src/cpu/x86/vm/templateInterpreter_x86_64.cpp

Thu, 18 Mar 2010 09:56:51 +0100

author
twisti
date
Thu, 18 Mar 2010 09:56:51 +0100
changeset 1739
76c1d7d13ec5
parent 1730
3cf667df43ef
child 1861
2338d41fbd81
permissions
-rw-r--r--

6932091: JSR 292 x86 code cleanup
Summary: Some code cleanups found during the JSR 292 SPARC port.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 2003-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_interpreter_x86_64.cpp.incl"
    28 #define __ _masm->
    30 #ifndef CC_INTERP
    32 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    33 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    34 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    36 //-----------------------------------------------------------------------------
    38 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    39   address entry = __ pc();
    41 #ifdef ASSERT
    42   {
    43     Label L;
    44     __ lea(rax, Address(rbp,
    45                         frame::interpreter_frame_monitor_block_top_offset *
    46                         wordSize));
    47     __ cmpptr(rax, rsp); // rax = maximal rsp for current rbp (stack
    48                          // grows negative)
    49     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    50     __ stop ("interpreter frame not set up");
    51     __ bind(L);
    52   }
    53 #endif // ASSERT
    54   // Restore bcp under the assumption that the current frame is still
    55   // interpreted
    56   __ restore_bcp();
    58   // expression stack must be empty before entering the VM if an
    59   // exception happened
    60   __ empty_expression_stack();
    61   // throw exception
    62   __ call_VM(noreg,
    63              CAST_FROM_FN_PTR(address,
    64                               InterpreterRuntime::throw_StackOverflowError));
    65   return entry;
    66 }
    68 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
    69         const char* name) {
    70   address entry = __ pc();
    71   // expression stack must be empty before entering the VM if an
    72   // exception happened
    73   __ empty_expression_stack();
    74   // setup parameters
    75   // ??? convention: expect aberrant index in register ebx
    76   __ lea(c_rarg1, ExternalAddress((address)name));
    77   __ call_VM(noreg,
    78              CAST_FROM_FN_PTR(address,
    79                               InterpreterRuntime::
    80                               throw_ArrayIndexOutOfBoundsException),
    81              c_rarg1, rbx);
    82   return entry;
    83 }
    85 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
    86   address entry = __ pc();
    88   // object is at TOS
    89   __ pop(c_rarg1);
    91   // expression stack must be empty before entering the VM if an
    92   // exception happened
    93   __ empty_expression_stack();
    95   __ call_VM(noreg,
    96              CAST_FROM_FN_PTR(address,
    97                               InterpreterRuntime::
    98                               throw_ClassCastException),
    99              c_rarg1);
   100   return entry;
   101 }
   103 // Arguments are: required type at TOS+8, failing object (or NULL) at TOS+4.
   104 address TemplateInterpreterGenerator::generate_WrongMethodType_handler() {
   105   address entry = __ pc();
   107   __ pop(c_rarg2);              // failing object is at TOS
   108   __ pop(c_rarg1);              // required type is at TOS+8
   110   __ verify_oop(c_rarg1);
   111   __ verify_oop(c_rarg2);
   113   // Various method handle types use interpreter registers as temps.
   114   __ restore_bcp();
   115   __ restore_locals();
   117   // Expression stack must be empty before entering the VM for an exception.
   118   __ empty_expression_stack();
   120   __ call_VM(noreg,
   121              CAST_FROM_FN_PTR(address,
   122                               InterpreterRuntime::throw_WrongMethodTypeException),
   123              // pass required type, failing object (or NULL)
   124              c_rarg1, c_rarg2);
   125   return entry;
   126 }
   128 address TemplateInterpreterGenerator::generate_exception_handler_common(
   129         const char* name, const char* message, bool pass_oop) {
   130   assert(!pass_oop || message == NULL, "either oop or message but not both");
   131   address entry = __ pc();
   132   if (pass_oop) {
   133     // object is at TOS
   134     __ pop(c_rarg2);
   135   }
   136   // expression stack must be empty before entering the VM if an
   137   // exception happened
   138   __ empty_expression_stack();
   139   // setup parameters
   140   __ lea(c_rarg1, ExternalAddress((address)name));
   141   if (pass_oop) {
   142     __ call_VM(rax, CAST_FROM_FN_PTR(address,
   143                                      InterpreterRuntime::
   144                                      create_klass_exception),
   145                c_rarg1, c_rarg2);
   146   } else {
   147     // kind of lame ExternalAddress can't take NULL because
   148     // external_word_Relocation will assert.
   149     if (message != NULL) {
   150       __ lea(c_rarg2, ExternalAddress((address)message));
   151     } else {
   152       __ movptr(c_rarg2, NULL_WORD);
   153     }
   154     __ call_VM(rax,
   155                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
   156                c_rarg1, c_rarg2);
   157   }
   158   // throw exception
   159   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   160   return entry;
   161 }
   164 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   165   address entry = __ pc();
   166   // NULL last_sp until next java call
   167   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   168   __ dispatch_next(state);
   169   return entry;
   170 }
   173 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state,
   174                                                                 int step) {
   176   // amd64 doesn't need to do anything special about compiled returns
   177   // to the interpreter so the code that exists on x86 to place a sentinel
   178   // here and the specialized cleanup code is not needed here.
   180   address entry = __ pc();
   182   // Restore stack bottom in case i2c adjusted stack
   183   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   184   // and NULL it as marker that esp is now tos until next java call
   185   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   187   __ restore_bcp();
   188   __ restore_locals();
   190   Label L_got_cache, L_giant_index;
   191   if (EnableInvokeDynamic) {
   192     __ cmpb(Address(r13, 0), Bytecodes::_invokedynamic);
   193     __ jcc(Assembler::equal, L_giant_index);
   194   }
   195   __ get_cache_and_index_at_bcp(rbx, rcx, 1, false);
   196   __ bind(L_got_cache);
   197   __ movl(rbx, Address(rbx, rcx,
   198                        Address::times_ptr,
   199                        in_bytes(constantPoolCacheOopDesc::base_offset()) +
   200                        3 * wordSize));
   201   __ andl(rbx, 0xFF);
   202   if (TaggedStackInterpreter) __ shll(rbx, 1); // 2 slots per parameter.
   203   __ lea(rsp, Address(rsp, rbx, Address::times_8));
   204   __ dispatch_next(state, step);
   206   // out of the main line of code...
   207   if (EnableInvokeDynamic) {
   208     __ bind(L_giant_index);
   209     __ get_cache_and_index_at_bcp(rbx, rcx, 1, true);
   210     __ jmp(L_got_cache);
   211   }
   213   return entry;
   214 }
   217 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
   218                                                                int step) {
   219   address entry = __ pc();
   220   // NULL last_sp until next java call
   221   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   222   __ restore_bcp();
   223   __ restore_locals();
   224   // handle exceptions
   225   {
   226     Label L;
   227     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
   228     __ jcc(Assembler::zero, L);
   229     __ call_VM(noreg,
   230                CAST_FROM_FN_PTR(address,
   231                                 InterpreterRuntime::throw_pending_exception));
   232     __ should_not_reach_here();
   233     __ bind(L);
   234   }
   235   __ dispatch_next(state, step);
   236   return entry;
   237 }
   239 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   240   int i = 0;
   241   switch (type) {
   242     case T_BOOLEAN: i = 0; break;
   243     case T_CHAR   : i = 1; break;
   244     case T_BYTE   : i = 2; break;
   245     case T_SHORT  : i = 3; break;
   246     case T_INT    : i = 4; break;
   247     case T_LONG   : i = 5; break;
   248     case T_VOID   : i = 6; break;
   249     case T_FLOAT  : i = 7; break;
   250     case T_DOUBLE : i = 8; break;
   251     case T_OBJECT : i = 9; break;
   252     case T_ARRAY  : i = 9; break;
   253     default       : ShouldNotReachHere();
   254   }
   255   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
   256          "index out of bounds");
   257   return i;
   258 }
   261 address TemplateInterpreterGenerator::generate_result_handler_for(
   262         BasicType type) {
   263   address entry = __ pc();
   264   switch (type) {
   265   case T_BOOLEAN: __ c2bool(rax);            break;
   266   case T_CHAR   : __ movzwl(rax, rax);       break;
   267   case T_BYTE   : __ sign_extend_byte(rax);  break;
   268   case T_SHORT  : __ sign_extend_short(rax); break;
   269   case T_INT    : /* nothing to do */        break;
   270   case T_LONG   : /* nothing to do */        break;
   271   case T_VOID   : /* nothing to do */        break;
   272   case T_FLOAT  : /* nothing to do */        break;
   273   case T_DOUBLE : /* nothing to do */        break;
   274   case T_OBJECT :
   275     // retrieve result from frame
   276     __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   277     // and verify it
   278     __ verify_oop(rax);
   279     break;
   280   default       : ShouldNotReachHere();
   281   }
   282   __ ret(0);                                   // return from result handler
   283   return entry;
   284 }
   286 address TemplateInterpreterGenerator::generate_safept_entry_for(
   287         TosState state,
   288         address runtime_entry) {
   289   address entry = __ pc();
   290   __ push(state);
   291   __ call_VM(noreg, runtime_entry);
   292   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   293   return entry;
   294 }
   298 // Helpers for commoning out cases in the various type of method entries.
