src/share/vm/opto/compile.cpp

Tue, 28 Jun 2011 15:50:07 -0700

author
kvn
date
Tue, 28 Jun 2011 15:50:07 -0700
changeset 2986
7889bbcc7f88
parent 2787
5d046bf49ce7
child 3037
3d42f82cd811
permissions
-rw-r--r--

7047954: VM crashes with assert(is_Mem()) failed
Summary: cast constant array ptrs to bottom
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/exceptionHandlerTable.hpp"
    29 #include "code/nmethod.hpp"
    30 #include "compiler/compileLog.hpp"
    31 #include "compiler/oopMap.hpp"
    32 #include "opto/addnode.hpp"
    33 #include "opto/block.hpp"
    34 #include "opto/c2compiler.hpp"
    35 #include "opto/callGenerator.hpp"
    36 #include "opto/callnode.hpp"
    37 #include "opto/cfgnode.hpp"
    38 #include "opto/chaitin.hpp"
    39 #include "opto/compile.hpp"
    40 #include "opto/connode.hpp"
    41 #include "opto/divnode.hpp"
    42 #include "opto/escape.hpp"
    43 #include "opto/idealGraphPrinter.hpp"
    44 #include "opto/loopnode.hpp"
    45 #include "opto/machnode.hpp"
    46 #include "opto/macro.hpp"
    47 #include "opto/matcher.hpp"
    48 #include "opto/memnode.hpp"
    49 #include "opto/mulnode.hpp"
    50 #include "opto/node.hpp"
    51 #include "opto/opcodes.hpp"
    52 #include "opto/output.hpp"
    53 #include "opto/parse.hpp"
    54 #include "opto/phaseX.hpp"
    55 #include "opto/rootnode.hpp"
    56 #include "opto/runtime.hpp"
    57 #include "opto/stringopts.hpp"
    58 #include "opto/type.hpp"
    59 #include "opto/vectornode.hpp"
    60 #include "runtime/arguments.hpp"
    61 #include "runtime/signature.hpp"
    62 #include "runtime/stubRoutines.hpp"
    63 #include "runtime/timer.hpp"
    64 #include "utilities/copy.hpp"
    65 #ifdef TARGET_ARCH_MODEL_x86_32
    66 # include "adfiles/ad_x86_32.hpp"
    67 #endif
    68 #ifdef TARGET_ARCH_MODEL_x86_64
    69 # include "adfiles/ad_x86_64.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_MODEL_sparc
    72 # include "adfiles/ad_sparc.hpp"
    73 #endif
    74 #ifdef TARGET_ARCH_MODEL_zero
    75 # include "adfiles/ad_zero.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_MODEL_arm
    78 # include "adfiles/ad_arm.hpp"
    79 #endif
    80 #ifdef TARGET_ARCH_MODEL_ppc
    81 # include "adfiles/ad_ppc.hpp"
    82 #endif
    85 // -------------------- Compile::mach_constant_base_node -----------------------
    86 // Constant table base node singleton.
    87 MachConstantBaseNode* Compile::mach_constant_base_node() {
    88   if (_mach_constant_base_node == NULL) {
    89     _mach_constant_base_node = new (C) MachConstantBaseNode();
    90     _mach_constant_base_node->add_req(C->root());
    91   }
    92   return _mach_constant_base_node;
    93 }
    96 /// Support for intrinsics.
    98 // Return the index at which m must be inserted (or already exists).
    99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
   100 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
   101 #ifdef ASSERT
   102   for (int i = 1; i < _intrinsics->length(); i++) {
   103     CallGenerator* cg1 = _intrinsics->at(i-1);
   104     CallGenerator* cg2 = _intrinsics->at(i);
   105     assert(cg1->method() != cg2->method()
   106            ? cg1->method()     < cg2->method()
   107            : cg1->is_virtual() < cg2->is_virtual(),
   108            "compiler intrinsics list must stay sorted");
   109   }
   110 #endif
   111   // Binary search sorted list, in decreasing intervals [lo, hi].
   112   int lo = 0, hi = _intrinsics->length()-1;
   113   while (lo <= hi) {
   114     int mid = (uint)(hi + lo) / 2;
   115     ciMethod* mid_m = _intrinsics->at(mid)->method();
   116     if (m < mid_m) {
   117       hi = mid-1;
   118     } else if (m > mid_m) {
   119       lo = mid+1;
   120     } else {
   121       // look at minor sort key
   122       bool mid_virt = _intrinsics->at(mid)->is_virtual();
   123       if (is_virtual < mid_virt) {
   124         hi = mid-1;
   125       } else if (is_virtual > mid_virt) {
   126         lo = mid+1;
   127       } else {
   128         return mid;  // exact match
   129       }
   130     }
   131   }
   132   return lo;  // inexact match
   133 }
   135 void Compile::register_intrinsic(CallGenerator* cg) {
   136   if (_intrinsics == NULL) {
   137     _intrinsics = new GrowableArray<CallGenerator*>(60);
   138   }
   139   // This code is stolen from ciObjectFactory::insert.
   140   // Really, GrowableArray should have methods for
   141   // insert_at, remove_at, and binary_search.
   142   int len = _intrinsics->length();
   143   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
   144   if (index == len) {
   145     _intrinsics->append(cg);
   146   } else {
   147 #ifdef ASSERT
   148     CallGenerator* oldcg = _intrinsics->at(index);
   149     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
   150 #endif
   151     _intrinsics->append(_intrinsics->at(len-1));
   152     int pos;
   153     for (pos = len-2; pos >= index; pos--) {
   154       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
   155     }
   156     _intrinsics->at_put(index, cg);
   157   }
   158   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
   159 }
   161 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
   162   assert(m->is_loaded(), "don't try this on unloaded methods");
   163   if (_intrinsics != NULL) {
   164     int index = intrinsic_insertion_index(m, is_virtual);
   165     if (index < _intrinsics->length()
   166         && _intrinsics->at(index)->method() == m
   167         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   168       return _intrinsics->at(index);
   169     }
   170   }
   171   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   172   if (m->intrinsic_id() != vmIntrinsics::_none &&
   173       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
   174     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   175     if (cg != NULL) {
   176       // Save it for next time:
   177       register_intrinsic(cg);
   178       return cg;
   179     } else {
   180       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   181     }
   182   }
   183   return NULL;
   184 }
   186 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   187 // in library_call.cpp.
   190 #ifndef PRODUCT
   191 // statistics gathering...
   193 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   194 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   196 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   197   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   198   int oflags = _intrinsic_hist_flags[id];
   199   assert(flags != 0, "what happened?");
   200   if (is_virtual) {
   201     flags |= _intrinsic_virtual;
   202   }
   203   bool changed = (flags != oflags);
   204   if ((flags & _intrinsic_worked) != 0) {
   205     juint count = (_intrinsic_hist_count[id] += 1);
   206     if (count == 1) {
   207       changed = true;           // first time
   208     }
   209     // increment the overall count also:
   210     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   211   }
   212   if (changed) {
   213     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   214       // Something changed about the intrinsic's virtuality.
   215       if ((flags & _intrinsic_virtual) != 0) {
   216         // This is the first use of this intrinsic as a virtual call.
   217         if (oflags != 0) {
   218           // We already saw it as a non-virtual, so note both cases.
   219           flags |= _intrinsic_both;
   220         }
   221       } else if ((oflags & _intrinsic_both) == 0) {
   222         // This is the first use of this intrinsic as a non-virtual
   223         flags |= _intrinsic_both;
   224       }
   225     }
   226     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   227   }
   228   // update the overall flags also:
   229   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   230   return changed;
   231 }
   233 static char* format_flags(int flags, char* buf) {
   234   buf[0] = 0;
   235   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   236   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   237   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   238   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   239   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   240   if (buf[0] == 0)  strcat(buf, ",");
   241   assert(buf[0] == ',', "must be");
   242   return &buf[1];
   243 }
   245 void Compile::print_intrinsic_statistics() {
   246   char flagsbuf[100];
   247   ttyLocker ttyl;
   248   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   249   tty->print_cr("Compiler intrinsic usage:");
   250   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   251   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   252   #define PRINT_STAT_LINE(name, c, f) \
   253     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   254   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   255     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   256     int   flags = _intrinsic_hist_flags[id];
   257     juint count = _intrinsic_hist_count[id];
   258     if ((flags | count) != 0) {
   259       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   260     }
   261   }
   262   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   263   if (xtty != NULL)  xtty->tail("statistics");
   264 }
   266 void Compile::print_statistics() {
   267   { ttyLocker ttyl;
   268     if (xtty != NULL)  xtty->head("statistics type='opto'");
   269     Parse::print_statistics();
   270     PhaseCCP::print_statistics();
   271     PhaseRegAlloc::print_statistics();
   272     Scheduling::print_statistics();
   273     PhasePeephole::print_statistics();
   274     PhaseIdealLoop::print_statistics();
   275     if (xtty != NULL)  xtty->tail("statistics");
   276   }
   277   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   278     // put this under its own <statistics> element.
   279     print_intrinsic_statistics();
   280   }
   281 }
   282 #endif //PRODUCT
   284 // Support for bundling info
   285 Bundle* Compile::node_bundling(const Node *n) {
   286   assert(valid_bundle_info(n), "oob");
   287   return &_node_bundling_base[n->_idx];
   288 }
   290 bool Compile::valid_bundle_info(const Node *n) {
   291   return (_node_bundling_limit > n->_idx);
   292 }
   295 void Compile::gvn_replace_by(Node* n, Node* nn) {
   296   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
   297     Node* use = n->last_out(i);
   298     bool is_in_table = initial_gvn()->hash_delete(use);
   299     uint uses_found = 0;
   300     for (uint j = 0; j < use->len(); j++) {
   301       if (use->in(j) == n) {
   302         if (j < use->req())
   303           use->set_req(j, nn);
   304         else
   305           use->set_prec(j, nn);
   306         uses_found++;
   307       }
   308     }
   309     if (is_in_table) {
   310       // reinsert into table
   311       initial_gvn()->hash_find_insert(use);
   312     }
   313     record_for_igvn(use);
   314     i -= uses_found;    // we deleted 1 or more copies of this edge
   315   }
   316 }
   321 // Identify all nodes that are reachable from below, useful.
   322 // Use breadth-first pass that records state in a Unique_Node_List,
   323 // recursive traversal is slower.
   324 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   325   int estimated_worklist_size = unique();
   326   useful.map( estimated_worklist_size, NULL );  // preallocate space
   328   // Initialize worklist
   329   if (root() != NULL)     { useful.push(root()); }
   330   // If 'top' is cached, declare it useful to preserve cached node
   331   if( cached_top_node() ) { useful.push(cached_top_node()); }
   333   // Push all useful nodes onto the list, breadthfirst
   334   for( uint next = 0; next < useful.size(); ++next ) {
   335     assert( next < unique(), "Unique useful nodes < total nodes");
   336     Node *n  = useful.at(next);
   337     uint max = n->len();
   338     for( uint i = 0; i < max; ++i ) {
   339       Node *m = n->in(i);
   340       if( m == NULL ) continue;
   341       useful.push(m);
   342     }
   343   }
   344 }
   346 // Disconnect all useless nodes by disconnecting those at the boundary.
   347 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   348   uint next = 0;
   349   while( next < useful.size() ) {
   350     Node *n = useful.at(next++);
   351     // Use raw traversal of out edges since this code removes out edges
   352     int max = n->outcnt();
   353     for (int j = 0; j < max; ++j ) {
   354       Node* child = n->raw_out(j);
   355       if( ! useful.member(child) ) {
   356         assert( !child->is_top() || child != top(),
   357                 "If top is cached in Compile object it is in useful list");
   358         // Only need to remove this out-edge to the useless node
   359         n->raw_del_out(j);
   360         --j;
   361         --max;
   362       }
   363     }
   364     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   365       record_for_igvn( n->unique_out() );
   366     }
   367   }
   368   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   369 }
   371 //------------------------------frame_size_in_words-----------------------------
   372 // frame_slots in units of words
   373 int Compile::frame_size_in_words() const {
   374   // shift is 0 in LP32 and 1 in LP64
   375   const int shift = (LogBytesPerWord - LogBytesPerInt);
   376   int words = _frame_slots >> shift;
   377   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   378   return words;
   379 }
   381 // ============================================================================
   382 //------------------------------CompileWrapper---------------------------------
   383 class CompileWrapper : public StackObj {
   384   Compile *const _compile;
   385  public:
   386   CompileWrapper(Compile* compile);
   388   ~CompileWrapper();
   389 };
   391 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   392   // the Compile* pointer is stored in the current ciEnv:
   393   ciEnv* env = compile->env();
   394   assert(env == ciEnv::current(), "must already be a ciEnv active");
   395   assert(env->compiler_data() == NULL, "compile already active?");
   396   env->set_compiler_data(compile);
   397   assert(compile == Compile::current(), "sanity");
   399   compile->set_type_dict(NULL);
   400   compile->set_type_hwm(NULL);
   401   compile->set_type_last_size(0);
   402   compile->set_last_tf(NULL, NULL);
   403   compile->set_indexSet_arena(NULL);
   404   compile->set_indexSet_free_block_list(NULL);
   405   compile->init_type_arena();
   406   Type::Initialize(compile);
   407   _compile->set_scratch_buffer_blob(NULL);
   408   _compile->begin_method();
   409 }
   410 CompileWrapper::~CompileWrapper() {
   411   _compile->end_method();
   412   if (_compile->scratch_buffer_blob() != NULL)
   413     BufferBlob::free(_compile->scratch_buffer_blob());
   414   _compile->env()->set_compiler_data(NULL);
   415 }
   418 //----------------------------print_compile_messages---------------------------
   419 void Compile::print_compile_messages() {
   420 #ifndef PRODUCT
   421   // Check if recompiling
   422   if (_subsume_loads == false && PrintOpto) {
   423     // Recompiling without allowing machine instructions to subsume loads
   424     tty->print_cr("*********************************************************");
   425     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   426     tty->print_cr("*********************************************************");
   427   }
   428   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
   429     // Recompiling without escape analysis
   430     tty->print_cr("*********************************************************");
   431     tty->print_cr("** Bailout: Recompile without escape analysis          **");
   432     tty->print_cr("*********************************************************");
   433   }
   434   if (env()->break_at_compile()) {
   435     // Open the debugger when compiling this method.
