src/share/vm/adlc/formssel.cpp

Thu, 22 May 2014 15:52:41 -0400

author
drchase
date
Thu, 22 May 2014 15:52:41 -0400
changeset 6680
78bbf4d43a14
parent 6518
62c54fcc0a35
child 6876
710a3c8b516e
child 8670
68df1db6880e
permissions
-rw-r--r--

8037816: Fix for 8036122 breaks build with Xcode5/clang
8043029: Change 8037816 breaks HS build with older GCC versions which don't support diagnostic pragmas
8043164: Format warning in traceStream.hpp
Summary: Backport of main fix + two corrections, enables clang compilation, turns on format attributes, corrects/mutes warnings
Reviewed-by: kvn, coleenp, iveresov, twisti

     1 /*
     2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
    26 #include "adlc.hpp"
    28 //==============================Instructions===================================
    29 //------------------------------InstructForm-----------------------------------
    30 InstructForm::InstructForm(const char *id, bool ideal_only)
    31   : _ident(id), _ideal_only(ideal_only),
    32     _localNames(cmpstr, hashstr, Form::arena),
    33     _effects(cmpstr, hashstr, Form::arena),
    34     _is_mach_constant(false),
    35     _needs_constant_base(false),
    36     _has_call(false)
    37 {
    38       _ftype = Form::INS;
    40       _matrule              = NULL;
    41       _insencode            = NULL;
    42       _constant             = NULL;
    43       _is_postalloc_expand  = false;
    44       _opcode               = NULL;
    45       _size                 = NULL;
    46       _attribs              = NULL;
    47       _predicate            = NULL;
    48       _exprule              = NULL;
    49       _rewrule              = NULL;
    50       _format               = NULL;
    51       _peephole             = NULL;
    52       _ins_pipe             = NULL;
    53       _uniq_idx             = NULL;
    54       _num_uniq             = 0;
    55       _cisc_spill_operand   = Not_cisc_spillable;// Which operand may cisc-spill
    56       _cisc_spill_alternate = NULL;            // possible cisc replacement
    57       _cisc_reg_mask_name   = NULL;
    58       _is_cisc_alternate    = false;
    59       _is_short_branch      = false;
    60       _short_branch_form    = NULL;
    61       _alignment            = 1;
    62 }
    64 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
    65   : _ident(id), _ideal_only(false),
    66     _localNames(instr->_localNames),
    67     _effects(instr->_effects),
    68     _is_mach_constant(false),
    69     _needs_constant_base(false),
    70     _has_call(false)
    71 {
    72       _ftype = Form::INS;
    74       _matrule               = rule;
    75       _insencode             = instr->_insencode;
    76       _constant              = instr->_constant;
    77       _is_postalloc_expand   = instr->_is_postalloc_expand;
    78       _opcode                = instr->_opcode;
    79       _size                  = instr->_size;
    80       _attribs               = instr->_attribs;
    81       _predicate             = instr->_predicate;
    82       _exprule               = instr->_exprule;
    83       _rewrule               = instr->_rewrule;
    84       _format                = instr->_format;
    85       _peephole              = instr->_peephole;
    86       _ins_pipe              = instr->_ins_pipe;
    87       _uniq_idx              = instr->_uniq_idx;
    88       _num_uniq              = instr->_num_uniq;
    89       _cisc_spill_operand    = Not_cisc_spillable; // Which operand may cisc-spill
    90       _cisc_spill_alternate  = NULL;               // possible cisc replacement
    91       _cisc_reg_mask_name    = NULL;
    92       _is_cisc_alternate     = false;
    93       _is_short_branch       = false;
    94       _short_branch_form     = NULL;
    95       _alignment             = 1;
    96      // Copy parameters
    97      const char *name;
    98      instr->_parameters.reset();
    99      for (; (name = instr->_parameters.iter()) != NULL;)
   100        _parameters.addName(name);
   101 }
   103 InstructForm::~InstructForm() {
   104 }
   106 InstructForm *InstructForm::is_instruction() const {
   107   return (InstructForm*)this;
   108 }
   110 bool InstructForm::ideal_only() const {
   111   return _ideal_only;
   112 }
   114 bool InstructForm::sets_result() const {
   115   return (_matrule != NULL && _matrule->sets_result());
   116 }
   118 bool InstructForm::needs_projections() {
   119   _components.reset();
   120   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   121     if (comp->isa(Component::KILL)) {
   122       return true;
   123     }
   124   }
   125   return false;
   126 }
   129 bool InstructForm::has_temps() {
   130   if (_matrule) {
   131     // Examine each component to see if it is a TEMP
   132     _components.reset();
   133     // Skip the first component, if already handled as (SET dst (...))
   134     Component *comp = NULL;
   135     if (sets_result())  comp = _components.iter();
   136     while ((comp = _components.iter()) != NULL) {
   137       if (comp->isa(Component::TEMP)) {
   138         return true;
   139       }
   140     }
   141   }
   143   return false;
   144 }
   146 uint InstructForm::num_defs_or_kills() {
   147   uint   defs_or_kills = 0;
   149   _components.reset();
   150   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   151     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
   152       ++defs_or_kills;
   153     }
   154   }
   156   return  defs_or_kills;
   157 }
   159 // This instruction has an expand rule?
   160 bool InstructForm::expands() const {
   161   return ( _exprule != NULL );
   162 }
   164 // This instruction has a late expand rule?
   165 bool InstructForm::postalloc_expands() const {
   166   return _is_postalloc_expand;
   167 }
   169 // This instruction has a peephole rule?
   170 Peephole *InstructForm::peepholes() const {
   171   return _peephole;
   172 }
   174 // This instruction has a peephole rule?
   175 void InstructForm::append_peephole(Peephole *peephole) {
   176   if( _peephole == NULL ) {
   177     _peephole = peephole;
   178   } else {
   179     _peephole->append_peephole(peephole);
   180   }
   181 }
   184 // ideal opcode enumeration
   185 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
   186   if( !_matrule ) return "Node"; // Something weird
   187   // Chain rules do not really have ideal Opcodes; use their source
   188   // operand ideal Opcode instead.
   189   if( is_simple_chain_rule(globalNames) ) {
   190     const char *src = _matrule->_rChild->_opType;
   191     OperandForm *src_op = globalNames[src]->is_operand();
   192     assert( src_op, "Not operand class of chain rule" );
   193     if( !src_op->_matrule ) return "Node";
   194     return src_op->_matrule->_opType;
   195   }
   196   // Operand chain rules do not really have ideal Opcodes
   197   if( _matrule->is_chain_rule(globalNames) )
   198     return "Node";
   199   return strcmp(_matrule->_opType,"Set")
   200     ? _matrule->_opType
   201     : _matrule->_rChild->_opType;
   202 }
   204 // Recursive check on all operands' match rules in my match rule
   205 bool InstructForm::is_pinned(FormDict &globals) {
   206   if ( ! _matrule)  return false;
   208   int  index   = 0;
   209   if (_matrule->find_type("Goto",          index)) return true;
   210   if (_matrule->find_type("If",            index)) return true;
   211   if (_matrule->find_type("CountedLoopEnd",index)) return true;
   212   if (_matrule->find_type("Return",        index)) return true;
   213   if (_matrule->find_type("Rethrow",       index)) return true;
   214   if (_matrule->find_type("TailCall",      index)) return true;
   215   if (_matrule->find_type("TailJump",      index)) return true;
   216   if (_matrule->find_type("Halt",          index)) return true;
   217   if (_matrule->find_type("Jump",          index)) return true;
   219   return is_parm(globals);
   220 }
   222 // Recursive check on all operands' match rules in my match rule
   223 bool InstructForm::is_projection(FormDict &globals) {
   224   if ( ! _matrule)  return false;
   226   int  index   = 0;
   227   if (_matrule->find_type("Goto",    index)) return true;
   228   if (_matrule->find_type("Return",  index)) return true;
   229   if (_matrule->find_type("Rethrow", index)) return true;
   230   if (_matrule->find_type("TailCall",index)) return true;
   231   if (_matrule->find_type("TailJump",index)) return true;
   232   if (_matrule->find_type("Halt",    index)) return true;
   234   return false;
   235 }
   237 // Recursive check on all operands' match rules in my match rule
   238 bool InstructForm::is_parm(FormDict &globals) {
   239   if ( ! _matrule)  return false;
   241   int  index   = 0;
   242   if (_matrule->find_type("Parm",index)) return true;
   244   return false;
   245 }
   247 bool InstructForm::is_ideal_negD() const {
   248   return (_matrule && _matrule->_rChild && strcmp(_matrule->_rChild->_opType, "NegD") == 0);
   249 }
   251 // Return 'true' if this instruction matches an ideal 'Copy*' node
   252 int InstructForm::is_ideal_copy() const {
   253   return _matrule ? _matrule->is_ideal_copy() : 0;
   254 }
   256 // Return 'true' if this instruction is too complex to rematerialize.
   257 int InstructForm::is_expensive() const {
   258   // We can prove it is cheap if it has an empty encoding.
   259   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
   260   if (is_empty_encoding())
   261     return 0;
   263   if (is_tls_instruction())
   264     return 1;
   266   if (_matrule == NULL)  return 0;
   268   return _matrule->is_expensive();
   269 }
   271 // Has an empty encoding if _size is a constant zero or there
   272 // are no ins_encode tokens.
   273 int InstructForm::is_empty_encoding() const {
   274   if (_insencode != NULL) {
   275     _insencode->reset();
   276     if (_insencode->encode_class_iter() == NULL) {
   277       return 1;
   278     }
   279   }
   280   if (_size != NULL && strcmp(_size, "0") == 0) {
   281     return 1;
   282   }
   283   return 0;
   284 }
   286 int InstructForm::is_tls_instruction() const {
   287   if (_ident != NULL &&
   288       ( ! strcmp( _ident,"tlsLoadP") ||
   289         ! strncmp(_ident,"tlsLoadP_",9)) ) {
   290     return 1;
   291   }
   293   if (_matrule != NULL && _insencode != NULL) {
   294     const char* opType = _matrule->_opType;
   295     if (strcmp(opType, "Set")==0)
   296       opType = _matrule->_rChild->_opType;
   297     if (strcmp(opType,"ThreadLocal")==0) {
   298       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
   299               (_ident == NULL ? "NULL" : _ident));
   300       return 1;
   301     }
   302   }
   304   return 0;
   305 }
   308 // Return 'true' if this instruction matches an ideal 'If' node
   309 bool InstructForm::is_ideal_if() const {
   310   if( _matrule == NULL ) return false;
   312   return _matrule->is_ideal_if();
   313 }
   315 // Return 'true' if this instruction matches an ideal 'FastLock' node
   316 bool InstructForm::is_ideal_fastlock() const {
   317   if( _matrule == NULL ) return false;
   319   return _matrule->is_ideal_fastlock();
   320 }
   322 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
   323 bool InstructForm::is_ideal_membar() const {
   324   if( _matrule == NULL ) return false;
   326   return _matrule->is_ideal_membar();
   327 }
   329 // Return 'true' if this instruction matches an ideal 'LoadPC' node
   330 bool InstructForm::is_ideal_loadPC() const {
   331   if( _matrule == NULL ) return false;
   333   return _matrule->is_ideal_loadPC();
   334 }
   336 // Return 'true' if this instruction matches an ideal 'Box' node
   337 bool InstructForm::is_ideal_box() const {
   338   if( _matrule == NULL ) return false;
   340   return _matrule->is_ideal_box();
   341 }
   343 // Return 'true' if this instruction matches an ideal 'Goto' node
   344 bool InstructForm::is_ideal_goto() const {
   345   if( _matrule == NULL ) return false;
   347   return _matrule->is_ideal_goto();
   348 }
   350 // Return 'true' if this instruction matches an ideal 'Jump' node
   351 bool InstructForm::is_ideal_jump() const {
   352   if( _matrule == NULL ) return false;
   354   return _matrule->is_ideal_jump();
   355 }
   357 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
   358 bool InstructForm::is_ideal_branch() const {
   359   if( _matrule == NULL ) return false;
   361   return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
   362 }
   365 // Return 'true' if this instruction matches an ideal 'Return' node
   366 bool InstructForm::is_ideal_return() const {
   367   if( _matrule == NULL ) return false;
   369   // Check MatchRule to see if the first entry is the ideal "Return" node
   370   int  index   = 0;
   371   if (_matrule->find_type("Return",index)) return true;
   372   if (_matrule->find_type("Rethrow",index)) return true;
   373   if (_matrule->find_type("TailCall",index)) return true;
   374   if (_matrule->find_type("TailJump",index)) return true;
   376   return false;
   377 }
   379 // Return 'true' if this instruction matches an ideal 'Halt' node
   380 bool InstructForm::is_ideal_halt() const {
   381   int  index   = 0;
   382   return _matrule && _matrule->find_type("Halt",index);
   383 }
   385 // Return 'true' if this instruction matches an ideal 'SafePoint' node
   386 bool InstructForm::is_ideal_safepoint() const {
   387   int  index   = 0;
   388   return _matrule && _matrule->find_type("SafePoint",index);
   389 }
   391 // Return 'true' if this instruction matches an ideal 'Nop' node
   392 bool InstructForm::is_ideal_nop() const {
   393   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
   394 }
   396 bool InstructForm::is_ideal_control() const {
   397   if ( ! _matrule)  return false;
   399   return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
   400 }
   402 // Return 'true' if this instruction matches an ideal 'Call' node
   403 Form::CallType InstructForm::is_ideal_call() const {
   404   if( _matrule == NULL ) return Form::invalid_type;
   406   // Check MatchRule to see if the first entry is the ideal "Call" node
   407   int  idx   = 0;
   408   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
   409   idx = 0;
   410   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
   411   idx = 0;
   412   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
   413   idx = 0;
   414   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
   415   idx = 0;
   416   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
   417   idx = 0;
   418   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
   419   idx = 0;
   420   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
   421   idx = 0;
   423   return Form::invalid_type;
   424 }
   426 // Return 'true' if this instruction matches an ideal 'Load?' node
   427 Form::DataType InstructForm::is_ideal_load() const {
   428   if( _matrule == NULL ) return Form::none;
   430   return  _matrule->is_ideal_load();
   431 }
   433 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
   434 bool InstructForm::skip_antidep_check() const {
   435   if( _matrule == NULL ) return false;
   437   return  _matrule->skip_antidep_check();
   438 }
   440 // Return 'true' if this instruction matches an ideal 'Load?' node
   441 Form::DataType InstructForm::is_ideal_store() const {
   442   if( _matrule == NULL ) return Form::none;
   444   return  _matrule->is_ideal_store();
   445 }
   447 // Return 'true' if this instruction matches an ideal vector node
   448 bool InstructForm::is_vector() const {
   449   if( _matrule == NULL ) return false;
   451   return _matrule->is_vector();
   452 }
   455 // Return the input register that must match the output register
   456 // If this is not required, return 0
   457 uint InstructForm::two_address(FormDict &globals) {
   458   uint  matching_input = 0;
   459   if(_components.count() == 0) return 0;
   461   _components.reset();
   462   Component *comp = _components.iter();
   463   // Check if there is a DEF
   464   if( comp->isa(Component::DEF) ) {
   465     // Check that this is a register
   466     const char  *def_type = comp->_type;
   467     const Form  *form     = globals[def_type];
   468     OperandForm *op       = form->is_operand();
   469     if( op ) {
   470       if( op->constrained_reg_class() != NULL &&
   471           op->interface_type(globals) == Form::register_interface ) {
   472         // Remember the local name for equality test later
   473         const char *def_name = comp->_name;
   474         // Check if a component has the same name and is a USE
   475         do {
   476           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
   477             return operand_position_format(def_name);
   478           }
   479         } while( (comp = _components.iter()) != NULL);
   480       }
   481     }
   482   }
   484   return 0;
   485 }
   488 // when chaining a constant to an instruction, returns 'true' and sets opType
   489 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
   490   const char *dummy  = NULL;
   491   const char *dummy2 = NULL;
   492   return is_chain_of_constant(globals, dummy, dummy2);
   493 }
   494 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   495                 const char * &opTypeParam) {
   496   const char *result = NULL;
   498   return is_chain_of_constant(globals, opTypeParam, result);
   499 }
   501 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   502                 const char * &opTypeParam, const char * &resultParam) {
   503   Form::DataType  data_type = Form::none;
   504   if ( ! _matrule)  return data_type;
   506   // !!!!!
   507   // The source of the chain rule is 'position = 1'
   508   uint         position = 1;
   509   const char  *result   = NULL;
   510   const char  *name     = NULL;
   511   const char  *opType   = NULL;
   512   // Here base_operand is looking for an ideal type to be returned (opType).
   513   if ( _matrule->is_chain_rule(globals)
   514        && _matrule->base_operand(position, globals, result, name, opType) ) {
   515     data_type = ideal_to_const_type(opType);
   517     // if it isn't an ideal constant type, just return
   518     if ( data_type == Form::none ) return data_type;
   520     // Ideal constant types also adjust the opType parameter.
