin_high, Ralt_count, Rout_low);
  1911   sra(Rin_high,         31, Rout_high); // sign into hi
  1913   bind( done );
  1918 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
  1919                             Register Rcount,
  1920                             Register Rout_high, Register Rout_low,
  1921                             Register Rtemp ) {
  1923   Register Ralt_count = Rtemp;
  1924   Register Rxfer_bits = Rtemp;
  1926   assert( Ralt_count != Rin_high
  1927       &&  Ralt_count != Rin_low
  1928       &&  Ralt_count != Rcount
  1929       &&  Rxfer_bits != Rin_low
  1930       &&  Rxfer_bits != Rin_high
  1931       &&  Rxfer_bits != Rcount
  1932       &&  Rxfer_bits != Rout_high
  1933       &&  Rout_high  != Rin_low,
  1934         "register alias checks");
  1936   Label big_shift, done;
  1938   // This code can be optimized to use the 64 bit shifts in V9.
  1939   // Here we use the 32 bit shifts.
  1941   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  1942   subcc(Rcount,   31, Ralt_count);
  1943   br(greater, true, pn, big_shift);
  1944   delayed()->dec(Ralt_count);
  1946   // shift < 32 bits, Ralt_count = Rcount-31
  1948   // We get the transfer bits by shifting left by 32-count the high
  1949   // register. This is done by shifting left by 31-count and then by one
  1950   // more to take care of the special (rare) case where count is zero
  1951   // (shifting by 32 would not work).
  1953   neg(Ralt_count);
  1954   if (Rcount != Rout_low) {
  1955     srl(Rin_low, Rcount, Rout_low);
  1958   // The order of the next two instructions is critical in the case where
  1959   // Rin and Rout are the same and should not be reversed.
  1961   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
  1962   srl(Rin_high,     Rcount, Rout_high ); // high half
  1963   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
  1964   if (Rcount == Rout_low) {
  1965     srl(Rin_low, Rcount, Rout_low);
  1967   ba(done);
  1968   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
  1970   // shift >= 32 bits, Ralt_count = Rcount-32
  1971   bind(big_shift);
  1973   srl(Rin_high, Ralt_count, Rout_low);
  1974   clr(Rout_high);
  1976   bind( done );
  1979 #ifdef _LP64
  1980 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
  1981   cmp(Ra, Rb);
  1982   mov(-1, Rresult);
  1983   movcc(equal,   false, xcc,  0, Rresult);
  1984   movcc(greater, false, xcc,  1, Rresult);
  1986 #endif
  1989 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
  1990   switch (size_in_bytes) {
  1991   case  8:  ld_long(src, dst); break;
  1992   case  4:  ld(     src, dst); break;
  1993   case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
  1994   case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
  1995   default:  ShouldNotReachHere();
  1999 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
  2000   switch (size_in_bytes) {
  2001   case  8:  st_long(src, dst); break;
  2002   case  4:  st(     src, dst); break;
  2003   case  2:  sth(    src, dst); break;
  2004   case  1:  stb(    src, dst); break;
  2005   default:  ShouldNotReachHere();
  2010 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
  2011                                 FloatRegister Fa, FloatRegister Fb,
  2012                                 Register Rresult) {
  2013   if (is_float) {
  2014     fcmp(FloatRegisterImpl::S, fcc0, Fa, Fb);
  2015   } else {
  2016     fcmp(FloatRegisterImpl::D, fcc0, Fa, Fb);
  2019   if (unordered_result == 1) {
  2020     mov(                                    -1, Rresult);
  2021     movcc(f_equal,              true, fcc0,  0, Rresult);
  2022     movcc(f_unorderedOrGreater, true, fcc0,  1, Rresult);
  2023   } else {
  2024     mov(                                    -1, Rresult);
  2025     movcc(f_equal,              true, fcc0,  0, Rresult);
  2026     movcc(f_greater,            true, fcc0,  1, Rresult);
  2031 void MacroAssembler::save_all_globals_into_locals() {
  2032   mov(G1,L1);
  2033   mov(G2,L2);
  2034   mov(G3,L3);
  2035   mov(G4,L4);
  2036   mov(G5,L5);
  2037   mov(G6,L6);
  2038   mov(G7,L7);
  2041 void MacroAssembler::restore_globals_from_locals() {
  2042   mov(L1,G1);
  2043   mov(L2,G2);
  2044   mov(L3,G3);
  2045   mov(L4,G4);
  2046   mov(L5,G5);
  2047   mov(L6,G6);
  2048   mov(L7,G7);
  2051 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  2052                                                       Register tmp,
  2053                                                       int offset) {
  2054   intptr_t value = *delayed_value_addr;
  2055   if (value != 0)
  2056     return RegisterOrConstant(value + offset);
  2058   // load indirectly to solve generation ordering problem
  2059   AddressLiteral a(delayed_value_addr);
  2060   load_ptr_contents(a, tmp);
  2062 #ifdef ASSERT
  2063   tst(tmp);
  2064   breakpoint_trap(zero, xcc);
  2065 #endif
  2067   if (offset != 0)
  2068     add(tmp, offset, tmp);
  2070   return RegisterOrConstant(tmp);
  2074 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2075   assert(d.register_or_noreg() != G0, "lost side effect");
  2076   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2077       (s2.is_register() && s2.as_register() == G0)) {
  2078     // Do nothing, just move value.
  2079     if (s1.is_register()) {
  2080       if (d.is_constant())  d = temp;
  2081       mov(s1.as_register(), d.as_register());
  2082       return d;
  2083     } else {
  2084       return s1;
  2088   if (s1.is_register()) {
  2089     assert_different_registers(s1.as_register(), temp);
  2090     if (d.is_constant())  d = temp;
  2091     andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2092     return d;
  2093   } else {
  2094     if (s2.is_register()) {
  2095       assert_different_registers(s2.as_register(), temp);
  2096       if (d.is_constant())  d = temp;
  2097       set(s1.as_constant(), temp);
  2098       andn(temp, s2.as_register(), d.as_register());
  2099       return d;
  2100     } else {
  2101       intptr_t res = s1.as_constant() & ~s2.as_constant();
  2102       return res;
  2107 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2108   assert(d.register_or_noreg() != G0, "lost side effect");
  2109   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2110       (s2.is_register() && s2.as_register() == G0)) {
  2111     // Do nothing, just move value.
  2112     if (s1.is_register()) {
  2113       if (d.is_constant())  d = temp;
  2114       mov(s1.as_register(), d.as_register());
  2115       return d;
  2116     } else {
  2117       return s1;
  2121   if (s1.is_register()) {
  2122     assert_different_registers(s1.as_register(), temp);
  2123     if (d.is_constant())  d = temp;
  2124     add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2125     return d;
  2126   } else {
  2127     if (s2.is_register()) {
  2128       assert_different_registers(s2.as_register(), temp);
  2129       if (d.is_constant())  d = temp;
  2130       add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
  2131       return d;
  2132     } else {
  2133       intptr_t res = s1.as_constant() + s2.as_constant();
  2134       return res;
  2139 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2140   assert(d.register_or_noreg() != G0, "lost side effect");
  2141   if (!is_simm13(s2.constant_or_zero()))
  2142     s2 = (s2.as_constant() & 0xFF);
  2143   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2144       (s2.is_register() && s2.as_register() == G0)) {
  2145     // Do nothing, just move value.
  2146     if (s1.is_register()) {
  2147       if (d.is_constant())  d = temp;
  2148       mov(s1.as_register(), d.as_register());
  2149       return d;
  2150     } else {
  2151       return s1;
  2155   if (s1.is_register()) {
  2156     assert_different_registers(s1.as_register(), temp);
  2157     if (d.is_constant())  d = temp;
  2158     sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2159     return d;
  2160   } else {
  2161     if (s2.is_register()) {
  2162       assert_different_registers(s2.as_register(), temp);
  2163       if (d.is_constant())  d = temp;
  2164       set(s1.as_constant(), temp);
  2165       sll_ptr(temp, s2.as_register(), d.as_register());
  2166       return d;
  2167     } else {
  2168       intptr_t res = s1.as_constant() << s2.as_constant();
  2169       return res;
  2175 // Look up the method for a megamorphic invokeinterface call.
  2176 // The target method is determined by <intf_klass, itable_index>.
  2177 // The receiver klass is in recv_klass.
  2178 // On success, the result will be in method_result, and execution falls through.
  2179 // On failure, execution transfers to the given label.
  2180 void MacroAssembler::lookup_interface_method(Register recv_klass,
  2181                                              Register intf_klass,
  2182                                              RegisterOrConstant itable_index,
  2183                                              Register method_result,
  2184                                              Register scan_temp,
  2185                                              Register sethi_temp,
  2186                                              Label& L_no_such_interface) {
  2187   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  2188   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  2189          "caller must use same register for non-constant itable index as for method");
  2191   Label L_no_such_interface_restore;
  2192   bool did_save = false;
  2193   if (scan_temp == noreg || sethi_temp == noreg) {
  2194     Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
  2195     Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
  2196     assert(method_result->is_global(), "must be able to return value");
  2197     scan_temp  = L2;
  2198     sethi_temp = L3;
  2199     save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
  2200     recv_klass = recv_2;
  2201     intf_klass = intf_2;
  2202     did_save = true;
  2205   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  2206   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  2207   int scan_step   = itableOffsetEntry::size() * wordSize;
  2208   int vte_size    = vtableEntry::size() * wordSize;
  2210   lduw(recv_klass, InstanceKlass::vtable_length_offset() * wordSize, scan_temp);
  2211   // %%% We should store the aligned, prescaled offset in the klassoop.
  2212   // Then the next several instructions would fold away.
  2214   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
  2215   int itb_offset = vtable_base;
  2216   if (round_to_unit != 0) {
  2217     // hoist first instruction of round_to(scan_temp, BytesPerLong):
  2218     itb_offset += round_to_unit - wordSize;
  2220   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
  2221   sll(scan_temp, itb_scale,  scan_temp);
  2222   add(scan_temp, itb_offset, scan_temp);
  2223   if (round_to_unit != 0) {
  2224     // Round up to align_object_offset boundary
  2225     // see code for InstanceKlass::start_of_itable!
