src/share/vm/runtime/deoptimization.cpp

Thu, 22 May 2014 15:52:41 -0400

author
drchase
date
Thu, 22 May 2014 15:52:41 -0400
changeset 6680
78bbf4d43a14
parent 6518
62c54fcc0a35
child 6723
0bf37f737702
permissions
-rw-r--r--

8037816: Fix for 8036122 breaks build with Xcode5/clang
8043029: Change 8037816 breaks HS build with older GCC versions which don't support diagnostic pragmas
8043164: Format warning in traceStream.hpp
Summary: Backport of main fix + two corrections, enables clang compilation, turns on format attributes, corrects/mutes warnings
Reviewed-by: kvn, coleenp, iveresov, twisti

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/debugInfoRec.hpp"
    28 #include "code/nmethod.hpp"
    29 #include "code/pcDesc.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "interpreter/bytecode.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/oopMapCache.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "memory/resourceArea.hpp"
    37 #include "oops/method.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/jvmtiThreadState.hpp"
    40 #include "runtime/biasedLocking.hpp"
    41 #include "runtime/compilationPolicy.hpp"
    42 #include "runtime/deoptimization.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/sharedRuntime.hpp"
    45 #include "runtime/signature.hpp"
    46 #include "runtime/stubRoutines.hpp"
    47 #include "runtime/thread.hpp"
    48 #include "runtime/vframe.hpp"
    49 #include "runtime/vframeArray.hpp"
    50 #include "runtime/vframe_hp.hpp"
    51 #include "utilities/events.hpp"
    52 #include "utilities/xmlstream.hpp"
    53 #ifdef TARGET_ARCH_x86
    54 # include "vmreg_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_sparc
    57 # include "vmreg_sparc.inline.hpp"
    58 #endif
    59 #ifdef TARGET_ARCH_zero
    60 # include "vmreg_zero.inline.hpp"
    61 #endif
    62 #ifdef TARGET_ARCH_arm
    63 # include "vmreg_arm.inline.hpp"
    64 #endif
    65 #ifdef TARGET_ARCH_ppc
    66 # include "vmreg_ppc.inline.hpp"
    67 #endif
    68 #ifdef COMPILER2
    69 #ifdef TARGET_ARCH_MODEL_x86_32
    70 # include "adfiles/ad_x86_32.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_MODEL_x86_64
    73 # include "adfiles/ad_x86_64.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_MODEL_sparc
    76 # include "adfiles/ad_sparc.hpp"
    77 #endif
    78 #ifdef TARGET_ARCH_MODEL_zero
    79 # include "adfiles/ad_zero.hpp"
    80 #endif
    81 #ifdef TARGET_ARCH_MODEL_arm
    82 # include "adfiles/ad_arm.hpp"
    83 #endif
    84 #ifdef TARGET_ARCH_MODEL_ppc_32
    85 # include "adfiles/ad_ppc_32.hpp"
    86 #endif
    87 #ifdef TARGET_ARCH_MODEL_ppc_64
    88 # include "adfiles/ad_ppc_64.hpp"
    89 #endif
    90 #endif // COMPILER2
    92 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    94 bool DeoptimizationMarker::_is_active = false;
    96 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
    97                                          int  caller_adjustment,
    98                                          int  caller_actual_parameters,
    99                                          int  number_of_frames,
   100                                          intptr_t* frame_sizes,
   101                                          address* frame_pcs,
   102                                          BasicType return_type) {
   103   _size_of_deoptimized_frame = size_of_deoptimized_frame;
   104   _caller_adjustment         = caller_adjustment;
   105   _caller_actual_parameters  = caller_actual_parameters;
   106   _number_of_frames          = number_of_frames;
   107   _frame_sizes               = frame_sizes;
   108   _frame_pcs                 = frame_pcs;
   109   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
   110   _return_type               = return_type;
   111   _initial_info              = 0;
   112   // PD (x86 only)
   113   _counter_temp              = 0;
   114   _unpack_kind               = 0;
   115   _sender_sp_temp            = 0;
   117   _total_frame_sizes         = size_of_frames();
   118 }
   121 Deoptimization::UnrollBlock::~UnrollBlock() {
   122   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes, mtCompiler);
   123   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs, mtCompiler);
   124   FREE_C_HEAP_ARRAY(intptr_t, _register_block, mtCompiler);
   125 }
   128 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
   129   assert(register_number < RegisterMap::reg_count, "checking register number");
   130   return &_register_block[register_number * 2];
   131 }
   135 int Deoptimization::UnrollBlock::size_of_frames() const {
   136   // Acount first for the adjustment of the initial frame
   137   int result = _caller_adjustment;
   138   for (int index = 0; index < number_of_frames(); index++) {
   139     result += frame_sizes()[index];
   140   }
   141   return result;
   142 }
   145 void Deoptimization::UnrollBlock::print() {
   146   ttyLocker ttyl;
   147   tty->print_cr("UnrollBlock");
   148   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
   149   tty->print(   "  frame_sizes: ");
   150   for (int index = 0; index < number_of_frames(); index++) {
   151     tty->print("%d ", frame_sizes()[index]);
   152   }
   153   tty->cr();
   154 }
   157 // In order to make fetch_unroll_info work properly with escape
   158 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
   159 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
   160 // of previously eliminated objects occurs in realloc_objects, which is
   161 // called from the method fetch_unroll_info_helper below.
   162 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
   163   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   164   // but makes the entry a little slower. There is however a little dance we have to
   165   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   167   // fetch_unroll_info() is called at the beginning of the deoptimization
   168   // handler. Note this fact before we start generating temporary frames
   169   // that can confuse an asynchronous stack walker. This counter is
   170   // decremented at the end of unpack_frames().
   171   thread->inc_in_deopt_handler();
   173   return fetch_unroll_info_helper(thread);
   174 JRT_END
   177 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
   178 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
   180   // Note: there is a safepoint safety issue here. No matter whether we enter
   181   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
   182   // the vframeArray is created.
   183   //
   185   // Allocate our special deoptimization ResourceMark
   186   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
   187   assert(thread->deopt_mark() == NULL, "Pending deopt!");
   188   thread->set_deopt_mark(dmark);
   190   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
   191   RegisterMap map(thread, true);
   192   RegisterMap dummy_map(thread, false);
   193   // Now get the deoptee with a valid map
   194   frame deoptee = stub_frame.sender(&map);
   195   // Set the deoptee nmethod
   196   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
   197   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
   199   if (VerifyStack) {
   200     thread->validate_frame_layout();
   201   }
   203   // Create a growable array of VFrames where each VFrame represents an inlined
   204   // Java frame.  This storage is allocated with the usual system arena.
   205   assert(deoptee.is_compiled_frame(), "Wrong frame type");
   206   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
   207   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
   208   while (!vf->is_top()) {
   209     assert(vf->is_compiled_frame(), "Wrong frame type");
   210     chunk->push(compiledVFrame::cast(vf));
   211     vf = vf->sender();
   212   }
   213   assert(vf->is_compiled_frame(), "Wrong frame type");
   214   chunk->push(compiledVFrame::cast(vf));
   216 #ifdef COMPILER2
   217   // Reallocate the non-escaping objects and restore their fields. Then
   218   // relock objects if synchronization on them was eliminated.
   219   if (DoEscapeAnalysis || EliminateNestedLocks) {
   220     if (EliminateAllocations) {
   221       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
   222       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
   224       // The flag return_oop() indicates call sites which return oop
   225       // in compiled code. Such sites include java method calls,
   226       // runtime calls (for example, used to allocate new objects/arrays
   227       // on slow code path) and any other calls generated in compiled code.
   228       // It is not guaranteed that we can get such information here only
   229       // by analyzing bytecode in deoptimized frames. This is why this flag
   230       // is set during method compilation (see Compile::Process_OopMap_Node()).
   231       bool save_oop_result = chunk->at(0)->scope()->return_oop();
   232       Handle return_value;
   233       if (save_oop_result) {
   234         // Reallocation may trigger GC. If deoptimization happened on return from
   235         // call which returns oop we need to save it since it is not in oopmap.
   236         oop result = deoptee.saved_oop_result(&map);
   237         assert(result == NULL || result->is_oop(), "must be oop");
   238         return_value = Handle(thread, result);
   239         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
   240         if (TraceDeoptimization) {
   241           ttyLocker ttyl;
   242           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread);
   243         }
   244       }
   245       bool reallocated = false;
   246       if (objects != NULL) {
   247         JRT_BLOCK
   248           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
   249         JRT_END
   250       }
   251       if (reallocated) {
   252         reassign_fields(&deoptee, &map, objects);
   253 #ifndef PRODUCT
   254         if (TraceDeoptimization) {
   255           ttyLocker ttyl;
   256           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
   257           print_objects(objects);
   258         }
   259 #endif
   260       }
   261       if (save_oop_result) {
   262         // Restore result.