   436     tty->print("### Breaking when compiling: ");
   437     method()->print_short_name();
   438     tty->cr();
   439     BREAKPOINT;
   440   }
   442   if( PrintOpto ) {
   443     if (is_osr_compilation()) {
   444       tty->print("[OSR]%3d", _compile_id);
   445     } else {
   446       tty->print("%3d", _compile_id);
   447     }
   448   }
   449 #endif
   450 }
   453 //-----------------------init_scratch_buffer_blob------------------------------
   454 // Construct a temporary BufferBlob and cache it for this compile.
   455 void Compile::init_scratch_buffer_blob(int const_size) {
   456   // If there is already a scratch buffer blob allocated and the
   457   // constant section is big enough, use it.  Otherwise free the
   458   // current and allocate a new one.
   459   BufferBlob* blob = scratch_buffer_blob();
   460   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
   461     // Use the current blob.
   462   } else {
   463     if (blob != NULL) {
   464       BufferBlob::free(blob);
   465     }
   467     ResourceMark rm;
   468     _scratch_const_size = const_size;
   469     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
   470     blob = BufferBlob::create("Compile::scratch_buffer", size);
   471     // Record the buffer blob for next time.
   472     set_scratch_buffer_blob(blob);
   473     // Have we run out of code space?
   474     if (scratch_buffer_blob() == NULL) {
   475       // Let CompilerBroker disable further compilations.
   476       record_failure("Not enough space for scratch buffer in CodeCache");
   477       return;
   478     }
   479   }
   481   // Initialize the relocation buffers
   482   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
   483   set_scratch_locs_memory(locs_buf);
   484 }
   487 //-----------------------scratch_emit_size-------------------------------------
   488 // Helper function that computes size by emitting code
   489 uint Compile::scratch_emit_size(const Node* n) {
   490   // Start scratch_emit_size section.
   491   set_in_scratch_emit_size(true);
   493   // Emit into a trash buffer and count bytes emitted.
   494   // This is a pretty expensive way to compute a size,
   495   // but it works well enough if seldom used.
   496   // All common fixed-size instructions are given a size
   497   // method by the AD file.
   498   // Note that the scratch buffer blob and locs memory are
   499   // allocated at the beginning of the compile task, and
   500   // may be shared by several calls to scratch_emit_size.
   501   // The allocation of the scratch buffer blob is particularly
   502   // expensive, since it has to grab the code cache lock.
   503   BufferBlob* blob = this->scratch_buffer_blob();
   504   assert(blob != NULL, "Initialize BufferBlob at start");
   505   assert(blob->size() > MAX_inst_size, "sanity");
   506   relocInfo* locs_buf = scratch_locs_memory();
   507   address blob_begin = blob->content_begin();
   508   address blob_end   = (address)locs_buf;
   509   assert(blob->content_contains(blob_end), "sanity");
   510   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   511   buf.initialize_consts_size(_scratch_const_size);
   512   buf.initialize_stubs_size(MAX_stubs_size);
   513   assert(locs_buf != NULL, "sanity");
   514   int lsize = MAX_locs_size / 3;
   515   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
   516   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
   517   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
   519   // Do the emission.
   520   n->emit(buf, this->regalloc());
   522   // End scratch_emit_size section.
   523   set_in_scratch_emit_size(false);
   525   return buf.insts_size();
   526 }
   529 // ============================================================================
   530 //------------------------------Compile standard-------------------------------
   531 debug_only( int Compile::_debug_idx = 100000; )
   533 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   534 // the continuation bci for on stack replacement.
   537 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
   538                 : Phase(Compiler),
   539                   _env(ci_env),
   540                   _log(ci_env->log()),
   541                   _compile_id(ci_env->compile_id()),
   542                   _save_argument_registers(false),
   543                   _stub_name(NULL),
   544                   _stub_function(NULL),
   545                   _stub_entry_point(NULL),
   546                   _method(target),
   547                   _entry_bci(osr_bci),
   548                   _initial_gvn(NULL),
   549                   _for_igvn(NULL),
   550                   _warm_calls(NULL),
   551                   _subsume_loads(subsume_loads),
   552                   _do_escape_analysis(do_escape_analysis),
   553                   _failure_reason(NULL),
   554                   _code_buffer("Compile::Fill_buffer"),
   555                   _orig_pc_slot(0),
   556                   _orig_pc_slot_offset_in_bytes(0),
   557                   _has_method_handle_invokes(false),
   558                   _mach_constant_base_node(NULL),
   559                   _node_bundling_limit(0),
   560                   _node_bundling_base(NULL),
   561                   _java_calls(0),
   562                   _inner_loops(0),
   563                   _scratch_const_size(-1),
   564                   _in_scratch_emit_size(false),
   565 #ifndef PRODUCT
   566                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   567                   _printer(IdealGraphPrinter::printer()),
   568 #endif
   569                   _congraph(NULL) {
   570   C = this;
   572   CompileWrapper cw(this);
   573 #ifndef PRODUCT
   574   if (TimeCompiler2) {
   575     tty->print(" ");
   576     target->holder()->name()->print();
   577     tty->print(".");
   578     target->print_short_name();
   579     tty->print("  ");
   580   }
   581   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   582   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   583   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
   584   if (!print_opto_assembly) {
   585     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
   586     if (print_assembly && !Disassembler::can_decode()) {
   587       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
   588       print_opto_assembly = true;
   589     }
   590   }
   591   set_print_assembly(print_opto_assembly);
   592   set_parsed_irreducible_loop(false);
   593 #endif
   595   if (ProfileTraps) {
   596     // Make sure the method being compiled gets its own MDO,
   597     // so we can at least track the decompile_count().
   598     method()->ensure_method_data();
   599   }
   601   Init(::AliasLevel);
   604   print_compile_messages();
   606   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
   607     _ilt = InlineTree::build_inline_tree_root();
   608   else
   609     _ilt = NULL;
   611   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   612   assert(num_alias_types() >= AliasIdxRaw, "");
   614 #define MINIMUM_NODE_HASH  1023
   615   // Node list that Iterative GVN will start with
   616   Unique_Node_List for_igvn(comp_arena());
   617   set_for_igvn(&for_igvn);
   619   // GVN that will be run immediately on new nodes
   620   uint estimated_size = method()->code_size()*4+64;
   621   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   622   PhaseGVN gvn(node_arena(), estimated_size);
   623   set_initial_gvn(&gvn);
   625   { // Scope for timing the parser
   626     TracePhase t3("parse", &_t_parser, true);
   628     // Put top into the hash table ASAP.
   629     initial_gvn()->transform_no_reclaim(top());
   631     // Set up tf(), start(), and find a CallGenerator.
   632     CallGenerator* cg = NULL;
   633     if (is_osr_compilation()) {
   634       const TypeTuple *domain = StartOSRNode::osr_domain();
   635       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   636       init_tf(TypeFunc::make(domain, range));
   637       StartNode* s = new (this, 2) StartOSRNode(root(), domain);
   638       initial_gvn()->set_type_bottom(s);
   639       init_start(s);
   640       cg = CallGenerator::for_osr(method(), entry_bci());
   641     } else {
   642       // Normal case.
   643       init_tf(TypeFunc::make(method()));
   644       StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
   645       initial_gvn()->set_type_bottom(s);
   646       init_start(s);
   647       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
   648         // With java.lang.ref.reference.get() we must go through the
   649         // intrinsic when G1 is enabled - even when get() is the root
   650         // method of the compile - so that, if necessary, the value in
   651         // the referent field of the reference object gets recorded by
   652         // the pre-barrier code.
   653         // Specifically, if G1 is enabled, the value in the referent
   654         // field is recorded by the G1 SATB pre barrier. This will
   655         // result in the referent being marked live and the reference
   656         // object removed from the list of discovered references during
   657         // reference processing.
   658         cg = find_intrinsic(method(), false);
   659       }
   660       if (cg == NULL) {
   661         float past_uses = method()->interpreter_invocation_count();
   662         float expected_uses = past_uses;
   663         cg = CallGenerator::for_inline(method(), expected_uses);
   664       }
   665     }
   666     if (failing())  return;
   667     if (cg == NULL) {
   668       record_method_not_compilable_all_tiers("cannot parse method");
   669       return;
   670     }
   671     JVMState* jvms = build_start_state(start(), tf());
   672     if ((jvms = cg->generate(jvms)) == NULL) {
   673       record_method_not_compilable("method parse failed");
   674       return;
   675     }
   676     GraphKit kit(jvms);
   678     if (!kit.stopped()) {
   679       // Accept return values, and transfer control we know not where.
   680       // This is done by a special, unique ReturnNode bound to root.
   681       return_values(kit.jvms());
   682     }
   684     if (kit.has_exceptions()) {
   685       // Any exceptions that escape from this call must be rethrown
   686       // to whatever caller is dynamically above us on the stack.
   687       // This is done by a special, unique RethrowNode bound to root.
   688       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   689     }
   691     if (!failing() && has_stringbuilder()) {
   692       {
   693         // remove useless nodes to make the usage analysis simpler
   694         ResourceMark rm;
   695         PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   696       }
   698       {
   699         ResourceMark rm;
   700         print_method("Before StringOpts", 3);
   701         PhaseStringOpts pso(initial_gvn(), &for_igvn);
   702         print_method("After StringOpts", 3);
   703       }
   705       // now inline anything that we skipped the first time around
   706       while (_late_inlines.length() > 0) {
   707         CallGenerator* cg = _late_inlines.pop();
   708         cg->do_late_inline();
   709       }
   710     }
   711     assert(_late_inlines.length() == 0, "should have been processed");
   713     print_method("Before RemoveUseless", 3);
   715     // Remove clutter produced by parsing.
   716     if (!failing()) {
   717       ResourceMark rm;
   718       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   719     }
   720   }
   722   // Note:  Large methods are capped off in do_one_bytecode().
   723   if (failing())  return;
   725   // After parsing, node notes are no longer automagic.
   726   // They must be propagated by register_new_node_with_optimizer(),
   727   // clone(), or the like.
   728   set_default_node_notes(NULL);
   730   for (;;) {
   731     int successes = Inline_Warm();
   732     if (failing())  return;
   733     if (successes == 0)  break;
   734   }
   736   // Drain the list.
   737   Finish_Warm();
   738 #ifndef PRODUCT
   739   if (_printer) {
   740     _printer->print_inlining(this);
   741   }
   742 #endif
   744   if (failing())  return;
   745   NOT_PRODUCT( verify_graph_edges(); )
   747   // Now optimize
   748   Optimize();
   749   if (failing())  return;
   750   NOT_PRODUCT( verify_graph_edges(); )
   752 #ifndef PRODUCT
   753   if (PrintIdeal) {
   754     ttyLocker ttyl;  // keep the following output all in one block
   755     // This output goes directly to the tty, not the compiler log.
   756     // To enable tools to match it up with the compilation activity,
   757     // be sure to tag this tty output with the compile ID.
   758     if (xtty != NULL) {
   759       xtty->head("ideal compile_id='%d'%s", compile_id(),
   760                  is_osr_compilation()    ? " compile_kind='osr'" :
   761                  "");
   762     }
   763     root()->dump(9999);
   764     if (xtty != NULL) {
   765       xtty->tail("ideal");
   766     }
   767   }
   768 #endif
   770   // Now that we know the size of all the monitors we can add a fixed slot
   771   // for the original deopt pc.
   773   _orig_pc_slot =  fixed_slots();
   774   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   775   set_fixed_slots(next_slot);
   777   // Now generate code
   778   Code_Gen();
   779   if (failing())  return;
   781   // Check if we want to skip execution of all compiled code.