  2226     // Was: round_to(scan_temp, BytesPerLong);
  2227     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
  2228     and3(scan_temp, -round_to_unit, scan_temp);
  2230   add(recv_klass, scan_temp, scan_temp);
  2232   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  2233   RegisterOrConstant itable_offset = itable_index;
  2234   itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
  2235   itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
  2236   add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
  2238   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  2239   //   if (scan->interface() == intf) {
  2240   //     result = (klass + scan->offset() + itable_index);
  2241   //   }
  2242   // }
  2243   Label L_search, L_found_method;
  2245   for (int peel = 1; peel >= 0; peel--) {
  2246     // %%%% Could load both offset and interface in one ldx, if they were
  2247     // in the opposite order.  This would save a load.
  2248     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
  2250     // Check that this entry is non-null.  A null entry means that
  2251     // the receiver class doesn't implement the interface, and wasn't the
  2252     // same as when the caller was compiled.
  2253     bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
  2254     delayed()->cmp(method_result, intf_klass);
  2256     if (peel) {
  2257       brx(Assembler::equal,    false, Assembler::pt, L_found_method);
  2258     } else {
  2259       brx(Assembler::notEqual, false, Assembler::pn, L_search);
  2260       // (invert the test to fall through to found_method...)
  2262     delayed()->add(scan_temp, scan_step, scan_temp);
  2264     if (!peel)  break;
  2266     bind(L_search);
  2269   bind(L_found_method);
  2271   // Got a hit.
  2272   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
  2273   // scan_temp[-scan_step] points to the vtable offset we need
  2274   ito_offset -= scan_step;
  2275   lduw(scan_temp, ito_offset, scan_temp);
  2276   ld_ptr(recv_klass, scan_temp, method_result);
  2278   if (did_save) {
  2279     Label L_done;
  2280     ba(L_done);
  2281     delayed()->restore();
  2283     bind(L_no_such_interface_restore);
  2284     ba(L_no_such_interface);
  2285     delayed()->restore();
  2287     bind(L_done);
  2292 // virtual method calling
  2293 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  2294                                            RegisterOrConstant vtable_index,
  2295                                            Register method_result) {
  2296   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
  2297   Register sethi_temp = method_result;
  2298   const int base = (InstanceKlass::vtable_start_offset() * wordSize +
  2299                     // method pointer offset within the vtable entry:
  2300                     vtableEntry::method_offset_in_bytes());
  2301   RegisterOrConstant vtable_offset = vtable_index;
  2302   // Each of the following three lines potentially generates an instruction.
  2303   // But the total number of address formation instructions will always be
  2304   // at most two, and will often be zero.  In any case, it will be optimal.
  2305   // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
  2306   // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
  2307   vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
  2308   vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
  2309   Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
  2310   ld_ptr(vtable_entry_addr, method_result);
  2314 void MacroAssembler::check_klass_subtype(Register sub_klass,
  2315                                          Register super_klass,
  2316                                          Register temp_reg,
  2317                                          Register temp2_reg,
  2318                                          Label& L_success) {
  2319   Register sub_2 = sub_klass;
  2320   Register sup_2 = super_klass;
  2321   if (!sub_2->is_global())  sub_2 = L0;
  2322   if (!sup_2->is_global())  sup_2 = L1;
  2323   bool did_save = false;
  2324   if (temp_reg == noreg || temp2_reg == noreg) {
  2325     temp_reg = L2;
  2326     temp2_reg = L3;
  2327     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
  2328     sub_klass = sub_2;
  2329     super_klass = sup_2;
  2330     did_save = true;
  2332   Label L_failure, L_pop_to_failure, L_pop_to_success;
  2333   check_klass_subtype_fast_path(sub_klass, super_klass,
  2334                                 temp_reg, temp2_reg,
  2335                                 (did_save ? &L_pop_to_success : &L_success),
  2336                                 (did_save ? &L_pop_to_failure : &L_failure), NULL);
  2338   if (!did_save)
  2339     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
  2340   check_klass_subtype_slow_path(sub_2, sup_2,
  2341                                 L2, L3, L4, L5,
  2342                                 NULL, &L_pop_to_failure);
  2344   // on success:
  2345   bind(L_pop_to_success);
  2346   restore();
  2347   ba_short(L_success);
  2349   // on failure:
  2350   bind(L_pop_to_failure);
  2351   restore();
  2352   bind(L_failure);
  2356 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  2357                                                    Register super_klass,
  2358                                                    Register temp_reg,
  2359                                                    Register temp2_reg,
  2360                                                    Label* L_success,
  2361                                                    Label* L_failure,
  2362                                                    Label* L_slow_path,
  2363                                         RegisterOrConstant super_check_offset) {
  2364   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  2365   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  2367   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
  2368   bool need_slow_path = (must_load_sco ||
  2369                          super_check_offset.constant_or_zero() == sco_offset);
  2371   assert_different_registers(sub_klass, super_klass, temp_reg);
  2372   if (super_check_offset.is_register()) {
  2373     assert_different_registers(sub_klass, super_klass, temp_reg,
  2374                                super_check_offset.as_register());
  2375   } else if (must_load_sco) {
  2376     assert(temp2_reg != noreg, "supply either a temp or a register offset");
  2379   Label L_fallthrough;
  2380   int label_nulls = 0;
  2381   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  2382   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  2383   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  2384   assert(label_nulls <= 1 ||
  2385          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
  2386          "at most one NULL in the batch, usually");
  2388   // If the pointers are equal, we are done (e.g., String[] elements).
  2389   // This self-check enables sharing of secondary supertype arrays among
  2390   // non-primary types such as array-of-interface.  Otherwise, each such
  2391   // type would need its own customized SSA.
  2392   // We move this check to the front of the fast path because many
  2393   // type checks are in fact trivially successful in this manner,
  2394   // so we get a nicely predicted branch right at the start of the check.
  2395   cmp(super_klass, sub_klass);
  2396   brx(Assembler::equal, false, Assembler::pn, *L_success);
  2397   delayed()->nop();
  2399   // Check the supertype display:
  2400   if (must_load_sco) {
  2401     // The super check offset is always positive...
  2402     lduw(super_klass, sco_offset, temp2_reg);
  2403     super_check_offset = RegisterOrConstant(temp2_reg);
  2404     // super_check_offset is register.
  2405     assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
  2407   ld_ptr(sub_klass, super_check_offset, temp_reg);
  2408   cmp(super_klass, temp_reg);
  2410   // This check has worked decisively for primary supers.
  2411   // Secondary supers are sought in the super_cache ('super_cache_addr').
  2412   // (Secondary supers are interfaces and very deeply nested subtypes.)
  2413   // This works in the same check above because of a tricky aliasing
  2414   // between the super_cache and the primary super display elements.
  2415   // (The 'super_check_addr' can address either, as the case requires.)
  2416   // Note that the cache is updated below if it does not help us find
  2417   // what we need immediately.
  2418   // So if it was a primary super, we can just fail immediately.
  2419   // Otherwise, it's the slow path for us (no success at this point).
  2421   // Hacked ba(), which may only be used just before L_fallthrough.
  2422 #define FINAL_JUMP(label)            \
  2423   if (&(label) != &L_fallthrough) {  \
  2424     ba(label);  delayed()->nop();    \
  2427   if (super_check_offset.is_register()) {
  2428     brx(Assembler::equal, false, Assembler::pn, *L_success);
  2429     delayed()->cmp(super_check_offset.as_register(), sc_offset);
  2431     if (L_failure == &L_fallthrough) {
  2432       brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
  2433       delayed()->nop();
  2434     } else {
  2435       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
  2436       delayed()->nop();
  2437       FINAL_JUMP(*L_slow_path);
  2439   } else if (super_check_offset.as_constant() == sc_offset) {
  2440     // Need a slow path; fast failure is impossible.
  2441     if (L_slow_path == &L_fallthrough) {
  2442       brx(Assembler::equal, false, Assembler::pt, *L_success);
  2443       delayed()->nop();
  2444     } else {
  2445       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
  2446       delayed()->nop();
  2447       FINAL_JUMP(*L_success);
  2449   } else {
  2450     // No slow path; it's a fast decision.
  2451     if (L_failure == &L_fallthrough) {
  2452       brx(Assembler::equal, false, Assembler::pt, *L_success);
  2453       delayed()->nop();
  2454     } else {
  2455       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
  2456       delayed()->nop();
  2457       FINAL_JUMP(*L_success);
  2461   bind(L_fallthrough);
  2463 #undef FINAL_JUMP
  2467 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  2468                                                    Register super_klass,
  2469                                                    Register count_temp,
  2470                                                    Register scan_temp,
  2471                                                    Register scratch_reg,
  2472                                                    Register coop_reg,
  2473                                                    Label* L_success,
  2474                                                    Label* L_failure) {
  2475   assert_different_registers(sub_klass, super_klass,
  2476                              count_temp, scan_temp, scratch_reg, coop_reg);
  2478   Label L_fallthrough, L_loop;
  2479   int label_nulls = 0;
  2480   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  2481   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  2482   assert(label_nulls <= 1, "at most one NULL in the batch");
  2484   // a couple of useful fields in sub_klass:
  2485   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  2486   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  2488   // Do a linear scan of the secondary super-klass chain.
  2489   // This code is rarely used, so simplicity is a virtue here.
  2491 #ifndef PRODUCT
  2492   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  2493   inc_counter((address) pst_counter, count_temp, scan_temp);
  2494 #endif
  2496   // We will consult the secondary-super array.
  2497   ld_ptr(sub_klass, ss_offset, scan_temp);
  2499   Register search_key = super_klass;
  2501   // Load the array length.  (Positive movl does right thing on LP64.)
  2502   lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
  2504   // Check for empty secondary super list
  2505   tst(count_temp);
  2507   // In the array of super classes elements are pointer sized.