   299 //
   302 // increment invocation count & check for overflow
   303 //
   304 // Note: checking for negative value instead of overflow
   305 //       so we have a 'sticky' overflow test
   306 //
   307 // rbx: method
   308 // ecx: invocation counter
   309 //
   310 void InterpreterGenerator::generate_counter_incr(
   311         Label* overflow,
   312         Label* profile_method,
   313         Label* profile_method_continue) {
   315   const Address invocation_counter(rbx,
   316                                    methodOopDesc::invocation_counter_offset() +
   317                                    InvocationCounter::counter_offset());
   318   const Address backedge_counter(rbx,
   319                                  methodOopDesc::backedge_counter_offset() +
   320                                  InvocationCounter::counter_offset());
   322   if (ProfileInterpreter) { // %%% Merge this into methodDataOop
   323     __ incrementl(Address(rbx,
   324                     methodOopDesc::interpreter_invocation_counter_offset()));
   325   }
   326   // Update standard invocation counters
   327   __ movl(rax, backedge_counter); // load backedge counter
   329   __ incrementl(rcx, InvocationCounter::count_increment);
   330   __ andl(rax, InvocationCounter::count_mask_value); // mask out the
   331                                                      // status bits
   333   __ movl(invocation_counter, rcx); // save invocation count
   334   __ addl(rcx, rax); // add both counters
   336   // profile_method is non-null only for interpreted method so
   337   // profile_method != NULL == !native_call
   339   if (ProfileInterpreter && profile_method != NULL) {
   340     // Test to see if we should create a method data oop
   341     __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   342     __ jcc(Assembler::less, *profile_method_continue);
   344     // if no method data exists, go to profile_method
   345     __ test_method_data_pointer(rax, *profile_method);
   346   }
   348   __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   349   __ jcc(Assembler::aboveEqual, *overflow);
   350 }
   352 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   354   // Asm interpreter on entry
   355   // r14 - locals
   356   // r13 - bcp
   357   // rbx - method
   358   // edx - cpool --- DOES NOT APPEAR TO BE TRUE
   359   // rbp - interpreter frame
   361   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   362   // Everything as it was on entry
   363   // rdx is not restored. Doesn't appear to really be set.
   365   const Address size_of_parameters(rbx,
   366                                    methodOopDesc::size_of_parameters_offset());
   368   // InterpreterRuntime::frequency_counter_overflow takes two
   369   // arguments, the first (thread) is passed by call_VM, the second
   370   // indicates if the counter overflow occurs at a backwards branch
   371   // (NULL bcp).  We pass zero for it.  The call returns the address
   372   // of the verified entry point for the method or NULL if the
   373   // compilation did not complete (either went background or bailed
   374   // out).
   375   __ movl(c_rarg1, 0);
   376   __ call_VM(noreg,
   377              CAST_FROM_FN_PTR(address,
   378                               InterpreterRuntime::frequency_counter_overflow),
   379              c_rarg1);
   381   __ movptr(rbx, Address(rbp, method_offset));   // restore methodOop
   382   // Preserve invariant that r13/r14 contain bcp/locals of sender frame
   383   // and jump to the interpreted entry.
   384   __ jmp(*do_continue, relocInfo::none);
   385 }
   387 // See if we've got enough room on the stack for locals plus overhead.
   388 // The expression stack grows down incrementally, so the normal guard
   389 // page mechanism will work for that.
   390 //
   391 // NOTE: Since the additional locals are also always pushed (wasn't
   392 // obvious in generate_method_entry) so the guard should work for them
   393 // too.
   394 //
   395 // Args:
   396 //      rdx: number of additional locals this frame needs (what we must check)
   397 //      rbx: methodOop
   398 //
   399 // Kills:
   400 //      rax
   401 void InterpreterGenerator::generate_stack_overflow_check(void) {
   403   // monitor entry size: see picture of stack set
   404   // (generate_method_entry) and frame_amd64.hpp
   405   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   407   // total overhead size: entry_size + (saved rbp through expr stack
   408   // bottom).  be sure to change this if you add/subtract anything
   409   // to/from the overhead area
   410   const int overhead_size =
   411     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
   413   const int page_size = os::vm_page_size();
   415   Label after_frame_check;
   417   // see if the frame is greater than one page in size. If so,
   418   // then we need to verify there is enough stack space remaining
   419   // for the additional locals.
   420   __ cmpl(rdx, (page_size - overhead_size) / Interpreter::stackElementSize());
   421   __ jcc(Assembler::belowEqual, after_frame_check);
   423   // compute rsp as if this were going to be the last frame on
   424   // the stack before the red zone
   426   const Address stack_base(r15_thread, Thread::stack_base_offset());
   427   const Address stack_size(r15_thread, Thread::stack_size_offset());
   429   // locals + overhead, in bytes
   430   __ mov(rax, rdx);
   431   __ shlptr(rax, Interpreter::logStackElementSize()); // 2 slots per parameter.
   432   __ addptr(rax, overhead_size);
   434 #ifdef ASSERT
   435   Label stack_base_okay, stack_size_okay;
   436   // verify that thread stack base is non-zero
   437   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   438   __ jcc(Assembler::notEqual, stack_base_okay);
   439   __ stop("stack base is zero");
   440   __ bind(stack_base_okay);
   441   // verify that thread stack size is non-zero
   442   __ cmpptr(stack_size, 0);
   443   __ jcc(Assembler::notEqual, stack_size_okay);
   444   __ stop("stack size is zero");
   445   __ bind(stack_size_okay);
   446 #endif
   448   // Add stack base to locals and subtract stack size
   449   __ addptr(rax, stack_base);
   450   __ subptr(rax, stack_size);
   452   // Use the maximum number of pages we might bang.
   453   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   454                                                                               (StackRedPages+StackYellowPages);
   456   // add in the red and yellow zone sizes
   457   __ addptr(rax, max_pages * page_size);
   459   // check against the current stack bottom
   460   __ cmpptr(rsp, rax);
   461   __ jcc(Assembler::above, after_frame_check);
   463   __ pop(rax); // get return address
   464   __ jump(ExternalAddress(Interpreter::throw_StackOverflowError_entry()));
   466   // all done with frame size check
   467   __ bind(after_frame_check);
   468 }
   470 // Allocate monitor and lock method (asm interpreter)
   471 //
   472 // Args:
   473 //      rbx: methodOop
   474 //      r14: locals
   475 //
   476 // Kills:
   477 //      rax
   478 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
   479 //      rscratch1, rscratch2 (scratch regs)
   480 void InterpreterGenerator::lock_method(void) {
   481   // synchronize method
   482   const Address access_flags(rbx, methodOopDesc::access_flags_offset());
   483   const Address monitor_block_top(
   484         rbp,
   485         frame::interpreter_frame_monitor_block_top_offset * wordSize);
   486   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   488 #ifdef ASSERT
   489   {
   490     Label L;
   491     __ movl(rax, access_flags);
   492     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   493     __ jcc(Assembler::notZero, L);
   494     __ stop("method doesn't need synchronization");
   495     __ bind(L);
   496   }
   497 #endif // ASSERT
   499   // get synchronization object
   500   {
   501     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() +
   502                               Klass::java_mirror_offset_in_bytes();
   503     Label done;
   504     __ movl(rax, access_flags);
   505     __ testl(rax, JVM_ACC_STATIC);
   506     // get receiver (assume this is frequent case)
   507     __ movptr(rax, Address(r14, Interpreter::local_offset_in_bytes(0)));
   508     __ jcc(Assembler::zero, done);
   509     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
   510     __ movptr(rax, Address(rax,
   511                            constantPoolOopDesc::pool_holder_offset_in_bytes()));
   512     __ movptr(rax, Address(rax, mirror_offset));
   514 #ifdef ASSERT
   515     {
   516       Label L;
   517       __ testptr(rax, rax);
   518       __ jcc(Assembler::notZero, L);
   519       __ stop("synchronization object is NULL");
   520       __ bind(L);
   521     }
   522 #endif // ASSERT
   524     __ bind(done);
   525   }
   527   // add space for monitor & lock
   528   __ subptr(rsp, entry_size); // add space for a monitor entry
   529   __ movptr(monitor_block_top, rsp);  // set new monitor block top
   530   // store object
   531   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax);
   532   __ movptr(c_rarg1, rsp); // object address
   533   __ lock_object(c_rarg1);
   534 }
   536 // Generate a fixed interpreter frame. This is identical setup for
   537 // interpreted methods and for native methods hence the shared code.
