src/share/vm/opto/chaitin.cpp

Fri, 23 Aug 2013 11:41:37 -0700

author
kvn
date
Fri, 23 Aug 2013 11:41:37 -0700
changeset 5626
766fac3395d6
parent 5543
4b2838704fd5
child 5635
650868c062a9
permissions
-rw-r--r--

8012972: Incremental Inlining should support scalar replaced object in debug info
Summary: store in _first_index not absolute index but an index relative to the last (youngest) jvms->_scloff value
Reviewed-by: roland, twisti

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "compiler/oopMap.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "opto/addnode.hpp"
    30 #include "opto/block.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/chaitin.hpp"
    34 #include "opto/coalesce.hpp"
    35 #include "opto/connode.hpp"
    36 #include "opto/idealGraphPrinter.hpp"
    37 #include "opto/indexSet.hpp"
    38 #include "opto/machnode.hpp"
    39 #include "opto/memnode.hpp"
    40 #include "opto/opcodes.hpp"
    41 #include "opto/rootnode.hpp"
    43 #ifndef PRODUCT
    44 void LRG::dump() const {
    45   ttyLocker ttyl;
    46   tty->print("%d ",num_regs());
    47   _mask.dump();
    48   if( _msize_valid ) {
    49     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
    50     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
    51   } else {
    52     tty->print(", #?(%d) ",_mask.Size());
    53   }
    55   tty->print("EffDeg: ");
    56   if( _degree_valid ) tty->print( "%d ", _eff_degree );
    57   else tty->print("? ");
    59   if( is_multidef() ) {
    60     tty->print("MultiDef ");
    61     if (_defs != NULL) {
    62       tty->print("(");
    63       for (int i = 0; i < _defs->length(); i++) {
    64         tty->print("N%d ", _defs->at(i)->_idx);
    65       }
    66       tty->print(") ");
    67     }
    68   }
    69   else if( _def == 0 ) tty->print("Dead ");
    70   else tty->print("Def: N%d ",_def->_idx);
    72   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
    73   // Flags
    74   if( _is_oop ) tty->print("Oop ");
    75   if( _is_float ) tty->print("Float ");
    76   if( _is_vector ) tty->print("Vector ");
    77   if( _was_spilled1 ) tty->print("Spilled ");
    78   if( _was_spilled2 ) tty->print("Spilled2 ");
    79   if( _direct_conflict ) tty->print("Direct_conflict ");
    80   if( _fat_proj ) tty->print("Fat ");
    81   if( _was_lo ) tty->print("Lo ");
    82   if( _has_copy ) tty->print("Copy ");
    83   if( _at_risk ) tty->print("Risk ");
    85   if( _must_spill ) tty->print("Must_spill ");
    86   if( _is_bound ) tty->print("Bound ");
    87   if( _msize_valid ) {
    88     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
    89   }
    91   tty->cr();
    92 }
    93 #endif
    95 // Compute score from cost and area.  Low score is best to spill.
    96 static double raw_score( double cost, double area ) {
    97   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
    98 }
   100 double LRG::score() const {
   101   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
   102   // Bigger area lowers score, encourages spilling this live range.
   103   // Bigger cost raise score, prevents spilling this live range.
   104   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
   105   // to turn a divide by a constant into a multiply by the reciprical).
   106   double score = raw_score( _cost, _area);
   108   // Account for area.  Basically, LRGs covering large areas are better
   109   // to spill because more other LRGs get freed up.
   110   if( _area == 0.0 )            // No area?  Then no progress to spill
   111     return 1e35;
   113   if( _was_spilled2 )           // If spilled once before, we are unlikely
   114     return score + 1e30;        // to make progress again.
   116   if( _cost >= _area*3.0 )      // Tiny area relative to cost
   117     return score + 1e17;        // Probably no progress to spill
   119   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
   120     return score + 1e10;        // Likely no progress to spill
   122   return score;
   123 }
   125 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
   126   memset( _lidxs, 0, sizeof(uint)*max );
   127 }
   129 void LRG_List::extend( uint nidx, uint lidx ) {
   130   _nesting.check();
   131   if( nidx >= _max ) {
   132     uint size = 16;
   133     while( size <= nidx ) size <<=1;
   134     _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
   135     _max = size;
   136   }
   137   while( _cnt <= nidx )
   138     _lidxs[_cnt++] = 0;
   139   _lidxs[nidx] = lidx;
   140 }
   142 #define NUMBUCKS 3
   144 // Straight out of Tarjan's union-find algorithm
   145 uint LiveRangeMap::find_compress(uint lrg) {
   146   uint cur = lrg;
   147   uint next = _uf_map[cur];
   148   while (next != cur) { // Scan chain of equivalences
   149     assert( next < cur, "always union smaller");
   150     cur = next; // until find a fixed-point
   151     next = _uf_map[cur];
   152   }
   154   // Core of union-find algorithm: update chain of
   155   // equivalences to be equal to the root.
   156   while (lrg != next) {
   157     uint tmp = _uf_map[lrg];
   158     _uf_map.map(lrg, next);
   159     lrg = tmp;
   160   }
   161   return lrg;
   162 }
   164 // Reset the Union-Find map to identity
   165 void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
   166   _max_lrg_id= max_lrg_id;
   167   // Force the Union-Find mapping to be at least this large
   168   _uf_map.extend(_max_lrg_id, 0);
   169   // Initialize it to be the ID mapping.
   170   for (uint i = 0; i < _max_lrg_id; ++i) {
   171     _uf_map.map(i, i);
   172   }
   173 }
   175 // Make all Nodes map directly to their final live range; no need for
   176 // the Union-Find mapping after this call.
   177 void LiveRangeMap::compress_uf_map_for_nodes() {
   178   // For all Nodes, compress mapping
   179   uint unique = _names.Size();
   180   for (uint i = 0; i < unique; ++i) {
   181     uint lrg = _names[i];
   182     uint compressed_lrg = find(lrg);
   183     if (lrg != compressed_lrg) {
   184       _names.map(i, compressed_lrg);
   185     }
   186   }
   187 }
   189 // Like Find above, but no path compress, so bad asymptotic behavior
   190 uint LiveRangeMap::find_const(uint lrg) const {
   191   if (!lrg) {
   192     return lrg; // Ignore the zero LRG
   193   }
   195   // Off the end?  This happens during debugging dumps when you got
   196   // brand new live ranges but have not told the allocator yet.
   197   if (lrg >= _max_lrg_id) {
   198     return lrg;
   199   }
   201   uint next = _uf_map[lrg];
   202   while (next != lrg) { // Scan chain of equivalences
   203     assert(next < lrg, "always union smaller");
   204     lrg = next; // until find a fixed-point
   205     next = _uf_map[lrg];
   206   }
   207   return next;
   208 }
   210 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
   211   : PhaseRegAlloc(unique, cfg, matcher,
   212 #ifndef PRODUCT
   213        print_chaitin_statistics
   214 #else
   215        NULL
   216 #endif
   217        )
   218   , _lrg_map(unique)
   219   , _live(0)
   220   , _spilled_once(Thread::current()->resource_area())
   221   , _spilled_twice(Thread::current()->resource_area())
   222   , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
   223   , _oldphi(unique)
   224 #ifndef PRODUCT
   225   , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
   226 #endif
   227 {
   228   NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
   230   _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
   232   // Build a list of basic blocks, sorted by frequency
   233   _blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
   234   // Experiment with sorting strategies to speed compilation
   235   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
   236   Block **buckets[NUMBUCKS];             // Array of buckets
   237   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
   238   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
   239   for (uint i = 0; i < NUMBUCKS; i++) {
   240     buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
   241     buckcnt[i] = 0;
   242     // Bump by three orders of magnitude each time
   243     cutoff *= 0.001;
   244     buckval[i] = cutoff;
   245     for (uint j = 0; j < _cfg.number_of_blocks(); j++) {
   246       buckets[i][j] = NULL;
   247     }
   248   }
   249   // Sort blocks into buckets
   250   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
   251     for (uint j = 0; j < NUMBUCKS; j++) {
   252       if ((j == NUMBUCKS - 1) || (_cfg.get_block(i)->_freq > buckval[j])) {
   253         // Assign block to end of list for appropriate bucket
   254         buckets[j][buckcnt[j]++] = _cfg.get_block(i);
   255         break; // kick out of inner loop
   256       }
   257     }
   258   }
   259   // Dump buckets into final block array
   260   uint blkcnt = 0;
   261   for (uint i = 0; i < NUMBUCKS; i++) {
   262     for (uint j = 0; j < buckcnt[i]; j++) {
   263       _blks[blkcnt++] = buckets[i][j];
   264     }
   265   }
   267   assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled");
   268 }
   270 // union 2 sets together.
   271 void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
   272   uint src = _lrg_map.find(src_n);
   273   uint dst = _lrg_map.find(dst_n);
   274   assert(src, "");
   275   assert(dst, "");
   276   assert(src < _lrg_map.max_lrg_id(), "oob");
   277   assert(dst < _lrg_map.max_lrg_id(), "oob");
   278   assert(src < dst, "always union smaller");
   279   _lrg_map.uf_map(dst, src);
   280 }
   282 void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
   283   // Make the Node->LRG mapping
   284   _lrg_map.extend(x->_idx,lrg);
   285   // Make the Union-Find mapping an identity function
   286   _lrg_map.uf_extend(lrg, lrg);
   287 }
   290 int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
   291   assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
   292   DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
   293   int found_projs = 0;
   294   uint cnt = orig->outcnt();
   295   for (uint i = 0; i < cnt; i++) {
   296     Node* proj = orig->raw_out(i);
   297     if (proj->is_MachProj()) {
   298       assert(proj->outcnt() == 0, "only kill projections are expected here");
   299       assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
   300       found_projs++;
   301       // Copy kill projections after the cloned node
   302       Node* kills = proj->clone();
   303       kills->set_req(0, copy);
   304       b->_nodes.insert(idx++, kills);
   305       _cfg.map_node_to_block(kills, b);
   306       new_lrg(kills, max_lrg_id++);
   307     }
   308   }
   309   return found_projs;
   310 }
   312 // Renumber the live ranges to compact them.  Makes the IFG smaller.
   313 void PhaseChaitin::compact() {
   314   // Current the _uf_map contains a series of short chains which are headed
   315   // by a self-cycle.  All the chains run from big numbers to little numbers.
   316   // The Find() call chases the chains & shortens them for the next Find call.
