src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Mon, 12 Aug 2013 17:37:02 +0200

author
ehelin
date
Mon, 12 Aug 2013 17:37:02 +0200
changeset 5694
7944aba7ba41
parent 5628
f98f5d48f511
child 5914
d13d7aba8c12
permissions
-rw-r--r--

8015107: NPG: Use consistent naming for metaspace concepts
Reviewed-by: coleenp, mgerdin, hseigel

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_LIRAssembler.hpp"
    28 #include "c1/c1_MacroAssembler.hpp"
    29 #include "c1/c1_Runtime1.hpp"
    30 #include "c1/c1_ValueStack.hpp"
    31 #include "ci/ciArrayKlass.hpp"
    32 #include "ci/ciInstance.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "memory/barrierSet.hpp"
    35 #include "memory/cardTableModRefBS.hpp"
    36 #include "nativeInst_sparc.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    40 #define __ _masm->
    43 //------------------------------------------------------------
    46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    47   if (opr->is_constant()) {
    48     LIR_Const* constant = opr->as_constant_ptr();
    49     switch (constant->type()) {
    50       case T_INT: {
    51         jint value = constant->as_jint();
    52         return Assembler::is_simm13(value);
    53       }
    55       default:
    56         return false;
    57     }
    58   }
    59   return false;
    60 }
    63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    64   switch (op->code()) {
    65     case lir_null_check:
    66     return true;
    69     case lir_add:
    70     case lir_ushr:
    71     case lir_shr:
    72     case lir_shl:
    73       // integer shifts and adds are always one instruction
    74       return op->result_opr()->is_single_cpu();
    77     case lir_move: {
    78       LIR_Op1* op1 = op->as_Op1();
    79       LIR_Opr src = op1->in_opr();
    80       LIR_Opr dst = op1->result_opr();
    82       if (src == dst) {
    83         NEEDS_CLEANUP;
    84         // this works around a problem where moves with the same src and dst
    85         // end up in the delay slot and then the assembler swallows the mov
    86         // since it has no effect and then it complains because the delay slot
    87         // is empty.  returning false stops the optimizer from putting this in
    88         // the delay slot
    89         return false;
    90       }
    92       // don't put moves involving oops into the delay slot since the VerifyOops code
    93       // will make it much larger than a single instruction.
    94       if (VerifyOops) {
    95         return false;
    96       }
    98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
   100         return false;
   101       }
   103       if (UseCompressedOops) {
   104         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
   105         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
   106       }
   108       if (UseCompressedClassPointers) {
   109         if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
   110             src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
   111       }
   113       if (dst->is_register()) {
   114         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
   115           return !PatchALot;
   116         } else if (src->is_single_stack()) {
   117           return true;
   118         }
   119       }
   121       if (src->is_register()) {
   122         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   123           return !PatchALot;
   124         } else if (dst->is_single_stack()) {
   125           return true;
   126         }
   127       }
   129       if (dst->is_register() &&
   130           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   131            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   132         return true;
   133       }
   135       return false;
   136     }
   138     default:
   139       return false;
   140   }
   141   ShouldNotReachHere();
   142 }
   145 LIR_Opr LIR_Assembler::receiverOpr() {
   146   return FrameMap::O0_oop_opr;
   147 }
   150 LIR_Opr LIR_Assembler::osrBufferPointer() {
   151   return FrameMap::I0_opr;
   152 }
   155 int LIR_Assembler::initial_frame_size_in_bytes() {
   156   return in_bytes(frame_map()->framesize_in_bytes());
   157 }
   160 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   161 // we fetch the class of the receiver (O0) and compare it with the cached class.
   162 // If they do not match we jump to slow case.
   163 int LIR_Assembler::check_icache() {
   164   int offset = __ offset();
   165   __ inline_cache_check(O0, G5_inline_cache_reg);
   166   return offset;
   167 }
   170 void LIR_Assembler::osr_entry() {
   171   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   172   //
   173   //   1. Create a new compiled activation.
   174   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   175   //      at the osr_bci; it is not initialized.
   176   //   3. Jump to the continuation address in compiled code to resume execution.
   178   // OSR entry point
   179   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   180   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   181   ValueStack* entry_state = osr_entry->end()->state();
   182   int number_of_locks = entry_state->locks_size();
   184   // Create a frame for the compiled activation.
   185   __ build_frame(initial_frame_size_in_bytes());
   187   // OSR buffer is
   188   //
   189   // locals[nlocals-1..0]
   190   // monitors[number_of_locks-1..0]
   191   //
   192   // locals is a direct copy of the interpreter frame so in the osr buffer
   193   // so first slot in the local array is the last local from the interpreter
   194   // and last slot is local[0] (receiver) from the interpreter
   195   //
   196   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   197   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   198   // in the interpreter frame (the method lock if a sync method)
   200   // Initialize monitors in the compiled activation.
   201   //   I0: pointer to osr buffer
   202   //
   203   // All other registers are dead at this point and the locals will be
   204   // copied into place by code emitted in the IR.
   206   Register OSR_buf = osrBufferPointer()->as_register();
   207   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   208     int monitor_offset = BytesPerWord * method()->max_locals() +
   209       (2 * BytesPerWord) * (number_of_locks - 1);
   210     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   211     // the OSR buffer using 2 word entries: first the lock and then
   212     // the oop.
   213     for (int i = 0; i < number_of_locks; i++) {
   214       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   215 #ifdef ASSERT
   216       // verify the interpreter's monitor has a non-null object
   217       {
   218         Label L;
   219         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   220         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
   221         __ stop("locked object is NULL");
   222         __ bind(L);
   223       }
   224 #endif // ASSERT
   225       // Copy the lock field into the compiled activation.
   226       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   227       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   228       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   229       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   230     }
   231   }
   232 }
   235 // Optimized Library calls
   236 // This is the fast version of java.lang.String.compare; it has not
   237 // OSR-entry and therefore, we generate a slow version for OSR's
   238 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   239   Register str0 = left->as_register();
   240   Register str1 = right->as_register();
   242   Label Ldone;
   244   Register result = dst->as_register();
   245   {
   246     // Get a pointer to the first character of string0 in tmp0
   247     //   and get string0.length() in str0
   248     // Get a pointer to the first character of string1 in tmp1
   249     //   and get string1.length() in str1
   250     // Also, get string0.length()-string1.length() in
   251     //   o7 and get the condition code set
   252     // Note: some instructions have been hoisted for better instruction scheduling
   254     Register tmp0 = L0;
   255     Register tmp1 = L1;
   256     Register tmp2 = L2;
   258     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   259     if (java_lang_String::has_offset_field()) {
   260       int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   261       int  count_offset = java_lang_String:: count_offset_in_bytes();
   262       __ load_heap_oop(str0, value_offset, tmp0);
   263       __ ld(str0, offset_offset, tmp2);
   264       __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   265       __ ld(str0, count_offset, str0);
   266       __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   267     } else {
   268       __ load_heap_oop(str0, value_offset, tmp1);
   269       __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   270       __ ld(tmp1, arrayOopDesc::length_offset_in_bytes(), str0);
   271     }
   273     // str1 may be null
   274     add_debug_info_for_null_check_here(info);
   276     if (java_lang_String::has_offset_field()) {
   277       int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   278       int  count_offset = java_lang_String:: count_offset_in_bytes();
   279       __ load_heap_oop(str1, value_offset, tmp1);
   280       __ add(tmp0, tmp2, tmp0);
   282       __ ld(str1, offset_offset, tmp2);
   283       __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   284       __ ld(str1, count_offset, str1);
   285       __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   286       __ add(tmp1, tmp2, tmp1);
   287     } else {
   288       __ load_heap_oop(str1, value_offset, tmp2);
   289       __ add(tmp2, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   290       __ ld(tmp2, arrayOopDesc::length_offset_in_bytes(), str1);
   291     }
   292     __ subcc(str0, str1, O7);
   293   }
   295   {
   296     // Compute the minimum of the string lengths, scale it and store it in limit
   297     Register count0 = I0;
   298     Register count1 = I1;
   299     Register limit  = L3;
   301     Label Lskip;
   302     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   303     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   304     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   305     __ bind(Lskip);
   307     // If either string is empty (or both of them) the result is the difference in lengths
   308     __ cmp(limit, 0);
   309     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   310     __ delayed()->mov(O7, result);  // result is difference in lengths
   311   }
   313   {
   314     // Neither string is empty
   315     Label Lloop;
   317     Register base0 = L0;
   318     Register base1 = L1;
   319     Register chr0  = I0;
   320     Register chr1  = I1;
   321     Register limit = L3;
   323     // Shift base0 and base1 to the end of the arrays, negate limit
   324     __ add(base0, limit, base0);
   325     __ add(base1, limit, base1);
   326     __ neg(limit);  // limit = -min{string0.length(), string1.length()}
   328     __ lduh(base0, limit, chr0);
   329     __ bind(Lloop);
   330     __ lduh(base1, limit, chr1);
   331     __ subcc(chr0, chr1, chr0);
   332     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   333     assert(chr0 == result, "result must be pre-placed");
   334     __ delayed()->inccc(limit, sizeof(jchar));
   335     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   336     __ delayed()->lduh(base0, limit, chr0);
   337   }
   339   // If strings are equal up to min length, return the length difference.
   340   __ mov(O7, result);
   342   // Otherwise, return the difference between the first mismatched chars.
   343   __ bind(Ldone);
   344 }
   347 // --------------------------------------------------------------------------------------------
   349 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   350   if (!GenerateSynchronizationCode) return;
   352   Register obj_reg = obj_opr->as_register();
   353   Register lock_reg = lock_opr->as_register();
   355   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   356   Register reg = mon_addr.base();
   357   int offset = mon_addr.disp();
   358   // compute pointer to BasicLock
   359   if (mon_addr.is_simm13()) {
   360     __ add(reg, offset, lock_reg);
   361   }
   362   else {
   363     __ set(offset, lock_reg);
   364     __ add(reg, lock_reg, lock_reg);
   365   }
   366   // unlock object
   367   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   368   // _slow_case_stubs->append(slow_case);
   369   // temporary fix: must be created after exceptionhandler, therefore as call stub
   370   _slow_case_stubs->append(slow_case);
   371   if (UseFastLocking) {
   372     // try inlined fast unlocking first, revert to slow locking if it fails
   373     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   374     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   375     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   376   } else {
   377     // always do slow unlocking
   378     // note: the slow unlocking code could be inlined here, however if we use
   379     //       slow unlocking, speed doesn't matter anyway and this solution is
   380     //       simpler and requires less duplicated code - additionally, the
   381     //       slow unlocking code is the same in either case which simplifies
   382     //       debugging
   383     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   384     __ delayed()->nop();
   385   }
   386   // done
   387   __ bind(*slow_case->continuation());
   388 }
   391 int LIR_Assembler::emit_exception_handler() {
   392   // if the last instruction is a call (typically to do a throw which
   393   // is coming at the end after block reordering) the return address
   394   // must still point into the code area in order to avoid assertion
   395   // failures when searching for the corresponding bci => add a nop
   396   // (was bug 5/14/1999 - gri)
   397   __ nop();
   399   // generate code for exception handler
   400   ciMethod* method = compilation()->method();
   402   address handler_base = __ start_a_stub(exception_handler_size);
   404   if (handler_base == NULL) {
   405     // not enough space left for the handler
   406     bailout("exception handler overflow");
   407     return -1;
   408   }
   410   int offset = code_offset();
   412   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
   413   __ delayed()->nop();
   414   __ should_not_reach_here();
   415   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   416   __ end_a_stub();
   418   return offset;
   419 }
   422 // Emit the code to remove the frame from the stack in the exception
   423 // unwind path.