   538 //
   539 // Args:
   540 //      rax: return address
   541 //      rbx: methodOop
   542 //      r14: pointer to locals
   543 //      r13: sender sp
   544 //      rdx: cp cache
   545 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   546   // initialize fixed part of activation frame
   547   __ push(rax);        // save return address
   548   __ enter();          // save old & set new rbp
   549   __ push(r13);        // set sender sp
   550   __ push((int)NULL_WORD); // leave last_sp as null
   551   __ movptr(r13, Address(rbx, methodOopDesc::const_offset()));      // get constMethodOop
   552   __ lea(r13, Address(r13, constMethodOopDesc::codes_offset())); // get codebase
   553   __ push(rbx);        // save methodOop
   554   if (ProfileInterpreter) {
   555     Label method_data_continue;
   556     __ movptr(rdx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   557     __ testptr(rdx, rdx);
   558     __ jcc(Assembler::zero, method_data_continue);
   559     __ addptr(rdx, in_bytes(methodDataOopDesc::data_offset()));
   560     __ bind(method_data_continue);
   561     __ push(rdx);      // set the mdp (method data pointer)
   562   } else {
   563     __ push(0);
   564   }
   566   __ movptr(rdx, Address(rbx, methodOopDesc::constants_offset()));
   567   __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
   568   __ push(rdx); // set constant pool cache
   569   __ push(r14); // set locals pointer
   570   if (native_call) {
   571     __ push(0); // no bcp
   572   } else {
   573     __ push(r13); // set bcp
   574   }
   575   __ push(0); // reserve word for pointer to expression stack bottom
   576   __ movptr(Address(rsp, 0), rsp); // set expression stack bottom
   577 }
   579 // End of helpers
   581 // Various method entries
   582 //------------------------------------------------------------------------------------------------------------------------
   583 //
   584 //
   586 // Call an accessor method (assuming it is resolved, otherwise drop
   587 // into vanilla (slow path) entry
   588 address InterpreterGenerator::generate_accessor_entry(void) {
   589   // rbx: methodOop
   591   // r13: senderSP must preserver for slow path, set SP to it on fast path
   593   address entry_point = __ pc();
   594   Label xreturn_path;
   596   // do fastpath for resolved accessor methods
   597   if (UseFastAccessorMethods) {
   598     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites
   599     //       thereof; parameter size = 1
   600     // Note: We can only use this code if the getfield has been resolved
   601     //       and if we don't have a null-pointer exception => check for
   602     //       these conditions first and use slow path if necessary.
   603     Label slow_path;
   604     // If we need a safepoint check, generate full interpreter entry.
   605     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   606              SafepointSynchronize::_not_synchronized);
   608     __ jcc(Assembler::notEqual, slow_path);
   609     // rbx: method
   610     __ movptr(rax, Address(rsp, wordSize));
   612     // check if local 0 != NULL and read field
   613     __ testptr(rax, rax);
   614     __ jcc(Assembler::zero, slow_path);
   616     __ movptr(rdi, Address(rbx, methodOopDesc::constants_offset()));
   617     // read first instruction word and extract bytecode @ 1 and index @ 2
   618     __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
   619     __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
   620     // Shift codes right to get the index on the right.
   621     // The bytecode fetched looks like <index><0xb4><0x2a>
   622     __ shrl(rdx, 2 * BitsPerByte);
   623     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   624     __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
   626     // rax: local 0
   627     // rbx: method
   628     // rdx: constant pool cache index
   629     // rdi: constant pool cache
   631     // check if getfield has been resolved and read constant pool cache entry
   632     // check the validity of the cache entry by testing whether _indices field
   633     // contains Bytecode::_getfield in b1 byte.
   634     assert(in_words(ConstantPoolCacheEntry::size()) == 4,
   635            "adjust shift below");
   636     __ movl(rcx,
   637             Address(rdi,
   638                     rdx,
   639                     Address::times_8,
   640                     constantPoolCacheOopDesc::base_offset() +
   641                     ConstantPoolCacheEntry::indices_offset()));
   642     __ shrl(rcx, 2 * BitsPerByte);
   643     __ andl(rcx, 0xFF);
   644     __ cmpl(rcx, Bytecodes::_getfield);
   645     __ jcc(Assembler::notEqual, slow_path);
   647     // Note: constant pool entry is not valid before bytecode is resolved
   648     __ movptr(rcx,
   649               Address(rdi,
   650                       rdx,
   651                       Address::times_8,
   652                       constantPoolCacheOopDesc::base_offset() +
   653                       ConstantPoolCacheEntry::f2_offset()));
   654     // edx: flags
   655     __ movl(rdx,
   656             Address(rdi,
   657                     rdx,
   658                     Address::times_8,
   659                     constantPoolCacheOopDesc::base_offset() +
   660                     ConstantPoolCacheEntry::flags_offset()));
   662     Label notObj, notInt, notByte, notShort;
   663     const Address field_address(rax, rcx, Address::times_1);
   665     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   666     // because they are different sizes.
   667     // Use the type from the constant pool cache
   668     __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
   669     // Make sure we don't need to mask edx for tosBits after the above shift
   670     ConstantPoolCacheEntry::verify_tosBits();
   672     __ cmpl(rdx, atos);
   673     __ jcc(Assembler::notEqual, notObj);
   674     // atos
   675     __ load_heap_oop(rax, field_address);
   676     __ jmp(xreturn_path);
   678     __ bind(notObj);
   679     __ cmpl(rdx, itos);
   680     __ jcc(Assembler::notEqual, notInt);
   681     // itos
   682     __ movl(rax, field_address);
   683     __ jmp(xreturn_path);
   685     __ bind(notInt);
   686     __ cmpl(rdx, btos);
   687     __ jcc(Assembler::notEqual, notByte);
   688     // btos
   689     __ load_signed_byte(rax, field_address);
   690     __ jmp(xreturn_path);
   692     __ bind(notByte);
   693     __ cmpl(rdx, stos);
   694     __ jcc(Assembler::notEqual, notShort);
   695     // stos
   696     __ load_signed_short(rax, field_address);
   697     __ jmp(xreturn_path);
   699     __ bind(notShort);
   700 #ifdef ASSERT
   701     Label okay;
   702     __ cmpl(rdx, ctos);
   703     __ jcc(Assembler::equal, okay);
   704     __ stop("what type is this?");
   705     __ bind(okay);
   706 #endif
   707     // ctos
   708     __ load_unsigned_short(rax, field_address);
   710     __ bind(xreturn_path);
   712     // _ireturn/_areturn
   713     __ pop(rdi);
   714     __ mov(rsp, r13);
   715     __ jmp(rdi);
   716     __ ret(0);
   718     // generate a vanilla interpreter entry as the slow path
   719     __ bind(slow_path);
   720     (void) generate_normal_entry(false);
   721   } else {
   722     (void) generate_normal_entry(false);
   723   }
   725   return entry_point;
   726 }
   728 // Interpreter stub for calling a native method. (asm interpreter)
   729 // This sets up a somewhat different looking stack for calling the
   730 // native method than the typical interpreter frame setup.
