src/share/vm/runtime/os.cpp

Mon, 16 Jul 2018 17:06:05 +0100

author
alitvinov
date
Mon, 16 Jul 2018 17:06:05 +0100
changeset 9355
792ccf73293a
parent 9326
b5dd721bdda8
child 9448
73d689add964
child 9478
f3108e56b502
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "gc_implementation/shared/vmGCOperations.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #ifdef ASSERT
    36 #include "memory/guardedMemory.hpp"
    37 #endif
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/jvm.h"
    40 #include "prims/jvm_misc.hpp"
    41 #include "prims/privilegedStack.hpp"
    42 #include "runtime/arguments.hpp"
    43 #include "runtime/frame.inline.hpp"
    44 #include "runtime/interfaceSupport.hpp"
    45 #include "runtime/java.hpp"
    46 #include "runtime/javaCalls.hpp"
    47 #include "runtime/mutexLocker.hpp"
    48 #include "runtime/os.hpp"
    49 #include "runtime/stubRoutines.hpp"
    50 #include "runtime/thread.inline.hpp"
    51 #include "services/attachListener.hpp"
    52 #include "services/nmtCommon.hpp"
    53 #include "services/mallocTracker.hpp"
    54 #include "services/memTracker.hpp"
    55 #include "services/threadService.hpp"
    56 #include "utilities/defaultStream.hpp"
    57 #include "utilities/events.hpp"
    58 #ifdef TARGET_OS_FAMILY_linux
    59 # include "os_linux.inline.hpp"
    60 #endif
    61 #ifdef TARGET_OS_FAMILY_solaris
    62 # include "os_solaris.inline.hpp"
    63 #endif
    64 #ifdef TARGET_OS_FAMILY_windows
    65 # include "os_windows.inline.hpp"
    66 #endif
    67 #ifdef TARGET_OS_FAMILY_bsd
    68 # include "os_bsd.inline.hpp"
    69 #endif
    71 # include <signal.h>
    73 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    75 OSThread*         os::_starting_thread    = NULL;
    76 address           os::_polling_page       = NULL;
    77 volatile int32_t* os::_mem_serialize_page = NULL;
    78 uintptr_t         os::_serialize_page_mask = 0;
    79 long              os::_rand_seed          = 1;
    80 int               os::_processor_count    = 0;
    81 int               os::_initial_active_processor_count = 0;
    82 size_t            os::_page_sizes[os::page_sizes_max];
    84 #ifndef PRODUCT
    85 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
    86 julong os::alloc_bytes = 0;         // # of bytes allocated
    87 julong os::num_frees = 0;           // # of calls to free
    88 julong os::free_bytes = 0;          // # of bytes freed
    89 #endif
    91 static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
    93 void os_init_globals() {
    94   // Called from init_globals().
    95   // See Threads::create_vm() in thread.cpp, and init.cpp.
    96   os::init_globals();
    97 }
    99 static time_t get_timezone(const struct tm* time_struct) {
   100 #if defined(_ALLBSD_SOURCE)
   101   return time_struct->tm_gmtoff;
   102 #elif defined(_WINDOWS)
   103   long zone;
   104   _get_timezone(&zone);
   105   return static_cast<time_t>(zone);
   106 #else
   107   return timezone;
   108 #endif
   109 }
   111 // Fill in buffer with current local time as an ISO-8601 string.
   112 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
   113 // Returns buffer, or NULL if it failed.
   114 // This would mostly be a call to
   115 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
   116 // except that on Windows the %z behaves badly, so we do it ourselves.
   117 // Also, people wanted milliseconds on there,
   118 // and strftime doesn't do milliseconds.
   119 char* os::iso8601_time(char* buffer, size_t buffer_length) {
   120   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
   121   //                                      1         2
   122   //                             12345678901234567890123456789
   123   static const char* iso8601_format =
   124     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
   125   static const size_t needed_buffer = 29;
   127   // Sanity check the arguments
   128   if (buffer == NULL) {
   129     assert(false, "NULL buffer");
   130     return NULL;
   131   }
   132   if (buffer_length < needed_buffer) {
   133     assert(false, "buffer_length too small");
   134     return NULL;
   135   }
   136   // Get the current time
   137   jlong milliseconds_since_19700101 = javaTimeMillis();
   138   const int milliseconds_per_microsecond = 1000;
   139   const time_t seconds_since_19700101 =
   140     milliseconds_since_19700101 / milliseconds_per_microsecond;
   141   const int milliseconds_after_second =
   142     milliseconds_since_19700101 % milliseconds_per_microsecond;
   143   // Convert the time value to a tm and timezone variable
   144   struct tm time_struct;
   145   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
   146     assert(false, "Failed localtime_pd");
   147     return NULL;
   148   }
   149   const time_t zone = get_timezone(&time_struct);
   151   // If daylight savings time is in effect,
   152   // we are 1 hour East of our time zone
   153   const time_t seconds_per_minute = 60;
   154   const time_t minutes_per_hour = 60;
   155   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
   156   time_t UTC_to_local = zone;
   157   if (time_struct.tm_isdst > 0) {
   158     UTC_to_local = UTC_to_local - seconds_per_hour;
   159   }
   160   // Compute the time zone offset.
   161   //    localtime_pd() sets timezone to the difference (in seconds)
   162   //    between UTC and and local time.
   163   //    ISO 8601 says we need the difference between local time and UTC,
   164   //    we change the sign of the localtime_pd() result.
   165   const time_t local_to_UTC = -(UTC_to_local);
   166   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
   167   char sign_local_to_UTC = '+';
   168   time_t abs_local_to_UTC = local_to_UTC;
   169   if (local_to_UTC < 0) {
   170     sign_local_to_UTC = '-';
   171     abs_local_to_UTC = -(abs_local_to_UTC);
   172   }
   173   // Convert time zone offset seconds to hours and minutes.