   263         deoptee.set_saved_oop_result(&map, return_value());
   264       }
   265     }
   266     if (EliminateLocks) {
   267 #ifndef PRODUCT
   268       bool first = true;
   269 #endif
   270       for (int i = 0; i < chunk->length(); i++) {
   271         compiledVFrame* cvf = chunk->at(i);
   272         assert (cvf->scope() != NULL,"expect only compiled java frames");
   273         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   274         if (monitors->is_nonempty()) {
   275           relock_objects(monitors, thread);
   276 #ifndef PRODUCT
   277           if (TraceDeoptimization) {
   278             ttyLocker ttyl;
   279             for (int j = 0; j < monitors->length(); j++) {
   280               MonitorInfo* mi = monitors->at(j);
   281               if (mi->eliminated()) {
   282                 if (first) {
   283                   first = false;
   284                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
   285                 }
   286                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", (void *)mi->owner());
   287               }
   288             }
   289           }
   290 #endif
   291         }
   292       }
   293     }
   294   }
   295 #endif // COMPILER2
   296   // Ensure that no safepoint is taken after pointers have been stored
   297   // in fields of rematerialized objects.  If a safepoint occurs from here on
   298   // out the java state residing in the vframeArray will be missed.
   299   No_Safepoint_Verifier no_safepoint;
   301   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
   303   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
   304   thread->set_vframe_array_head(array);
   306   // Now that the vframeArray has been created if we have any deferred local writes
   307   // added by jvmti then we can free up that structure as the data is now in the
   308   // vframeArray
   310   if (thread->deferred_locals() != NULL) {
   311     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
   312     int i = 0;
   313     do {
   314       // Because of inlining we could have multiple vframes for a single frame
   315       // and several of the vframes could have deferred writes. Find them all.
   316       if (list->at(i)->id() == array->original().id()) {
   317         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
   318         list->remove_at(i);
   319         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
   320         delete dlv;
   321       } else {
   322         i++;
   323       }
   324     } while ( i < list->length() );
   325     if (list->length() == 0) {
   326       thread->set_deferred_locals(NULL);
   327       // free the list and elements back to C heap.
   328       delete list;
   329     }
   331   }
   333 #ifndef SHARK
   334   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
   335   CodeBlob* cb = stub_frame.cb();
   336   // Verify we have the right vframeArray
   337   assert(cb->frame_size() >= 0, "Unexpected frame size");
   338   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
   340   // If the deopt call site is a MethodHandle invoke call site we have
   341   // to adjust the unpack_sp.
   342   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
   343   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
   344     unpack_sp = deoptee.unextended_sp();
   346 #ifdef ASSERT
   347   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
   348 #endif
   349 #else
   350   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
   351 #endif // !SHARK
   353   // This is a guarantee instead of an assert because if vframe doesn't match
   354   // we will unpack the wrong deoptimized frame and wind up in strange places
   355   // where it will be very difficult to figure out what went wrong. Better
   356   // to die an early death here than some very obscure death later when the
   357   // trail is cold.
   358   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
   359   // in that it will fail to detect a problem when there is one. This needs
   360   // more work in tiger timeframe.
   361   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
   363   int number_of_frames = array->frames();
   365   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
   366   // virtual activation, which is the reverse of the elements in the vframes array.
   367   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
   368   // +1 because we always have an interpreter return address for the final slot.
   369   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
   370   int popframe_extra_args = 0;
   371   // Create an interpreter return address for the stub to use as its return
   372   // address so the skeletal frames are perfectly walkable
   373   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
   375   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
   376   // activation be put back on the expression stack of the caller for reexecution
   377   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   378     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
   379   }
   381   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
   382   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
   383   // than simply use array->sender.pc(). This requires us to walk the current set of frames
   384   //
   385   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
   386   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
   388   // It's possible that the number of paramters at the call site is
   389   // different than number of arguments in the callee when method
   390   // handles are used.  If the caller is interpreted get the real
   391   // value so that the proper amount of space can be added to it's
   392   // frame.
   393   bool caller_was_method_handle = false;
   394   if (deopt_sender.is_interpreted_frame()) {
   395     methodHandle method = deopt_sender.interpreter_frame_method();
   396     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
   397     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
   398       // Method handle invokes may involve fairly arbitrary chains of
   399       // calls so it's impossible to know how much actual space the
   400       // caller has for locals.
   401       caller_was_method_handle = true;
   402     }
   403   }
   405   //
   406   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
   407   // frame_sizes/frame_pcs[1] next oldest frame (int)
   408   // frame_sizes/frame_pcs[n] youngest frame (int)
   409   //
   410   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
   411   // owns the space for the return address to it's caller).  Confusing ain't it.
   412   //
   413   // The vframe array can address vframes with indices running from
   414   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
   415   // When we create the skeletal frames we need the oldest frame to be in the zero slot
   416   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
   417   // so things look a little strange in this loop.
   418   //
   419   int callee_parameters = 0;
   420   int callee_locals = 0;
   421   for (int index = 0; index < array->frames(); index++ ) {
   422     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
   423     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
   424     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
   425     int caller_parms = callee_parameters;
   426     if ((index == array->frames() - 1) && caller_was_method_handle) {
   427       caller_parms = 0;
   428     }
   429     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(caller_parms,
   430                                                                                                     callee_parameters,
   431                                                                                                     callee_locals,
   432                                                                                                     index == 0,
   433                                                                                                     index == array->frames() - 1,
   434                                                                                                     popframe_extra_args);
   435     // This pc doesn't have to be perfect just good enough to identify the frame
   436     // as interpreted so the skeleton frame will be walkable
   437     // The correct pc will be set when the skeleton frame is completely filled out
   438     // The final pc we store in the loop is wrong and will be overwritten below
   439     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
   441     callee_parameters = array->element(index)->method()->size_of_parameters();
   442     callee_locals = array->element(index)->method()->max_locals();
   443     popframe_extra_args = 0;
   444   }
   446   // Compute whether the root vframe returns a float or double value.
   447   BasicType return_type;
   448   {
   449     HandleMark hm;
   450     methodHandle method(thread, array->element(0)->method());
   451     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
   452     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
   453   }
   455   // Compute information for handling adapters and adjusting the frame size of the caller.
   456   int caller_adjustment = 0;
   458   // Compute the amount the oldest interpreter frame will have to adjust
   459   // its caller's stack by. If the caller is a compiled frame then
   460   // we pretend that the callee has no parameters so that the
   461   // extension counts for the full amount of locals and not just
   462   // locals-parms. This is because without a c2i adapter the parm
   463   // area as created by the compiled frame will not be usable by
   464   // the interpreter. (Depending on the calling convention there
   465   // may not even be enough space).
   467   // QQQ I'd rather see this pushed down into last_frame_adjust
   468   // and have it take the sender (aka caller).
   470   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
   471     caller_adjustment = last_frame_adjust(0, callee_locals);
   472   } else if (callee_locals > callee_parameters) {
   473     // The caller frame may need extending to accommodate
   474     // non-parameter locals of the first unpacked interpreted frame.
   475     // Compute that adjustment.
   476     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
   477   }
   479   // If the sender is deoptimized the we must retrieve the address of the handler
   480   // since the frame will "magically" show the original pc before the deopt
   481   // and we'd undo the deopt.
   483   frame_pcs[0] = deopt_sender.raw_pc();
   485 #ifndef SHARK
   486   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
   487 #endif // SHARK
   489   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
   490                                       caller_adjustment * BytesPerWord,
   491                                       caller_was_method_handle ? 0 : callee_parameters,
   492                                       number_of_frames,
   493                                       frame_sizes,
   494                                       frame_pcs,
   495                                       return_type);
   496   // On some platforms, we need a way to pass some platform dependent
   497   // information to the unpacking code so the skeletal frames come out
   498   // correct (initial fp value, unextended sp, ...)