   317   // We are going to change this structure slightly.  Numbers above a moving
   318   // wave 'i' are unchanged.  Numbers below 'j' point directly to their
   319   // compacted live range with no further chaining.  There are no chains or
   320   // cycles below 'i', so the Find call no longer works.
   321   uint j=1;
   322   uint i;
   323   for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
   324     uint lr = _lrg_map.uf_live_range_id(i);
   325     // Ignore unallocated live ranges
   326     if (!lr) {
   327       continue;
   328     }
   329     assert(lr <= i, "");
   330     _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
   331   }
   332   // Now change the Node->LR mapping to reflect the compacted names
   333   uint unique = _lrg_map.size();
   334   for (i = 0; i < unique; i++) {
   335     uint lrg_id = _lrg_map.live_range_id(i);
   336     _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
   337   }
   339   // Reset the Union-Find mapping
   340   _lrg_map.reset_uf_map(j);
   341 }
   343 void PhaseChaitin::Register_Allocate() {
   345   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
   346   // slots in this area are called "arg_slots".  Above the NEW FP (and in
   347   // registers) is the outgoing argument area; above that is the spill/temp
   348   // area.  These are all "frame_slots".  Arg_slots start at the zero
   349   // stack_slots and count up to the known arg_size.  Frame_slots start at
   350   // the stack_slot #arg_size and go up.  After allocation I map stack
   351   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
   352   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
   354   _trip_cnt = 0;
   355   _alternate = 0;
   356   _matcher._allocation_started = true;
   358   ResourceArea split_arena;     // Arena for Split local resources
   359   ResourceArea live_arena;      // Arena for liveness & IFG info
   360   ResourceMark rm(&live_arena);
   362   // Need live-ness for the IFG; need the IFG for coalescing.  If the
   363   // liveness is JUST for coalescing, then I can get some mileage by renaming
   364   // all copy-related live ranges low and then using the max copy-related
   365   // live range as a cut-off for LIVE and the IFG.  In other words, I can
   366   // build a subset of LIVE and IFG just for copies.
   367   PhaseLive live(_cfg, _lrg_map.names(), &live_arena);
   369   // Need IFG for coalescing and coloring
   370   PhaseIFG ifg(&live_arena);
   371   _ifg = &ifg;
   373   // Come out of SSA world to the Named world.  Assign (virtual) registers to
   374   // Nodes.  Use the same register for all inputs and the output of PhiNodes
   375   // - effectively ending SSA form.  This requires either coalescing live
   376   // ranges or inserting copies.  For the moment, we insert "virtual copies"
   377   // - we pretend there is a copy prior to each Phi in predecessor blocks.
   378   // We will attempt to coalesce such "virtual copies" before we manifest
   379   // them for real.
   380   de_ssa();
   382 #ifdef ASSERT
   383   // Veify the graph before RA.
   384   verify(&live_arena);
   385 #endif
   387   {
   388     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   389     _live = NULL;                 // Mark live as being not available
   390     rm.reset_to_mark();           // Reclaim working storage
   391     IndexSet::reset_memory(C, &live_arena);
   392     ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
   393     gather_lrg_masks( false );    // Collect LRG masks
   394     live.compute(_lrg_map.max_lrg_id()); // Compute liveness
   395     _live = &live;                // Mark LIVE as being available
   396   }
   398   // Base pointers are currently "used" by instructions which define new
   399   // derived pointers.  This makes base pointers live up to the where the
   400   // derived pointer is made, but not beyond.  Really, they need to be live
   401   // across any GC point where the derived value is live.  So this code looks
   402   // at all the GC points, and "stretches" the live range of any base pointer
   403   // to the GC point.
   404   if (stretch_base_pointer_live_ranges(&live_arena)) {
   405     NOT_PRODUCT(Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler);)
   406     // Since some live range stretched, I need to recompute live
   407     _live = NULL;
   408     rm.reset_to_mark();         // Reclaim working storage
   409     IndexSet::reset_memory(C, &live_arena);
   410     ifg.init(_lrg_map.max_lrg_id());
   411     gather_lrg_masks(false);
   412     live.compute(_lrg_map.max_lrg_id());
   413     _live = &live;
   414   }
   415   // Create the interference graph using virtual copies
   416   build_ifg_virtual();  // Include stack slots this time
   418   // Aggressive (but pessimistic) copy coalescing.
   419   // This pass works on virtual copies.  Any virtual copies which are not
   420   // coalesced get manifested as actual copies
   421   {
   422     // The IFG is/was triangular.  I am 'squaring it up' so Union can run
   423     // faster.  Union requires a 'for all' operation which is slow on the
   424     // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
   425     // meaning I can visit all the Nodes neighbors less than a Node in time
   426     // O(# of neighbors), but I have to visit all the Nodes greater than a
   427     // given Node and search them for an instance, i.e., time O(#MaxLRG)).
   428     _ifg->SquareUp();
   430     PhaseAggressiveCoalesce coalesce(*this);
   431     coalesce.coalesce_driver();
   432     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
   433     // not match the Phi itself, insert a copy.
   434     coalesce.insert_copies(_matcher);
   435     if (C->failing()) {
   436       return;
   437     }
   438   }
   440   // After aggressive coalesce, attempt a first cut at coloring.
   441   // To color, we need the IFG and for that we need LIVE.
   442   {
   443     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   444     _live = NULL;
   445     rm.reset_to_mark();           // Reclaim working storage
   446     IndexSet::reset_memory(C, &live_arena);
   447     ifg.init(_lrg_map.max_lrg_id());
   448     gather_lrg_masks( true );
   449     live.compute(_lrg_map.max_lrg_id());
   450     _live = &live;
   451   }
   453   // Build physical interference graph
   454   uint must_spill = 0;
   455   must_spill = build_ifg_physical(&live_arena);
   456   // If we have a guaranteed spill, might as well spill now
   457   if (must_spill) {
   458     if(!_lrg_map.max_lrg_id()) {
   459       return;
   460     }
   461     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
   462     C->check_node_count(10*must_spill, "out of nodes before split");
   463     if (C->failing()) {
   464       return;
   465     }
   467     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
   468     _lrg_map.set_max_lrg_id(new_max_lrg_id);
   469     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   470     // or we failed to split
   471     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
   472     if (C->failing()) {
   473       return;
   474     }
   476     NOT_PRODUCT(C->verify_graph_edges();)
   478     compact();                  // Compact LRGs; return new lower max lrg
   480     {
   481       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   482       _live = NULL;
   483       rm.reset_to_mark();         // Reclaim working storage
   484       IndexSet::reset_memory(C, &live_arena);
   485       ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
   486       gather_lrg_masks( true );   // Collect intersect mask
   487       live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
   488       _live = &live;
   489     }
   490     build_ifg_physical(&live_arena);
   491     _ifg->SquareUp();
   492     _ifg->Compute_Effective_Degree();
   493     // Only do conservative coalescing if requested
   494     if (OptoCoalesce) {
   495       // Conservative (and pessimistic) copy coalescing of those spills
   496       PhaseConservativeCoalesce coalesce(*this);
   497       // If max live ranges greater than cutoff, don't color the stack.
   498       // This cutoff can be larger than below since it is only done once.
   499       coalesce.coalesce_driver();
   500     }
   501     _lrg_map.compress_uf_map_for_nodes();
   503 #ifdef ASSERT
   504     verify(&live_arena, true);
   505 #endif
   506   } else {
   507     ifg.SquareUp();
   508     ifg.Compute_Effective_Degree();
   509 #ifdef ASSERT
   510     set_was_low();
   511 #endif
   512   }
   514   // Prepare for Simplify & Select
   515   cache_lrg_info();           // Count degree of LRGs
   517   // Simplify the InterFerence Graph by removing LRGs of low degree.
   518   // LRGs of low degree are trivially colorable.
   519   Simplify();
   521   // Select colors by re-inserting LRGs back into the IFG in reverse order.
   522   // Return whether or not something spills.
   523   uint spills = Select( );
   525   // If we spill, split and recycle the entire thing
   526   while( spills ) {
   527     if( _trip_cnt++ > 24 ) {
   528       DEBUG_ONLY( dump_for_spill_split_recycle(); )
   529       if( _trip_cnt > 27 ) {
   530         C->record_method_not_compilable("failed spill-split-recycle sanity check");
   531         return;
   532       }
   533     }
   535     if (!_lrg_map.max_lrg_id()) {
   536       return;
   537     }
   538     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
   539     _lrg_map.set_max_lrg_id(new_max_lrg_id);
   540     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   541     C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
   542     if (C->failing()) {
   543       return;
   544     }
   546     compact(); // Compact LRGs; return new lower max lrg
   548     // Nuke the live-ness and interference graph and LiveRanGe info
   549     {
   550       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   551       _live = NULL;
   552       rm.reset_to_mark();         // Reclaim working storage
   553       IndexSet::reset_memory(C, &live_arena);
   554       ifg.init(_lrg_map.max_lrg_id());
   556       // Create LiveRanGe array.
   557       // Intersect register masks for all USEs and DEFs
   558       gather_lrg_masks(true);
   559       live.compute(_lrg_map.max_lrg_id());
   560       _live = &live;
   561     }
   562     must_spill = build_ifg_physical(&live_arena);
   563     _ifg->SquareUp();
   564     _ifg->Compute_Effective_Degree();
   566     // Only do conservative coalescing if requested
   567     if (OptoCoalesce) {
   568       // Conservative (and pessimistic) copy coalescing
   569       PhaseConservativeCoalesce coalesce(*this);
   570       // Check for few live ranges determines how aggressive coalesce is.
   571       coalesce.coalesce_driver();
   572     }
   573     _lrg_map.compress_uf_map_for_nodes();
   574 #ifdef ASSERT
   575     verify(&live_arena, true);
   576 #endif
   577     cache_lrg_info();           // Count degree of LRGs
   579     // Simplify the InterFerence Graph by removing LRGs of low degree.
   580     // LRGs of low degree are trivially colorable.
   581     Simplify();
   583     // Select colors by re-inserting LRGs back into the IFG in reverse order.
   584     // Return whether or not something spills.
   585     spills = Select();
   586   }
   588   // Count number of Simplify-Select trips per coloring success.
   589   _allocator_attempts += _trip_cnt + 1;
   590   _allocator_successes += 1;
   592   // Peephole remove copies
   593   post_allocate_copy_removal();
   595 #ifdef ASSERT
   596   // Veify the graph after RA.
   597   verify(&live_arena);
   598 #endif
   600   // max_reg is past the largest *register* used.
   601   // Convert that to a frame_slot number.