   424 int LIR_Assembler::emit_unwind_handler() {
   425 #ifndef PRODUCT
   426   if (CommentedAssembly) {
   427     _masm->block_comment("Unwind handler");
   428   }
   429 #endif
   431   int offset = code_offset();
   433   // Fetch the exception from TLS and clear out exception related thread state
   434   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
   435   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
   436   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
   438   __ bind(_unwind_handler_entry);
   439   __ verify_not_null_oop(O0);
   440   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   441     __ mov(O0, I0);  // Preserve the exception
   442   }
   444   // Preform needed unlocking
   445   MonitorExitStub* stub = NULL;
   446   if (method()->is_synchronized()) {
   447     monitor_address(0, FrameMap::I1_opr);
   448     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
   449     __ unlock_object(I3, I2, I1, *stub->entry());
   450     __ bind(*stub->continuation());
   451   }
   453   if (compilation()->env()->dtrace_method_probes()) {
   454     __ mov(G2_thread, O0);
   455     __ save_thread(I1); // need to preserve thread in G2 across
   456                         // runtime call
   457     metadata2reg(method()->constant_encoding(), O1);
   458     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
   459     __ delayed()->nop();
   460     __ restore_thread(I1);
   461   }
   463   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   464     __ mov(I0, O0);  // Restore the exception
   465   }
   467   // dispatch to the unwind logic
   468   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
   469   __ delayed()->nop();
   471   // Emit the slow path assembly
   472   if (stub != NULL) {
   473     stub->emit_code(this);
   474   }
   476   return offset;
   477 }
   480 int LIR_Assembler::emit_deopt_handler() {
   481   // if the last instruction is a call (typically to do a throw which
   482   // is coming at the end after block reordering) the return address
   483   // must still point into the code area in order to avoid assertion
   484   // failures when searching for the corresponding bci => add a nop
   485   // (was bug 5/14/1999 - gri)
   486   __ nop();
   488   // generate code for deopt handler
   489   ciMethod* method = compilation()->method();
   490   address handler_base = __ start_a_stub(deopt_handler_size);
   491   if (handler_base == NULL) {
   492     // not enough space left for the handler
   493     bailout("deopt handler overflow");
   494     return -1;
   495   }
   497   int offset = code_offset();
   498   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   499   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   500   __ delayed()->nop();
   501   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   502   __ end_a_stub();
   504   return offset;
   505 }
   508 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   509   if (o == NULL) {
   510     __ set(NULL_WORD, reg);
   511   } else {
   512     int oop_index = __ oop_recorder()->find_index(o);
   513     assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
   514     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   515     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   516   }
   517 }
   520 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   521   // Allocate a new index in table to hold the object once it's been patched
   522   int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
   523   PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
   525   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   526   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   527   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   528   // NULL will be dynamically patched later and the patched value may be large.  We must
   529   // therefore generate the sethi/add as a placeholders
   530   __ patchable_set(addrlit, reg);
   532   patching_epilog(patch, lir_patch_normal, reg, info);
   533 }
   536 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
   537   __ set_metadata_constant(o, reg);
   538 }
   540 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
   541   // Allocate a new index in table to hold the klass once it's been patched
   542   int index = __ oop_recorder()->allocate_metadata_index(NULL);
   543   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
   544   AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
   545   assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
   546   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   547   // NULL will be dynamically patched later and the patched value may be large.  We must
   548   // therefore generate the sethi/add as a placeholders
   549   __ patchable_set(addrlit, reg);
   551   patching_epilog(patch, lir_patch_normal, reg, info);
   552 }
   554 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   555   Register Rdividend = op->in_opr1()->as_register();
   556   Register Rdivisor  = noreg;
   557   Register Rscratch  = op->in_opr3()->as_register();
   558   Register Rresult   = op->result_opr()->as_register();
   559   int divisor = -1;
   561   if (op->in_opr2()->is_register()) {
   562     Rdivisor = op->in_opr2()->as_register();
   563   } else {
   564     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   565     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   566   }
   568   assert(Rdividend != Rscratch, "");
   569   assert(Rdivisor  != Rscratch, "");
   570   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   572   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   573     // convert division by a power of two into some shifts and logical operations
   574     if (op->code() == lir_idiv) {
   575       if (divisor == 2) {
   576         __ srl(Rdividend, 31, Rscratch);
   577       } else {
   578         __ sra(Rdividend, 31, Rscratch);
   579         __ and3(Rscratch, divisor - 1, Rscratch);
   580       }
   581       __ add(Rdividend, Rscratch, Rscratch);
   582       __ sra(Rscratch, log2_intptr(divisor), Rresult);
   583       return;
   584     } else {
   585       if (divisor == 2) {
   586         __ srl(Rdividend, 31, Rscratch);
   587       } else {
   588         __ sra(Rdividend, 31, Rscratch);
   589         __ and3(Rscratch, divisor - 1,Rscratch);
   590       }
   591       __ add(Rdividend, Rscratch, Rscratch);
   592       __ andn(Rscratch, divisor - 1,Rscratch);
   593       __ sub(Rdividend, Rscratch, Rresult);
   594       return;
   595     }
   596   }
   598   __ sra(Rdividend, 31, Rscratch);
   599   __ wry(Rscratch);
   601   add_debug_info_for_div0_here(op->info());
   603   if (Rdivisor != noreg) {
   604     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   605   } else {
   606     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   607     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   608   }
   610   Label skip;
   611   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   612   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   613   __ bind(skip);
   615   if (op->code() == lir_irem) {
   616     if (Rdivisor != noreg) {
   617       __ smul(Rscratch, Rdivisor, Rscratch);
   618     } else {
   619       __ smul(Rscratch, divisor, Rscratch);
   620     }
   621     __ sub(Rdividend, Rscratch, Rresult);
   622   }
   623 }
   626 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   627 #ifdef ASSERT
   628   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   629   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   630   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   631 #endif
   632   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   634   if (op->cond() == lir_cond_always) {
   635     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   636   } else if (op->code() == lir_cond_float_branch) {
   637     assert(op->ublock() != NULL, "must have unordered successor");
   638     bool is_unordered = (op->ublock() == op->block());
   639     Assembler::Condition acond;
   640     switch (op->cond()) {
   641       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   642       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   643       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   644       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   645       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   646       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   647       default :                         ShouldNotReachHere();
   648     }
   649     __ fb( acond, false, Assembler::pn, *(op->label()));
   650   } else {
   651     assert (op->code() == lir_branch, "just checking");
   653     Assembler::Condition acond;
   654     switch (op->cond()) {
   655       case lir_cond_equal:        acond = Assembler::equal;                break;
   656       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   657       case lir_cond_less:         acond = Assembler::less;                 break;
   658       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   659       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   660       case lir_cond_greater:      acond = Assembler::greater;              break;
   661       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   662       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   663       default:                         ShouldNotReachHere();
   664     };
   666     // sparc has different condition codes for testing 32-bit
   667     // vs. 64-bit values.  We could always test xcc is we could
   668     // guarantee that 32-bit loads always sign extended but that isn't
   669     // true and since sign extension isn't free, it would impose a
   670     // slight cost.
   671 #ifdef _LP64
   672     if  (op->type() == T_INT) {
   673       __ br(acond, false, Assembler::pn, *(op->label()));
   674     } else
   675 #endif
   676       __ brx(acond, false, Assembler::pn, *(op->label()));
   677   }
   678   // The peephole pass fills the delay slot
   679 }
   682 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   683   Bytecodes::Code code = op->bytecode();
   684   LIR_Opr dst = op->result_opr();
   686   switch(code) {
   687     case Bytecodes::_i2l: {
   688       Register rlo  = dst->as_register_lo();
   689       Register rhi  = dst->as_register_hi();
   690       Register rval = op->in_opr()->as_register();
   691 #ifdef _LP64
   692       __ sra(rval, 0, rlo);
   693 #else
   694       __ mov(rval, rlo);
   695       __ sra(rval, BitsPerInt-1, rhi);
   696 #endif
   697       break;
   698     }
   699     case Bytecodes::_i2d:
   700     case Bytecodes::_i2f: {
   701       bool is_double = (code == Bytecodes::_i2d);
   702       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   703       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   704       FloatRegister rsrc = op->in_opr()->as_float_reg();
   705       if (rsrc != rdst) {
   706         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   707       }
   708       __ fitof(w, rdst, rdst);
   709       break;
   710     }
   711     case Bytecodes::_f2i:{
   712       FloatRegister rsrc = op->in_opr()->as_float_reg();
   713       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   714       Label L;
   715       // result must be 0 if value is NaN; test by comparing value to itself
   716       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   717       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   718       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   719       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   720       // move integer result from float register to int register
   721       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   722       __ bind (L);
   723       break;
   724     }
   725     case Bytecodes::_l2i: {
   726       Register rlo  = op->in_opr()->as_register_lo();
   727       Register rhi  = op->in_opr()->as_register_hi();
   728       Register rdst = dst->as_register();
   729 #ifdef _LP64
   730       __ sra(rlo, 0, rdst);
   731 #else
   732       __ mov(rlo, rdst);
   733 #endif
   734       break;
   735     }
   736     case Bytecodes::_d2f:
   737     case Bytecodes::_f2d: {
   738       bool is_double = (code == Bytecodes::_f2d);
   739       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   740       LIR_Opr val = op->in_opr();
   741       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   742       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   743       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   744       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   745       __ ftof(vw, dw, rval, rdst);
   746       break;
   747     }
   748     case Bytecodes::_i2s:
   749     case Bytecodes::_i2b: {
   750       Register rval = op->in_opr()->as_register();
   751       Register rdst = dst->as_register();
   752       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   753       __ sll (rval, shift, rdst);
   754       __ sra (rdst, shift, rdst);
   755       break;
   756     }
   757     case Bytecodes::_i2c: {
   758       Register rval = op->in_opr()->as_register();
   759       Register rdst = dst->as_register();
   760       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   761       __ sll (rval, shift, rdst);
   762       __ srl (rdst, shift, rdst);
   763       break;
   764     }
   766     default: ShouldNotReachHere();
   767   }
   768 }
   771 void LIR_Assembler::align_call(LIR_Code) {
   772   // do nothing since all instructions are word aligned on sparc
   773 }
   776 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
   777   __ call(op->addr(), rtype);
   778   // The peephole pass fills the delay slot, add_call_info is done in
   779   // LIR_Assembler::emit_delay.
   780 }
   783 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
   784   __ ic_call(op->addr(), false);
   785   // The peephole pass fills the delay slot, add_call_info is done in
   786   // LIR_Assembler::emit_delay.