   782   {
   783 #ifndef PRODUCT
   784     if (OptoNoExecute) {
   785       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   786       return;
   787     }
   788     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   789 #endif
   791     if (is_osr_compilation()) {
   792       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   793       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   794     } else {
   795       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   796       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   797     }
   799     env()->register_method(_method, _entry_bci,
   800                            &_code_offsets,
   801                            _orig_pc_slot_offset_in_bytes,
   802                            code_buffer(),
   803                            frame_size_in_words(), _oop_map_set,
   804                            &_handler_table, &_inc_table,
   805                            compiler,
   806                            env()->comp_level(),
   807                            true, /*has_debug_info*/
   808                            has_unsafe_access()
   809                            );
   810   }
   811 }
   813 //------------------------------Compile----------------------------------------
   814 // Compile a runtime stub
   815 Compile::Compile( ciEnv* ci_env,
   816                   TypeFunc_generator generator,
   817                   address stub_function,
   818                   const char *stub_name,
   819                   int is_fancy_jump,
   820                   bool pass_tls,
   821                   bool save_arg_registers,
   822                   bool return_pc )
   823   : Phase(Compiler),
   824     _env(ci_env),
   825     _log(ci_env->log()),
   826     _compile_id(-1),
   827     _save_argument_registers(save_arg_registers),
   828     _method(NULL),
   829     _stub_name(stub_name),
   830     _stub_function(stub_function),
   831     _stub_entry_point(NULL),
   832     _entry_bci(InvocationEntryBci),
   833     _initial_gvn(NULL),
   834     _for_igvn(NULL),
   835     _warm_calls(NULL),
   836     _orig_pc_slot(0),
   837     _orig_pc_slot_offset_in_bytes(0),
   838     _subsume_loads(true),
   839     _do_escape_analysis(false),
   840     _failure_reason(NULL),
   841     _code_buffer("Compile::Fill_buffer"),
   842     _has_method_handle_invokes(false),
   843     _mach_constant_base_node(NULL),
   844     _node_bundling_limit(0),
   845     _node_bundling_base(NULL),
   846     _java_calls(0),
   847     _inner_loops(0),
   848 #ifndef PRODUCT
   849     _trace_opto_output(TraceOptoOutput),
   850     _printer(NULL),
   851 #endif
   852     _congraph(NULL) {
   853   C = this;
   855 #ifndef PRODUCT
   856   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
   857   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
   858   set_print_assembly(PrintFrameConverterAssembly);
   859   set_parsed_irreducible_loop(false);
   860 #endif
   861   CompileWrapper cw(this);
   862   Init(/*AliasLevel=*/ 0);
   863   init_tf((*generator)());
   865   {
   866     // The following is a dummy for the sake of GraphKit::gen_stub
   867     Unique_Node_List for_igvn(comp_arena());
   868     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
   869     PhaseGVN gvn(Thread::current()->resource_area(),255);
   870     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
   871     gvn.transform_no_reclaim(top());
   873     GraphKit kit;
   874     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
   875   }
   877   NOT_PRODUCT( verify_graph_edges(); )
   878   Code_Gen();
   879   if (failing())  return;
   882   // Entry point will be accessed using compile->stub_entry_point();
   883   if (code_buffer() == NULL) {
   884     Matcher::soft_match_failure();
   885   } else {
   886     if (PrintAssembly && (WizardMode || Verbose))
   887       tty->print_cr("### Stub::%s", stub_name);
   889     if (!failing()) {
   890       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
   892       // Make the NMethod
   893       // For now we mark the frame as never safe for profile stackwalking
   894       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
   895                                                       code_buffer(),
   896                                                       CodeOffsets::frame_never_safe,
   897                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
   898                                                       frame_size_in_words(),
   899                                                       _oop_map_set,
   900                                                       save_arg_registers);
   901       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
   903       _stub_entry_point = rs->entry_point();
   904     }
   905   }
   906 }
   908 #ifndef PRODUCT
   909 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
   910   if(PrintOpto && Verbose) {
   911     tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
   912   }
   913 }
   914 #endif
   916 void Compile::print_codes() {
   917 }
   919 //------------------------------Init-------------------------------------------
   920 // Prepare for a single compilation
   921 void Compile::Init(int aliaslevel) {
   922   _unique  = 0;
   923   _regalloc = NULL;
   925   _tf      = NULL;  // filled in later
   926   _top     = NULL;  // cached later
   927   _matcher = NULL;  // filled in later
   928   _cfg     = NULL;  // filled in later
   930   set_24_bit_selection_and_mode(Use24BitFP, false);
   932   _node_note_array = NULL;
   933   _default_node_notes = NULL;
   935   _immutable_memory = NULL; // filled in at first inquiry
   937   // Globally visible Nodes
   938   // First set TOP to NULL to give safe behavior during creation of RootNode
   939   set_cached_top_node(NULL);
   940   set_root(new (this, 3) RootNode());
   941   // Now that you have a Root to point to, create the real TOP
   942   set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
   943   set_recent_alloc(NULL, NULL);
   945   // Create Debug Information Recorder to record scopes, oopmaps, etc.
   946   env()->set_oop_recorder(new OopRecorder(comp_arena()));
   947   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
   948   env()->set_dependencies(new Dependencies(env()));
   950   _fixed_slots = 0;
   951   set_has_split_ifs(false);
   952   set_has_loops(has_method() && method()->has_loops()); // first approximation
   953   set_has_stringbuilder(false);
   954   _trap_can_recompile = false;  // no traps emitted yet
   955   _major_progress = true; // start out assuming good things will happen
   956   set_has_unsafe_access(false);
   957   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
   958   set_decompile_count(0);
   960   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
   961   set_num_loop_opts(LoopOptsCount);
   962   set_do_inlining(Inline);
   963   set_max_inline_size(MaxInlineSize);
   964   set_freq_inline_size(FreqInlineSize);
   965   set_do_scheduling(OptoScheduling);
   966   set_do_count_invocations(false);
   967   set_do_method_data_update(false);
   969   if (debug_info()->recording_non_safepoints()) {
   970     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
   971                         (comp_arena(), 8, 0, NULL));
   972     set_default_node_notes(Node_Notes::make(this));
   973   }
   975   // // -- Initialize types before each compile --
   976   // // Update cached type information
   977   // if( _method && _method->constants() )
   978   //   Type::update_loaded_types(_method, _method->constants());
   980   // Init alias_type map.
   981   if (!_do_escape_analysis && aliaslevel == 3)
   982     aliaslevel = 2;  // No unique types without escape analysis
   983   _AliasLevel = aliaslevel;
   984   const int grow_ats = 16;
   985   _max_alias_types = grow_ats;
   986   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
   987   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
   988   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
   989   {
   990     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
   991   }
   992   // Initialize the first few types.
   993   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
   994   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
   995   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
   996   _num_alias_types = AliasIdxRaw+1;
   997   // Zero out the alias type cache.
   998   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
   999   // A NULL adr_type hits in the cache right away.  Preload the right answer.
  1000   probe_alias_cache(NULL)->_index = AliasIdxTop;
  1002   _intrinsics = NULL;
  1003   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1004   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1005   register_library_intrinsics();
  1008 //---------------------------init_start----------------------------------------
  1009 // Install the StartNode on this compile object.
  1010 void Compile::init_start(StartNode* s) {
  1011   if (failing())
  1012     return; // already failing
  1013   assert(s == start(), "");
  1016 StartNode* Compile::start() const {
  1017   assert(!failing(), "");
  1018   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
  1019     Node* start = root()->fast_out(i);
  1020     if( start->is_Start() )
  1021       return start->as_Start();
  1023   ShouldNotReachHere();
  1024   return NULL;
  1027 //-------------------------------immutable_memory-------------------------------------
  1028 // Access immutable memory
  1029 Node* Compile::immutable_memory() {
  1030   if (_immutable_memory != NULL) {
  1031     return _immutable_memory;
  1033   StartNode* s = start();
  1034   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
  1035     Node *p = s->fast_out(i);
  1036     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
  1037       _immutable_memory = p;
  1038       return _immutable_memory;
  1041   ShouldNotReachHere();
  1042   return NULL;
  1045 //----------------------set_cached_top_node------------------------------------
  1046 // Install the cached top node, and make sure Node::is_top works correctly.
  1047 void Compile::set_cached_top_node(Node* tn) {
  1048   if (tn != NULL)  verify_top(tn);
  1049   Node* old_top = _top;
  1050   _top = tn;
  1051   // Calling Node::setup_is_top allows the nodes the chance to adjust
  1052   // their _out arrays.
  1053   if (_top != NULL)     _top->setup_is_top();
  1054   if (old_top != NULL)  old_top->setup_is_top();
  1055   assert(_top == NULL || top()->is_top(), "");
  1058 #ifndef PRODUCT
  1059 void Compile::verify_top(Node* tn) const {
  1060   if (tn != NULL) {
  1061     assert(tn->is_Con(), "top node must be a constant");
  1062     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
  1063     assert(tn->in(0) != NULL, "must have live top node");
  1066 #endif
  1069 ///-------------------Managing Per-Node Debug & Profile Info-------------------
  1071 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
  1072   guarantee(arr != NULL, "");
  1073   int num_blocks = arr->length();
  1074   if (grow_by < num_blocks)  grow_by = num_blocks;
  1075   int num_notes = grow_by * _node_notes_block_size;
  1076   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
  1077   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
  1078   while (num_notes > 0) {
  1079     arr->append(notes);
  1080     notes     += _node_notes_block_size;
  1081     num_notes -= _node_notes_block_size;
  1083   assert(num_notes == 0, "exact multiple, please");
  1086 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
  1087   if (source == NULL || dest == NULL)  return false;
  1089   if (dest->is_Con())
  1090     return false;               // Do not push debug info onto constants.
  1092 #ifdef ASSERT
  1093   // Leave a bread crumb trail pointing to the original node:
  1094   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
  1095     dest->set_debug_orig(source);
  1097 #endif
  1099   if (node_note_array() == NULL)
  1100     return false;               // Not collecting any notes now.
  1102   // This is a copy onto a pre-existing node, which may already have notes.
  1103   // If both nodes have notes, do not overwrite any pre-existing notes.
  1104   Node_Notes* source_notes = node_notes_at(source->_idx);
  1105   if (source_notes == NULL || source_notes->is_clear())  return false;
  1106   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
  1107   if (dest_notes == NULL || dest_notes->is_clear()) {
  1108     return set_node_notes_at(dest->_idx, source_notes);
  1111   Node_Notes merged_notes = (*source_notes);
  1112   // The order of operations here ensures that dest notes will win...
  1113   merged_notes.update_from(dest_notes);
  1114   return set_node_notes_at(dest->_idx, &merged_notes);
  1118 //--------------------------allow_range_check_smearing-------------------------
  1119 // Gating condition for coalescing similar range checks.
  1120 // Sometimes we try 'speculatively' replacing a series of a range checks by a
  1121 // single covering check that is at least as strong as any of them.
  1122 // If the optimization succeeds, the simplified (strengthened) range check
  1123 // will always succeed.  If it fails, we will deopt, and then give up
  1124 // on the optimization.
  1125 bool Compile::allow_range_check_smearing() const {
  1126   // If this method has already thrown a range-check,
  1127   // assume it was because we already tried range smearing
  1128   // and it failed.
  1129   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
  1130   return !already_trapped;
  1134 //------------------------------flatten_alias_type-----------------------------
  1135 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
  1136   int offset = tj->offset();
  1137   TypePtr::PTR ptr = tj->ptr();
  1139   // Known instance (scalarizable allocation) alias only with itself.
  1140   bool is_known_inst = tj->isa_oopptr() != NULL &&
  1141                        tj->is_oopptr()->is_known_instance();
  1143   // Process weird unsafe references.
  1144   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
  1145     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
  1146     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
  1147     tj = TypeOopPtr::BOTTOM;
  1148     ptr = tj->ptr();
  1149     offset = tj->offset();
  1152   // Array pointers need some flattening
  1153   const TypeAryPtr *ta = tj->isa_aryptr();
  1154   if( ta && is_known_inst ) {
  1155     if ( offset != Type::OffsetBot &&
  1156          offset > arrayOopDesc::length_offset_in_bytes() ) {
  1157       offset = Type::OffsetBot; // Flatten constant access into array body only
  1158       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
  1160   } else if( ta && _AliasLevel >= 2 ) {
  1161     // For arrays indexed by constant indices, we flatten the alias
  1162     // space to include all of the array body.  Only the header, klass
  1163     // and array length can be accessed un-aliased.
  1164     if( offset != Type::OffsetBot ) {
  1165       if( ta->const_oop() ) { // methodDataOop or methodOop
  1166         offset = Type::OffsetBot;   // Flatten constant access into array body
  1167         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1168       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1169         // range is OK as-is.
  1170         tj = ta = TypeAryPtr::RANGE;
  1171       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1172         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1173         ta = TypeAryPtr::RANGE; // generic ignored junk
  1174         ptr = TypePtr::BotPTR;
  1175       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1176         tj = TypeInstPtr::MARK;
  1177         ta = TypeAryPtr::RANGE; // generic ignored junk
  1178         ptr = TypePtr::BotPTR;
  1179       } else {                  // Random constant offset into array body
  1180         offset = Type::OffsetBot;   // Flatten constant access into array body
  1181         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
  1184     // Arrays of fixed size alias with arrays of unknown size.
  1185     if (ta->size() != TypeInt::POS) {
  1186       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1187       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
  1189     // Arrays of known objects become arrays of unknown objects.
  1190     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
  1191       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
  1192       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1194     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1195       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1196       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1198     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1199     // cannot be distinguished by bytecode alone.
  1200     if (ta->elem() == TypeInt::BOOL) {
  1201       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1202       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1203       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
  1205     // During the 2nd round of IterGVN, NotNull castings are removed.
  1206     // Make sure the Bottom and NotNull variants alias the same.
  1207     // Also, make sure exact and non-exact variants alias the same.
  1208     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
  1209       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1213   // Oop pointers need some flattening
  1214   const TypeInstPtr *to = tj->isa_instptr();
  1215   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1216     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1217     if( ptr == TypePtr::Constant ) {
  1218       if (to->klass() != ciEnv::current()->Class_klass() ||
  1219           offset < k->size_helper() * wordSize) {
  1220         // No constant oop pointers (such as Strings); they alias with
  1221         // unknown strings.
  1222         assert(!is_known_inst, "not scalarizable allocation");
  1223         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1225     } else if( is_known_inst ) {
  1226       tj = to; // Keep NotNull and klass_is_exact for instance type
  1227     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1228       // During the 2nd round of IterGVN, NotNull castings are removed.
  1229       // Make sure the Bottom and NotNull variants alias the same.
  1230       // Also, make sure exact and non-exact variants alias the same.
  1231       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1233     // Canonicalize the holder of this field
  1234     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
  1235       // First handle header references such as a LoadKlassNode, even if the
  1236       // object's klass is unloaded at compile time (4965979).