   521     resultParam = result;
   522     opTypeParam = opType;
   523     return data_type;
   524   }
   526   return data_type;
   527 }
   529 // Check if a simple chain rule
   530 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
   531   if( _matrule && _matrule->sets_result()
   532       && _matrule->_rChild->_lChild == NULL
   533       && globals[_matrule->_rChild->_opType]
   534       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
   535     return true;
   536   }
   537   return false;
   538 }
   540 // check for structural rematerialization
   541 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
   542   bool   rematerialize = false;
   544   Form::DataType data_type = is_chain_of_constant(globals);
   545   if( data_type != Form::none )
   546     rematerialize = true;
   548   // Constants
   549   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
   550     rematerialize = true;
   552   // Pseudo-constants (values easily available to the runtime)
   553   if (is_empty_encoding() && is_tls_instruction())
   554     rematerialize = true;
   556   // 1-input, 1-output, such as copies or increments.
   557   if( _components.count() == 2 &&
   558       _components[0]->is(Component::DEF) &&
   559       _components[1]->isa(Component::USE) )
   560     rematerialize = true;
   562   // Check for an ideal 'Load?' and eliminate rematerialize option
   563   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
   564        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
   565        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
   566     rematerialize = false;
   567   }
   569   // Always rematerialize the flags.  They are more expensive to save &
   570   // restore than to recompute (and possibly spill the compare's inputs).
   571   if( _components.count() >= 1 ) {
   572     Component *c = _components[0];
   573     const Form *form = globals[c->_type];
   574     OperandForm *opform = form->is_operand();
   575     if( opform ) {
   576       // Avoid the special stack_slots register classes
   577       const char *rc_name = opform->constrained_reg_class();
   578       if( rc_name ) {
   579         if( strcmp(rc_name,"stack_slots") ) {
   580           // Check for ideal_type of RegFlags
   581           const char *type = opform->ideal_type( globals, registers );
   582           if( (type != NULL) && !strcmp(type, "RegFlags") )
   583             rematerialize = true;
   584         } else
   585           rematerialize = false; // Do not rematerialize things target stk
   586       }
   587     }
   588   }
   590   return rematerialize;
   591 }
   593 // loads from memory, so must check for anti-dependence
   594 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
   595   if ( skip_antidep_check() ) return false;
   597   // Machine independent loads must be checked for anti-dependences
   598   if( is_ideal_load() != Form::none )  return true;
   600   // !!!!! !!!!! !!!!!
   601   // TEMPORARY
   602   // if( is_simple_chain_rule(globals) )  return false;
   604   // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
   605   // but writes none
   606   if( _matrule && _matrule->_rChild &&
   607       ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
   608         strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
   609         strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
   610         strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
   611     return true;
   613   // Check if instruction has a USE of a memory operand class, but no defs
   614   bool USE_of_memory  = false;
   615   bool DEF_of_memory  = false;
   616   Component     *comp = NULL;
   617   ComponentList &components = (ComponentList &)_components;
   619   components.reset();
   620   while( (comp = components.iter()) != NULL ) {
   621     const Form  *form = globals[comp->_type];
   622     if( !form ) continue;
   623     OpClassForm *op   = form->is_opclass();
   624     if( !op ) continue;
   625     if( form->interface_type(globals) == Form::memory_interface ) {
   626       if( comp->isa(Component::USE) ) USE_of_memory = true;
   627       if( comp->isa(Component::DEF) ) {
   628         OperandForm *oper = form->is_operand();
   629         if( oper && oper->is_user_name_for_sReg() ) {
   630           // Stack slots are unaliased memory handled by allocator
   631           oper = oper;  // debug stopping point !!!!!
   632         } else {
   633           DEF_of_memory = true;
   634         }
   635       }
   636     }
   637   }
   638   return (USE_of_memory && !DEF_of_memory);
   639 }
   642 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
   643   if( _matrule == NULL ) return false;
   644   if( !_matrule->_opType ) return false;
   646   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
   647   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
   648   if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
   649   if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
   650   if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
   651   if( strcmp(_matrule->_opType,"StoreFence") == 0 ) return true;
   652   if( strcmp(_matrule->_opType,"LoadFence") == 0 ) return true;
   654   return false;
   655 }
   657 int InstructForm::memory_operand(FormDict &globals) const {
   658   // Machine independent loads must be checked for anti-dependences
   659   // Check if instruction has a USE of a memory operand class, or a def.
   660   int USE_of_memory  = 0;
   661   int DEF_of_memory  = 0;
   662   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
   663   const char*    last_memory_USE = NULL;
   664   Component     *unique          = NULL;
   665   Component     *comp            = NULL;
   666   ComponentList &components      = (ComponentList &)_components;
   668   components.reset();
   669   while( (comp = components.iter()) != NULL ) {
   670     const Form  *form = globals[comp->_type];
   671     if( !form ) continue;
   672     OpClassForm *op   = form->is_opclass();
   673     if( !op ) continue;
   674     if( op->stack_slots_only(globals) )  continue;
   675     if( form->interface_type(globals) == Form::memory_interface ) {
   676       if( comp->isa(Component::DEF) ) {
   677         last_memory_DEF = comp->_name;
   678         DEF_of_memory++;
   679         unique = comp;
   680       } else if( comp->isa(Component::USE) ) {
   681         if( last_memory_DEF != NULL ) {
   682           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
   683           last_memory_DEF = NULL;
   684         }
   685         // Handles same memory being used multiple times in the case of BMI1 instructions.
   686         if (last_memory_USE != NULL) {
   687           if (strcmp(comp->_name, last_memory_USE) != 0) {
   688             USE_of_memory++;
   689           }
   690         } else {
   691           USE_of_memory++;
   692         }
   693         last_memory_USE = comp->_name;
   695         if (DEF_of_memory == 0)  // defs take precedence
   696           unique = comp;
   697       } else {
   698         assert(last_memory_DEF == NULL, "unpaired memory DEF");
   699       }
   700     }
   701   }
   702   assert(last_memory_DEF == NULL, "unpaired memory DEF");
   703   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
   704   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
   705   if( (USE_of_memory + DEF_of_memory) > 0 ) {
   706     if( is_simple_chain_rule(globals) ) {
   707       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
   708       //((InstructForm*)this)->dump();
   709       // Preceding code prints nothing on sparc and these insns on intel:
   710       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
   711       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
   712       return NO_MEMORY_OPERAND;
   713     }
   715     if( DEF_of_memory == 1 ) {
   716       assert(unique != NULL, "");
   717       if( USE_of_memory == 0 ) {
   718         // unique def, no uses
   719       } else {
   720         // // unique def, some uses
   721         // // must return bottom unless all uses match def
   722         // unique = NULL;
   723       }
   724     } else if( DEF_of_memory > 0 ) {
   725       // multiple defs, don't care about uses
   726       unique = NULL;
   727     } else if( USE_of_memory == 1) {
   728       // unique use, no defs
   729       assert(unique != NULL, "");
   730     } else if( USE_of_memory > 0 ) {
   731       // multiple uses, no defs
   732       unique = NULL;
   733     } else {
   734       assert(false, "bad case analysis");
   735     }
   736     // process the unique DEF or USE, if there is one
   737     if( unique == NULL ) {
   738       return MANY_MEMORY_OPERANDS;
   739     } else {
   740       int pos = components.operand_position(unique->_name);
   741       if( unique->isa(Component::DEF) ) {
   742         pos += 1;                // get corresponding USE from DEF
   743       }
   744       assert(pos >= 1, "I was just looking at it!");
   745       return pos;
   746     }
   747   }
   749   // missed the memory op??
   750   if( true ) {  // %%% should not be necessary
   751     if( is_ideal_store() != Form::none ) {
   752       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   753       ((InstructForm*)this)->dump();
   754       // pretend it has multiple defs and uses
   755       return MANY_MEMORY_OPERANDS;
   756     }
   757     if( is_ideal_load()  != Form::none ) {
   758       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   759       ((InstructForm*)this)->dump();
   760       // pretend it has multiple uses and no defs
   761       return MANY_MEMORY_OPERANDS;
   762     }
   763   }
   765   return NO_MEMORY_OPERAND;
   766 }
   769 // This instruction captures the machine-independent bottom_type
   770 // Expected use is for pointer vs oop determination for LoadP
   771 bool InstructForm::captures_bottom_type(FormDict &globals) const {
   772   if( _matrule && _matrule->_rChild &&
   773        (!strcmp(_matrule->_rChild->_opType,"CastPP")       ||  // new result type
   774         !strcmp(_matrule->_rChild->_opType,"CastX2P")      ||  // new result type
   775         !strcmp(_matrule->_rChild->_opType,"DecodeN")      ||
   776         !strcmp(_matrule->_rChild->_opType,"EncodeP")      ||
   777         !strcmp(_matrule->_rChild->_opType,"DecodeNKlass") ||
   778         !strcmp(_matrule->_rChild->_opType,"EncodePKlass") ||
   779         !strcmp(_matrule->_rChild->_opType,"LoadN")        ||
   780         !strcmp(_matrule->_rChild->_opType,"LoadNKlass")   ||
   781         !strcmp(_matrule->_rChild->_opType,"CreateEx")     ||  // type of exception
   782         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")  ||
   783         !strcmp(_matrule->_rChild->_opType,"GetAndSetP")   ||
   784         !strcmp(_matrule->_rChild->_opType,"GetAndSetN")) )  return true;
   785   else if ( is_ideal_load() == Form::idealP )                return true;
   786   else if ( is_ideal_store() != Form::none  )                return true;
   788   if (needs_base_oop_edge(globals)) return true;
   790   if (is_vector()) return true;
   791   if (is_mach_constant()) return true;
   793   return  false;
   794 }
   797 // Access instr_cost attribute or return NULL.
   798 const char* InstructForm::cost() {
   799   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
   800     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
   801       return cur->_val;
   802     }
   803   }
   804   return NULL;
   805 }
   807 // Return count of top-level operands.
   808 uint InstructForm::num_opnds() {
   809   int  num_opnds = _components.num_operands();
   811   // Need special handling for matching some ideal nodes
   812   // i.e. Matching a return node
   813   /*
   814   if( _matrule ) {
   815     if( strcmp(_matrule->_opType,"Return"   )==0 ||
   816         strcmp(_matrule->_opType,"Halt"     )==0 )
   817       return 3;
   818   }
   819     */
   820   return num_opnds;
   821 }
   823 const char* InstructForm::opnd_ident(int idx) {
   824   return _components.at(idx)->_name;
   825 }
   827 const char* InstructForm::unique_opnd_ident(uint idx) {
   828   uint i;
   829   for (i = 1; i < num_opnds(); ++i) {
   830     if (unique_opnds_idx(i) == idx) {
   831       break;
   832     }
   833   }
   834   return (_components.at(i) != NULL) ? _components.at(i)->_name : "";
   835 }
   837 // Return count of unmatched operands.
   838 uint InstructForm::num_post_match_opnds() {
   839   uint  num_post_match_opnds = _components.count();
   840   uint  num_match_opnds = _components.match_count();
   841   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
   843   return num_post_match_opnds;
   844 }
   846 // Return the number of leaves below this complex operand
   847 uint InstructForm::num_consts(FormDict &globals) const {
   848   if ( ! _matrule) return 0;
   850   // This is a recursive invocation on all operands in the matchrule
   851   return _matrule->num_consts(globals);
   852 }
   854 // Constants in match rule with specified type
   855 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
   856   if ( ! _matrule) return 0;
   858   // This is a recursive invocation on all operands in the matchrule
   859   return _matrule->num_consts(globals, type);
   860 }
   863 // Return the register class associated with 'leaf'.
   864 const char *InstructForm::out_reg_class(FormDict &globals) {
   865   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
   867   return NULL;
   868 }
   872 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
   873 uint InstructForm::oper_input_base(FormDict &globals) {
   874   if( !_matrule ) return 1;     // Skip control for most nodes
   876   // Need special handling for matching some ideal nodes
   877   // i.e. Matching a return node
   878   if( strcmp(_matrule->_opType,"Return"    )==0 ||
   879       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
   880       strcmp(_matrule->_opType,"TailCall"  )==0 ||
   881       strcmp(_matrule->_opType,"TailJump"  )==0 ||
   882       strcmp(_matrule->_opType,"SafePoint" )==0 ||
   883       strcmp(_matrule->_opType,"Halt"      )==0 )
   884     return AdlcVMDeps::Parms;   // Skip the machine-state edges
   886   if( _matrule->_rChild &&
   887       ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
   888         strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
   889         strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
   890         strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 ||
   891         strcmp(_matrule->_rChild->_opType,"EncodeISOArray")==0)) {
   892         // String.(compareTo/equals/indexOf) and Arrays.equals
   893         // and sun.nio.cs.iso8859_1$Encoder.EncodeISOArray
   894         // take 1 control and 1 memory edges.
   895     return 2;
   896   }
   898   // Check for handling of 'Memory' input/edge in the ideal world.
   899   // The AD file writer is shielded from knowledge of these edges.
   900   int base = 1;                 // Skip control
   901   base += _matrule->needs_ideal_memory_edge(globals);
   903   // Also skip the base-oop value for uses of derived oops.
   904   // The AD file writer is shielded from knowledge of these edges.
   905   base += needs_base_oop_edge(globals);
   907   return base;
   908 }
   910 // This function determines the order of the MachOper in _opnds[]
   911 // by writing the operand names into the _components list.
   912 //
   913 // Implementation does not modify state of internal structures
   914 void InstructForm::build_components() {
   915   // Add top-level operands to the components
   916   if (_matrule)  _matrule->append_components(_localNames, _components);
   918   // Add parameters that "do not appear in match rule".
   919   bool has_temp = false;
   920   const char *name;
   921   const char *kill_name = NULL;
   922   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
   923     OperandForm *opForm = (OperandForm*)_localNames[name];
   925     Effect* e = NULL;
   926     {
   927       const Form* form = _effects[name];
   928       e = form ? form->is_effect() : NULL;
   929     }
   931     if (e != NULL) {
   932       has_temp |= e->is(Component::TEMP);
   934       // KILLs must be declared after any TEMPs because TEMPs are real
   935       // uses so their operand numbering must directly follow the real
   936       // inputs from the match rule.  Fixing the numbering seems
   937       // complex so simply enforce the restriction during parse.
   938       if (kill_name != NULL &&
   939           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
   940         OperandForm* kill = (OperandForm*)_localNames[kill_name];
   941         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
   942                              _ident, kill->_ident, kill_name);
   943       } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
   944         kill_name = name;
   945       }
   946     }
   948     const Component *component  = _components.search(name);
   949     if ( component  == NULL ) {
   950       if (e) {
   951         _components.insert(name, opForm->_ident, e->_use_def, false);
   952         component = _components.search(name);
   953         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
   954           const Form *form = globalAD->globalNames()[component->_type];
   955           assert( form, "component type must be a defined form");
   956           OperandForm *op   = form->is_operand();
   957           if (op->_interface && op->_interface->is_RegInterface()) {
   958             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   959                                  _ident, opForm->_ident, name);
   960           }
   961         }
   962       } else {
   963         // This would be a nice warning but it triggers in a few places in a benign way
   964         // if (_matrule != NULL && !expands()) {
   965         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
   966         //                        _ident, opForm->_ident, name);
   967         // }
   968         _components.insert(name, opForm->_ident, Component::INVALID, false);
   969       }
   970     }
   971     else if (e) {
   972       // Component was found in the list
   973       // Check if there is a new effect that requires an extra component.
   974       // This happens when adding 'USE' to a component that is not yet one.
   975       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
   976         if (component->isa(Component::USE) && _matrule) {
   977           const Form *form = globalAD->globalNames()[component->_type];
   978           assert( form, "component type must be a defined form");
   979           OperandForm *op   = form->is_operand();
   980           if (op->_interface && op->_interface->is_RegInterface()) {
   981             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   982                                  _ident, opForm->_ident, name);
   983           }
   984         }
   985         _components.insert(name, opForm->_ident, e->_use_def, false);
   986       } else {
   987         Component  *comp = (Component*)component;
   988         comp->promote_use_def_info(e->_use_def);
   989       }
   990       // Component positions are zero based.
   991       int  pos  = _components.operand_position(name);
   992       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
   993               "Component::DEF can only occur in the first position");
   994     }
   995   }
   997   // Resolving the interactions between expand rules and TEMPs would
   998   // be complex so simply disallow it.
   999   if (_matrule == NULL && has_temp) {
  1000     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
  1003   return;
  1006 // Return zero-based position in component list;  -1 if not in list.
  1007 int   InstructForm::operand_position(const char *name, int usedef) {
  1008   return unique_opnds_idx(_components.operand_position(name, usedef, this));
  1011 int   InstructForm::operand_position_format(const char *name) {
  1012   return unique_opnds_idx(_components.operand_position_format(name, this));
  1015 // Return zero-based position in component list; -1 if not in list.
  1016 int   InstructForm::label_position() {
  1017   return unique_opnds_idx(_components.label_position());
  1020 int   InstructForm::method_position() {
  1021   return unique_opnds_idx(_components.method_position());
  1024 // Return number of relocation entries needed for this instruction.