   731 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   732   // determine code generation flags
   733   bool inc_counter  = UseCompiler || CountCompiledCalls;
   735   // rbx: methodOop
   736   // r13: sender sp
   738   address entry_point = __ pc();
   740   const Address size_of_parameters(rbx, methodOopDesc::
   741                                         size_of_parameters_offset());
   742   const Address invocation_counter(rbx, methodOopDesc::
   743                                         invocation_counter_offset() +
   744                                         InvocationCounter::counter_offset());
   745   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   747   // get parameter size (always needed)
   748   __ load_unsigned_short(rcx, size_of_parameters);
   750   // native calls don't need the stack size check since they have no
   751   // expression stack and the arguments are already on the stack and
   752   // we only add a handful of words to the stack
   754   // rbx: methodOop
   755   // rcx: size of parameters
   756   // r13: sender sp
   757   __ pop(rax);                                       // get return address
   759   // for natives the size of locals is zero
   761   // compute beginning of parameters (r14)
   762   if (TaggedStackInterpreter) __ shll(rcx, 1); // 2 slots per parameter.
   763   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
   765   // add 2 zero-initialized slots for native calls
   766   // initialize result_handler slot
   767   __ push((int) NULL_WORD);
   768   // slot for oop temp
   769   // (static native method holder mirror/jni oop result)
   770   __ push((int) NULL_WORD);
   772   if (inc_counter) {
   773     __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
   774   }
   776   // initialize fixed part of activation frame
   777   generate_fixed_frame(true);
   779   // make sure method is native & not abstract
   780 #ifdef ASSERT
   781   __ movl(rax, access_flags);
   782   {
   783     Label L;
   784     __ testl(rax, JVM_ACC_NATIVE);
   785     __ jcc(Assembler::notZero, L);
   786     __ stop("tried to execute non-native method as native");
   787     __ bind(L);
   788   }
   789   {
   790     Label L;
   791     __ testl(rax, JVM_ACC_ABSTRACT);
   792     __ jcc(Assembler::zero, L);
   793     __ stop("tried to execute abstract method in interpreter");
   794     __ bind(L);
   795   }
   796 #endif
   798   // Since at this point in the method invocation the exception handler
   799   // would try to exit the monitor of synchronized methods which hasn't
   800   // been entered yet, we set the thread local variable
   801   // _do_not_unlock_if_synchronized to true. The remove_activation will
   802   // check this flag.
   804   const Address do_not_unlock_if_synchronized(r15_thread,
   805         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   806   __ movbool(do_not_unlock_if_synchronized, true);
   808   // increment invocation count & check for overflow
   809   Label invocation_counter_overflow;
   810   if (inc_counter) {
   811     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   812   }
   814   Label continue_after_compile;
   815   __ bind(continue_after_compile);
   817   bang_stack_shadow_pages(true);
   819   // reset the _do_not_unlock_if_synchronized flag
   820   __ movbool(do_not_unlock_if_synchronized, false);
   822   // check for synchronized methods
   823   // Must happen AFTER invocation_counter check and stack overflow check,
   824   // so method is not locked if overflows.
   825   if (synchronized) {
   826     lock_method();
   827   } else {
   828     // no synchronization necessary
   829 #ifdef ASSERT
   830     {
   831       Label L;
   832       __ movl(rax, access_flags);
   833       __ testl(rax, JVM_ACC_SYNCHRONIZED);
   834       __ jcc(Assembler::zero, L);
   835       __ stop("method needs synchronization");
   836       __ bind(L);
   837     }
   838 #endif
   839   }
   841   // start execution
   842 #ifdef ASSERT
   843   {
   844     Label L;
   845     const Address monitor_block_top(rbp,
   846                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
   847     __ movptr(rax, monitor_block_top);
   848     __ cmpptr(rax, rsp);
   849     __ jcc(Assembler::equal, L);
   850     __ stop("broken stack frame setup in interpreter");
   851     __ bind(L);
   852   }
   853 #endif
   855   // jvmti support
   856   __ notify_method_entry();
   858   // work registers
   859   const Register method = rbx;
   860   const Register t      = r11;
   862   // allocate space for parameters
   863   __ get_method(method);
   864   __ verify_oop(method);
   865   __ load_unsigned_short(t,
   866                          Address(method,
   867                                  methodOopDesc::size_of_parameters_offset()));
   868   __ shll(t, Interpreter::logStackElementSize());
   870   __ subptr(rsp, t);
   871   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
   872   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
   874   // get signature handler
   875   {
   876     Label L;
   877     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
   878     __ testptr(t, t);
   879     __ jcc(Assembler::notZero, L);
   880     __ call_VM(noreg,
   881                CAST_FROM_FN_PTR(address,
   882                                 InterpreterRuntime::prepare_native_call),
   883                method);
   884     __ get_method(method);
   885     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
   886     __ bind(L);
   887   }
   889   // call signature handler
   890   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == r14,
   891          "adjust this code");
   892   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == rsp,
   893          "adjust this code");
   894   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
   895           "adjust this code");
   897   // The generated handlers do not touch RBX (the method oop).
   898   // However, large signatures cannot be cached and are generated
   899   // each time here.  The slow-path generator can do a GC on return,
   900   // so we must reload it after the call.
   901   __ call(t);
   902   __ get_method(method);        // slow path can do a GC, reload RBX
   905   // result handler is in rax
   906   // set result handler
   907   __ movptr(Address(rbp,
   908                     (frame::interpreter_frame_result_handler_offset) * wordSize),
   909             rax);
   911   // pass mirror handle if static call
   912   {
   913     Label L;
   914     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() +
   915                               Klass::java_mirror_offset_in_bytes();
   916     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
   917     __ testl(t, JVM_ACC_STATIC);
   918     __ jcc(Assembler::zero, L);
   919     // get mirror
   920     __ movptr(t, Address(method, methodOopDesc::constants_offset()));
   921     __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
   922     __ movptr(t, Address(t, mirror_offset));
   923     // copy mirror into activation frame
   924     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize),
   925             t);
   926     // pass handle to mirror
   927     __ lea(c_rarg1,
   928            Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
   929     __ bind(L);
   930   }
   932   // get native function entry point
   933   {
   934     Label L;
   935     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
   936     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
   937     __ movptr(rscratch2, unsatisfied.addr());
   938     __ cmpptr(rax, rscratch2);
   939     __ jcc(Assembler::notEqual, L);
   940     __ call_VM(noreg,
   941                CAST_FROM_FN_PTR(address,
   942                                 InterpreterRuntime::prepare_native_call),
   943                method);
   944     __ get_method(method);
   945     __ verify_oop(method);
   946     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
   947     __ bind(L);
   948   }
   950   // pass JNIEnv
   951   __ lea(c_rarg0, Address(r15_thread, JavaThread::jni_environment_offset()));
   953   // It is enough that the pc() points into the right code
   954   // segment. It does not have to be the correct return pc.
   955   __ set_last_Java_frame(rsp, rbp, (address) __ pc());
   957   // change thread state
   958 #ifdef ASSERT
   959   {
   960     Label L;
   961     __ movl(t, Address(r15_thread, JavaThread::thread_state_offset()));
   962     __ cmpl(t, _thread_in_Java);
   963     __ jcc(Assembler::equal, L);
   964     __ stop("Wrong thread state in native stub");
   965     __ bind(L);
   966   }
   967 #endif
   969   // Change state to native
   971   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
   972           _thread_in_native);
   974   // Call the native method.
   975   __ call(rax);
   976   // result potentially in rax or xmm0
   978   // Depending on runtime options, either restore the MXCSR
   979   // register after returning from the JNI Call or verify that
   980   // it wasn't changed during -Xcheck:jni.
   981   if (RestoreMXCSROnJNICalls) {
   982     __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
   983   }
   984   else if (CheckJNICalls) {
   985     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
   986   }
   988   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
   989   // in order to extract the result of a method call. If the order of these
   990   // pushes change or anything else is added to the stack then the code in
   991   // interpreter_frame_result must also change.