   602   if (_max_reg <= _matcher._new_SP) {
   603     _framesize = C->out_preserve_stack_slots();
   604   }
   605   else {
   606     _framesize = _max_reg -_matcher._new_SP;
   607   }
   608   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
   610   // This frame must preserve the required fp alignment
   611   _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
   612   assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
   613 #ifndef PRODUCT
   614   _total_framesize += _framesize;
   615   if ((int)_framesize > _max_framesize) {
   616     _max_framesize = _framesize;
   617   }
   618 #endif
   620   // Convert CISC spills
   621   fixup_spills();
   623   // Log regalloc results
   624   CompileLog* log = Compile::current()->log();
   625   if (log != NULL) {
   626     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
   627   }
   629   if (C->failing()) {
   630     return;
   631   }
   633   NOT_PRODUCT(C->verify_graph_edges();)
   635   // Move important info out of the live_arena to longer lasting storage.
   636   alloc_node_regs(_lrg_map.size());
   637   for (uint i=0; i < _lrg_map.size(); i++) {
   638     if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
   639       LRG &lrg = lrgs(_lrg_map.live_range_id(i));
   640       if (!lrg.alive()) {
   641         set_bad(i);
   642       } else if (lrg.num_regs() == 1) {
   643         set1(i, lrg.reg());
   644       } else {                  // Must be a register-set
   645         if (!lrg._fat_proj) {   // Must be aligned adjacent register set
   646           // Live ranges record the highest register in their mask.
   647           // We want the low register for the AD file writer's convenience.
   648           OptoReg::Name hi = lrg.reg(); // Get hi register
   649           OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
   650           // We have to use pair [lo,lo+1] even for wide vectors because
   651           // the rest of code generation works only with pairs. It is safe
   652           // since for registers encoding only 'lo' is used.
   653           // Second reg from pair is used in ScheduleAndBundle on SPARC where
   654           // vector max size is 8 which corresponds to registers pair.
   655           // It is also used in BuildOopMaps but oop operations are not
   656           // vectorized.
   657           set2(i, lo);
   658         } else {                // Misaligned; extract 2 bits
   659           OptoReg::Name hi = lrg.reg(); // Get hi register
   660           lrg.Remove(hi);       // Yank from mask
   661           int lo = lrg.mask().find_first_elem(); // Find lo
   662           set_pair(i, hi, lo);
   663         }
   664       }
   665       if( lrg._is_oop ) _node_oops.set(i);
   666     } else {
   667       set_bad(i);
   668     }
   669   }
   671   // Done!
   672   _live = NULL;
   673   _ifg = NULL;
   674   C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
   675 }
   677 void PhaseChaitin::de_ssa() {
   678   // Set initial Names for all Nodes.  Most Nodes get the virtual register
   679   // number.  A few get the ZERO live range number.  These do not
   680   // get allocated, but instead rely on correct scheduling to ensure that
   681   // only one instance is simultaneously live at a time.
   682   uint lr_counter = 1;
   683   for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
   684     Block* block = _cfg.get_block(i);
   685     uint cnt = block->_nodes.size();
   687     // Handle all the normal Nodes in the block
   688     for( uint j = 0; j < cnt; j++ ) {
   689       Node *n = block->_nodes[j];
   690       // Pre-color to the zero live range, or pick virtual register
   691       const RegMask &rm = n->out_RegMask();
   692       _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
   693     }
   694   }
   695   // Reset the Union-Find mapping to be identity
   696   _lrg_map.reset_uf_map(lr_counter);
   697 }
   700 // Gather LiveRanGe information, including register masks.  Modification of
   701 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
   702 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
   704   // Nail down the frame pointer live range
   705   uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
   706   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
   708   // For all blocks
   709   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
   710     Block* block = _cfg.get_block(i);
   712     // For all instructions
   713     for (uint j = 1; j < block->_nodes.size(); j++) {
   714       Node* n = block->_nodes[j];
   715       uint input_edge_start =1; // Skip control most nodes
   716       if (n->is_Mach()) {
   717         input_edge_start = n->as_Mach()->oper_input_base();
   718       }
   719       uint idx = n->is_Copy();
   721       // Get virtual register number, same as LiveRanGe index
   722       uint vreg = _lrg_map.live_range_id(n);
   723       LRG& lrg = lrgs(vreg);
   724       if (vreg) {              // No vreg means un-allocable (e.g. memory)
   726         // Collect has-copy bit
   727         if (idx) {
   728           lrg._has_copy = 1;
   729           uint clidx = _lrg_map.live_range_id(n->in(idx));
   730           LRG& copy_src = lrgs(clidx);
   731           copy_src._has_copy = 1;
   732         }
   734         // Check for float-vs-int live range (used in register-pressure
   735         // calculations)
   736         const Type *n_type = n->bottom_type();
   737         if (n_type->is_floatingpoint()) {
   738           lrg._is_float = 1;
   739         }
   741         // Check for twice prior spilling.  Once prior spilling might have
   742         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
   743         // further spilling is unlikely to make progress.
   744         if (_spilled_once.test(n->_idx)) {
   745           lrg._was_spilled1 = 1;
   746           if (_spilled_twice.test(n->_idx)) {
   747             lrg._was_spilled2 = 1;
   748           }
   749         }
   751 #ifndef PRODUCT
   752         if (trace_spilling() && lrg._def != NULL) {
   753           // collect defs for MultiDef printing
   754           if (lrg._defs == NULL) {
   755             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
   756             lrg._defs->append(lrg._def);
   757           }
   758           lrg._defs->append(n);
   759         }
   760 #endif
   762         // Check for a single def LRG; these can spill nicely
   763         // via rematerialization.  Flag as NULL for no def found
   764         // yet, or 'n' for single def or -1 for many defs.
   765         lrg._def = lrg._def ? NodeSentinel : n;
   767         // Limit result register mask to acceptable registers
   768         const RegMask &rm = n->out_RegMask();
   769         lrg.AND( rm );
   771         int ireg = n->ideal_reg();
   772         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
   773                 "oops must be in Op_RegP's" );
   775         // Check for vector live range (only if vector register is used).
   776         // On SPARC vector uses RegD which could be misaligned so it is not
   777         // processes as vector in RA.
   778         if (RegMask::is_vector(ireg))
   779           lrg._is_vector = 1;
   780         assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD,
   781                "vector must be in vector registers");
   783         // Check for bound register masks
   784         const RegMask &lrgmask = lrg.mask();
   785         if (lrgmask.is_bound(ireg)) {
   786           lrg._is_bound = 1;
   787         }
   789         // Check for maximum frequency value
   790         if (lrg._maxfreq < block->_freq) {
   791           lrg._maxfreq = block->_freq;
   792         }
   794         // Check for oop-iness, or long/double
   795         // Check for multi-kill projection
   796         switch (ireg) {
   797         case MachProjNode::fat_proj:
   798           // Fat projections have size equal to number of registers killed
   799           lrg.set_num_regs(rm.Size());
   800           lrg.set_reg_pressure(lrg.num_regs());
   801           lrg._fat_proj = 1;
   802           lrg._is_bound = 1;
   803           break;
   804         case Op_RegP:
   805 #ifdef _LP64
   806           lrg.set_num_regs(2);  // Size is 2 stack words
   807 #else
   808           lrg.set_num_regs(1);  // Size is 1 stack word
   809 #endif
   810           // Register pressure is tracked relative to the maximum values
   811           // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
   812           // and relative to other types which compete for the same regs.
   813           //
   814           // The following table contains suggested values based on the
   815           // architectures as defined in each .ad file.
   816           // INTPRESSURE and FLOATPRESSURE may be tuned differently for
   817           // compile-speed or performance.
   818           // Note1:
   819           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
   820           // since .ad registers are defined as high and low halves.
   821           // These reg_pressure values remain compatible with the code
   822           // in is_high_pressure() which relates get_invalid_mask_size(),
   823           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
   824           // Note2:
   825           // SPARC -d32 has 24 registers available for integral values,
   826           // but only 10 of these are safe for 64-bit longs.
   827           // Using set_reg_pressure(2) for both int and long means
   828           // the allocator will believe it can fit 26 longs into
   829           // registers.  Using 2 for longs and 1 for ints means the
   830           // allocator will attempt to put 52 integers into registers.
   831           // The settings below limit this problem to methods with
   832           // many long values which are being run on 32-bit SPARC.
   833           //
   834           // ------------------- reg_pressure --------------------
   835           // Each entry is reg_pressure_per_value,number_of_regs
   836           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
   837           // IA32     2     1     1          1    1          6           6
   838           // IA64     1     1     1          1    1         50          41
   839           // SPARC    2     2     2          2    2         48 (24)     52 (26)
   840           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
   841           // AMD64    1     1     1          1    1         14          15
   842           // -----------------------------------------------------
   843 #if defined(SPARC)
   844           lrg.set_reg_pressure(2);  // use for v9 as well
   845 #else
   846           lrg.set_reg_pressure(1);  // normally one value per register
   847 #endif
   848           if( n_type->isa_oop_ptr() ) {
   849             lrg._is_oop = 1;
   850           }
   851           break;
   852         case Op_RegL:           // Check for long or double
   853         case Op_RegD:
   854           lrg.set_num_regs(2);
   855           // Define platform specific register pressure
   856 #if defined(SPARC) || defined(ARM)
   857           lrg.set_reg_pressure(2);
   858 #elif defined(IA32)
   859           if( ireg == Op_RegL ) {
   860             lrg.set_reg_pressure(2);
   861           } else {
   862             lrg.set_reg_pressure(1);
   863           }
   864 #else
   865           lrg.set_reg_pressure(1);  // normally one value per register
   866 #endif
   867           // If this def of a double forces a mis-aligned double,
   868           // flag as '_fat_proj' - really flag as allowing misalignment
   869           // AND changes how we count interferences.  A mis-aligned
   870           // double can interfere with TWO aligned pairs, or effectively
   871           // FOUR registers!