  1025 uint  InstructForm::reloc(FormDict &globals) {
  1026   uint reloc_entries  = 0;
  1027   // Check for "Call" nodes
  1028   if ( is_ideal_call() )      ++reloc_entries;
  1029   if ( is_ideal_return() )    ++reloc_entries;
  1030   if ( is_ideal_safepoint() ) ++reloc_entries;
  1033   // Check if operands MAYBE oop pointers, by checking for ConP elements
  1034   // Proceed through the leaves of the match-tree and check for ConPs
  1035   if ( _matrule != NULL ) {
  1036     uint         position = 0;
  1037     const char  *result   = NULL;
  1038     const char  *name     = NULL;
  1039     const char  *opType   = NULL;
  1040     while (_matrule->base_operand(position, globals, result, name, opType)) {
  1041       if ( strcmp(opType,"ConP") == 0 ) {
  1042 #ifdef SPARC
  1043         reloc_entries += 2; // 1 for sethi + 1 for setlo
  1044 #else
  1045         ++reloc_entries;
  1046 #endif
  1048       ++position;
  1052   // Above is only a conservative estimate
  1053   // because it did not check contents of operand classes.
  1054   // !!!!! !!!!!
  1055   // Add 1 to reloc info for each operand class in the component list.
  1056   Component  *comp;
  1057   _components.reset();
  1058   while ( (comp = _components.iter()) != NULL ) {
  1059     const Form        *form = globals[comp->_type];
  1060     assert( form, "Did not find component's type in global names");
  1061     const OpClassForm *opc  = form->is_opclass();
  1062     const OperandForm *oper = form->is_operand();
  1063     if ( opc && (oper == NULL) ) {
  1064       ++reloc_entries;
  1065     } else if ( oper ) {
  1066       // floats and doubles loaded out of method's constant pool require reloc info
  1067       Form::DataType type = oper->is_base_constant(globals);
  1068       if ( (type == Form::idealF) || (type == Form::idealD) ) {
  1069         ++reloc_entries;
  1074   // Float and Double constants may come from the CodeBuffer table
  1075   // and require relocatable addresses for access
  1076   // !!!!!
  1077   // Check for any component being an immediate float or double.
  1078   Form::DataType data_type = is_chain_of_constant(globals);
  1079   if( data_type==idealD || data_type==idealF ) {
  1080 #ifdef SPARC
  1081     // sparc required more relocation entries for floating constants
  1082     // (expires 9/98)
  1083     reloc_entries += 6;
  1084 #else
  1085     reloc_entries++;
  1086 #endif
  1089   return reloc_entries;
  1092 // Utility function defined in archDesc.cpp
  1093 extern bool is_def(int usedef);
  1095 // Return the result of reducing an instruction
  1096 const char *InstructForm::reduce_result() {
  1097   const char* result = "Universe";  // default
  1098   _components.reset();
  1099   Component *comp = _components.iter();
  1100   if (comp != NULL && comp->isa(Component::DEF)) {
  1101     result = comp->_type;
  1102     // Override this if the rule is a store operation:
  1103     if (_matrule && _matrule->_rChild &&
  1104         is_store_to_memory(_matrule->_rChild->_opType))
  1105       result = "Universe";
  1107   return result;
  1110 // Return the name of the operand on the right hand side of the binary match
  1111 // Return NULL if there is no right hand side
  1112 const char *InstructForm::reduce_right(FormDict &globals)  const {
  1113   if( _matrule == NULL ) return NULL;
  1114   return  _matrule->reduce_right(globals);
  1117 // Similar for left
  1118 const char *InstructForm::reduce_left(FormDict &globals)   const {
  1119   if( _matrule == NULL ) return NULL;
  1120   return  _matrule->reduce_left(globals);
  1124 // Base class for this instruction, MachNode except for calls
  1125 const char *InstructForm::mach_base_class(FormDict &globals)  const {
  1126   if( is_ideal_call() == Form::JAVA_STATIC ) {
  1127     return "MachCallStaticJavaNode";
  1129   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
  1130     return "MachCallDynamicJavaNode";
  1132   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
  1133     return "MachCallRuntimeNode";
  1135   else if( is_ideal_call() == Form::JAVA_LEAF ) {
  1136     return "MachCallLeafNode";
  1138   else if (is_ideal_return()) {
  1139     return "MachReturnNode";
  1141   else if (is_ideal_halt()) {
  1142     return "MachHaltNode";
  1144   else if (is_ideal_safepoint()) {
  1145     return "MachSafePointNode";
  1147   else if (is_ideal_if()) {
  1148     return "MachIfNode";
  1150   else if (is_ideal_goto()) {
  1151     return "MachGotoNode";
  1153   else if (is_ideal_fastlock()) {
  1154     return "MachFastLockNode";
  1156   else if (is_ideal_nop()) {
  1157     return "MachNopNode";
  1159   else if (is_mach_constant()) {
  1160     return "MachConstantNode";
  1162   else if (captures_bottom_type(globals)) {
  1163     return "MachTypeNode";
  1164   } else {
  1165     return "MachNode";
  1167   assert( false, "ShouldNotReachHere()");
  1168   return NULL;
  1171 // Compare the instruction predicates for textual equality
  1172 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
  1173   const Predicate *pred1  = instr1->_predicate;
  1174   const Predicate *pred2  = instr2->_predicate;
  1175   if( pred1 == NULL && pred2 == NULL ) {
  1176     // no predicates means they are identical
  1177     return true;
  1179   if( pred1 != NULL && pred2 != NULL ) {
  1180     // compare the predicates
  1181     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
  1182       return true;
  1186   return false;
  1189 // Check if this instruction can cisc-spill to 'alternate'
  1190 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
  1191   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
  1192   // Do not replace if a cisc-version has been found.
  1193   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
  1195   int         cisc_spill_operand = Maybe_cisc_spillable;
  1196   char       *result             = NULL;
  1197   char       *result2            = NULL;
  1198   const char *op_name            = NULL;
  1199   const char *reg_type           = NULL;
  1200   FormDict   &globals            = AD.globalNames();
  1201   cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
  1202   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
  1203     cisc_spill_operand = operand_position(op_name, Component::USE);
  1204     int def_oper  = operand_position(op_name, Component::DEF);
  1205     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
  1206       // Do not support cisc-spilling for destination operands and
  1207       // make sure they have the same number of operands.
  1208       _cisc_spill_alternate = instr;
  1209       instr->set_cisc_alternate(true);
  1210       if( AD._cisc_spill_debug ) {
  1211         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
  1212         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
  1214       // Record that a stack-version of the reg_mask is needed
  1215       // !!!!!
  1216       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
  1217       assert( oper != NULL, "cisc-spilling non operand");
  1218       const char *reg_class_name = oper->constrained_reg_class();
  1219       AD.set_stack_or_reg(reg_class_name);
  1220       const char *reg_mask_name  = AD.reg_mask(*oper);
  1221       set_cisc_reg_mask_name(reg_mask_name);
  1222       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
  1223     } else {
  1224       cisc_spill_operand = Not_cisc_spillable;
  1226   } else {
  1227     cisc_spill_operand = Not_cisc_spillable;
  1230   set_cisc_spill_operand(cisc_spill_operand);
  1231   return (cisc_spill_operand != Not_cisc_spillable);
  1234 // Check to see if this instruction can be replaced with the short branch
  1235 // instruction `short-branch'
  1236 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
  1237   if (_matrule != NULL &&
  1238       this != short_branch &&   // Don't match myself
  1239       !is_short_branch() &&     // Don't match another short branch variant
  1240       reduce_result() != NULL &&
  1241       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
  1242       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
  1243     // The instructions are equivalent.
  1245     // Now verify that both instructions have the same parameters and
  1246     // the same effects. Both branch forms should have the same inputs
  1247     // and resulting projections to correctly replace a long branch node
  1248     // with corresponding short branch node during code generation.
  1250     bool different = false;
  1251     if (short_branch->_components.count() != _components.count()) {
  1252        different = true;
  1253     } else if (_components.count() > 0) {
  1254       short_branch->_components.reset();
  1255       _components.reset();
  1256       Component *comp;
  1257       while ((comp = _components.iter()) != NULL) {
  1258         Component *short_comp = short_branch->_components.iter();
  1259         if (short_comp == NULL ||
  1260             short_comp->_type != comp->_type ||
  1261             short_comp->_usedef != comp->_usedef) {
  1262           different = true;
  1263           break;
  1266       if (short_branch->_components.iter() != NULL)
  1267         different = true;
  1269     if (different) {
  1270       globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
  1272     if (AD._adl_debug > 1 || AD._short_branch_debug) {
  1273       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
  1275     _short_branch_form = short_branch;
  1276     return true;
  1278   return false;
  1282 // --------------------------- FILE *output_routines
  1283 //
  1284 // Generate the format call for the replacement variable
  1285 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
  1286   // Handle special constant table variables.
  1287   if (strcmp(rep_var, "constanttablebase") == 0) {
  1288     fprintf(fp, "char reg[128];  ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
  1289     fprintf(fp, "    st->print(\"%%s\", reg);\n");
  1290     return;
  1292   if (strcmp(rep_var, "constantoffset") == 0) {
  1293     fprintf(fp, "st->print(\"#%%d\", constant_offset_unchecked());\n");
  1294     return;
  1296   if (strcmp(rep_var, "constantaddress") == 0) {
  1297     fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset_unchecked());\n");
  1298     return;
  1301   // Find replacement variable's type
  1302   const Form *form   = _localNames[rep_var];
  1303   if (form == NULL) {
  1304     globalAD->syntax_err(_linenum, "Unknown replacement variable %s in format statement of %s.",
  1305                          rep_var, _ident);
  1306     return;
  1308   OpClassForm *opc   = form->is_opclass();
  1309   assert( opc, "replacement variable was not found in local names");
  1310   // Lookup the index position of the replacement variable
  1311   int idx  = operand_position_format(rep_var);
  1312   if ( idx == -1 ) {
  1313     globalAD->syntax_err(_linenum, "Could not find replacement variable %s in format statement of %s.\n",
  1314                          rep_var, _ident);
  1315     assert(strcmp(opc->_ident, "label") == 0, "Unimplemented");
  1316     return;
  1319   if (is_noninput_operand(idx)) {
  1320     // This component isn't in the input array.  Print out the static
  1321     // name of the register.
  1322     OperandForm* oper = form->is_operand();
  1323     if (oper != NULL && oper->is_bound_register()) {
  1324       const RegDef* first = oper->get_RegClass()->find_first_elem();
  1325       fprintf(fp, "    st->print_raw(\"%s\");\n", first->_regname);
  1326     } else {
  1327       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
  1329   } else {
  1330     // Output the format call for this operand
  1331     fprintf(fp,"opnd_array(%d)->",idx);
  1332     if (idx == 0)
  1333       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
  1334     else
  1335       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
  1339 // Seach through operands to determine parameters unique positions.
  1340 void InstructForm::set_unique_opnds() {
  1341   uint* uniq_idx = NULL;
  1342   uint  nopnds = num_opnds();
  1343   uint  num_uniq = nopnds;
  1344   uint i;
  1345   _uniq_idx_length = 0;
  1346   if (nopnds > 0) {
  1347     // Allocate index array.  Worst case we're mapping from each
  1348     // component back to an index and any DEF always goes at 0 so the
  1349     // length of the array has to be the number of components + 1.
  1350     _uniq_idx_length = _components.count() + 1;
  1351     uniq_idx = (uint*) malloc(sizeof(uint) * _uniq_idx_length);
  1352     for (i = 0; i < _uniq_idx_length; i++) {
  1353       uniq_idx[i] = i;
  1356   // Do it only if there is a match rule and no expand rule.  With an
  1357   // expand rule it is done by creating new mach node in Expand()
  1358   // method.
  1359   if (nopnds > 0 && _matrule != NULL && _exprule == NULL) {
  1360     const char *name;
  1361     uint count;
  1362     bool has_dupl_use = false;
  1364     _parameters.reset();
  1365     while ((name = _parameters.iter()) != NULL) {
  1366       count = 0;
  1367       uint position = 0;
  1368       uint uniq_position = 0;
  1369       _components.reset();
  1370       Component *comp = NULL;
  1371       if (sets_result()) {
  1372         comp = _components.iter();
  1373         position++;
  1375       // The next code is copied from the method operand_position().
  1376       for (; (comp = _components.iter()) != NULL; ++position) {
  1377         // When the first component is not a DEF,
  1378         // leave space for the result operand!
  1379         if (position==0 && (!comp->isa(Component::DEF))) {
  1380           ++position;
  1382         if (strcmp(name, comp->_name) == 0) {
  1383           if (++count > 1) {
  1384             assert(position < _uniq_idx_length, "out of bounds");
  1385             uniq_idx[position] = uniq_position;
  1386             has_dupl_use = true;
  1387           } else {
  1388             uniq_position = position;
  1391         if (comp->isa(Component::DEF) && comp->isa(Component::USE)) {
  1392           ++position;
  1393           if (position != 1)
  1394             --position;   // only use two slots for the 1st USE_DEF
  1398     if (has_dupl_use) {
  1399       for (i = 1; i < nopnds; i++) {
  1400         if (i != uniq_idx[i]) {
  1401           break;
  1404       uint j = i;
  1405       for (; i < nopnds; i++) {
  1406         if (i == uniq_idx[i]) {
  1407           uniq_idx[i] = j++;
  1410       num_uniq = j;
  1413   _uniq_idx = uniq_idx;
  1414   _num_uniq = num_uniq;
  1417 // Generate index values needed for determining the operand position
  1418 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
  1419   uint  idx = 0;                  // position of operand in match rule
  1420   int   cur_num_opnds = num_opnds();
  1422   // Compute the index into vector of operand pointers:
  1423   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
  1424   // idx1 starts at oper_input_base()
  1425   if ( cur_num_opnds >= 1 ) {
  1426     fprintf(fp,"  // Start at oper_input_base() and count operands\n");
  1427     fprintf(fp,"  unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
  1428     fprintf(fp,"  unsigned %sidx1 = %d;", prefix, oper_input_base(globals));
  1429     fprintf(fp," \t// %s\n", unique_opnd_ident(1));
  1431     // Generate starting points for other unique operands if they exist
  1432     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
  1433       if( *receiver == 0 ) {
  1434         fprintf(fp,"  unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();",
  1435                 prefix, idx, prefix, idx-1, idx-1 );
  1436       } else {
  1437         fprintf(fp,"  unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();",
  1438                 prefix, idx, prefix, idx-1, receiver, idx-1 );
  1440       fprintf(fp," \t// %s\n", unique_opnd_ident(idx));
  1443   if( *receiver != 0 ) {
  1444     // This value is used by generate_peepreplace when copying a node.
  1445     // Don't emit it in other cases since it can hide bugs with the
  1446     // use invalid idx's.
  1447     fprintf(fp,"  unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
  1452 // ---------------------------
  1453 bool InstructForm::verify() {
  1454   // !!!!! !!!!!
  1455   // Check that a "label" operand occurs last in the operand list, if present
  1456   return true;
  1459 void InstructForm::dump() {
  1460   output(stderr);
  1463 void InstructForm::output(FILE *fp) {
  1464   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
  1465   if (_matrule)   _matrule->output(fp);
  1466   if (_insencode) _insencode->output(fp);
  1467   if (_constant)  _constant->output(fp);
  1468   if (_opcode)    _opcode->output(fp);
  1469   if (_attribs)   _attribs->output(fp);
  1470   if (_predicate) _predicate->output(fp);
  1471   if (_effects.Size()) {
  1472     fprintf(fp,"Effects\n");
  1473     _effects.dump();
  1475   if (_exprule)   _exprule->output(fp);
  1476   if (_rewrule)   _rewrule->output(fp);
  1477   if (_format)    _format->output(fp);
  1478   if (_peephole)  _peephole->output(fp);
  1481 void MachNodeForm::dump() {
  1482   output(stderr);
  1485 void MachNodeForm::output(FILE *fp) {
  1486   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
  1489 //------------------------------build_predicate--------------------------------
  1490 // Build instruction predicates.  If the user uses the same operand name
  1491 // twice, we need to check that the operands are pointer-eequivalent in
  1492 // the DFA during the labeling process.
  1493 Predicate *InstructForm::build_predicate() {
  1494   char buf[1024], *s=buf;
  1495   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
  1497   MatchNode *mnode =
  1498     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
  1499   mnode->count_instr_names(names);
  1501   uint first = 1;
  1502   // Start with the predicate supplied in the .ad file.
  1503   if( _predicate ) {
  1504     if( first ) first=0;
  1505     strcpy(s,"("); s += strlen(s);
  1506     strcpy(s,_predicate->_pred);
  1507     s += strlen(s);
  1508     strcpy(s,")"); s += strlen(s);
  1510   for( DictI i(&names); i.test(); ++i ) {
  1511     uintptr_t cnt = (uintptr_t)i._value;
  1512     if( cnt > 1 ) {             // Need a predicate at all?