   993   __ push(dtos);
   994   __ push(ltos);
   996   // change thread state
   997   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
   998           _thread_in_native_trans);
  1000   if (os::is_MP()) {
  1001     if (UseMembar) {
  1002       // Force this write out before the read below
  1003       __ membar(Assembler::Membar_mask_bits(
  1004            Assembler::LoadLoad | Assembler::LoadStore |
  1005            Assembler::StoreLoad | Assembler::StoreStore));
  1006     } else {
  1007       // Write serialization page so VM thread can do a pseudo remote membar.
  1008       // We use the current thread pointer to calculate a thread specific
  1009       // offset to write to within the page. This minimizes bus traffic
  1010       // due to cache line collision.
  1011       __ serialize_memory(r15_thread, rscratch2);
  1015   // check for safepoint operation in progress and/or pending suspend requests
  1017     Label Continue;
  1018     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1019              SafepointSynchronize::_not_synchronized);
  1021     Label L;
  1022     __ jcc(Assembler::notEqual, L);
  1023     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  1024     __ jcc(Assembler::equal, Continue);
  1025     __ bind(L);
  1027     // Don't use call_VM as it will see a possible pending exception
  1028     // and forward it and never return here preventing us from
  1029     // clearing _last_native_pc down below.  Also can't use
  1030     // call_VM_leaf either as it will check to see if r13 & r14 are
  1031     // preserved and correspond to the bcp/locals pointers. So we do a
  1032     // runtime call by hand.
  1033     //
  1034     __ mov(c_rarg0, r15_thread);
  1035     __ mov(r12, rsp); // remember sp
  1036     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1037     __ andptr(rsp, -16); // align stack as required by ABI
  1038     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  1039     __ mov(rsp, r12); // restore sp
  1040     __ reinit_heapbase();
  1041     __ bind(Continue);
  1044   // change thread state
  1045   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1047   // reset_last_Java_frame
  1048   __ reset_last_Java_frame(true, true);
  1050   // reset handle block
  1051   __ movptr(t, Address(r15_thread, JavaThread::active_handles_offset()));
  1052   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  1054   // If result is an oop unbox and store it in frame where gc will see it
  1055   // and result handler will pick it up
  1058     Label no_oop, store_result;
  1059     __ lea(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
  1060     __ cmpptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1061     __ jcc(Assembler::notEqual, no_oop);
  1062     // retrieve result
  1063     __ pop(ltos);
  1064     __ testptr(rax, rax);
  1065     __ jcc(Assembler::zero, store_result);
  1066     __ movptr(rax, Address(rax, 0));
  1067     __ bind(store_result);
  1068     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize), rax);
  1069     // keep stack depth as expected by pushing oop which will eventually be discarde
  1070     __ push(ltos);
  1071     __ bind(no_oop);
  1076     Label no_reguard;
  1077     __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()),
  1078             JavaThread::stack_guard_yellow_disabled);
  1079     __ jcc(Assembler::notEqual, no_reguard);
  1081     __ pusha(); // XXX only save smashed registers
  1082     __ mov(r12, rsp); // remember sp
  1083     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1084     __ andptr(rsp, -16); // align stack as required by ABI
  1085     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1086     __ mov(rsp, r12); // restore sp
  1087     __ popa(); // XXX only restore smashed registers
  1088     __ reinit_heapbase();
  1090     __ bind(no_reguard);
  1094   // The method register is junk from after the thread_in_native transition
  1095   // until here.  Also can't call_VM until the bcp has been
  1096   // restored.  Need bcp for throwing exception below so get it now.
  1097   __ get_method(method);
  1098   __ verify_oop(method);
  1100   // restore r13 to have legal interpreter frame, i.e., bci == 0 <=>
  1101   // r13 == code_base()
  1102   __ movptr(r13, Address(method, methodOopDesc::const_offset()));   // get constMethodOop
  1103   __ lea(r13, Address(r13, constMethodOopDesc::codes_offset()));    // get codebase
  1104   // handle exceptions (exception handling will handle unlocking!)
  1106     Label L;
  1107     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  1108     __ jcc(Assembler::zero, L);
  1109     // Note: At some point we may want to unify this with the code
  1110     // used in call_VM_base(); i.e., we should use the
  1111     // StubRoutines::forward_exception code. For now this doesn't work
  1112     // here because the rsp is not correctly set at this point.
  1113     __ MacroAssembler::call_VM(noreg,
  1114                                CAST_FROM_FN_PTR(address,
  1115                                InterpreterRuntime::throw_pending_exception));
  1116     __ should_not_reach_here();
  1117     __ bind(L);
  1120   // do unlocking if necessary
  1122     Label L;
  1123     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
  1124     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1125     __ jcc(Assembler::zero, L);
  1126     // the code below should be shared with interpreter macro
  1127     // assembler implementation
  1129       Label unlock;
  1130       // BasicObjectLock will be first in list, since this is a
  1131       // synchronized method. However, need to check that the object
  1132       // has not been unlocked by an explicit monitorexit bytecode.
  1133       const Address monitor(rbp,
  1134                             (intptr_t)(frame::interpreter_frame_initial_sp_offset *
  1135                                        wordSize - sizeof(BasicObjectLock)));
  1137       // monitor expect in c_rarg1 for slow unlock path
  1138       __ lea(c_rarg1, monitor); // address of first monitor
  1140       __ movptr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  1141       __ testptr(t, t);
  1142       __ jcc(Assembler::notZero, unlock);
  1144       // Entry already unlocked, need to throw exception
  1145       __ MacroAssembler::call_VM(noreg,
  1146                                  CAST_FROM_FN_PTR(address,
  1147                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  1148       __ should_not_reach_here();
  1150       __ bind(unlock);
  1151       __ unlock_object(c_rarg1);
  1153     __ bind(L);
  1156   // jvmti support
  1157   // Note: This must happen _after_ handling/throwing any exceptions since
  1158   //       the exception handler code notifies the runtime of method exits
  1159   //       too. If this happens before, method entry/exit notifications are
  1160   //       not properly paired (was bug - gri 11/22/99).
  1161   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1163   // restore potential result in edx:eax, call result handler to
  1164   // restore potential result in ST0 & handle result
  1166   __ pop(ltos);
  1167   __ pop(dtos);
  1169   __ movptr(t, Address(rbp,
  1170                        (frame::interpreter_frame_result_handler_offset) * wordSize));
  1171   __ call(t);
  1173   // remove activation
  1174   __ movptr(t, Address(rbp,
  1175                        frame::interpreter_frame_sender_sp_offset *
  1176                        wordSize)); // get sender sp
  1177   __ leave();                                // remove frame anchor
  1178   __ pop(rdi);                               // get return address
  1179   __ mov(rsp, t);                            // set sp to sender sp
  1180   __ jmp(rdi);
  1182   if (inc_counter) {
  1183     // Handle overflow of counter and compile method
  1184     __ bind(invocation_counter_overflow);
  1185     generate_counter_overflow(&continue_after_compile);
  1188   return entry_point;
  1191 //
  1192 // Generic interpreted method entry to (asm) interpreter
  1193 //
  1194 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1195   // determine code generation flags
  1196   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1198   // ebx: methodOop
  1199   // r13: sender sp
  1200   address entry_point = __ pc();
  1202   const Address size_of_parameters(rbx,
  1203                                    methodOopDesc::size_of_parameters_offset());
  1204   const Address size_of_locals(rbx, methodOopDesc::size_of_locals_offset());
  1205   const Address invocation_counter(rbx,
  1206                                    methodOopDesc::invocation_counter_offset() +
  1207                                    InvocationCounter::counter_offset());
  1208   const Address access_flags(rbx, methodOopDesc::access_flags_offset());
  1210   // get parameter size (always needed)
  1211   __ load_unsigned_short(rcx, size_of_parameters);
  1213   // rbx: methodOop
  1214   // rcx: size of parameters
  1215   // r13: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1217   __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
  1218   __ subl(rdx, rcx); // rdx = no. of additional locals
  1220   // YYY
  1221 //   __ incrementl(rdx);
  1222 //   __ andl(rdx, -2);
  1224   // see if we've got enough room on the stack for locals plus overhead.
