src/share/vm/opto/block.hpp

Fri, 23 Aug 2013 11:41:37 -0700

author
kvn
date
Fri, 23 Aug 2013 11:41:37 -0700
changeset 5626
766fac3395d6
parent 5539
adb9a7d94cb5
child 5635
650868c062a9
permissions
-rw-r--r--

8012972: Incremental Inlining should support scalar replaced object in debug info
Summary: store in _first_index not absolute index but an index relative to the last (youngest) jvms->_scloff value
Reviewed-by: roland, twisti

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_BLOCK_HPP
    26 #define SHARE_VM_OPTO_BLOCK_HPP
    28 #include "opto/multnode.hpp"
    29 #include "opto/node.hpp"
    30 #include "opto/phase.hpp"
    32 // Optimization - Graph Style
    34 class Block;
    35 class CFGLoop;
    36 class MachCallNode;
    37 class Matcher;
    38 class RootNode;
    39 class VectorSet;
    40 struct Tarjan;
    42 //------------------------------Block_Array------------------------------------
    43 // Map dense integer indices to Blocks.  Uses classic doubling-array trick.
    44 // Abstractly provides an infinite array of Block*'s, initialized to NULL.
    45 // Note that the constructor just zeros things, and since I use Arena
    46 // allocation I do not need a destructor to reclaim storage.
    47 class Block_Array : public ResourceObj {
    48   friend class VMStructs;
    49   uint _size;                   // allocated size, as opposed to formal limit
    50   debug_only(uint _limit;)      // limit to formal domain
    51   Arena *_arena;                // Arena to allocate in
    52 protected:
    53   Block **_blocks;
    54   void grow( uint i );          // Grow array node to fit
    56 public:
    57   Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
    58     debug_only(_limit=0);
    59     _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
    60     for( int i = 0; i < OptoBlockListSize; i++ ) {
    61       _blocks[i] = NULL;
    62     }
    63   }
    64   Block *lookup( uint i ) const // Lookup, or NULL for not mapped
    65   { return (i<Max()) ? _blocks[i] : (Block*)NULL; }
    66   Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
    67   { assert( i < Max(), "oob" ); return _blocks[i]; }
    68   // Extend the mapping: index i maps to Block *n.
    69   void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
    70   uint Max() const { debug_only(return _limit); return _size; }
    71 };
    74 class Block_List : public Block_Array {
    75   friend class VMStructs;
    76 public:
    77   uint _cnt;
    78   Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
    79   void push( Block *b ) {  map(_cnt++,b); }
    80   Block *pop() { return _blocks[--_cnt]; }
    81   Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
    82   void remove( uint i );
    83   void insert( uint i, Block *n );
    84   uint size() const { return _cnt; }
    85   void reset() { _cnt = 0; }
    86   void print();
    87 };
    90 class CFGElement : public ResourceObj {
    91   friend class VMStructs;
    92  public:
    93   float _freq; // Execution frequency (estimate)
    95   CFGElement() : _freq(0.0f) {}
    96   virtual bool is_block() { return false; }
    97   virtual bool is_loop()  { return false; }
    98   Block*   as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
    99   CFGLoop* as_CFGLoop()  { assert(is_loop(),  "must be loop");  return (CFGLoop*)this;  }
   100 };
   102 //------------------------------Block------------------------------------------
   103 // This class defines a Basic Block.
   104 // Basic blocks are used during the output routines, and are not used during
   105 // any optimization pass.  They are created late in the game.
   106 class Block : public CFGElement {
   107   friend class VMStructs;
   108  public:
   109   // Nodes in this block, in order
   110   Node_List _nodes;
   112   // Basic blocks have a Node which defines Control for all Nodes pinned in
   113   // this block.  This Node is a RegionNode.  Exception-causing Nodes
   114   // (division, subroutines) and Phi functions are always pinned.  Later,
   115   // every Node will get pinned to some block.
   116   Node *head() const { return _nodes[0]; }
   118   // CAUTION: num_preds() is ONE based, so that predecessor numbers match
   119   // input edges to Regions and Phis.
   120   uint num_preds() const { return head()->req(); }
   121   Node *pred(uint i) const { return head()->in(i); }
   123   // Array of successor blocks, same size as projs array
   124   Block_Array _succs;
   126   // Basic blocks have some number of Nodes which split control to all
   127   // following blocks.  These Nodes are always Projections.  The field in
   128   // the Projection and the block-ending Node determine which Block follows.
   129   uint _num_succs;
   131   // Basic blocks also carry all sorts of good old fashioned DFS information
   132   // used to find loops, loop nesting depth, dominators, etc.
   133   uint _pre_order;              // Pre-order DFS number
   135   // Dominator tree
   136   uint _dom_depth;              // Depth in dominator tree for fast LCA
   137   Block* _idom;                 // Immediate dominator block
   139   CFGLoop *_loop;               // Loop to which this block belongs