  1513       assert( cnt == 2, "Unimplemented" );
  1514       // Handle many pairs
  1515       if( first ) first=0;
  1516       else {                    // All tests must pass, so use '&&'
  1517         strcpy(s," && ");
  1518         s += strlen(s);
  1520       // Add predicate to working buffer
  1521       sprintf(s,"/*%s*/(",(char*)i._key);
  1522       s += strlen(s);
  1523       mnode->build_instr_pred(s,(char*)i._key,0);
  1524       s += strlen(s);
  1525       strcpy(s," == "); s += strlen(s);
  1526       mnode->build_instr_pred(s,(char*)i._key,1);
  1527       s += strlen(s);
  1528       strcpy(s,")"); s += strlen(s);
  1531   if( s == buf ) s = NULL;
  1532   else {
  1533     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
  1534     s = strdup(buf);
  1536   return new Predicate(s);
  1539 //------------------------------EncodeForm-------------------------------------
  1540 // Constructor
  1541 EncodeForm::EncodeForm()
  1542   : _encClass(cmpstr,hashstr, Form::arena) {
  1544 EncodeForm::~EncodeForm() {
  1547 // record a new register class
  1548 EncClass *EncodeForm::add_EncClass(const char *className) {
  1549   EncClass *encClass = new EncClass(className);
  1550   _eclasses.addName(className);
  1551   _encClass.Insert(className,encClass);
  1552   return encClass;
  1555 // Lookup the function body for an encoding class
  1556 EncClass  *EncodeForm::encClass(const char *className) {
  1557   assert( className != NULL, "Must provide a defined encoding name");
  1559   EncClass *encClass = (EncClass*)_encClass[className];
  1560   return encClass;
  1563 // Lookup the function body for an encoding class
  1564 const char *EncodeForm::encClassBody(const char *className) {
  1565   if( className == NULL ) return NULL;
  1567   EncClass *encClass = (EncClass*)_encClass[className];
  1568   assert( encClass != NULL, "Encode Class is missing.");
  1569   encClass->_code.reset();
  1570   const char *code = (const char*)encClass->_code.iter();
  1571   assert( code != NULL, "Found an empty encode class body.");
  1573   return code;
  1576 // Lookup the function body for an encoding class
  1577 const char *EncodeForm::encClassPrototype(const char *className) {
  1578   assert( className != NULL, "Encode class name must be non NULL.");
  1580   return className;
  1583 void EncodeForm::dump() {                  // Debug printer
  1584   output(stderr);
  1587 void EncodeForm::output(FILE *fp) {          // Write info to output files
  1588   const char *name;
  1589   fprintf(fp,"\n");
  1590   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
  1591   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
  1592     ((EncClass*)_encClass[name])->output(fp);
  1594   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
  1596 //------------------------------EncClass---------------------------------------
  1597 EncClass::EncClass(const char *name)
  1598   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
  1600 EncClass::~EncClass() {
  1603 // Add a parameter <type,name> pair
  1604 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
  1605   _parameter_type.addName( parameter_type );
  1606   _parameter_name.addName( parameter_name );
  1609 // Verify operand types in parameter list
  1610 bool EncClass::check_parameter_types(FormDict &globals) {
  1611   // !!!!!
  1612   return false;
  1615 // Add the decomposed "code" sections of an encoding's code-block
  1616 void EncClass::add_code(const char *code) {
  1617   _code.addName(code);
  1620 // Add the decomposed "replacement variables" of an encoding's code-block
  1621 void EncClass::add_rep_var(char *replacement_var) {
  1622   _code.addName(NameList::_signal);
  1623   _rep_vars.addName(replacement_var);
  1626 // Lookup the function body for an encoding class
  1627 int EncClass::rep_var_index(const char *rep_var) {
  1628   uint        position = 0;
  1629   const char *name     = NULL;
  1631   _parameter_name.reset();
  1632   while ( (name = _parameter_name.iter()) != NULL ) {
  1633     if ( strcmp(rep_var,name) == 0 ) return position;
  1634     ++position;
  1637   return -1;
  1640 // Check after parsing
  1641 bool EncClass::verify() {
  1642   // 1!!!!
  1643   // Check that each replacement variable, '$name' in architecture description
  1644   // is actually a local variable for this encode class, or a reserved name
  1645   // "primary, secondary, tertiary"
  1646   return true;
  1649 void EncClass::dump() {
  1650   output(stderr);
  1653 // Write info to output files
  1654 void EncClass::output(FILE *fp) {
  1655   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
  1657   // Output the parameter list
  1658   _parameter_type.reset();
  1659   _parameter_name.reset();
  1660   const char *type = _parameter_type.iter();
  1661   const char *name = _parameter_name.iter();
  1662   fprintf(fp, " ( ");
  1663   for ( ; (type != NULL) && (name != NULL);
  1664         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
  1665     fprintf(fp, " %s %s,", type, name);
  1667   fprintf(fp, " ) ");
  1669   // Output the code block
  1670   _code.reset();
  1671   _rep_vars.reset();
  1672   const char *code;
  1673   while ( (code = _code.iter()) != NULL ) {
  1674     if ( _code.is_signal(code) ) {
  1675       // A replacement variable
  1676       const char *rep_var = _rep_vars.iter();
  1677       fprintf(fp,"($%s)", rep_var);
  1678     } else {
  1679       // A section of code
  1680       fprintf(fp,"%s", code);
  1686 //------------------------------Opcode-----------------------------------------
  1687 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
  1688   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
  1691 Opcode::~Opcode() {
  1694 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
  1695   if( strcmp(param,"primary") == 0 ) {
  1696     return Opcode::PRIMARY;
  1698   else if( strcmp(param,"secondary") == 0 ) {
  1699     return Opcode::SECONDARY;
  1701   else if( strcmp(param,"tertiary") == 0 ) {
  1702     return Opcode::TERTIARY;
  1704   return Opcode::NOT_AN_OPCODE;
  1707 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
  1708   // Default values previously provided by MachNode::primary()...
  1709   const char *description = NULL;
  1710   const char *value       = NULL;
  1711   // Check if user provided any opcode definitions
  1712   if( this != NULL ) {
  1713     // Update 'value' if user provided a definition in the instruction
  1714     switch (desired_opcode) {
  1715     case PRIMARY:
  1716       description = "primary()";
  1717       if( _primary   != NULL)  { value = _primary;     }
  1718       break;
  1719     case SECONDARY:
  1720       description = "secondary()";
  1721       if( _secondary != NULL ) { value = _secondary;   }
  1722       break;
  1723     case TERTIARY:
  1724       description = "tertiary()";
  1725       if( _tertiary  != NULL ) { value = _tertiary;    }
  1726       break;
  1727     default:
  1728       assert( false, "ShouldNotReachHere();");
  1729       break;
  1732   if (value != NULL) {
  1733     fprintf(fp, "(%s /*%s*/)", value, description);
  1735   return value != NULL;
  1738 void Opcode::dump() {
  1739   output(stderr);
  1742 // Write info to output files
  1743 void Opcode::output(FILE *fp) {
  1744   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
  1745   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
  1746   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
  1749 //------------------------------InsEncode--------------------------------------
  1750 InsEncode::InsEncode() {
  1752 InsEncode::~InsEncode() {
  1755 // Add "encode class name" and its parameters
  1756 NameAndList *InsEncode::add_encode(char *encoding) {
  1757   assert( encoding != NULL, "Must provide name for encoding");
  1759   // add_parameter(NameList::_signal);
  1760   NameAndList *encode = new NameAndList(encoding);
  1761   _encoding.addName((char*)encode);
  1763   return encode;
  1766 // Access the list of encodings
  1767 void InsEncode::reset() {
  1768   _encoding.reset();
  1769   // _parameter.reset();
  1771 const char* InsEncode::encode_class_iter() {
  1772   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
  1773   return  ( encode_class != NULL ? encode_class->name() : NULL );
  1775 // Obtain parameter name from zero based index
  1776 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
  1777   NameAndList *params = (NameAndList*)_encoding.current();
  1778   assert( params != NULL, "Internal Error");
  1779   const char *param = (*params)[param_no];
  1781   // Remove '$' if parser placed it there.
  1782   return ( param != NULL && *param == '$') ? (param+1) : param;
  1785 void InsEncode::dump() {
  1786   output(stderr);
  1789 // Write info to output files
  1790 void InsEncode::output(FILE *fp) {
  1791   NameAndList *encoding  = NULL;
  1792   const char  *parameter = NULL;
  1794   fprintf(fp,"InsEncode: ");
  1795   _encoding.reset();
  1797   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
  1798     // Output the encoding being used
  1799     fprintf(fp,"%s(", encoding->name() );
  1801     // Output its parameter list, if any
  1802     bool first_param = true;
  1803     encoding->reset();
  1804     while (  (parameter = encoding->iter()) != 0 ) {
  1805       // Output the ',' between parameters
  1806       if ( ! first_param )  fprintf(fp,", ");
  1807       first_param = false;
  1808       // Output the parameter
  1809       fprintf(fp,"%s", parameter);
  1810     } // done with parameters
  1811     fprintf(fp,")  ");
  1812   } // done with encodings
  1814   fprintf(fp,"\n");
  1817 //------------------------------Effect-----------------------------------------
  1818 static int effect_lookup(const char *name) {
  1819   if(!strcmp(name, "USE")) return Component::USE;
  1820   if(!strcmp(name, "DEF")) return Component::DEF;
  1821   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
  1822   if(!strcmp(name, "KILL")) return Component::KILL;
  1823   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
  1824   if(!strcmp(name, "TEMP")) return Component::TEMP;
  1825   if(!strcmp(name, "INVALID")) return Component::INVALID;
  1826   if(!strcmp(name, "CALL")) return Component::CALL;
  1827   assert( false,"Invalid effect name specified\n");
  1828   return Component::INVALID;
  1831 const char *Component::getUsedefName() {
  1832   switch (_usedef) {
  1833     case Component::INVALID:  return "INVALID";  break;
  1834     case Component::USE:      return "USE";      break;
  1835     case Component::USE_DEF:  return "USE_DEF";  break;
  1836     case Component::USE_KILL: return "USE_KILL"; break;
  1837     case Component::KILL:     return "KILL";     break;
  1838     case Component::TEMP:     return "TEMP";     break;
  1839     case Component::DEF:      return "DEF";      break;
  1840     case Component::CALL:     return "CALL";     break;
  1841     default: assert(false, "unknown effect");
  1843   return "Undefined Use/Def info";
  1846 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
  1847   _ftype = Form::EFF;
  1850 Effect::~Effect() {
  1853 // Dynamic type check
  1854 Effect *Effect::is_effect() const {
  1855   return (Effect*)this;
  1859 // True if this component is equal to the parameter.
  1860 bool Effect::is(int use_def_kill_enum) const {
  1861   return (_use_def == use_def_kill_enum ? true : false);
  1863 // True if this component is used/def'd/kill'd as the parameter suggests.
  1864 bool Effect::isa(int use_def_kill_enum) const {
  1865   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
  1868 void Effect::dump() {
  1869   output(stderr);
  1872 void Effect::output(FILE *fp) {          // Write info to output files
  1873   fprintf(fp,"Effect: %s\n", (_name?_name:""));
  1876 //------------------------------ExpandRule-------------------------------------
  1877 ExpandRule::ExpandRule() : _expand_instrs(),
  1878                            _newopconst(cmpstr, hashstr, Form::arena) {
  1879   _ftype = Form::EXP;
  1882 ExpandRule::~ExpandRule() {                  // Destructor
  1885 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
  1886   _expand_instrs.addName((char*)instruction_name_and_operand_list);
  1889 void ExpandRule::reset_instructions() {
  1890   _expand_instrs.reset();
  1893 NameAndList* ExpandRule::iter_instructions() {
  1894   return (NameAndList*)_expand_instrs.iter();
  1898 void ExpandRule::dump() {
  1899   output(stderr);
  1902 void ExpandRule::output(FILE *fp) {         // Write info to output files
  1903   NameAndList *expand_instr = NULL;
  1904   const char *opid = NULL;
  1906   fprintf(fp,"\nExpand Rule:\n");
  1908   // Iterate over the instructions 'node' expands into
  1909   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
  1910     fprintf(fp,"%s(", expand_instr->name());
  1912     // iterate over the operand list
  1913     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1914       fprintf(fp,"%s ", opid);
  1916     fprintf(fp,");\n");
  1920 //------------------------------RewriteRule------------------------------------
  1921 RewriteRule::RewriteRule(char* params, char* block)
  1922   : _tempParams(params), _tempBlock(block) { };  // Constructor
  1923 RewriteRule::~RewriteRule() {                 // Destructor
  1926 void RewriteRule::dump() {
  1927   output(stderr);
  1930 void RewriteRule::output(FILE *fp) {         // Write info to output files
  1931   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
  1932           (_tempParams?_tempParams:""),
  1933           (_tempBlock?_tempBlock:""));
  1937 //==============================MachNodes======================================
  1938 //------------------------------MachNodeForm-----------------------------------
  1939 MachNodeForm::MachNodeForm(char *id)
  1940   : _ident(id) {
  1943 MachNodeForm::~MachNodeForm() {
  1946 MachNodeForm *MachNodeForm::is_machnode() const {
  1947   return (MachNodeForm*)this;
  1950 //==============================Operand Classes================================
  1951 //------------------------------OpClassForm------------------------------------
  1952 OpClassForm::OpClassForm(const char* id) : _ident(id) {
  1953   _ftype = Form::OPCLASS;
  1956 OpClassForm::~OpClassForm() {
  1959 bool OpClassForm::ideal_only() const { return 0; }
  1961 OpClassForm *OpClassForm::is_opclass() const {
  1962   return (OpClassForm*)this;
  1965 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
  1966   if( _oplst.count() == 0 ) return Form::no_interface;
  1968   // Check that my operands have the same interface type
  1969   Form::InterfaceType  interface;
  1970   bool  first = true;
  1971   NameList &op_list = (NameList &)_oplst;
  1972   op_list.reset();
  1973   const char *op_name;
  1974   while( (op_name = op_list.iter()) != NULL ) {
  1975     const Form  *form    = globals[op_name];
  1976     OperandForm *operand = form->is_operand();
  1977     assert( operand, "Entry in operand class that is not an operand");
  1978     if( first ) {
  1979       first     = false;
  1980       interface = operand->interface_type(globals);
  1981     } else {
  1982       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
  1985   return interface;
  1988 bool OpClassForm::stack_slots_only(FormDict &globals) const {
  1989   if( _oplst.count() == 0 ) return false;  // how?
  1991   NameList &op_list = (NameList &)_oplst;
  1992   op_list.reset();
  1993   const char *op_name;
  1994   while( (op_name = op_list.iter()) != NULL ) {
  1995     const Form  *form    = globals[op_name];
  1996     OperandForm *operand = form->is_operand();
  1997     assert( operand, "Entry in operand class that is not an operand");
  1998     if( !operand->stack_slots_only(globals) )  return false;
  2000   return true;
  2004 void OpClassForm::dump() {
  2005   output(stderr);
  2008 void OpClassForm::output(FILE *fp) {
  2009   const char *name;
  2010   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
  2011   fprintf(fp,"\nCount = %d\n", _oplst.count());
  2012   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
  2013     fprintf(fp,"%s, ",name);
  2015   fprintf(fp,"\n");
  2019 //==============================Operands=======================================
  2020 //------------------------------OperandForm------------------------------------
  2021 OperandForm::OperandForm(const char* id)
  2022   : OpClassForm(id), _ideal_only(false),
  2023     _localNames(cmpstr, hashstr, Form::arena) {
  2024       _ftype = Form::OPER;
  2026       _matrule   = NULL;
  2027       _interface = NULL;
  2028       _attribs   = NULL;
  2029       _predicate = NULL;
  2030       _constraint= NULL;
  2031       _construct = NULL;
  2032       _format    = NULL;
  2034 OperandForm::OperandForm(const char* id, bool ideal_only)
  2035   : OpClassForm(id), _ideal_only(ideal_only),
  2036     _localNames(cmpstr, hashstr, Form::arena) {
  2037       _ftype = Form::OPER;
  2039       _matrule   = NULL;
  2040       _interface = NULL;
  2041       _attribs   = NULL;
  2042       _predicate = NULL;
  2043       _constraint= NULL;
  2044       _construct = NULL;
  2045       _format    = NULL;
  2047 OperandForm::~OperandForm() {
  2051 OperandForm *OperandForm::is_operand() const {
  2052   return (OperandForm*)this;
  2055 bool OperandForm::ideal_only() const {
  2056   return _ideal_only;
  2059 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
  2060   if( _interface == NULL )  return Form::no_interface;
  2062   return _interface->interface_type(globals);
  2066 bool OperandForm::stack_slots_only(FormDict &globals) const {
  2067   if( _constraint == NULL )  return false;
  2068   return _constraint->stack_slots_only();
  2072 // Access op_cost attribute or return NULL.
  2073 const char* OperandForm::cost() {
  2074   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
  2075     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
  2076       return cur->_val;
  2079   return NULL;
  2082 // Return the number of leaves below this complex operand
  2083 uint OperandForm::num_leaves() const {
  2084   if ( ! _matrule) return 0;
  2086   int num_leaves = _matrule->_numleaves;
  2087   return num_leaves;
  2090 // Return the number of constants contained within this complex operand
  2091 uint OperandForm::num_consts(FormDict &globals) const {
  2092   if ( ! _matrule) return 0;
  2094   // This is a recursive invocation on all operands in the matchrule
  2095   return _matrule->num_consts(globals);
  2098 // Return the number of constants in match rule with specified type
  2099 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
  2100   if ( ! _matrule) return 0;
  2102   // This is a recursive invocation on all operands in the matchrule
  2103   return _matrule->num_consts(globals, type);
  2106 // Return the number of pointer constants contained within this complex operand
  2107 uint OperandForm::num_const_ptrs(FormDict &globals) const {
  2108   if ( ! _matrule) return 0;
  2110   // This is a recursive invocation on all operands in the matchrule
  2111   return _matrule->num_const_ptrs(globals);
  2114 uint OperandForm::num_edges(FormDict &globals) const {
  2115   uint edges  = 0;
  2116   uint leaves = num_leaves();
  2117   uint consts = num_consts(globals);
  2119   // If we are matching a constant directly, there are no leaves.