  1225   generate_stack_overflow_check();
  1227   // get return address
  1228   __ pop(rax);
  1230   // compute beginning of parameters (r14)
  1231   if (TaggedStackInterpreter) __ shll(rcx, 1); // 2 slots per parameter.
  1232   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
  1234   // rdx - # of additional locals
  1235   // allocate space for locals
  1236   // explicitly initialize locals
  1238     Label exit, loop;
  1239     __ testl(rdx, rdx);
  1240     __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
  1241     __ bind(loop);
  1242     if (TaggedStackInterpreter) __ push((int) NULL_WORD);  // push tag
  1243     __ push((int) NULL_WORD); // initialize local variables
  1244     __ decrementl(rdx); // until everything initialized
  1245     __ jcc(Assembler::greater, loop);
  1246     __ bind(exit);
  1249   // (pre-)fetch invocation count
  1250   if (inc_counter) {
  1251     __ movl(rcx, invocation_counter);
  1253   // initialize fixed part of activation frame
  1254   generate_fixed_frame(false);
  1256   // make sure method is not native & not abstract
  1257 #ifdef ASSERT
  1258   __ movl(rax, access_flags);
  1260     Label L;
  1261     __ testl(rax, JVM_ACC_NATIVE);
  1262     __ jcc(Assembler::zero, L);
  1263     __ stop("tried to execute native method as non-native");
  1264     __ bind(L);
  1267     Label L;
  1268     __ testl(rax, JVM_ACC_ABSTRACT);
  1269     __ jcc(Assembler::zero, L);
  1270     __ stop("tried to execute abstract method in interpreter");
  1271     __ bind(L);
  1273 #endif
  1275   // Since at this point in the method invocation the exception
  1276   // handler would try to exit the monitor of synchronized methods
  1277   // which hasn't been entered yet, we set the thread local variable
  1278   // _do_not_unlock_if_synchronized to true. The remove_activation
  1279   // will check this flag.
  1281   const Address do_not_unlock_if_synchronized(r15_thread,
  1282         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1283   __ movbool(do_not_unlock_if_synchronized, true);
  1285   // increment invocation count & check for overflow
  1286   Label invocation_counter_overflow;
  1287   Label profile_method;
  1288   Label profile_method_continue;
  1289   if (inc_counter) {
  1290     generate_counter_incr(&invocation_counter_overflow,
  1291                           &profile_method,
  1292                           &profile_method_continue);
  1293     if (ProfileInterpreter) {
  1294       __ bind(profile_method_continue);
  1298   Label continue_after_compile;
  1299   __ bind(continue_after_compile);
  1301   // check for synchronized interpreted methods
  1302   bang_stack_shadow_pages(false);
  1304   // reset the _do_not_unlock_if_synchronized flag
  1305   __ movbool(do_not_unlock_if_synchronized, false);
  1307   // check for synchronized methods
  1308   // Must happen AFTER invocation_counter check and stack overflow check,
  1309   // so method is not locked if overflows.
  1310   if (synchronized) {
  1311     // Allocate monitor and lock method
  1312     lock_method();
  1313   } else {
  1314     // no synchronization necessary
  1315 #ifdef ASSERT
  1317       Label L;
  1318       __ movl(rax, access_flags);
  1319       __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1320       __ jcc(Assembler::zero, L);
  1321       __ stop("method needs synchronization");
  1322       __ bind(L);
  1324 #endif
  1327   // start execution
  1328 #ifdef ASSERT
  1330     Label L;
  1331      const Address monitor_block_top (rbp,
  1332                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1333     __ movptr(rax, monitor_block_top);
  1334     __ cmpptr(rax, rsp);
  1335     __ jcc(Assembler::equal, L);
  1336     __ stop("broken stack frame setup in interpreter");
  1337     __ bind(L);
  1339 #endif
  1341   // jvmti support
  1342   __ notify_method_entry();
  1344   __ dispatch_next(vtos);
  1346   // invocation counter overflow
  1347   if (inc_counter) {
  1348     if (ProfileInterpreter) {
  1349       // We have decided to profile this method in the interpreter
  1350       __ bind(profile_method);
  1352       __ call_VM(noreg,
  1353                  CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method),
  1354                  r13, true);
  1356       __ movptr(rbx, Address(rbp, method_offset)); // restore methodOop
  1357       __ movptr(rax, Address(rbx,
  1358                              in_bytes(methodOopDesc::method_data_offset())));
  1359       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
  1360                 rax);
  1361       __ test_method_data_pointer(rax, profile_method_continue);
  1362       __ addptr(rax, in_bytes(methodDataOopDesc::data_offset()));
  1363       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
  1364               rax);
  1365       __ jmp(profile_method_continue);
  1367     // Handle overflow of counter and compile method
  1368     __ bind(invocation_counter_overflow);
  1369     generate_counter_overflow(&continue_after_compile);
  1372   return entry_point;
  1375 // Entry points
  1376 //
  1377 // Here we generate the various kind of entries into the interpreter.
  1378 // The two main entry type are generic bytecode methods and native
  1379 // call method.  These both come in synchronized and non-synchronized
  1380 // versions but the frame layout they create is very similar. The
  1381 // other method entry types are really just special purpose entries
  1382 // that are really entry and interpretation all in one. These are for
  1383 // trivial methods like accessor, empty, or special math methods.
  1384 //
  1385 // When control flow reaches any of the entry types for the interpreter
  1386 // the following holds ->
  1387 //
  1388 // Arguments:
  1389 //
  1390 // rbx: methodOop
  1391 //
  1392 // Stack layout immediately at entry
  1393 //
  1394 // [ return address     ] <--- rsp
  1395 // [ parameter n        ]
  1396 //   ...
  1397 // [ parameter 1        ]
  1398 // [ expression stack   ] (caller's java expression stack)
  1400 // Assuming that we don't go to one of the trivial specialized entries
  1401 // the stack will look like below when we are ready to execute the
  1402 // first bytecode (or call the native routine). The register usage
  1403 // will be as the template based interpreter expects (see
  1404 // interpreter_amd64.hpp).
  1405 //
  1406 // local variables follow incoming parameters immediately; i.e.
  1407 // the return address is moved to the end of the locals).
  1408 //
  1409 // [ monitor entry      ] <--- rsp
  1410 //   ...
  1411 // [ monitor entry      ]
  1412 // [ expr. stack bottom ]
  1413 // [ saved r13          ]
  1414 // [ current r14        ]
  1415 // [ methodOop          ]
  1416 // [ saved ebp          ] <--- rbp
  1417 // [ return address     ]
  1418 // [ local variable m   ]
  1419 //   ...
  1420 // [ local variable 1   ]
  1421 // [ parameter n        ]
  1422 //   ...
  1423 // [ parameter 1        ] <--- r14
  1425 address AbstractInterpreterGenerator::generate_method_entry(
  1426                                         AbstractInterpreter::MethodKind kind) {
  1427   // determine code generation flags
  1428   bool synchronized = false;
  1429   address entry_point = NULL;
  1431   switch (kind) {
  1432   case Interpreter::zerolocals             :                                                                             break;
  1433   case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  1434   case Interpreter::native                 : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false); break;
  1435   case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(true);  break;
  1436   case Interpreter::empty                  : entry_point = ((InterpreterGenerator*) this)->generate_empty_entry();       break;
  1437   case Interpreter::accessor               : entry_point = ((InterpreterGenerator*) this)->generate_accessor_entry();    break;
  1438   case Interpreter::abstract               : entry_point = ((InterpreterGenerator*) this)->generate_abstract_entry();    break;
  1439   case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*) this)->generate_method_handle_entry();break;
  1441   case Interpreter::java_lang_math_sin     : // fall thru
  1442   case Interpreter::java_lang_math_cos     : // fall thru
  1443   case Interpreter::java_lang_math_tan     : // fall thru
  1444   case Interpreter::java_lang_math_abs     : // fall thru
  1445   case Interpreter::java_lang_math_log     : // fall thru
  1446   case Interpreter::java_lang_math_log10   : // fall thru
  1447   case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*) this)->generate_math_entry(kind);    break;
  1448   default                                  : ShouldNotReachHere();                                                       break;
  1451   if (entry_point) {
  1452     return entry_point;
  1455   return ((InterpreterGenerator*) this)->
  1456                                 generate_normal_entry(synchronized);
  1459 // These should never be compiled since the interpreter will prefer
  1460 // the compiled version to the intrinsic version.