   174   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
   175   const time_t zone_min =
   176     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
   178   // Print an ISO 8601 date and time stamp into the buffer
   179   const int year = 1900 + time_struct.tm_year;
   180   const int month = 1 + time_struct.tm_mon;
   181   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
   182                                    year,
   183                                    month,
   184                                    time_struct.tm_mday,
   185                                    time_struct.tm_hour,
   186                                    time_struct.tm_min,
   187                                    time_struct.tm_sec,
   188                                    milliseconds_after_second,
   189                                    sign_local_to_UTC,
   190                                    zone_hours,
   191                                    zone_min);
   192   if (printed == 0) {
   193     assert(false, "Failed jio_printf");
   194     return NULL;
   195   }
   196   return buffer;
   197 }
   199 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
   200 #ifdef ASSERT
   201   if (!(!thread->is_Java_thread() ||
   202          Thread::current() == thread  ||
   203          Threads_lock->owned_by_self()
   204          || thread->is_Compiler_thread()
   205         )) {
   206     assert(false, "possibility of dangling Thread pointer");
   207   }
   208 #endif
   210   if (p >= MinPriority && p <= MaxPriority) {
   211     int priority = java_to_os_priority[p];
   212     return set_native_priority(thread, priority);
   213   } else {
   214     assert(false, "Should not happen");
   215     return OS_ERR;
   216   }
   217 }
   219 // The mapping from OS priority back to Java priority may be inexact because
   220 // Java priorities can map M:1 with native priorities. If you want the definite
   221 // Java priority then use JavaThread::java_priority()
   222 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
   223   int p;
   224   int os_prio;
   225   OSReturn ret = get_native_priority(thread, &os_prio);
   226   if (ret != OS_OK) return ret;
   228   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
   229     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
   230   } else {
   231     // niceness values are in reverse order
   232     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
   233   }
   234   priority = (ThreadPriority)p;
   235   return OS_OK;
   236 }
   239 // --------------------- sun.misc.Signal (optional) ---------------------
   242 // SIGBREAK is sent by the keyboard to query the VM state
   243 #ifndef SIGBREAK
   244 #define SIGBREAK SIGQUIT
   245 #endif
   247 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
   250 static void signal_thread_entry(JavaThread* thread, TRAPS) {
   251   os::set_priority(thread, NearMaxPriority);
   252   while (true) {
   253     int sig;
   254     {
   255       // FIXME : Currently we have not decieded what should be the status
   256       //         for this java thread blocked here. Once we decide about
   257       //         that we should fix this.
   258       sig = os::signal_wait();
   259     }
   260     if (sig == os::sigexitnum_pd()) {
   261        // Terminate the signal thread
   262        return;
   263     }
   265     switch (sig) {
   266       case SIGBREAK: {
   267         // Check if the signal is a trigger to start the Attach Listener - in that
   268         // case don't print stack traces.
   269         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
   270           continue;
   271         }
   272         // Print stack traces
   273         // Any SIGBREAK operations added here should make sure to flush
   274         // the output stream (e.g. tty->flush()) after output.  See 4803766.
   275         // Each module also prints an extra carriage return after its output.
   276         VM_PrintThreads op;
   277         VMThread::execute(&op);
   278         VM_PrintJNI jni_op;
   279         VMThread::execute(&jni_op);
   280         VM_FindDeadlocks op1(tty);
   281         VMThread::execute(&op1);
   282         Universe::print_heap_at_SIGBREAK();
   283         if (PrintClassHistogram) {
   284           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
   285           VMThread::execute(&op1);
   286         }
   287         if (JvmtiExport::should_post_data_dump()) {
   288           JvmtiExport::post_data_dump();
   289         }
   290         break;
   291       }
   292       default: {
   293         // Dispatch the signal to java
   294         HandleMark hm(THREAD);
   295         Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
   296         KlassHandle klass (THREAD, k);
   297         if (klass.not_null()) {
   298           JavaValue result(T_VOID);
   299           JavaCallArguments args;
   300           args.push_int(sig);
   301           JavaCalls::call_static(
   302             &result,
   303             klass,
   304             vmSymbols::dispatch_name(),
   305             vmSymbols::int_void_signature(),
   306             &args,
   307             THREAD
   308           );
   309         }
   310         if (HAS_PENDING_EXCEPTION) {
   311           // tty is initialized early so we don't expect it to be null, but
   312           // if it is we can't risk doing an initialization that might
   313           // trigger additional out-of-memory conditions
   314           if (tty != NULL) {
   315             char klass_name[256];
   316             char tmp_sig_name[16];
   317             const char* sig_name = "UNKNOWN";
   318             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
   319               name()->as_klass_external_name(klass_name, 256);
   320             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
   321               sig_name = tmp_sig_name;
   322             warning("Exception %s occurred dispatching signal %s to handler"
   323                     "- the VM may need to be forcibly terminated",
   324                     klass_name, sig_name );
   325           }
   326           CLEAR_PENDING_EXCEPTION;
   327         }
   328       }
   329     }
   330   }
   331 }
   333 void os::init_before_ergo() {
   334   initialize_initial_active_processor_count();
   335   // We need to initialize large page support here because ergonomics takes some
   336   // decisions depending on large page support and the calculated large page size.
   337   large_page_init();
   339   // VM version initialization identifies some characteristics of the
   340   // the platform that are used during ergonomic decisions.
   341   VM_Version::init_before_ergo();
   342 }
   344 void os::signal_init() {
   345   if (!ReduceSignalUsage) {
   346     // Setup JavaThread for processing signals
   347     EXCEPTION_MARK;
   348     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
   349     instanceKlassHandle klass (THREAD, k);
   350     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
   352     const char thread_name[] = "Signal Dispatcher";
   353     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
   355     // Initialize thread_oop to put it into the system threadGroup
   356     Handle thread_group (THREAD, Universe::system_thread_group());
   357     JavaValue result(T_VOID);
   358     JavaCalls::call_special(&result, thread_oop,
   359                            klass,
   360                            vmSymbols::object_initializer_name(),
   361                            vmSymbols::threadgroup_string_void_signature(),
   362                            thread_group,
   363                            string,
   364                            CHECK);
   366     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
   367     JavaCalls::call_special(&result,
   368                             thread_group,
   369                             group,
   370                             vmSymbols::add_method_name(),
   371                             vmSymbols::thread_void_signature(),
   372                             thread_oop,         // ARG 1
   373                             CHECK);
   375     os::signal_init_pd();
   377     { MutexLocker mu(Threads_lock);
   378       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
   380       // At this point it may be possible that no osthread was created for the
   381       // JavaThread due to lack of memory. We would have to throw an exception
   382       // in that case. However, since this must work and we do not allow
   383       // exceptions anyway, check and abort if this fails.
   384       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
   385         vm_exit_during_initialization("java.lang.OutOfMemoryError",
   386                                       "unable to create new native thread");
   387       }
   389       java_lang_Thread::set_thread(thread_oop(), signal_thread);
   390       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
   391       java_lang_Thread::set_daemon(thread_oop());
   393       signal_thread->set_threadObj(thread_oop());
   394       Threads::add(signal_thread);
   395       Thread::start(signal_thread);
   396     }
   397     // Handle ^BREAK
   398     os::signal(SIGBREAK, os::user_handler());
   399   }
   400 }
   403 void os::terminate_signal_thread() {
   404   if (!ReduceSignalUsage)
   405     signal_notify(sigexitnum_pd());
   406 }
   409 // --------------------- loading libraries ---------------------
   411 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
   412 extern struct JavaVM_ main_vm;
   414 static void* _native_java_library = NULL;
   416 void* os::native_java_library() {
   417   if (_native_java_library == NULL) {
   418     char buffer[JVM_MAXPATHLEN];
   419     char ebuf[1024];
   421     // Try to load verify dll first. In 1.3 java dll depends on it and is not
   422     // always able to find it when the loading executable is outside the JDK.