  2508   int element_size = wordSize;
  2510   // Top of search loop
  2511   bind(L_loop);
  2512   br(Assembler::equal, false, Assembler::pn, *L_failure);
  2513   delayed()->add(scan_temp, element_size, scan_temp);
  2515   // Skip the array header in all array accesses.
  2516   int elem_offset = Array<Klass*>::base_offset_in_bytes();
  2517   elem_offset -= element_size;   // the scan pointer was pre-incremented also
  2519   // Load next super to check
  2520     ld_ptr( scan_temp, elem_offset, scratch_reg );
  2522   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
  2523   cmp(scratch_reg, search_key);
  2525   // A miss means we are NOT a subtype and need to keep looping
  2526   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
  2527   delayed()->deccc(count_temp); // decrement trip counter in delay slot
  2529   // Success.  Cache the super we found and proceed in triumph.
  2530   st_ptr(super_klass, sub_klass, sc_offset);
  2532   if (L_success != &L_fallthrough) {
  2533     ba(*L_success);
  2534     delayed()->nop();
  2537   bind(L_fallthrough);
  2541 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
  2542                                                    Register temp_reg,
  2543                                                    int extra_slot_offset) {
  2544   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  2545   int stackElementSize = Interpreter::stackElementSize;
  2546   int offset = extra_slot_offset * stackElementSize;
  2547   if (arg_slot.is_constant()) {
  2548     offset += arg_slot.as_constant() * stackElementSize;
  2549     return offset;
  2550   } else {
  2551     assert(temp_reg != noreg, "must specify");
  2552     sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
  2553     if (offset != 0)
  2554       add(temp_reg, offset, temp_reg);
  2555     return temp_reg;
  2560 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  2561                                          Register temp_reg,
  2562                                          int extra_slot_offset) {
  2563   return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
  2567 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
  2568                                           Register temp_reg,
  2569                                           Label& done, Label* slow_case,
  2570                                           BiasedLockingCounters* counters) {
  2571   assert(UseBiasedLocking, "why call this otherwise?");
  2573   if (PrintBiasedLockingStatistics) {
  2574     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
  2575     if (counters == NULL)
  2576       counters = BiasedLocking::counters();
  2579   Label cas_label;
  2581   // Biased locking
  2582   // See whether the lock is currently biased toward our thread and
  2583   // whether the epoch is still valid
  2584   // Note that the runtime guarantees sufficient alignment of JavaThread
  2585   // pointers to allow age to be placed into low bits
  2586   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  2587   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  2588   cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
  2590   load_klass(obj_reg, temp_reg);
  2591   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
  2592   or3(G2_thread, temp_reg, temp_reg);
  2593   xor3(mark_reg, temp_reg, temp_reg);
  2594   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
  2595   if (counters != NULL) {
  2596     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
  2597     // Reload mark_reg as we may need it later
  2598     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
  2600   brx(Assembler::equal, true, Assembler::pt, done);
  2601   delayed()->nop();
  2603   Label try_revoke_bias;
  2604   Label try_rebias;
  2605   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
  2606   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  2608   // At this point we know that the header has the bias pattern and
  2609   // that we are not the bias owner in the current epoch. We need to
  2610   // figure out more details about the state of the header in order to
  2611   // know what operations can be legally performed on the object's
  2612   // header.
  2614   // If the low three bits in the xor result aren't clear, that means
  2615   // the prototype header is no longer biased and we have to revoke
  2616   // the bias on this object.
  2617   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
  2618   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
  2620   // Biasing is still enabled for this data type. See whether the
  2621   // epoch of the current bias is still valid, meaning that the epoch
  2622   // bits of the mark word are equal to the epoch bits of the
  2623   // prototype header. (Note that the prototype header's epoch bits
  2624   // only change at a safepoint.) If not, attempt to rebias the object
  2625   // toward the current thread. Note that we must be absolutely sure
  2626   // that the current epoch is invalid in order to do this because
  2627   // otherwise the manipulations it performs on the mark word are
  2628   // illegal.
  2629   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
  2630   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
  2632   // The epoch of the current bias is still valid but we know nothing
  2633   // about the owner; it might be set or it might be clear. Try to
  2634   // acquire the bias of the object using an atomic operation. If this
  2635   // fails we will go in to the runtime to revoke the object's bias.
  2636   // Note that we first construct the presumed unbiased header so we
  2637   // don't accidentally blow away another thread's valid bias.
  2638   delayed()->and3(mark_reg,
  2639                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
  2640                   mark_reg);
  2641   or3(G2_thread, mark_reg, temp_reg);
  2642   cas_ptr(mark_addr.base(), mark_reg, temp_reg);
  2643   // If the biasing toward our thread failed, this means that
  2644   // another thread succeeded in biasing it toward itself and we
  2645   // need to revoke that bias. The revocation will occur in the
  2646   // interpreter runtime in the slow case.
  2647   cmp(mark_reg, temp_reg);
  2648   if (counters != NULL) {
  2649     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
  2651   if (slow_case != NULL) {
  2652     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  2653     delayed()->nop();
  2655   ba_short(done);
  2657   bind(try_rebias);
  2658   // At this point we know the epoch has expired, meaning that the
  2659   // current "bias owner", if any, is actually invalid. Under these
  2660   // circumstances _only_, we are allowed to use the current header's
  2661   // value as the comparison value when doing the cas to acquire the
  2662   // bias in the current epoch. In other words, we allow transfer of
  2663   // the bias from one thread to another directly in this situation.
  2664   //
  2665   // FIXME: due to a lack of registers we currently blow away the age
  2666   // bits in this situation. Should attempt to preserve them.
  2667   load_klass(obj_reg, temp_reg);
  2668   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
  2669   or3(G2_thread, temp_reg, temp_reg);
  2670   cas_ptr(mark_addr.base(), mark_reg, temp_reg);
  2671   // If the biasing toward our thread failed, this means that
  2672   // another thread succeeded in biasing it toward itself and we
  2673   // need to revoke that bias. The revocation will occur in the
  2674   // interpreter runtime in the slow case.
  2675   cmp(mark_reg, temp_reg);
  2676   if (counters != NULL) {
  2677     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
  2679   if (slow_case != NULL) {
  2680     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  2681     delayed()->nop();
  2683   ba_short(done);
  2685   bind(try_revoke_bias);
  2686   // The prototype mark in the klass doesn't have the bias bit set any
  2687   // more, indicating that objects of this data type are not supposed
  2688   // to be biased any more. We are going to try to reset the mark of
  2689   // this object to the prototype value and fall through to the
  2690   // CAS-based locking scheme. Note that if our CAS fails, it means
  2691   // that another thread raced us for the privilege of revoking the
  2692   // bias of this particular object, so it's okay to continue in the
  2693   // normal locking code.
  2694   //
  2695   // FIXME: due to a lack of registers we currently blow away the age
  2696   // bits in this situation. Should attempt to preserve them.
  2697   load_klass(obj_reg, temp_reg);
  2698   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
  2699   cas_ptr(mark_addr.base(), mark_reg, temp_reg);
  2700   // Fall through to the normal CAS-based lock, because no matter what
  2701   // the result of the above CAS, some thread must have succeeded in
  2702   // removing the bias bit from the object's header.
  2703   if (counters != NULL) {
  2704     cmp(mark_reg, temp_reg);
  2705     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
  2708   bind(cas_label);
  2711 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
  2712                                           bool allow_delay_slot_filling) {
  2713   // Check for biased locking unlock case, which is a no-op
  2714   // Note: we do not have to check the thread ID for two reasons.
  2715   // First, the interpreter checks for IllegalMonitorStateException at
  2716   // a higher level. Second, if the bias was revoked while we held the
  2717   // lock, the object could not be rebiased toward another thread, so
  2718   // the bias bit would be clear.
  2719   ld_ptr(mark_addr, temp_reg);
  2720   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  2721   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  2722   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
  2723   delayed();
  2724   if (!allow_delay_slot_filling) {
  2725     nop();
  2730 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
  2731 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
  2732 // The code could be tightened up considerably.
  2733 //
  2734 // box->dhw disposition - post-conditions at DONE_LABEL.
  2735 // -   Successful inflated lock:  box->dhw != 0.
  2736 //     Any non-zero value suffices.
  2737 //     Consider G2_thread, rsp, boxReg, or unused_mark()
  2738 // -   Successful Stack-lock: box->dhw == mark.
  2739 //     box->dhw must contain the displaced mark word value
  2740 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
  2741 //     The slow-path fast_enter() and slow_enter() operators
  2742 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
  2743 // -   Biased: box->dhw is undefined
  2744 //
  2745 // SPARC refworkload performance - specifically jetstream and scimark - are
  2746 // extremely sensitive to the size of the code emitted by compiler_lock_object
  2747 // and compiler_unlock_object.  Critically, the key factor is code size, not path
  2748 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
  2749 // effect).
  2752 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
  2753                                           Register Rbox, Register Rscratch,
  2754                                           BiasedLockingCounters* counters,
  2755                                           bool try_bias) {
  2756    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  2758    verify_oop(Roop);
  2759    Label done ;
  2761    if (counters != NULL) {
  2762      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
  2765    if (EmitSync & 1) {
  2766      mov(3, Rscratch);
  2767      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2768      cmp(SP, G0);
  2769      return ;
  2772    if (EmitSync & 2) {
  2774      // Fetch object's markword
  2775      ld_ptr(mark_addr, Rmark);
  2777      if (try_bias) {
  2778         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  2781      // Save Rbox in Rscratch to be used for the cas operation
  2782      mov(Rbox, Rscratch);
  2784      // set Rmark to markOop | markOopDesc::unlocked_value
  2785      or3(Rmark, markOopDesc::unlocked_value, Rmark);
  2787      // Initialize the box.  (Must happen before we update the object mark!)