  1461 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1462   switch (method_kind(m)) {
  1463     case Interpreter::java_lang_math_sin     : // fall thru
  1464     case Interpreter::java_lang_math_cos     : // fall thru
  1465     case Interpreter::java_lang_math_tan     : // fall thru
  1466     case Interpreter::java_lang_math_abs     : // fall thru
  1467     case Interpreter::java_lang_math_log     : // fall thru
  1468     case Interpreter::java_lang_math_log10   : // fall thru
  1469     case Interpreter::java_lang_math_sqrt    :
  1470       return false;
  1471     default:
  1472       return true;
  1476 // How much stack a method activation needs in words.
  1477 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  1478   const int entry_size = frame::interpreter_frame_monitor_size();
  1480   // total overhead size: entry_size + (saved rbp thru expr stack
  1481   // bottom).  be sure to change this if you add/subtract anything
  1482   // to/from the overhead area
  1483   const int overhead_size =
  1484     -(frame::interpreter_frame_initial_sp_offset) + entry_size;
  1486   const int stub_code = frame::entry_frame_after_call_words;
  1487   const int extra_stack = methodOopDesc::extra_stack_entries();
  1488   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
  1489                            Interpreter::stackElementWords();
  1490   return (overhead_size + method_stack + stub_code);
  1493 int AbstractInterpreter::layout_activation(methodOop method,
  1494                                            int tempcount,
  1495                                            int popframe_extra_args,
  1496                                            int moncount,
  1497                                            int callee_param_count,
  1498                                            int callee_locals,
  1499                                            frame* caller,
  1500                                            frame* interpreter_frame,
  1501                                            bool is_top_frame) {
  1502   // Note: This calculation must exactly parallel the frame setup
  1503   // in AbstractInterpreterGenerator::generate_method_entry.
  1504   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  1505   // The frame interpreter_frame, if not NULL, is guaranteed to be the
  1506   // right size, as determined by a previous call to this method.
  1507   // It is also guaranteed to be walkable even though it is in a skeletal state
  1509   // fixed size of an interpreter frame:
  1510   int max_locals = method->max_locals() * Interpreter::stackElementWords();
  1511   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
  1512                      Interpreter::stackElementWords();
  1514   int overhead = frame::sender_sp_offset -
  1515                  frame::interpreter_frame_initial_sp_offset;
  1516   // Our locals were accounted for by the caller (or last_frame_adjust
  1517   // on the transistion) Since the callee parameters already account
  1518   // for the callee's params we only need to account for the extra
  1519   // locals.
  1520   int size = overhead +
  1521          (callee_locals - callee_param_count)*Interpreter::stackElementWords() +
  1522          moncount * frame::interpreter_frame_monitor_size() +
  1523          tempcount* Interpreter::stackElementWords() + popframe_extra_args;
  1524   if (interpreter_frame != NULL) {
  1525 #ifdef ASSERT
  1526     if (!EnableMethodHandles)
  1527       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
  1528       // Probably, since deoptimization doesn't work yet.
  1529       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  1530     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
  1531 #endif
  1533     interpreter_frame->interpreter_frame_set_method(method);
  1534     // NOTE the difference in using sender_sp and
  1535     // interpreter_frame_sender_sp interpreter_frame_sender_sp is
  1536     // the original sp of the caller (the unextended_sp) and
  1537     // sender_sp is fp+16 XXX
  1538     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
  1540     interpreter_frame->interpreter_frame_set_locals(locals);
  1541     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
  1542     BasicObjectLock* monbot = montop - moncount;
  1543     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
  1545     // Set last_sp
  1546     intptr_t*  esp = (intptr_t*) monbot -
  1547                      tempcount*Interpreter::stackElementWords() -
  1548                      popframe_extra_args;
  1549     interpreter_frame->interpreter_frame_set_last_sp(esp);
  1551     // All frames but the initial (oldest) interpreter frame we fill in have
  1552     // a value for sender_sp that allows walking the stack but isn't
  1553     // truly correct. Correct the value here.
  1554     if (extra_locals != 0 &&
  1555         interpreter_frame->sender_sp() ==
  1556         interpreter_frame->interpreter_frame_sender_sp()) {
  1557       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() +
  1558                                                          extra_locals);
  1560     *interpreter_frame->interpreter_frame_cache_addr() =
  1561       method->constants()->cache();
  1563   return size;
  1566 //-----------------------------------------------------------------------------
  1567 // Exceptions
  1569 void TemplateInterpreterGenerator::generate_throw_exception() {
  1570   // Entry point in previous activation (i.e., if the caller was
  1571   // interpreted)
  1572   Interpreter::_rethrow_exception_entry = __ pc();
  1573   // Restore sp to interpreter_frame_last_sp even though we are going
  1574   // to empty the expression stack for the exception processing.
  1575   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  1576   // rax: exception
  1577   // rdx: return address/pc that threw exception
  1578   __ restore_bcp();    // r13 points to call/send
  1579   __ restore_locals();
  1580   __ reinit_heapbase();  // restore r12 as heapbase.
  1581   // Entry point for exceptions thrown within interpreter code
  1582   Interpreter::_throw_exception_entry = __ pc();
  1583   // expression stack is undefined here
  1584   // rax: exception
  1585   // r13: exception bcp
  1586   __ verify_oop(rax);
  1587   __ mov(c_rarg1, rax);
  1589   // expression stack must be empty before entering the VM in case of
  1590   // an exception
  1591   __ empty_expression_stack();
  1592   // find exception handler address and preserve exception oop
  1593   __ call_VM(rdx,
  1594              CAST_FROM_FN_PTR(address,
  1595                           InterpreterRuntime::exception_handler_for_exception),
  1596              c_rarg1);
  1597   // rax: exception handler entry point
  1598   // rdx: preserved exception oop
  1599   // r13: bcp for exception handler
  1600   __ push_ptr(rdx); // push exception which is now the only value on the stack
  1601   __ jmp(rax); // jump to exception handler (may be _remove_activation_entry!)
  1603   // If the exception is not handled in the current frame the frame is
  1604   // removed and the exception is rethrown (i.e. exception
  1605   // continuation is _rethrow_exception).
  1606   //
  1607   // Note: At this point the bci is still the bxi for the instruction
  1608   // which caused the exception and the expression stack is
  1609   // empty. Thus, for any VM calls at this point, GC will find a legal
  1610   // oop map (with empty expression stack).
  1612   // In current activation
  1613   // tos: exception
  1614   // esi: exception bcp
  1616   //
  1617   // JVMTI PopFrame support
  1618   //
  1620   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1621   __ empty_expression_stack();
  1622   // Set the popframe_processing bit in pending_popframe_condition
  1623   // indicating that we are currently handling popframe, so that
  1624   // call_VMs that may happen later do not trigger new popframe
  1625   // handling cycles.
  1626   __ movl(rdx, Address(r15_thread, JavaThread::popframe_condition_offset()));
  1627   __ orl(rdx, JavaThread::popframe_processing_bit);
  1628   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()), rdx);
  1631     // Check to see whether we are returning to a deoptimized frame.
  1632     // (The PopFrame call ensures that the caller of the popped frame is
  1633     // either interpreted or compiled and deoptimizes it if compiled.)
  1634     // In this case, we can't call dispatch_next() after the frame is
  1635     // popped, but instead must save the incoming arguments and restore
  1636     // them after deoptimization has occurred.
  1637     //
  1638     // Note that we don't compare the return PC against the
  1639     // deoptimization blob's unpack entry because of the presence of
  1640     // adapter frames in C2.
  1641     Label caller_not_deoptimized;
  1642     __ movptr(c_rarg1, Address(rbp, frame::return_addr_offset * wordSize));
  1643     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1644                                InterpreterRuntime::interpreter_contains), c_rarg1);
  1645     __ testl(rax, rax);
  1646     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1648     // Compute size of arguments for saving when returning to
  1649     // deoptimized caller
  1650     __ get_method(rax);
  1651     __ load_unsigned_short(rax, Address(rax, in_bytes(methodOopDesc::
  1652                                                 size_of_parameters_offset())));
  1653     __ shll(rax, Interpreter::logStackElementSize());
  1654     __ restore_locals(); // XXX do we need this?