   423     // In order to keep working with 1.2 we ignore any loading errors.
   424     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   425                        "verify")) {
   426       dll_load(buffer, ebuf, sizeof(ebuf));
   427     }
   429     // Load java dll
   430     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   431                        "java")) {
   432       _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
   433     }
   434     if (_native_java_library == NULL) {
   435       vm_exit_during_initialization("Unable to load native library", ebuf);
   436     }
   438 #if defined(__OpenBSD__)
   439     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
   440     // ignore errors
   441     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   442                        "net")) {
   443       dll_load(buffer, ebuf, sizeof(ebuf));
   444     }
   445 #endif
   446   }
   447   static jboolean onLoaded = JNI_FALSE;
   448   if (onLoaded) {
   449     // We may have to wait to fire OnLoad until TLS is initialized.
   450     if (ThreadLocalStorage::is_initialized()) {
   451       // The JNI_OnLoad handling is normally done by method load in
   452       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
   453       // explicitly so we have to check for JNI_OnLoad as well
   454       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
   455       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
   456           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
   457       if (JNI_OnLoad != NULL) {
   458         JavaThread* thread = JavaThread::current();
   459         ThreadToNativeFromVM ttn(thread);
   460         HandleMark hm(thread);
   461         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
   462         onLoaded = JNI_TRUE;
   463         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
   464           vm_exit_during_initialization("Unsupported JNI version");
   465         }
   466       }
   467     }
   468   }
   469   return _native_java_library;
   470 }
   472 /*
   473  * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
   474  * If check_lib == true then we are looking for an
   475  * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
   476  * this library is statically linked into the image.
   477  * If check_lib == false then we will look for the appropriate symbol in the
   478  * executable if agent_lib->is_static_lib() == true or in the shared library
   479  * referenced by 'handle'.
   480  */
   481 void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
   482                               const char *syms[], size_t syms_len) {
   483   assert(agent_lib != NULL, "sanity check");
   484   const char *lib_name;
   485   void *handle = agent_lib->os_lib();
   486   void *entryName = NULL;
   487   char *agent_function_name;
   488   size_t i;
   490   // If checking then use the agent name otherwise test is_static_lib() to
   491   // see how to process this lookup
   492   lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
   493   for (i = 0; i < syms_len; i++) {
   494     agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
   495     if (agent_function_name == NULL) {
   496       break;
   497     }
   498     entryName = dll_lookup(handle, agent_function_name);
   499     FREE_C_HEAP_ARRAY(char, agent_function_name, mtThread);
   500     if (entryName != NULL) {
   501       break;
   502     }
   503   }
   504   return entryName;
   505 }
   507 // See if the passed in agent is statically linked into the VM image.
   508 bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
   509                             size_t syms_len) {
   510   void *ret;
   511   void *proc_handle;
   512   void *save_handle;
   514   assert(agent_lib != NULL, "sanity check");
   515   if (agent_lib->name() == NULL) {
   516     return false;
   517   }
   518   proc_handle = get_default_process_handle();
   519   // Check for Agent_OnLoad/Attach_lib_name function
   520   save_handle = agent_lib->os_lib();
   521   // We want to look in this process' symbol table.
   522   agent_lib->set_os_lib(proc_handle);
   523   ret = find_agent_function(agent_lib, true, syms, syms_len);
   524   if (ret != NULL) {
   525     // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
   526     agent_lib->set_valid();
   527     agent_lib->set_static_lib(true);
   528     return true;
   529   }
   530   agent_lib->set_os_lib(save_handle);
   531   return false;
   532 }
   534 // --------------------- heap allocation utilities ---------------------
   536 char *os::strdup(const char *str, MEMFLAGS flags) {
   537   size_t size = strlen(str);
   538   char *dup_str = (char *)malloc(size + 1, flags);
   539   if (dup_str == NULL) return NULL;
   540   strcpy(dup_str, str);
   541   return dup_str;
   542 }
   546 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
   548 #ifdef ASSERT
   549 static void verify_memory(void* ptr) {
   550   GuardedMemory guarded(ptr);
   551   if (!guarded.verify_guards()) {
   552     tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
   553     tty->print_cr("## memory stomp:");
   554     guarded.print_on(tty);
   555     fatal("memory stomping error");
   556   }
   557 }
   558 #endif
   560 //
   561 // This function supports testing of the malloc out of memory
   562 // condition without really running the system out of memory.
   563 //
   564 static u_char* testMalloc(size_t alloc_size) {
   565   assert(MallocMaxTestWords > 0, "sanity check");
   567   if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
   568     return NULL;
   569   }
   571   u_char* ptr = (u_char*)::malloc(alloc_size);
   573   if (ptr != NULL) {
   574     Atomic::add(((jint) (alloc_size / BytesPerWord)),
   575                 (volatile jint *) &cur_malloc_words);
   576   }
   577   return ptr;
   578 }
   580 void* os::malloc(size_t size, MEMFLAGS flags) {
   581   return os::malloc(size, flags, CALLER_PC);
   582 }
   584 void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
   585   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   586   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   588 #ifdef ASSERT
   589   // checking for the WatcherThread and crash_protection first
   590   // since os::malloc can be called when the libjvm.{dll,so} is
   591   // first loaded and we don't have a thread yet.
   592   // try to find the thread after we see that the watcher thread
   593   // exists and has crash protection.
   594   WatcherThread *wt = WatcherThread::watcher_thread();
   595   if (wt != NULL && wt->has_crash_protection()) {
   596     Thread* thread = ThreadLocalStorage::get_thread_slow();
   597     if (thread == wt) {
   598       assert(!wt->has_crash_protection(),
   599           "Can't malloc with crash protection from WatcherThread");
   600     }
   601   }
   602 #endif
   604   if (size == 0) {
   605     // return a valid pointer if size is zero
   606     // if NULL is returned the calling functions assume out of memory.
   607     size = 1;
   608   }
   610   // NMT support
   611   NMT_TrackingLevel level = MemTracker::tracking_level();
   612   size_t            nmt_header_size = MemTracker::malloc_header_size(level);
   614 #ifndef ASSERT
   615   const size_t alloc_size = size + nmt_header_size;
   616 #else
   617   const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
   618   if (size + nmt_header_size > alloc_size) { // Check for rollover.