  2788      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2790      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
  2791      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  2792      cas_ptr(mark_addr.base(), Rmark, Rscratch);
  2794      // if compare/exchange succeeded we found an unlocked object and we now have locked it
  2795      // hence we are done
  2796      cmp(Rmark, Rscratch);
  2797 #ifdef _LP64
  2798      sub(Rscratch, STACK_BIAS, Rscratch);
  2799 #endif
  2800      brx(Assembler::equal, false, Assembler::pt, done);
  2801      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
  2803      // we did not find an unlocked object so see if this is a recursive case
  2804      // sub(Rscratch, SP, Rscratch);
  2805      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  2806      andcc(Rscratch, 0xfffff003, Rscratch);
  2807      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2808      bind (done);
  2809      return ;
  2812    Label Egress ;
  2814    if (EmitSync & 256) {
  2815       Label IsInflated ;
  2817       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
  2818       // Triage: biased, stack-locked, neutral, inflated
  2819       if (try_bias) {
  2820         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  2821         // Invariant: if control reaches this point in the emitted stream
  2822         // then Rmark has not been modified.
  2825       // Store mark into displaced mark field in the on-stack basic-lock "box"
  2826       // Critically, this must happen before the CAS
  2827       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
  2828       st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2829       andcc(Rmark, 2, G0);
  2830       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
  2831       delayed()->
  2833       // Try stack-lock acquisition.
  2834       // Beware: the 1st instruction is in a delay slot
  2835       mov(Rbox,  Rscratch);
  2836       or3(Rmark, markOopDesc::unlocked_value, Rmark);
  2837       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  2838       cas_ptr(mark_addr.base(), Rmark, Rscratch);
  2839       cmp(Rmark, Rscratch);
  2840       brx(Assembler::equal, false, Assembler::pt, done);
  2841       delayed()->sub(Rscratch, SP, Rscratch);
  2843       // Stack-lock attempt failed - check for recursive stack-lock.
  2844       // See the comments below about how we might remove this case.
  2845 #ifdef _LP64
  2846       sub(Rscratch, STACK_BIAS, Rscratch);
  2847 #endif
  2848       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  2849       andcc(Rscratch, 0xfffff003, Rscratch);
  2850       br(Assembler::always, false, Assembler::pt, done);
  2851       delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2853       bind(IsInflated);
  2854       if (EmitSync & 64) {
  2855          // If m->owner != null goto IsLocked
  2856          // Pessimistic form: Test-and-CAS vs CAS
  2857          // The optimistic form avoids RTS->RTO cache line upgrades.
  2858          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  2859          andcc(Rscratch, Rscratch, G0);
  2860          brx(Assembler::notZero, false, Assembler::pn, done);
  2861          delayed()->nop();
  2862          // m->owner == null : it's unlocked.
  2865       // Try to CAS m->owner from null to Self
  2866       // Invariant: if we acquire the lock then _recursions should be 0.
  2867       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
  2868       mov(G2_thread, Rscratch);
  2869       cas_ptr(Rmark, G0, Rscratch);
  2870       cmp(Rscratch, G0);
  2871       // Intentional fall-through into done
  2872    } else {
  2873       // Aggressively avoid the Store-before-CAS penalty
  2874       // Defer the store into box->dhw until after the CAS
  2875       Label IsInflated, Recursive ;
  2877 // Anticipate CAS -- Avoid RTS->RTO upgrade
  2878 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
  2880       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
  2881       // Triage: biased, stack-locked, neutral, inflated
  2883       if (try_bias) {
  2884         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  2885         // Invariant: if control reaches this point in the emitted stream
  2886         // then Rmark has not been modified.
  2888       andcc(Rmark, 2, G0);
  2889       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
  2890       delayed()->                         // Beware - dangling delay-slot
  2892       // Try stack-lock acquisition.
  2893       // Transiently install BUSY (0) encoding in the mark word.
  2894       // if the CAS of 0 into the mark was successful then we execute:
  2895       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
  2896       //   ST obj->mark = box    -- overwrite transient 0 value
  2897       // This presumes TSO, of course.
  2899       mov(0, Rscratch);
  2900       or3(Rmark, markOopDesc::unlocked_value, Rmark);
  2901       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  2902       cas_ptr(mark_addr.base(), Rmark, Rscratch);
  2903 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
  2904       cmp(Rscratch, Rmark);
  2905       brx(Assembler::notZero, false, Assembler::pn, Recursive);
  2906       delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2907       if (counters != NULL) {
  2908         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  2910       ba(done);
  2911       delayed()->st_ptr(Rbox, mark_addr);
  2913       bind(Recursive);
  2914       // Stack-lock attempt failed - check for recursive stack-lock.
  2915       // Tests show that we can remove the recursive case with no impact
  2916       // on refworkload 0.83.  If we need to reduce the size of the code
  2917       // emitted by compiler_lock_object() the recursive case is perfect
  2918       // candidate.
  2919       //
  2920       // A more extreme idea is to always inflate on stack-lock recursion.
  2921       // This lets us eliminate the recursive checks in compiler_lock_object
  2922       // and compiler_unlock_object and the (box->dhw == 0) encoding.
  2923       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
  2924       // and showed a performance *increase*.  In the same experiment I eliminated
  2925       // the fast-path stack-lock code from the interpreter and always passed
  2926       // control to the "slow" operators in synchronizer.cpp.
  2928       // RScratch contains the fetched obj->mark value from the failed CAS.
  2929 #ifdef _LP64
  2930       sub(Rscratch, STACK_BIAS, Rscratch);
  2931 #endif
  2932       sub(Rscratch, SP, Rscratch);
  2933       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  2934       andcc(Rscratch, 0xfffff003, Rscratch);
  2935       if (counters != NULL) {
  2936         // Accounting needs the Rscratch register
  2937         st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2938         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  2939         ba_short(done);
  2940       } else {
  2941         ba(done);
  2942         delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2945       bind   (IsInflated);
  2946       if (EmitSync & 64) {
  2947          // If m->owner != null goto IsLocked
  2948          // Test-and-CAS vs CAS
  2949          // Pessimistic form avoids futile (doomed) CAS attempts
  2950          // The optimistic form avoids RTS->RTO cache line upgrades.
  2951          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  2952          andcc(Rscratch, Rscratch, G0);
  2953          brx(Assembler::notZero, false, Assembler::pn, done);
  2954          delayed()->nop();
  2955          // m->owner == null : it's unlocked.
  2958       // Try to CAS m->owner from null to Self
  2959       // Invariant: if we acquire the lock then _recursions should be 0.
  2960       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
  2961       mov(G2_thread, Rscratch);
  2962       cas_ptr(Rmark, G0, Rscratch);
  2963       cmp(Rscratch, G0);
  2964       // ST box->displaced_header = NonZero.
  2965       // Any non-zero value suffices:
  2966       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
  2967       st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2968       // Intentional fall-through into done
  2971    bind   (done);
  2974 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
  2975                                             Register Rbox, Register Rscratch,
  2976                                             bool try_bias) {
  2977    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  2979    Label done ;
  2981    if (EmitSync & 4) {
  2982      cmp(SP, G0);
  2983      return ;
  2986    if (EmitSync & 8) {
  2987      if (try_bias) {
  2988         biased_locking_exit(mark_addr, Rscratch, done);
  2991      // Test first if it is a fast recursive unlock
  2992      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
  2993      br_null_short(Rmark, Assembler::pt, done);
  2995      // Check if it is still a light weight lock, this is is true if we see
  2996      // the stack address of the basicLock in the markOop of the object
  2997      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  2998      cas_ptr(mark_addr.base(), Rbox, Rmark);
  2999      ba(done);
  3000      delayed()->cmp(Rbox, Rmark);
  3001      bind(done);
  3002      return ;
  3005    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
  3006    // is too large performance rolls abruptly off a cliff.
  3007    // This could be related to inlining policies, code cache management, or
  3008    // I$ effects.
  3009    Label LStacked ;
  3011    if (try_bias) {
  3012       // TODO: eliminate redundant LDs of obj->mark
  3013       biased_locking_exit(mark_addr, Rscratch, done);
  3016    ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
  3017    ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
  3018    andcc(Rscratch, Rscratch, G0);
  3019    brx(Assembler::zero, false, Assembler::pn, done);
  3020    delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
  3021    andcc(Rmark, 2, G0);
  3022    brx(Assembler::zero, false, Assembler::pt, LStacked);
  3023    delayed()->nop();
  3025    // It's inflated
  3026    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
  3027    // the ST of 0 into _owner which releases the lock.  This prevents loads
  3028    // and stores within the critical section from reordering (floating)
  3029    // past the store that releases the lock.  But TSO is a strong memory model
  3030    // and that particular flavor of barrier is a noop, so we can safely elide it.
  3031    // Note that we use 1-0 locking by default for the inflated case.  We
  3032    // close the resultant (and rare) race by having contented threads in
  3033    // monitorenter periodically poll _owner.
  3034    ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3035    ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
  3036    xor3(Rscratch, G2_thread, Rscratch);
  3037    orcc(Rbox, Rscratch, Rbox);
  3038    brx(Assembler::notZero, false, Assembler::pn, done);
  3039    delayed()->
  3040    ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
  3041    ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
  3042    orcc(Rbox, Rscratch, G0);
  3043    if (EmitSync & 65536) {
  3044       Label LSucc ;
  3045       brx(Assembler::notZero, false, Assembler::pn, LSucc);
  3046       delayed()->nop();
  3047       ba(done);
  3048       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3050       bind(LSucc);
  3051       st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3052       if (os::is_MP()) { membar (StoreLoad); }
  3053       ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
  3054       andcc(Rscratch, Rscratch, G0);
  3055       brx(Assembler::notZero, false, Assembler::pt, done);
  3056       delayed()->andcc(G0, G0, G0);
  3057       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
  3058       mov(G2_thread, Rscratch);
  3059       cas_ptr(Rmark, G0, Rscratch);
  3060       // invert icc.zf and goto done
  3061       br_notnull(Rscratch, false, Assembler::pt, done);
  3062       delayed()->cmp(G0, G0);
  3063       ba(done);
  3064       delayed()->cmp(G0, 1);
  3065    } else {
  3066       brx(Assembler::notZero, false, Assembler::pn, done);
  3067       delayed()->nop();
  3068       ba(done);
  3069       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3072    bind   (LStacked);
  3073    // Consider: we could replace the expensive CAS in the exit
  3074    // path with a simple ST of the displaced mark value fetched from
  3075    // the on-stack basiclock box.  That admits a race where a thread T2
  3076    // in the slow lock path -- inflating with monitor M -- could race a
  3077    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
  3078    // More precisely T1 in the stack-lock unlock path could "stomp" the
  3079    // inflated mark value M installed by T2, resulting in an orphan
  3080    // object monitor M and T2 becoming stranded.  We can remedy that situation
  3081    // by having T2 periodically poll the object's mark word using timed wait
  3082    // operations.  If T2 discovers that a stomp has occurred it vacates
  3083    // the monitor M and wakes any other threads stranded on the now-orphan M.