   499   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
   501   if (array->frames() > 1) {
   502     if (VerifyStack && TraceDeoptimization) {
   503       ttyLocker ttyl;
   504       tty->print_cr("Deoptimizing method containing inlining");
   505     }
   506   }
   508   array->set_unroll_block(info);
   509   return info;
   510 }
   512 // Called to cleanup deoptimization data structures in normal case
   513 // after unpacking to stack and when stack overflow error occurs
   514 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
   515                                         vframeArray *array) {
   517   // Get array if coming from exception
   518   if (array == NULL) {
   519     array = thread->vframe_array_head();
   520   }
   521   thread->set_vframe_array_head(NULL);
   523   // Free the previous UnrollBlock
   524   vframeArray* old_array = thread->vframe_array_last();
   525   thread->set_vframe_array_last(array);
   527   if (old_array != NULL) {
   528     UnrollBlock* old_info = old_array->unroll_block();
   529     old_array->set_unroll_block(NULL);
   530     delete old_info;
   531     delete old_array;
   532   }
   534   // Deallocate any resource creating in this routine and any ResourceObjs allocated
   535   // inside the vframeArray (StackValueCollections)
   537   delete thread->deopt_mark();
   538   thread->set_deopt_mark(NULL);
   539   thread->set_deopt_nmethod(NULL);
   542   if (JvmtiExport::can_pop_frame()) {
   543 #ifndef CC_INTERP
   544     // Regardless of whether we entered this routine with the pending
   545     // popframe condition bit set, we should always clear it now
   546     thread->clear_popframe_condition();
   547 #else
   548     // C++ interpeter will clear has_pending_popframe when it enters
   549     // with method_resume. For deopt_resume2 we clear it now.
   550     if (thread->popframe_forcing_deopt_reexecution())
   551         thread->clear_popframe_condition();
   552 #endif /* CC_INTERP */
   553   }
   555   // unpack_frames() is called at the end of the deoptimization handler
   556   // and (in C2) at the end of the uncommon trap handler. Note this fact
   557   // so that an asynchronous stack walker can work again. This counter is
   558   // incremented at the beginning of fetch_unroll_info() and (in C2) at
   559   // the beginning of uncommon_trap().
   560   thread->dec_in_deopt_handler();
   561 }
   564 // Return BasicType of value being returned
   565 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
   567   // We are already active int he special DeoptResourceMark any ResourceObj's we
   568   // allocate will be freed at the end of the routine.
   570   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   571   // but makes the entry a little slower. There is however a little dance we have to
   572   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   573   ResetNoHandleMark rnhm; // No-op in release/product versions
   574   HandleMark hm;
   576   frame stub_frame = thread->last_frame();
   578   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
   579   // must point to the vframeArray for the unpack frame.
   580   vframeArray* array = thread->vframe_array_head();
   582 #ifndef PRODUCT
   583   if (TraceDeoptimization) {
   584     ttyLocker ttyl;
   585     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
   586   }
   587 #endif
   588   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
   589               stub_frame.pc(), stub_frame.sp(), exec_mode);
   591   UnrollBlock* info = array->unroll_block();
   593   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
   594   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
   596   BasicType bt = info->return_type();
   598   // If we have an exception pending, claim that the return type is an oop
   599   // so the deopt_blob does not overwrite the exception_oop.
   601   if (exec_mode == Unpack_exception)
   602     bt = T_OBJECT;
   604   // Cleanup thread deopt data
   605   cleanup_deopt_info(thread, array);
   607 #ifndef PRODUCT
   608   if (VerifyStack) {
   609     ResourceMark res_mark;
   611     thread->validate_frame_layout();
   613     // Verify that the just-unpacked frames match the interpreter's
   614     // notions of expression stack and locals
   615     vframeArray* cur_array = thread->vframe_array_last();
   616     RegisterMap rm(thread, false);
   617     rm.set_include_argument_oops(false);
   618     bool is_top_frame = true;
   619     int callee_size_of_parameters = 0;
   620     int callee_max_locals = 0;
   621     for (int i = 0; i < cur_array->frames(); i++) {
   622       vframeArrayElement* el = cur_array->element(i);
   623       frame* iframe = el->iframe();
   624       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
   626       // Get the oop map for this bci
   627       InterpreterOopMap mask;
   628       int cur_invoke_parameter_size = 0;
   629       bool try_next_mask = false;
   630       int next_mask_expression_stack_size = -1;
   631       int top_frame_expression_stack_adjustment = 0;
   632       methodHandle mh(thread, iframe->interpreter_frame_method());
   633       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
   634       BytecodeStream str(mh);
   635       str.set_start(iframe->interpreter_frame_bci());
   636       int max_bci = mh->code_size();
   637       // Get to the next bytecode if possible
   638       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
   639       // Check to see if we can grab the number of outgoing arguments
   640       // at an uncommon trap for an invoke (where the compiler
   641       // generates debug info before the invoke has executed)
   642       Bytecodes::Code cur_code = str.next();
   643       if (cur_code == Bytecodes::_invokevirtual   ||
   644           cur_code == Bytecodes::_invokespecial   ||
   645           cur_code == Bytecodes::_invokestatic    ||
   646           cur_code == Bytecodes::_invokeinterface ||
   647           cur_code == Bytecodes::_invokedynamic) {
   648         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
   649         Symbol* signature = invoke.signature();
   650         ArgumentSizeComputer asc(signature);
   651         cur_invoke_parameter_size = asc.size();
   652         if (invoke.has_receiver()) {
   653           // Add in receiver
   654           ++cur_invoke_parameter_size;
   655         }
   656         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
   657           callee_size_of_parameters++;
   658         }
   659       }
   660       if (str.bci() < max_bci) {
   661         Bytecodes::Code bc = str.next();
   662         if (bc >= 0) {
   663           // The interpreter oop map generator reports results before
   664           // the current bytecode has executed except in the case of
   665           // calls. It seems to be hard to tell whether the compiler
   666           // has emitted debug information matching the "state before"
   667           // a given bytecode or the state after, so we try both
   668           switch (cur_code) {
   669             case Bytecodes::_invokevirtual:
   670             case Bytecodes::_invokespecial:
   671             case Bytecodes::_invokestatic:
   672             case Bytecodes::_invokeinterface:
   673             case Bytecodes::_invokedynamic:
   674             case Bytecodes::_athrow:
   675               break;
   676             default: {
   677               InterpreterOopMap next_mask;
   678               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
   679               next_mask_expression_stack_size = next_mask.expression_stack_size();
   680               // Need to subtract off the size of the result type of
   681               // the bytecode because this is not described in the
   682               // debug info but returned to the interpreter in the TOS
   683               // caching register
   684               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
   685               if (bytecode_result_type != T_ILLEGAL) {
   686                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
   687               }
   688               assert(top_frame_expression_stack_adjustment >= 0, "");
   689               try_next_mask = true;
   690               break;
   691             }
   692           }
   693         }
   694       }
   696       // Verify stack depth and oops in frame
   697       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
   698       if (!(
   699             /* SPARC */
   700             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
   701             /* x86 */
   702             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
   703             (try_next_mask &&
   704              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
   705                                                                     top_frame_expression_stack_adjustment))) ||
   706             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
   707             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
   708              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
   709             )) {
   710         ttyLocker ttyl;
   712         // Print out some information that will help us debug the problem
   713         tty->print_cr("Wrong number of expression stack elements during deoptimization");
   714         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
   715         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
   716                       iframe->interpreter_frame_expression_stack_size());
   717         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
   718         tty->print_cr("  try_next_mask = %d", try_next_mask);
   719         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
   720         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
   721         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
   722         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
   723         tty->print_cr("  exec_mode = %d", exec_mode);
   724         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
   725         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
   726         tty->print_cr("  Interpreted frames:");
   727         for (int k = 0; k < cur_array->frames(); k++) {
   728           vframeArrayElement* el = cur_array->element(k);
   729           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
   730         }
   731         cur_array->print_on_2(tty);
   732         guarantee(false, "wrong number of expression stack elements during deopt");
   733       }
   734       VerifyOopClosure verify;
   735       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
   736       callee_size_of_parameters = mh->size_of_parameters();
   737       callee_max_locals = mh->max_locals();
   738       is_top_frame = false;
   739     }
   740   }
   741 #endif /* !PRODUCT */
   744   return bt;
   745 JRT_END
   748 int Deoptimization::deoptimize_dependents() {
   749   Threads::deoptimized_wrt_marked_nmethods();
   750   return 0;
   751 }
   754 #ifdef COMPILER2
   755 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
   756   Handle pending_exception(thread->pending_exception());
   757   const char* exception_file = thread->exception_file();
   758   int exception_line = thread->exception_line();
   759   thread->clear_pending_exception();
   761   for (int i = 0; i < objects->length(); i++) {
   762     assert(objects->at(i)->is_object(), "invalid debug information");
   763     ObjectValue* sv = (ObjectValue*) objects->at(i);
   765     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   766     oop obj = NULL;
   768     if (k->oop_is_instance()) {
   769       InstanceKlass* ik = InstanceKlass::cast(k());
   770       obj = ik->allocate_instance(CHECK_(false));
   771     } else if (k->oop_is_typeArray()) {
   772       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
   773       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
   774       int len = sv->field_size() / type2size[ak->element_type()];
   775       obj = ak->allocate(len, CHECK_(false));
   776     } else if (k->oop_is_objArray()) {
   777       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
   778       obj = ak->allocate(sv->field_size(), CHECK_(false));
   779     }
   781     assert(obj != NULL, "allocation failed");
   782     assert(sv->value().is_null(), "redundant reallocation");
   783     sv->set_value(obj);
   784   }
   786   if (pending_exception.not_null()) {
   787     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
   788   }
   790   return true;
   791 }
   793 // This assumes that the fields are stored in ObjectValue in the same order
   794 // they are yielded by do_nonstatic_fields.