   619     return NULL;
   620   }
   621 #endif
   623   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   625   u_char* ptr;
   626   if (MallocMaxTestWords > 0) {
   627     ptr = testMalloc(alloc_size);
   628   } else {
   629     ptr = (u_char*)::malloc(alloc_size);
   630   }
   632 #ifdef ASSERT
   633   if (ptr == NULL) {
   634     return NULL;
   635   }
   636   // Wrap memory with guard
   637   GuardedMemory guarded(ptr, size + nmt_header_size);
   638   ptr = guarded.get_user_ptr();
   639 #endif
   640   if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
   641     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
   642     breakpoint();
   643   }
   644   debug_only(if (paranoid) verify_memory(ptr));
   645   if (PrintMalloc && tty != NULL) {
   646     tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
   647   }
   649   // we do not track guard memory
   650   return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
   651 }
   653 void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
   654   return os::realloc(memblock, size, flags, CALLER_PC);
   655 }
   657 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
   659 #ifndef ASSERT
   660   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   661   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   662    // NMT support
   663   void* membase = MemTracker::record_free(memblock);
   664   NMT_TrackingLevel level = MemTracker::tracking_level();
   665   size_t  nmt_header_size = MemTracker::malloc_header_size(level);
   666   void* ptr = ::realloc(membase, size + nmt_header_size);
   667   return MemTracker::record_malloc(ptr, size, memflags, stack, level);
   668 #else
   669   if (memblock == NULL) {
   670     return os::malloc(size, memflags, stack);
   671   }
   672   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   673     tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
   674     breakpoint();
   675   }
   676   // NMT support
   677   void* membase = MemTracker::malloc_base(memblock);
   678   verify_memory(membase);
   679   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   680   if (size == 0) {
   681     return NULL;
   682   }
   683   // always move the block
   684   void* ptr = os::malloc(size, memflags, stack);
   685   if (PrintMalloc) {
   686     tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
   687   }
   688   // Copy to new memory if malloc didn't fail
   689   if ( ptr != NULL ) {
   690     GuardedMemory guarded(MemTracker::malloc_base(memblock));
   691     // Guard's user data contains NMT header
   692     size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
   693     memcpy(ptr, memblock, MIN2(size, memblock_size));
   694     if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
   695     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
   696       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
   697       breakpoint();
   698     }
   699     os::free(memblock);
   700   }
   701   return ptr;
   702 #endif
   703 }
   706 void  os::free(void *memblock, MEMFLAGS memflags) {
   707   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
   708 #ifdef ASSERT
   709   if (memblock == NULL) return;
   710   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   711     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
   712     breakpoint();
   713   }
   714   void* membase = MemTracker::record_free(memblock);
   715   verify_memory(membase);
   716   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   718   GuardedMemory guarded(membase);
   719   size_t size = guarded.get_user_size();
   720   inc_stat_counter(&free_bytes, size);
   721   membase = guarded.release_for_freeing();
   722   if (PrintMalloc && tty != NULL) {
   723       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
   724   }
   725   ::free(membase);
   726 #else
   727   void* membase = MemTracker::record_free(memblock);
   728   ::free(membase);
   729 #endif
   730 }
   732 void os::init_random(long initval) {
   733   _rand_seed = initval;
   734 }
   737 long os::random() {
   738   /* standard, well-known linear congruential random generator with
   739    * next_rand = (16807*seed) mod (2**31-1)
   740    * see
   741    * (1) "Random Number Generators: Good Ones Are Hard to Find",
   742    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
   743    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
   744    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
   745   */
   746   const long a = 16807;
   747   const unsigned long m = 2147483647;
   748   const long q = m / a;        assert(q == 127773, "weird math");
   749   const long r = m % a;        assert(r == 2836, "weird math");
   751   // compute az=2^31p+q
   752   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
   753   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
   754   lo += (hi & 0x7FFF) << 16;
   756   // if q overflowed, ignore the overflow and increment q
   757   if (lo > m) {
   758     lo &= m;
   759     ++lo;
   760   }
   761   lo += hi >> 15;
   763   // if (p+q) overflowed, ignore the overflow and increment (p+q)
   764   if (lo > m) {
   765     lo &= m;
   766     ++lo;
   767   }
   768   return (_rand_seed = lo);
   769 }
   771 // The INITIALIZED state is distinguished from the SUSPENDED state because the
   772 // conditions in which a thread is first started are different from those in which
   773 // a suspension is resumed.  These differences make it hard for us to apply the
   774 // tougher checks when starting threads that we want to do when resuming them.
   775 // However, when start_thread is called as a result of Thread.start, on a Java
   776 // thread, the operation is synchronized on the Java Thread object.  So there
   777 // cannot be a race to start the thread and hence for the thread to exit while
   778 // we are working on it.  Non-Java threads that start Java threads either have
   779 // to do so in a context in which races are impossible, or should do appropriate
   780 // locking.
   782 void os::start_thread(Thread* thread) {
   783   // guard suspend/resume
   784   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
   785   OSThread* osthread = thread->osthread();
   786   osthread->set_state(RUNNABLE);
   787   pd_start_thread(thread);
   788 }
   790 //---------------------------------------------------------------------------
   791 // Helper functions for fatal error handler
   793 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
   794   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
   796   int cols = 0;
   797   int cols_per_line = 0;
   798   switch (unitsize) {
   799     case 1: cols_per_line = 16; break;
   800     case 2: cols_per_line = 8;  break;
   801     case 4: cols_per_line = 4;  break;
   802     case 8: cols_per_line = 2;  break;
   803     default: return;
   804   }
   806   address p = start;
   807   st->print(PTR_FORMAT ":   ", start);
   808   while (p < end) {
   809     switch (unitsize) {
   810       case 1: st->print("%02x", *(u1*)p); break;
   811       case 2: st->print("%04x", *(u2*)p); break;
   812       case 4: st->print("%08x", *(u4*)p); break;
   813       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
   814     }
   815     p += unitsize;
   816     cols++;
   817     if (cols >= cols_per_line && p < end) {
   818        cols = 0;
   819        st->cr();
   820        st->print(PTR_FORMAT ":   ", p);
   821     } else {
   822        st->print(" ");
   823     }
   824   }
   825   st->cr();
   826 }
   828 void os::print_environment_variables(outputStream* st, const char** env_list,
   829                                      char* buffer, int len) {
   830   if (env_list) {
   831     st->print_cr("Environment Variables:");
   833     for (int i = 0; env_list[i] != NULL; i++) {
   834       if (getenv(env_list[i], buffer, len)) {
   835         st->print("%s", env_list[i]);
   836         st->print("=");
   837         st->print_cr("%s", buffer);
   838       }
   839     }
   840   }
   841 }
   843 void os::print_cpu_info(outputStream* st) {
   844   // cpu
   845   st->print("CPU:");
   846   st->print("total %d", os::processor_count());
   847   // It's not safe to query number of active processors after crash
   848   // st->print("(active %d)", os::active_processor_count()); but we can
   849   // print the initial number of active processors.