   872           if (rm.is_misaligned_pair()) {
   873             lrg._fat_proj = 1;
   874             lrg._is_bound = 1;
   875           }
   876           break;
   877         case Op_RegF:
   878         case Op_RegI:
   879         case Op_RegN:
   880         case Op_RegFlags:
   881         case 0:                 // not an ideal register
   882           lrg.set_num_regs(1);
   883 #ifdef SPARC
   884           lrg.set_reg_pressure(2);
   885 #else
   886           lrg.set_reg_pressure(1);
   887 #endif
   888           break;
   889         case Op_VecS:
   890           assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
   891           assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
   892           lrg.set_num_regs(RegMask::SlotsPerVecS);
   893           lrg.set_reg_pressure(1);
   894           break;
   895         case Op_VecD:
   896           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
   897           assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
   898           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
   899           lrg.set_num_regs(RegMask::SlotsPerVecD);
   900           lrg.set_reg_pressure(1);
   901           break;
   902         case Op_VecX:
   903           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
   904           assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
   905           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
   906           lrg.set_num_regs(RegMask::SlotsPerVecX);
   907           lrg.set_reg_pressure(1);
   908           break;
   909         case Op_VecY:
   910           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
   911           assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
   912           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
   913           lrg.set_num_regs(RegMask::SlotsPerVecY);
   914           lrg.set_reg_pressure(1);
   915           break;
   916         default:
   917           ShouldNotReachHere();
   918         }
   919       }
   921       // Now do the same for inputs
   922       uint cnt = n->req();
   923       // Setup for CISC SPILLING
   924       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
   925       if( UseCISCSpill && after_aggressive ) {
   926         inp = n->cisc_operand();
   927         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
   928           // Convert operand number to edge index number
   929           inp = n->as_Mach()->operand_index(inp);
   930       }
   931       // Prepare register mask for each input
   932       for( uint k = input_edge_start; k < cnt; k++ ) {
   933         uint vreg = _lrg_map.live_range_id(n->in(k));
   934         if (!vreg) {
   935           continue;
   936         }
   938         // If this instruction is CISC Spillable, add the flags
   939         // bit to its appropriate input
   940         if( UseCISCSpill && after_aggressive && inp == k ) {
   941 #ifndef PRODUCT
   942           if( TraceCISCSpill ) {
   943             tty->print("  use_cisc_RegMask: ");
   944             n->dump();
   945           }
   946 #endif
   947           n->as_Mach()->use_cisc_RegMask();
   948         }
   950         LRG &lrg = lrgs(vreg);
   951         // // Testing for floating point code shape
   952         // Node *test = n->in(k);
   953         // if( test->is_Mach() ) {
   954         //   MachNode *m = test->as_Mach();
   955         //   int  op = m->ideal_Opcode();
   956         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
   957         //     int zzz = 1;
   958         //   }
   959         // }
   961         // Limit result register mask to acceptable registers.
   962         // Do not limit registers from uncommon uses before
   963         // AggressiveCoalesce.  This effectively pre-virtual-splits
   964         // around uncommon uses of common defs.
   965         const RegMask &rm = n->in_RegMask(k);
   966         if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
   967           // Since we are BEFORE aggressive coalesce, leave the register
   968           // mask untrimmed by the call.  This encourages more coalescing.
   969           // Later, AFTER aggressive, this live range will have to spill
   970           // but the spiller handles slow-path calls very nicely.
   971         } else {
   972           lrg.AND( rm );
   973         }
   975         // Check for bound register masks
   976         const RegMask &lrgmask = lrg.mask();
   977         int kreg = n->in(k)->ideal_reg();
   978         bool is_vect = RegMask::is_vector(kreg);
   979         assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
   980                is_vect || kreg == Op_RegD,
   981                "vector must be in vector registers");
   982         if (lrgmask.is_bound(kreg))
   983           lrg._is_bound = 1;
   985         // If this use of a double forces a mis-aligned double,
   986         // flag as '_fat_proj' - really flag as allowing misalignment
   987         // AND changes how we count interferences.  A mis-aligned
   988         // double can interfere with TWO aligned pairs, or effectively
   989         // FOUR registers!
   990 #ifdef ASSERT
   991         if (is_vect) {
   992           assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
   993           assert(!lrg._fat_proj, "sanity");
   994           assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
   995         }
   996 #endif
   997         if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
   998           lrg._fat_proj = 1;
   999           lrg._is_bound = 1;
  1001         // if the LRG is an unaligned pair, we will have to spill
  1002         // so clear the LRG's register mask if it is not already spilled
  1003         if (!is_vect && !n->is_SpillCopy() &&
  1004             (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
  1005             lrgmask.is_misaligned_pair()) {
  1006           lrg.Clear();
  1009         // Check for maximum frequency value
  1010         if (lrg._maxfreq < block->_freq) {
  1011           lrg._maxfreq = block->_freq;
  1014       } // End for all allocated inputs
  1015     } // end for all instructions
  1016   } // end for all blocks
  1018   // Final per-liverange setup
  1019   for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
  1020     LRG &lrg = lrgs(i2);
  1021     assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
  1022     if (lrg.num_regs() > 1 && !lrg._fat_proj) {
  1023       lrg.clear_to_sets();
  1025     lrg.compute_set_mask_size();
  1026     if (lrg.not_free()) {      // Handle case where we lose from the start
  1027       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
  1028       lrg._direct_conflict = 1;
  1030     lrg.set_degree(0);          // no neighbors in IFG yet
  1034 // Set the was-lo-degree bit.  Conservative coalescing should not change the
  1035 // colorability of the graph.  If any live range was of low-degree before
  1036 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
  1037 // The bit is checked in Simplify.
  1038 void PhaseChaitin::set_was_low() {
  1039 #ifdef ASSERT
  1040   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
  1041     int size = lrgs(i).num_regs();
  1042     uint old_was_lo = lrgs(i)._was_lo;
  1043     lrgs(i)._was_lo = 0;
  1044     if( lrgs(i).lo_degree() ) {
  1045       lrgs(i)._was_lo = 1;      // Trivially of low degree
  1046     } else {                    // Else check the Brigg's assertion
  1047       // Brigg's observation is that the lo-degree neighbors of a
  1048       // hi-degree live range will not interfere with the color choices
  1049       // of said hi-degree live range.  The Simplify reverse-stack-coloring
  1050       // order takes care of the details.  Hence you do not have to count
  1051       // low-degree neighbors when determining if this guy colors.
  1052       int briggs_degree = 0;
  1053       IndexSet *s = _ifg->neighbors(i);
  1054       IndexSetIterator elements(s);
  1055       uint lidx;
  1056       while((lidx = elements.next()) != 0) {
  1057         if( !lrgs(lidx).lo_degree() )
  1058           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
  1060       if( briggs_degree < lrgs(i).degrees_of_freedom() )
  1061         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
  1063     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
  1065 #endif
  1068 #define REGISTER_CONSTRAINED 16
  1070 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
  1071 void PhaseChaitin::cache_lrg_info( ) {
  1073   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
  1074     LRG &lrg = lrgs(i);
  1076     // Check for being of low degree: means we can be trivially colored.
  1077     // Low degree, dead or must-spill guys just get to simplify right away
  1078     if( lrg.lo_degree() ||
  1079        !lrg.alive() ||
  1080         lrg._must_spill ) {
  1081       // Split low degree list into those guys that must get a
  1082       // register and those that can go to register or stack.
  1083       // The idea is LRGs that can go register or stack color first when
  1084       // they have a good chance of getting a register.  The register-only
  1085       // lo-degree live ranges always get a register.
  1086       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
  1087       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
  1088         lrg._next = _lo_stk_degree;
  1089         _lo_stk_degree = i;
  1090       } else {
  1091         lrg._next = _lo_degree;
  1092         _lo_degree = i;
  1094     } else {                    // Else high degree
  1095       lrgs(_hi_degree)._prev = i;
  1096       lrg._next = _hi_degree;
  1097       lrg._prev = 0;
  1098       _hi_degree = i;
  1103 // Simplify the IFG by removing LRGs of low degree that have NO copies
  1104 void PhaseChaitin::Pre_Simplify( ) {
  1106   // Warm up the lo-degree no-copy list
  1107   int lo_no_copy = 0;
  1108   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
  1109     if ((lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
  1110         !lrgs(i).alive() ||
  1111         lrgs(i)._must_spill) {
  1112       lrgs(i)._next = lo_no_copy;
  1113       lo_no_copy = i;
  1117   while( lo_no_copy ) {
  1118     uint lo = lo_no_copy;
  1119     lo_no_copy = lrgs(lo)._next;
  1120     int size = lrgs(lo).num_regs();
  1122     // Put the simplified guy on the simplified list.
  1123     lrgs(lo)._next = _simplified;
  1124     _simplified = lo;
  1126     // Yank this guy from the IFG.
  1127     IndexSet *adj = _ifg->remove_node( lo );
  1129     // If any neighbors' degrees fall below their number of
  1130     // allowed registers, then put that neighbor on the low degree
  1131     // list.  Note that 'degree' can only fall and 'numregs' is
  1132     // unchanged by this action.  Thus the two are equal at most once,
  1133     // so LRGs hit the lo-degree worklists at most once.
  1134     IndexSetIterator elements(adj);
  1135     uint neighbor;
  1136     while ((neighbor = elements.next()) != 0) {
  1137       LRG *n = &lrgs(neighbor);
  1138       assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
  1140       // Check for just becoming of-low-degree
  1141       if( n->just_lo_degree() && !n->_has_copy ) {
  1142         assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
  1143         // Put on lo-degree list
  1144         n->_next = lo_no_copy;
  1145         lo_no_copy = neighbor;
  1148   } // End of while lo-degree no_copy worklist not empty
  1150   // No more lo-degree no-copy live ranges to simplify
  1153 // Simplify the IFG by removing LRGs of low degree.
  1154 void PhaseChaitin::Simplify( ) {
  1156   while( 1 ) {                  // Repeat till simplified it all
  1157     // May want to explore simplifying lo_degree before _lo_stk_degree.
  1158     // This might result in more spills coloring into registers during
  1159     // Select().
  1160     while( _lo_degree || _lo_stk_degree ) {
  1161       // If possible, pull from lo_stk first
  1162       uint lo;
  1163       if( _lo_degree ) {
  1164         lo = _lo_degree;
  1165         _lo_degree = lrgs(lo)._next;
  1166       } else {
  1167         lo = _lo_stk_degree;
  1168         _lo_stk_degree = lrgs(lo)._next;
  1171       // Put the simplified guy on the simplified list.
  1172       lrgs(lo)._next = _simplified;
  1173       _simplified = lo;
  1174       // If this guy is "at risk" then mark his current neighbors
  1175       if( lrgs(lo)._at_risk ) {
  1176         IndexSetIterator elements(_ifg->neighbors(lo));
  1177         uint datum;
  1178         while ((datum = elements.next()) != 0) {
  1179           lrgs(datum)._risk_bias = lo;
  1183       // Yank this guy from the IFG.