   787 }
   790 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
   791   add_debug_info_for_null_check_here(op->info());
   792   __ load_klass(O0, G3_scratch);
   793   if (Assembler::is_simm13(op->vtable_offset())) {
   794     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
   795   } else {
   796     // This will generate 2 instructions
   797     __ set(op->vtable_offset(), G5_method);
   798     // ld_ptr, set_hi, set
   799     __ ld_ptr(G3_scratch, G5_method, G5_method);
   800   }
   801   __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
   802   __ callr(G3_scratch, G0);
   803   // the peephole pass fills the delay slot
   804 }
   806 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
   807   int store_offset;
   808   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   809     assert(!unaligned, "can't handle this");
   810     // for offsets larger than a simm13 we setup the offset in O7
   811     __ set(offset, O7);
   812     store_offset = store(from_reg, base, O7, type, wide);
   813   } else {
   814     if (type == T_ARRAY || type == T_OBJECT) {
   815       __ verify_oop(from_reg->as_register());
   816     }
   817     store_offset = code_offset();
   818     switch (type) {
   819       case T_BOOLEAN: // fall through
   820       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   821       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   822       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   823       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   824       case T_LONG  :
   825 #ifdef _LP64
   826         if (unaligned || PatchALot) {
   827           __ srax(from_reg->as_register_lo(), 32, O7);
   828           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   829           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   830         } else {
   831           __ stx(from_reg->as_register_lo(), base, offset);
   832         }
   833 #else
   834         assert(Assembler::is_simm13(offset + 4), "must be");
   835         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   836         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   837 #endif
   838         break;
   839       case T_ADDRESS:
   840       case T_METADATA:
   841         __ st_ptr(from_reg->as_register(), base, offset);
   842         break;
   843       case T_ARRAY : // fall through
   844       case T_OBJECT:
   845         {
   846           if (UseCompressedOops && !wide) {
   847             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   848             store_offset = code_offset();
   849             __ stw(G3_scratch, base, offset);
   850           } else {
   851             __ st_ptr(from_reg->as_register(), base, offset);
   852           }
   853           break;
   854         }
   856       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   857       case T_DOUBLE:
   858         {
   859           FloatRegister reg = from_reg->as_double_reg();
   860           // split unaligned stores
   861           if (unaligned || PatchALot) {
   862             assert(Assembler::is_simm13(offset + 4), "must be");
   863             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   864             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   865           } else {
   866             __ stf(FloatRegisterImpl::D, reg, base, offset);
   867           }
   868           break;
   869         }
   870       default      : ShouldNotReachHere();
   871     }
   872   }
   873   return store_offset;
   874 }
   877 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
   878   if (type == T_ARRAY || type == T_OBJECT) {
   879     __ verify_oop(from_reg->as_register());
   880   }
   881   int store_offset = code_offset();
   882   switch (type) {
   883     case T_BOOLEAN: // fall through
   884     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   885     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   886     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   887     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   888     case T_LONG  :
   889 #ifdef _LP64
   890       __ stx(from_reg->as_register_lo(), base, disp);
   891 #else
   892       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   893       __ std(from_reg->as_register_hi(), base, disp);
   894 #endif
   895       break;
   896     case T_ADDRESS:
   897       __ st_ptr(from_reg->as_register(), base, disp);
   898       break;
   899     case T_ARRAY : // fall through
   900     case T_OBJECT:
   901       {
   902         if (UseCompressedOops && !wide) {
   903           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   904           store_offset = code_offset();
   905           __ stw(G3_scratch, base, disp);
   906         } else {
   907           __ st_ptr(from_reg->as_register(), base, disp);
   908         }
   909         break;
   910       }
   911     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   912     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   913     default      : ShouldNotReachHere();
   914   }
   915   return store_offset;
   916 }
   919 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
   920   int load_offset;
   921   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   922     assert(base != O7, "destroying register");
   923     assert(!unaligned, "can't handle this");
   924     // for offsets larger than a simm13 we setup the offset in O7
   925     __ set(offset, O7);
   926     load_offset = load(base, O7, to_reg, type, wide);
   927   } else {
   928     load_offset = code_offset();
   929     switch(type) {
   930       case T_BOOLEAN: // fall through
   931       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   932       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   933       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   934       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
   935       case T_LONG  :
   936         if (!unaligned) {
   937 #ifdef _LP64
   938           __ ldx(base, offset, to_reg->as_register_lo());
   939 #else
   940           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   941                  "must be sequential");
   942           __ ldd(base, offset, to_reg->as_register_hi());
   943 #endif
   944         } else {
   945 #ifdef _LP64
   946           assert(base != to_reg->as_register_lo(), "can't handle this");
   947           assert(O7 != to_reg->as_register_lo(), "can't handle this");
   948           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
   949           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
   950           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
   951           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
   952 #else
   953           if (base == to_reg->as_register_lo()) {
   954             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   955             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   956           } else {
   957             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   958             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   959           }
   960 #endif
   961         }
   962         break;
   963       case T_METADATA:  __ ld_ptr(base, offset, to_reg->as_register()); break;
   964       case T_ADDRESS:
   965 #ifdef _LP64
   966         if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
   967           __ lduw(base, offset, to_reg->as_register());
   968           __ decode_klass_not_null(to_reg->as_register());
   969         } else
   970 #endif
   971         {
   972           __ ld_ptr(base, offset, to_reg->as_register());
   973         }
   974         break;
   975       case T_ARRAY : // fall through
   976       case T_OBJECT:
   977         {
   978           if (UseCompressedOops && !wide) {
   979             __ lduw(base, offset, to_reg->as_register());
   980             __ decode_heap_oop(to_reg->as_register());
   981           } else {
   982             __ ld_ptr(base, offset, to_reg->as_register());
   983           }
   984           break;
   985         }
   986       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
   987       case T_DOUBLE:
   988         {
   989           FloatRegister reg = to_reg->as_double_reg();
   990           // split unaligned loads
   991           if (unaligned || PatchALot) {
   992             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
   993             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
   994           } else {
   995             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
   996           }
   997           break;
   998         }
   999       default      : ShouldNotReachHere();
  1001     if (type == T_ARRAY || type == T_OBJECT) {
  1002       __ verify_oop(to_reg->as_register());
  1005   return load_offset;
  1009 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
  1010   int load_offset = code_offset();
  1011   switch(type) {
  1012     case T_BOOLEAN: // fall through
  1013     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
  1014     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
  1015     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
  1016     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
  1017     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
  1018     case T_ARRAY : // fall through
  1019     case T_OBJECT:
  1021           if (UseCompressedOops && !wide) {
  1022             __ lduw(base, disp, to_reg->as_register());
  1023             __ decode_heap_oop(to_reg->as_register());
  1024           } else {
  1025             __ ld_ptr(base, disp, to_reg->as_register());
  1027           break;
  1029     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
  1030     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
  1031     case T_LONG  :
  1032 #ifdef _LP64
  1033       __ ldx(base, disp, to_reg->as_register_lo());
  1034 #else
  1035       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1036              "must be sequential");
  1037       __ ldd(base, disp, to_reg->as_register_hi());
  1038 #endif
  1039       break;
  1040     default      : ShouldNotReachHere();
  1042   if (type == T_ARRAY || type == T_OBJECT) {
  1043     __ verify_oop(to_reg->as_register());
  1045   return load_offset;
  1048 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1049   LIR_Const* c = src->as_constant_ptr();
  1050   switch (c->type()) {
  1051     case T_INT:
  1052     case T_FLOAT: {
  1053       Register src_reg = O7;
  1054       int value = c->as_jint_bits();
  1055       if (value == 0) {
  1056         src_reg = G0;
  1057       } else {
  1058         __ set(value, O7);
  1060       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1061       __ stw(src_reg, addr.base(), addr.disp());
  1062       break;
  1064     case T_ADDRESS: {
  1065       Register src_reg = O7;
  1066       int value = c->as_jint_bits();
  1067       if (value == 0) {
  1068         src_reg = G0;
  1069       } else {
  1070         __ set(value, O7);
  1072       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1073       __ st_ptr(src_reg, addr.base(), addr.disp());
  1074       break;
  1076     case T_OBJECT: {
  1077       Register src_reg = O7;
  1078       jobject2reg(c->as_jobject(), src_reg);
  1079       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1080       __ st_ptr(src_reg, addr.base(), addr.disp());
  1081       break;
  1083     case T_LONG:
  1084     case T_DOUBLE: {
  1085       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1087       Register tmp = O7;
  1088       int value_lo = c->as_jint_lo_bits();
  1089       if (value_lo == 0) {
  1090         tmp = G0;
  1091       } else {
  1092         __ set(value_lo, O7);
  1094       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1095       int value_hi = c->as_jint_hi_bits();
  1096       if (value_hi == 0) {
  1097         tmp = G0;
  1098       } else {
  1099         __ set(value_hi, O7);
  1101       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1102       break;
  1104     default:
  1105       Unimplemented();
  1110 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
  1111   LIR_Const* c = src->as_constant_ptr();
  1112   LIR_Address* addr     = dest->as_address_ptr();
  1113   Register base = addr->base()->as_pointer_register();
  1114   int offset = -1;
  1116   switch (c->type()) {
  1117     case T_INT:
  1118     case T_FLOAT:
  1119     case T_ADDRESS: {
  1120       LIR_Opr tmp = FrameMap::O7_opr;
  1121       int value = c->as_jint_bits();
  1122       if (value == 0) {
  1123         tmp = FrameMap::G0_opr;
  1124       } else if (Assembler::is_simm13(value)) {
  1125         __ set(value, O7);
  1127       if (addr->index()->is_valid()) {
  1128         assert(addr->disp() == 0, "must be zero");
  1129         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1130       } else {
  1131         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1132         offset = store(tmp, base, addr->disp(), type, wide, false);
  1134       break;
  1136     case T_LONG:
  1137     case T_DOUBLE: {
  1138       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1139       assert(Assembler::is_simm13(addr->disp()) &&
  1140              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1142       LIR_Opr tmp = FrameMap::O7_opr;
  1143       int value_lo = c->as_jint_lo_bits();
  1144       if (value_lo == 0) {
  1145         tmp = FrameMap::G0_opr;
  1146       } else {
  1147         __ set(value_lo, O7);
  1149       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
  1150       int value_hi = c->as_jint_hi_bits();
  1151       if (value_hi == 0) {
  1152         tmp = FrameMap::G0_opr;
  1153       } else {
  1154         __ set(value_hi, O7);
  1156       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
  1157       break;
  1159     case T_OBJECT: {
  1160       jobject obj = c->as_jobject();
  1161       LIR_Opr tmp;
  1162       if (obj == NULL) {
  1163         tmp = FrameMap::G0_opr;
  1164       } else {
  1165         tmp = FrameMap::O7_opr;
  1166         jobject2reg(c->as_jobject(), O7);
  1168       // handle either reg+reg or reg+disp address
  1169       if (addr->index()->is_valid()) {
  1170         assert(addr->disp() == 0, "must be zero");
  1171         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1172       } else {
  1173         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1174         offset = store(tmp, base, addr->disp(), type, wide, false);
  1177       break;
  1179     default:
  1180       Unimplemented();
  1182   if (info != NULL) {
  1183     assert(offset != -1, "offset should've been set");
  1184     add_debug_info_for_null_check(offset, info);
  1189 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1190   LIR_Const* c = src->as_constant_ptr();
  1191   LIR_Opr to_reg = dest;
  1193   switch (c->type()) {
  1194     case T_INT:
  1195     case T_ADDRESS:
  1197         jint con = c->as_jint();
  1198         if (to_reg->is_single_cpu()) {
  1199           assert(patch_code == lir_patch_none, "no patching handled here");
  1200           __ set(con, to_reg->as_register());
  1201         } else {
  1202           ShouldNotReachHere();
  1203           assert(to_reg->is_single_fpu(), "wrong register kind");
  1205           __ set(con, O7);
  1206           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1207           __ st(O7, temp_slot);
  1208           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1211       break;
  1213     case T_LONG:
  1215         jlong con = c->as_jlong();
  1217         if (to_reg->is_double_cpu()) {
  1218 #ifdef _LP64
  1219           __ set(con,  to_reg->as_register_lo());
  1220 #else
  1221           __ set(low(con),  to_reg->as_register_lo());
  1222           __ set(high(con), to_reg->as_register_hi());
  1223 #endif
  1224 #ifdef _LP64
  1225         } else if (to_reg->is_single_cpu()) {
  1226           __ set(con, to_reg->as_register());
  1227 #endif
  1228         } else {
  1229           ShouldNotReachHere();
  1230           assert(to_reg->is_double_fpu(), "wrong register kind");
  1231           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1232           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1233           __ set(low(con),  O7);
  1234           __ st(O7, temp_slot_lo);
  1235           __ set(high(con), O7);
  1236           __ st(O7, temp_slot_hi);
  1237           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1240       break;
  1242     case T_OBJECT:
  1244         if (patch_code == lir_patch_none) {
  1245           jobject2reg(c->as_jobject(), to_reg->as_register());
  1246         } else {
  1247           jobject2reg_with_patching(to_reg->as_register(), info);
  1250       break;
  1252     case T_METADATA:
  1254         if (patch_code == lir_patch_none) {
  1255           metadata2reg(c->as_metadata(), to_reg->as_register());
  1256         } else {
  1257           klass2reg_with_patching(to_reg->as_register(), info);
  1260       break;
  1262     case T_FLOAT:
  1264         address const_addr = __ float_constant(c->as_jfloat());
  1265         if (const_addr == NULL) {
  1266           bailout("const section overflow");
  1267           break;
  1269         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1270         AddressLiteral const_addrlit(const_addr, rspec);
  1271         if (to_reg->is_single_fpu()) {
  1272           __ patchable_sethi(const_addrlit, O7);
  1273           __ relocate(rspec);
  1274           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1276         } else {
  1277           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1279           __ set(const_addrlit, O7);
  1280           __ ld(O7, 0, to_reg->as_register());
  1283       break;
  1285     case T_DOUBLE:
  1287         address const_addr = __ double_constant(c->as_jdouble());
  1288         if (const_addr == NULL) {
  1289           bailout("const section overflow");
  1290           break;
  1292         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1294         if (to_reg->is_double_fpu()) {
  1295           AddressLiteral const_addrlit(const_addr, rspec);
  1296           __ patchable_sethi(const_addrlit, O7);
  1297           __ relocate(rspec);
  1298           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1299         } else {
  1300           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1301 #ifdef _LP64
  1302           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1303 #else
  1304           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1305           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1306 #endif
  1310       break;
  1312     default:
  1313       ShouldNotReachHere();
  1317 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1318   Register reg = addr->base()->as_register();
  1319   LIR_Opr index = addr->index();
  1320   if (index->is_illegal()) {
  1321     return Address(reg, addr->disp());
  1322   } else {
  1323     assert (addr->disp() == 0, "unsupported address mode");
  1324     return Address(reg, index->as_pointer_register());
  1329 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1330   switch (type) {
  1331     case T_INT:
  1332     case T_FLOAT: {
  1333       Register tmp = O7;
  1334       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1335       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1336       __ lduw(from.base(), from.disp(), tmp);
  1337       __ stw(tmp, to.base(), to.disp());
  1338       break;
  1340     case T_OBJECT: {
  1341       Register tmp = O7;
  1342       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1343       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1344       __ ld_ptr(from.base(), from.disp(), tmp);
  1345       __ st_ptr(tmp, to.base(), to.disp());
  1346       break;
  1348     case T_LONG:
  1349     case T_DOUBLE: {
  1350       Register tmp = O7;
  1351       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1352       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1353       __ lduw(from.base(), from.disp(), tmp);
  1354       __ stw(tmp, to.base(), to.disp());
  1355       __ lduw(from.base(), from.disp() + 4, tmp);
  1356       __ stw(tmp, to.base(), to.disp() + 4);
  1357       break;
  1360     default:
  1361       ShouldNotReachHere();
  1366 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1367   Address base = as_Address(addr);
  1368   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1372 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1373   Address base = as_Address(addr);
  1374   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1378 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1379                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
  1381   assert(type != T_METADATA, "load of metadata ptr not supported");
  1382   LIR_Address* addr = src_opr->as_address_ptr();
  1383   LIR_Opr to_reg = dest;
  1385   Register src = addr->base()->as_pointer_register();
  1386   Register disp_reg = noreg;
  1387   int disp_value = addr->disp();
  1388   bool needs_patching = (patch_code != lir_patch_none);
  1390   if (addr->base()->type() == T_OBJECT) {
  1391     __ verify_oop(src);
  1394   PatchingStub* patch = NULL;
  1395   if (needs_patching) {
  1396     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1397     assert(!to_reg->is_double_cpu() ||
  1398            patch_code == lir_patch_none ||
  1399            patch_code == lir_patch_normal, "patching doesn't match register");
  1402   if (addr->index()->is_illegal()) {
  1403     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1404       if (needs_patching) {
  1405         __ patchable_set(0, O7);
  1406       } else {
  1407         __ set(disp_value, O7);
  1409       disp_reg = O7;
  1411   } else if (unaligned || PatchALot) {
  1412     __ add(src, addr->index()->as_register(), O7);
  1413     src = O7;
  1414   } else {
  1415     disp_reg = addr->index()->as_pointer_register();
  1416     assert(disp_value == 0, "can't handle 3 operand addresses");
  1419   // remember the offset of the load.  The patching_epilog must be done
  1420   // before the call to add_debug_info, otherwise the PcDescs don't get
  1421   // entered in increasing order.