   850   // We access the raw value here because the assert in the accessor will
   851   // fail if the crash occurs before initialization of this value.
   852   st->print(" (initial active %d)", _initial_active_processor_count);
   853   st->print(" %s", VM_Version::cpu_features());
   854   st->cr();
   855   pd_print_cpu_info(st);
   856 }
   858 void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
   859   const int secs_per_day  = 86400;
   860   const int secs_per_hour = 3600;
   861   const int secs_per_min  = 60;
   863   time_t tloc;
   864   (void)time(&tloc);
   865   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
   867   struct tm tz;
   868   if (localtime_pd(&tloc, &tz) != NULL) {
   869     ::strftime(buf, buflen, "%Z", &tz);
   870     st->print_cr("timezone: %s", buf);
   871   }
   873   double t = os::elapsedTime();
   874   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
   875   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
   876   //       before printf. We lost some precision, but who cares?
   877   int eltime = (int)t;  // elapsed time in seconds
   879   // print elapsed time in a human-readable format:
   880   int eldays = eltime / secs_per_day;
   881   int day_secs = eldays * secs_per_day;
   882   int elhours = (eltime - day_secs) / secs_per_hour;
   883   int hour_secs = elhours * secs_per_hour;
   884   int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
   885   int minute_secs = elmins * secs_per_min;
   886   int elsecs = (eltime - day_secs - hour_secs - minute_secs);
   887   st->print_cr("elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
   888 }
   890 // moved from debug.cpp (used to be find()) but still called from there
   891 // The verbose parameter is only set by the debug code in one case
   892 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
   893   address addr = (address)x;
   894   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
   895   if (b != NULL) {
   896     if (b->is_buffer_blob()) {
   897       // the interpreter is generated into a buffer blob
   898       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
   899       if (i != NULL) {
   900         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
   901         i->print_on(st);
   902         return;
   903       }
   904       if (Interpreter::contains(addr)) {
   905         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
   906                      " (not bytecode specific)", addr);
   907         return;
   908       }
   909       //
   910       if (AdapterHandlerLibrary::contains(b)) {
   911         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
   912         AdapterHandlerLibrary::print_handler_on(st, b);
   913       }
   914       // the stubroutines are generated into a buffer blob
   915       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
   916       if (d != NULL) {
   917         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
   918         d->print_on(st);
   919         st->cr();
   920         return;
   921       }
   922       if (StubRoutines::contains(addr)) {
   923         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
   924                      "stub routine", addr);
   925         return;
   926       }
   927       // the InlineCacheBuffer is using stubs generated into a buffer blob
   928       if (InlineCacheBuffer::contains(addr)) {
   929         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
   930         return;
   931       }
   932       VtableStub* v = VtableStubs::stub_containing(addr);
   933       if (v != NULL) {
   934         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
   935         v->print_on(st);
   936         st->cr();
   937         return;
   938       }
   939     }
   940     nmethod* nm = b->as_nmethod_or_null();
   941     if (nm != NULL) {
   942       ResourceMark rm;
   943       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
   944                 addr, (int)(addr - nm->entry_point()), nm);
   945       if (verbose) {
   946         st->print(" for ");
   947         nm->method()->print_value_on(st);
   948       }
   949       st->cr();
   950       nm->print_nmethod(verbose);
   951       return;
   952     }
   953     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
   954     b->print_on(st);
   955     return;
   956   }
   958   if (Universe::heap()->is_in(addr)) {
   959     HeapWord* p = Universe::heap()->block_start(addr);
   960     bool print = false;
   961     // If we couldn't find it it just may mean that heap wasn't parseable
   962     // See if we were just given an oop directly
   963     if (p != NULL && Universe::heap()->block_is_obj(p)) {
   964       print = true;
   965     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
   966       p = (HeapWord*) addr;
   967       print = true;
   968     }
   969     if (print) {
   970       if (p == (HeapWord*) addr) {
   971         st->print_cr(INTPTR_FORMAT " is an oop", addr);
   972       } else {
   973         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
   974       }
   975       oop(p)->print_on(st);
   976       return;
   977     }
   978   } else {
   979     if (Universe::heap()->is_in_reserved(addr)) {
   980       st->print_cr(INTPTR_FORMAT " is an unallocated location "
   981                    "in the heap", addr);
   982       return;
   983     }
   984   }
   985   if (JNIHandles::is_global_handle((jobject) addr)) {
   986     st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
   987     return;
   988   }
   989   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
   990     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
   991     return;
   992   }
   993 #ifndef PRODUCT
   994   // we don't keep the block list in product mode
   995   if (JNIHandleBlock::any_contains((jobject) addr)) {
   996     st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
   997     return;
   998   }
   999 #endif
  1001   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
  1002     // Check for privilege stack
  1003     if (thread->privileged_stack_top() != NULL &&
  1004         thread->privileged_stack_top()->contains(addr)) {
  1005       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
  1006                    "for thread: " INTPTR_FORMAT, addr, thread);
  1007       if (verbose) thread->print_on(st);
  1008       return;
  1010     // If the addr is a java thread print information about that.
  1011     if (addr == (address)thread) {
  1012       if (verbose) {
  1013         thread->print_on(st);
  1014       } else {
  1015         st->print_cr(INTPTR_FORMAT " is a thread", addr);
  1017       return;
  1019     // If the addr is in the stack region for this thread then report that
  1020     // and print thread info
  1021     if (thread->stack_base() >= addr &&
  1022         addr > (thread->stack_base() - thread->stack_size())) {
  1023       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
  1024                    INTPTR_FORMAT, addr, thread);
  1025       if (verbose) thread->print_on(st);
  1026       return;
  1031   // Check if in metaspace and print types that have vptrs (only method now)
  1032   if (Metaspace::contains(addr)) {
  1033     if (Method::has_method_vptr((const void*)addr)) {
  1034       ((Method*)addr)->print_value_on(st);
  1035       st->cr();
  1036     } else {
  1037       // Use addr->print() from the debugger instead (not here)
  1038       st->print_cr(INTPTR_FORMAT " is pointing into metadata", addr);
  1040     return;
  1043   // Try an OS specific find
  1044   if (os::find(addr, st)) {
  1045     return;
  1048   st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
  1051 // Looks like all platforms except IA64 can use the same function to check
  1052 // if C stack is walkable beyond current frame. The check for fp() is not
  1053 // necessary on Sparc, but it's harmless.
  1054 bool os::is_first_C_frame(frame* fr) {
  1055 #if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
  1056   // On IA64 we have to check if the callers bsp is still valid
  1057   // (i.e. within the register stack bounds).