  2120   edges = ( leaves > consts ) ? leaves - consts : 0;
  2122   // !!!!!
  2123   // Special case operands that do not have a corresponding ideal node.
  2124   if( (edges == 0) && (consts == 0) ) {
  2125     if( constrained_reg_class() != NULL ) {
  2126       edges = 1;
  2127     } else {
  2128       if( _matrule
  2129           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
  2130         const Form *form = globals[_matrule->_opType];
  2131         OperandForm *oper = form ? form->is_operand() : NULL;
  2132         if( oper ) {
  2133           return oper->num_edges(globals);
  2139   return edges;
  2143 // Check if this operand is usable for cisc-spilling
  2144 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
  2145   const char *ideal = ideal_type(globals);
  2146   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
  2147   return is_cisc_reg;
  2150 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
  2151   Form::InterfaceType my_interface = interface_type(globals);
  2152   return (my_interface == memory_interface);
  2156 // node matches ideal 'Bool'
  2157 bool OperandForm::is_ideal_bool() const {
  2158   if( _matrule == NULL ) return false;
  2160   return _matrule->is_ideal_bool();
  2163 // Require user's name for an sRegX to be stackSlotX
  2164 Form::DataType OperandForm::is_user_name_for_sReg() const {
  2165   DataType data_type = none;
  2166   if( _ident != NULL ) {
  2167     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
  2168     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
  2169     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
  2170     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
  2171     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
  2173   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
  2175   return data_type;
  2179 // Return ideal type, if there is a single ideal type for this operand
  2180 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
  2181   const char *type = NULL;
  2182   if (ideal_only()) type = _ident;
  2183   else if( _matrule == NULL ) {
  2184     // Check for condition code register
  2185     const char *rc_name = constrained_reg_class();
  2186     // !!!!!
  2187     if (rc_name == NULL) return NULL;
  2188     // !!!!! !!!!!
  2189     // Check constraints on result's register class
  2190     if( registers ) {
  2191       RegClass *reg_class  = registers->getRegClass(rc_name);
  2192       assert( reg_class != NULL, "Register class is not defined");
  2194       // Check for ideal type of entries in register class, all are the same type
  2195       reg_class->reset();
  2196       RegDef *reg_def = reg_class->RegDef_iter();
  2197       assert( reg_def != NULL, "No entries in register class");
  2198       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
  2199       // Return substring that names the register's ideal type
  2200       type = reg_def->_idealtype + 3;
  2201       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
  2202       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
  2203       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
  2206   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
  2207     // This operand matches a single type, at the top level.
  2208     // Check for ideal type
  2209     type = _matrule->_opType;
  2210     if( strcmp(type,"Bool") == 0 )
  2211       return "Bool";
  2212     // transitive lookup
  2213     const Form *frm = globals[type];
  2214     OperandForm *op = frm->is_operand();
  2215     type = op->ideal_type(globals, registers);
  2217   return type;
  2221 // If there is a single ideal type for this interface field, return it.
  2222 const char *OperandForm::interface_ideal_type(FormDict &globals,
  2223                                               const char *field) const {
  2224   const char  *ideal_type = NULL;
  2225   const char  *value      = NULL;
  2227   // Check if "field" is valid for this operand's interface
  2228   if ( ! is_interface_field(field, value) )   return ideal_type;
  2230   // !!!!! !!!!! !!!!!
  2231   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
  2233   // Else, lookup type of field's replacement variable
  2235   return ideal_type;
  2239 RegClass* OperandForm::get_RegClass() const {
  2240   if (_interface && !_interface->is_RegInterface()) return NULL;
  2241   return globalAD->get_registers()->getRegClass(constrained_reg_class());
  2245 bool OperandForm::is_bound_register() const {
  2246   RegClass* reg_class = get_RegClass();
  2247   if (reg_class == NULL) {
  2248     return false;
  2251   const char* name = ideal_type(globalAD->globalNames());
  2252   if (name == NULL) {
  2253     return false;
  2256   uint size = 0;
  2257   if (strcmp(name, "RegFlags") == 0) size = 1;
  2258   if (strcmp(name, "RegI") == 0) size = 1;
  2259   if (strcmp(name, "RegF") == 0) size = 1;
  2260   if (strcmp(name, "RegD") == 0) size = 2;
  2261   if (strcmp(name, "RegL") == 0) size = 2;
  2262   if (strcmp(name, "RegN") == 0) size = 1;
  2263   if (strcmp(name, "RegP") == 0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
  2264   if (size == 0) {
  2265     return false;
  2267   return size == reg_class->size();
  2271 // Check if this is a valid field for this operand,
  2272 // Return 'true' if valid, and set the value to the string the user provided.
  2273 bool  OperandForm::is_interface_field(const char *field,
  2274                                       const char * &value) const {
  2275   return false;
  2279 // Return register class name if a constraint specifies the register class.
  2280 const char *OperandForm::constrained_reg_class() const {
  2281   const char *reg_class  = NULL;
  2282   if ( _constraint ) {
  2283     // !!!!!
  2284     Constraint *constraint = _constraint;
  2285     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
  2286       reg_class = _constraint->_arg;
  2290   return reg_class;
  2294 // Return the register class associated with 'leaf'.
  2295 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
  2296   const char *reg_class = NULL; // "RegMask::Empty";
  2298   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
  2299     reg_class = constrained_reg_class();
  2300     return reg_class;
  2302   const char *result   = NULL;
  2303   const char *name     = NULL;
  2304   const char *type     = NULL;
  2305   // iterate through all base operands
  2306   // until we reach the register that corresponds to "leaf"
  2307   // This function is not looking for an ideal type.  It needs the first
  2308   // level user type associated with the leaf.
  2309   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
  2310     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
  2311     OperandForm *oper = form ? form->is_operand() : NULL;
  2312     if( oper ) {
  2313       reg_class = oper->constrained_reg_class();
  2314       if( reg_class ) {
  2315         reg_class = reg_class;
  2316       } else {
  2317         // ShouldNotReachHere();
  2319     } else {
  2320       // ShouldNotReachHere();
  2323     // Increment our target leaf position if current leaf is not a candidate.
  2324     if( reg_class == NULL)    ++leaf;
  2325     // Exit the loop with the value of reg_class when at the correct index
  2326     if( idx == leaf )         break;
  2327     // May iterate through all base operands if reg_class for 'leaf' is NULL
  2329   return reg_class;
  2333 // Recursive call to construct list of top-level operands.
  2334 // Implementation does not modify state of internal structures
  2335 void OperandForm::build_components() {
  2336   if (_matrule)  _matrule->append_components(_localNames, _components);
  2338   // Add parameters that "do not appear in match rule".
  2339   const char *name;
  2340   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
  2341     OperandForm *opForm = (OperandForm*)_localNames[name];
  2343     if ( _components.operand_position(name) == -1 ) {
  2344       _components.insert(name, opForm->_ident, Component::INVALID, false);
  2348   return;
  2351 int OperandForm::operand_position(const char *name, int usedef) {
  2352   return _components.operand_position(name, usedef, this);
  2356 // Return zero-based position in component list, only counting constants;
  2357 // Return -1 if not in list.
  2358 int OperandForm::constant_position(FormDict &globals, const Component *last) {
  2359   // Iterate through components and count constants preceding 'constant'
  2360   int position = 0;
  2361   Component *comp;
  2362   _components.reset();
  2363   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
  2364     // Special case for operands that take a single user-defined operand
  2365     // Skip the initial definition in the component list.
  2366     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2368     const char *type = comp->_type;
  2369     // Lookup operand form for replacement variable's type
  2370     const Form *form = globals[type];
  2371     assert( form != NULL, "Component's type not found");
  2372     OperandForm *oper = form ? form->is_operand() : NULL;
  2373     if( oper ) {
  2374       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
  2375         ++position;
  2380   // Check for being passed a component that was not in the list
  2381   if( comp != last )  position = -1;
  2383   return position;
  2385 // Provide position of constant by "name"
  2386 int OperandForm::constant_position(FormDict &globals, const char *name) {
  2387   const Component *comp = _components.search(name);
  2388   int idx = constant_position( globals, comp );
  2390   return idx;
  2394 // Return zero-based position in component list, only counting constants;
  2395 // Return -1 if not in list.
  2396 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
  2397   // Iterate through components and count registers preceding 'last'
  2398   uint  position = 0;
  2399   Component *comp;
  2400   _components.reset();
  2401   while( (comp = _components.iter()) != NULL
  2402          && (strcmp(comp->_name,reg_name) != 0) ) {
  2403     // Special case for operands that take a single user-defined operand
  2404     // Skip the initial definition in the component list.
  2405     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2407     const char *type = comp->_type;
  2408     // Lookup operand form for component's type
  2409     const Form *form = globals[type];
  2410     assert( form != NULL, "Component's type not found");
  2411     OperandForm *oper = form ? form->is_operand() : NULL;
  2412     if( oper ) {
  2413       if( oper->_matrule->is_base_register(globals) ) {
  2414         ++position;
  2419   return position;
  2423 const char *OperandForm::reduce_result()  const {
  2424   return _ident;
  2426 // Return the name of the operand on the right hand side of the binary match
  2427 // Return NULL if there is no right hand side
  2428 const char *OperandForm::reduce_right(FormDict &globals)  const {
  2429   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
  2432 // Similar for left
  2433 const char *OperandForm::reduce_left(FormDict &globals)   const {
  2434   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
  2438 // --------------------------- FILE *output_routines
  2439 //
  2440 // Output code for disp_is_oop, if true.
  2441 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
  2442   //  Check it is a memory interface with a non-user-constant disp field
  2443   if ( this->_interface == NULL ) return;
  2444   MemInterface *mem_interface = this->_interface->is_MemInterface();
  2445   if ( mem_interface == NULL )    return;
  2446   const char   *disp  = mem_interface->_disp;
  2447   if ( *disp != '$' )             return;
  2449   // Lookup replacement variable in operand's component list
  2450   const char   *rep_var = disp + 1;
  2451   const Component *comp = this->_components.search(rep_var);
  2452   assert( comp != NULL, "Replacement variable not found in components");
  2453   // Lookup operand form for replacement variable's type
  2454   const char      *type = comp->_type;
  2455   Form            *form = (Form*)globals[type];
  2456   assert( form != NULL, "Replacement variable's type not found");
  2457   OperandForm     *op   = form->is_operand();
  2458   assert( op, "Memory Interface 'disp' can only emit an operand form");
  2459   // Check if this is a ConP, which may require relocation
  2460   if ( op->is_base_constant(globals) == Form::idealP ) {
  2461     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
  2462     uint idx  = op->constant_position( globals, rep_var);
  2463     fprintf(fp,"  virtual relocInfo::relocType disp_reloc() const {");
  2464     fprintf(fp,  "  return _c%d->reloc();", idx);
  2465     fprintf(fp, " }\n");
  2469 // Generate code for internal and external format methods
  2470 //
  2471 // internal access to reg# node->_idx
  2472 // access to subsumed constant _c0, _c1,
  2473 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
  2474   Form::DataType dtype;
  2475   if (_matrule && (_matrule->is_base_register(globals) ||
  2476                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2477     // !!!!! !!!!!
  2478     fprintf(fp,"  { char reg_str[128];\n");
  2479     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
  2480     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
  2481     fprintf(fp,"  }\n");
  2482   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2483     format_constant( fp, index, dtype );
  2484   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2485     // Special format for Stack Slot Register
  2486     fprintf(fp,"  { char reg_str[128];\n");
  2487     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
  2488     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
  2489     fprintf(fp,"  }\n");
  2490   } else {
  2491     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
  2492     fflush(fp);
  2493     fprintf(stderr,"No format defined for %s\n", _ident);
  2494     dump();
  2495     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
  2499 // Similar to "int_format" but for cases where data is external to operand
  2500 // external access to reg# node->in(idx)->_idx,
  2501 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
  2502   Form::DataType dtype;
  2503   if (_matrule && (_matrule->is_base_register(globals) ||
  2504                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2505     fprintf(fp,"  { char reg_str[128];\n");
  2506     fprintf(fp,"    ra->dump_register(node->in(idx");
  2507     if ( index != 0 ) fprintf(fp,              "+%d",index);
  2508     fprintf(fp,                                      "),reg_str);\n");
  2509     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
  2510     fprintf(fp,"  }\n");
  2511   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2512     format_constant( fp, index, dtype );
  2513   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2514     // Special format for Stack Slot Register
  2515     fprintf(fp,"  { char reg_str[128];\n");
  2516     fprintf(fp,"    ra->dump_register(node->in(idx");
  2517     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2518     fprintf(fp,                                       "),reg_str);\n");
  2519     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
  2520     fprintf(fp,"  }\n");
  2521   } else {
  2522     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
  2523     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
  2527 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
  2528   switch(const_type) {
  2529   case Form::idealI: fprintf(fp,"  st->print(\"#%%d\", _c%d);\n", const_index); break;
  2530   case Form::idealP: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
  2531   case Form::idealNKlass:
  2532   case Form::idealN: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
  2533   case Form::idealL: fprintf(fp,"  st->print(\"#\" INT64_FORMAT, (int64_t)_c%d);\n", const_index); break;
  2534   case Form::idealF: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
  2535   case Form::idealD: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
  2536   default:
  2537     assert( false, "ShouldNotReachHere()");
  2541 // Return the operand form corresponding to the given index, else NULL.
  2542 OperandForm *OperandForm::constant_operand(FormDict &globals,
  2543                                            uint      index) {
  2544   // !!!!!
  2545   // Check behavior on complex operands
  2546   uint n_consts = num_consts(globals);
  2547   if( n_consts > 0 ) {
  2548     uint i = 0;
  2549     const char *type;
  2550     Component  *comp;
  2551     _components.reset();
  2552     if ((comp = _components.iter()) == NULL) {
  2553       assert(n_consts == 1, "Bad component list detected.\n");
  2554       // Current operand is THE operand
  2555       if ( index == 0 ) {
  2556         return this;
  2558     } // end if NULL
  2559     else {
  2560       // Skip the first component, it can not be a DEF of a constant
  2561       do {
  2562         type = comp->base_type(globals);
  2563         // Check that "type" is a 'ConI', 'ConP', ...
  2564         if ( ideal_to_const_type(type) != Form::none ) {
  2565           // When at correct component, get corresponding Operand
  2566           if ( index == 0 ) {
  2567             return globals[comp->_type]->is_operand();
  2569           // Decrement number of constants to go
  2570           --index;
  2572       } while((comp = _components.iter()) != NULL);
  2576   // Did not find a constant for this index.