  1422   int offset = code_offset();
  1424   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1425   if (disp_reg == noreg) {
  1426     offset = load(src, disp_value, to_reg, type, wide, unaligned);
  1427   } else {
  1428     assert(!unaligned, "can't handle this");
  1429     offset = load(src, disp_reg, to_reg, type, wide);
  1432   if (patch != NULL) {
  1433     patching_epilog(patch, patch_code, src, info);
  1435   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1439 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1440   LIR_Address* addr = src->as_address_ptr();
  1441   Address from_addr = as_Address(addr);
  1443   if (VM_Version::has_v9()) {
  1444     __ prefetch(from_addr, Assembler::severalReads);
  1449 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1450   LIR_Address* addr = src->as_address_ptr();
  1451   Address from_addr = as_Address(addr);
  1453   if (VM_Version::has_v9()) {
  1454     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1459 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1460   Address addr;
  1461   if (src->is_single_word()) {
  1462     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1463   } else if (src->is_double_word())  {
  1464     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1467   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1468   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
  1472 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1473   Address addr;
  1474   if (dest->is_single_word()) {
  1475     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1476   } else if (dest->is_double_word())  {
  1477     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1479   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1480   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
  1484 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1485   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1486     if (from_reg->is_double_fpu()) {
  1487       // double to double moves
  1488       assert(to_reg->is_double_fpu(), "should match");
  1489       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1490     } else {
  1491       // float to float moves
  1492       assert(to_reg->is_single_fpu(), "should match");
  1493       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1495   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1496     if (from_reg->is_double_cpu()) {
  1497 #ifdef _LP64
  1498       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1499 #else
  1500       assert(to_reg->is_double_cpu() &&
  1501              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1502              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1503              "should both be long and not overlap");
  1504       // long to long moves
  1505       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1506       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1507 #endif
  1508 #ifdef _LP64
  1509     } else if (to_reg->is_double_cpu()) {
  1510       // int to int moves
  1511       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1512 #endif
  1513     } else {
  1514       // int to int moves
  1515       __ mov(from_reg->as_register(), to_reg->as_register());
  1517   } else {
  1518     ShouldNotReachHere();
  1520   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1521     __ verify_oop(to_reg->as_register());
  1526 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1527                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1528                             bool wide, bool unaligned) {
  1529   assert(type != T_METADATA, "store of metadata ptr not supported");
  1530   LIR_Address* addr = dest->as_address_ptr();
  1532   Register src = addr->base()->as_pointer_register();
  1533   Register disp_reg = noreg;
  1534   int disp_value = addr->disp();
  1535   bool needs_patching = (patch_code != lir_patch_none);
  1537   if (addr->base()->is_oop_register()) {
  1538     __ verify_oop(src);
  1541   PatchingStub* patch = NULL;
  1542   if (needs_patching) {
  1543     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1544     assert(!from_reg->is_double_cpu() ||
  1545            patch_code == lir_patch_none ||
  1546            patch_code == lir_patch_normal, "patching doesn't match register");
  1549   if (addr->index()->is_illegal()) {
  1550     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1551       if (needs_patching) {
  1552         __ patchable_set(0, O7);
  1553       } else {
  1554         __ set(disp_value, O7);
  1556       disp_reg = O7;
  1558   } else if (unaligned || PatchALot) {
  1559     __ add(src, addr->index()->as_register(), O7);
  1560     src = O7;
  1561   } else {
  1562     disp_reg = addr->index()->as_pointer_register();
  1563     assert(disp_value == 0, "can't handle 3 operand addresses");
  1566   // remember the offset of the store.  The patching_epilog must be done
  1567   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1568   // entered in increasing order.
  1569   int offset;
  1571   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1572   if (disp_reg == noreg) {
  1573     offset = store(from_reg, src, disp_value, type, wide, unaligned);
  1574   } else {
  1575     assert(!unaligned, "can't handle this");
  1576     offset = store(from_reg, src, disp_reg, type, wide);
  1579   if (patch != NULL) {
  1580     patching_epilog(patch, patch_code, src, info);
  1583   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1587 void LIR_Assembler::return_op(LIR_Opr result) {
  1588   // the poll may need a register so just pick one that isn't the return register
  1589 #if defined(TIERED) && !defined(_LP64)
  1590   if (result->type_field() == LIR_OprDesc::long_type) {
  1591     // Must move the result to G1
  1592     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1593     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1594     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1595     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1596 #ifdef ASSERT
  1597     // mangle it so any problems will show up
  1598     __ set(0xdeadbeef, I0);
  1599     __ set(0xdeadbeef, I1);
  1600 #endif
  1602 #endif // TIERED
  1603   __ set((intptr_t)os::get_polling_page(), L0);
  1604   __ relocate(relocInfo::poll_return_type);
  1605   __ ld_ptr(L0, 0, G0);
  1606   __ ret();
  1607   __ delayed()->restore();
  1611 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1612   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1613   if (info != NULL) {
  1614     add_debug_info_for_branch(info);
  1615   } else {
  1616     __ relocate(relocInfo::poll_type);
  1619   int offset = __ offset();
  1620   __ ld_ptr(tmp->as_register(), 0, G0);
  1622   return offset;
  1626 void LIR_Assembler::emit_static_call_stub() {
  1627   address call_pc = __ pc();
  1628   address stub = __ start_a_stub(call_stub_size);
  1629   if (stub == NULL) {
  1630     bailout("static call stub overflow");
  1631     return;
  1634   int start = __ offset();
  1635   __ relocate(static_stub_Relocation::spec(call_pc));
  1637   __ set_metadata(NULL, G5);
  1638   // must be set to -1 at code generation time
  1639   AddressLiteral addrlit(-1);
  1640   __ jump_to(addrlit, G3);
  1641   __ delayed()->nop();
  1643   assert(__ offset() - start <= call_stub_size, "stub too big");
  1644   __ end_a_stub();
  1648 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1649   if (opr1->is_single_fpu()) {
  1650     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1651   } else if (opr1->is_double_fpu()) {
  1652     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1653   } else if (opr1->is_single_cpu()) {
  1654     if (opr2->is_constant()) {
  1655       switch (opr2->as_constant_ptr()->type()) {
  1656         case T_INT:
  1657           { jint con = opr2->as_constant_ptr()->as_jint();
  1658             if (Assembler::is_simm13(con)) {
  1659               __ cmp(opr1->as_register(), con);
  1660             } else {
  1661               __ set(con, O7);
  1662               __ cmp(opr1->as_register(), O7);
  1665           break;
  1667         case T_OBJECT:
  1668           // there are only equal/notequal comparisions on objects
  1669           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1670             if (con == NULL) {
  1671               __ cmp(opr1->as_register(), 0);
  1672             } else {
  1673               jobject2reg(con, O7);
  1674               __ cmp(opr1->as_register(), O7);
  1677           break;
  1679         default:
  1680           ShouldNotReachHere();
  1681           break;
  1683     } else {
  1684       if (opr2->is_address()) {
  1685         LIR_Address * addr = opr2->as_address_ptr();
  1686         BasicType type = addr->type();
  1687         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1688         else                    __ ld(as_Address(addr), O7);
  1689         __ cmp(opr1->as_register(), O7);
  1690       } else {
  1691         __ cmp(opr1->as_register(), opr2->as_register());
  1694   } else if (opr1->is_double_cpu()) {
  1695     Register xlo = opr1->as_register_lo();
  1696     Register xhi = opr1->as_register_hi();
  1697     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1698       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1699 #ifdef _LP64
  1700       __ orcc(xhi, G0, G0);
  1701 #else
  1702       __ orcc(xhi, xlo, G0);
  1703 #endif
  1704     } else if (opr2->is_register()) {
  1705       Register ylo = opr2->as_register_lo();
  1706       Register yhi = opr2->as_register_hi();
  1707 #ifdef _LP64
  1708       __ cmp(xlo, ylo);
  1709 #else
  1710       __ subcc(xlo, ylo, xlo);
  1711       __ subccc(xhi, yhi, xhi);
  1712       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1713         __ orcc(xhi, xlo, G0);
  1715 #endif
  1716     } else {
  1717       ShouldNotReachHere();
  1719   } else if (opr1->is_address()) {
  1720     LIR_Address * addr = opr1->as_address_ptr();
  1721     BasicType type = addr->type();
  1722     assert (opr2->is_constant(), "Checking");
  1723     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1724     else                    __ ld(as_Address(addr), O7);
  1725     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1726   } else {
  1727     ShouldNotReachHere();
  1732 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1733   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1734     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1735     if (left->is_single_fpu()) {
  1736       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1737     } else if (left->is_double_fpu()) {
  1738       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1739     } else {
  1740       ShouldNotReachHere();
  1742   } else if (code == lir_cmp_l2i) {
  1743 #ifdef _LP64
  1744     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
  1745 #else
  1746     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1747             right->as_register_hi(), right->as_register_lo(),
  1748             dst->as_register());
  1749 #endif
  1750   } else {
  1751     ShouldNotReachHere();
  1756 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  1757   Assembler::Condition acond;
  1758   switch (condition) {
  1759     case lir_cond_equal:        acond = Assembler::equal;        break;
  1760     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1761     case lir_cond_less:         acond = Assembler::less;         break;
  1762     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1763     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1764     case lir_cond_greater:      acond = Assembler::greater;      break;
  1765     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1766     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1767     default:                         ShouldNotReachHere();
  1768   };
  1770   if (opr1->is_constant() && opr1->type() == T_INT) {
  1771     Register dest = result->as_register();
  1772     // load up first part of constant before branch
  1773     // and do the rest in the delay slot.