  1184       IndexSet *adj = _ifg->remove_node( lo );
  1186       // If any neighbors' degrees fall below their number of
  1187       // allowed registers, then put that neighbor on the low degree
  1188       // list.  Note that 'degree' can only fall and 'numregs' is
  1189       // unchanged by this action.  Thus the two are equal at most once,
  1190       // so LRGs hit the lo-degree worklist at most once.
  1191       IndexSetIterator elements(adj);
  1192       uint neighbor;
  1193       while ((neighbor = elements.next()) != 0) {
  1194         LRG *n = &lrgs(neighbor);
  1195 #ifdef ASSERT
  1196         if( VerifyOpto || VerifyRegisterAllocator ) {
  1197           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
  1199 #endif
  1201         // Check for just becoming of-low-degree just counting registers.
  1202         // _must_spill live ranges are already on the low degree list.
  1203         if( n->just_lo_degree() && !n->_must_spill ) {
  1204           assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
  1205           // Pull from hi-degree list
  1206           uint prev = n->_prev;
  1207           uint next = n->_next;
  1208           if( prev ) lrgs(prev)._next = next;
  1209           else _hi_degree = next;
  1210           lrgs(next)._prev = prev;
  1211           n->_next = _lo_degree;
  1212           _lo_degree = neighbor;
  1215     } // End of while lo-degree/lo_stk_degree worklist not empty
  1217     // Check for got everything: is hi-degree list empty?
  1218     if( !_hi_degree ) break;
  1220     // Time to pick a potential spill guy
  1221     uint lo_score = _hi_degree;
  1222     double score = lrgs(lo_score).score();
  1223     double area = lrgs(lo_score)._area;
  1224     double cost = lrgs(lo_score)._cost;
  1225     bool bound = lrgs(lo_score)._is_bound;
  1227     // Find cheapest guy
  1228     debug_only( int lo_no_simplify=0; );
  1229     for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
  1230       assert( !(*_ifg->_yanked)[i], "" );
  1231       // It's just vaguely possible to move hi-degree to lo-degree without
  1232       // going through a just-lo-degree stage: If you remove a double from
  1233       // a float live range it's degree will drop by 2 and you can skip the
  1234       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
  1235       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
  1236       if( lrgs(i).lo_degree() ) {
  1237         lo_score = i;
  1238         break;
  1240       debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
  1241       double iscore = lrgs(i).score();
  1242       double iarea = lrgs(i)._area;
  1243       double icost = lrgs(i)._cost;
  1244       bool ibound = lrgs(i)._is_bound;
  1246       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
  1247       // wins.  Ties happen because all live ranges in question have spilled
  1248       // a few times before and the spill-score adds a huge number which
  1249       // washes out the low order bits.  We are choosing the lesser of 2
  1250       // evils; in this case pick largest area to spill.
  1251       // Ties also happen when live ranges are defined and used only inside
  1252       // one block. In which case their area is 0 and score set to max.
  1253       // In such case choose bound live range over unbound to free registers
  1254       // or with smaller cost to spill.
  1255       if( iscore < score ||
  1256           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
  1257           (iscore == score && iarea == area &&
  1258            ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
  1259         lo_score = i;
  1260         score = iscore;
  1261         area = iarea;
  1262         cost = icost;
  1263         bound = ibound;
  1266     LRG *lo_lrg = &lrgs(lo_score);
  1267     // The live range we choose for spilling is either hi-degree, or very
  1268     // rarely it can be low-degree.  If we choose a hi-degree live range
  1269     // there better not be any lo-degree choices.
  1270     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
  1272     // Pull from hi-degree list
  1273     uint prev = lo_lrg->_prev;
  1274     uint next = lo_lrg->_next;
  1275     if( prev ) lrgs(prev)._next = next;
  1276     else _hi_degree = next;
  1277     lrgs(next)._prev = prev;
  1278     // Jam him on the lo-degree list, despite his high degree.
  1279     // Maybe he'll get a color, and maybe he'll spill.
  1280     // Only Select() will know.
  1281     lrgs(lo_score)._at_risk = true;
  1282     _lo_degree = lo_score;
  1283     lo_lrg->_next = 0;
  1285   } // End of while not simplified everything
  1289 // Is 'reg' register legal for 'lrg'?
  1290 static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
  1291   if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
  1292       lrg.mask().Member(OptoReg::add(reg,-chunk))) {
  1293     // RA uses OptoReg which represent the highest element of a registers set.
  1294     // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
  1295     // in which XMMd is used by RA to represent such vectors. A double value
  1296     // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
  1297     // The register mask uses largest bits set of overlapping register sets.
  1298     // On x86 with AVX it uses 8 bits for each XMM registers set.
  1299     //
  1300     // The 'lrg' already has cleared-to-set register mask (done in Select()
  1301     // before calling choose_color()). Passing mask.Member(reg) check above
  1302     // indicates that the size (num_regs) of 'reg' set is less or equal to
  1303     // 'lrg' set size.
  1304     // For set size 1 any register which is member of 'lrg' mask is legal.
  1305     if (lrg.num_regs()==1)
  1306       return true;
  1307     // For larger sets only an aligned register with the same set size is legal.
  1308     int mask = lrg.num_regs()-1;
  1309     if ((reg&mask) == mask)
  1310       return true;
  1312   return false;
  1315 // Choose a color using the biasing heuristic
  1316 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
  1318   // Check for "at_risk" LRG's
  1319   uint risk_lrg = _lrg_map.find(lrg._risk_bias);
  1320   if( risk_lrg != 0 ) {
  1321     // Walk the colored neighbors of the "at_risk" candidate
  1322     // Choose a color which is both legal and already taken by a neighbor
  1323     // of the "at_risk" candidate in order to improve the chances of the
  1324     // "at_risk" candidate of coloring
  1325     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
  1326     uint datum;
  1327     while ((datum = elements.next()) != 0) {
  1328       OptoReg::Name reg = lrgs(datum).reg();
  1329       // If this LRG's register is legal for us, choose it
  1330       if (is_legal_reg(lrg, reg, chunk))
  1331         return reg;
  1335   uint copy_lrg = _lrg_map.find(lrg._copy_bias);
  1336   if( copy_lrg != 0 ) {
  1337     // If he has a color,
  1338     if( !(*(_ifg->_yanked))[copy_lrg] ) {
  1339       OptoReg::Name reg = lrgs(copy_lrg).reg();
  1340       //  And it is legal for you,
  1341       if (is_legal_reg(lrg, reg, chunk))
  1342         return reg;
  1343     } else if( chunk == 0 ) {
  1344       // Choose a color which is legal for him
  1345       RegMask tempmask = lrg.mask();
  1346       tempmask.AND(lrgs(copy_lrg).mask());
  1347       tempmask.clear_to_sets(lrg.num_regs());
  1348       OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
  1349       if (OptoReg::is_valid(reg))
  1350         return reg;
  1354   // If no bias info exists, just go with the register selection ordering
  1355   if (lrg._is_vector || lrg.num_regs() == 2) {
  1356     // Find an aligned set
  1357     return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
  1360   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
  1361   // copy removal to remove many more copies, by preventing a just-assigned
  1362   // register from being repeatedly assigned.
  1363   OptoReg::Name reg = lrg.mask().find_first_elem();
  1364   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
  1365     // This 'Remove; find; Insert' idiom is an expensive way to find the
  1366     // SECOND element in the mask.
  1367     lrg.Remove(reg);
  1368     OptoReg::Name reg2 = lrg.mask().find_first_elem();
  1369     lrg.Insert(reg);
  1370     if( OptoReg::is_reg(reg2))
  1371       reg = reg2;
  1373   return OptoReg::add( reg, chunk );
  1376 // Choose a color in the current chunk
  1377 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
  1378   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
  1379   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
  1381   if( lrg.num_regs() == 1 ||    // Common Case
  1382       !lrg._fat_proj )          // Aligned+adjacent pairs ok
  1383     // Use a heuristic to "bias" the color choice
  1384     return bias_color(lrg, chunk);
  1386   assert(!lrg._is_vector, "should be not vector here" );
  1387   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
  1389   // Fat-proj case or misaligned double argument.
  1390   assert(lrg.compute_mask_size() == lrg.num_regs() ||
  1391          lrg.num_regs() == 2,"fat projs exactly color" );
  1392   assert( !chunk, "always color in 1st chunk" );
  1393   // Return the highest element in the set.
  1394   return lrg.mask().find_last_elem();
  1397 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
  1398 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
  1399 // everything going back is guaranteed a color.  Select that color.  If some
  1400 // hi-degree LRG cannot get a color then we record that we must spill.
  1401 uint PhaseChaitin::Select( ) {
  1402   uint spill_reg = LRG::SPILL_REG;
  1403   _max_reg = OptoReg::Name(0);  // Past max register used
  1404   while( _simplified ) {
  1405     // Pull next LRG from the simplified list - in reverse order of removal
  1406     uint lidx = _simplified;
  1407     LRG *lrg = &lrgs(lidx);
  1408     _simplified = lrg->_next;
  1411 #ifndef PRODUCT
  1412     if (trace_spilling()) {
  1413       ttyLocker ttyl;
  1414       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
  1415                     lrg->degrees_of_freedom());
  1416       lrg->dump();
  1418 #endif
  1420     // Re-insert into the IFG
  1421     _ifg->re_insert(lidx);
  1422     if( !lrg->alive() ) continue;
  1423     // capture allstackedness flag before mask is hacked
  1424     const int is_allstack = lrg->mask().is_AllStack();
  1426     // Yeah, yeah, yeah, I know, I know.  I can refactor this
  1427     // to avoid the GOTO, although the refactored code will not
  1428     // be much clearer.  We arrive here IFF we have a stack-based
  1429     // live range that cannot color in the current chunk, and it
  1430     // has to move into the next free stack chunk.
  1431     int chunk = 0;              // Current chunk is first chunk
  1432     retry_next_chunk:
  1434     // Remove neighbor colors
  1435     IndexSet *s = _ifg->neighbors(lidx);
  1437     debug_only(RegMask orig_mask = lrg->mask();)
  1438     IndexSetIterator elements(s);
  1439     uint neighbor;
  1440     while ((neighbor = elements.next()) != 0) {
  1441       // Note that neighbor might be a spill_reg.  In this case, exclusion
  1442       // of its color will be a no-op, since the spill_reg chunk is in outer
  1443       // space.  Also, if neighbor is in a different chunk, this exclusion
  1444       // will be a no-op.  (Later on, if lrg runs out of possible colors in
  1445       // its chunk, a new chunk of color may be tried, in which case
  1446       // examination of neighbors is started again, at retry_next_chunk.)