  1237       if (!is_known_inst) { // Do it only for non-instance types
  1238         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
  1240     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1241       // Static fields are in the space above the normal instance
  1242       // fields in the java.lang.Class instance.
  1243       if (to->klass() != ciEnv::current()->Class_klass()) {
  1244         to = NULL;
  1245         tj = TypeOopPtr::BOTTOM;
  1246         offset = tj->offset();
  1248     } else {
  1249       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1250       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1251         if( is_known_inst ) {
  1252           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
  1253         } else {
  1254           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
  1260   // Klass pointers to object array klasses need some flattening
  1261   const TypeKlassPtr *tk = tj->isa_klassptr();
  1262   if( tk ) {
  1263     // If we are referencing a field within a Klass, we need
  1264     // to assume the worst case of an Object.  Both exact and
  1265     // inexact types must flatten to the same alias class.
  1266     // Since the flattened result for a klass is defined to be
  1267     // precisely java.lang.Object, use a constant ptr.
  1268     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1270       tj = tk = TypeKlassPtr::make(TypePtr::Constant,
  1271                                    TypeKlassPtr::OBJECT->klass(),
  1272                                    offset);
  1275     ciKlass* klass = tk->klass();
  1276     if( klass->is_obj_array_klass() ) {
  1277       ciKlass* k = TypeAryPtr::OOPS->klass();
  1278       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1279         k = TypeInstPtr::BOTTOM->klass();
  1280       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1283     // Check for precise loads from the primary supertype array and force them
  1284     // to the supertype cache alias index.  Check for generic array loads from
  1285     // the primary supertype array and also force them to the supertype cache
  1286     // alias index.  Since the same load can reach both, we need to merge
  1287     // these 2 disparate memories into the same alias class.  Since the
  1288     // primary supertype array is read-only, there's no chance of confusion
  1289     // where we bypass an array load and an array store.
  1290     uint off2 = offset - Klass::primary_supers_offset_in_bytes();
  1291     if( offset == Type::OffsetBot ||
  1292         off2 < Klass::primary_super_limit()*wordSize ) {
  1293       offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
  1294       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1298   // Flatten all Raw pointers together.
  1299   if (tj->base() == Type::RawPtr)
  1300     tj = TypeRawPtr::BOTTOM;
  1302   if (tj->base() == Type::AnyPtr)
  1303     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1305   // Flatten all to bottom for now
  1306   switch( _AliasLevel ) {
  1307   case 0:
  1308     tj = TypePtr::BOTTOM;
  1309     break;
  1310   case 1:                       // Flatten to: oop, static, field or array
  1311     switch (tj->base()) {
  1312     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1313     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1314     case Type::AryPtr:   // do not distinguish arrays at all
  1315     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1316     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1317     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1318     default: ShouldNotReachHere();
  1320     break;
  1321   case 2:                       // No collapsing at level 2; keep all splits
  1322   case 3:                       // No collapsing at level 3; keep all splits
  1323     break;
  1324   default:
  1325     Unimplemented();
  1328   offset = tj->offset();
  1329   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1331   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1332           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1333           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1334           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1335           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1336           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1337           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1338           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1339   assert( tj->ptr() != TypePtr::TopPTR &&
  1340           tj->ptr() != TypePtr::AnyNull &&
  1341           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1342 //    assert( tj->ptr() != TypePtr::Constant ||
  1343 //            tj->base() == Type::RawPtr ||
  1344 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1346   return tj;
  1349 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1350   _index = i;
  1351   _adr_type = at;
  1352   _field = NULL;
  1353   _is_rewritable = true; // default
  1354   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1355   if (atoop != NULL && atoop->is_known_instance()) {
  1356     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
  1357     _general_index = Compile::current()->get_alias_index(gt);
  1358   } else {
  1359     _general_index = 0;
  1363 //---------------------------------print_on------------------------------------
  1364 #ifndef PRODUCT
  1365 void Compile::AliasType::print_on(outputStream* st) {
  1366   if (index() < 10)
  1367         st->print("@ <%d> ", index());
  1368   else  st->print("@ <%d>",  index());
  1369   st->print(is_rewritable() ? "   " : " RO");
  1370   int offset = adr_type()->offset();
  1371   if (offset == Type::OffsetBot)
  1372         st->print(" +any");
  1373   else  st->print(" +%-3d", offset);
  1374   st->print(" in ");
  1375   adr_type()->dump_on(st);
  1376   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1377   if (field() != NULL && tjp) {
  1378     if (tjp->klass()  != field()->holder() ||
  1379         tjp->offset() != field()->offset_in_bytes()) {
  1380       st->print(" != ");
  1381       field()->print();
  1382       st->print(" ***");
  1387 void print_alias_types() {
  1388   Compile* C = Compile::current();
  1389   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1390   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1391     C->alias_type(idx)->print_on(tty);
  1392     tty->cr();
  1395 #endif
  1398 //----------------------------probe_alias_cache--------------------------------
  1399 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1400   intptr_t key = (intptr_t) adr_type;
  1401   key ^= key >> logAliasCacheSize;
  1402   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1406 //-----------------------------grow_alias_types--------------------------------
  1407 void Compile::grow_alias_types() {
  1408   const int old_ats  = _max_alias_types; // how many before?
  1409   const int new_ats  = old_ats;          // how many more?
  1410   const int grow_ats = old_ats+new_ats;  // how many now?
  1411   _max_alias_types = grow_ats;
  1412   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1413   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1414   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1415   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1419 //--------------------------------find_alias_type------------------------------
  1420 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
  1421   if (_AliasLevel == 0)
  1422     return alias_type(AliasIdxBot);
  1424   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1425   if (ace->_adr_type == adr_type) {
  1426     return alias_type(ace->_index);
  1429   // Handle special cases.
  1430   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1431   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1433   // Do it the slow way.
  1434   const TypePtr* flat = flatten_alias_type(adr_type);
  1436 #ifdef ASSERT
  1437   assert(flat == flatten_alias_type(flat), "idempotent");
  1438   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
  1439   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1440     const TypeOopPtr* foop = flat->is_oopptr();
  1441     // Scalarizable allocations have exact klass always.
  1442     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
  1443     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
  1444     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
  1446   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
  1447 #endif
  1449   int idx = AliasIdxTop;
  1450   for (int i = 0; i < num_alias_types(); i++) {
  1451     if (alias_type(i)->adr_type() == flat) {
  1452       idx = i;
  1453       break;
  1457   if (idx == AliasIdxTop) {
  1458     if (no_create)  return NULL;
  1459     // Grow the array if necessary.
  1460     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1461     // Add a new alias type.
  1462     idx = _num_alias_types++;
  1463     _alias_types[idx]->Init(idx, flat);
  1464     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1465     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1466     if (flat->isa_instptr()) {
  1467       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1468           && flat->is_instptr()->klass() == env()->Class_klass())
  1469         alias_type(idx)->set_rewritable(false);
  1471     if (flat->isa_klassptr()) {
  1472       if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
  1473         alias_type(idx)->set_rewritable(false);
  1474       if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
  1475         alias_type(idx)->set_rewritable(false);
  1476       if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
  1477         alias_type(idx)->set_rewritable(false);
  1478       if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
  1479         alias_type(idx)->set_rewritable(false);
  1481     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1482     // but the base pointer type is not distinctive enough to identify
  1483     // references into JavaThread.)
  1485     // Check for final fields.
  1486     const TypeInstPtr* tinst = flat->isa_instptr();
  1487     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
  1488       ciField* field;
  1489       if (tinst->const_oop() != NULL &&
  1490           tinst->klass() == ciEnv::current()->Class_klass() &&
  1491           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
  1492         // static field
  1493         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
  1494         field = k->get_field_by_offset(tinst->offset(), true);
  1495       } else {
  1496         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1497         field = k->get_field_by_offset(tinst->offset(), false);
  1499       assert(field == NULL ||
  1500              original_field == NULL ||
  1501              (field->holder() == original_field->holder() &&
  1502               field->offset() == original_field->offset() &&
  1503               field->is_static() == original_field->is_static()), "wrong field?");
  1504       // Set field() and is_rewritable() attributes.
  1505       if (field != NULL)  alias_type(idx)->set_field(field);
  1509   // Fill the cache for next time.
  1510   ace->_adr_type = adr_type;
  1511   ace->_index    = idx;
  1512   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1514   // Might as well try to fill the cache for the flattened version, too.
  1515   AliasCacheEntry* face = probe_alias_cache(flat);
  1516   if (face->_adr_type == NULL) {
  1517     face->_adr_type = flat;
  1518     face->_index    = idx;
  1519     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1522   return alias_type(idx);
  1526 Compile::AliasType* Compile::alias_type(ciField* field) {
  1527   const TypeOopPtr* t;
  1528   if (field->is_static())
  1529     t = TypeInstPtr::make(field->holder()->java_mirror());
  1530   else
  1531     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1532   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
  1533   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
  1534   return atp;
  1538 //------------------------------have_alias_type--------------------------------
  1539 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1540   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1541   if (ace->_adr_type == adr_type) {
  1542     return true;
  1545   // Handle special cases.
  1546   if (adr_type == NULL)             return true;
  1547   if (adr_type == TypePtr::BOTTOM)  return true;
  1549   return find_alias_type(adr_type, true, NULL) != NULL;
  1552 //-----------------------------must_alias--------------------------------------
  1553 // True if all values of the given address type are in the given alias category.
  1554 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1555   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1556   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1557   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1558   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1560   // the only remaining possible overlap is identity
  1561   int adr_idx = get_alias_index(adr_type);
  1562   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1563   assert(adr_idx == alias_idx ||
  1564          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1565           && adr_type                       != TypeOopPtr::BOTTOM),
  1566          "should not be testing for overlap with an unsafe pointer");
  1567   return adr_idx == alias_idx;
  1570 //------------------------------can_alias--------------------------------------
  1571 // True if any values of the given address type are in the given alias category.
  1572 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1573   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1574   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1575   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1576   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1578   // the only remaining possible overlap is identity
  1579   int adr_idx = get_alias_index(adr_type);
  1580   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1581   return adr_idx == alias_idx;
  1586 //---------------------------pop_warm_call-------------------------------------
  1587 WarmCallInfo* Compile::pop_warm_call() {
  1588   WarmCallInfo* wci = _warm_calls;
  1589   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1590   return wci;
  1593 //----------------------------Inline_Warm--------------------------------------
  1594 int Compile::Inline_Warm() {
  1595   // If there is room, try to inline some more warm call sites.
  1596   // %%% Do a graph index compaction pass when we think we're out of space?
  1597   if (!InlineWarmCalls)  return 0;
  1599   int calls_made_hot = 0;
  1600   int room_to_grow   = NodeCountInliningCutoff - unique();
  1601   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1602   int amount_grown   = 0;
  1603   WarmCallInfo* call;
  1604   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1605     int est_size = (int)call->size();
  1606     if (est_size > (room_to_grow - amount_grown)) {
  1607       // This one won't fit anyway.  Get rid of it.
  1608       call->make_cold();
  1609       continue;
  1611     call->make_hot();
  1612     calls_made_hot++;
  1613     amount_grown   += est_size;
  1614     amount_to_grow -= est_size;
  1617   if (calls_made_hot > 0)  set_major_progress();
  1618   return calls_made_hot;
  1622 //----------------------------Finish_Warm--------------------------------------
  1623 void Compile::Finish_Warm() {
  1624   if (!InlineWarmCalls)  return;
  1625   if (failing())  return;
  1626   if (warm_calls() == NULL)  return;
  1628   // Clean up loose ends, if we are out of space for inlining.
  1629   WarmCallInfo* call;
  1630   while ((call = pop_warm_call()) != NULL) {
  1631     call->make_cold();
  1635 //---------------------cleanup_loop_predicates-----------------------
  1636 // Remove the opaque nodes that protect the predicates so that all unused
  1637 // checks and uncommon_traps will be eliminated from the ideal graph
  1638 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
  1639   if (predicate_count()==0) return;
  1640   for (int i = predicate_count(); i > 0; i--) {
  1641     Node * n = predicate_opaque1_node(i-1);
  1642     assert(n->Opcode() == Op_Opaque1, "must be");
  1643     igvn.replace_node(n, n->in(1));
  1645   assert(predicate_count()==0, "should be clean!");
  1648 //------------------------------Optimize---------------------------------------
  1649 // Given a graph, optimize it.
  1650 void Compile::Optimize() {
  1651   TracePhase t1("optimizer", &_t_optimizer, true);
  1653 #ifndef PRODUCT
  1654   if (env()->break_at_compile()) {
  1655     BREAKPOINT;
  1658 #endif
  1660   ResourceMark rm;
  1661   int          loop_opts_cnt;
  1663   NOT_PRODUCT( verify_graph_edges(); )
  1665   print_method("After Parsing");
  1668   // Iterative Global Value Numbering, including ideal transforms
  1669   // Initialize IterGVN with types and values from parse-time GVN
  1670   PhaseIterGVN igvn(initial_gvn());
  1672     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  1673     igvn.optimize();
  1676   print_method("Iter GVN 1", 2);
  1678   if (failing())  return;
  1680   // Perform escape analysis
  1681   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
  1682     TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
  1683     ConnectionGraph::do_analysis(this, &igvn);
  1685     if (failing())  return;
  1687     igvn.optimize();
  1688     print_method("Iter GVN 3", 2);
  1690     if (failing())  return;
  1694   // Loop transforms on the ideal graph.  Range Check Elimination,
  1695   // peeling, unrolling, etc.