  1774     if (!Assembler::is_simm13(opr1->as_jint())) {
  1775       __ sethi(opr1->as_jint(), dest);
  1777   } else if (opr1->is_constant()) {
  1778     const2reg(opr1, result, lir_patch_none, NULL);
  1779   } else if (opr1->is_register()) {
  1780     reg2reg(opr1, result);
  1781   } else if (opr1->is_stack()) {
  1782     stack2reg(opr1, result, result->type());
  1783   } else {
  1784     ShouldNotReachHere();
  1786   Label skip;
  1787 #ifdef _LP64
  1788     if  (type == T_INT) {
  1789       __ br(acond, false, Assembler::pt, skip);
  1790     } else
  1791 #endif
  1792       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
  1793   if (opr1->is_constant() && opr1->type() == T_INT) {
  1794     Register dest = result->as_register();
  1795     if (Assembler::is_simm13(opr1->as_jint())) {
  1796       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1797     } else {
  1798       // the sethi has been done above, so just put in the low 10 bits
  1799       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1801   } else {
  1802     // can't do anything useful in the delay slot
  1803     __ delayed()->nop();
  1805   if (opr2->is_constant()) {
  1806     const2reg(opr2, result, lir_patch_none, NULL);
  1807   } else if (opr2->is_register()) {
  1808     reg2reg(opr2, result);
  1809   } else if (opr2->is_stack()) {
  1810     stack2reg(opr2, result, result->type());
  1811   } else {
  1812     ShouldNotReachHere();
  1814   __ bind(skip);
  1818 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1819   assert(info == NULL, "unused on this code path");
  1820   assert(left->is_register(), "wrong items state");
  1821   assert(dest->is_register(), "wrong items state");
  1823   if (right->is_register()) {
  1824     if (dest->is_float_kind()) {
  1826       FloatRegister lreg, rreg, res;
  1827       FloatRegisterImpl::Width w;
  1828       if (right->is_single_fpu()) {
  1829         w = FloatRegisterImpl::S;
  1830         lreg = left->as_float_reg();
  1831         rreg = right->as_float_reg();
  1832         res  = dest->as_float_reg();
  1833       } else {
  1834         w = FloatRegisterImpl::D;
  1835         lreg = left->as_double_reg();
  1836         rreg = right->as_double_reg();
  1837         res  = dest->as_double_reg();
  1840       switch (code) {
  1841         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1842         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1843         case lir_mul: // fall through
  1844         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1845         case lir_div: // fall through
  1846         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1847         default: ShouldNotReachHere();
  1850     } else if (dest->is_double_cpu()) {
  1851 #ifdef _LP64
  1852       Register dst_lo = dest->as_register_lo();
  1853       Register op1_lo = left->as_pointer_register();
  1854       Register op2_lo = right->as_pointer_register();
  1856       switch (code) {
  1857         case lir_add:
  1858           __ add(op1_lo, op2_lo, dst_lo);
  1859           break;
  1861         case lir_sub:
  1862           __ sub(op1_lo, op2_lo, dst_lo);
  1863           break;
  1865         default: ShouldNotReachHere();
  1867 #else
  1868       Register op1_lo = left->as_register_lo();
  1869       Register op1_hi = left->as_register_hi();
  1870       Register op2_lo = right->as_register_lo();
  1871       Register op2_hi = right->as_register_hi();
  1872       Register dst_lo = dest->as_register_lo();
  1873       Register dst_hi = dest->as_register_hi();
  1875       switch (code) {
  1876         case lir_add:
  1877           __ addcc(op1_lo, op2_lo, dst_lo);
  1878           __ addc (op1_hi, op2_hi, dst_hi);
  1879           break;
  1881         case lir_sub:
  1882           __ subcc(op1_lo, op2_lo, dst_lo);
  1883           __ subc (op1_hi, op2_hi, dst_hi);
  1884           break;
  1886         default: ShouldNotReachHere();
  1888 #endif
  1889     } else {
  1890       assert (right->is_single_cpu(), "Just Checking");
  1892       Register lreg = left->as_register();
  1893       Register res  = dest->as_register();
  1894       Register rreg = right->as_register();
  1895       switch (code) {
  1896         case lir_add:  __ add  (lreg, rreg, res); break;
  1897         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1898         case lir_mul:  __ mulx (lreg, rreg, res); break;
  1899         default: ShouldNotReachHere();
  1902   } else {
  1903     assert (right->is_constant(), "must be constant");
  1905     if (dest->is_single_cpu()) {
  1906       Register lreg = left->as_register();
  1907       Register res  = dest->as_register();
  1908       int    simm13 = right->as_constant_ptr()->as_jint();
  1910       switch (code) {
  1911         case lir_add:  __ add  (lreg, simm13, res); break;
  1912         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1913         case lir_mul:  __ mulx (lreg, simm13, res); break;
  1914         default: ShouldNotReachHere();
  1916     } else {
  1917       Register lreg = left->as_pointer_register();
  1918       Register res  = dest->as_register_lo();
  1919       long con = right->as_constant_ptr()->as_jlong();
  1920       assert(Assembler::is_simm13(con), "must be simm13");
  1922       switch (code) {
  1923         case lir_add:  __ add  (lreg, (int)con, res); break;
  1924         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1925         case lir_mul:  __ mulx (lreg, (int)con, res); break;
  1926         default: ShouldNotReachHere();
  1933 void LIR_Assembler::fpop() {
  1934   // do nothing
  1938 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1939   switch (code) {
  1940     case lir_sin:
  1941     case lir_tan:
  1942     case lir_cos: {
  1943       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1944       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1945       break;
  1947     case lir_sqrt: {
  1948       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1949       FloatRegister src_reg = value->as_double_reg();
  1950       FloatRegister dst_reg = dest->as_double_reg();
  1951       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1952       break;
  1954     case lir_abs: {
  1955       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1956       FloatRegister src_reg = value->as_double_reg();
  1957       FloatRegister dst_reg = dest->as_double_reg();
  1958       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1959       break;
  1961     default: {
  1962       ShouldNotReachHere();
  1963       break;
  1969 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  1970   if (right->is_constant()) {
  1971     if (dest->is_single_cpu()) {
  1972       int simm13 = right->as_constant_ptr()->as_jint();
  1973       switch (code) {
  1974         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  1975         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  1976         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  1977         default: ShouldNotReachHere();
  1979     } else {
  1980       long c = right->as_constant_ptr()->as_jlong();
  1981       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  1982       int simm13 = (int)c;
  1983       switch (code) {
  1984         case lir_logic_and:
  1985 #ifndef _LP64
  1986           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1987 #endif
  1988           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1989           break;
  1991         case lir_logic_or:
  1992 #ifndef _LP64
  1993           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1994 #endif
  1995           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1996           break;
  1998         case lir_logic_xor:
  1999 #ifndef _LP64
  2000           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2001 #endif
  2002           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2003           break;
  2005         default: ShouldNotReachHere();
  2008   } else {
  2009     assert(right->is_register(), "right should be in register");
  2011     if (dest->is_single_cpu()) {
  2012       switch (code) {
  2013         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2014         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  2015         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2016         default: ShouldNotReachHere();
  2018     } else {
  2019 #ifdef _LP64
  2020       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  2021                                                                         left->as_register_lo();
  2022       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  2023                                                                           right->as_register_lo();
  2025       switch (code) {
  2026         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  2027         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  2028         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  2029         default: ShouldNotReachHere();
  2031 #else
  2032       switch (code) {
  2033         case lir_logic_and:
  2034           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2035           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2036           break;
  2038         case lir_logic_or:
  2039           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2040           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2041           break;
  2043         case lir_logic_xor:
  2044           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2045           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2046           break;
  2048         default: ShouldNotReachHere();
  2050 #endif
  2056 int LIR_Assembler::shift_amount(BasicType t) {
  2057   int elem_size = type2aelembytes(t);
  2058   switch (elem_size) {
  2059     case 1 : return 0;
  2060     case 2 : return 1;
  2061     case 4 : return 2;
  2062     case 8 : return 3;
  2064   ShouldNotReachHere();
  2065   return -1;
  2069 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2070   assert(exceptionOop->as_register() == Oexception, "should match");
  2071   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
  2073   info->add_register_oop(exceptionOop);
  2075   // reuse the debug info from the safepoint poll for the throw op itself
  2076   address pc_for_athrow  = __ pc();
  2077   int pc_for_athrow_offset = __ offset();
  2078   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2079   __ set(pc_for_athrow, Oissuing_pc, rspec);
  2080   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2082   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2083   __ delayed()->nop();
  2087 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2088   assert(exceptionOop->as_register() == Oexception, "should match");
  2090   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
  2091   __ delayed()->nop();
  2094 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2095   Register src = op->src()->as_register();
  2096   Register dst = op->dst()->as_register();
  2097   Register src_pos = op->src_pos()->as_register();
  2098   Register dst_pos = op->dst_pos()->as_register();
  2099   Register length  = op->length()->as_register();
  2100   Register tmp = op->tmp()->as_register();
  2101   Register tmp2 = O7;
  2103   int flags = op->flags();
  2104   ciArrayKlass* default_type = op->expected_type();
  2105   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2106   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2108 #ifdef _LP64
  2109   // higher 32bits must be null
  2110   __ sra(dst_pos, 0, dst_pos);
  2111   __ sra(src_pos, 0, src_pos);
  2112   __ sra(length, 0, length);
  2113 #endif
  2115   // set up the arraycopy stub information
  2116   ArrayCopyStub* stub = op->stub();
  2118   // always do stub if no type information is available.  it's ok if
  2119   // the known type isn't loaded since the code sanity checks
  2120   // in debug mode and the type isn't required when we know the exact type
  2121   // also check that the type is an array type.
  2122   if (op->expected_type() == NULL) {
  2123     __ mov(src,     O0);
  2124     __ mov(src_pos, O1);
  2125     __ mov(dst,     O2);
  2126     __ mov(dst_pos, O3);
  2127     __ mov(length,  O4);
  2128     address copyfunc_addr = StubRoutines::generic_arraycopy();
  2130     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  2131       __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2132     } else {
  2133 #ifndef PRODUCT
  2134       if (PrintC1Statistics) {
  2135         address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
  2136         __ inc_counter(counter, G1, G3);
  2138 #endif
  2139       __ call_VM_leaf(tmp, copyfunc_addr);
  2142     if (copyfunc_addr != NULL) {
  2143       __ xor3(O0, -1, tmp);
  2144       __ sub(length, tmp, length);
  2145       __ add(src_pos, tmp, src_pos);
  2146       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  2147       __ delayed()->add(dst_pos, tmp, dst_pos);
  2148     } else {
  2149       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  2150       __ delayed()->nop();
  2152     __ bind(*stub->continuation());
  2153     return;
  2156   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2158   // make sure src and dst are non-null and load array length
  2159   if (flags & LIR_OpArrayCopy::src_null_check) {
  2160     __ tst(src);
  2161     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2162     __ delayed()->nop();
  2165   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2166     __ tst(dst);
  2167     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2168     __ delayed()->nop();
  2171   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2172     // test src_pos register
  2173     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
  2174     __ delayed()->nop();
  2177   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2178     // test dst_pos register
  2179     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
  2180     __ delayed()->nop();
  2183   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2184     // make sure length isn't negative
  2185     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
  2186     __ delayed()->nop();
  2189   if (flags & LIR_OpArrayCopy::src_range_check) {
  2190     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2191     __ add(length, src_pos, tmp);
  2192     __ cmp(tmp2, tmp);
  2193     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2194     __ delayed()->nop();
  2197   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2198     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2199     __ add(length, dst_pos, tmp);
  2200     __ cmp(tmp2, tmp);
  2201     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2202     __ delayed()->nop();
  2205   int shift = shift_amount(basic_type);
  2207   if (flags & LIR_OpArrayCopy::type_check) {
  2208     // We don't know the array types are compatible
  2209     if (basic_type != T_OBJECT) {
  2210       // Simple test for basic type arrays
  2211       if (UseCompressedClassPointers) {
  2212         // We don't need decode because we just need to compare
  2213         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
  2214         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2215         __ cmp(tmp, tmp2);
  2216         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2217       } else {
  2218         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2219         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2220         __ cmp(tmp, tmp2);
  2221         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2223       __ delayed()->nop();
  2224     } else {
  2225       // For object arrays, if src is a sub class of dst then we can
  2226       // safely do the copy.
  2227       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  2229       Label cont, slow;
  2230       assert_different_registers(tmp, tmp2, G3, G1);
  2232       __ load_klass(src, G3);
  2233       __ load_klass(dst, G1);
  2235       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
  2237       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2238       __ delayed()->nop();
  2240       __ cmp(G3, 0);
  2241       if (copyfunc_addr != NULL) { // use stub if available
  2242         // src is not a sub class of dst so we have to do a
  2243         // per-element check.
  2244         __ br(Assembler::notEqual, false, Assembler::pt, cont);
  2245         __ delayed()->nop();
  2247         __ bind(slow);
  2249         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  2250         if ((flags & mask) != mask) {
  2251           // Check that at least both of them object arrays.