  3084    // In addition the monitor scavenger, which performs deflation,
  3085    // would also need to check for orpan monitors and stranded threads.
  3086    //
  3087    // Finally, inflation is also used when T2 needs to assign a hashCode
  3088    // to O and O is stack-locked by T1.  The "stomp" race could cause
  3089    // an assigned hashCode value to be lost.  We can avoid that condition
  3090    // and provide the necessary hashCode stability invariants by ensuring
  3091    // that hashCode generation is idempotent between copying GCs.
  3092    // For example we could compute the hashCode of an object O as
  3093    // O's heap address XOR some high quality RNG value that is refreshed
  3094    // at GC-time.  The monitor scavenger would install the hashCode
  3095    // found in any orphan monitors.  Again, the mechanism admits a
  3096    // lost-update "stomp" WAW race but detects and recovers as needed.
  3097    //
  3098    // A prototype implementation showed excellent results, although
  3099    // the scavenger and timeout code was rather involved.
  3101    cas_ptr(mark_addr.base(), Rbox, Rscratch);
  3102    cmp(Rbox, Rscratch);
  3103    // Intentional fall through into done ...
  3105    bind(done);
  3110 void MacroAssembler::print_CPU_state() {
  3111   // %%%%% need to implement this
  3114 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  3115   // %%%%% need to implement this
  3118 void MacroAssembler::push_IU_state() {
  3119   // %%%%% need to implement this
  3123 void MacroAssembler::pop_IU_state() {
  3124   // %%%%% need to implement this
  3128 void MacroAssembler::push_FPU_state() {
  3129   // %%%%% need to implement this
  3133 void MacroAssembler::pop_FPU_state() {
  3134   // %%%%% need to implement this
  3138 void MacroAssembler::push_CPU_state() {
  3139   // %%%%% need to implement this
  3143 void MacroAssembler::pop_CPU_state() {
  3144   // %%%%% need to implement this
  3149 void MacroAssembler::verify_tlab() {
  3150 #ifdef ASSERT
  3151   if (UseTLAB && VerifyOops) {
  3152     Label next, next2, ok;
  3153     Register t1 = L0;
  3154     Register t2 = L1;
  3155     Register t3 = L2;
  3157     save_frame(0);
  3158     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3159     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
  3160     or3(t1, t2, t3);
  3161     cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
  3162     STOP("assert(top >= start)");
  3163     should_not_reach_here();
  3165     bind(next);
  3166     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3167     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
  3168     or3(t3, t2, t3);
  3169     cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
  3170     STOP("assert(top <= end)");
  3171     should_not_reach_here();
  3173     bind(next2);
  3174     and3(t3, MinObjAlignmentInBytesMask, t3);
  3175     cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
  3176     STOP("assert(aligned)");
  3177     should_not_reach_here();
  3179     bind(ok);
  3180     restore();
  3182 #endif
  3186 void MacroAssembler::eden_allocate(
  3187   Register obj,                        // result: pointer to object after successful allocation
  3188   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3189   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3190   Register t1,                         // temp register
  3191   Register t2,                         // temp register
  3192   Label&   slow_case                   // continuation point if fast allocation fails
  3193 ){
  3194   // make sure arguments make sense
  3195   assert_different_registers(obj, var_size_in_bytes, t1, t2);
  3196   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
  3197   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3199   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3200     // No allocation in the shared eden.
  3201     ba(slow_case);
  3202     delayed()->nop();
  3203   } else {
  3204     // get eden boundaries
  3205     // note: we need both top & top_addr!
  3206     const Register top_addr = t1;
  3207     const Register end      = t2;
  3209     CollectedHeap* ch = Universe::heap();
  3210     set((intx)ch->top_addr(), top_addr);
  3211     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
  3212     ld_ptr(top_addr, delta, end);
  3213     ld_ptr(top_addr, 0, obj);
  3215     // try to allocate
  3216     Label retry;
  3217     bind(retry);
  3218 #ifdef ASSERT
  3219     // make sure eden top is properly aligned
  3221       Label L;
  3222       btst(MinObjAlignmentInBytesMask, obj);
  3223       br(Assembler::zero, false, Assembler::pt, L);
  3224       delayed()->nop();
  3225       STOP("eden top is not properly aligned");
  3226       bind(L);
  3228 #endif // ASSERT
  3229     const Register free = end;
  3230     sub(end, obj, free);                                   // compute amount of free space
  3231     if (var_size_in_bytes->is_valid()) {
  3232       // size is unknown at compile time
  3233       cmp(free, var_size_in_bytes);
  3234       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3235       delayed()->add(obj, var_size_in_bytes, end);
  3236     } else {
  3237       // size is known at compile time
  3238       cmp(free, con_size_in_bytes);
  3239       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3240       delayed()->add(obj, con_size_in_bytes, end);
  3242     // Compare obj with the value at top_addr; if still equal, swap the value of
  3243     // end with the value at top_addr. If not equal, read the value at top_addr
  3244     // into end.
  3245     cas_ptr(top_addr, obj, end);
  3246     // if someone beat us on the allocation, try again, otherwise continue
  3247     cmp(obj, end);
  3248     brx(Assembler::notEqual, false, Assembler::pn, retry);
  3249     delayed()->mov(end, obj);                              // nop if successfull since obj == end
  3251 #ifdef ASSERT
  3252     // make sure eden top is properly aligned
  3254       Label L;
  3255       const Register top_addr = t1;
  3257       set((intx)ch->top_addr(), top_addr);
  3258       ld_ptr(top_addr, 0, top_addr);
  3259       btst(MinObjAlignmentInBytesMask, top_addr);
  3260       br(Assembler::zero, false, Assembler::pt, L);
  3261       delayed()->nop();
  3262       STOP("eden top is not properly aligned");
  3263       bind(L);
  3265 #endif // ASSERT
  3270 void MacroAssembler::tlab_allocate(
  3271   Register obj,                        // result: pointer to object after successful allocation
  3272   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3273   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3274   Register t1,                         // temp register
  3275   Label&   slow_case                   // continuation point if fast allocation fails
  3276 ){
  3277   // make sure arguments make sense
  3278   assert_different_registers(obj, var_size_in_bytes, t1);
  3279   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
  3280   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3282   const Register free  = t1;
  3284   verify_tlab();
  3286   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
  3288   // calculate amount of free space
  3289   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
  3290   sub(free, obj, free);
  3292   Label done;
  3293   if (var_size_in_bytes == noreg) {
  3294     cmp(free, con_size_in_bytes);
  3295   } else {
  3296     cmp(free, var_size_in_bytes);
  3298   br(Assembler::less, false, Assembler::pn, slow_case);
  3299   // calculate the new top pointer
  3300   if (var_size_in_bytes == noreg) {
  3301     delayed()->add(obj, con_size_in_bytes, free);
  3302   } else {
  3303     delayed()->add(obj, var_size_in_bytes, free);
  3306   bind(done);
  3308 #ifdef ASSERT
  3309   // make sure new free pointer is properly aligned
  3311     Label L;
  3312     btst(MinObjAlignmentInBytesMask, free);
  3313     br(Assembler::zero, false, Assembler::pt, L);
  3314     delayed()->nop();
  3315     STOP("updated TLAB free is not properly aligned");
  3316     bind(L);
  3318 #endif // ASSERT
  3320   // update the tlab top pointer
  3321   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3322   verify_tlab();
  3326 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  3327   Register top = O0;
  3328   Register t1 = G1;
  3329   Register t2 = G3;
  3330   Register t3 = O1;
  3331   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
  3332   Label do_refill, discard_tlab;
  3334   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3335     // No allocation in the shared eden.
  3336     ba_short(slow_case);
  3339   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
  3340   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
  3341   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
  3343   // calculate amount of free space
  3344   sub(t1, top, t1);
  3345   srl_ptr(t1, LogHeapWordSize, t1);
  3347   // Retain tlab and allocate object in shared space if
  3348   // the amount free in the tlab is too large to discard.
  3349   cmp(t1, t2);
  3350   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
  3352   // increment waste limit to prevent getting stuck on this slow path
  3353   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
  3354   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  3355   if (TLABStats) {
  3356     // increment number of slow_allocations
  3357     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
  3358     add(t2, 1, t2);
  3359     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  3361   ba_short(try_eden);
  3363   bind(discard_tlab);
  3364   if (TLABStats) {
  3365     // increment number of refills
  3366     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
  3367     add(t2, 1, t2);
  3368     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  3369     // accumulate wastage
  3370     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
  3371     add(t2, t1, t2);
  3372     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  3375   // if tlab is currently allocated (top or end != null) then
  3376   // fill [top, end + alignment_reserve) with array object
  3377   br_null_short(top, Assembler::pn, do_refill);
  3379   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
  3380   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
  3381   // set klass to intArrayKlass
  3382   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
  3383   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
  3384   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
  3385   st(t1, top, arrayOopDesc::length_offset_in_bytes());
  3386   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
  3387   ld_ptr(t2, 0, t2);
  3388   // store klass last.  concurrent gcs assumes klass length is valid if
  3389   // klass field is not null.