  2577   return NULL;
  2580 // If this operand has a single ideal type, return its type
  2581 Form::DataType OperandForm::simple_type(FormDict &globals) const {
  2582   const char *type_name = ideal_type(globals);
  2583   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
  2584                                     : Form::none;
  2585   return type;
  2588 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
  2589   if ( _matrule == NULL )    return Form::none;
  2591   return _matrule->is_base_constant(globals);
  2594 // "true" if this operand is a simple type that is swallowed
  2595 bool  OperandForm::swallowed(FormDict &globals) const {
  2596   Form::DataType type   = simple_type(globals);
  2597   if( type != Form::none ) {
  2598     return true;
  2601   return false;
  2604 // Output code to access the value of the index'th constant
  2605 void OperandForm::access_constant(FILE *fp, FormDict &globals,
  2606                                   uint const_index) {
  2607   OperandForm *oper = constant_operand(globals, const_index);
  2608   assert( oper, "Index exceeds number of constants in operand");
  2609   Form::DataType dtype = oper->is_base_constant(globals);
  2611   switch(dtype) {
  2612   case idealI: fprintf(fp,"_c%d",           const_index); break;
  2613   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
  2614   case idealL: fprintf(fp,"_c%d",           const_index); break;
  2615   case idealF: fprintf(fp,"_c%d",           const_index); break;
  2616   case idealD: fprintf(fp,"_c%d",           const_index); break;
  2617   default:
  2618     assert( false, "ShouldNotReachHere()");
  2623 void OperandForm::dump() {
  2624   output(stderr);
  2627 void OperandForm::output(FILE *fp) {
  2628   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
  2629   if (_matrule)    _matrule->dump();
  2630   if (_interface)  _interface->dump();
  2631   if (_attribs)    _attribs->dump();
  2632   if (_predicate)  _predicate->dump();
  2633   if (_constraint) _constraint->dump();
  2634   if (_construct)  _construct->dump();
  2635   if (_format)     _format->dump();
  2638 //------------------------------Constraint-------------------------------------
  2639 Constraint::Constraint(const char *func, const char *arg)
  2640   : _func(func), _arg(arg) {
  2642 Constraint::~Constraint() { /* not owner of char* */
  2645 bool Constraint::stack_slots_only() const {
  2646   return strcmp(_func, "ALLOC_IN_RC") == 0
  2647       && strcmp(_arg,  "stack_slots") == 0;
  2650 void Constraint::dump() {
  2651   output(stderr);
  2654 void Constraint::output(FILE *fp) {           // Write info to output files
  2655   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
  2656   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
  2659 //------------------------------Predicate--------------------------------------
  2660 Predicate::Predicate(char *pr)
  2661   : _pred(pr) {
  2663 Predicate::~Predicate() {
  2666 void Predicate::dump() {
  2667   output(stderr);
  2670 void Predicate::output(FILE *fp) {
  2671   fprintf(fp,"Predicate");  // Write to output files
  2673 //------------------------------Interface--------------------------------------
  2674 Interface::Interface(const char *name) : _name(name) {
  2676 Interface::~Interface() {
  2679 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
  2680   Interface *thsi = (Interface*)this;
  2681   if ( thsi->is_RegInterface()   ) return Form::register_interface;
  2682   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
  2683   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
  2684   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
  2686   return Form::no_interface;
  2689 RegInterface   *Interface::is_RegInterface() {
  2690   if ( strcmp(_name,"REG_INTER") != 0 )
  2691     return NULL;
  2692   return (RegInterface*)this;
  2694 MemInterface   *Interface::is_MemInterface() {
  2695   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
  2696   return (MemInterface*)this;
  2698 ConstInterface *Interface::is_ConstInterface() {
  2699   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
  2700   return (ConstInterface*)this;
  2702 CondInterface  *Interface::is_CondInterface() {
  2703   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
  2704   return (CondInterface*)this;
  2708 void Interface::dump() {
  2709   output(stderr);
  2712 // Write info to output files
  2713 void Interface::output(FILE *fp) {
  2714   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
  2717 //------------------------------RegInterface-----------------------------------
  2718 RegInterface::RegInterface() : Interface("REG_INTER") {
  2720 RegInterface::~RegInterface() {
  2723 void RegInterface::dump() {
  2724   output(stderr);
  2727 // Write info to output files
  2728 void RegInterface::output(FILE *fp) {
  2729   Interface::output(fp);
  2732 //------------------------------ConstInterface---------------------------------
  2733 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
  2735 ConstInterface::~ConstInterface() {
  2738 void ConstInterface::dump() {
  2739   output(stderr);
  2742 // Write info to output files
  2743 void ConstInterface::output(FILE *fp) {
  2744   Interface::output(fp);
  2747 //------------------------------MemInterface-----------------------------------
  2748 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
  2749   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
  2751 MemInterface::~MemInterface() {
  2752   // not owner of any character arrays
  2755 void MemInterface::dump() {
  2756   output(stderr);
  2759 // Write info to output files
  2760 void MemInterface::output(FILE *fp) {
  2761   Interface::output(fp);
  2762   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
  2763   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
  2764   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
  2765   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
  2766   // fprintf(fp,"\n");
  2769 //------------------------------CondInterface----------------------------------
  2770 CondInterface::CondInterface(const char* equal,         const char* equal_format,
  2771                              const char* not_equal,     const char* not_equal_format,
  2772                              const char* less,          const char* less_format,
  2773                              const char* greater_equal, const char* greater_equal_format,
  2774                              const char* less_equal,    const char* less_equal_format,
  2775                              const char* greater,       const char* greater_format,
  2776                              const char* overflow,      const char* overflow_format,
  2777                              const char* no_overflow,   const char* no_overflow_format)
  2778   : Interface("COND_INTER"),
  2779     _equal(equal),                 _equal_format(equal_format),
  2780     _not_equal(not_equal),         _not_equal_format(not_equal_format),
  2781     _less(less),                   _less_format(less_format),
  2782     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
  2783     _less_equal(less_equal),       _less_equal_format(less_equal_format),
  2784     _greater(greater),             _greater_format(greater_format),
  2785     _overflow(overflow),           _overflow_format(overflow_format),
  2786     _no_overflow(no_overflow),     _no_overflow_format(no_overflow_format) {
  2788 CondInterface::~CondInterface() {
  2789   // not owner of any character arrays
  2792 void CondInterface::dump() {
  2793   output(stderr);
  2796 // Write info to output files
  2797 void CondInterface::output(FILE *fp) {
  2798   Interface::output(fp);
  2799   if ( _equal  != NULL )     fprintf(fp," equal        == %s\n", _equal);
  2800   if ( _not_equal  != NULL ) fprintf(fp," not_equal    == %s\n", _not_equal);
  2801   if ( _less  != NULL )      fprintf(fp," less         == %s\n", _less);
  2802   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal    == %s\n", _greater_equal);
  2803   if ( _less_equal  != NULL ) fprintf(fp," less_equal   == %s\n", _less_equal);
  2804   if ( _greater  != NULL )    fprintf(fp," greater      == %s\n", _greater);
  2805   if ( _overflow != NULL )    fprintf(fp," overflow     == %s\n", _overflow);
  2806   if ( _no_overflow != NULL ) fprintf(fp," no_overflow  == %s\n", _no_overflow);
  2807   // fprintf(fp,"\n");
  2810 //------------------------------ConstructRule----------------------------------
  2811 ConstructRule::ConstructRule(char *cnstr)
  2812   : _construct(cnstr) {
  2814 ConstructRule::~ConstructRule() {
  2817 void ConstructRule::dump() {
  2818   output(stderr);
  2821 void ConstructRule::output(FILE *fp) {
  2822   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
  2826 //==============================Shared Forms===================================
  2827 //------------------------------AttributeForm----------------------------------
  2828 int         AttributeForm::_insId   = 0;           // start counter at 0
  2829 int         AttributeForm::_opId    = 0;           // start counter at 0
  2830 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
  2831 const char* AttributeForm::_op_cost  = "op_cost";  // required name
  2833 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
  2834   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
  2835     if (type==OP_ATTR) {
  2836       id = ++_opId;
  2838     else if (type==INS_ATTR) {
  2839       id = ++_insId;
  2841     else assert( false,"");
  2843 AttributeForm::~AttributeForm() {
  2846 // Dynamic type check
  2847 AttributeForm *AttributeForm::is_attribute() const {
  2848   return (AttributeForm*)this;
  2852 // inlined  // int  AttributeForm::type() { return id;}
  2854 void AttributeForm::dump() {
  2855   output(stderr);
  2858 void AttributeForm::output(FILE *fp) {
  2859   if( _attrname && _attrdef ) {
  2860     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
  2861             _attrname, _attrdef);
  2863   else {
  2864     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
  2865             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
  2869 //------------------------------Component--------------------------------------
  2870 Component::Component(const char *name, const char *type, int usedef)
  2871   : _name(name), _type(type), _usedef(usedef) {
  2872     _ftype = Form::COMP;
  2874 Component::~Component() {
  2877 // True if this component is equal to the parameter.
  2878 bool Component::is(int use_def_kill_enum) const {
  2879   return (_usedef == use_def_kill_enum ? true : false);
  2881 // True if this component is used/def'd/kill'd as the parameter suggests.
  2882 bool Component::isa(int use_def_kill_enum) const {
  2883   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
  2886 // Extend this component with additional use/def/kill behavior
  2887 int Component::promote_use_def_info(int new_use_def) {
  2888   _usedef |= new_use_def;
  2890   return _usedef;
  2893 // Check the base type of this component, if it has one
  2894 const char *Component::base_type(FormDict &globals) {
  2895   const Form *frm = globals[_type];
  2896   if (frm == NULL) return NULL;
  2897   OperandForm *op = frm->is_operand();
  2898   if (op == NULL) return NULL;
  2899   if (op->ideal_only()) return op->_ident;
  2900   return (char *)op->ideal_type(globals);
  2903 void Component::dump() {
  2904   output(stderr);
  2907 void Component::output(FILE *fp) {
  2908   fprintf(fp,"Component:");  // Write to output files
  2909   fprintf(fp, "  name = %s", _name);
  2910   fprintf(fp, ", type = %s", _type);
  2911   assert(_usedef != 0, "unknown effect");
  2912   fprintf(fp, ", use/def = %s\n", getUsedefName());
  2916 //------------------------------ComponentList---------------------------------
  2917 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
  2919 ComponentList::~ComponentList() {
  2920   // // This list may not own its elements if copied via assignment
  2921   // Component *component;
  2922   // for (reset(); (component = iter()) != NULL;) {
  2923   //   delete component;
  2924   // }
  2927 void   ComponentList::insert(Component *component, bool mflag) {
  2928   NameList::addName((char *)component);
  2929   if(mflag) _matchcnt++;
  2931 void   ComponentList::insert(const char *name, const char *opType, int usedef,
  2932                              bool mflag) {
  2933   Component * component = new Component(name, opType, usedef);
  2934   insert(component, mflag);
  2936 Component *ComponentList::current() { return (Component*)NameList::current(); }
  2937 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
  2938 Component *ComponentList::match_iter() {
  2939   if(_iter < _matchcnt) return (Component*)NameList::iter();
  2940   return NULL;
  2942 Component *ComponentList::post_match_iter() {
  2943   Component *comp = iter();
  2944   // At end of list?
  2945   if ( comp == NULL ) {
  2946     return comp;
  2948   // In post-match components?
  2949   if (_iter > match_count()-1) {
  2950     return comp;
  2953   return post_match_iter();
  2956 void       ComponentList::reset()   { NameList::reset(); }
  2957 int        ComponentList::count()   { return NameList::count(); }
  2959 Component *ComponentList::operator[](int position) {
  2960   // Shortcut complete iteration if there are not enough entries
  2961   if (position >= count()) return NULL;
  2963   int        index     = 0;
  2964   Component *component = NULL;
  2965   for (reset(); (component = iter()) != NULL;) {
  2966     if (index == position) {
  2967       return component;
  2969     ++index;
  2972   return NULL;
  2975 const Component *ComponentList::search(const char *name) {
  2976   PreserveIter pi(this);
  2977   reset();
  2978   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
  2979     if( strcmp(comp->_name,name) == 0 ) return comp;
  2982   return NULL;
  2985 // Return number of USEs + number of DEFs
  2986 // When there are no components, or the first component is a USE,
  2987 // then we add '1' to hold a space for the 'result' operand.
  2988 int ComponentList::num_operands() {
  2989   PreserveIter pi(this);
  2990   uint       count = 1;           // result operand
  2991   uint       position = 0;
  2993   Component *component  = NULL;
  2994   for( reset(); (component = iter()) != NULL; ++position ) {
  2995     if( component->isa(Component::USE) ||
  2996         ( position == 0 && (! component->isa(Component::DEF))) ) {
  2997       ++count;
  3001   return count;
  3004 // Return zero-based position of operand 'name' in list;  -1 if not in list.
  3005 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
  3006 int ComponentList::operand_position(const char *name, int usedef, Form *fm) {
  3007   PreserveIter pi(this);
  3008   int position = 0;
  3009   int num_opnds = num_operands();
  3010   Component *component;
  3011   Component* preceding_non_use = NULL;
  3012   Component* first_def = NULL;
  3013   for (reset(); (component = iter()) != NULL; ++position) {
  3014     // When the first component is not a DEF,
  3015     // leave space for the result operand!
  3016     if ( position==0 && (! component->isa(Component::DEF)) ) {
  3017       ++position;
  3018       ++num_opnds;
  3020     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
  3021       // When the first entry in the component list is a DEF and a USE
  3022       // Treat them as being separate, a DEF first, then a USE
  3023       if( position==0
  3024           && usedef==Component::USE && component->isa(Component::DEF) ) {
  3025         assert(position+1 < num_opnds, "advertised index in bounds");
  3026         return position+1;
  3027       } else {
  3028         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
  3029           fprintf(stderr, "the name '%s(%s)' should not precede the name '%s(%s)'",
  3030                   preceding_non_use->_name, preceding_non_use->getUsedefName(),
  3031                   name, component->getUsedefName());
  3032           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
  3033           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
  3034           fprintf(stderr,  "\n");
  3036         if( position >= num_opnds ) {
  3037           fprintf(stderr, "the name '%s' is too late in its name list", name);
  3038           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
  3039           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
  3040           fprintf(stderr,  "\n");
  3042         assert(position < num_opnds, "advertised index in bounds");
  3043         return position;
  3046     if( component->isa(Component::DEF)
  3047         && component->isa(Component::USE) ) {
  3048       ++position;
  3049       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3051     if( component->isa(Component::DEF) && !first_def ) {
  3052       first_def = component;
  3054     if( !component->isa(Component::USE) && component != first_def ) {
  3055       preceding_non_use = component;
  3056     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
  3057       preceding_non_use = NULL;
  3060   return Not_in_list;
  3063 // Find position for this name, regardless of use/def information
  3064 int ComponentList::operand_position(const char *name) {
  3065   PreserveIter pi(this);
  3066   int position = 0;
  3067   Component *component;
  3068   for (reset(); (component = iter()) != NULL; ++position) {
  3069     // When the first component is not a DEF,
  3070     // leave space for the result operand!
  3071     if ( position==0 && (! component->isa(Component::DEF)) ) {
  3072       ++position;
  3074     if (strcmp(name, component->_name)==0) {
  3075       return position;
  3077     if( component->isa(Component::DEF)
  3078         && component->isa(Component::USE) ) {
  3079       ++position;
  3080       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3083   return Not_in_list;
  3086 int ComponentList::operand_position_format(const char *name, Form *fm) {
  3087   PreserveIter pi(this);
  3088   int  first_position = operand_position(name);
  3089   int  use_position   = operand_position(name, Component::USE, fm);
  3091   return ((first_position < use_position) ? use_position : first_position);
  3094 int ComponentList::label_position() {
  3095   PreserveIter pi(this);
  3096   int position = 0;
  3097   reset();
  3098   for( Component *comp; (comp = iter()) != NULL; ++position) {
  3099     // When the first component is not a DEF,
  3100     // leave space for the result operand!
  3101     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  3102       ++position;
  3104     if (strcmp(comp->_type, "label")==0) {
  3105       return position;
  3107     if( comp->isa(Component::DEF)
  3108         && comp->isa(Component::USE) ) {
  3109       ++position;
  3110       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3114   return -1;
  3117 int ComponentList::method_position() {
  3118   PreserveIter pi(this);
  3119   int position = 0;
  3120   reset();
  3121   for( Component *comp; (comp = iter()) != NULL; ++position) {
  3122     // When the first component is not a DEF,
  3123     // leave space for the result operand!
  3124     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  3125       ++position;
  3127     if (strcmp(comp->_type, "method")==0) {
  3128       return position;
  3130     if( comp->isa(Component::DEF)
  3131         && comp->isa(Component::USE) ) {
  3132       ++position;
  3133       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3137   return -1;
  3140 void ComponentList::dump() { output(stderr); }
  3142 void ComponentList::output(FILE *fp) {
  3143   PreserveIter pi(this);
  3144   fprintf(fp, "\n");
  3145   Component *component;
  3146   for (reset(); (component = iter()) != NULL;) {
  3147     component->output(fp);
  3149   fprintf(fp, "\n");
  3152 //------------------------------MatchNode--------------------------------------
  3153 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
  3154                      const char *opType, MatchNode *lChild, MatchNode *rChild)
  3155   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
  3156     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
  3157     _commutative_id(0) {
  3158   _numleaves = (lChild ? lChild->_numleaves : 0)
  3159                + (rChild ? rChild->_numleaves : 0);
  3162 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
  3163   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3164     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
  3165     _internalop(0), _numleaves(mnode._numleaves),
  3166     _commutative_id(mnode._commutative_id) {
  3169 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
  3170   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3171     _opType(mnode._opType),
  3172     _internalop(0), _numleaves(mnode._numleaves),
  3173     _commutative_id(mnode._commutative_id) {
  3174   if (mnode._lChild) {
  3175     _lChild = new MatchNode(ad, *mnode._lChild, clone);
  3176   } else {
  3177     _lChild = NULL;
  3179   if (mnode._rChild) {
  3180     _rChild = new MatchNode(ad, *mnode._rChild, clone);
  3181   } else {
  3182     _rChild = NULL;
  3186 MatchNode::~MatchNode() {
  3187   // // This node may not own its children if copied via assignment
  3188   // if( _lChild ) delete _lChild;
  3189   // if( _rChild ) delete _rChild;
  3192 bool  MatchNode::find_type(const char *type, int &position) const {
  3193   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
  3194   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
  3196   if (strcmp(type,_opType)==0)  {
  3197     return true;
  3198   } else {
  3199     ++position;
  3201   return false;
  3204 // Recursive call collecting info on top-level operands, not transitive.
  3205 // Implementation does not modify state of internal structures.
  3206 void MatchNode::append_components(FormDict& locals, ComponentList& components,
  3207                                   bool def_flag) const {
  3208   int usedef = def_flag ? Component::DEF : Component::USE;
  3209   FormDict &globals = _AD.globalNames();
  3211   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3212   // Base case
  3213   if (_lChild==NULL && _rChild==NULL) {
  3214     // If _opType is not an operation, do not build a component for it #####
  3215     const Form *f = globals[_opType];
  3216     if( f != NULL ) {
  3217       // Add non-ideals that are operands, operand-classes,
  3218       if( ! f->ideal_only()
  3219           && (f->is_opclass() || f->is_operand()) ) {
  3220         components.insert(_name, _opType, usedef, true);
  3223     return;
  3225   // Promote results of "Set" to DEF
  3226   bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
  3227   if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
  3228   tmpdef_flag = false;   // only applies to component immediately following 'Set'
  3229   if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
  3232 // Find the n'th base-operand in the match node,
  3233 // recursively investigates match rules of user-defined operands.