  2252           assert(flags & mask, "one of the two should be known to be an object array");
  2254           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  2255             __ load_klass(src, tmp);
  2256           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  2257             __ load_klass(dst, tmp);
  2259           int lh_offset = in_bytes(Klass::layout_helper_offset());
  2261           __ lduw(tmp, lh_offset, tmp2);
  2263           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2264           __ set(objArray_lh, tmp);
  2265           __ cmp(tmp, tmp2);
  2266           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
  2267           __ delayed()->nop();
  2270         Register src_ptr = O0;
  2271         Register dst_ptr = O1;
  2272         Register len     = O2;
  2273         Register chk_off = O3;
  2274         Register super_k = O4;
  2276         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2277         if (shift == 0) {
  2278           __ add(src_ptr, src_pos, src_ptr);
  2279         } else {
  2280           __ sll(src_pos, shift, tmp);
  2281           __ add(src_ptr, tmp, src_ptr);
  2284         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2285         if (shift == 0) {
  2286           __ add(dst_ptr, dst_pos, dst_ptr);
  2287         } else {
  2288           __ sll(dst_pos, shift, tmp);
  2289           __ add(dst_ptr, tmp, dst_ptr);
  2291         __ mov(length, len);
  2292         __ load_klass(dst, tmp);
  2294         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  2295         __ ld_ptr(tmp, ek_offset, super_k);
  2297         int sco_offset = in_bytes(Klass::super_check_offset_offset());
  2298         __ lduw(super_k, sco_offset, chk_off);
  2300         __ call_VM_leaf(tmp, copyfunc_addr);
  2302 #ifndef PRODUCT
  2303         if (PrintC1Statistics) {
  2304           Label failed;
  2305           __ br_notnull_short(O0, Assembler::pn, failed);
  2306           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
  2307           __ bind(failed);
  2309 #endif
  2311         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
  2312         __ delayed()->xor3(O0, -1, tmp);
  2314 #ifndef PRODUCT
  2315         if (PrintC1Statistics) {
  2316           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
  2318 #endif
  2320         __ sub(length, tmp, length);
  2321         __ add(src_pos, tmp, src_pos);
  2322         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
  2323         __ delayed()->add(dst_pos, tmp, dst_pos);
  2325         __ bind(cont);
  2326       } else {
  2327         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2328         __ delayed()->nop();
  2329         __ bind(cont);
  2334 #ifdef ASSERT
  2335   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2336     // Sanity check the known type with the incoming class.  For the
  2337     // primitive case the types must match exactly with src.klass and
  2338     // dst.klass each exactly matching the default type.  For the
  2339     // object array case, if no type check is needed then either the
  2340     // dst type is exactly the expected type and the src type is a
  2341     // subtype which we can't check or src is the same array as dst
  2342     // but not necessarily exactly of type default_type.
  2343     Label known_ok, halt;
  2344     metadata2reg(op->expected_type()->constant_encoding(), tmp);
  2345     if (UseCompressedClassPointers) {
  2346       // tmp holds the default type. It currently comes uncompressed after the
  2347       // load of a constant, so encode it.
  2348       __ encode_klass_not_null(tmp);
  2349       // load the raw value of the dst klass, since we will be comparing
  2350       // uncompressed values directly.
  2351       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2352       if (basic_type != T_OBJECT) {
  2353         __ cmp(tmp, tmp2);
  2354         __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2355         // load the raw value of the src klass.
  2356         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2357         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  2358       } else {
  2359         __ cmp(tmp, tmp2);
  2360         __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2361         __ delayed()->cmp(src, dst);
  2362         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2363         __ delayed()->nop();
  2365     } else {
  2366       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2367       if (basic_type != T_OBJECT) {
  2368         __ cmp(tmp, tmp2);
  2369         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
  2370         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2371         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  2372       } else {
  2373         __ cmp(tmp, tmp2);
  2374         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2375         __ delayed()->cmp(src, dst);
  2376         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2377         __ delayed()->nop();
  2380     __ bind(halt);
  2381     __ stop("incorrect type information in arraycopy");
  2382     __ bind(known_ok);
  2384 #endif
  2386 #ifndef PRODUCT
  2387   if (PrintC1Statistics) {
  2388     address counter = Runtime1::arraycopy_count_address(basic_type);
  2389     __ inc_counter(counter, G1, G3);
  2391 #endif
  2393   Register src_ptr = O0;
  2394   Register dst_ptr = O1;
  2395   Register len     = O2;
  2397   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2398   if (shift == 0) {
  2399     __ add(src_ptr, src_pos, src_ptr);
  2400   } else {
  2401     __ sll(src_pos, shift, tmp);
  2402     __ add(src_ptr, tmp, src_ptr);
  2405   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2406   if (shift == 0) {
  2407     __ add(dst_ptr, dst_pos, dst_ptr);
  2408   } else {
  2409     __ sll(dst_pos, shift, tmp);
  2410     __ add(dst_ptr, tmp, dst_ptr);
  2413   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  2414   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  2415   const char *name;
  2416   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  2418   // arraycopy stubs takes a length in number of elements, so don't scale it.
  2419   __ mov(length, len);
  2420   __ call_VM_leaf(tmp, entry);
  2422   __ bind(*stub->continuation());
  2426 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2427   if (dest->is_single_cpu()) {
  2428 #ifdef _LP64
  2429     if (left->type() == T_OBJECT) {
  2430       switch (code) {
  2431         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2432         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2433         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2434         default: ShouldNotReachHere();
  2436     } else
  2437 #endif
  2438       switch (code) {
  2439         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2440         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2441         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2442         default: ShouldNotReachHere();
  2444   } else {
  2445 #ifdef _LP64
  2446     switch (code) {
  2447       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2448       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2449       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2450       default: ShouldNotReachHere();
  2452 #else
  2453     switch (code) {
  2454       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2455       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2456       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2457       default: ShouldNotReachHere();
  2459 #endif
  2464 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2465 #ifdef _LP64
  2466   if (left->type() == T_OBJECT) {
  2467     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2468     Register l = left->as_register();
  2469     Register d = dest->as_register_lo();
  2470     switch (code) {
  2471       case lir_shl:  __ sllx  (l, count, d); break;
  2472       case lir_shr:  __ srax  (l, count, d); break;
  2473       case lir_ushr: __ srlx  (l, count, d); break;
  2474       default: ShouldNotReachHere();
  2476     return;
  2478 #endif
  2480   if (dest->is_single_cpu()) {
  2481     count = count & 0x1F; // Java spec
  2482     switch (code) {
  2483       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2484       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2485       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2486       default: ShouldNotReachHere();
  2488   } else if (dest->is_double_cpu()) {
  2489     count = count & 63; // Java spec
  2490     switch (code) {
  2491       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2492       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2493       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2494       default: ShouldNotReachHere();
  2496   } else {
  2497     ShouldNotReachHere();
  2502 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2503   assert(op->tmp1()->as_register()  == G1 &&
  2504          op->tmp2()->as_register()  == G3 &&
  2505          op->tmp3()->as_register()  == G4 &&
  2506          op->obj()->as_register()   == O0 &&
  2507          op->klass()->as_register() == G5, "must be");
  2508   if (op->init_check()) {
  2509     __ ldub(op->klass()->as_register(),
  2510           in_bytes(InstanceKlass::init_state_offset()),
  2511           op->tmp1()->as_register());
  2512     add_debug_info_for_null_check_here(op->stub()->info());
  2513     __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
  2514     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2515     __ delayed()->nop();
  2517   __ allocate_object(op->obj()->as_register(),
  2518                      op->tmp1()->as_register(),
  2519                      op->tmp2()->as_register(),
  2520                      op->tmp3()->as_register(),
  2521                      op->header_size(),
  2522                      op->object_size(),
  2523                      op->klass()->as_register(),
  2524                      *op->stub()->entry());
  2525   __ bind(*op->stub()->continuation());
  2526   __ verify_oop(op->obj()->as_register());
  2530 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2531   assert(op->tmp1()->as_register()  == G1 &&
  2532          op->tmp2()->as_register()  == G3 &&
  2533          op->tmp3()->as_register()  == G4 &&
  2534          op->tmp4()->as_register()  == O1 &&
  2535          op->klass()->as_register() == G5, "must be");
  2537   LP64_ONLY( __ signx(op->len()->as_register()); )
  2538   if (UseSlowPath ||
  2539       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2540       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2541     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2542     __ delayed()->nop();
  2543   } else {
  2544     __ allocate_array(op->obj()->as_register(),
  2545                       op->len()->as_register(),
  2546                       op->tmp1()->as_register(),
  2547                       op->tmp2()->as_register(),
  2548                       op->tmp3()->as_register(),
  2549                       arrayOopDesc::header_size(op->type()),
  2550                       type2aelembytes(op->type()),
  2551                       op->klass()->as_register(),
  2552                       *op->stub()->entry());
  2554   __ bind(*op->stub()->continuation());
  2558 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
  2559                                         ciMethodData *md, ciProfileData *data,
  2560                                         Register recv, Register tmp1, Label* update_done) {
  2561   uint i;
  2562   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2563     Label next_test;
  2564     // See if the receiver is receiver[n].
  2565     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2566                           mdo_offset_bias);
  2567     __ ld_ptr(receiver_addr, tmp1);
  2568     __ verify_oop(tmp1);
  2569     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
  2570     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2571                       mdo_offset_bias);
  2572     __ ld_ptr(data_addr, tmp1);
  2573     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2574     __ st_ptr(tmp1, data_addr);
  2575     __ ba(*update_done);
  2576     __ delayed()->nop();
  2577     __ bind(next_test);
  2580   // Didn't find receiver; find next empty slot and fill it in
  2581   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2582     Label next_test;
  2583     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2584                       mdo_offset_bias);
  2585     __ ld_ptr(recv_addr, tmp1);
  2586     __ br_notnull_short(tmp1, Assembler::pt, next_test);
  2587     __ st_ptr(recv, recv_addr);
  2588     __ set(DataLayout::counter_increment, tmp1);
  2589     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2590               mdo_offset_bias);
  2591     __ ba(*update_done);
  2592     __ delayed()->nop();
  2593     __ bind(next_test);
  2598 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
  2599                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
  2600   md = method->method_data_or_null();
  2601   assert(md != NULL, "Sanity");
  2602   data = md->bci_to_data(bci);
  2603   assert(data != NULL,       "need data for checkcast");
  2604   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  2605   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2606     // The offset is large so bias the mdo by the base of the slot so
  2607     // that the ld can use simm13s to reference the slots of the data
  2608     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2612 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  2613   // we always need a stub for the failure case.