  1655     __ subptr(r14, rax);
  1656     __ addptr(r14, wordSize);
  1657     // Save these arguments
  1658     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1659                                            Deoptimization::
  1660                                            popframe_preserve_args),
  1661                           r15_thread, rax, r14);
  1663     __ remove_activation(vtos, rdx,
  1664                          /* throw_monitor_exception */ false,
  1665                          /* install_monitor_exception */ false,
  1666                          /* notify_jvmdi */ false);
  1668     // Inform deoptimization that it is responsible for restoring
  1669     // these arguments
  1670     __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
  1671             JavaThread::popframe_force_deopt_reexecution_bit);
  1673     // Continue in deoptimization handler
  1674     __ jmp(rdx);
  1676     __ bind(caller_not_deoptimized);
  1679   __ remove_activation(vtos, rdx, /* rdx result (retaddr) is not used */
  1680                        /* throw_monitor_exception */ false,
  1681                        /* install_monitor_exception */ false,
  1682                        /* notify_jvmdi */ false);
  1684   // Finish with popframe handling
  1685   // A previous I2C followed by a deoptimization might have moved the
  1686   // outgoing arguments further up the stack. PopFrame expects the
  1687   // mutations to those outgoing arguments to be preserved and other
  1688   // constraints basically require this frame to look exactly as
  1689   // though it had previously invoked an interpreted activation with
  1690   // no space between the top of the expression stack (current
  1691   // last_sp) and the top of stack. Rather than force deopt to
  1692   // maintain this kind of invariant all the time we call a small
  1693   // fixup routine to move the mutated arguments onto the top of our
  1694   // expression stack if necessary.
  1695   __ mov(c_rarg1, rsp);
  1696   __ movptr(c_rarg2, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1697   // PC must point into interpreter here
  1698   __ set_last_Java_frame(noreg, rbp, __ pc());
  1699   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), r15_thread, c_rarg1, c_rarg2);
  1700   __ reset_last_Java_frame(true, true);
  1701   // Restore the last_sp and null it out
  1702   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1703   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  1705   __ restore_bcp();  // XXX do we need this?
  1706   __ restore_locals(); // XXX do we need this?
  1707   // The method data pointer was incremented already during
  1708   // call profiling. We have to restore the mdp for the current bcp.
  1709   if (ProfileInterpreter) {
  1710     __ set_method_data_pointer_for_bcp();
  1713   // Clear the popframe condition flag
  1714   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
  1715           JavaThread::popframe_inactive);
  1717   __ dispatch_next(vtos);
  1718   // end of PopFrame support
  1720   Interpreter::_remove_activation_entry = __ pc();
  1722   // preserve exception over this code sequence
  1723   __ pop_ptr(rax);
  1724   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), rax);
  1725   // remove the activation (without doing throws on illegalMonitorExceptions)
  1726   __ remove_activation(vtos, rdx, false, true, false);
  1727   // restore exception
  1728   __ movptr(rax, Address(r15_thread, JavaThread::vm_result_offset()));
  1729   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int32_t)NULL_WORD);
  1730   __ verify_oop(rax);
  1732   // In between activations - previous activation type unknown yet
  1733   // compute continuation point - the continuation point expects the
  1734   // following registers set up:
  1735   //
  1736   // rax: exception
  1737   // rdx: return address/pc that threw exception
  1738   // rsp: expression stack of caller
  1739   // rbp: ebp of caller
  1740   __ push(rax);                                  // save exception
  1741   __ push(rdx);                                  // save return address
  1742   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1743                           SharedRuntime::exception_handler_for_return_address),
  1744                         r15_thread, rdx);
  1745   __ mov(rbx, rax);                              // save exception handler
  1746   __ pop(rdx);                                   // restore return address
  1747   __ pop(rax);                                   // restore exception
  1748   // Note that an "issuing PC" is actually the next PC after the call
  1749   __ jmp(rbx);                                   // jump to exception
  1750                                                  // handler of caller
  1754 //
  1755 // JVMTI ForceEarlyReturn support
  1756 //
  1757 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1758   address entry = __ pc();
  1760   __ restore_bcp();
  1761   __ restore_locals();
  1762   __ empty_expression_stack();
  1763   __ load_earlyret_value(state);
  1765   __ movptr(rdx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
  1766   Address cond_addr(rdx, JvmtiThreadState::earlyret_state_offset());
  1768   // Clear the earlyret state
  1769   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  1771   __ remove_activation(state, rsi,
  1772                        false, /* throw_monitor_exception */
  1773                        false, /* install_monitor_exception */
  1774                        true); /* notify_jvmdi */
  1775   __ jmp(rsi);
  1777   return entry;
  1778 } // end of ForceEarlyReturn support
  1781 //-----------------------------------------------------------------------------
  1782 // Helper for vtos entry point generation
  1784 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
  1785                                                          address& bep,
  1786                                                          address& cep,
  1787                                                          address& sep,
  1788                                                          address& aep,
  1789                                                          address& iep,
  1790                                                          address& lep,
  1791                                                          address& fep,
  1792                                                          address& dep,
  1793                                                          address& vep) {
  1794   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1795   Label L;
  1796   aep = __ pc();  __ push_ptr();  __ jmp(L);
  1797   fep = __ pc();  __ push_f();    __ jmp(L);
  1798   dep = __ pc();  __ push_d();    __ jmp(L);
  1799   lep = __ pc();  __ push_l();    __ jmp(L);
  1800   bep = cep = sep =
  1801   iep = __ pc();  __ push_i();
  1802   vep = __ pc();
  1803   __ bind(L);
  1804   generate_and_dispatch(t);
  1808 //-----------------------------------------------------------------------------
  1809 // Generation of individual instructions
  1811 // helpers for generate_and_dispatch
  1814 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1815   : TemplateInterpreterGenerator(code) {
  1816    generate_all(); // down here so it can be "virtual"
  1819 //-----------------------------------------------------------------------------
  1821 // Non-product code
  1822 #ifndef PRODUCT
  1823 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1824   address entry = __ pc();
  1826   __ push(state);
  1827   __ push(c_rarg0);
  1828   __ push(c_rarg1);
  1829   __ push(c_rarg2);
  1830   __ push(c_rarg3);
  1831   __ mov(c_rarg2, rax);  // Pass itos
  1832 #ifdef _WIN64
  1833   __ movflt(xmm3, xmm0); // Pass ftos
  1834 #endif
  1835   __ call_VM(noreg,
  1836              CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode),
  1837              c_rarg1, c_rarg2, c_rarg3);
  1838   __ pop(c_rarg3);
  1839   __ pop(c_rarg2);
  1840   __ pop(c_rarg1);
  1841   __ pop(c_rarg0);
  1842   __ pop(state);
  1843   __ ret(0);                                   // return from result handler
  1845   return entry;
  1848 void TemplateInterpreterGenerator::count_bytecode() {
  1849   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  1852 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1853   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  1856 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1857   __ mov32(rbx, ExternalAddress((address) &BytecodePairHistogram::_index));
  1858   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  1859   __ orl(rbx,
  1860          ((int) t->bytecode()) <<
  1861          BytecodePairHistogram::log2_number_of_codes);
  1862   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  1863   __ lea(rscratch1, ExternalAddress((address) BytecodePairHistogram::_counters));
  1864   __ incrementl(Address(rscratch1, rbx, Address::times_4));
  1868 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1869   // Call a little run-time stub to avoid blow-up for each bytecode.
  1870   // The run-time runtime saves the right registers, depending on
  1871   // the tosca in-state for the given template.
  1873   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  1874          "entry must have been generated");
  1875   __ mov(r12, rsp); // remember sp
  1876   __ andptr(rsp, -16); // align stack as required by ABI
  1877   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  1878   __ mov(rsp, r12); // restore sp
  1879   __ reinit_heapbase();
  1883 void TemplateInterpreterGenerator::stop_interpreter_at() {
  1884   Label L;
  1885   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  1886            StopInterpreterAt);
  1887   __ jcc(Assembler::notEqual, L);
  1888   __ int3();
  1889   __ bind(L);
  1891 #endif // !PRODUCT
  1892 #endif // ! CC_INTERP

mercurial