   795 class FieldReassigner: public FieldClosure {
   796   frame* _fr;
   797   RegisterMap* _reg_map;
   798   ObjectValue* _sv;
   799   InstanceKlass* _ik;
   800   oop _obj;
   802   int _i;
   803 public:
   804   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
   805     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
   807   int i() const { return _i; }
   810   void do_field(fieldDescriptor* fd) {
   811     intptr_t val;
   812     StackValue* value =
   813       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
   814     int offset = fd->offset();
   815     switch (fd->field_type()) {
   816     case T_OBJECT: case T_ARRAY:
   817       assert(value->type() == T_OBJECT, "Agreement.");
   818       _obj->obj_field_put(offset, value->get_obj()());
   819       break;
   821     case T_LONG: case T_DOUBLE: {
   822       assert(value->type() == T_INT, "Agreement.");
   823       StackValue* low =
   824         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
   825 #ifdef _LP64
   826       jlong res = (jlong)low->get_int();
   827 #else
   828 #ifdef SPARC
   829       // For SPARC we have to swap high and low words.
   830       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   831 #else
   832       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   833 #endif //SPARC
   834 #endif
   835       _obj->long_field_put(offset, res);
   836       break;
   837     }
   838     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   839     case T_INT: case T_FLOAT: // 4 bytes.
   840       assert(value->type() == T_INT, "Agreement.");
   841       val = value->get_int();
   842       _obj->int_field_put(offset, (jint)*((jint*)&val));
   843       break;
   845     case T_SHORT: case T_CHAR: // 2 bytes
   846       assert(value->type() == T_INT, "Agreement.");
   847       val = value->get_int();
   848       _obj->short_field_put(offset, (jshort)*((jint*)&val));
   849       break;
   851     case T_BOOLEAN: case T_BYTE: // 1 byte
   852       assert(value->type() == T_INT, "Agreement.");
   853       val = value->get_int();
   854       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
   855       break;
   857     default:
   858       ShouldNotReachHere();
   859     }
   860     _i++;
   861   }
   862 };
   864 // restore elements of an eliminated type array
   865 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
   866   int index = 0;
   867   intptr_t val;
   869   for (int i = 0; i < sv->field_size(); i++) {
   870     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   871     switch(type) {
   872     case T_LONG: case T_DOUBLE: {
   873       assert(value->type() == T_INT, "Agreement.");
   874       StackValue* low =
   875         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
   876 #ifdef _LP64
   877       jlong res = (jlong)low->get_int();
   878 #else
   879 #ifdef SPARC
   880       // For SPARC we have to swap high and low words.
   881       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   882 #else
   883       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   884 #endif //SPARC
   885 #endif
   886       obj->long_at_put(index, res);
   887       break;
   888     }
   890     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   891     case T_INT: case T_FLOAT: // 4 bytes.
   892       assert(value->type() == T_INT, "Agreement.");
   893       val = value->get_int();
   894       obj->int_at_put(index, (jint)*((jint*)&val));
   895       break;
   897     case T_SHORT: case T_CHAR: // 2 bytes
   898       assert(value->type() == T_INT, "Agreement.");
   899       val = value->get_int();
   900       obj->short_at_put(index, (jshort)*((jint*)&val));
   901       break;
   903     case T_BOOLEAN: case T_BYTE: // 1 byte
   904       assert(value->type() == T_INT, "Agreement.");
   905       val = value->get_int();
   906       obj->bool_at_put(index, (jboolean)*((jint*)&val));
   907       break;
   909       default:
   910         ShouldNotReachHere();
   911     }
   912     index++;
   913   }
   914 }
   917 // restore fields of an eliminated object array
   918 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
   919   for (int i = 0; i < sv->field_size(); i++) {
   920     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   921     assert(value->type() == T_OBJECT, "object element expected");
   922     obj->obj_at_put(i, value->get_obj()());
   923   }
   924 }
   927 // restore fields of all eliminated objects and arrays
   928 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
   929   for (int i = 0; i < objects->length(); i++) {
   930     ObjectValue* sv = (ObjectValue*) objects->at(i);
   931     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   932     Handle obj = sv->value();
   933     assert(obj.not_null(), "reallocation was missed");
   935     if (k->oop_is_instance()) {
   936       InstanceKlass* ik = InstanceKlass::cast(k());
   937       FieldReassigner reassign(fr, reg_map, sv, obj());
   938       ik->do_nonstatic_fields(&reassign);
   939     } else if (k->oop_is_typeArray()) {
   940       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
   941       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
   942     } else if (k->oop_is_objArray()) {
   943       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
   944     }
   945   }
   946 }
   949 // relock objects for which synchronization was eliminated
   950 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
   951   for (int i = 0; i < monitors->length(); i++) {
   952     MonitorInfo* mon_info = monitors->at(i);
   953     if (mon_info->eliminated()) {
   954       assert(mon_info->owner() != NULL, "reallocation was missed");
   955       Handle obj = Handle(mon_info->owner());
   956       markOop mark = obj->mark();
   957       if (UseBiasedLocking && mark->has_bias_pattern()) {
   958         // New allocated objects may have the mark set to anonymously biased.
   959         // Also the deoptimized method may called methods with synchronization
   960         // where the thread-local object is bias locked to the current thread.
   961         assert(mark->is_biased_anonymously() ||
   962                mark->biased_locker() == thread, "should be locked to current thread");
   963         // Reset mark word to unbiased prototype.
   964         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
   965         obj->set_mark(unbiased_prototype);
   966       }
   967       BasicLock* lock = mon_info->lock();
   968       ObjectSynchronizer::slow_enter(obj, lock, thread);
   969     }
   970     assert(mon_info->owner()->is_locked(), "object must be locked now");
   971   }
   972 }
   975 #ifndef PRODUCT
   976 // print information about reallocated objects
   977 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
   978   fieldDescriptor fd;
   980   for (int i = 0; i < objects->length(); i++) {
   981     ObjectValue* sv = (ObjectValue*) objects->at(i);
   982     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   983     Handle obj = sv->value();
   985     tty->print("     object <" INTPTR_FORMAT "> of type ", (void *)sv->value()());
   986     k->print_value();
   987     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
   988     tty->cr();
   990     if (Verbose) {
   991       k->oop_print_on(obj(), tty);
   992     }
   993   }
   994 }
   995 #endif
   996 #endif // COMPILER2
   998 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
   999   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
  1001 #ifndef PRODUCT
  1002   if (TraceDeoptimization) {
  1003     ttyLocker ttyl;
  1004     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
  1005     fr.print_on(tty);
  1006     tty->print_cr("     Virtual frames (innermost first):");
  1007     for (int index = 0; index < chunk->length(); index++) {
  1008       compiledVFrame* vf = chunk->at(index);
  1009       tty->print("       %2d - ", index);
  1010       vf->print_value();
  1011       int bci = chunk->at(index)->raw_bci();
  1012       const char* code_name;
  1013       if (bci == SynchronizationEntryBCI) {
  1014         code_name = "sync entry";
  1015       } else {
  1016         Bytecodes::Code code = vf->method()->code_at(bci);
  1017         code_name = Bytecodes::name(code);
  1019       tty->print(" - %s", code_name);
  1020       tty->print_cr(" @ bci %d ", bci);
  1021       if (Verbose) {
  1022         vf->print();
  1023         tty->cr();
  1027 #endif
  1029   // Register map for next frame (used for stack crawl).  We capture
  1030   // the state of the deopt'ing frame's caller.  Thus if we need to
  1031   // stuff a C2I adapter we can properly fill in the callee-save
  1032   // register locations.