  3234 //
  3235 // Implementation does not modify state of internal structures since they
  3236 // can be shared.
  3237 bool MatchNode::base_operand(uint &position, FormDict &globals,
  3238                              const char * &result, const char * &name,
  3239                              const char * &opType) const {
  3240   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
  3241   // Base case
  3242   if (_lChild==NULL && _rChild==NULL) {
  3243     // Check for special case: "Universe", "label"
  3244     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
  3245       if (position == 0) {
  3246         result = _result;
  3247         name   = _name;
  3248         opType = _opType;
  3249         return 1;
  3250       } else {
  3251         -- position;
  3252         return 0;
  3256     const Form *form = globals[_opType];
  3257     MatchNode *matchNode = NULL;
  3258     // Check for user-defined type
  3259     if (form) {
  3260       // User operand or instruction?
  3261       OperandForm  *opForm = form->is_operand();
  3262       InstructForm *inForm = form->is_instruction();
  3263       if ( opForm ) {
  3264         matchNode = (MatchNode*)opForm->_matrule;
  3265       } else if ( inForm ) {
  3266         matchNode = (MatchNode*)inForm->_matrule;
  3269     // if this is user-defined, recurse on match rule
  3270     // User-defined operand and instruction forms have a match-rule.
  3271     if (matchNode) {
  3272       return (matchNode->base_operand(position,globals,result,name,opType));
  3273     } else {
  3274       // Either not a form, or a system-defined form (no match rule).
  3275       if (position==0) {
  3276         result = _result;
  3277         name   = _name;
  3278         opType = _opType;
  3279         return 1;
  3280       } else {
  3281         --position;
  3282         return 0;
  3286   } else {
  3287     // Examine the left child and right child as well
  3288     if (_lChild) {
  3289       if (_lChild->base_operand(position, globals, result, name, opType))
  3290         return 1;
  3293     if (_rChild) {
  3294       if (_rChild->base_operand(position, globals, result, name, opType))
  3295         return 1;
  3299   return 0;
  3302 // Recursive call on all operands' match rules in my match rule.
  3303 uint  MatchNode::num_consts(FormDict &globals) const {
  3304   uint        index      = 0;
  3305   uint        num_consts = 0;
  3306   const char *result;
  3307   const char *name;
  3308   const char *opType;
  3310   for (uint position = index;
  3311        base_operand(position,globals,result,name,opType); position = index) {
  3312     ++index;
  3313     if( ideal_to_const_type(opType) )        num_consts++;
  3316   return num_consts;
  3319 // Recursive call on all operands' match rules in my match rule.
  3320 // Constants in match rule subtree with specified type
  3321 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
  3322   uint        index      = 0;
  3323   uint        num_consts = 0;
  3324   const char *result;
  3325   const char *name;
  3326   const char *opType;
  3328   for (uint position = index;
  3329        base_operand(position,globals,result,name,opType); position = index) {
  3330     ++index;
  3331     if( ideal_to_const_type(opType) == type ) num_consts++;
  3334   return num_consts;
  3337 // Recursive call on all operands' match rules in my match rule.
  3338 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
  3339   return  num_consts( globals, Form::idealP );
  3342 bool  MatchNode::sets_result() const {
  3343   return   ( (strcmp(_name,"Set") == 0) ? true : false );
  3346 const char *MatchNode::reduce_right(FormDict &globals) const {
  3347   // If there is no right reduction, return NULL.
  3348   const char      *rightStr    = NULL;
  3350   // If we are a "Set", start from the right child.
  3351   const MatchNode *const mnode = sets_result() ?
  3352     (const MatchNode *)this->_rChild :
  3353     (const MatchNode *)this;
  3355   // If our right child exists, it is the right reduction
  3356   if ( mnode->_rChild ) {
  3357     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
  3358       : mnode->_rChild->_opType;
  3360   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
  3361   return rightStr;
  3364 const char *MatchNode::reduce_left(FormDict &globals) const {
  3365   // If there is no left reduction, return NULL.
  3366   const char  *leftStr  = NULL;
  3368   // If we are a "Set", start from the right child.
  3369   const MatchNode *const mnode = sets_result() ?
  3370     (const MatchNode *)this->_rChild :
  3371     (const MatchNode *)this;
  3373   // If our left child exists, it is the left reduction
  3374   if ( mnode->_lChild ) {
  3375     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
  3376       : mnode->_lChild->_opType;
  3377   } else {
  3378     // May be simple chain rule: (Set dst operand_form_source)
  3379     if ( sets_result() ) {
  3380       OperandForm *oper = globals[mnode->_opType]->is_operand();
  3381       if( oper ) {
  3382         leftStr = mnode->_opType;
  3386   return leftStr;
  3389 //------------------------------count_instr_names------------------------------
  3390 // Count occurrences of operands names in the leaves of the instruction
  3391 // match rule.
  3392 void MatchNode::count_instr_names( Dict &names ) {
  3393   if( !this ) return;
  3394   if( _lChild ) _lChild->count_instr_names(names);
  3395   if( _rChild ) _rChild->count_instr_names(names);
  3396   if( !_lChild && !_rChild ) {
  3397     uintptr_t cnt = (uintptr_t)names[_name];
  3398     cnt++;                      // One more name found
  3399     names.Insert(_name,(void*)cnt);
  3403 //------------------------------build_instr_pred-------------------------------
  3404 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
  3405 // can skip some leading instances of 'name'.
  3406 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
  3407   if( _lChild ) {
  3408     if( !cnt ) strcpy( buf, "_kids[0]->" );
  3409     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3410     if( cnt < 0 ) return cnt;   // Found it, all done
  3412   if( _rChild ) {
  3413     if( !cnt ) strcpy( buf, "_kids[1]->" );
  3414     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3415     if( cnt < 0 ) return cnt;   // Found it, all done
  3417   if( !_lChild && !_rChild ) {  // Found a leaf
  3418     // Wrong name?  Give up...
  3419     if( strcmp(name,_name) ) return cnt;
  3420     if( !cnt ) strcpy(buf,"_leaf");
  3421     return cnt-1;
  3423   return cnt;
  3427 //------------------------------build_internalop-------------------------------
  3428 // Build string representation of subtree
  3429 void MatchNode::build_internalop( ) {
  3430   char *iop, *subtree;
  3431   const char *lstr, *rstr;
  3432   // Build string representation of subtree
  3433   // Operation lchildType rchildType
  3434   int len = (int)strlen(_opType) + 4;
  3435   lstr = (_lChild) ? ((_lChild->_internalop) ?
  3436                        _lChild->_internalop : _lChild->_opType) : "";
  3437   rstr = (_rChild) ? ((_rChild->_internalop) ?
  3438                        _rChild->_internalop : _rChild->_opType) : "";
  3439   len += (int)strlen(lstr) + (int)strlen(rstr);
  3440   subtree = (char *)malloc(len);
  3441   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
  3442   // Hash the subtree string in _internalOps; if a name exists, use it
  3443   iop = (char *)_AD._internalOps[subtree];
  3444   // Else create a unique name, and add it to the hash table
  3445   if (iop == NULL) {
  3446     iop = subtree;
  3447     _AD._internalOps.Insert(subtree, iop);
  3448     _AD._internalOpNames.addName(iop);
  3449     _AD._internalMatch.Insert(iop, this);
  3451   // Add the internal operand name to the MatchNode
  3452   _internalop = iop;
  3453   _result = iop;
  3457 void MatchNode::dump() {
  3458   output(stderr);
  3461 void MatchNode::output(FILE *fp) {
  3462   if (_lChild==0 && _rChild==0) {
  3463     fprintf(fp," %s",_name);    // operand
  3465   else {
  3466     fprintf(fp," (%s ",_name);  // " (opcodeName "
  3467     if(_lChild) _lChild->output(fp); //               left operand
  3468     if(_rChild) _rChild->output(fp); //                    right operand
  3469     fprintf(fp,")");                 //                                 ")"
  3473 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
  3474   static const char *needs_ideal_memory_list[] = {
  3475     "StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" ,
  3476     "StoreB","StoreC","Store" ,"StoreFP",
  3477     "LoadI", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
  3478     "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
  3479     "StoreVector", "LoadVector",
  3480     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
  3481     "LoadPLocked",
  3482     "StorePConditional", "StoreIConditional", "StoreLConditional",
  3483     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
  3484     "StoreCM",
  3485     "ClearArray",
  3486     "GetAndAddI", "GetAndSetI", "GetAndSetP",
  3487     "GetAndAddL", "GetAndSetL", "GetAndSetN",
  3488   };
  3489   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
  3490   if( strcmp(_opType,"PrefetchRead")==0 ||
  3491       strcmp(_opType,"PrefetchWrite")==0 ||
  3492       strcmp(_opType,"PrefetchAllocation")==0 )
  3493     return 1;
  3494   if( _lChild ) {
  3495     const char *opType = _lChild->_opType;
  3496     for( int i=0; i<cnt; i++ )
  3497       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3498         return 1;
  3499     if( _lChild->needs_ideal_memory_edge(globals) )
  3500       return 1;
  3502   if( _rChild ) {
  3503     const char *opType = _rChild->_opType;
  3504     for( int i=0; i<cnt; i++ )
  3505       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3506         return 1;
  3507     if( _rChild->needs_ideal_memory_edge(globals) )
  3508       return 1;
  3511   return 0;
  3514 // TRUE if defines a derived oop, and so needs a base oop edge present
  3515 // post-matching.
  3516 int MatchNode::needs_base_oop_edge() const {
  3517   if( !strcmp(_opType,"AddP") ) return 1;
  3518   if( strcmp(_opType,"Set") ) return 0;
  3519   return !strcmp(_rChild->_opType,"AddP");
  3522 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
  3523   if( is_simple_chain_rule(globals) ) {
  3524     const char *src = _matrule->_rChild->_opType;
  3525     OperandForm *src_op = globals[src]->is_operand();
  3526     assert( src_op, "Not operand class of chain rule" );
  3527     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
  3528   }                             // Else check instruction
  3530   return _matrule ? _matrule->needs_base_oop_edge() : 0;
  3534 //-------------------------cisc spilling methods-------------------------------
  3535 // helper routines and methods for detecting cisc-spilling instructions
  3536 //-------------------------cisc_spill_merge------------------------------------
  3537 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
  3538   int cisc_spillable  = Maybe_cisc_spillable;
  3540   // Combine results of left and right checks
  3541   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
  3542     // neither side is spillable, nor prevents cisc spilling
  3543     cisc_spillable = Maybe_cisc_spillable;
  3545   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
  3546     // right side is spillable
  3547     cisc_spillable = right_spillable;
  3549   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
  3550     // left side is spillable
  3551     cisc_spillable = left_spillable;
  3553   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
  3554     // left or right prevents cisc spilling this instruction
  3555     cisc_spillable = Not_cisc_spillable;
  3557   else {
  3558     // Only allow one to spill
  3559     cisc_spillable = Not_cisc_spillable;
  3562   return cisc_spillable;
  3565 //-------------------------root_ops_match--------------------------------------
  3566 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
  3567   // Base Case: check that the current operands/operations match
  3568   assert( op1, "Must have op's name");
  3569   assert( op2, "Must have op's name");
  3570   const Form *form1 = globals[op1];
  3571   const Form *form2 = globals[op2];
  3573   return (form1 == form2);
  3576 //-------------------------cisc_spill_match_node-------------------------------
  3577 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3578 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
  3579   int cisc_spillable  = Maybe_cisc_spillable;
  3580   int left_spillable  = Maybe_cisc_spillable;
  3581   int right_spillable = Maybe_cisc_spillable;
  3583   // Check that each has same number of operands at this level
  3584   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
  3585     return Not_cisc_spillable;
  3587   // Base Case: check that the current operands/operations match
  3588   // or are CISC spillable
  3589   assert( _opType, "Must have _opType");
  3590   assert( mRule2->_opType, "Must have _opType");
  3591   const Form *form  = globals[_opType];
  3592   const Form *form2 = globals[mRule2->_opType];
  3593   if( form == form2 ) {
  3594     cisc_spillable = Maybe_cisc_spillable;
  3595   } else {
  3596     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
  3597     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
  3598     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
  3599     DataType data_type = Form::none;
  3600     if (form->is_operand()) {
  3601       // Make sure the loadX matches the type of the reg
  3602       data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
  3604     // Detect reg vs (loadX memory)
  3605     if( form->is_cisc_reg(globals)
  3606         && form2_inst
  3607         && data_type != Form::none
  3608         && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
  3609         && (name_left != NULL)       // NOT (load)
  3610         && (name_right == NULL) ) {  // NOT (load memory foo)
  3611       const Form *form2_left = name_left ? globals[name_left] : NULL;
  3612       if( form2_left && form2_left->is_cisc_mem(globals) ) {
  3613         cisc_spillable = Is_cisc_spillable;
  3614         operand        = _name;
  3615         reg_type       = _result;
  3616         return Is_cisc_spillable;
  3617       } else {
  3618         cisc_spillable = Not_cisc_spillable;
  3621     // Detect reg vs memory
  3622     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
  3623       cisc_spillable = Is_cisc_spillable;
  3624       operand        = _name;
  3625       reg_type       = _result;
  3626       return Is_cisc_spillable;
  3627     } else {
  3628       cisc_spillable = Not_cisc_spillable;
  3632   // If cisc is still possible, check rest of tree
  3633   if( cisc_spillable == Maybe_cisc_spillable ) {
  3634     // Check that each has same number of operands at this level
  3635     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3637     // Check left operands
  3638     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
  3639       left_spillable = Maybe_cisc_spillable;
  3640     } else {
  3641       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
  3644     // Check right operands
  3645     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3646       right_spillable =  Maybe_cisc_spillable;
  3647     } else {
  3648       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3651     // Combine results of left and right checks
  3652     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3655   return cisc_spillable;
  3658 //---------------------------cisc_spill_match_rule------------------------------
  3659 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3660 // This method handles the root of Match tree,
  3661 // general recursive checks done in MatchNode
  3662 int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
  3663                                            MatchRule* mRule2, const char* &operand,
  3664                                            const char* &reg_type) {
  3665   int cisc_spillable  = Maybe_cisc_spillable;
  3666   int left_spillable  = Maybe_cisc_spillable;
  3667   int right_spillable = Maybe_cisc_spillable;
  3669   // Check that each sets a result
  3670   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
  3671   // Check that each has same number of operands at this level
  3672   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3674   // Check left operands: at root, must be target of 'Set'
  3675   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
  3676     left_spillable = Not_cisc_spillable;
  3677   } else {
  3678     // Do not support cisc-spilling instruction's target location
  3679     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
  3680       left_spillable = Maybe_cisc_spillable;
  3681     } else {
  3682       left_spillable = Not_cisc_spillable;
  3686   // Check right operands: recursive walk to identify reg->mem operand
  3687   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3688     right_spillable =  Maybe_cisc_spillable;
  3689   } else {
  3690     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3693   // Combine results of left and right checks
  3694   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3696   return cisc_spillable;
  3699 //----------------------------- equivalent ------------------------------------
  3700 // Recursively check to see if two match rules are equivalent.
  3701 // This rule handles the root.
  3702 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
  3703   // Check that each sets a result
  3704   if (sets_result() != mRule2->sets_result()) {
  3705     return false;
  3708   // Check that the current operands/operations match
  3709   assert( _opType, "Must have _opType");
  3710   assert( mRule2->_opType, "Must have _opType");
  3711   const Form *form  = globals[_opType];
  3712   const Form *form2 = globals[mRule2->_opType];
  3713   if( form != form2 ) {
  3714     return false;
  3717   if (_lChild ) {
  3718     if( !_lChild->equivalent(globals, mRule2->_lChild) )
  3719       return false;
  3720   } else if (mRule2->_lChild) {
  3721     return false; // I have NULL left child, mRule2 has non-NULL left child.
  3724   if (_rChild ) {
  3725     if( !_rChild->equivalent(globals, mRule2->_rChild) )
  3726       return false;
  3727   } else if (mRule2->_rChild) {
  3728     return false; // I have NULL right child, mRule2 has non-NULL right child.
  3731   // We've made it through the gauntlet.
  3732   return true;
  3735 //----------------------------- equivalent ------------------------------------
  3736 // Recursively check to see if two match rules are equivalent.
  3737 // This rule handles the operands.
  3738 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
  3739   if( !mNode2 )
  3740     return false;
  3742   // Check that the current operands/operations match
  3743   assert( _opType, "Must have _opType");
  3744   assert( mNode2->_opType, "Must have _opType");
  3745   const Form *form  = globals[_opType];
  3746   const Form *form2 = globals[mNode2->_opType];
  3747   if( form != form2 ) {
  3748     return false;
  3751   // Check that their children also match
  3752   if (_lChild ) {
  3753     if( !_lChild->equivalent(globals, mNode2->_lChild) )
  3754       return false;
  3755   } else if (mNode2->_lChild) {
  3756     return false; // I have NULL left child, mNode2 has non-NULL left child.