  2614   CodeStub* stub = op->stub();
  2615   Register obj = op->object()->as_register();
  2616   Register k_RInfo = op->tmp1()->as_register();
  2617   Register klass_RInfo = op->tmp2()->as_register();
  2618   Register dst = op->result_opr()->as_register();
  2619   Register Rtmp1 = op->tmp3()->as_register();
  2620   ciKlass* k = op->klass();
  2623   if (obj == k_RInfo) {
  2624     k_RInfo = klass_RInfo;
  2625     klass_RInfo = obj;
  2628   ciMethodData* md;
  2629   ciProfileData* data;
  2630   int mdo_offset_bias = 0;
  2631   if (op->should_profile()) {
  2632     ciMethod* method = op->profiled_method();
  2633     assert(method != NULL, "Should have method");
  2634     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2636     Label not_null;
  2637     __ br_notnull_short(obj, Assembler::pn, not_null);
  2638     Register mdo      = k_RInfo;
  2639     Register data_val = Rtmp1;
  2640     metadata2reg(md->constant_encoding(), mdo);
  2641     if (mdo_offset_bias > 0) {
  2642       __ set(mdo_offset_bias, data_val);
  2643       __ add(mdo, data_val, mdo);
  2645     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2646     __ ldub(flags_addr, data_val);
  2647     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2648     __ stb(data_val, flags_addr);
  2649     __ ba(*obj_is_null);
  2650     __ delayed()->nop();
  2651     __ bind(not_null);
  2652   } else {
  2653     __ br_null(obj, false, Assembler::pn, *obj_is_null);
  2654     __ delayed()->nop();
  2657   Label profile_cast_failure, profile_cast_success;
  2658   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  2659   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  2661   // patching may screw with our temporaries on sparc,
  2662   // so let's do it before loading the class
  2663   if (k->is_loaded()) {
  2664     metadata2reg(k->constant_encoding(), k_RInfo);
  2665   } else {
  2666     klass2reg_with_patching(k_RInfo, op->info_for_patch());
  2668   assert(obj != k_RInfo, "must be different");
  2670   // get object class
  2671   // not a safepoint as obj null check happens earlier
  2672   __ load_klass(obj, klass_RInfo);
  2673   if (op->fast_check()) {
  2674     assert_different_registers(klass_RInfo, k_RInfo);
  2675     __ cmp(k_RInfo, klass_RInfo);
  2676     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
  2677     __ delayed()->nop();
  2678   } else {
  2679     bool need_slow_path = true;
  2680     if (k->is_loaded()) {
  2681       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
  2682         need_slow_path = false;
  2683       // perform the fast part of the checking logic
  2684       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2685                                        (need_slow_path ? success_target : NULL),
  2686                                        failure_target, NULL,
  2687                                        RegisterOrConstant(k->super_check_offset()));
  2688     } else {
  2689       // perform the fast part of the checking logic
  2690       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
  2691                                        failure_target, NULL);
  2693     if (need_slow_path) {
  2694       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2695       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2696       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2697       __ delayed()->nop();
  2698       __ cmp(G3, 0);
  2699       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2700       __ delayed()->nop();
  2701       // Fall through to success case
  2705   if (op->should_profile()) {
  2706     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2707     assert_different_registers(obj, mdo, recv, tmp1);
  2708     __ bind(profile_cast_success);
  2709     metadata2reg(md->constant_encoding(), mdo);
  2710     if (mdo_offset_bias > 0) {
  2711       __ set(mdo_offset_bias, tmp1);
  2712       __ add(mdo, tmp1, mdo);
  2714     __ load_klass(obj, recv);
  2715     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
  2716     // Jump over the failure case
  2717     __ ba(*success);
  2718     __ delayed()->nop();
  2719     // Cast failure case
  2720     __ bind(profile_cast_failure);
  2721     metadata2reg(md->constant_encoding(), mdo);
  2722     if (mdo_offset_bias > 0) {
  2723       __ set(mdo_offset_bias, tmp1);
  2724       __ add(mdo, tmp1, mdo);
  2726     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2727     __ ld_ptr(data_addr, tmp1);
  2728     __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2729     __ st_ptr(tmp1, data_addr);
  2730     __ ba(*failure);
  2731     __ delayed()->nop();
  2733   __ ba(*success);
  2734   __ delayed()->nop();
  2737 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2738   LIR_Code code = op->code();
  2739   if (code == lir_store_check) {
  2740     Register value = op->object()->as_register();
  2741     Register array = op->array()->as_register();
  2742     Register k_RInfo = op->tmp1()->as_register();
  2743     Register klass_RInfo = op->tmp2()->as_register();
  2744     Register Rtmp1 = op->tmp3()->as_register();
  2746     __ verify_oop(value);
  2747     CodeStub* stub = op->stub();
  2748     // check if it needs to be profiled
  2749     ciMethodData* md;
  2750     ciProfileData* data;
  2751     int mdo_offset_bias = 0;
  2752     if (op->should_profile()) {
  2753       ciMethod* method = op->profiled_method();
  2754       assert(method != NULL, "Should have method");
  2755       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2757     Label profile_cast_success, profile_cast_failure, done;
  2758     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  2759     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  2761     if (op->should_profile()) {
  2762       Label not_null;
  2763       __ br_notnull_short(value, Assembler::pn, not_null);
  2764       Register mdo      = k_RInfo;
  2765       Register data_val = Rtmp1;
  2766       metadata2reg(md->constant_encoding(), mdo);
  2767       if (mdo_offset_bias > 0) {
  2768         __ set(mdo_offset_bias, data_val);
  2769         __ add(mdo, data_val, mdo);
  2771       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2772       __ ldub(flags_addr, data_val);
  2773       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2774       __ stb(data_val, flags_addr);
  2775       __ ba_short(done);
  2776       __ bind(not_null);
  2777     } else {
  2778       __ br_null_short(value, Assembler::pn, done);
  2780     add_debug_info_for_null_check_here(op->info_for_exception());
  2781     __ load_klass(array, k_RInfo);
  2782     __ load_klass(value, klass_RInfo);
  2784     // get instance klass
  2785     __ ld_ptr(Address(k_RInfo, ObjArrayKlass::element_klass_offset()), k_RInfo);
  2786     // perform the fast part of the checking logic
  2787     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
  2789     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2790     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2791     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2792     __ delayed()->nop();
  2793     __ cmp(G3, 0);
  2794     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2795     __ delayed()->nop();
  2796     // fall through to the success case
  2798     if (op->should_profile()) {
  2799       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2800       assert_different_registers(value, mdo, recv, tmp1);
  2801       __ bind(profile_cast_success);
  2802       metadata2reg(md->constant_encoding(), mdo);
  2803       if (mdo_offset_bias > 0) {
  2804         __ set(mdo_offset_bias, tmp1);
  2805         __ add(mdo, tmp1, mdo);
  2807       __ load_klass(value, recv);
  2808       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
  2809       __ ba_short(done);
  2810       // Cast failure case
  2811       __ bind(profile_cast_failure);
  2812       metadata2reg(md->constant_encoding(), mdo);
  2813       if (mdo_offset_bias > 0) {
  2814         __ set(mdo_offset_bias, tmp1);
  2815         __ add(mdo, tmp1, mdo);
  2817       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2818       __ ld_ptr(data_addr, tmp1);
  2819       __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2820       __ st_ptr(tmp1, data_addr);
  2821       __ ba(*stub->entry());
  2822       __ delayed()->nop();
  2824     __ bind(done);
  2825   } else if (code == lir_checkcast) {
  2826     Register obj = op->object()->as_register();
  2827     Register dst = op->result_opr()->as_register();
  2828     Label success;
  2829     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  2830     __ bind(success);
  2831     __ mov(obj, dst);
  2832   } else if (code == lir_instanceof) {
  2833     Register obj = op->object()->as_register();
  2834     Register dst = op->result_opr()->as_register();
  2835     Label success, failure, done;
  2836     emit_typecheck_helper(op, &success, &failure, &failure);
  2837     __ bind(failure);
  2838     __ set(0, dst);
  2839     __ ba_short(done);
  2840     __ bind(success);
  2841     __ set(1, dst);
  2842     __ bind(done);
  2843   } else {
  2844     ShouldNotReachHere();
  2850 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2851   if (op->code() == lir_cas_long) {
  2852     assert(VM_Version::supports_cx8(), "wrong machine");
  2853     Register addr = op->addr()->as_pointer_register();
  2854     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2855     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2856     Register new_value_lo = op->new_value()->as_register_lo();
  2857     Register new_value_hi = op->new_value()->as_register_hi();
  2858     Register t1 = op->tmp1()->as_register();
  2859     Register t2 = op->tmp2()->as_register();
  2860 #ifdef _LP64
  2861     __ mov(cmp_value_lo, t1);
  2862     __ mov(new_value_lo, t2);
  2863     // perform the compare and swap operation
  2864     __ casx(addr, t1, t2);
  2865     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2866     // overwritten with the original value in "addr" and will be equal to t1.
  2867     __ cmp(t1, t2);
  2868 #else
  2869     // move high and low halves of long values into single registers
  2870     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2871     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2872     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2873     __ sllx(new_value_hi, 32, t2);
  2874     __ srl(new_value_lo, 0, new_value_lo);
  2875     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2876     // perform the compare and swap operation
  2877     __ casx(addr, t1, t2);
  2878     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2879     // overwritten with the original value in "addr" and will be equal to t1.
  2880     // Produce icc flag for 32bit.
  2881     __ sub(t1, t2, t2);
  2882     __ srlx(t2, 32, t1);
  2883     __ orcc(t2, t1, G0);
  2884 #endif
  2885   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2886     Register addr = op->addr()->as_pointer_register();
  2887     Register cmp_value = op->cmp_value()->as_register();
  2888     Register new_value = op->new_value()->as_register();
  2889     Register t1 = op->tmp1()->as_register();
  2890     Register t2 = op->tmp2()->as_register();
  2891     __ mov(cmp_value, t1);
  2892     __ mov(new_value, t2);
  2893     if (op->code() == lir_cas_obj) {
  2894       if (UseCompressedOops) {
  2895         __ encode_heap_oop(t1);
  2896         __ encode_heap_oop(t2);
  2897         __ cas(addr, t1, t2);
  2898       } else {
  2899         __ cas_ptr(addr, t1, t2);
  2901     } else {
  2902       __ cas(addr, t1, t2);
  2904     __ cmp(t1, t2);
  2905   } else {
  2906     Unimplemented();
  2910 void LIR_Assembler::set_24bit_FPU() {
  2911   Unimplemented();
  2915 void LIR_Assembler::reset_FPU() {
  2916   Unimplemented();
  2920 void LIR_Assembler::breakpoint() {
  2921   __ breakpoint_trap();
  2925 void LIR_Assembler::push(LIR_Opr opr) {
  2926   Unimplemented();
  2930 void LIR_Assembler::pop(LIR_Opr opr) {
  2931   Unimplemented();
  2935 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2936   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2937   Register dst = dst_opr->as_register();
  2938   Register reg = mon_addr.base();
  2939   int offset = mon_addr.disp();
  2940   // compute pointer to BasicLock
  2941   if (mon_addr.is_simm13()) {
  2942     __ add(reg, offset, dst);
  2943   } else {
  2944     __ set(offset, dst);
  2945     __ add(dst, reg, dst);
  2949 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
  2950   fatal("CRC32 intrinsic is not implemented on this platform");
  2953 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2954   Register obj = op->obj_opr()->as_register();
  2955   Register hdr = op->hdr_opr()->as_register();
  2956   Register lock = op->lock_opr()->as_register();
  2958   // obj may not be an oop
  2959   if (op->code() == lir_lock) {
  2960     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2961     if (UseFastLocking) {
  2962       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2963       // add debug info for NullPointerException only if one is possible
  2964       if (op->info() != NULL) {
  2965         add_debug_info_for_null_check_here(op->info());
  2967       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2968     } else {
  2969       // always do slow locking
  2970       // note: the slow locking code could be inlined here, however if we use
  2971       //       slow locking, speed doesn't matter anyway and this solution is
  2972       //       simpler and requires less duplicated code - additionally, the
  2973       //       slow locking code is the same in either case which simplifies
  2974       //       debugging
  2975       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2976       __ delayed()->nop();
  2978   } else {
  2979     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  2980     if (UseFastLocking) {
  2981       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2982       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  2983     } else {
  2984       // always do slow unlocking
  2985       // note: the slow unlocking code could be inlined here, however if we use
  2986       //       slow unlocking, speed doesn't matter anyway and this solution is
  2987       //       simpler and requires less duplicated code - additionally, the
  2988       //       slow unlocking code is the same in either case which simplifies
  2989       //       debugging
  2990       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2991       __ delayed()->nop();
  2994   __ bind(*op->stub()->continuation());
  2998 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  2999   ciMethod* method = op->profiled_method();
  3000   int bci          = op->profiled_bci();
  3001   ciMethod* callee = op->profiled_callee();
  3003   // Update counter for all call types
  3004   ciMethodData* md = method->method_data_or_null();
  3005   assert(md != NULL, "Sanity");
  3006   ciProfileData* data = md->bci_to_data(bci);
  3007   assert(data->is_CounterData(), "need CounterData for calls");
  3008   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3009   Register mdo  = op->mdo()->as_register();
  3010 #ifdef _LP64
  3011   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
  3012   Register tmp1 = op->tmp1()->as_register_lo();
  3013 #else
  3014   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  3015   Register tmp1 = op->tmp1()->as_register();
  3016 #endif
  3017   metadata2reg(md->constant_encoding(), mdo);
  3018   int mdo_offset_bias = 0;
  3019   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  3020                             data->size_in_bytes())) {
  3021     // The offset is large so bias the mdo by the base of the slot so
  3022     // that the ld can use simm13s to reference the slots of the data
  3023     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  3024     __ set(mdo_offset_bias, O7);
  3025     __ add(mdo, O7, mdo);
  3028   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  3029   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3030   const bool callee_is_static = callee->is_loaded() && callee->is_static();
  3031   // Perform additional virtual call profiling for invokevirtual and
  3032   // invokeinterface bytecodes
  3033   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3034       !callee_is_static &&  // required for optimized MH invokes
  3035       C1ProfileVirtualCalls) {
  3036     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3037     Register recv = op->recv()->as_register();
  3038     assert_different_registers(mdo, tmp1, recv);
  3039     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3040     ciKlass* known_klass = op->known_holder();
  3041     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3042       // We know the type that will be seen at this call site; we can
  3043       // statically update the MethodData* rather than needing to do
  3044       // dynamic tests on the receiver type
  3046       // NOTE: we should probably put a lock around this search to
  3047       // avoid collisions by concurrent compilations
  3048       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3049       uint i;
  3050       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3051         ciKlass* receiver = vc_data->receiver(i);
  3052         if (known_klass->equals(receiver)) {
  3053           Address data_addr(mdo, md->byte_offset_of_slot(data,
  3054                                                          VirtualCallData::receiver_count_offset(i)) -
  3055                             mdo_offset_bias);
  3056           __ ld_ptr(data_addr, tmp1);
  3057           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3058           __ st_ptr(tmp1, data_addr);
  3059           return;
  3063       // Receiver type not found in profile data; select an empty slot
  3065       // Note that this is less efficient than it should be because it
  3066       // always does a write to the receiver part of the
  3067       // VirtualCallData rather than just the first time
  3068       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3069         ciKlass* receiver = vc_data->receiver(i);
  3070         if (receiver == NULL) {
  3071           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  3072                             mdo_offset_bias);
  3073           metadata2reg(known_klass->constant_encoding(), tmp1);
  3074           __ st_ptr(tmp1, recv_addr);
  3075           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  3076                             mdo_offset_bias);
  3077           __ ld_ptr(data_addr, tmp1);
  3078           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3079           __ st_ptr(tmp1, data_addr);
  3080           return;
  3083     } else {
  3084       __ load_klass(recv, recv);
  3085       Label update_done;
  3086       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
  3087       // Receiver did not match any saved receiver and there is no empty row for it.