  1033   frame caller = fr.sender(reg_map);
  1034   int frame_size = caller.sp() - fr.sp();
  1036   frame sender = caller;
  1038   // Since the Java thread being deoptimized will eventually adjust it's own stack,
  1039   // the vframeArray containing the unpacking information is allocated in the C heap.
  1040   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
  1041   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
  1043   // Compare the vframeArray to the collected vframes
  1044   assert(array->structural_compare(thread, chunk), "just checking");
  1046 #ifndef PRODUCT
  1047   if (TraceDeoptimization) {
  1048     ttyLocker ttyl;
  1049     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
  1051 #endif // PRODUCT
  1053   return array;
  1057 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
  1058   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
  1059   for (int i = 0; i < monitors->length(); i++) {
  1060     MonitorInfo* mon_info = monitors->at(i);
  1061     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
  1062       objects_to_revoke->append(Handle(mon_info->owner()));
  1068 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
  1069   if (!UseBiasedLocking) {
  1070     return;
  1073   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1075   // Unfortunately we don't have a RegisterMap available in most of
  1076   // the places we want to call this routine so we need to walk the
  1077   // stack again to update the register map.
  1078   if (map == NULL || !map->update_map()) {
  1079     StackFrameStream sfs(thread, true);
  1080     bool found = false;
  1081     while (!found && !sfs.is_done()) {
  1082       frame* cur = sfs.current();
  1083       sfs.next();
  1084       found = cur->id() == fr.id();
  1086     assert(found, "frame to be deoptimized not found on target thread's stack");
  1087     map = sfs.register_map();
  1090   vframe* vf = vframe::new_vframe(&fr, map, thread);
  1091   compiledVFrame* cvf = compiledVFrame::cast(vf);
  1092   // Revoke monitors' biases in all scopes
  1093   while (!cvf->is_top()) {
  1094     collect_monitors(cvf, objects_to_revoke);
  1095     cvf = compiledVFrame::cast(cvf->sender());
  1097   collect_monitors(cvf, objects_to_revoke);
  1099   if (SafepointSynchronize::is_at_safepoint()) {
  1100     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1101   } else {
  1102     BiasedLocking::revoke(objects_to_revoke);
  1107 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
  1108   if (!UseBiasedLocking) {
  1109     return;
  1112   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
  1113   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1114   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
  1115     if (jt->has_last_Java_frame()) {
  1116       StackFrameStream sfs(jt, true);
  1117       while (!sfs.is_done()) {
  1118         frame* cur = sfs.current();
  1119         if (cb->contains(cur->pc())) {
  1120           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
  1121           compiledVFrame* cvf = compiledVFrame::cast(vf);
  1122           // Revoke monitors' biases in all scopes
  1123           while (!cvf->is_top()) {
  1124             collect_monitors(cvf, objects_to_revoke);
  1125             cvf = compiledVFrame::cast(cvf->sender());
  1127           collect_monitors(cvf, objects_to_revoke);
  1129         sfs.next();
  1133   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1137 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
  1138   assert(fr.can_be_deoptimized(), "checking frame type");
  1140   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
  1142   // Patch the nmethod so that when execution returns to it we will
  1143   // deopt the execution state and return to the interpreter.
  1144   fr.deoptimize(thread);
  1147 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
  1148   // Deoptimize only if the frame comes from compile code.
  1149   // Do not deoptimize the frame which is already patched
  1150   // during the execution of the loops below.
  1151   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
  1152     return;
  1154   ResourceMark rm;
  1155   DeoptimizationMarker dm;
  1156   if (UseBiasedLocking) {
  1157     revoke_biases_of_monitors(thread, fr, map);
  1159   deoptimize_single_frame(thread, fr);
  1164 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
  1165   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
  1166          "can only deoptimize other thread at a safepoint");
  1167   // Compute frame and register map based on thread and sp.
  1168   RegisterMap reg_map(thread, UseBiasedLocking);
  1169   frame fr = thread->last_frame();
  1170   while (fr.id() != id) {
  1171     fr = fr.sender(&reg_map);
  1173   deoptimize(thread, fr, &reg_map);
  1177 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
  1178   if (thread == Thread::current()) {
  1179     Deoptimization::deoptimize_frame_internal(thread, id);
  1180   } else {
  1181     VM_DeoptimizeFrame deopt(thread, id);
  1182     VMThread::execute(&deopt);
  1187 // JVMTI PopFrame support
  1188 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
  1190   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
  1192 JRT_END
  1195 #if defined(COMPILER2) || defined(SHARK)
  1196 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
  1197   // in case of an unresolved klass entry, load the class.
  1198   if (constant_pool->tag_at(index).is_unresolved_klass()) {
  1199     Klass* tk = constant_pool->klass_at(index, CHECK);
  1200     return;
  1203   if (!constant_pool->tag_at(index).is_symbol()) return;
  1205   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
  1206   Symbol*  symbol  = constant_pool->symbol_at(index);
  1208   // class name?
  1209   if (symbol->byte_at(0) != '(') {
  1210     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
  1211     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
  1212     return;
  1215   // then it must be a signature!
  1216   ResourceMark rm(THREAD);
  1217   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
  1218     if (ss.is_object()) {
  1219       Symbol* class_name = ss.as_symbol(CHECK);
  1220       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
  1221       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
  1227 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
  1228   EXCEPTION_MARK;
  1229   load_class_by_index(constant_pool, index, THREAD);
  1230   if (HAS_PENDING_EXCEPTION) {
  1231     // Exception happened during classloading. We ignore the exception here, since it
  1232     // is going to be rethrown since the current activation is going to be deoptimized and
  1233     // the interpreter will re-execute the bytecode.
  1234     CLEAR_PENDING_EXCEPTION;
  1235     // Class loading called java code which may have caused a stack
  1236     // overflow. If the exception was thrown right before the return
  1237     // to the runtime the stack is no longer guarded. Reguard the
  1238     // stack otherwise if we return to the uncommon trap blob and the
  1239     // stack bang causes a stack overflow we crash.
  1240     assert(THREAD->is_Java_thread(), "only a java thread can be here");
  1241     JavaThread* thread = (JavaThread*)THREAD;
  1242     bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
  1243     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
  1244     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
  1248 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
  1249   HandleMark hm;
  1251   // uncommon_trap() is called at the beginning of the uncommon trap
  1252   // handler. Note this fact before we start generating temporary frames
  1253   // that can confuse an asynchronous stack walker. This counter is
  1254   // decremented at the end of unpack_frames().
  1255   thread->inc_in_deopt_handler();
  1257   // We need to update the map if we have biased locking.
  1258   RegisterMap reg_map(thread, UseBiasedLocking);
  1259   frame stub_frame = thread->last_frame();
  1260   frame fr = stub_frame.sender(&reg_map);
  1261   // Make sure the calling nmethod is not getting deoptimized and removed
  1262   // before we are done with it.
  1263   nmethodLocker nl(fr.pc());
  1265   // Log a message
  1266   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
  1267               trap_request, fr.pc());
  1270     ResourceMark rm;
  1272     // Revoke biases of any monitors in the frame to ensure we can migrate them
  1273     revoke_biases_of_monitors(thread, fr, &reg_map);
  1275     DeoptReason reason = trap_request_reason(trap_request);
  1276     DeoptAction action = trap_request_action(trap_request);
  1277     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
  1279     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
  1280     compiledVFrame* cvf = compiledVFrame::cast(vf);
  1282     nmethod* nm = cvf->code();
  1284     ScopeDesc*      trap_scope  = cvf->scope();
  1285     methodHandle    trap_method = trap_scope->method();
  1286     int             trap_bci    = trap_scope->bci();
  1287     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
  1289     // Record this event in the histogram.
  1290     gather_statistics(reason, action, trap_bc);
  1292     // Ensure that we can record deopt. history:
  1293     // Need MDO to record RTM code generation state.
  1294     bool create_if_missing = ProfileTraps RTM_OPT_ONLY( || UseRTMLocking );
  1296     MethodData* trap_mdo =
  1297       get_method_data(thread, trap_method, create_if_missing);
  1299     // Log a message
  1300     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
  1301                               trap_reason_name(reason), trap_action_name(action), fr.pc(),
  1302                               trap_method->name_and_sig_as_C_string(), trap_bci);
  1304     // Print a bunch of diagnostics, if requested.