  1058   // Notice: this only works for threads created by the VM and only if
  1059   // we walk the current stack!!! If we want to be able to walk
  1060   // arbitrary other threads, we'll have to somehow store the thread
  1061   // object in the frame.
  1062   Thread *thread = Thread::current();
  1063   if ((address)fr->fp() <=
  1064       thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
  1065     // This check is a little hacky, because on Linux the first C
  1066     // frame's ('start_thread') register stack frame starts at
  1067     // "register_stack_base + 0x48" while on HPUX, the first C frame's
  1068     // ('__pthread_bound_body') register stack frame seems to really
  1069     // start at "register_stack_base".
  1070     return true;
  1071   } else {
  1072     return false;
  1074 #elif defined(IA64) && defined(_WIN32)
  1075   return true;
  1076 #else
  1077   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
  1078   // Check usp first, because if that's bad the other accessors may fault
  1079   // on some architectures.  Ditto ufp second, etc.
  1080   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
  1081   // sp on amd can be 32 bit aligned.
  1082   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
  1084   uintptr_t usp    = (uintptr_t)fr->sp();
  1085   if ((usp & sp_align_mask) != 0) return true;
  1087   uintptr_t ufp    = (uintptr_t)fr->fp();
  1088   if ((ufp & fp_align_mask) != 0) return true;
  1090   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
  1091   if ((old_sp & sp_align_mask) != 0) return true;
  1092   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
  1094   uintptr_t old_fp = (uintptr_t)fr->link();
  1095   if ((old_fp & fp_align_mask) != 0) return true;
  1096   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
  1098   // stack grows downwards; if old_fp is below current fp or if the stack
  1099   // frame is too large, either the stack is corrupted or fp is not saved
  1100   // on stack (i.e. on x86, ebp may be used as general register). The stack
  1101   // is not walkable beyond current frame.
  1102   if (old_fp < ufp) return true;
  1103   if (old_fp - ufp > 64 * K) return true;
  1105   return false;
  1106 #endif
  1109 #ifdef ASSERT
  1110 extern "C" void test_random() {
  1111   const double m = 2147483647;
  1112   double mean = 0.0, variance = 0.0, t;
  1113   long reps = 10000;
  1114   unsigned long seed = 1;
  1116   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
  1117   os::init_random(seed);
  1118   long num;
  1119   for (int k = 0; k < reps; k++) {
  1120     num = os::random();
  1121     double u = (double)num / m;
  1122     assert(u >= 0.0 && u <= 1.0, "bad random number!");
  1124     // calculate mean and variance of the random sequence
  1125     mean += u;
  1126     variance += (u*u);
  1128   mean /= reps;
  1129   variance /= (reps - 1);
  1131   assert(num == 1043618065, "bad seed");
  1132   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
  1133   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
  1134   const double eps = 0.0001;
  1135   t = fabsd(mean - 0.5018);
  1136   assert(t < eps, "bad mean");
  1137   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
  1138   assert(t < eps, "bad variance");
  1140 #endif
  1143 // Set up the boot classpath.
  1145 char* os::format_boot_path(const char* format_string,
  1146                            const char* home,
  1147                            int home_len,
  1148                            char fileSep,
  1149                            char pathSep) {
  1150     assert((fileSep == '/' && pathSep == ':') ||
  1151            (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
  1153     // Scan the format string to determine the length of the actual
  1154     // boot classpath, and handle platform dependencies as well.
  1155     int formatted_path_len = 0;
  1156     const char* p;
  1157     for (p = format_string; *p != 0; ++p) {
  1158         if (*p == '%') formatted_path_len += home_len - 1;
  1159         ++formatted_path_len;
  1162     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
  1163     if (formatted_path == NULL) {
  1164         return NULL;
  1167     // Create boot classpath from format, substituting separator chars and
  1168     // java home directory.
  1169     char* q = formatted_path;
  1170     for (p = format_string; *p != 0; ++p) {
  1171         switch (*p) {
  1172         case '%':
  1173             strcpy(q, home);
  1174             q += home_len;
  1175             break;
  1176         case '/':
  1177             *q++ = fileSep;
  1178             break;
  1179         case ':':
  1180             *q++ = pathSep;
  1181             break;
  1182         default:
  1183             *q++ = *p;
  1186     *q = '\0';
  1188     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
  1189     return formatted_path;
  1193 bool os::set_boot_path(char fileSep, char pathSep) {
  1194     const char* home = Arguments::get_java_home();
  1195     int home_len = (int)strlen(home);
  1197     static const char* meta_index_dir_format = "%/lib/";
  1198     static const char* meta_index_format = "%/lib/meta-index";
  1199     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
  1200     if (meta_index == NULL) return false;
  1201     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
  1202     if (meta_index_dir == NULL) return false;
  1203     Arguments::set_meta_index_path(meta_index, meta_index_dir);
  1205     // Any modification to the JAR-file list, for the boot classpath must be
  1206     // aligned with install/install/make/common/Pack.gmk. Note: boot class
  1207     // path class JARs, are stripped for StackMapTable to reduce download size.
  1208     static const char classpath_format[] =
  1209         "%/lib/resources.jar:"
  1210         "%/lib/rt.jar:"
  1211         "%/lib/sunrsasign.jar:"
  1212         "%/lib/jsse.jar:"
  1213         "%/lib/jce.jar:"
  1214         "%/lib/charsets.jar:"
  1215         "%/lib/jfr.jar:"
  1216         "%/classes";
  1217     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
  1218     if (sysclasspath == NULL) return false;
  1219     Arguments::set_sysclasspath(sysclasspath);
  1221     return true;
  1224 /*
  1225  * Splits a path, based on its separator, the number of
  1226  * elements is returned back in n.
  1227  * It is the callers responsibility to:
  1228  *   a> check the value of n, and n may be 0.
  1229  *   b> ignore any empty path elements
  1230  *   c> free up the data.
  1231  */
  1232 char** os::split_path(const char* path, int* n) {
  1233   *n = 0;
  1234   if (path == NULL || strlen(path) == 0) {
  1235     return NULL;
  1237   const char psepchar = *os::path_separator();
  1238   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
  1239   if (inpath == NULL) {
  1240     return NULL;
  1242   strcpy(inpath, path);
  1243   int count = 1;
  1244   char* p = strchr(inpath, psepchar);
  1245   // Get a count of elements to allocate memory
  1246   while (p != NULL) {
  1247     count++;
  1248     p++;
  1249     p = strchr(p, psepchar);
  1251   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
  1252   if (opath == NULL) {
  1253     return NULL;
  1256   // do the actual splitting
  1257   p = inpath;
  1258   for (int i = 0 ; i < count ; i++) {
  1259     size_t len = strcspn(p, os::path_separator());
  1260     if (len > JVM_MAXPATHLEN) {
  1261       return NULL;
  1263     // allocate the string and add terminator storage
  1264     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
  1265     if (s == NULL) {
  1266       return NULL;
  1268     strncpy(s, p, len);
  1269     s[len] = '\0';
  1270     opath[i] = s;
  1271     p += len + 1;
  1273   FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
  1274   *n = count;
  1275   return opath;
  1278 void os::set_memory_serialize_page(address page) {
  1279   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
  1280   _mem_serialize_page = (volatile int32_t *)page;
  1281   // We initialize the serialization page shift count here
  1282   // We assume a cache line size of 64 bytes
  1283   assert(SerializePageShiftCount == count,
  1284          "thread size changed, fix SerializePageShiftCount constant");
  1285   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
  1288 static volatile intptr_t SerializePageLock = 0;
  1290 // This method is called from signal handler when SIGSEGV occurs while the current
  1291 // thread tries to store to the "read-only" memory serialize page during state
  1292 // transition.