  3088       // Increment total counter to indicate polymorphic case.
  3089       __ ld_ptr(counter_addr, tmp1);
  3090       __ add(tmp1, DataLayout::counter_increment, tmp1);
  3091       __ st_ptr(tmp1, counter_addr);
  3093       __ bind(update_done);
  3095   } else {
  3096     // Static call
  3097     __ ld_ptr(counter_addr, tmp1);
  3098     __ add(tmp1, DataLayout::counter_increment, tmp1);
  3099     __ st_ptr(tmp1, counter_addr);
  3103 void LIR_Assembler::align_backward_branch_target() {
  3104   __ align(OptoLoopAlignment);
  3108 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  3109   // make sure we are expecting a delay
  3110   // this has the side effect of clearing the delay state
  3111   // so we can use _masm instead of _masm->delayed() to do the
  3112   // code generation.
  3113   __ delayed();
  3115   // make sure we only emit one instruction
  3116   int offset = code_offset();
  3117   op->delay_op()->emit_code(this);
  3118 #ifdef ASSERT
  3119   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  3120     op->delay_op()->print();
  3122   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  3123          "only one instruction can go in a delay slot");
  3124 #endif
  3126   // we may also be emitting the call info for the instruction
  3127   // which we are the delay slot of.
  3128   CodeEmitInfo* call_info = op->call_info();
  3129   if (call_info) {
  3130     add_call_info(code_offset(), call_info);
  3133   if (VerifyStackAtCalls) {
  3134     _masm->sub(FP, SP, O7);
  3135     _masm->cmp(O7, initial_frame_size_in_bytes());
  3136     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  3141 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3142   assert(left->is_register(), "can only handle registers");
  3144   if (left->is_single_cpu()) {
  3145     __ neg(left->as_register(), dest->as_register());
  3146   } else if (left->is_single_fpu()) {
  3147     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  3148   } else if (left->is_double_fpu()) {
  3149     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  3150   } else {
  3151     assert (left->is_double_cpu(), "Must be a long");
  3152     Register Rlow = left->as_register_lo();
  3153     Register Rhi = left->as_register_hi();
  3154 #ifdef _LP64
  3155     __ sub(G0, Rlow, dest->as_register_lo());
  3156 #else
  3157     __ subcc(G0, Rlow, dest->as_register_lo());
  3158     __ subc (G0, Rhi,  dest->as_register_hi());
  3159 #endif
  3164 void LIR_Assembler::fxch(int i) {
  3165   Unimplemented();
  3168 void LIR_Assembler::fld(int i) {
  3169   Unimplemented();
  3172 void LIR_Assembler::ffree(int i) {
  3173   Unimplemented();
  3176 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  3177                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3179   // if tmp is invalid, then the function being called doesn't destroy the thread
  3180   if (tmp->is_valid()) {
  3181     __ save_thread(tmp->as_register());
  3183   __ call(dest, relocInfo::runtime_call_type);
  3184   __ delayed()->nop();
  3185   if (info != NULL) {
  3186     add_call_info_here(info);
  3188   if (tmp->is_valid()) {
  3189     __ restore_thread(tmp->as_register());
  3192 #ifdef ASSERT
  3193   __ verify_thread();
  3194 #endif // ASSERT
  3198 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3199 #ifdef _LP64
  3200   ShouldNotReachHere();
  3201 #endif
  3203   NEEDS_CLEANUP;
  3204   if (type == T_LONG) {
  3205     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  3207     // (extended to allow indexed as well as constant displaced for JSR-166)
  3208     Register idx = noreg; // contains either constant offset or index
  3210     int disp = mem_addr->disp();
  3211     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  3212       if (!Assembler::is_simm13(disp)) {
  3213         idx = O7;
  3214         __ set(disp, idx);
  3216     } else {
  3217       assert(disp == 0, "not both indexed and disp");
  3218       idx = mem_addr->index()->as_register();
  3221     int null_check_offset = -1;
  3223     Register base = mem_addr->base()->as_register();
  3224     if (src->is_register() && dest->is_address()) {
  3225       // G4 is high half, G5 is low half
  3226       // clear the top bits of G5, and scale up G4
  3227       __ srl (src->as_register_lo(),  0, G5);
  3228       __ sllx(src->as_register_hi(), 32, G4);
  3229       // combine the two halves into the 64 bits of G4
  3230       __ or3(G4, G5, G4);
  3231       null_check_offset = __ offset();
  3232       if (idx == noreg) {
  3233         __ stx(G4, base, disp);
  3234       } else {
  3235         __ stx(G4, base, idx);
  3237     } else if (src->is_address() && dest->is_register()) {
  3238       null_check_offset = __ offset();
  3239       if (idx == noreg) {
  3240         __ ldx(base, disp, G5);
  3241       } else {
  3242         __ ldx(base, idx, G5);
  3244       __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  3245       __ mov (G5, dest->as_register_lo());     // copy low half into lo
  3246     } else {
  3247       Unimplemented();
  3249     if (info != NULL) {
  3250       add_debug_info_for_null_check(null_check_offset, info);
  3253   } else {
  3254     // use normal move for all other volatiles since they don't need
  3255     // special handling to remain atomic.
  3256     move_op(src, dest, type, lir_patch_none, info, false, false, false);
  3260 void LIR_Assembler::membar() {
  3261   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3262   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3265 void LIR_Assembler::membar_acquire() {
  3266   // no-op on TSO
  3269 void LIR_Assembler::membar_release() {
  3270   // no-op on TSO
  3273 void LIR_Assembler::membar_loadload() {
  3274   // no-op
  3275   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
  3278 void LIR_Assembler::membar_storestore() {
  3279   // no-op
  3280   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
  3283 void LIR_Assembler::membar_loadstore() {
  3284   // no-op
  3285   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
  3288 void LIR_Assembler::membar_storeload() {
  3289   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3293 // Pack two sequential registers containing 32 bit values
  3294 // into a single 64 bit register.
  3295 // src and src->successor() are packed into dst
  3296 // src and dst may be the same register.
  3297 // Note: src is destroyed
  3298 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
  3299   Register rs = src->as_register();
  3300   Register rd = dst->as_register_lo();
  3301   __ sllx(rs, 32, rs);
  3302   __ srl(rs->successor(), 0, rs->successor());
  3303   __ or3(rs, rs->successor(), rd);
  3306 // Unpack a 64 bit value in a register into
  3307 // two sequential registers.
  3308 // src is unpacked into dst and dst->successor()
  3309 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
  3310   Register rs = src->as_register_lo();
  3311   Register rd = dst->as_register_hi();
  3312   assert_different_registers(rs, rd, rd->successor());
  3313   __ srlx(rs, 32, rd);
  3314   __ srl (rs,  0, rd->successor());
  3318 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3319   LIR_Address* addr = addr_opr->as_address_ptr();
  3320   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
  3322   __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
  3326 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3327   assert(result_reg->is_register(), "check");
  3328   __ mov(G2_thread, result_reg->as_register());
  3331 #ifdef ASSERT
  3332 // emit run-time assertion
  3333 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
  3334   assert(op->code() == lir_assert, "must be");
  3336   if (op->in_opr1()->is_valid()) {
  3337     assert(op->in_opr2()->is_valid(), "both operands must be valid");
  3338     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
  3339   } else {
  3340     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
  3341     assert(op->condition() == lir_cond_always, "no other conditions allowed");
  3344   Label ok;
  3345   if (op->condition() != lir_cond_always) {
  3346     Assembler::Condition acond;
  3347     switch (op->condition()) {
  3348       case lir_cond_equal:        acond = Assembler::equal;                break;
  3349       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
  3350       case lir_cond_less:         acond = Assembler::less;                 break;
  3351       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
  3352       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
  3353       case lir_cond_greater:      acond = Assembler::greater;              break;
  3354       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
  3355       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
  3356       default:                         ShouldNotReachHere();
  3357     };
  3358     __ br(acond, false, Assembler::pt, ok);
  3359     __ delayed()->nop();
  3361   if (op->halt()) {
  3362     const char* str = __ code_string(op->msg());
  3363     __ stop(str);
  3364   } else {
  3365     breakpoint();
  3367   __ bind(ok);
  3369 #endif
  3371 void LIR_Assembler::peephole(LIR_List* lir) {
  3372   LIR_OpList* inst = lir->instructions_list();
  3373   for (int i = 0; i < inst->length(); i++) {
  3374     LIR_Op* op = inst->at(i);
  3375     switch (op->code()) {
  3376       case lir_cond_float_branch:
  3377       case lir_branch: {
  3378         LIR_OpBranch* branch = op->as_OpBranch();
  3379         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3380         LIR_Op* delay_op = NULL;
  3381         // we'd like to be able to pull following instructions into
  3382         // this slot but we don't know enough to do it safely yet so
  3383         // only optimize block to block control flow.
  3384         if (LIRFillDelaySlots && branch->block()) {
  3385           LIR_Op* prev = inst->at(i - 1);
  3386           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3387             // swap previous instruction into delay slot
  3388             inst->at_put(i - 1, op);
  3389             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3390 #ifndef PRODUCT
  3391             if (LIRTracePeephole) {
  3392               tty->print_cr("delayed");
  3393               inst->at(i - 1)->print();
  3394               inst->at(i)->print();
  3395               tty->cr();
  3397 #endif
  3398             continue;
  3402         if (!delay_op) {
  3403           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3405         inst->insert_before(i + 1, delay_op);
  3406         break;
  3408       case lir_static_call:
  3409       case lir_virtual_call:
  3410       case lir_icvirtual_call:
  3411       case lir_optvirtual_call:
  3412       case lir_dynamic_call: {
  3413         LIR_Op* prev = inst->at(i - 1);
  3414         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3415             (op->code() != lir_virtual_call ||
  3416              !prev->result_opr()->is_single_cpu() ||
  3417              prev->result_opr()->as_register() != O0) &&
  3418             LIR_Assembler::is_single_instruction(prev)) {
  3419           // Only moves without info can be put into the delay slot.
  3420           // Also don't allow the setup of the receiver in the delay
  3421           // slot for vtable calls.
  3422           inst->at_put(i - 1, op);
  3423           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3424 #ifndef PRODUCT
  3425           if (LIRTracePeephole) {
  3426             tty->print_cr("delayed");
  3427             inst->at(i - 1)->print();
  3428             inst->at(i)->print();
  3429             tty->cr();
  3431 #endif
  3432         } else {
  3433           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3434           inst->insert_before(i + 1, delay_op);
  3435           i++;
  3438 #if defined(TIERED) && !defined(_LP64)
  3439         // fixup the return value from G1 to O0/O1 for long returns.
  3440         // It's done here instead of in LIRGenerator because there's
  3441         // such a mismatch between the single reg and double reg
  3442         // calling convention.
  3443         LIR_OpJavaCall* callop = op->as_OpJavaCall();
  3444         if (callop->result_opr() == FrameMap::out_long_opr) {
  3445           LIR_OpJavaCall* call;
  3446           LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
  3447           for (int a = 0; a < arguments->length(); a++) {
  3448             arguments[a] = callop->arguments()[a];
  3450           if (op->code() == lir_virtual_call) {
  3451             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3452                                       callop->vtable_offset(), arguments, callop->info());
  3453           } else {
  3454             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3455                                       callop->addr(), arguments, callop->info());
  3457           inst->at_put(i - 1, call);
  3458           inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
  3459                                                  T_LONG, lir_patch_none, NULL));
  3461 #endif
  3462         break;
  3468 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
  3469   LIR_Address* addr = src->as_address_ptr();
  3471   assert(data == dest, "swap uses only 2 operands");
  3472   assert (code == lir_xchg, "no xadd on sparc");
  3474   if (data->type() == T_INT) {
  3475     __ swap(as_Address(addr), data->as_register());
  3476   } else if (data->is_oop()) {
  3477     Register obj = data->as_register();
  3478     Register narrow = tmp->as_register();
  3479 #ifdef _LP64
  3480     assert(UseCompressedOops, "swap is 32bit only");
  3481     __ encode_heap_oop(obj, narrow);
  3482     __ swap(as_Address(addr), narrow);
  3483     __ decode_heap_oop(narrow, obj);
  3484 #else
  3485     __ swap(as_Address(addr), obj);
  3486 #endif
  3487   } else {
  3488     ShouldNotReachHere();
  3492 #undef __

mercurial