  1305     if (TraceDeoptimization || LogCompilation) {
  1306       ResourceMark rm;
  1307       ttyLocker ttyl;
  1308       char buf[100];
  1309       if (xtty != NULL) {
  1310         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
  1311                          os::current_thread_id(),
  1312                          format_trap_request(buf, sizeof(buf), trap_request));
  1313         nm->log_identity(xtty);
  1315       Symbol* class_name = NULL;
  1316       bool unresolved = false;
  1317       if (unloaded_class_index >= 0) {
  1318         constantPoolHandle constants (THREAD, trap_method->constants());
  1319         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
  1320           class_name = constants->klass_name_at(unloaded_class_index);
  1321           unresolved = true;
  1322           if (xtty != NULL)
  1323             xtty->print(" unresolved='1'");
  1324         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
  1325           class_name = constants->symbol_at(unloaded_class_index);
  1327         if (xtty != NULL)
  1328           xtty->name(class_name);
  1330       if (xtty != NULL && trap_mdo != NULL) {
  1331         // Dump the relevant MDO state.
  1332         // This is the deopt count for the current reason, any previous
  1333         // reasons or recompiles seen at this point.
  1334         int dcnt = trap_mdo->trap_count(reason);
  1335         if (dcnt != 0)
  1336           xtty->print(" count='%d'", dcnt);
  1337         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
  1338         int dos = (pdata == NULL)? 0: pdata->trap_state();
  1339         if (dos != 0) {
  1340           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
  1341           if (trap_state_is_recompiled(dos)) {
  1342             int recnt2 = trap_mdo->overflow_recompile_count();
  1343             if (recnt2 != 0)
  1344               xtty->print(" recompiles2='%d'", recnt2);
  1348       if (xtty != NULL) {
  1349         xtty->stamp();
  1350         xtty->end_head();
  1352       if (TraceDeoptimization) {  // make noise on the tty
  1353         tty->print("Uncommon trap occurred in");
  1354         nm->method()->print_short_name(tty);
  1355         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
  1356                    fr.pc(),
  1357                    os::current_thread_id(),
  1358                    trap_reason_name(reason),
  1359                    trap_action_name(action),
  1360                    unloaded_class_index);
  1361         if (class_name != NULL) {
  1362           tty->print(unresolved ? " unresolved class: " : " symbol: ");
  1363           class_name->print_symbol_on(tty);
  1365         tty->cr();
  1367       if (xtty != NULL) {
  1368         // Log the precise location of the trap.
  1369         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
  1370           xtty->begin_elem("jvms bci='%d'", sd->bci());
  1371           xtty->method(sd->method());
  1372           xtty->end_elem();
  1373           if (sd->is_top())  break;
  1375         xtty->tail("uncommon_trap");
  1378     // (End diagnostic printout.)
  1380     // Load class if necessary
  1381     if (unloaded_class_index >= 0) {
  1382       constantPoolHandle constants(THREAD, trap_method->constants());
  1383       load_class_by_index(constants, unloaded_class_index);
  1386     // Flush the nmethod if necessary and desirable.
  1387     //
  1388     // We need to avoid situations where we are re-flushing the nmethod
  1389     // because of a hot deoptimization site.  Repeated flushes at the same
  1390     // point need to be detected by the compiler and avoided.  If the compiler
  1391     // cannot avoid them (or has a bug and "refuses" to avoid them), this
  1392     // module must take measures to avoid an infinite cycle of recompilation
  1393     // and deoptimization.  There are several such measures:
  1394     //
  1395     //   1. If a recompilation is ordered a second time at some site X
  1396     //   and for the same reason R, the action is adjusted to 'reinterpret',
  1397     //   to give the interpreter time to exercise the method more thoroughly.
  1398     //   If this happens, the method's overflow_recompile_count is incremented.
  1399     //
  1400     //   2. If the compiler fails to reduce the deoptimization rate, then
  1401     //   the method's overflow_recompile_count will begin to exceed the set
  1402     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
  1403     //   is adjusted to 'make_not_compilable', and the method is abandoned
  1404     //   to the interpreter.  This is a performance hit for hot methods,
  1405     //   but is better than a disastrous infinite cycle of recompilations.
  1406     //   (Actually, only the method containing the site X is abandoned.)
  1407     //
  1408     //   3. In parallel with the previous measures, if the total number of
  1409     //   recompilations of a method exceeds the much larger set limit
  1410     //   PerMethodRecompilationCutoff, the method is abandoned.
  1411     //   This should only happen if the method is very large and has
  1412     //   many "lukewarm" deoptimizations.  The code which enforces this
  1413     //   limit is elsewhere (class nmethod, class Method).
  1414     //
  1415     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
  1416     // to recompile at each bytecode independently of the per-BCI cutoff.
  1417     //
  1418     // The decision to update code is up to the compiler, and is encoded
  1419     // in the Action_xxx code.  If the compiler requests Action_none
  1420     // no trap state is changed, no compiled code is changed, and the
  1421     // computation suffers along in the interpreter.
  1422     //
  1423     // The other action codes specify various tactics for decompilation
  1424     // and recompilation.  Action_maybe_recompile is the loosest, and
  1425     // allows the compiled code to stay around until enough traps are seen,
  1426     // and until the compiler gets around to recompiling the trapping method.
  1427     //
  1428     // The other actions cause immediate removal of the present code.
  1430     bool update_trap_state = true;
  1431     bool make_not_entrant = false;
  1432     bool make_not_compilable = false;
  1433     bool reprofile = false;
  1434     switch (action) {
  1435     case Action_none:
  1436       // Keep the old code.
  1437       update_trap_state = false;
  1438       break;
  1439     case Action_maybe_recompile:
  1440       // Do not need to invalidate the present code, but we can
  1441       // initiate another
  1442       // Start compiler without (necessarily) invalidating the nmethod.
  1443       // The system will tolerate the old code, but new code should be
  1444       // generated when possible.
  1445       break;
  1446     case Action_reinterpret:
  1447       // Go back into the interpreter for a while, and then consider
  1448       // recompiling form scratch.
  1449       make_not_entrant = true;
  1450       // Reset invocation counter for outer most method.
  1451       // This will allow the interpreter to exercise the bytecodes
  1452       // for a while before recompiling.
  1453       // By contrast, Action_make_not_entrant is immediate.
  1454       //
  1455       // Note that the compiler will track null_check, null_assert,
  1456       // range_check, and class_check events and log them as if they
  1457       // had been traps taken from compiled code.  This will update
  1458       // the MDO trap history so that the next compilation will
  1459       // properly detect hot trap sites.
  1460       reprofile = true;
  1461       break;
  1462     case Action_make_not_entrant:
  1463       // Request immediate recompilation, and get rid of the old code.
  1464       // Make them not entrant, so next time they are called they get
  1465       // recompiled.  Unloaded classes are loaded now so recompile before next
  1466       // time they are called.  Same for uninitialized.  The interpreter will
  1467       // link the missing class, if any.
  1468       make_not_entrant = true;
  1469       break;
  1470     case Action_make_not_compilable:
  1471       // Give up on compiling this method at all.
  1472       make_not_entrant = true;
  1473       make_not_compilable = true;
  1474       break;
  1475     default:
  1476       ShouldNotReachHere();
  1479     // Setting +ProfileTraps fixes the following, on all platforms:
  1480     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
  1481     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
  1482     // recompile relies on a MethodData* to record heroic opt failures.
  1484     // Whether the interpreter is producing MDO data or not, we also need
  1485     // to use the MDO to detect hot deoptimization points and control
  1486     // aggressive optimization.
  1487     bool inc_recompile_count = false;
  1488     ProfileData* pdata = NULL;
  1489     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
  1490       assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
  1491       uint this_trap_count = 0;
  1492       bool maybe_prior_trap = false;
  1493       bool maybe_prior_recompile = false;
  1494       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
  1495                                    nm->method(),
  1496                                    //outputs:
  1497                                    this_trap_count,
  1498                                    maybe_prior_trap,
  1499                                    maybe_prior_recompile);
  1500       // Because the interpreter also counts null, div0, range, and class
  1501       // checks, these traps from compiled code are double-counted.
  1502       // This is harmless; it just means that the PerXTrapLimit values
  1503       // are in effect a little smaller than they look.
  1505       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1506       if (per_bc_reason != Reason_none) {
  1507         // Now take action based on the partially known per-BCI history.
  1508         if (maybe_prior_trap
  1509             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
  1510           // If there are too many traps at this BCI, force a recompile.