  1697   // Set loop opts counter
  1698   loop_opts_cnt = num_loop_opts();
  1699   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  1701       TracePhase t2("idealLoop", &_t_idealLoop, true);
  1702       PhaseIdealLoop ideal_loop( igvn, true );
  1703       loop_opts_cnt--;
  1704       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
  1705       if (failing())  return;
  1707     // Loop opts pass if partial peeling occurred in previous pass
  1708     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  1709       TracePhase t3("idealLoop", &_t_idealLoop, true);
  1710       PhaseIdealLoop ideal_loop( igvn, false );
  1711       loop_opts_cnt--;
  1712       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
  1713       if (failing())  return;
  1715     // Loop opts pass for loop-unrolling before CCP
  1716     if(major_progress() && (loop_opts_cnt > 0)) {
  1717       TracePhase t4("idealLoop", &_t_idealLoop, true);
  1718       PhaseIdealLoop ideal_loop( igvn, false );
  1719       loop_opts_cnt--;
  1720       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
  1722     if (!failing()) {
  1723       // Verify that last round of loop opts produced a valid graph
  1724       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  1725       PhaseIdealLoop::verify(igvn);
  1728   if (failing())  return;
  1730   // Conditional Constant Propagation;
  1731   PhaseCCP ccp( &igvn );
  1732   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  1734     TracePhase t2("ccp", &_t_ccp, true);
  1735     ccp.do_transform();
  1737   print_method("PhaseCPP 1", 2);
  1739   assert( true, "Break here to ccp.dump_old2new_map()");
  1741   // Iterative Global Value Numbering, including ideal transforms
  1743     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  1744     igvn = ccp;
  1745     igvn.optimize();
  1748   print_method("Iter GVN 2", 2);
  1750   if (failing())  return;
  1752   // Loop transforms on the ideal graph.  Range Check Elimination,
  1753   // peeling, unrolling, etc.
  1754   if(loop_opts_cnt > 0) {
  1755     debug_only( int cnt = 0; );
  1756     while(major_progress() && (loop_opts_cnt > 0)) {
  1757       TracePhase t2("idealLoop", &_t_idealLoop, true);
  1758       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  1759       PhaseIdealLoop ideal_loop( igvn, true);
  1760       loop_opts_cnt--;
  1761       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
  1762       if (failing())  return;
  1767     // Verify that all previous optimizations produced a valid graph
  1768     // at least to this point, even if no loop optimizations were done.
  1769     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  1770     PhaseIdealLoop::verify(igvn);
  1774     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  1775     PhaseMacroExpand  mex(igvn);
  1776     if (mex.expand_macro_nodes()) {
  1777       assert(failing(), "must bail out w/ explicit message");
  1778       return;
  1782  } // (End scope of igvn; run destructor if necessary for asserts.)
  1784   // A method with only infinite loops has no edges entering loops from root
  1786     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  1787     if (final_graph_reshaping()) {
  1788       assert(failing(), "must bail out w/ explicit message");
  1789       return;
  1793   print_method("Optimize finished", 2);
  1797 //------------------------------Code_Gen---------------------------------------
  1798 // Given a graph, generate code for it
  1799 void Compile::Code_Gen() {
  1800   if (failing())  return;
  1802   // Perform instruction selection.  You might think we could reclaim Matcher
  1803   // memory PDQ, but actually the Matcher is used in generating spill code.
  1804   // Internals of the Matcher (including some VectorSets) must remain live
  1805   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  1806   // set a bit in reclaimed memory.
  1808   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  1809   // nodes.  Mapping is only valid at the root of each matched subtree.
  1810   NOT_PRODUCT( verify_graph_edges(); )
  1812   Node_List proj_list;
  1813   Matcher m(proj_list);
  1814   _matcher = &m;
  1816     TracePhase t2("matcher", &_t_matcher, true);
  1817     m.match();
  1819   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  1820   // nodes.  Mapping is only valid at the root of each matched subtree.
  1821   NOT_PRODUCT( verify_graph_edges(); )
  1823   // If you have too many nodes, or if matching has failed, bail out
  1824   check_node_count(0, "out of nodes matching instructions");
  1825   if (failing())  return;
  1827   // Build a proper-looking CFG
  1828   PhaseCFG cfg(node_arena(), root(), m);
  1829   _cfg = &cfg;
  1831     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  1832     cfg.Dominators();
  1833     if (failing())  return;
  1835     NOT_PRODUCT( verify_graph_edges(); )
  1837     cfg.Estimate_Block_Frequency();
  1838     cfg.GlobalCodeMotion(m,unique(),proj_list);
  1840     print_method("Global code motion", 2);
  1842     if (failing())  return;
  1843     NOT_PRODUCT( verify_graph_edges(); )
  1845     debug_only( cfg.verify(); )
  1847   NOT_PRODUCT( verify_graph_edges(); )
  1849   PhaseChaitin regalloc(unique(),cfg,m);
  1850   _regalloc = &regalloc;
  1852     TracePhase t2("regalloc", &_t_registerAllocation, true);
  1853     // Perform any platform dependent preallocation actions.  This is used,
  1854     // for example, to avoid taking an implicit null pointer exception
  1855     // using the frame pointer on win95.
  1856     _regalloc->pd_preallocate_hook();
  1858     // Perform register allocation.  After Chaitin, use-def chains are
  1859     // no longer accurate (at spill code) and so must be ignored.
  1860     // Node->LRG->reg mappings are still accurate.
  1861     _regalloc->Register_Allocate();
  1863     // Bail out if the allocator builds too many nodes
  1864     if (failing())  return;
  1867   // Prior to register allocation we kept empty basic blocks in case the
  1868   // the allocator needed a place to spill.  After register allocation we
  1869   // are not adding any new instructions.  If any basic block is empty, we
  1870   // can now safely remove it.
  1872     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
  1873     cfg.remove_empty();
  1874     if (do_freq_based_layout()) {
  1875       PhaseBlockLayout layout(cfg);
  1876     } else {
  1877       cfg.set_loop_alignment();
  1879     cfg.fixup_flow();
  1882   // Perform any platform dependent postallocation verifications.
  1883   debug_only( _regalloc->pd_postallocate_verify_hook(); )
  1885   // Apply peephole optimizations
  1886   if( OptoPeephole ) {
  1887     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  1888     PhasePeephole peep( _regalloc, cfg);
  1889     peep.do_transform();
  1892   // Convert Nodes to instruction bits in a buffer
  1894     // %%%% workspace merge brought two timers together for one job
  1895     TracePhase t2a("output", &_t_output, true);
  1896     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  1897     Output();
  1900   print_method("Final Code");
  1902   // He's dead, Jim.
  1903   _cfg     = (PhaseCFG*)0xdeadbeef;
  1904   _regalloc = (PhaseChaitin*)0xdeadbeef;
  1908 //------------------------------dump_asm---------------------------------------
  1909 // Dump formatted assembly
  1910 #ifndef PRODUCT
  1911 void Compile::dump_asm(int *pcs, uint pc_limit) {
  1912   bool cut_short = false;
  1913   tty->print_cr("#");
  1914   tty->print("#  ");  _tf->dump();  tty->cr();
  1915   tty->print_cr("#");
  1917   // For all blocks
  1918   int pc = 0x0;                 // Program counter
  1919   char starts_bundle = ' ';
  1920   _regalloc->dump_frame();
  1922   Node *n = NULL;
  1923   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  1924     if (VMThread::should_terminate()) { cut_short = true; break; }
  1925     Block *b = _cfg->_blocks[i];
  1926     if (b->is_connector() && !Verbose) continue;
  1927     n = b->_nodes[0];
  1928     if (pcs && n->_idx < pc_limit)
  1929       tty->print("%3.3x   ", pcs[n->_idx]);
  1930     else
  1931       tty->print("      ");
  1932     b->dump_head( &_cfg->_bbs );
  1933     if (b->is_connector()) {
  1934       tty->print_cr("        # Empty connector block");
  1935     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  1936       tty->print_cr("        # Block is sole successor of call");
  1939     // For all instructions
  1940     Node *delay = NULL;
  1941     for( uint j = 0; j<b->_nodes.size(); j++ ) {
  1942       if (VMThread::should_terminate()) { cut_short = true; break; }
  1943       n = b->_nodes[j];
  1944       if (valid_bundle_info(n)) {
  1945         Bundle *bundle = node_bundling(n);
  1946         if (bundle->used_in_unconditional_delay()) {
  1947           delay = n;
  1948           continue;
  1950         if (bundle->starts_bundle())
  1951           starts_bundle = '+';
  1954       if (WizardMode) n->dump();
  1956       if( !n->is_Region() &&    // Dont print in the Assembly
  1957           !n->is_Phi() &&       // a few noisely useless nodes
  1958           !n->is_Proj() &&
  1959           !n->is_MachTemp() &&
  1960           !n->is_SafePointScalarObject() &&
  1961           !n->is_Catch() &&     // Would be nice to print exception table targets
  1962           !n->is_MergeMem() &&  // Not very interesting
  1963           !n->is_top() &&       // Debug info table constants
  1964           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  1965           ) {
  1966         if (pcs && n->_idx < pc_limit)
  1967           tty->print("%3.3x", pcs[n->_idx]);
  1968         else
  1969           tty->print("   ");
  1970         tty->print(" %c ", starts_bundle);
  1971         starts_bundle = ' ';
  1972         tty->print("\t");
  1973         n->format(_regalloc, tty);
  1974         tty->cr();
  1977       // If we have an instruction with a delay slot, and have seen a delay,
  1978       // then back up and print it
  1979       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  1980         assert(delay != NULL, "no unconditional delay instruction");
  1981         if (WizardMode) delay->dump();
  1983         if (node_bundling(delay)->starts_bundle())
  1984           starts_bundle = '+';
  1985         if (pcs && n->_idx < pc_limit)
  1986           tty->print("%3.3x", pcs[n->_idx]);
  1987         else
  1988           tty->print("   ");
  1989         tty->print(" %c ", starts_bundle);
  1990         starts_bundle = ' ';
  1991         tty->print("\t");
  1992         delay->format(_regalloc, tty);
  1993         tty->print_cr("");
  1994         delay = NULL;
  1997       // Dump the exception table as well
  1998       if( n->is_Catch() && (Verbose || WizardMode) ) {
  1999         // Print the exception table for this offset
  2000         _handler_table.print_subtable_for(pc);
  2004     if (pcs && n->_idx < pc_limit)
  2005       tty->print_cr("%3.3x", pcs[n->_idx]);
  2006     else
  2007       tty->print_cr("");
  2009     assert(cut_short || delay == NULL, "no unconditional delay branch");
  2011   } // End of per-block dump
  2012   tty->print_cr("");
  2014   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  2016 #endif
  2018 //------------------------------Final_Reshape_Counts---------------------------
  2019 // This class defines counters to help identify when a method
  2020 // may/must be executed using hardware with only 24-bit precision.
  2021 struct Final_Reshape_Counts : public StackObj {
  2022   int  _call_count;             // count non-inlined 'common' calls
  2023   int  _float_count;            // count float ops requiring 24-bit precision
  2024   int  _double_count;           // count double ops requiring more precision
  2025   int  _java_call_count;        // count non-inlined 'java' calls
  2026   int  _inner_loop_count;       // count loops which need alignment
  2027   VectorSet _visited;           // Visitation flags
  2028   Node_List _tests;             // Set of IfNodes & PCTableNodes
  2030   Final_Reshape_Counts() :
  2031     _call_count(0), _float_count(0), _double_count(0),
  2032     _java_call_count(0), _inner_loop_count(0),
  2033     _visited( Thread::current()->resource_area() ) { }
  2035   void inc_call_count  () { _call_count  ++; }
  2036   void inc_float_count () { _float_count ++; }
  2037   void inc_double_count() { _double_count++; }
  2038   void inc_java_call_count() { _java_call_count++; }
  2039   void inc_inner_loop_count() { _inner_loop_count++; }
  2041   int  get_call_count  () const { return _call_count  ; }
  2042   int  get_float_count () const { return _float_count ; }
  2043   int  get_double_count() const { return _double_count; }
  2044   int  get_java_call_count() const { return _java_call_count; }
  2045   int  get_inner_loop_count() const { return _inner_loop_count; }
  2046 };
  2048 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  2049   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  2050   // Make sure the offset goes inside the instance layout.
  2051   return k->contains_field_offset(tp->offset());
  2052   // Note that OffsetBot and OffsetTop are very negative.
  2055 // Eliminate trivially redundant StoreCMs and accumulate their
  2056 // precedence edges.
  2057 static void eliminate_redundant_card_marks(Node* n) {
  2058   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
  2059   if (n->in(MemNode::Address)->outcnt() > 1) {
  2060     // There are multiple users of the same address so it might be
  2061     // possible to eliminate some of the StoreCMs
  2062     Node* mem = n->in(MemNode::Memory);
  2063     Node* adr = n->in(MemNode::Address);
  2064     Node* val = n->in(MemNode::ValueIn);
  2065     Node* prev = n;
  2066     bool done = false;
  2067     // Walk the chain of StoreCMs eliminating ones that match.  As
  2068     // long as it's a chain of single users then the optimization is
  2069     // safe.  Eliminating partially redundant StoreCMs would require
  2070     // cloning copies down the other paths.
  2071     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
  2072       if (adr == mem->in(MemNode::Address) &&
  2073           val == mem->in(MemNode::ValueIn)) {
  2074         // redundant StoreCM
  2075         if (mem->req() > MemNode::OopStore) {
  2076           // Hasn't been processed by this code yet.