  3390   store_klass(t2, top);
  3391   verify_oop(top);
  3393   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
  3394   sub(top, t1, t1); // size of tlab's allocated portion
  3395   incr_allocated_bytes(t1, t2, t3);
  3397   // refill the tlab with an eden allocation
  3398   bind(do_refill);
  3399   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
  3400   sll_ptr(t1, LogHeapWordSize, t1);
  3401   // allocate new tlab, address returned in top
  3402   eden_allocate(top, t1, 0, t2, t3, slow_case);
  3404   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
  3405   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3406 #ifdef ASSERT
  3407   // check that tlab_size (t1) is still valid
  3409     Label ok;
  3410     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
  3411     sll_ptr(t2, LogHeapWordSize, t2);
  3412     cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
  3413     STOP("assert(t1 == tlab_size)");
  3414     should_not_reach_here();
  3416     bind(ok);
  3418 #endif // ASSERT
  3419   add(top, t1, top); // t1 is tlab_size
  3420   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
  3421   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
  3422   verify_tlab();
  3423   ba_short(retry);
  3426 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
  3427                                           Register t1, Register t2) {
  3428   // Bump total bytes allocated by this thread
  3429   assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
  3430   assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
  3431   // v8 support has gone the way of the dodo
  3432   ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
  3433   add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
  3434   stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
  3437 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  3438   switch (cond) {
  3439     // Note some conditions are synonyms for others
  3440     case Assembler::never:                return Assembler::always;
  3441     case Assembler::zero:                 return Assembler::notZero;
  3442     case Assembler::lessEqual:            return Assembler::greater;
  3443     case Assembler::less:                 return Assembler::greaterEqual;
  3444     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
  3445     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
  3446     case Assembler::negative:             return Assembler::positive;
  3447     case Assembler::overflowSet:          return Assembler::overflowClear;
  3448     case Assembler::always:               return Assembler::never;
  3449     case Assembler::notZero:              return Assembler::zero;
  3450     case Assembler::greater:              return Assembler::lessEqual;
  3451     case Assembler::greaterEqual:         return Assembler::less;
  3452     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
  3453     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
  3454     case Assembler::positive:             return Assembler::negative;
  3455     case Assembler::overflowClear:        return Assembler::overflowSet;
  3458   ShouldNotReachHere(); return Assembler::overflowClear;
  3461 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
  3462                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
  3463   Condition negated_cond = negate_condition(cond);
  3464   Label L;
  3465   brx(negated_cond, false, Assembler::pt, L);
  3466   delayed()->nop();
  3467   inc_counter(counter_ptr, Rtmp1, Rtmp2);
  3468   bind(L);
  3471 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
  3472   AddressLiteral addrlit(counter_addr);
  3473   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
  3474   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
  3475   ld(addr, Rtmp2);
  3476   inc(Rtmp2);
  3477   st(Rtmp2, addr);
  3480 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
  3481   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
  3484 SkipIfEqual::SkipIfEqual(
  3485     MacroAssembler* masm, Register temp, const bool* flag_addr,
  3486     Assembler::Condition condition) {
  3487   _masm = masm;
  3488   AddressLiteral flag(flag_addr);
  3489   _masm->sethi(flag, temp);
  3490   _masm->ldub(temp, flag.low10(), temp);
  3491   _masm->tst(temp);
  3492   _masm->br(condition, false, Assembler::pt, _label);
  3493   _masm->delayed()->nop();
  3496 SkipIfEqual::~SkipIfEqual() {
  3497   _masm->bind(_label);
  3501 // Writes to stack successive pages until offset reached to check for
  3502 // stack overflow + shadow pages.  This clobbers tsp and scratch.
  3503 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
  3504                                      Register Rscratch) {
  3505   // Use stack pointer in temp stack pointer
  3506   mov(SP, Rtsp);
  3508   // Bang stack for total size given plus stack shadow page size.
  3509   // Bang one page at a time because a large size can overflow yellow and
  3510   // red zones (the bang will fail but stack overflow handling can't tell that
  3511   // it was a stack overflow bang vs a regular segv).
  3512   int offset = os::vm_page_size();
  3513   Register Roffset = Rscratch;
  3515   Label loop;
  3516   bind(loop);
  3517   set((-offset)+STACK_BIAS, Rscratch);
  3518   st(G0, Rtsp, Rscratch);
  3519   set(offset, Roffset);
  3520   sub(Rsize, Roffset, Rsize);
  3521   cmp(Rsize, G0);
  3522   br(Assembler::greater, false, Assembler::pn, loop);
  3523   delayed()->sub(Rtsp, Roffset, Rtsp);
  3525   // Bang down shadow pages too.
  3526   // The -1 because we already subtracted 1 page.
  3527   for (int i = 0; i< StackShadowPages-1; i++) {
  3528     set((-i*offset)+STACK_BIAS, Rscratch);
  3529     st(G0, Rtsp, Rscratch);
  3533 ///////////////////////////////////////////////////////////////////////////////////
  3534 #if INCLUDE_ALL_GCS
  3536 static address satb_log_enqueue_with_frame = NULL;
  3537 static u_char* satb_log_enqueue_with_frame_end = NULL;
  3539 static address satb_log_enqueue_frameless = NULL;
  3540 static u_char* satb_log_enqueue_frameless_end = NULL;
  3542 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
  3544 static void generate_satb_log_enqueue(bool with_frame) {
  3545   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
  3546   CodeBuffer buf(bb);
  3547   MacroAssembler masm(&buf);
  3549 #define __ masm.
  3551   address start = __ pc();
  3552   Register pre_val;
  3554   Label refill, restart;
  3555   if (with_frame) {
  3556     __ save_frame(0);
  3557     pre_val = I0;  // Was O0 before the save.
  3558   } else {
  3559     pre_val = O0;
  3562   int satb_q_index_byte_offset =
  3563     in_bytes(JavaThread::satb_mark_queue_offset() +
  3564              PtrQueue::byte_offset_of_index());
  3566   int satb_q_buf_byte_offset =
  3567     in_bytes(JavaThread::satb_mark_queue_offset() +
  3568              PtrQueue::byte_offset_of_buf());
  3570   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
  3571          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
  3572          "check sizes in assembly below");
  3574   __ bind(restart);
  3576   // Load the index into the SATB buffer. PtrQueue::_index is a size_t
  3577   // so ld_ptr is appropriate.
  3578   __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
  3580   // index == 0?
  3581   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
  3583   __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
  3584   __ sub(L0, oopSize, L0);
  3586   __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
  3587   if (!with_frame) {
  3588     // Use return-from-leaf
  3589     __ retl();
  3590     __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  3591   } else {
  3592     // Not delayed.
  3593     __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  3595   if (with_frame) {
  3596     __ ret();
  3597     __ delayed()->restore();
  3599   __ bind(refill);
  3601   address handle_zero =
  3602     CAST_FROM_FN_PTR(address,
  3603                      &SATBMarkQueueSet::handle_zero_index_for_thread);
  3604   // This should be rare enough that we can afford to save all the
  3605   // scratch registers that the calling context might be using.
  3606   __ mov(G1_scratch, L0);
  3607   __ mov(G3_scratch, L1);
  3608   __ mov(G4, L2);
  3609   // We need the value of O0 above (for the write into the buffer), so we
  3610   // save and restore it.
  3611   __ mov(O0, L3);
  3612   // Since the call will overwrite O7, we save and restore that, as well.
  3613   __ mov(O7, L4);
  3614   __ call_VM_leaf(L5, handle_zero, G2_thread);
  3615   __ mov(L0, G1_scratch);
  3616   __ mov(L1, G3_scratch);
  3617   __ mov(L2, G4);
  3618   __ mov(L3, O0);
  3619   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  3620   __ delayed()->mov(L4, O7);
  3622   if (with_frame) {
  3623     satb_log_enqueue_with_frame = start;
  3624     satb_log_enqueue_with_frame_end = __ pc();
  3625   } else {
  3626     satb_log_enqueue_frameless = start;
  3627     satb_log_enqueue_frameless_end = __ pc();
  3630 #undef __
  3633 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
  3634   if (with_frame) {
  3635     if (satb_log_enqueue_with_frame == 0) {
  3636       generate_satb_log_enqueue(with_frame);
  3637       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
  3638       if (G1SATBPrintStubs) {
  3639         tty->print_cr("Generated with-frame satb enqueue:");
  3640         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
  3641                              satb_log_enqueue_with_frame_end,
  3642                              tty);
  3645   } else {
  3646     if (satb_log_enqueue_frameless == 0) {
  3647       generate_satb_log_enqueue(with_frame);
  3648       assert(satb_log_enqueue_frameless != 0, "postcondition.");
  3649       if (G1SATBPrintStubs) {
  3650         tty->print_cr("Generated frameless satb enqueue:");
  3651         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
  3652                              satb_log_enqueue_frameless_end,
  3653                              tty);
  3659 void MacroAssembler::g1_write_barrier_pre(Register obj,
  3660                                           Register index,
  3661                                           int offset,
  3662                                           Register pre_val,
  3663                                           Register tmp,
  3664                                           bool preserve_o_regs) {
  3665   Label filtered;
  3667   if (obj == noreg) {
  3668     // We are not loading the previous value so make
  3669     // sure that we don't trash the value in pre_val
  3670     // with the code below.
  3671     assert_different_registers(pre_val, tmp);
  3672   } else {
  3673     // We will be loading the previous value
  3674     // in this code so...
  3675     assert(offset == 0 || index == noreg, "choose one");
  3676     assert(pre_val == noreg, "check this code");
  3679   // Is marking active?
  3680   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  3681     ld(G2,
  3682        in_bytes(JavaThread::satb_mark_queue_offset() +
  3683                 PtrQueue::byte_offset_of_active()),
  3684        tmp);
  3685   } else {
  3686     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  3687               "Assumption");
  3688     ldsb(G2,
  3689          in_bytes(JavaThread::satb_mark_queue_offset() +
  3690                   PtrQueue::byte_offset_of_active()),
  3691          tmp);
  3694   // Is marking active?
  3695   cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
  3697   // Do we need to load the previous value?
  3698   if (obj != noreg) {
  3699     // Load the previous value...