  1511           // This will allow the compiler to see the limit overflow, and
  1512           // take corrective action, if possible.  The compiler generally
  1513           // does not use the exact PerBytecodeTrapLimit value, but instead
  1514           // changes its tactics if it sees any traps at all.  This provides
  1515           // a little hysteresis, delaying a recompile until a trap happens
  1516           // several times.
  1517           //
  1518           // Actually, since there is only one bit of counter per BCI,
  1519           // the possible per-BCI counts are {0,1,(per-method count)}.
  1520           // This produces accurate results if in fact there is only
  1521           // one hot trap site, but begins to get fuzzy if there are
  1522           // many sites.  For example, if there are ten sites each
  1523           // trapping two or more times, they each get the blame for
  1524           // all of their traps.
  1525           make_not_entrant = true;
  1528         // Detect repeated recompilation at the same BCI, and enforce a limit.
  1529         if (make_not_entrant && maybe_prior_recompile) {
  1530           // More than one recompile at this point.
  1531           inc_recompile_count = maybe_prior_trap;
  1533       } else {
  1534         // For reasons which are not recorded per-bytecode, we simply
  1535         // force recompiles unconditionally.
  1536         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
  1537         make_not_entrant = true;
  1540       // Go back to the compiler if there are too many traps in this method.
  1541       if (this_trap_count >= per_method_trap_limit(reason)) {
  1542         // If there are too many traps in this method, force a recompile.
  1543         // This will allow the compiler to see the limit overflow, and
  1544         // take corrective action, if possible.
  1545         // (This condition is an unlikely backstop only, because the
  1546         // PerBytecodeTrapLimit is more likely to take effect first,
  1547         // if it is applicable.)
  1548         make_not_entrant = true;
  1551       // Here's more hysteresis:  If there has been a recompile at
  1552       // this trap point already, run the method in the interpreter
  1553       // for a while to exercise it more thoroughly.
  1554       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
  1555         reprofile = true;
  1560     // Take requested actions on the method:
  1562     // Recompile
  1563     if (make_not_entrant) {
  1564       if (!nm->make_not_entrant()) {
  1565         return; // the call did not change nmethod's state
  1568       if (pdata != NULL) {
  1569         // Record the recompilation event, if any.
  1570         int tstate0 = pdata->trap_state();
  1571         int tstate1 = trap_state_set_recompiled(tstate0, true);
  1572         if (tstate1 != tstate0)
  1573           pdata->set_trap_state(tstate1);
  1576 #if INCLUDE_RTM_OPT
  1577       // Restart collecting RTM locking abort statistic if the method
  1578       // is recompiled for a reason other than RTM state change.
  1579       // Assume that in new recompiled code the statistic could be different,
  1580       // for example, due to different inlining.
  1581       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
  1582           UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
  1583         trap_mdo->atomic_set_rtm_state(ProfileRTM);
  1585 #endif
  1588     if (inc_recompile_count) {
  1589       trap_mdo->inc_overflow_recompile_count();
  1590       if ((uint)trap_mdo->overflow_recompile_count() >
  1591           (uint)PerBytecodeRecompilationCutoff) {
  1592         // Give up on the method containing the bad BCI.
  1593         if (trap_method() == nm->method()) {
  1594           make_not_compilable = true;
  1595         } else {
  1596           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
  1597           // But give grace to the enclosing nm->method().
  1602     // Reprofile
  1603     if (reprofile) {
  1604       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
  1607     // Give up compiling
  1608     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
  1609       assert(make_not_entrant, "consistent");
  1610       nm->method()->set_not_compilable(CompLevel_full_optimization);
  1613   } // Free marked resources
  1616 JRT_END
  1618 MethodData*
  1619 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
  1620                                 bool create_if_missing) {
  1621   Thread* THREAD = thread;
  1622   MethodData* mdo = m()->method_data();
  1623   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
  1624     // Build an MDO.  Ignore errors like OutOfMemory;
  1625     // that simply means we won't have an MDO to update.
  1626     Method::build_interpreter_method_data(m, THREAD);
  1627     if (HAS_PENDING_EXCEPTION) {
  1628       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
  1629       CLEAR_PENDING_EXCEPTION;
  1631     mdo = m()->method_data();
  1633   return mdo;
  1636 ProfileData*
  1637 Deoptimization::query_update_method_data(MethodData* trap_mdo,
  1638                                          int trap_bci,
  1639                                          Deoptimization::DeoptReason reason,
  1640                                          Method* compiled_method,
  1641                                          //outputs:
  1642                                          uint& ret_this_trap_count,
  1643                                          bool& ret_maybe_prior_trap,
  1644                                          bool& ret_maybe_prior_recompile) {
  1645   uint prior_trap_count = trap_mdo->trap_count(reason);
  1646   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
  1648   // If the runtime cannot find a place to store trap history,
  1649   // it is estimated based on the general condition of the method.
  1650   // If the method has ever been recompiled, or has ever incurred
  1651   // a trap with the present reason , then this BCI is assumed
  1652   // (pessimistically) to be the culprit.
  1653   bool maybe_prior_trap      = (prior_trap_count != 0);
  1654   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
  1655   ProfileData* pdata = NULL;
  1658   // For reasons which are recorded per bytecode, we check per-BCI data.
  1659   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1660   if (per_bc_reason != Reason_none) {
  1661     // Find the profile data for this BCI.  If there isn't one,
  1662     // try to allocate one from the MDO's set of spares.
  1663     // This will let us detect a repeated trap at this point.
  1664     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
  1666     if (pdata != NULL) {
  1667       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
  1668         if (LogCompilation && xtty != NULL) {
  1669           ttyLocker ttyl;
  1670           // no more room for speculative traps in this MDO
  1671           xtty->elem("speculative_traps_oom");
  1674       // Query the trap state of this profile datum.
  1675       int tstate0 = pdata->trap_state();
  1676       if (!trap_state_has_reason(tstate0, per_bc_reason))
  1677         maybe_prior_trap = false;
  1678       if (!trap_state_is_recompiled(tstate0))
  1679         maybe_prior_recompile = false;
  1681       // Update the trap state of this profile datum.
  1682       int tstate1 = tstate0;
  1683       // Record the reason.
  1684       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
  1685       // Store the updated state on the MDO, for next time.
  1686       if (tstate1 != tstate0)
  1687         pdata->set_trap_state(tstate1);
  1688     } else {
  1689       if (LogCompilation && xtty != NULL) {
  1690         ttyLocker ttyl;
  1691         // Missing MDP?  Leave a small complaint in the log.
  1692         xtty->elem("missing_mdp bci='%d'", trap_bci);
  1697   // Return results:
  1698   ret_this_trap_count = this_trap_count;
  1699   ret_maybe_prior_trap = maybe_prior_trap;
  1700   ret_maybe_prior_recompile = maybe_prior_recompile;
  1701   return pdata;
  1704 void
  1705 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
  1706   ResourceMark rm;
  1707   // Ignored outputs:
  1708   uint ignore_this_trap_count;
  1709   bool ignore_maybe_prior_trap;
  1710   bool ignore_maybe_prior_recompile;
  1711   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
  1712   query_update_method_data(trap_mdo, trap_bci,
  1713                            (DeoptReason)reason,
  1714                            NULL,
  1715                            ignore_this_trap_count,
  1716                            ignore_maybe_prior_trap,
  1717                            ignore_maybe_prior_recompile);
  1720 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
  1722   // Still in Java no safepoints
  1724     // This enters VM and may safepoint
  1725     uncommon_trap_inner(thread, trap_request);
  1727   return fetch_unroll_info_helper(thread);
  1730 // Local derived constants.
  1731 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
  1732 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
  1733 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
  1735 //---------------------------trap_state_reason---------------------------------
  1736 Deoptimization::DeoptReason
  1737 Deoptimization::trap_state_reason(int trap_state) {
  1738   // This assert provides the link between the width of DataLayout::trap_bits
  1739   // and the encoding of "recorded" reasons.  It ensures there are enough
  1740   // bits to store all needed reasons in the per-BCI MDO profile.