  2077           n->add_prec(mem->in(MemNode::OopStore));
  2078         } else {
  2079           // Already converted to precedence edge
  2080           for (uint i = mem->req(); i < mem->len(); i++) {
  2081             // Accumulate any precedence edges
  2082             if (mem->in(i) != NULL) {
  2083               n->add_prec(mem->in(i));
  2086           // Everything above this point has been processed.
  2087           done = true;
  2089         // Eliminate the previous StoreCM
  2090         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2091         assert(mem->outcnt() == 0, "should be dead");
  2092         mem->disconnect_inputs(NULL);
  2093       } else {
  2094         prev = mem;
  2096       mem = prev->in(MemNode::Memory);
  2101 //------------------------------final_graph_reshaping_impl----------------------
  2102 // Implement items 1-5 from final_graph_reshaping below.
  2103 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
  2105   if ( n->outcnt() == 0 ) return; // dead node
  2106   uint nop = n->Opcode();
  2108   // Check for 2-input instruction with "last use" on right input.
  2109   // Swap to left input.  Implements item (2).
  2110   if( n->req() == 3 &&          // two-input instruction
  2111       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  2112       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  2113       n->in(2)->outcnt() == 1 &&// right use IS a last use
  2114       !n->in(2)->is_Con() ) {   // right use is not a constant
  2115     // Check for commutative opcode
  2116     switch( nop ) {
  2117     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  2118     case Op_MaxI:  case Op_MinI:
  2119     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  2120     case Op_AndL:  case Op_XorL:  case Op_OrL:
  2121     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  2122       // Move "last use" input to left by swapping inputs
  2123       n->swap_edges(1, 2);
  2124       break;
  2126     default:
  2127       break;
  2131 #ifdef ASSERT
  2132   if( n->is_Mem() ) {
  2133     Compile* C = Compile::current();
  2134     int alias_idx = C->get_alias_index(n->as_Mem()->adr_type());
  2135     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
  2136             // oop will be recorded in oop map if load crosses safepoint
  2137             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
  2138                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
  2139             "raw memory operations should have control edge");
  2141 #endif
  2142   // Count FPU ops and common calls, implements item (3)
  2143   switch( nop ) {
  2144   // Count all float operations that may use FPU
  2145   case Op_AddF:
  2146   case Op_SubF:
  2147   case Op_MulF:
  2148   case Op_DivF:
  2149   case Op_NegF:
  2150   case Op_ModF:
  2151   case Op_ConvI2F:
  2152   case Op_ConF:
  2153   case Op_CmpF:
  2154   case Op_CmpF3:
  2155   // case Op_ConvL2F: // longs are split into 32-bit halves
  2156     frc.inc_float_count();
  2157     break;
  2159   case Op_ConvF2D:
  2160   case Op_ConvD2F:
  2161     frc.inc_float_count();
  2162     frc.inc_double_count();
  2163     break;
  2165   // Count all double operations that may use FPU
  2166   case Op_AddD:
  2167   case Op_SubD:
  2168   case Op_MulD:
  2169   case Op_DivD:
  2170   case Op_NegD:
  2171   case Op_ModD:
  2172   case Op_ConvI2D:
  2173   case Op_ConvD2I:
  2174   // case Op_ConvL2D: // handled by leaf call
  2175   // case Op_ConvD2L: // handled by leaf call
  2176   case Op_ConD:
  2177   case Op_CmpD:
  2178   case Op_CmpD3:
  2179     frc.inc_double_count();
  2180     break;
  2181   case Op_Opaque1:              // Remove Opaque Nodes before matching
  2182   case Op_Opaque2:              // Remove Opaque Nodes before matching
  2183     n->subsume_by(n->in(1));
  2184     break;
  2185   case Op_CallStaticJava:
  2186   case Op_CallJava:
  2187   case Op_CallDynamicJava:
  2188     frc.inc_java_call_count(); // Count java call site;
  2189   case Op_CallRuntime:
  2190   case Op_CallLeaf:
  2191   case Op_CallLeafNoFP: {
  2192     assert( n->is_Call(), "" );
  2193     CallNode *call = n->as_Call();
  2194     // Count call sites where the FP mode bit would have to be flipped.
  2195     // Do not count uncommon runtime calls:
  2196     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  2197     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  2198     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  2199       frc.inc_call_count();   // Count the call site
  2200     } else {                  // See if uncommon argument is shared
  2201       Node *n = call->in(TypeFunc::Parms);
  2202       int nop = n->Opcode();
  2203       // Clone shared simple arguments to uncommon calls, item (1).
  2204       if( n->outcnt() > 1 &&
  2205           !n->is_Proj() &&
  2206           nop != Op_CreateEx &&
  2207           nop != Op_CheckCastPP &&
  2208           nop != Op_DecodeN &&
  2209           !n->is_Mem() ) {
  2210         Node *x = n->clone();
  2211         call->set_req( TypeFunc::Parms, x );
  2214     break;
  2217   case Op_StoreD:
  2218   case Op_LoadD:
  2219   case Op_LoadD_unaligned:
  2220     frc.inc_double_count();
  2221     goto handle_mem;
  2222   case Op_StoreF:
  2223   case Op_LoadF:
  2224     frc.inc_float_count();
  2225     goto handle_mem;
  2227   case Op_StoreCM:
  2229       // Convert OopStore dependence into precedence edge
  2230       Node* prec = n->in(MemNode::OopStore);
  2231       n->del_req(MemNode::OopStore);
  2232       n->add_prec(prec);
  2233       eliminate_redundant_card_marks(n);
  2236     // fall through
  2238   case Op_StoreB:
  2239   case Op_StoreC:
  2240   case Op_StorePConditional:
  2241   case Op_StoreI:
  2242   case Op_StoreL:
  2243   case Op_StoreIConditional:
  2244   case Op_StoreLConditional:
  2245   case Op_CompareAndSwapI:
  2246   case Op_CompareAndSwapL:
  2247   case Op_CompareAndSwapP:
  2248   case Op_CompareAndSwapN:
  2249   case Op_StoreP:
  2250   case Op_StoreN:
  2251   case Op_LoadB:
  2252   case Op_LoadUB:
  2253   case Op_LoadUS:
  2254   case Op_LoadI:
  2255   case Op_LoadUI2L:
  2256   case Op_LoadKlass:
  2257   case Op_LoadNKlass:
  2258   case Op_LoadL:
  2259   case Op_LoadL_unaligned:
  2260   case Op_LoadPLocked:
  2261   case Op_LoadLLocked:
  2262   case Op_LoadP:
  2263   case Op_LoadN:
  2264   case Op_LoadRange:
  2265   case Op_LoadS: {
  2266   handle_mem:
  2267 #ifdef ASSERT
  2268     if( VerifyOptoOopOffsets ) {
  2269       assert( n->is_Mem(), "" );
  2270       MemNode *mem  = (MemNode*)n;
  2271       // Check to see if address types have grounded out somehow.
  2272       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  2273       assert( !tp || oop_offset_is_sane(tp), "" );
  2275 #endif
  2276     break;
  2279   case Op_AddP: {               // Assert sane base pointers
  2280     Node *addp = n->in(AddPNode::Address);
  2281     assert( !addp->is_AddP() ||
  2282             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  2283             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  2284             "Base pointers must match" );
  2285 #ifdef _LP64
  2286     if (UseCompressedOops &&
  2287         addp->Opcode() == Op_ConP &&
  2288         addp == n->in(AddPNode::Base) &&
  2289         n->in(AddPNode::Offset)->is_Con()) {
  2290       // Use addressing with narrow klass to load with offset on x86.
  2291       // On sparc loading 32-bits constant and decoding it have less
  2292       // instructions (4) then load 64-bits constant (7).
  2293       // Do this transformation here since IGVN will convert ConN back to ConP.
  2294       const Type* t = addp->bottom_type();
  2295       if (t->isa_oopptr()) {
  2296         Node* nn = NULL;
  2298         // Look for existing ConN node of the same exact type.
  2299         Compile* C = Compile::current();
  2300         Node* r  = C->root();
  2301         uint cnt = r->outcnt();
  2302         for (uint i = 0; i < cnt; i++) {
  2303           Node* m = r->raw_out(i);
  2304           if (m!= NULL && m->Opcode() == Op_ConN &&
  2305               m->bottom_type()->make_ptr() == t) {
  2306             nn = m;
  2307             break;
  2310         if (nn != NULL) {
  2311           // Decode a narrow oop to match address
  2312           // [R12 + narrow_oop_reg<<3 + offset]
  2313           nn = new (C,  2) DecodeNNode(nn, t);
  2314           n->set_req(AddPNode::Base, nn);
  2315           n->set_req(AddPNode::Address, nn);
  2316           if (addp->outcnt() == 0) {
  2317             addp->disconnect_inputs(NULL);
  2322 #endif
  2323     break;
  2326 #ifdef _LP64
  2327   case Op_CastPP:
  2328     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
  2329       Compile* C = Compile::current();
  2330       Node* in1 = n->in(1);
  2331       const Type* t = n->bottom_type();
  2332       Node* new_in1 = in1->clone();
  2333       new_in1->as_DecodeN()->set_type(t);
  2335       if (!Matcher::narrow_oop_use_complex_address()) {
  2336         //
  2337         // x86, ARM and friends can handle 2 adds in addressing mode
  2338         // and Matcher can fold a DecodeN node into address by using
  2339         // a narrow oop directly and do implicit NULL check in address:
  2340         //
  2341         // [R12 + narrow_oop_reg<<3 + offset]
  2342         // NullCheck narrow_oop_reg
  2343         //
  2344         // On other platforms (Sparc) we have to keep new DecodeN node and
  2345         // use it to do implicit NULL check in address:
  2346         //
  2347         // decode_not_null narrow_oop_reg, base_reg
  2348         // [base_reg + offset]
  2349         // NullCheck base_reg
  2350         //
  2351         // Pin the new DecodeN node to non-null path on these platform (Sparc)
  2352         // to keep the information to which NULL check the new DecodeN node
  2353         // corresponds to use it as value in implicit_null_check().
  2354         //
  2355         new_in1->set_req(0, n->in(0));
  2358       n->subsume_by(new_in1);
  2359       if (in1->outcnt() == 0) {
  2360         in1->disconnect_inputs(NULL);
  2363     break;
  2365   case Op_CmpP:
  2366     // Do this transformation here to preserve CmpPNode::sub() and
  2367     // other TypePtr related Ideal optimizations (for example, ptr nullness).
  2368     if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
  2369       Node* in1 = n->in(1);
  2370       Node* in2 = n->in(2);
  2371       if (!in1->is_DecodeN()) {
  2372         in2 = in1;
  2373         in1 = n->in(2);
  2375       assert(in1->is_DecodeN(), "sanity");
  2377       Compile* C = Compile::current();
  2378       Node* new_in2 = NULL;
  2379       if (in2->is_DecodeN()) {
  2380         new_in2 = in2->in(1);
  2381       } else if (in2->Opcode() == Op_ConP) {
  2382         const Type* t = in2->bottom_type();
  2383         if (t == TypePtr::NULL_PTR) {
  2384           // Don't convert CmpP null check into CmpN if compressed
  2385           // oops implicit null check is not generated.
  2386           // This will allow to generate normal oop implicit null check.
  2387           if (Matcher::gen_narrow_oop_implicit_null_checks())
  2388             new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
  2389           //
  2390           // This transformation together with CastPP transformation above
  2391           // will generated code for implicit NULL checks for compressed oops.
  2392           //
  2393           // The original code after Optimize()
  2394           //
  2395           //    LoadN memory, narrow_oop_reg
  2396           //    decode narrow_oop_reg, base_reg
  2397           //    CmpP base_reg, NULL
  2398           //    CastPP base_reg // NotNull
  2399           //    Load [base_reg + offset], val_reg
  2400           //
  2401           // after these transformations will be
  2402           //
  2403           //    LoadN memory, narrow_oop_reg
  2404           //    CmpN narrow_oop_reg, NULL
  2405           //    decode_not_null narrow_oop_reg, base_reg
  2406           //    Load [base_reg + offset], val_reg
  2407           //
  2408           // and the uncommon path (== NULL) will use narrow_oop_reg directly
  2409           // since narrow oops can be used in debug info now (see the code in
  2410           // final_graph_reshaping_walk()).
  2411           //
  2412           // At the end the code will be matched to
  2413           // on x86:
  2414           //
  2415           //    Load_narrow_oop memory, narrow_oop_reg
  2416           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
  2417           //    NullCheck narrow_oop_reg
  2418           //
  2419           // and on sparc:
  2420           //
  2421           //    Load_narrow_oop memory, narrow_oop_reg
  2422           //    decode_not_null narrow_oop_reg, base_reg
  2423           //    Load [base_reg + offset], val_reg
  2424           //    NullCheck base_reg
  2425           //
  2426         } else if (t->isa_oopptr()) {
  2427           new_in2 = ConNode::make(C, t->make_narrowoop());
  2430       if (new_in2 != NULL) {
  2431         Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
  2432         n->subsume_by( cmpN );
  2433         if (in1->outcnt() == 0) {
  2434           in1->disconnect_inputs(NULL);
  2436         if (in2->outcnt() == 0) {
  2437           in2->disconnect_inputs(NULL);
  2441     break;
  2443   case Op_DecodeN:
  2444     assert(!n->in(1)->is_EncodeP(), "should be optimized out");
  2445     // DecodeN could be pinned when it can't be fold into
  2446     // an address expression, see the code for Op_CastPP above.