  3700     if (index == noreg) {
  3701       if (Assembler::is_simm13(offset)) {
  3702         load_heap_oop(obj, offset, tmp);
  3703       } else {
  3704         set(offset, tmp);
  3705         load_heap_oop(obj, tmp, tmp);
  3707     } else {
  3708       load_heap_oop(obj, index, tmp);
  3710     // Previous value has been loaded into tmp
  3711     pre_val = tmp;
  3714   assert(pre_val != noreg, "must have a real register");
  3716   // Is the previous value null?
  3717   cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
  3719   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
  3720   // case, pre_val will be a scratch G-reg, but there are some cases in
  3721   // which it's an O-reg.  In the first case, do a normal call.  In the
  3722   // latter, do a save here and call the frameless version.
  3724   guarantee(pre_val->is_global() || pre_val->is_out(),
  3725             "Or we need to think harder.");
  3727   if (pre_val->is_global() && !preserve_o_regs) {
  3728     generate_satb_log_enqueue_if_necessary(true); // with frame
  3730     call(satb_log_enqueue_with_frame);
  3731     delayed()->mov(pre_val, O0);
  3732   } else {
  3733     generate_satb_log_enqueue_if_necessary(false); // frameless
  3735     save_frame(0);
  3736     call(satb_log_enqueue_frameless);
  3737     delayed()->mov(pre_val->after_save(), O0);
  3738     restore();
  3741   bind(filtered);
  3744 static address dirty_card_log_enqueue = 0;
  3745 static u_char* dirty_card_log_enqueue_end = 0;
  3747 // This gets to assume that o0 contains the object address.
  3748 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
  3749   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
  3750   CodeBuffer buf(bb);
  3751   MacroAssembler masm(&buf);
  3752 #define __ masm.
  3753   address start = __ pc();
  3755   Label not_already_dirty, restart, refill;
  3757 #ifdef _LP64
  3758   __ srlx(O0, CardTableModRefBS::card_shift, O0);
  3759 #else
  3760   __ srl(O0, CardTableModRefBS::card_shift, O0);
  3761 #endif
  3762   AddressLiteral addrlit(byte_map_base);
  3763   __ set(addrlit, O1); // O1 := <card table base>
  3764   __ ldub(O0, O1, O2); // O2 := [O0 + O1]
  3766   assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
  3767   __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
  3769   // We didn't take the branch, so we're already dirty: return.
  3770   // Use return-from-leaf
  3771   __ retl();
  3772   __ delayed()->nop();
  3774   // Not dirty.
  3775   __ bind(not_already_dirty);
  3777   // Get O0 + O1 into a reg by itself
  3778   __ add(O0, O1, O3);
  3780   // First, dirty it.
  3781   __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
  3783   int dirty_card_q_index_byte_offset =
  3784     in_bytes(JavaThread::dirty_card_queue_offset() +
  3785              PtrQueue::byte_offset_of_index());
  3786   int dirty_card_q_buf_byte_offset =
  3787     in_bytes(JavaThread::dirty_card_queue_offset() +
  3788              PtrQueue::byte_offset_of_buf());
  3789   __ bind(restart);
  3791   // Load the index into the update buffer. PtrQueue::_index is
  3792   // a size_t so ld_ptr is appropriate here.
  3793   __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
  3795   // index == 0?
  3796   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
  3798   __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
  3799   __ sub(L0, oopSize, L0);
  3801   __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
  3802   // Use return-from-leaf
  3803   __ retl();
  3804   __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
  3806   __ bind(refill);
  3807   address handle_zero =
  3808     CAST_FROM_FN_PTR(address,
  3809                      &DirtyCardQueueSet::handle_zero_index_for_thread);
  3810   // This should be rare enough that we can afford to save all the
  3811   // scratch registers that the calling context might be using.
  3812   __ mov(G1_scratch, L3);
  3813   __ mov(G3_scratch, L5);
  3814   // We need the value of O3 above (for the write into the buffer), so we
  3815   // save and restore it.
  3816   __ mov(O3, L6);
  3817   // Since the call will overwrite O7, we save and restore that, as well.
  3818   __ mov(O7, L4);
  3820   __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
  3821   __ mov(L3, G1_scratch);
  3822   __ mov(L5, G3_scratch);
  3823   __ mov(L6, O3);
  3824   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  3825   __ delayed()->mov(L4, O7);
  3827   dirty_card_log_enqueue = start;
  3828   dirty_card_log_enqueue_end = __ pc();
  3829   // XXX Should have a guarantee here about not going off the end!
  3830   // Does it already do so?  Do an experiment...
  3832 #undef __
  3836 static inline void
  3837 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
  3838   if (dirty_card_log_enqueue == 0) {
  3839     generate_dirty_card_log_enqueue(byte_map_base);
  3840     assert(dirty_card_log_enqueue != 0, "postcondition.");
  3841     if (G1SATBPrintStubs) {
  3842       tty->print_cr("Generated dirty_card enqueue:");
  3843       Disassembler::decode((u_char*)dirty_card_log_enqueue,
  3844                            dirty_card_log_enqueue_end,
  3845                            tty);
  3851 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  3853   Label filtered;
  3854   MacroAssembler* post_filter_masm = this;
  3856   if (new_val == G0) return;
  3858   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
  3859   assert(bs->kind() == BarrierSet::G1SATBCT ||
  3860          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
  3862   if (G1RSBarrierRegionFilter) {
  3863     xor3(store_addr, new_val, tmp);
  3864 #ifdef _LP64
  3865     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  3866 #else
  3867     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  3868 #endif
  3870     // XXX Should I predict this taken or not?  Does it matter?
  3871     cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
  3874   // If the "store_addr" register is an "in" or "local" register, move it to
  3875   // a scratch reg so we can pass it as an argument.
  3876   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
  3877   // Pick a scratch register different from "tmp".
  3878   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
  3879   // Make sure we use up the delay slot!
  3880   if (use_scr) {
  3881     post_filter_masm->mov(store_addr, scr);
  3882   } else {
  3883     post_filter_masm->nop();
  3885   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
  3886   save_frame(0);
  3887   call(dirty_card_log_enqueue);
  3888   if (use_scr) {
  3889     delayed()->mov(scr, O0);
  3890   } else {
  3891     delayed()->mov(store_addr->after_save(), O0);
  3893   restore();
  3895   bind(filtered);
  3898 #endif // INCLUDE_ALL_GCS
  3899 ///////////////////////////////////////////////////////////////////////////////////
  3901 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  3902   // If we're writing constant NULL, we can skip the write barrier.
  3903   if (new_val == G0) return;
  3904   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
  3905   assert(bs->kind() == BarrierSet::CardTableModRef ||
  3906          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
  3907   card_table_write(bs->byte_map_base, tmp, store_addr);
  3910 void MacroAssembler::load_klass(Register src_oop, Register klass) {
  3911   // The number of bytes in this code is used by
  3912   // MachCallDynamicJavaNode::ret_addr_offset()
  3913   // if this changes, change that.
  3914   if (UseCompressedClassPointers) {
  3915     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  3916     decode_klass_not_null(klass);
  3917   } else {
  3918     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  3922 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
  3923   if (UseCompressedClassPointers) {
  3924     assert(dst_oop != klass, "not enough registers");
  3925     encode_klass_not_null(klass);
  3926     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  3927   } else {
  3928     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  3932 void MacroAssembler::store_klass_gap(Register s, Register d) {
  3933   if (UseCompressedClassPointers) {
  3934     assert(s != d, "not enough registers");
  3935     st(s, d, oopDesc::klass_gap_offset_in_bytes());
  3939 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
  3940   if (UseCompressedOops) {
  3941     lduw(s, d);
  3942     decode_heap_oop(d);
  3943   } else {
  3944     ld_ptr(s, d);
  3948 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
  3949    if (UseCompressedOops) {
  3950     lduw(s1, s2, d);
  3951     decode_heap_oop(d, d);
  3952   } else {
  3953     ld_ptr(s1, s2, d);
  3957 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
  3958    if (UseCompressedOops) {
  3959     lduw(s1, simm13a, d);
  3960     decode_heap_oop(d, d);
  3961   } else {
  3962     ld_ptr(s1, simm13a, d);
  3966 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
  3967   if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
  3968   else                   load_heap_oop(s1, s2.as_register(), d);
  3971 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
  3972   if (UseCompressedOops) {
  3973     assert(s1 != d && s2 != d, "not enough registers");
  3974     encode_heap_oop(d);
  3975     st(d, s1, s2);
  3976   } else {
  3977     st_ptr(d, s1, s2);
  3981 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
  3982   if (UseCompressedOops) {
  3983     assert(s1 != d, "not enough registers");
  3984     encode_heap_oop(d);
  3985     st(d, s1, simm13a);
  3986   } else {
  3987     st_ptr(d, s1, simm13a);
  3991 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
  3992   if (UseCompressedOops) {
  3993     assert(a.base() != d, "not enough registers");
  3994     encode_heap_oop(d);
  3995     st(d, a, offset);
  3996   } else {
  3997     st_ptr(d, a, offset);
  4002 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
  4003   assert (UseCompressedOops, "must be compressed");
  4004   assert (Universe::heap() != NULL, "java heap should be initialized");
  4005   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4006   verify_oop(src);
  4007   if (Universe::narrow_oop_base() == NULL) {
  4008     srlx(src, LogMinObjAlignmentInBytes, dst);
  4009     return;
  4011   Label done;
  4012   if (src == dst) {
  4013     // optimize for frequent case src == dst
  4014     bpr(rc_nz, true, Assembler::pt, src, done);
  4015     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
  4016     bind(done);
  4017     srlx(src, LogMinObjAlignmentInBytes, dst);
  4018   } else {
  4019     bpr(rc_z, false, Assembler::pn, src, done);
  4020     delayed() -> mov(G0, dst);
  4021     // could be moved before branch, and annulate delay,
  4022     // but may add some unneeded work decoding null
  4023     sub(src, G6_heapbase, dst);
  4024     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4025     bind(done);
  4030 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  4031   assert (UseCompressedOops, "must be compressed");
  4032   assert (Universe::heap() != NULL, "java heap should be initialized");
  4033   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4034   verify_oop(r);
  4035   if (Universe::narrow_oop_base() != NULL)
  4036     sub(r, G6_heapbase, r);
  4037   srlx(r, LogMinObjAlignmentInBytes, r);
  4040 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
  4041   assert (UseCompressedOops, "must be compressed");
  4042   assert (Universe::heap() != NULL, "java heap should be initialized");
  4043   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4044   verify_oop(src);
  4045   if (Universe::narrow_oop_base() == NULL) {
  4046     srlx(src, LogMinObjAlignmentInBytes, dst);
  4047   } else {
  4048     sub(src, G6_heapbase, dst);
  4049     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4053 // Same algorithm as oops.inline.hpp decode_heap_oop.