  1741   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1742   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1743   trap_state -= recompile_bit;
  1744   if (trap_state == DS_REASON_MASK) {
  1745     return Reason_many;
  1746   } else {
  1747     assert((int)Reason_none == 0, "state=0 => Reason_none");
  1748     return (DeoptReason)trap_state;
  1751 //-------------------------trap_state_has_reason-------------------------------
  1752 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1753   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
  1754   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1755   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1756   trap_state -= recompile_bit;
  1757   if (trap_state == DS_REASON_MASK) {
  1758     return -1;  // true, unspecifically (bottom of state lattice)
  1759   } else if (trap_state == reason) {
  1760     return 1;   // true, definitely
  1761   } else if (trap_state == 0) {
  1762     return 0;   // false, definitely (top of state lattice)
  1763   } else {
  1764     return 0;   // false, definitely
  1767 //-------------------------trap_state_add_reason-------------------------------
  1768 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
  1769   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
  1770   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1771   trap_state -= recompile_bit;
  1772   if (trap_state == DS_REASON_MASK) {
  1773     return trap_state + recompile_bit;     // already at state lattice bottom
  1774   } else if (trap_state == reason) {
  1775     return trap_state + recompile_bit;     // the condition is already true
  1776   } else if (trap_state == 0) {
  1777     return reason + recompile_bit;          // no condition has yet been true
  1778   } else {
  1779     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
  1782 //-----------------------trap_state_is_recompiled------------------------------
  1783 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1784   return (trap_state & DS_RECOMPILE_BIT) != 0;
  1786 //-----------------------trap_state_set_recompiled-----------------------------
  1787 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
  1788   if (z)  return trap_state |  DS_RECOMPILE_BIT;
  1789   else    return trap_state & ~DS_RECOMPILE_BIT;
  1791 //---------------------------format_trap_state---------------------------------
  1792 // This is used for debugging and diagnostics, including LogFile output.
  1793 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1794                                               int trap_state) {
  1795   DeoptReason reason      = trap_state_reason(trap_state);
  1796   bool        recomp_flag = trap_state_is_recompiled(trap_state);
  1797   // Re-encode the state from its decoded components.
  1798   int decoded_state = 0;
  1799   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
  1800     decoded_state = trap_state_add_reason(decoded_state, reason);
  1801   if (recomp_flag)
  1802     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
  1803   // If the state re-encodes properly, format it symbolically.
  1804   // Because this routine is used for debugging and diagnostics,
  1805   // be robust even if the state is a strange value.
  1806   size_t len;
  1807   if (decoded_state != trap_state) {
  1808     // Random buggy state that doesn't decode??
  1809     len = jio_snprintf(buf, buflen, "#%d", trap_state);
  1810   } else {
  1811     len = jio_snprintf(buf, buflen, "%s%s",
  1812                        trap_reason_name(reason),
  1813                        recomp_flag ? " recompiled" : "");
  1815   if (len >= buflen)
  1816     buf[buflen-1] = '\0';
  1817   return buf;
  1821 //--------------------------------statics--------------------------------------
  1822 Deoptimization::DeoptAction Deoptimization::_unloaded_action
  1823   = Deoptimization::Action_reinterpret;
  1824 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
  1825   // Note:  Keep this in sync. with enum DeoptReason.
  1826   "none",
  1827   "null_check",
  1828   "null_assert",
  1829   "range_check",
  1830   "class_check",
  1831   "array_check",
  1832   "intrinsic",
  1833   "bimorphic",
  1834   "unloaded",
  1835   "uninitialized",
  1836   "unreached",
  1837   "unhandled",
  1838   "constraint",
  1839   "div0_check",
  1840   "age",
  1841   "predicate",
  1842   "loop_limit_check",
  1843   "speculate_class_check",
  1844   "rtm_state_change"
  1845 };
  1846 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
  1847   // Note:  Keep this in sync. with enum DeoptAction.
  1848   "none",
  1849   "maybe_recompile",
  1850   "reinterpret",
  1851   "make_not_entrant",
  1852   "make_not_compilable"
  1853 };
  1855 const char* Deoptimization::trap_reason_name(int reason) {
  1856   if (reason == Reason_many)  return "many";
  1857   if ((uint)reason < Reason_LIMIT)
  1858     return _trap_reason_name[reason];
  1859   static char buf[20];
  1860   sprintf(buf, "reason%d", reason);
  1861   return buf;
  1863 const char* Deoptimization::trap_action_name(int action) {
  1864   if ((uint)action < Action_LIMIT)
  1865     return _trap_action_name[action];
  1866   static char buf[20];
  1867   sprintf(buf, "action%d", action);
  1868   return buf;
  1871 // This is used for debugging and diagnostics, including LogFile output.
  1872 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
  1873                                                 int trap_request) {
  1874   jint unloaded_class_index = trap_request_index(trap_request);
  1875   const char* reason = trap_reason_name(trap_request_reason(trap_request));
  1876   const char* action = trap_action_name(trap_request_action(trap_request));
  1877   size_t len;
  1878   if (unloaded_class_index < 0) {
  1879     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
  1880                        reason, action);
  1881   } else {
  1882     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
  1883                        reason, action, unloaded_class_index);
  1885   if (len >= buflen)
  1886     buf[buflen-1] = '\0';
  1887   return buf;
  1890 juint Deoptimization::_deoptimization_hist
  1891         [Deoptimization::Reason_LIMIT]
  1892     [1 + Deoptimization::Action_LIMIT]
  1893         [Deoptimization::BC_CASE_LIMIT]
  1894   = {0};
  1896 enum {
  1897   LSB_BITS = 8,
  1898   LSB_MASK = right_n_bits(LSB_BITS)
  1899 };
  1901 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1902                                        Bytecodes::Code bc) {
  1903   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1904   assert(action >= 0 && action < Action_LIMIT, "oob");
  1905   _deoptimization_hist[Reason_none][0][0] += 1;  // total
  1906   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
  1907   juint* cases = _deoptimization_hist[reason][1+action];
  1908   juint* bc_counter_addr = NULL;
  1909   juint  bc_counter      = 0;
  1910   // Look for an unused counter, or an exact match to this BC.
  1911   if (bc != Bytecodes::_illegal) {
  1912     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1913       juint* counter_addr = &cases[bc_case];
  1914       juint  counter = *counter_addr;
  1915       if ((counter == 0 && bc_counter_addr == NULL)
  1916           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
  1917         // this counter is either free or is already devoted to this BC
  1918         bc_counter_addr = counter_addr;
  1919         bc_counter = counter | bc;
  1923   if (bc_counter_addr == NULL) {
  1924     // Overflow, or no given bytecode.
  1925     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
  1926     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
  1928   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
  1931 jint Deoptimization::total_deoptimization_count() {
  1932   return _deoptimization_hist[Reason_none][0][0];
  1935 jint Deoptimization::deoptimization_count(DeoptReason reason) {
  1936   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1937   return _deoptimization_hist[reason][0][0];
  1940 void Deoptimization::print_statistics() {
  1941   juint total = total_deoptimization_count();
  1942   juint account = total;
  1943   if (total != 0) {
  1944     ttyLocker ttyl;
  1945     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
  1946     tty->print_cr("Deoptimization traps recorded:");
  1947     #define PRINT_STAT_LINE(name, r) \
  1948       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
  1949     PRINT_STAT_LINE("total", total);
  1950     // For each non-zero entry in the histogram, print the reason,
  1951     // the action, and (if specifically known) the type of bytecode.
  1952     for (int reason = 0; reason < Reason_LIMIT; reason++) {
  1953       for (int action = 0; action < Action_LIMIT; action++) {
  1954         juint* cases = _deoptimization_hist[reason][1+action];
  1955         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1956           juint counter = cases[bc_case];
  1957           if (counter != 0) {
  1958             char name[1*K];
  1959             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
  1960             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
  1961               bc = Bytecodes::_illegal;
  1962             sprintf(name, "%s/%s/%s",
  1963                     trap_reason_name(reason),
  1964                     trap_action_name(action),
  1965                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
  1966             juint r = counter >> LSB_BITS;
  1967             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
  1968             account -= r;
  1973     if (account != 0) {
  1974       PRINT_STAT_LINE("unaccounted", account);
  1976     #undef PRINT_STAT_LINE
  1977     if (xtty != NULL)  xtty->tail("statistics");
  1980 #else // COMPILER2 || SHARK
  1983 // Stubs for C1 only system.
  1984 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1985   return false;
  1988 const char* Deoptimization::trap_reason_name(int reason) {
  1989   return "unknown";
  1992 void Deoptimization::print_statistics() {
  1993   // no output
  1996 void
  1997 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
  1998   // no udpate
  2001 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  2002   return 0;
  2005 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  2006                                        Bytecodes::Code bc) {
  2007   // no update
  2010 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  2011                                               int trap_state) {
  2012   jio_snprintf(buf, buflen, "#%d", trap_state);
  2013   return buf;
  2016 #endif // COMPILER2 || SHARK

mercurial