  2447     assert(n->in(0) == NULL || !Matcher::narrow_oop_use_complex_address(), "no control");
  2448     break;
  2450   case Op_EncodeP: {
  2451     Node* in1 = n->in(1);
  2452     if (in1->is_DecodeN()) {
  2453       n->subsume_by(in1->in(1));
  2454     } else if (in1->Opcode() == Op_ConP) {
  2455       Compile* C = Compile::current();
  2456       const Type* t = in1->bottom_type();
  2457       if (t == TypePtr::NULL_PTR) {
  2458         n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
  2459       } else if (t->isa_oopptr()) {
  2460         n->subsume_by(ConNode::make(C, t->make_narrowoop()));
  2463     if (in1->outcnt() == 0) {
  2464       in1->disconnect_inputs(NULL);
  2466     break;
  2469   case Op_Proj: {
  2470     if (OptimizeStringConcat) {
  2471       ProjNode* p = n->as_Proj();
  2472       if (p->_is_io_use) {
  2473         // Separate projections were used for the exception path which
  2474         // are normally removed by a late inline.  If it wasn't inlined
  2475         // then they will hang around and should just be replaced with
  2476         // the original one.
  2477         Node* proj = NULL;
  2478         // Replace with just one
  2479         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
  2480           Node *use = i.get();
  2481           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
  2482             proj = use;
  2483             break;
  2486         assert(p != NULL, "must be found");
  2487         p->subsume_by(proj);
  2490     break;
  2493   case Op_Phi:
  2494     if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
  2495       // The EncodeP optimization may create Phi with the same edges
  2496       // for all paths. It is not handled well by Register Allocator.
  2497       Node* unique_in = n->in(1);
  2498       assert(unique_in != NULL, "");
  2499       uint cnt = n->req();
  2500       for (uint i = 2; i < cnt; i++) {
  2501         Node* m = n->in(i);
  2502         assert(m != NULL, "");
  2503         if (unique_in != m)
  2504           unique_in = NULL;
  2506       if (unique_in != NULL) {
  2507         n->subsume_by(unique_in);
  2510     break;
  2512 #endif
  2514   case Op_ModI:
  2515     if (UseDivMod) {
  2516       // Check if a%b and a/b both exist
  2517       Node* d = n->find_similar(Op_DivI);
  2518       if (d) {
  2519         // Replace them with a fused divmod if supported
  2520         Compile* C = Compile::current();
  2521         if (Matcher::has_match_rule(Op_DivModI)) {
  2522           DivModINode* divmod = DivModINode::make(C, n);
  2523           d->subsume_by(divmod->div_proj());
  2524           n->subsume_by(divmod->mod_proj());
  2525         } else {
  2526           // replace a%b with a-((a/b)*b)
  2527           Node* mult = new (C, 3) MulINode(d, d->in(2));
  2528           Node* sub  = new (C, 3) SubINode(d->in(1), mult);
  2529           n->subsume_by( sub );
  2533     break;
  2535   case Op_ModL:
  2536     if (UseDivMod) {
  2537       // Check if a%b and a/b both exist
  2538       Node* d = n->find_similar(Op_DivL);
  2539       if (d) {
  2540         // Replace them with a fused divmod if supported
  2541         Compile* C = Compile::current();
  2542         if (Matcher::has_match_rule(Op_DivModL)) {
  2543           DivModLNode* divmod = DivModLNode::make(C, n);
  2544           d->subsume_by(divmod->div_proj());
  2545           n->subsume_by(divmod->mod_proj());
  2546         } else {
  2547           // replace a%b with a-((a/b)*b)
  2548           Node* mult = new (C, 3) MulLNode(d, d->in(2));
  2549           Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
  2550           n->subsume_by( sub );
  2554     break;
  2556   case Op_Load16B:
  2557   case Op_Load8B:
  2558   case Op_Load4B:
  2559   case Op_Load8S:
  2560   case Op_Load4S:
  2561   case Op_Load2S:
  2562   case Op_Load8C:
  2563   case Op_Load4C:
  2564   case Op_Load2C:
  2565   case Op_Load4I:
  2566   case Op_Load2I:
  2567   case Op_Load2L:
  2568   case Op_Load4F:
  2569   case Op_Load2F:
  2570   case Op_Load2D:
  2571   case Op_Store16B:
  2572   case Op_Store8B:
  2573   case Op_Store4B:
  2574   case Op_Store8C:
  2575   case Op_Store4C:
  2576   case Op_Store2C:
  2577   case Op_Store4I:
  2578   case Op_Store2I:
  2579   case Op_Store2L:
  2580   case Op_Store4F:
  2581   case Op_Store2F:
  2582   case Op_Store2D:
  2583     break;
  2585   case Op_PackB:
  2586   case Op_PackS:
  2587   case Op_PackC:
  2588   case Op_PackI:
  2589   case Op_PackF:
  2590   case Op_PackL:
  2591   case Op_PackD:
  2592     if (n->req()-1 > 2) {
  2593       // Replace many operand PackNodes with a binary tree for matching
  2594       PackNode* p = (PackNode*) n;
  2595       Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
  2596       n->subsume_by(btp);
  2598     break;
  2599   case Op_Loop:
  2600   case Op_CountedLoop:
  2601     if (n->as_Loop()->is_inner_loop()) {
  2602       frc.inc_inner_loop_count();
  2604     break;
  2605   case Op_LShiftI:
  2606   case Op_RShiftI:
  2607   case Op_URShiftI:
  2608   case Op_LShiftL:
  2609   case Op_RShiftL:
  2610   case Op_URShiftL:
  2611     if (Matcher::need_masked_shift_count) {
  2612       // The cpu's shift instructions don't restrict the count to the
  2613       // lower 5/6 bits. We need to do the masking ourselves.
  2614       Node* in2 = n->in(2);
  2615       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  2616       const TypeInt* t = in2->find_int_type();
  2617       if (t != NULL && t->is_con()) {
  2618         juint shift = t->get_con();
  2619         if (shift > mask) { // Unsigned cmp
  2620           Compile* C = Compile::current();
  2621           n->set_req(2, ConNode::make(C, TypeInt::make(shift & mask)));
  2623       } else {
  2624         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  2625           Compile* C = Compile::current();
  2626           Node* shift = new (C, 3) AndINode(in2, ConNode::make(C, TypeInt::make(mask)));
  2627           n->set_req(2, shift);
  2630       if (in2->outcnt() == 0) { // Remove dead node
  2631         in2->disconnect_inputs(NULL);
  2634     break;
  2635   default:
  2636     assert( !n->is_Call(), "" );
  2637     assert( !n->is_Mem(), "" );
  2638     break;
  2641   // Collect CFG split points
  2642   if (n->is_MultiBranch())
  2643     frc._tests.push(n);
  2646 //------------------------------final_graph_reshaping_walk---------------------
  2647 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  2648 // requires that the walk visits a node's inputs before visiting the node.
  2649 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
  2650   ResourceArea *area = Thread::current()->resource_area();
  2651   Unique_Node_List sfpt(area);
  2653   frc._visited.set(root->_idx); // first, mark node as visited
  2654   uint cnt = root->req();
  2655   Node *n = root;
  2656   uint  i = 0;
  2657   while (true) {
  2658     if (i < cnt) {
  2659       // Place all non-visited non-null inputs onto stack
  2660       Node* m = n->in(i);
  2661       ++i;
  2662       if (m != NULL && !frc._visited.test_set(m->_idx)) {
  2663         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
  2664           sfpt.push(m);
  2665         cnt = m->req();
  2666         nstack.push(n, i); // put on stack parent and next input's index
  2667         n = m;
  2668         i = 0;
  2670     } else {
  2671       // Now do post-visit work
  2672       final_graph_reshaping_impl( n, frc );
  2673       if (nstack.is_empty())
  2674         break;             // finished
  2675       n = nstack.node();   // Get node from stack
  2676       cnt = n->req();
  2677       i = nstack.index();
  2678       nstack.pop();        // Shift to the next node on stack
  2682   // Skip next transformation if compressed oops are not used.
  2683   if (!UseCompressedOops || !Matcher::gen_narrow_oop_implicit_null_checks())
  2684     return;
  2686   // Go over safepoints nodes to skip DecodeN nodes for debug edges.
  2687   // It could be done for an uncommon traps or any safepoints/calls
  2688   // if the DecodeN node is referenced only in a debug info.
  2689   while (sfpt.size() > 0) {
  2690     n = sfpt.pop();
  2691     JVMState *jvms = n->as_SafePoint()->jvms();
  2692     assert(jvms != NULL, "sanity");
  2693     int start = jvms->debug_start();
  2694     int end   = n->req();
  2695     bool is_uncommon = (n->is_CallStaticJava() &&
  2696                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
  2697     for (int j = start; j < end; j++) {
  2698       Node* in = n->in(j);
  2699       if (in->is_DecodeN()) {
  2700         bool safe_to_skip = true;
  2701         if (!is_uncommon ) {
  2702           // Is it safe to skip?
  2703           for (uint i = 0; i < in->outcnt(); i++) {
  2704             Node* u = in->raw_out(i);
  2705             if (!u->is_SafePoint() ||
  2706                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
  2707               safe_to_skip = false;
  2711         if (safe_to_skip) {
  2712           n->set_req(j, in->in(1));
  2714         if (in->outcnt() == 0) {
  2715           in->disconnect_inputs(NULL);
  2722 //------------------------------final_graph_reshaping--------------------------
  2723 // Final Graph Reshaping.
  2724 //
  2725 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  2726 //     and not commoned up and forced early.  Must come after regular
  2727 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  2728 //     inputs to Loop Phis; these will be split by the allocator anyways.
  2729 //     Remove Opaque nodes.
  2730 // (2) Move last-uses by commutative operations to the left input to encourage
  2731 //     Intel update-in-place two-address operations and better register usage
  2732 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  2733 //     calls canonicalizing them back.
  2734 // (3) Count the number of double-precision FP ops, single-precision FP ops
  2735 //     and call sites.  On Intel, we can get correct rounding either by
  2736 //     forcing singles to memory (requires extra stores and loads after each
  2737 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  2738 //     clearing the mode bit around call sites).  The mode bit is only used
  2739 //     if the relative frequency of single FP ops to calls is low enough.
  2740 //     This is a key transform for SPEC mpeg_audio.
  2741 // (4) Detect infinite loops; blobs of code reachable from above but not
  2742 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  2743 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  2744 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  2745 //     Detection is by looking for IfNodes where only 1 projection is
  2746 //     reachable from below or CatchNodes missing some targets.
  2747 // (5) Assert for insane oop offsets in debug mode.
  2749 bool Compile::final_graph_reshaping() {
  2750   // an infinite loop may have been eliminated by the optimizer,
  2751   // in which case the graph will be empty.
  2752   if (root()->req() == 1) {
  2753     record_method_not_compilable("trivial infinite loop");
  2754     return true;
  2757   Final_Reshape_Counts frc;
  2759   // Visit everybody reachable!
  2760   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  2761   Node_Stack nstack(unique() >> 1);
  2762   final_graph_reshaping_walk(nstack, root(), frc);
  2764   // Check for unreachable (from below) code (i.e., infinite loops).
  2765   for( uint i = 0; i < frc._tests.size(); i++ ) {
  2766     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
  2767     // Get number of CFG targets.
  2768     // Note that PCTables include exception targets after calls.
  2769     uint required_outcnt = n->required_outcnt();
  2770     if (n->outcnt() != required_outcnt) {
  2771       // Check for a few special cases.  Rethrow Nodes never take the
  2772       // 'fall-thru' path, so expected kids is 1 less.
  2773       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  2774         if (n->in(0)->in(0)->is_Call()) {
  2775           CallNode *call = n->in(0)->in(0)->as_Call();
  2776           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  2777             required_outcnt--;      // Rethrow always has 1 less kid
  2778           } else if (call->req() > TypeFunc::Parms &&
  2779                      call->is_CallDynamicJava()) {
  2780             // Check for null receiver. In such case, the optimizer has
  2781             // detected that the virtual call will always result in a null
  2782             // pointer exception. The fall-through projection of this CatchNode
  2783             // will not be populated.
  2784             Node *arg0 = call->in(TypeFunc::Parms);
  2785             if (arg0->is_Type() &&
  2786                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  2787               required_outcnt--;
  2789           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  2790                      call->req() > TypeFunc::Parms+1 &&
  2791                      call->is_CallStaticJava()) {
  2792             // Check for negative array length. In such case, the optimizer has
  2793             // detected that the allocation attempt will always result in an
  2794             // exception. There is no fall-through projection of this CatchNode .
  2795             Node *arg1 = call->in(TypeFunc::Parms+1);
  2796             if (arg1->is_Type() &&
  2797                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  2798               required_outcnt--;
  2803       // Recheck with a better notion of 'required_outcnt'
  2804       if (n->outcnt() != required_outcnt) {
  2805         record_method_not_compilable("malformed control flow");
  2806         return true;            // Not all targets reachable!
  2809     // Check that I actually visited all kids.  Unreached kids
  2810     // must be infinite loops.
  2811     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  2812       if (!frc._visited.test(n->fast_out(j)->_idx)) {
  2813         record_method_not_compilable("infinite loop");
  2814         return true;            // Found unvisited kid; must be unreach
  2818   // If original bytecodes contained a mixture of floats and doubles
  2819   // check if the optimizer has made it homogenous, item (3).
  2820   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
  2821       frc.get_float_count() > 32 &&
  2822       frc.get_double_count() == 0 &&
  2823       (10 * frc.get_call_count() < frc.get_float_count()) ) {
  2824     set_24_bit_selection_and_mode( false,  true );
  2827   set_java_calls(frc.get_java_call_count());
  2828   set_inner_loops(frc.get_inner_loop_count());
  2830   // No infinite loops, no reason to bail out.
  2831   return false;
  2834 //-----------------------------too_many_traps----------------------------------
  2835 // Report if there are too many traps at the current method and bci.