  1293 void os::block_on_serialize_page_trap() {
  1294   if (TraceSafepoint) {
  1295     tty->print_cr("Block until the serialize page permission restored");
  1297   // When VMThread is holding the SerializePageLock during modifying the
  1298   // access permission of the memory serialize page, the following call
  1299   // will block until the permission of that page is restored to rw.
  1300   // Generally, it is unsafe to manipulate locks in signal handlers, but in
  1301   // this case, it's OK as the signal is synchronous and we know precisely when
  1302   // it can occur.
  1303   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
  1304   Thread::muxRelease(&SerializePageLock);
  1307 // Serialize all thread state variables
  1308 void os::serialize_thread_states() {
  1309   // On some platforms such as Solaris & Linux, the time duration of the page
  1310   // permission restoration is observed to be much longer than expected  due to
  1311   // scheduler starvation problem etc. To avoid the long synchronization
  1312   // time and expensive page trap spinning, 'SerializePageLock' is used to block
  1313   // the mutator thread if such case is encountered. See bug 6546278 for details.
  1314   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
  1315   os::protect_memory((char *)os::get_memory_serialize_page(),
  1316                      os::vm_page_size(), MEM_PROT_READ);
  1317   os::protect_memory((char *)os::get_memory_serialize_page(),
  1318                      os::vm_page_size(), MEM_PROT_RW);
  1319   Thread::muxRelease(&SerializePageLock);
  1322 // Returns true if the current stack pointer is above the stack shadow
  1323 // pages, false otherwise.
  1325 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
  1326   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
  1327   address sp = current_stack_pointer();
  1328   // Check if we have StackShadowPages above the yellow zone.  This parameter
  1329   // is dependent on the depth of the maximum VM call stack possible from
  1330   // the handler for stack overflow.  'instanceof' in the stack overflow
  1331   // handler or a println uses at least 8k stack of VM and native code
  1332   // respectively.
  1333   const int framesize_in_bytes =
  1334     Interpreter::size_top_interpreter_activation(method()) * wordSize;
  1335   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
  1336                       * vm_page_size()) + framesize_in_bytes;
  1337   // The very lower end of the stack
  1338   address stack_limit = thread->stack_base() - thread->stack_size();
  1339   return (sp > (stack_limit + reserved_area));
  1342 size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
  1343   assert(min_pages > 0, "sanity");
  1344   if (UseLargePages) {
  1345     const size_t max_page_size = region_size / min_pages;
  1347     for (size_t i = 0; _page_sizes[i] != 0; ++i) {
  1348       const size_t page_size = _page_sizes[i];
  1349       if (page_size <= max_page_size) {
  1350         if (!must_be_aligned || is_size_aligned(region_size, page_size)) {
  1351           return page_size;
  1357   return vm_page_size();
  1360 size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
  1361   return page_size_for_region(region_size, min_pages, true);
  1364 size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
  1365   return page_size_for_region(region_size, min_pages, false);
  1368 #ifndef PRODUCT
  1369 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
  1371   if (TracePageSizes) {
  1372     tty->print("%s: ", str);
  1373     for (int i = 0; i < count; ++i) {
  1374       tty->print(" " SIZE_FORMAT, page_sizes[i]);
  1376     tty->cr();
  1380 void os::trace_page_sizes(const char* str, const size_t region_min_size,
  1381                           const size_t region_max_size, const size_t page_size,
  1382                           const char* base, const size_t size)
  1384   if (TracePageSizes) {
  1385     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
  1386                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
  1387                   " size=" SIZE_FORMAT,
  1388                   str, region_min_size, region_max_size,
  1389                   page_size, base, size);
  1392 #endif  // #ifndef PRODUCT
  1394 // This is the working definition of a server class machine:
  1395 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
  1396 // because the graphics memory (?) sometimes masks physical memory.
  1397 // If you want to change the definition of a server class machine
  1398 // on some OS or platform, e.g., >=4GB on Windohs platforms,
  1399 // then you'll have to parameterize this method based on that state,
  1400 // as was done for logical processors here, or replicate and
  1401 // specialize this method for each platform.  (Or fix os to have
  1402 // some inheritance structure and use subclassing.  Sigh.)
  1403 // If you want some platform to always or never behave as a server
  1404 // class machine, change the setting of AlwaysActAsServerClassMachine
  1405 // and NeverActAsServerClassMachine in globals*.hpp.
  1406 bool os::is_server_class_machine() {
  1407   // First check for the early returns
  1408   if (NeverActAsServerClassMachine) {
  1409     return false;
  1411   if (AlwaysActAsServerClassMachine) {
  1412     return true;
  1414   // Then actually look at the machine
  1415   bool         result            = false;
  1416   const unsigned int    server_processors = 2;
  1417   const julong server_memory     = 2UL * G;
  1418   // We seem not to get our full complement of memory.
  1419   //     We allow some part (1/8?) of the memory to be "missing",
  1420   //     based on the sizes of DIMMs, and maybe graphics cards.