  4054 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
  4055   assert (UseCompressedOops, "must be compressed");
  4056   assert (Universe::heap() != NULL, "java heap should be initialized");
  4057   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4058   sllx(src, LogMinObjAlignmentInBytes, dst);
  4059   if (Universe::narrow_oop_base() != NULL) {
  4060     Label done;
  4061     bpr(rc_nz, true, Assembler::pt, dst, done);
  4062     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
  4063     bind(done);
  4065   verify_oop(dst);
  4068 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  4069   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4070   // pd_code_size_limit.
  4071   // Also do not verify_oop as this is called by verify_oop.
  4072   assert (UseCompressedOops, "must be compressed");
  4073   assert (Universe::heap() != NULL, "java heap should be initialized");
  4074   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4075   sllx(r, LogMinObjAlignmentInBytes, r);
  4076   if (Universe::narrow_oop_base() != NULL)
  4077     add(r, G6_heapbase, r);
  4080 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
  4081   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4082   // pd_code_size_limit.
  4083   // Also do not verify_oop as this is called by verify_oop.
  4084   assert (UseCompressedOops, "must be compressed");
  4085   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4086   sllx(src, LogMinObjAlignmentInBytes, dst);
  4087   if (Universe::narrow_oop_base() != NULL)
  4088     add(dst, G6_heapbase, dst);
  4091 void MacroAssembler::encode_klass_not_null(Register r) {
  4092   assert (UseCompressedClassPointers, "must be compressed");
  4093   assert(Universe::narrow_klass_base() != NULL, "narrow_klass_base should be initialized");
  4094   assert(r != G6_heapbase, "bad register choice");
  4095   set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
  4096   sub(r, G6_heapbase, r);
  4097   if (Universe::narrow_klass_shift() != 0) {
  4098     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  4099     srlx(r, LogKlassAlignmentInBytes, r);
  4101   reinit_heapbase();
  4104 void MacroAssembler::encode_klass_not_null(Register src, Register dst) {
  4105   if (src == dst) {
  4106     encode_klass_not_null(src);
  4107   } else {
  4108     assert (UseCompressedClassPointers, "must be compressed");
  4109     assert(Universe::narrow_klass_base() != NULL, "narrow_klass_base should be initialized");
  4110     set((intptr_t)Universe::narrow_klass_base(), dst);
  4111     sub(src, dst, dst);
  4112     if (Universe::narrow_klass_shift() != 0) {
  4113       srlx(dst, LogKlassAlignmentInBytes, dst);
  4118 // Function instr_size_for_decode_klass_not_null() counts the instructions
  4119 // generated by decode_klass_not_null() and reinit_heapbase().  Hence, if
  4120 // the instructions they generate change, then this method needs to be updated.
  4121 int MacroAssembler::instr_size_for_decode_klass_not_null() {
  4122   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
  4123   // set + add + set
  4124   int num_instrs = insts_for_internal_set((intptr_t)Universe::narrow_klass_base()) + 1 +
  4125     insts_for_internal_set((intptr_t)Universe::narrow_ptrs_base());
  4126   if (Universe::narrow_klass_shift() == 0) {
  4127     return num_instrs * BytesPerInstWord;
  4128   } else { // sllx
  4129     return (num_instrs + 1) * BytesPerInstWord;
  4133 // !!! If the instructions that get generated here change then function
  4134 // instr_size_for_decode_klass_not_null() needs to get updated.
  4135 void  MacroAssembler::decode_klass_not_null(Register r) {
  4136   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4137   // pd_code_size_limit.
  4138   assert (UseCompressedClassPointers, "must be compressed");
  4139   assert(Universe::narrow_klass_base() != NULL, "narrow_klass_base should be initialized");
  4140   assert(r != G6_heapbase, "bad register choice");
  4141   set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
  4142   if (Universe::narrow_klass_shift() != 0)
  4143     sllx(r, LogKlassAlignmentInBytes, r);
  4144   add(r, G6_heapbase, r);
  4145   reinit_heapbase();
  4148 void  MacroAssembler::decode_klass_not_null(Register src, Register dst) {
  4149   if (src == dst) {
  4150     decode_klass_not_null(src);
  4151   } else {
  4152     // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4153     // pd_code_size_limit.
  4154     assert (UseCompressedClassPointers, "must be compressed");
  4155     assert(Universe::narrow_klass_base() != NULL, "narrow_klass_base should be initialized");
  4156     if (Universe::narrow_klass_shift() != 0) {
  4157       assert((src != G6_heapbase) && (dst != G6_heapbase), "bad register choice");
  4158       set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
  4159       sllx(src, LogKlassAlignmentInBytes, dst);
  4160       add(dst, G6_heapbase, dst);
  4161       reinit_heapbase();
  4162     } else {
  4163       set((intptr_t)Universe::narrow_klass_base(), dst);
  4164       add(src, dst, dst);
  4169 void MacroAssembler::reinit_heapbase() {
  4170   if (UseCompressedOops || UseCompressedClassPointers) {
  4171     if (Universe::heap() != NULL) {
  4172       set((intptr_t)Universe::narrow_ptrs_base(), G6_heapbase);
  4173     } else {
  4174       AddressLiteral base(Universe::narrow_ptrs_base_addr());
  4175       load_ptr_contents(base, G6_heapbase);
  4180 // Compare char[] arrays aligned to 4 bytes.
  4181 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
  4182                                         Register limit, Register result,
  4183                                         Register chr1, Register chr2, Label& Ldone) {
  4184   Label Lvector, Lloop;
  4185   assert(chr1 == result, "should be the same");
  4187   // Note: limit contains number of bytes (2*char_elements) != 0.
  4188   andcc(limit, 0x2, chr1); // trailing character ?
  4189   br(Assembler::zero, false, Assembler::pt, Lvector);
  4190   delayed()->nop();
  4192   // compare the trailing char
  4193   sub(limit, sizeof(jchar), limit);
  4194   lduh(ary1, limit, chr1);
  4195   lduh(ary2, limit, chr2);
  4196   cmp(chr1, chr2);
  4197   br(Assembler::notEqual, true, Assembler::pt, Ldone);
  4198   delayed()->mov(G0, result);     // not equal
  4200   // only one char ?
  4201   cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
  4202   delayed()->add(G0, 1, result); // zero-length arrays are equal
  4204   // word by word compare, dont't need alignment check
  4205   bind(Lvector);
  4206   // Shift ary1 and ary2 to the end of the arrays, negate limit
  4207   add(ary1, limit, ary1);
  4208   add(ary2, limit, ary2);
  4209   neg(limit, limit);
  4211   lduw(ary1, limit, chr1);
  4212   bind(Lloop);
  4213   lduw(ary2, limit, chr2);
  4214   cmp(chr1, chr2);
  4215   br(Assembler::notEqual, true, Assembler::pt, Ldone);
  4216   delayed()->mov(G0, result);     // not equal
  4217   inccc(limit, 2*sizeof(jchar));
  4218   // annul LDUW if branch is not taken to prevent access past end of array
  4219   br(Assembler::notZero, true, Assembler::pt, Lloop);
  4220   delayed()->lduw(ary1, limit, chr1); // hoisted
  4222   // Caller should set it:
  4223   // add(G0, 1, result); // equals
  4226 // Use BIS for zeroing (count is in bytes).
  4227 void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
  4228   assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
  4229   Register end = count;
  4230   int cache_line_size = VM_Version::prefetch_data_size();
  4231   // Minimum count when BIS zeroing can be used since
  4232   // it needs membar which is expensive.
  4233   int block_zero_size  = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
  4235   Label small_loop;
  4236   // Check if count is negative (dead code) or zero.
  4237   // Note, count uses 64bit in 64 bit VM.
  4238   cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
  4240   // Use BIS zeroing only for big arrays since it requires membar.
  4241   if (Assembler::is_simm13(block_zero_size)) { // < 4096
  4242     cmp(count, block_zero_size);
  4243   } else {
  4244     set(block_zero_size, temp);
  4245     cmp(count, temp);
  4247   br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
  4248   delayed()->add(to, count, end);
  4250   // Note: size is >= three (32 bytes) cache lines.
  4252   // Clean the beginning of space up to next cache line.
  4253   for (int offs = 0; offs < cache_line_size; offs += 8) {
  4254     stx(G0, to, offs);
  4257   // align to next cache line
  4258   add(to, cache_line_size, to);
  4259   and3(to, -cache_line_size, to);
  4261   // Note: size left >= two (32 bytes) cache lines.
  4263   // BIS should not be used to zero tail (64 bytes)
  4264   // to avoid zeroing a header of the following object.
  4265   sub(end, (cache_line_size*2)-8, end);
  4267   Label bis_loop;
  4268   bind(bis_loop);
  4269   stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  4270   add(to, cache_line_size, to);
  4271   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
  4273   // BIS needs membar.
  4274   membar(Assembler::StoreLoad);
  4276   add(end, (cache_line_size*2)-8, end); // restore end
  4277   cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
  4279   // Clean the tail.
  4280   bind(small_loop);
  4281   stx(G0, to, 0);
  4282   add(to, 8, to);
  4283   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
  4284   nop(); // Separate short branches

mercurial