  2836 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  2837 bool Compile::too_many_traps(ciMethod* method,
  2838                              int bci,
  2839                              Deoptimization::DeoptReason reason) {
  2840   ciMethodData* md = method->method_data();
  2841   if (md->is_empty()) {
  2842     // Assume the trap has not occurred, or that it occurred only
  2843     // because of a transient condition during start-up in the interpreter.
  2844     return false;
  2846   if (md->has_trap_at(bci, reason) != 0) {
  2847     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  2848     // Also, if there are multiple reasons, or if there is no per-BCI record,
  2849     // assume the worst.
  2850     if (log())
  2851       log()->elem("observe trap='%s' count='%d'",
  2852                   Deoptimization::trap_reason_name(reason),
  2853                   md->trap_count(reason));
  2854     return true;
  2855   } else {
  2856     // Ignore method/bci and see if there have been too many globally.
  2857     return too_many_traps(reason, md);
  2861 // Less-accurate variant which does not require a method and bci.
  2862 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  2863                              ciMethodData* logmd) {
  2864  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
  2865     // Too many traps globally.
  2866     // Note that we use cumulative trap_count, not just md->trap_count.
  2867     if (log()) {
  2868       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  2869       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  2870                   Deoptimization::trap_reason_name(reason),
  2871                   mcount, trap_count(reason));
  2873     return true;
  2874   } else {
  2875     // The coast is clear.
  2876     return false;
  2880 //--------------------------too_many_recompiles--------------------------------
  2881 // Report if there are too many recompiles at the current method and bci.
  2882 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  2883 // Is not eager to return true, since this will cause the compiler to use
  2884 // Action_none for a trap point, to avoid too many recompilations.
  2885 bool Compile::too_many_recompiles(ciMethod* method,
  2886                                   int bci,
  2887                                   Deoptimization::DeoptReason reason) {
  2888   ciMethodData* md = method->method_data();
  2889   if (md->is_empty()) {
  2890     // Assume the trap has not occurred, or that it occurred only
  2891     // because of a transient condition during start-up in the interpreter.
  2892     return false;
  2894   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  2895   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  2896   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  2897   Deoptimization::DeoptReason per_bc_reason
  2898     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  2899   if ((per_bc_reason == Deoptimization::Reason_none
  2900        || md->has_trap_at(bci, reason) != 0)
  2901       // The trap frequency measure we care about is the recompile count:
  2902       && md->trap_recompiled_at(bci)
  2903       && md->overflow_recompile_count() >= bc_cutoff) {
  2904     // Do not emit a trap here if it has already caused recompilations.
  2905     // Also, if there are multiple reasons, or if there is no per-BCI record,
  2906     // assume the worst.
  2907     if (log())
  2908       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  2909                   Deoptimization::trap_reason_name(reason),
  2910                   md->trap_count(reason),
  2911                   md->overflow_recompile_count());
  2912     return true;
  2913   } else if (trap_count(reason) != 0
  2914              && decompile_count() >= m_cutoff) {
  2915     // Too many recompiles globally, and we have seen this sort of trap.
  2916     // Use cumulative decompile_count, not just md->decompile_count.
  2917     if (log())
  2918       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  2919                   Deoptimization::trap_reason_name(reason),
  2920                   md->trap_count(reason), trap_count(reason),
  2921                   md->decompile_count(), decompile_count());
  2922     return true;
  2923   } else {
  2924     // The coast is clear.
  2925     return false;
  2930 #ifndef PRODUCT
  2931 //------------------------------verify_graph_edges---------------------------
  2932 // Walk the Graph and verify that there is a one-to-one correspondence
  2933 // between Use-Def edges and Def-Use edges in the graph.
  2934 void Compile::verify_graph_edges(bool no_dead_code) {
  2935   if (VerifyGraphEdges) {
  2936     ResourceArea *area = Thread::current()->resource_area();
  2937     Unique_Node_List visited(area);
  2938     // Call recursive graph walk to check edges
  2939     _root->verify_edges(visited);
  2940     if (no_dead_code) {
  2941       // Now make sure that no visited node is used by an unvisited node.
  2942       bool dead_nodes = 0;
  2943       Unique_Node_List checked(area);
  2944       while (visited.size() > 0) {
  2945         Node* n = visited.pop();
  2946         checked.push(n);
  2947         for (uint i = 0; i < n->outcnt(); i++) {
  2948           Node* use = n->raw_out(i);
  2949           if (checked.member(use))  continue;  // already checked
  2950           if (visited.member(use))  continue;  // already in the graph
  2951           if (use->is_Con())        continue;  // a dead ConNode is OK
  2952           // At this point, we have found a dead node which is DU-reachable.
  2953           if (dead_nodes++ == 0)
  2954             tty->print_cr("*** Dead nodes reachable via DU edges:");
  2955           use->dump(2);
  2956           tty->print_cr("---");
  2957           checked.push(use);  // No repeats; pretend it is now checked.
  2960       assert(dead_nodes == 0, "using nodes must be reachable from root");
  2964 #endif
  2966 // The Compile object keeps track of failure reasons separately from the ciEnv.
  2967 // This is required because there is not quite a 1-1 relation between the
  2968 // ciEnv and its compilation task and the Compile object.  Note that one
  2969 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  2970 // to backtrack and retry without subsuming loads.  Other than this backtracking
  2971 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  2972 // by the logic in C2Compiler.
  2973 void Compile::record_failure(const char* reason) {
  2974   if (log() != NULL) {
  2975     log()->elem("failure reason='%s' phase='compile'", reason);
  2977   if (_failure_reason == NULL) {
  2978     // Record the first failure reason.
  2979     _failure_reason = reason;
  2981   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  2982     C->print_method(_failure_reason);
  2984   _root = NULL;  // flush the graph, too
  2987 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  2988   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
  2990   if (dolog) {
  2991     C = Compile::current();
  2992     _log = C->log();
  2993   } else {
  2994     C = NULL;
  2995     _log = NULL;
  2997   if (_log != NULL) {
  2998     _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
  2999     _log->stamp();
  3000     _log->end_head();
  3004 Compile::TracePhase::~TracePhase() {
  3005   if (_log != NULL) {
  3006     _log->done("phase nodes='%d'", C->unique());
  3010 //=============================================================================
  3011 // Two Constant's are equal when the type and the value are equal.
  3012 bool Compile::Constant::operator==(const Constant& other) {
  3013   if (type()          != other.type()         )  return false;
  3014   if (can_be_reused() != other.can_be_reused())  return false;
  3015   // For floating point values we compare the bit pattern.
  3016   switch (type()) {
  3017   case T_FLOAT:   return (_value.i == other._value.i);
  3018   case T_LONG:
  3019   case T_DOUBLE:  return (_value.j == other._value.j);
  3020   case T_OBJECT:
  3021   case T_ADDRESS: return (_value.l == other._value.l);
  3022   case T_VOID:    return (_value.l == other._value.l);  // jump-table entries
  3023   default: ShouldNotReachHere();
  3025   return false;
  3028 // Emit constants grouped in the following order:
  3029 static BasicType type_order[] = {
  3030   T_FLOAT,    // 32-bit
  3031   T_OBJECT,   // 32 or 64-bit
  3032   T_ADDRESS,  // 32 or 64-bit
  3033   T_DOUBLE,   // 64-bit
  3034   T_LONG,     // 64-bit
  3035   T_VOID,     // 32 or 64-bit (jump-tables are at the end of the constant table for code emission reasons)
  3036   T_ILLEGAL
  3037 };
  3039 static int type_to_size_in_bytes(BasicType t) {
  3040   switch (t) {
  3041   case T_LONG:    return sizeof(jlong  );
  3042   case T_FLOAT:   return sizeof(jfloat );
  3043   case T_DOUBLE:  return sizeof(jdouble);
  3044     // We use T_VOID as marker for jump-table entries (labels) which
  3045     // need an interal word relocation.
  3046   case T_VOID:
  3047   case T_ADDRESS:
  3048   case T_OBJECT:  return sizeof(jobject);
  3051   ShouldNotReachHere();
  3052   return -1;
  3055 void Compile::ConstantTable::calculate_offsets_and_size() {
  3056   int size = 0;
  3057   for (int t = 0; type_order[t] != T_ILLEGAL; t++) {
  3058     BasicType type = type_order[t];
  3060     for (int i = 0; i < _constants.length(); i++) {
  3061       Constant con = _constants.at(i);
  3062       if (con.type() != type)  continue;  // Skip other types.
  3064       // Align size for type.
  3065       int typesize = type_to_size_in_bytes(con.type());
  3066       size = align_size_up(size, typesize);
  3068       // Set offset.
  3069       con.set_offset(size);
  3070       _constants.at_put(i, con);
  3072       // Add type size.
  3073       size = size + typesize;
  3077   // Align size up to the next section start (which is insts; see
  3078   // CodeBuffer::align_at_start).
  3079   assert(_size == -1, "already set?");
  3080   _size = align_size_up(size, CodeEntryAlignment);
  3082   if (Matcher::constant_table_absolute_addressing) {
  3083     set_table_base_offset(0);  // No table base offset required
  3084   } else {
  3085     if (UseRDPCForConstantTableBase) {
  3086       // table base offset is set in MachConstantBaseNode::emit
  3087     } else {
  3088       // When RDPC is not used, the table base is set into the middle of
  3089       // the constant table.
  3090       int half_size = _size / 2;
  3091       assert(half_size * 2 == _size, "sanity");
  3092       set_table_base_offset(-half_size);
  3097 void Compile::ConstantTable::emit(CodeBuffer& cb) {
  3098   MacroAssembler _masm(&cb);
  3099   for (int t = 0; type_order[t] != T_ILLEGAL; t++) {
  3100     BasicType type = type_order[t];
  3102     for (int i = 0; i < _constants.length(); i++) {
  3103       Constant con = _constants.at(i);
  3104       if (con.type() != type)  continue;  // Skip other types.
  3106       address constant_addr;
  3107       switch (con.type()) {
  3108       case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
  3109       case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
  3110       case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
  3111       case T_OBJECT: {
  3112         jobject obj = con.get_jobject();
  3113         int oop_index = _masm.oop_recorder()->find_index(obj);
  3114         constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
  3115         break;
  3117       case T_ADDRESS: {
  3118         address addr = (address) con.get_jobject();
  3119         constant_addr = _masm.address_constant(addr);
  3120         break;
  3122       // We use T_VOID as marker for jump-table entries (labels) which
  3123       // need an interal word relocation.
  3124       case T_VOID: {
  3125         // Write a dummy word.  The real value is filled in later
  3126         // in fill_jump_table_in_constant_table.
  3127         address addr = (address) con.get_jobject();
  3128         constant_addr = _masm.address_constant(addr);
  3129         break;
  3131       default: ShouldNotReachHere();
  3133       assert(constant_addr != NULL, "consts section too small");
  3134       assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
  3139 int Compile::ConstantTable::find_offset(Constant& con) const {
  3140   int idx = _constants.find(con);
  3141   assert(idx != -1, "constant must be in constant table");
  3142   int offset = _constants.at(idx).offset();
  3143   assert(offset != -1, "constant table not emitted yet?");
  3144   return offset;
  3147 void Compile::ConstantTable::add(Constant& con) {
  3148   if (con.can_be_reused()) {
  3149     int idx = _constants.find(con);
  3150     if (idx != -1 && _constants.at(idx).can_be_reused()) {
  3151       return;
  3154   (void) _constants.append(con);
  3157 Compile::Constant Compile::ConstantTable::add(BasicType type, jvalue value) {
  3158   Constant con(type, value);
  3159   add(con);
  3160   return con;
  3163 Compile::Constant Compile::ConstantTable::add(MachOper* oper) {
  3164   jvalue value;
  3165   BasicType type = oper->type()->basic_type();
  3166   switch (type) {
  3167   case T_LONG:    value.j = oper->constantL(); break;
  3168   case T_FLOAT:   value.f = oper->constantF(); break;
  3169   case T_DOUBLE:  value.d = oper->constantD(); break;
  3170   case T_OBJECT:
  3171   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
  3172   default: ShouldNotReachHere();
  3174   return add(type, value);
  3177 Compile::Constant Compile::ConstantTable::allocate_jump_table(MachConstantNode* n) {
  3178   jvalue value;
  3179   // We can use the node pointer here to identify the right jump-table
  3180   // as this method is called from Compile::Fill_buffer right before
  3181   // the MachNodes are emitted and the jump-table is filled (means the
  3182   // MachNode pointers do not change anymore).
  3183   value.l = (jobject) n;
  3184   Constant con(T_VOID, value, false);  // Labels of a jump-table cannot be reused.
  3185   for (uint i = 0; i < n->outcnt(); i++) {
  3186     add(con);
  3188   return con;
  3191 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
  3192   // If called from Compile::scratch_emit_size do nothing.
  3193   if (Compile::current()->in_scratch_emit_size())  return;
  3195   assert(labels.is_nonempty(), "must be");
  3196   assert((uint) labels.length() == n->outcnt(), err_msg("must be equal: %d == %d", labels.length(), n->outcnt()));
  3198   // Since MachConstantNode::constant_offset() also contains
  3199   // table_base_offset() we need to subtract the table_base_offset()
  3200   // to get the plain offset into the constant table.
  3201   int offset = n->constant_offset() - table_base_offset();
  3203   MacroAssembler _masm(&cb);
  3204   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
  3206   for (int i = 0; i < labels.length(); i++) {
  3207     address* constant_addr = &jump_table_base[i];
  3208     assert(*constant_addr == (address) n, "all jump-table entries must contain node pointer");
  3209     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
  3210     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);

mercurial