  1447       LRG &nlrg = lrgs(neighbor);
  1448       OptoReg::Name nreg = nlrg.reg();
  1449       // Only subtract masks in the same chunk
  1450       if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
  1451 #ifndef PRODUCT
  1452         uint size = lrg->mask().Size();
  1453         RegMask rm = lrg->mask();
  1454 #endif
  1455         lrg->SUBTRACT(nlrg.mask());
  1456 #ifndef PRODUCT
  1457         if (trace_spilling() && lrg->mask().Size() != size) {
  1458           ttyLocker ttyl;
  1459           tty->print("L%d ", lidx);
  1460           rm.dump();
  1461           tty->print(" intersected L%d ", neighbor);
  1462           nlrg.mask().dump();
  1463           tty->print(" removed ");
  1464           rm.SUBTRACT(lrg->mask());
  1465           rm.dump();
  1466           tty->print(" leaving ");
  1467           lrg->mask().dump();
  1468           tty->cr();
  1470 #endif
  1473     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
  1474     // Aligned pairs need aligned masks
  1475     assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
  1476     if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
  1477       lrg->clear_to_sets();
  1480     // Check if a color is available and if so pick the color
  1481     OptoReg::Name reg = choose_color( *lrg, chunk );
  1482 #ifdef SPARC
  1483     debug_only(lrg->compute_set_mask_size());
  1484     assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
  1485 #endif
  1487     //---------------
  1488     // If we fail to color and the AllStack flag is set, trigger
  1489     // a chunk-rollover event
  1490     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
  1491       // Bump register mask up to next stack chunk
  1492       chunk += RegMask::CHUNK_SIZE;
  1493       lrg->Set_All();
  1495       goto retry_next_chunk;
  1498     //---------------
  1499     // Did we get a color?
  1500     else if( OptoReg::is_valid(reg)) {
  1501 #ifndef PRODUCT
  1502       RegMask avail_rm = lrg->mask();
  1503 #endif
  1505       // Record selected register
  1506       lrg->set_reg(reg);
  1508       if( reg >= _max_reg )     // Compute max register limit
  1509         _max_reg = OptoReg::add(reg,1);
  1510       // Fold reg back into normal space
  1511       reg = OptoReg::add(reg,-chunk);
  1513       // If the live range is not bound, then we actually had some choices
  1514       // to make.  In this case, the mask has more bits in it than the colors
  1515       // chosen.  Restrict the mask to just what was picked.
  1516       int n_regs = lrg->num_regs();
  1517       assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
  1518       if (n_regs == 1 || !lrg->_fat_proj) {
  1519         assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecY, "sanity");
  1520         lrg->Clear();           // Clear the mask
  1521         lrg->Insert(reg);       // Set regmask to match selected reg
  1522         // For vectors and pairs, also insert the low bit of the pair
  1523         for (int i = 1; i < n_regs; i++)
  1524           lrg->Insert(OptoReg::add(reg,-i));
  1525         lrg->set_mask_size(n_regs);
  1526       } else {                  // Else fatproj
  1527         // mask must be equal to fatproj bits, by definition
  1529 #ifndef PRODUCT
  1530       if (trace_spilling()) {
  1531         ttyLocker ttyl;
  1532         tty->print("L%d selected ", lidx);
  1533         lrg->mask().dump();
  1534         tty->print(" from ");
  1535         avail_rm.dump();
  1536         tty->cr();
  1538 #endif
  1539       // Note that reg is the highest-numbered register in the newly-bound mask.
  1540     } // end color available case
  1542     //---------------
  1543     // Live range is live and no colors available
  1544     else {
  1545       assert( lrg->alive(), "" );
  1546       assert( !lrg->_fat_proj || lrg->is_multidef() ||
  1547               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
  1548       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
  1550       // Assign the special spillreg register
  1551       lrg->set_reg(OptoReg::Name(spill_reg++));
  1552       // Do not empty the regmask; leave mask_size lying around
  1553       // for use during Spilling
  1554 #ifndef PRODUCT
  1555       if( trace_spilling() ) {
  1556         ttyLocker ttyl;
  1557         tty->print("L%d spilling with neighbors: ", lidx);
  1558         s->dump();
  1559         debug_only(tty->print(" original mask: "));
  1560         debug_only(orig_mask.dump());
  1561         dump_lrg(lidx);
  1563 #endif
  1564     } // end spill case
  1568   return spill_reg-LRG::SPILL_REG;      // Return number of spills
  1571 // Copy 'was_spilled'-edness from the source Node to the dst Node.
  1572 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
  1573   if( _spilled_once.test(src->_idx) ) {
  1574     _spilled_once.set(dst->_idx);
  1575     lrgs(_lrg_map.find(dst))._was_spilled1 = 1;
  1576     if( _spilled_twice.test(src->_idx) ) {
  1577       _spilled_twice.set(dst->_idx);
  1578       lrgs(_lrg_map.find(dst))._was_spilled2 = 1;
  1583 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
  1584 void PhaseChaitin::set_was_spilled( Node *n ) {
  1585   if( _spilled_once.test_set(n->_idx) )
  1586     _spilled_twice.set(n->_idx);
  1589 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
  1590 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
  1591 void PhaseChaitin::fixup_spills() {
  1592   // This function does only cisc spill work.
  1593   if( !UseCISCSpill ) return;
  1595   NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
  1597   // Grab the Frame Pointer
  1598   Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
  1600   // For all blocks
  1601   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
  1602     Block* block = _cfg.get_block(i);
  1604     // For all instructions in block
  1605     uint last_inst = block->end_idx();
  1606     for (uint j = 1; j <= last_inst; j++) {
  1607       Node* n = block->_nodes[j];
  1609       // Dead instruction???
  1610       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
  1611               C->top() == n ||  // Or the random TOP node
  1612               n->is_Proj(),     // Or a fat-proj kill node
  1613               "No dead instructions after post-alloc" );
  1615       int inp = n->cisc_operand();
  1616       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
  1617         // Convert operand number to edge index number
  1618         MachNode *mach = n->as_Mach();
  1619         inp = mach->operand_index(inp);
  1620         Node *src = n->in(inp);   // Value to load or store
  1621         LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
  1622         OptoReg::Name src_reg = lrg_cisc.reg();
  1623         // Doubles record the HIGH register of an adjacent pair.
  1624         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
  1625         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
  1626           // This is a CISC Spill, get stack offset and construct new node
  1627 #ifndef PRODUCT
  1628           if( TraceCISCSpill ) {
  1629             tty->print("    reg-instr:  ");
  1630             n->dump();
  1632 #endif
  1633           int stk_offset = reg2offset(src_reg);
  1634           // Bailout if we might exceed node limit when spilling this instruction
  1635           C->check_node_count(0, "out of nodes fixing spills");
  1636           if (C->failing())  return;
  1637           // Transform node
  1638           MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
  1639           cisc->set_req(inp,fp);          // Base register is frame pointer
  1640           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
  1641             assert( cisc->oper_input_base() == 2, "Only adding one edge");
  1642             cisc->ins_req(1,src);         // Requires a memory edge
  1644           block->_nodes.map(j,cisc);          // Insert into basic block
  1645           n->subsume_by(cisc, C); // Correct graph
  1646           //
  1647           ++_used_cisc_instructions;
  1648 #ifndef PRODUCT
  1649           if( TraceCISCSpill ) {
  1650             tty->print("    cisc-instr: ");
  1651             cisc->dump();
  1653 #endif
  1654         } else {
  1655 #ifndef PRODUCT
  1656           if( TraceCISCSpill ) {
  1657             tty->print("    using reg-instr: ");
  1658             n->dump();
  1660 #endif
  1661           ++_unused_cisc_instructions;    // input can be on stack
  1665     } // End of for all instructions
  1667   } // End of for all blocks
  1670 // Helper to stretch above; recursively discover the base Node for a
  1671 // given derived Node.  Easy for AddP-related machine nodes, but needs
  1672 // to be recursive for derived Phis.
  1673 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
  1674   // See if already computed; if so return it
  1675   if( derived_base_map[derived->_idx] )
  1676     return derived_base_map[derived->_idx];
  1678   // See if this happens to be a base.
  1679   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
  1680   // pointers derived from NULL!  These are always along paths that
  1681   // can't happen at run-time but the optimizer cannot deduce it so
  1682   // we have to handle it gracefully.
  1683   assert(!derived->bottom_type()->isa_narrowoop() ||
  1684           derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  1685   const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1686   // If its an OOP with a non-zero offset, then it is derived.
  1687   if( tj == NULL || tj->_offset == 0 ) {
  1688     derived_base_map[derived->_idx] = derived;
  1689     return derived;
  1691   // Derived is NULL+offset?  Base is NULL!
  1692   if( derived->is_Con() ) {
  1693     Node *base = _matcher.mach_null();
  1694     assert(base != NULL, "sanity");
  1695     if (base->in(0) == NULL) {
  1696       // Initialize it once and make it shared:
  1697       // set control to _root and place it into Start block
  1698       // (where top() node is placed).
  1699       base->init_req(0, _cfg.get_root_node());
  1700       Block *startb = _cfg.get_block_for_node(C->top());
  1701       startb->_nodes.insert(startb->find_node(C->top()), base );
  1702       _cfg.map_node_to_block(base, startb);
  1703       assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
  1705     if (_lrg_map.live_range_id(base) == 0) {
  1706       new_lrg(base, maxlrg++);
  1708     assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared");
  1709     derived_base_map[derived->_idx] = base;
  1710     return base;
  1713   // Check for AddP-related opcodes
  1714   if (!derived->is_Phi()) {
  1715     assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, err_msg_res("but is: %s", derived->Name()));
  1716     Node *base = derived->in(AddPNode::Base);
  1717     derived_base_map[derived->_idx] = base;
  1718     return base;
  1721   // Recursively find bases for Phis.
  1722   // First check to see if we can avoid a base Phi here.
  1723   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
  1724   uint i;
  1725   for( i = 2; i < derived->req(); i++ )
  1726     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
  1727       break;
  1728   // Went to the end without finding any different bases?