  1421   const julong missing_memory   = 256UL * M;
  1423   /* Is this a server class machine? */
  1424   if ((os::active_processor_count() >= (int)server_processors) &&
  1425       (os::physical_memory() >= (server_memory - missing_memory))) {
  1426     const unsigned int logical_processors =
  1427       VM_Version::logical_processors_per_package();
  1428     if (logical_processors > 1) {
  1429       const unsigned int physical_packages =
  1430         os::active_processor_count() / logical_processors;
  1431       if (physical_packages > server_processors) {
  1432         result = true;
  1434     } else {
  1435       result = true;
  1438   return result;
  1441 void os::initialize_initial_active_processor_count() {
  1442   assert(_initial_active_processor_count == 0, "Initial active processor count already set.");
  1443   _initial_active_processor_count = active_processor_count();
  1446 void os::SuspendedThreadTask::run() {
  1447   assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
  1448   internal_do_task();
  1449   _done = true;
  1452 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
  1453   return os::pd_create_stack_guard_pages(addr, bytes);
  1456 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  1457   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
  1458   if (result != NULL) {
  1459     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1462   return result;
  1465 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
  1466    MEMFLAGS flags) {
  1467   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
  1468   if (result != NULL) {
  1469     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1470     MemTracker::record_virtual_memory_type((address)result, flags);
  1473   return result;
  1476 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
  1477   char* result = pd_attempt_reserve_memory_at(bytes, addr);
  1478   if (result != NULL) {
  1479     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1481   return result;
  1484 void os::split_reserved_memory(char *base, size_t size,
  1485                                  size_t split, bool realloc) {
  1486   pd_split_reserved_memory(base, size, split, realloc);
  1489 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
  1490   bool res = pd_commit_memory(addr, bytes, executable);
  1491   if (res) {
  1492     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
  1494   return res;
  1497 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  1498                               bool executable) {
  1499   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
  1500   if (res) {
  1501     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
  1503   return res;
  1506 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
  1507                                const char* mesg) {
  1508   pd_commit_memory_or_exit(addr, bytes, executable, mesg);
  1509   MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
  1512 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
  1513                                bool executable, const char* mesg) {
  1514   os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
  1515   MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
  1518 bool os::uncommit_memory(char* addr, size_t bytes) {
  1519   bool res;
  1520   if (MemTracker::tracking_level() > NMT_minimal) {
  1521     Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
  1522     res = pd_uncommit_memory(addr, bytes);
  1523     if (res) {
  1524       tkr.record((address)addr, bytes);
  1526   } else {
  1527     res = pd_uncommit_memory(addr, bytes);
  1529   return res;
  1532 bool os::release_memory(char* addr, size_t bytes) {
  1533   bool res;
  1534   if (MemTracker::tracking_level() > NMT_minimal) {
  1535     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  1536     res = pd_release_memory(addr, bytes);
  1537     if (res) {
  1538       tkr.record((address)addr, bytes);
  1540   } else {
  1541     res = pd_release_memory(addr, bytes);
  1543   return res;
  1546 void os::pretouch_memory(char* start, char* end) {
  1547   for (volatile char *p = start; p < end; p += os::vm_page_size()) {
  1548     *p = 0;
  1552 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  1553                            char *addr, size_t bytes, bool read_only,
  1554                            bool allow_exec) {
  1555   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
  1556   if (result != NULL) {
  1557     MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
  1559   return result;
  1562 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  1563                              char *addr, size_t bytes, bool read_only,
  1564                              bool allow_exec) {
  1565   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
  1566                     read_only, allow_exec);
  1569 bool os::unmap_memory(char *addr, size_t bytes) {
  1570   bool result;
  1571   if (MemTracker::tracking_level() > NMT_minimal) {
  1572     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  1573     result = pd_unmap_memory(addr, bytes);
  1574     if (result) {
  1575       tkr.record((address)addr, bytes);
  1577   } else {
  1578     result = pd_unmap_memory(addr, bytes);
  1580   return result;
  1583 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  1584   pd_free_memory(addr, bytes, alignment_hint);
  1587 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  1588   pd_realign_memory(addr, bytes, alignment_hint);
  1591 #ifndef TARGET_OS_FAMILY_windows
  1592 /* try to switch state from state "from" to state "to"
  1593  * returns the state set after the method is complete
  1594  */
  1595 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
  1596                                                          os::SuspendResume::State to)
  1598   os::SuspendResume::State result =
  1599     (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
  1600   if (result == from) {
  1601     // success
  1602     return to;
  1604   return result;
  1606 #endif
  1608 /////////////// Unit tests ///////////////
  1610 #ifndef PRODUCT
  1612 #define assert_eq(a,b) assert(a == b, err_msg(SIZE_FORMAT " != " SIZE_FORMAT, a, b))
  1614 class TestOS : AllStatic {
  1615   static size_t small_page_size() {
  1616     return os::vm_page_size();
  1619   static size_t large_page_size() {
  1620     const size_t large_page_size_example = 4 * M;
  1621     return os::page_size_for_region_aligned(large_page_size_example, 1);
  1624   static void test_page_size_for_region_aligned() {
  1625     if (UseLargePages) {
  1626       const size_t small_page = small_page_size();
  1627       const size_t large_page = large_page_size();
  1629       if (large_page > small_page) {
  1630         size_t num_small_pages_in_large = large_page / small_page;
  1631         size_t page = os::page_size_for_region_aligned(large_page, num_small_pages_in_large);
  1633         assert_eq(page, small_page);
  1638   static void test_page_size_for_region_alignment() {
  1639     if (UseLargePages) {
  1640       const size_t small_page = small_page_size();
  1641       const size_t large_page = large_page_size();
  1642       if (large_page > small_page) {
  1643         const size_t unaligned_region = large_page + 17;
  1644         size_t page = os::page_size_for_region_aligned(unaligned_region, 1);
  1645         assert_eq(page, small_page);
  1647         const size_t num_pages = 5;
  1648         const size_t aligned_region = large_page * num_pages;
  1649         page = os::page_size_for_region_aligned(aligned_region, num_pages);
  1650         assert_eq(page, large_page);
  1655   static void test_page_size_for_region_unaligned() {
  1656     if (UseLargePages) {
  1657       // Given exact page size, should return that page size.
  1658       for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
  1659         size_t expected = os::_page_sizes[i];
  1660         size_t actual = os::page_size_for_region_unaligned(expected, 1);
  1661         assert_eq(expected, actual);
  1664       // Given slightly larger size than a page size, return the page size.
  1665       for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
  1666         size_t expected = os::_page_sizes[i];
  1667         size_t actual = os::page_size_for_region_unaligned(expected + 17, 1);
  1668         assert_eq(expected, actual);
  1671       // Given a slightly smaller size than a page size,
  1672       // return the next smaller page size.
  1673       if (os::_page_sizes[1] > os::_page_sizes[0]) {
  1674         size_t expected = os::_page_sizes[0];
  1675         size_t actual = os::page_size_for_region_unaligned(os::_page_sizes[1] - 17, 1);
  1676         assert_eq(actual, expected);
  1679       // Return small page size for values less than a small page.
  1680       size_t small_page = small_page_size();
  1681       size_t actual = os::page_size_for_region_unaligned(small_page - 17, 1);
  1682       assert_eq(small_page, actual);
  1686  public:
  1687   static void run_tests() {
  1688     test_page_size_for_region_aligned();
  1689     test_page_size_for_region_alignment();
  1690     test_page_size_for_region_unaligned();
  1692 };
  1694 void TestOS_test() {
  1695   TestOS::run_tests();
  1698 #endif // PRODUCT

mercurial