  3759   if (_rChild ) {
  3760     if( !_rChild->equivalent(globals, mNode2->_rChild) )
  3761       return false;
  3762   } else if (mNode2->_rChild) {
  3763     return false; // I have NULL right child, mNode2 has non-NULL right child.
  3766   // We've made it through the gauntlet.
  3767   return true;
  3770 //-------------------------- has_commutative_op -------------------------------
  3771 // Recursively check for commutative operations with subtree operands
  3772 // which could be swapped.
  3773 void MatchNode::count_commutative_op(int& count) {
  3774   static const char *commut_op_list[] = {
  3775     "AddI","AddL","AddF","AddD",
  3776     "AndI","AndL",
  3777     "MaxI","MinI",
  3778     "MulI","MulL","MulF","MulD",
  3779     "OrI" ,"OrL" ,
  3780     "XorI","XorL"
  3781   };
  3782   int cnt = sizeof(commut_op_list)/sizeof(char*);
  3784   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
  3785     // Don't swap if right operand is an immediate constant.
  3786     bool is_const = false;
  3787     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
  3788       FormDict &globals = _AD.globalNames();
  3789       const Form *form = globals[_rChild->_opType];
  3790       if ( form ) {
  3791         OperandForm  *oper = form->is_operand();
  3792         if( oper && oper->interface_type(globals) == Form::constant_interface )
  3793           is_const = true;
  3796     if( !is_const ) {
  3797       for( int i=0; i<cnt; i++ ) {
  3798         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
  3799           count++;
  3800           _commutative_id = count; // id should be > 0
  3801           break;
  3806   if( _lChild )
  3807     _lChild->count_commutative_op(count);
  3808   if( _rChild )
  3809     _rChild->count_commutative_op(count);
  3812 //-------------------------- swap_commutative_op ------------------------------
  3813 // Recursively swap specified commutative operation with subtree operands.
  3814 void MatchNode::swap_commutative_op(bool atroot, int id) {
  3815   if( _commutative_id == id ) { // id should be > 0
  3816     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
  3817             "not swappable operation");
  3818     MatchNode* tmp = _lChild;
  3819     _lChild = _rChild;
  3820     _rChild = tmp;
  3821     // Don't exit here since we need to build internalop.
  3824   bool is_set = ( strcmp(_opType, "Set") == 0 );
  3825   if( _lChild )
  3826     _lChild->swap_commutative_op(is_set, id);
  3827   if( _rChild )
  3828     _rChild->swap_commutative_op(is_set, id);
  3830   // If not the root, reduce this subtree to an internal operand
  3831   if( !atroot && (_lChild || _rChild) ) {
  3832     build_internalop();
  3836 //-------------------------- swap_commutative_op ------------------------------
  3837 // Recursively swap specified commutative operation with subtree operands.
  3838 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
  3839   assert(match_rules_cnt < 100," too many match rule clones");
  3840   // Clone
  3841   MatchRule* clone = new MatchRule(_AD, this);
  3842   // Swap operands of commutative operation
  3843   ((MatchNode*)clone)->swap_commutative_op(true, count);
  3844   char* buf = (char*) malloc(strlen(instr_ident) + 4);
  3845   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
  3846   clone->_result = buf;
  3848   clone->_next = this->_next;
  3849   this-> _next = clone;
  3850   if( (--count) > 0 ) {
  3851     this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3852     clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3856 //------------------------------MatchRule--------------------------------------
  3857 MatchRule::MatchRule(ArchDesc &ad)
  3858   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
  3859     _next = NULL;
  3862 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
  3863   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
  3864     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
  3865     _next = NULL;
  3868 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
  3869                      int numleaves)
  3870   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
  3871     _numchilds(0) {
  3872       _next = NULL;
  3873       mroot->_lChild = NULL;
  3874       mroot->_rChild = NULL;
  3875       delete mroot;
  3876       _numleaves = numleaves;
  3877       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
  3879 MatchRule::~MatchRule() {
  3882 // Recursive call collecting info on top-level operands, not transitive.
  3883 // Implementation does not modify state of internal structures.
  3884 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
  3885   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3887   MatchNode::append_components(locals, components,
  3888                                false /* not necessarily a def */);
  3891 // Recursive call on all operands' match rules in my match rule.
  3892 // Implementation does not modify state of internal structures  since they
  3893 // can be shared.
  3894 // The MatchNode that is called first treats its
  3895 bool MatchRule::base_operand(uint &position0, FormDict &globals,
  3896                              const char *&result, const char * &name,
  3897                              const char * &opType)const{
  3898   uint position = position0;
  3900   return (MatchNode::base_operand( position, globals, result, name, opType));
  3904 bool MatchRule::is_base_register(FormDict &globals) const {
  3905   uint   position = 1;
  3906   const char  *result   = NULL;
  3907   const char  *name     = NULL;
  3908   const char  *opType   = NULL;
  3909   if (!base_operand(position, globals, result, name, opType)) {
  3910     position = 0;
  3911     if( base_operand(position, globals, result, name, opType) &&
  3912         (strcmp(opType,"RegI")==0 ||
  3913          strcmp(opType,"RegP")==0 ||
  3914          strcmp(opType,"RegN")==0 ||
  3915          strcmp(opType,"RegL")==0 ||
  3916          strcmp(opType,"RegF")==0 ||
  3917          strcmp(opType,"RegD")==0 ||
  3918          strcmp(opType,"VecS")==0 ||
  3919          strcmp(opType,"VecD")==0 ||
  3920          strcmp(opType,"VecX")==0 ||
  3921          strcmp(opType,"VecY")==0 ||
  3922          strcmp(opType,"Reg" )==0) ) {
  3923       return 1;
  3926   return 0;
  3929 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
  3930   uint         position = 1;
  3931   const char  *result   = NULL;
  3932   const char  *name     = NULL;
  3933   const char  *opType   = NULL;
  3934   if (!base_operand(position, globals, result, name, opType)) {
  3935     position = 0;
  3936     if (base_operand(position, globals, result, name, opType)) {
  3937       return ideal_to_const_type(opType);
  3940   return Form::none;
  3943 bool MatchRule::is_chain_rule(FormDict &globals) const {
  3945   // Check for chain rule, and do not generate a match list for it
  3946   if ((_lChild == NULL) && (_rChild == NULL) ) {
  3947     const Form *form = globals[_opType];
  3948     // If this is ideal, then it is a base match, not a chain rule.
  3949     if ( form && form->is_operand() && (!form->ideal_only())) {
  3950       return true;
  3953   // Check for "Set" form of chain rule, and do not generate a match list
  3954   if (_rChild) {
  3955     const char *rch = _rChild->_opType;
  3956     const Form *form = globals[rch];
  3957     if ((!strcmp(_opType,"Set") &&
  3958          ((form) && form->is_operand()))) {
  3959       return true;
  3962   return false;
  3965 int MatchRule::is_ideal_copy() const {
  3966   if( _rChild ) {
  3967     const char  *opType = _rChild->_opType;
  3968 #if 1
  3969     if( strcmp(opType,"CastIP")==0 )
  3970       return 1;
  3971 #else
  3972     if( strcmp(opType,"CastII")==0 )
  3973       return 1;
  3974     // Do not treat *CastPP this way, because it
  3975     // may transfer a raw pointer to an oop.
  3976     // If the register allocator were to coalesce this
  3977     // into a single LRG, the GC maps would be incorrect.
  3978     //if( strcmp(opType,"CastPP")==0 )
  3979     //  return 1;
  3980     //if( strcmp(opType,"CheckCastPP")==0 )
  3981     //  return 1;
  3982     //
  3983     // Do not treat CastX2P or CastP2X this way, because
  3984     // raw pointers and int types are treated differently
  3985     // when saving local & stack info for safepoints in
  3986     // Output().
  3987     //if( strcmp(opType,"CastX2P")==0 )
  3988     //  return 1;
  3989     //if( strcmp(opType,"CastP2X")==0 )
  3990     //  return 1;
  3991 #endif
  3993   if( is_chain_rule(_AD.globalNames()) &&
  3994       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
  3995     return 1;
  3996   return 0;
  4000 int MatchRule::is_expensive() const {
  4001   if( _rChild ) {
  4002     const char  *opType = _rChild->_opType;
  4003     if( strcmp(opType,"AtanD")==0 ||
  4004         strcmp(opType,"CosD")==0 ||
  4005         strcmp(opType,"DivD")==0 ||
  4006         strcmp(opType,"DivF")==0 ||
  4007         strcmp(opType,"DivI")==0 ||
  4008         strcmp(opType,"ExpD")==0 ||
  4009         strcmp(opType,"LogD")==0 ||
  4010         strcmp(opType,"Log10D")==0 ||
  4011         strcmp(opType,"ModD")==0 ||
  4012         strcmp(opType,"ModF")==0 ||
  4013         strcmp(opType,"ModI")==0 ||
  4014         strcmp(opType,"PowD")==0 ||
  4015         strcmp(opType,"SinD")==0 ||
  4016         strcmp(opType,"SqrtD")==0 ||
  4017         strcmp(opType,"TanD")==0 ||
  4018         strcmp(opType,"ConvD2F")==0 ||
  4019         strcmp(opType,"ConvD2I")==0 ||
  4020         strcmp(opType,"ConvD2L")==0 ||
  4021         strcmp(opType,"ConvF2D")==0 ||
  4022         strcmp(opType,"ConvF2I")==0 ||
  4023         strcmp(opType,"ConvF2L")==0 ||
  4024         strcmp(opType,"ConvI2D")==0 ||
  4025         strcmp(opType,"ConvI2F")==0 ||
  4026         strcmp(opType,"ConvI2L")==0 ||
  4027         strcmp(opType,"ConvL2D")==0 ||
  4028         strcmp(opType,"ConvL2F")==0 ||
  4029         strcmp(opType,"ConvL2I")==0 ||
  4030         strcmp(opType,"DecodeN")==0 ||
  4031         strcmp(opType,"EncodeP")==0 ||
  4032         strcmp(opType,"EncodePKlass")==0 ||
  4033         strcmp(opType,"DecodeNKlass")==0 ||
  4034         strcmp(opType,"RoundDouble")==0 ||
  4035         strcmp(opType,"RoundFloat")==0 ||
  4036         strcmp(opType,"ReverseBytesI")==0 ||
  4037         strcmp(opType,"ReverseBytesL")==0 ||
  4038         strcmp(opType,"ReverseBytesUS")==0 ||
  4039         strcmp(opType,"ReverseBytesS")==0 ||
  4040         strcmp(opType,"ReplicateB")==0 ||
  4041         strcmp(opType,"ReplicateS")==0 ||
  4042         strcmp(opType,"ReplicateI")==0 ||
  4043         strcmp(opType,"ReplicateL")==0 ||
  4044         strcmp(opType,"ReplicateF")==0 ||
  4045         strcmp(opType,"ReplicateD")==0 ||
  4046         0 /* 0 to line up columns nicely */ )
  4047       return 1;
  4049   return 0;
  4052 bool MatchRule::is_ideal_if() const {
  4053   if( !_opType ) return false;
  4054   return
  4055     !strcmp(_opType,"If"            ) ||
  4056     !strcmp(_opType,"CountedLoopEnd");
  4059 bool MatchRule::is_ideal_fastlock() const {
  4060   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4061     return (strcmp(_rChild->_opType,"FastLock") == 0);
  4063   return false;
  4066 bool MatchRule::is_ideal_membar() const {
  4067   if( !_opType ) return false;
  4068   return
  4069     !strcmp(_opType,"MemBarAcquire") ||
  4070     !strcmp(_opType,"MemBarRelease") ||
  4071     !strcmp(_opType,"MemBarAcquireLock") ||
  4072     !strcmp(_opType,"MemBarReleaseLock") ||
  4073     !strcmp(_opType,"LoadFence" ) ||
  4074     !strcmp(_opType,"StoreFence") ||
  4075     !strcmp(_opType,"MemBarVolatile") ||
  4076     !strcmp(_opType,"MemBarCPUOrder") ||
  4077     !strcmp(_opType,"MemBarStoreStore");
  4080 bool MatchRule::is_ideal_loadPC() const {
  4081   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4082     return (strcmp(_rChild->_opType,"LoadPC") == 0);
  4084   return false;
  4087 bool MatchRule::is_ideal_box() const {
  4088   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4089     return (strcmp(_rChild->_opType,"Box") == 0);
  4091   return false;
  4094 bool MatchRule::is_ideal_goto() const {
  4095   bool   ideal_goto = false;
  4097   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
  4098     ideal_goto = true;
  4100   return ideal_goto;
  4103 bool MatchRule::is_ideal_jump() const {
  4104   if( _opType ) {
  4105     if( !strcmp(_opType,"Jump") )
  4106       return true;
  4108   return false;
  4111 bool MatchRule::is_ideal_bool() const {
  4112   if( _opType ) {
  4113     if( !strcmp(_opType,"Bool") )
  4114       return true;
  4116   return false;
  4120 Form::DataType MatchRule::is_ideal_load() const {
  4121   Form::DataType ideal_load = Form::none;
  4123   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4124     const char *opType = _rChild->_opType;
  4125     ideal_load = is_load_from_memory(opType);
  4128   return ideal_load;
  4131 bool MatchRule::is_vector() const {
  4132   static const char *vector_list[] = {
  4133     "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
  4134     "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
  4135     "MulVS","MulVI","MulVF","MulVD",
  4136     "DivVF","DivVD",
  4137     "AndV" ,"XorV" ,"OrV",
  4138     "LShiftCntV","RShiftCntV",
  4139     "LShiftVB","LShiftVS","LShiftVI","LShiftVL",
  4140     "RShiftVB","RShiftVS","RShiftVI","RShiftVL",
  4141     "URShiftVB","URShiftVS","URShiftVI","URShiftVL",
  4142     "ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD",
  4143     "LoadVector","StoreVector",
  4144     // Next are not supported currently.
  4145     "PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D",
  4146     "ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD"
  4147   };
  4148   int cnt = sizeof(vector_list)/sizeof(char*);
  4149   if (_rChild) {
  4150     const char  *opType = _rChild->_opType;
  4151     for (int i=0; i<cnt; i++)
  4152       if (strcmp(opType,vector_list[i]) == 0)
  4153         return true;
  4155   return false;
  4159 bool MatchRule::skip_antidep_check() const {
  4160   // Some loads operate on what is effectively immutable memory so we
  4161   // should skip the anti dep computations.  For some of these nodes
  4162   // the rewritable field keeps the anti dep logic from triggering but
  4163   // for certain kinds of LoadKlass it does not since they are
  4164   // actually reading memory which could be rewritten by the runtime,
  4165   // though never by generated code.  This disables it uniformly for
  4166   // the nodes that behave like this: LoadKlass, LoadNKlass and
  4167   // LoadRange.
  4168   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4169     const char *opType = _rChild->_opType;
  4170     if (strcmp("LoadKlass", opType) == 0 ||
  4171         strcmp("LoadNKlass", opType) == 0 ||
  4172         strcmp("LoadRange", opType) == 0) {
  4173       return true;
  4177   return false;
  4181 Form::DataType MatchRule::is_ideal_store() const {
  4182   Form::DataType ideal_store = Form::none;
  4184   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4185     const char *opType = _rChild->_opType;
  4186     ideal_store = is_store_to_memory(opType);
  4189   return ideal_store;
  4193 void MatchRule::dump() {
  4194   output(stderr);
  4197 // Write just one line.
  4198 void MatchRule::output_short(FILE *fp) {
  4199   fprintf(fp,"MatchRule: ( %s",_name);
  4200   if (_lChild) _lChild->output(fp);
  4201   if (_rChild) _rChild->output(fp);
  4202   fprintf(fp," )");
  4205 void MatchRule::output(FILE *fp) {
  4206   output_short(fp);
  4207   fprintf(fp,"\n   nesting depth = %d\n", _depth);
  4208   if (_result) fprintf(fp,"   Result Type = %s", _result);
  4209   fprintf(fp,"\n");
  4212 //------------------------------Attribute--------------------------------------
  4213 Attribute::Attribute(char *id, char* val, int type)
  4214   : _ident(id), _val(val), _atype(type) {
  4216 Attribute::~Attribute() {
  4219 int Attribute::int_val(ArchDesc &ad) {
  4220   // Make sure it is an integer constant:
  4221   int result = 0;
  4222   if (!_val || !ADLParser::is_int_token(_val, result)) {
  4223     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
  4224                   _ident, _val ? _val : "");
  4226   return result;
  4229 void Attribute::dump() {
  4230   output(stderr);
  4231 } // Debug printer
  4233 // Write to output files
  4234 void Attribute::output(FILE *fp) {
  4235   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
  4238 //------------------------------FormatRule----------------------------------
  4239 FormatRule::FormatRule(char *temp)
  4240   : _temp(temp) {
  4242 FormatRule::~FormatRule() {
  4245 void FormatRule::dump() {
  4246   output(stderr);
  4249 // Write to output files
  4250 void FormatRule::output(FILE *fp) {
  4251   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
  4252   fprintf(fp,"\n");

mercurial