  1729   if( i == derived->req() ) {   // No need for a base Phi here
  1730     derived_base_map[derived->_idx] = base;
  1731     return base;
  1734   // Now we see we need a base-Phi here to merge the bases
  1735   const Type *t = base->bottom_type();
  1736   base = new (C) PhiNode( derived->in(0), t );
  1737   for( i = 1; i < derived->req(); i++ ) {
  1738     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
  1739     t = t->meet(base->in(i)->bottom_type());
  1741   base->as_Phi()->set_type(t);
  1743   // Search the current block for an existing base-Phi
  1744   Block *b = _cfg.get_block_for_node(derived);
  1745   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
  1746     Node *phi = b->_nodes[i];
  1747     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
  1748       b->_nodes.insert( i, base ); // Must insert created Phi here as base
  1749       _cfg.map_node_to_block(base, b);
  1750       new_lrg(base,maxlrg++);
  1751       break;
  1753     // See if Phi matches.
  1754     uint j;
  1755     for( j = 1; j < base->req(); j++ )
  1756       if( phi->in(j) != base->in(j) &&
  1757           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
  1758         break;
  1759     if( j == base->req() ) {    // All inputs match?
  1760       base = phi;               // Then use existing 'phi' and drop 'base'
  1761       break;
  1766   // Cache info for later passes
  1767   derived_base_map[derived->_idx] = base;
  1768   return base;
  1771 // At each Safepoint, insert extra debug edges for each pair of derived value/
  1772 // base pointer that is live across the Safepoint for oopmap building.  The
  1773 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
  1774 // required edge set.
  1775 bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
  1776   int must_recompute_live = false;
  1777   uint maxlrg = _lrg_map.max_lrg_id();
  1778   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
  1779   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
  1781   // For all blocks in RPO do...
  1782   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
  1783     Block* block = _cfg.get_block(i);
  1784     // Note use of deep-copy constructor.  I cannot hammer the original
  1785     // liveout bits, because they are needed by the following coalesce pass.
  1786     IndexSet liveout(_live->live(block));
  1788     for (uint j = block->end_idx() + 1; j > 1; j--) {
  1789       Node* n = block->_nodes[j - 1];
  1791       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
  1792       // like to see in the same register.  Compare uses the loop-phi and so
  1793       // extends its live range BUT cannot be part of the cycle.  If this
  1794       // extended live range overlaps with the update of the loop-phi value
  1795       // we need both alive at the same time -- which requires at least 1
  1796       // copy.  But because Intel has only 2-address registers we end up with
  1797       // at least 2 copies, one before the loop-phi update instruction and
  1798       // one after.  Instead we split the input to the compare just after the
  1799       // phi.
  1800       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
  1801         Node *phi = n->in(1);
  1802         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
  1803           Block *phi_block = _cfg.get_block_for_node(phi);
  1804           if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
  1805             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
  1806             Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
  1807             insert_proj( phi_block, 1, spill, maxlrg++ );
  1808             n->set_req(1,spill);
  1809             must_recompute_live = true;
  1814       // Get value being defined
  1815       uint lidx = _lrg_map.live_range_id(n);
  1816       // Ignore the occasional brand-new live range
  1817       if (lidx && lidx < _lrg_map.max_lrg_id()) {
  1818         // Remove from live-out set
  1819         liveout.remove(lidx);
  1821         // Copies do not define a new value and so do not interfere.
  1822         // Remove the copies source from the liveout set before interfering.
  1823         uint idx = n->is_Copy();
  1824         if (idx) {
  1825           liveout.remove(_lrg_map.live_range_id(n->in(idx)));
  1829       // Found a safepoint?
  1830       JVMState *jvms = n->jvms();
  1831       if( jvms ) {
  1832         // Now scan for a live derived pointer
  1833         IndexSetIterator elements(&liveout);
  1834         uint neighbor;
  1835         while ((neighbor = elements.next()) != 0) {
  1836           // Find reaching DEF for base and derived values
  1837           // This works because we are still in SSA during this call.
  1838           Node *derived = lrgs(neighbor)._def;
  1839           const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1840           assert(!derived->bottom_type()->isa_narrowoop() ||
  1841                   derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  1842           // If its an OOP with a non-zero offset, then it is derived.
  1843           if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
  1844             Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
  1845             assert(base->_idx < _lrg_map.size(), "");
  1846             // Add reaching DEFs of derived pointer and base pointer as a
  1847             // pair of inputs
  1848             n->add_req(derived);
  1849             n->add_req(base);
  1851             // See if the base pointer is already live to this point.
  1852             // Since I'm working on the SSA form, live-ness amounts to
  1853             // reaching def's.  So if I find the base's live range then
  1854             // I know the base's def reaches here.
  1855             if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
  1856                  !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
  1857                  (_lrg_map.live_range_id(base) > 0) && // not a constant
  1858                  _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
  1859               // Base pointer is not currently live.  Since I stretched
  1860               // the base pointer to here and it crosses basic-block
  1861               // boundaries, the global live info is now incorrect.
  1862               // Recompute live.
  1863               must_recompute_live = true;
  1864             } // End of if base pointer is not live to debug info
  1866         } // End of scan all live data for derived ptrs crossing GC point
  1867       } // End of if found a GC point
  1869       // Make all inputs live
  1870       if (!n->is_Phi()) {      // Phi function uses come from prior block
  1871         for (uint k = 1; k < n->req(); k++) {
  1872           uint lidx = _lrg_map.live_range_id(n->in(k));
  1873           if (lidx < _lrg_map.max_lrg_id()) {
  1874             liveout.insert(lidx);
  1879     } // End of forall instructions in block
  1880     liveout.clear();  // Free the memory used by liveout.
  1882   } // End of forall blocks
  1883   _lrg_map.set_max_lrg_id(maxlrg);
  1885   // If I created a new live range I need to recompute live
  1886   if (maxlrg != _ifg->_maxlrg) {
  1887     must_recompute_live = true;
  1890   return must_recompute_live != 0;
  1893 // Extend the node to LRG mapping
  1895 void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
  1896   _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
  1899 #ifndef PRODUCT
  1900 void PhaseChaitin::dump(const Node *n) const {
  1901   uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
  1902   tty->print("L%d",r);
  1903   if (r && n->Opcode() != Op_Phi) {
  1904     if( _node_regs ) {          // Got a post-allocation copy of allocation?
  1905       tty->print("[");
  1906       OptoReg::Name second = get_reg_second(n);
  1907       if( OptoReg::is_valid(second) ) {
  1908         if( OptoReg::is_reg(second) )
  1909           tty->print("%s:",Matcher::regName[second]);
  1910         else
  1911           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
  1913       OptoReg::Name first = get_reg_first(n);
  1914       if( OptoReg::is_reg(first) )
  1915         tty->print("%s]",Matcher::regName[first]);
  1916       else
  1917          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
  1918     } else
  1919     n->out_RegMask().dump();
  1921   tty->print("/N%d\t",n->_idx);
  1922   tty->print("%s === ", n->Name());
  1923   uint k;
  1924   for (k = 0; k < n->req(); k++) {
  1925     Node *m = n->in(k);
  1926     if (!m) {
  1927       tty->print("_ ");
  1929     else {
  1930       uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
  1931       tty->print("L%d",r);
  1932       // Data MultiNode's can have projections with no real registers.
  1933       // Don't die while dumping them.
  1934       int op = n->Opcode();
  1935       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
  1936         if( _node_regs ) {
  1937           tty->print("[");
  1938           OptoReg::Name second = get_reg_second(n->in(k));
  1939           if( OptoReg::is_valid(second) ) {
  1940             if( OptoReg::is_reg(second) )
  1941               tty->print("%s:",Matcher::regName[second]);
  1942             else
  1943               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
  1944                          reg2offset_unchecked(second));
  1946           OptoReg::Name first = get_reg_first(n->in(k));
  1947           if( OptoReg::is_reg(first) )
  1948             tty->print("%s]",Matcher::regName[first]);
  1949           else
  1950             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
  1951                        reg2offset_unchecked(first));
  1952         } else
  1953           n->in_RegMask(k).dump();
  1955       tty->print("/N%d ",m->_idx);
  1958   if( k < n->len() && n->in(k) ) tty->print("| ");
  1959   for( ; k < n->len(); k++ ) {
  1960     Node *m = n->in(k);
  1961     if(!m) {
  1962       break;
  1964     uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
  1965     tty->print("L%d",r);
  1966     tty->print("/N%d ",m->_idx);
  1968   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
  1969   else n->dump_spec(tty);
  1970   if( _spilled_once.test(n->_idx ) ) {
  1971     tty->print(" Spill_1");
  1972     if( _spilled_twice.test(n->_idx ) )
  1973       tty->print(" Spill_2");
  1975   tty->print("\n");
  1978 void PhaseChaitin::dump(const Block *b) const {
  1979   b->dump_head(&_cfg);
  1981   // For all instructions
  1982   for( uint j = 0; j < b->_nodes.size(); j++ )
  1983     dump(b->_nodes[j]);
  1984   // Print live-out info at end of block
  1985   if( _live ) {
  1986     tty->print("Liveout: ");
  1987     IndexSet *live = _live->live(b);
  1988     IndexSetIterator elements(live);
  1989     tty->print("{");
  1990     uint i;
  1991     while ((i = elements.next()) != 0) {
  1992       tty->print("L%d ", _lrg_map.find_const(i));
  1994     tty->print_cr("}");
  1996   tty->print("\n");
  1999 void PhaseChaitin::dump() const {
  2000   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
  2001               _matcher._new_SP, _framesize );
  2003   // For all blocks
  2004   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
  2005     dump(_cfg.get_block(i));
  2007   // End of per-block dump
  2008   tty->print("\n");
  2010   if (!_ifg) {
  2011     tty->print("(No IFG.)\n");
  2012     return;
  2015   // Dump LRG array
  2016   tty->print("--- Live RanGe Array ---\n");
  2017   for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
  2018     tty->print("L%d: ",i2);
  2019     if (i2 < _ifg->_maxlrg) {
  2020       lrgs(i2).dump();
  2022     else {
  2023       tty->print_cr("new LRG");
  2026   tty->print_cr("");
  2028   // Dump lo-degree list
  2029   tty->print("Lo degree: ");
  2030   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
  2031     tty->print("L%d ",i3);
  2032   tty->print_cr("");
  2034   // Dump lo-stk-degree list
  2035   tty->print("Lo stk degree: ");
  2036   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
  2037     tty->print("L%d ",i4);
  2038   tty->print_cr("");
  2040   // Dump lo-degree list
  2041   tty->print("Hi degree: ");
  2042   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
  2043     tty->print("L%d ",i5);
  2044   tty->print_cr("");
  2047 void PhaseChaitin::dump_degree_lists() const {
  2048   // Dump lo-degree list
  2049   tty->print("Lo degree: ");
  2050   for( uint i = _lo_degree; i; i = lrgs(i)._next )
  2051     tty->print("L%d ",i);
  2052   tty->print_cr("");
  2054   // Dump lo-stk-degree list
  2055   tty->print("Lo stk degree: ");
  2056   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
  2057     tty->print("L%d ",i2);
  2058   tty->print_cr("");
  2060   // Dump lo-degree list
  2061   tty->print("Hi degree: ");
  2062   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
  2063     tty->print("L%d ",i3);
  2064   tty->print_cr("");
  2067 void PhaseChaitin::dump_simplified() const {
  2068   tty->print("Simplified: ");
  2069   for( uint i = _simplified; i; i = lrgs(i)._next )
  2070     tty->print("L%d ",i);
  2071   tty->print_cr("");
  2074 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
  2075   if ((int)reg < 0)
  2076     sprintf(buf, "<OptoReg::%d>", (int)reg);
  2077   else if (OptoReg::is_reg(reg))
  2078     strcpy(buf, Matcher::regName[reg]);
  2079   else
  2080     sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
  2081             pc->reg2offset(reg));
  2082   return buf+strlen(buf);
  2085 // Dump a register name into a buffer.  Be intelligent if we get called
  2086 // before allocation is complete.
  2087 char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
  2088   if( !this ) {                 // Not got anything?
  2089     sprintf(buf,"N%d",n->_idx); // Then use Node index
  2090   } else if( _node_regs ) {
  2091     // Post allocation, use direct mappings, no LRG info available
  2092     print_reg( get_reg_first(n), this, buf );
  2093   } else {
  2094     uint lidx = _lrg_map.find_const(n); // Grab LRG number
  2095     if( !_ifg ) {
  2096       sprintf(buf,"L%d",lidx);  // No register binding yet
  2097     } else if( !lidx ) {        // Special, not allocated value
  2098       strcpy(buf,"Special");
  2099     } else {
  2100       if (lrgs(lidx)._is_vector) {
  2101         if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
  2102           print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
  2103         else
  2104           sprintf(buf,"L%d",lidx); // No register binding yet
  2105       } else if( (lrgs(lidx).num_regs() == 1)
  2106                  ? lrgs(lidx).mask().is_bound1()
  2107                  : lrgs(lidx).mask().is_bound_pair() ) {
  2108         // Hah!  We have a bound machine register
  2109         print_reg( lrgs(lidx).reg(), this, buf );
  2110       } else {
  2111         sprintf(buf,"L%d",lidx); // No register binding yet
  2115   return buf+strlen(buf);
  2118 void PhaseChaitin::dump_for_spill_split_recycle() const {
  2119   if( WizardMode && (PrintCompilation || PrintOpto) ) {
  2120     // Display which live ranges need to be split and the allocator's state
  2121     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
  2122     for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
  2123       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
  2124         tty->print("L%d: ", bidx);
  2125         lrgs(bidx).dump();
  2128     tty->cr();
  2129     dump();
  2133 void PhaseChaitin::dump_frame() const {
  2134   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
  2135   const TypeTuple *domain = C->tf()->domain();
  2136   const int        argcnt = domain->cnt() - TypeFunc::Parms;
  2138   // Incoming arguments in registers dump
  2139   for( int k = 0; k < argcnt; k++ ) {
  2140     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
  2141     if( OptoReg::is_reg(parmreg))  {
  2142       const char *reg_name = OptoReg::regname(parmreg);
  2143       tty->print("#r%3.3d %s", parmreg, reg_name);
  2144       parmreg = _matcher._parm_regs[k].second();
  2145       if( OptoReg::is_reg(parmreg))  {
  2146         tty->print(":%s", OptoReg::regname(parmreg));
  2148       tty->print("   : parm %d: ", k);
  2149       domain->field_at(k + TypeFunc::Parms)->dump();
  2150       tty->print_cr("");
  2154   // Check for un-owned padding above incoming args
  2155   OptoReg::Name reg = _matcher._new_SP;
  2156   if( reg > _matcher._in_arg_limit ) {
  2157     reg = OptoReg::add(reg, -1);
  2158     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
  2161   // Incoming argument area dump
  2162   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
  2163   while( reg > begin_in_arg ) {
  2164     reg = OptoReg::add(reg, -1);
  2165     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  2166     int j;
  2167     for( j = 0; j < argcnt; j++) {
  2168       if( _matcher._parm_regs[j].first() == reg ||
  2169           _matcher._parm_regs[j].second() == reg ) {
  2170         tty->print("parm %d: ",j);
  2171         domain->field_at(j + TypeFunc::Parms)->dump();
  2172         tty->print_cr("");
  2173         break;
  2176     if( j >= argcnt )
  2177       tty->print_cr("HOLE, owned by SELF");
  2180   // Old outgoing preserve area
  2181   while( reg > _matcher._old_SP ) {
  2182     reg = OptoReg::add(reg, -1);
  2183     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
  2186   // Old SP
  2187   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
  2188     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
  2190   // Preserve area dump
  2191   int fixed_slots = C->fixed_slots();
  2192   OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
  2193   OptoReg::Name return_addr = _matcher.return_addr();
  2195   reg = OptoReg::add(reg, -1);
  2196   while (OptoReg::is_stack(reg)) {
  2197     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  2198     if (return_addr == reg) {
  2199       tty->print_cr("return address");
  2200     } else if (reg >= begin_in_preserve) {
  2201       // Preserved slots are present on x86
  2202       if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
  2203         tty->print_cr("saved fp register");
  2204       else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
  2205                VerifyStackAtCalls)
  2206         tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
  2207       else
  2208         tty->print_cr("in_preserve");
  2209     } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
  2210       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
  2211     } else {
  2212       tty->print_cr("pad2, stack alignment");
  2214     reg = OptoReg::add(reg, -1);
  2217   // Spill area dump
  2218   reg = OptoReg::add(_matcher._new_SP, _framesize );
  2219   while( reg > _matcher._out_arg_limit ) {
  2220     reg = OptoReg::add(reg, -1);
  2221     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
  2224   // Outgoing argument area dump
  2225   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
  2226     reg = OptoReg::add(reg, -1);
  2227     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
  2230   // Outgoing new preserve area
  2231   while( reg > _matcher._new_SP ) {
  2232     reg = OptoReg::add(reg, -1);
  2233     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
  2235   tty->print_cr("#");
  2238 void PhaseChaitin::dump_bb( uint pre_order ) const {
  2239   tty->print_cr("---dump of B%d---",pre_order);
  2240   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
  2241     Block* block = _cfg.get_block(i);
  2242     if (block->_pre_order == pre_order) {
  2243       dump(block);
  2248 void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
  2249   tty->print_cr("---dump of L%d---",lidx);
  2251   if (_ifg) {
  2252     if (lidx >= _lrg_map.max_lrg_id()) {
  2253       tty->print("Attempt to print live range index beyond max live range.\n");
  2254       return;
  2256     tty->print("L%d: ",lidx);
  2257     if (lidx < _ifg->_maxlrg) {
  2258       lrgs(lidx).dump();
  2259     } else {
  2260       tty->print_cr("new LRG");
  2263   if( _ifg && lidx < _ifg->_maxlrg) {
  2264     tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
  2265     _ifg->neighbors(lidx)->dump();
  2266     tty->cr();
  2268   // For all blocks
  2269   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
  2270     Block* block = _cfg.get_block(i);
  2271     int dump_once = 0;
  2273     // For all instructions
  2274     for( uint j = 0; j < block->_nodes.size(); j++ ) {
  2275       Node *n = block->_nodes[j];
  2276       if (_lrg_map.find_const(n) == lidx) {
  2277         if (!dump_once++) {
  2278           tty->cr();
  2279           block->dump_head(&_cfg);
  2281         dump(n);
  2282         continue;
  2284       if (!defs_only) {
  2285         uint cnt = n->req();
  2286         for( uint k = 1; k < cnt; k++ ) {
  2287           Node *m = n->in(k);
  2288           if (!m)  {
  2289             continue;  // be robust in the dumper
  2291           if (_lrg_map.find_const(m) == lidx) {
  2292             if (!dump_once++) {
  2293               tty->cr();
  2294               block->dump_head(&_cfg);
  2296             dump(n);
  2301   } // End of per-block dump
  2302   tty->cr();
  2304 #endif // not PRODUCT
  2306 int PhaseChaitin::_final_loads  = 0;
  2307 int PhaseChaitin::_final_stores = 0;
  2308 int PhaseChaitin::_final_memoves= 0;
  2309 int PhaseChaitin::_final_copies = 0;
  2310 double PhaseChaitin::_final_load_cost  = 0;
  2311 double PhaseChaitin::_final_store_cost = 0;
  2312 double PhaseChaitin::_final_memove_cost= 0;
  2313 double PhaseChaitin::_final_copy_cost  = 0;
  2314 int PhaseChaitin::_conserv_coalesce = 0;
  2315 int PhaseChaitin::_conserv_coalesce_pair = 0;
  2316 int PhaseChaitin::_conserv_coalesce_trie = 0;
  2317 int PhaseChaitin::_conserv_coalesce_quad = 0;
  2318 int PhaseChaitin::_post_alloc = 0;
  2319 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
  2320 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
  2321 int PhaseChaitin::_used_cisc_instructions   = 0;
  2322 int PhaseChaitin::_unused_cisc_instructions = 0;
  2323 int PhaseChaitin::_allocator_attempts       = 0;
  2324 int PhaseChaitin::_allocator_successes      = 0;
  2326 #ifndef PRODUCT
  2327 uint PhaseChaitin::_high_pressure           = 0;
  2328 uint PhaseChaitin::_low_pressure            = 0;
  2330 void PhaseChaitin::print_chaitin_statistics() {
  2331   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
  2332   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
  2333   tty->print_cr("Adjusted spill cost = %7.0f.",
  2334                 _final_load_cost*4.0 + _final_store_cost  * 2.0 +
  2335                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
  2336   tty->print("Conservatively coalesced %d copies, %d pairs",
  2337                 _conserv_coalesce, _conserv_coalesce_pair);
  2338   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
  2339     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
  2340   tty->print_cr(", %d post alloc.", _post_alloc);
  2341   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
  2342     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
  2343                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
  2344   if( _used_cisc_instructions || _unused_cisc_instructions )
  2345     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
  2346                    _used_cisc_instructions, _unused_cisc_instructions);
  2347   if( _allocator_successes != 0 )
  2348     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
  2349   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
  2351 #endif // not PRODUCT

mercurial