   140   uint _rpo;                    // Number in reverse post order walk
   142   virtual bool is_block() { return true; }
   143   float succ_prob(uint i);      // return probability of i'th successor
   144   int num_fall_throughs();      // How many fall-through candidate this block has
   145   void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
   146   bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
   147   Block* lone_fall_through();   // Return lone fall-through Block or null
   149   Block* dom_lca(Block* that);  // Compute LCA in dominator tree.
   150 #ifdef ASSERT
   151   bool dominates(Block* that) {
   152     int dom_diff = this->_dom_depth - that->_dom_depth;
   153     if (dom_diff > 0)  return false;
   154     for (; dom_diff < 0; dom_diff++)  that = that->_idom;
   155     return this == that;
   156   }
   157 #endif
   159   // Report the alignment required by this block.  Must be a power of 2.
   160   // The previous block will insert nops to get this alignment.
   161   uint code_alignment();
   162   uint compute_loop_alignment();
   164   // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
   165   // It is currently also used to scale such frequencies relative to
   166   // FreqCountInvocations relative to the old value of 1500.
   167 #define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations)
   169   // Register Pressure (estimate) for Splitting heuristic
   170   uint _reg_pressure;
   171   uint _ihrp_index;
   172   uint _freg_pressure;
   173   uint _fhrp_index;
   175   // Mark and visited bits for an LCA calculation in insert_anti_dependences.
   176   // Since they hold unique node indexes, they do not need reinitialization.
   177   node_idx_t _raise_LCA_mark;
   178   void    set_raise_LCA_mark(node_idx_t x)    { _raise_LCA_mark = x; }
   179   node_idx_t  raise_LCA_mark() const          { return _raise_LCA_mark; }
   180   node_idx_t _raise_LCA_visited;
   181   void    set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
   182   node_idx_t  raise_LCA_visited() const       { return _raise_LCA_visited; }
   184   // Estimated size in bytes of first instructions in a loop.
   185   uint _first_inst_size;
   186   uint first_inst_size() const     { return _first_inst_size; }
   187   void set_first_inst_size(uint s) { _first_inst_size = s; }
   189   // Compute the size of first instructions in this block.
   190   uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
   192   // Compute alignment padding if the block needs it.
   193   // Align a loop if loop's padding is less or equal to padding limit
   194   // or the size of first instructions in the loop > padding.
   195   uint alignment_padding(int current_offset) {
   196     int block_alignment = code_alignment();
   197     int max_pad = block_alignment-relocInfo::addr_unit();
   198     if( max_pad > 0 ) {
   199       assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
   200       int current_alignment = current_offset & max_pad;
   201       if( current_alignment != 0 ) {
   202         uint padding = (block_alignment-current_alignment) & max_pad;
   203         if( has_loop_alignment() &&
   204             padding > (uint)MaxLoopPad &&
   205             first_inst_size() <= padding ) {
   206           return 0;
   207         }
   208         return padding;
   209       }
   210     }
   211     return 0;
   212   }
   214   // Connector blocks. Connector blocks are basic blocks devoid of
   215   // instructions, but may have relevant non-instruction Nodes, such as
   216   // Phis or MergeMems. Such blocks are discovered and marked during the
   217   // RemoveEmpty phase, and elided during Output.
   218   bool _connector;
   219   void set_connector() { _connector = true; }
   220   bool is_connector() const { return _connector; };
   222   // Loop_alignment will be set for blocks which are at the top of loops.
   223   // The block layout pass may rotate loops such that the loop head may not
   224   // be the sequentially first block of the loop encountered in the linear
   225   // list of blocks.  If the layout pass is not run, loop alignment is set
   226   // for each block which is the head of a loop.
   227   uint _loop_alignment;
   228   void set_loop_alignment(Block *loop_top) {
   229     uint new_alignment = loop_top->compute_loop_alignment();
   230     if (new_alignment > _loop_alignment) {
   231       _loop_alignment = new_alignment;
   232     }
   233   }
   234   uint loop_alignment() const { return _loop_alignment; }
   235   bool has_loop_alignment() const { return loop_alignment() > 0; }
   237   // Create a new Block with given head Node.
   238   // Creates the (empty) predecessor arrays.
   239   Block( Arena *a, Node *headnode )
   240     : CFGElement(),
   241       _nodes(a),
   242       _succs(a),
   243       _num_succs(0),
   244       _pre_order(0),
   245       _idom(0),
   246       _loop(NULL),
   247       _reg_pressure(0),
   248       _ihrp_index(1),
   249       _freg_pressure(0),
   250       _fhrp_index(1),
   251       _raise_LCA_mark(0),
   252       _raise_LCA_visited(0),
   253       _first_inst_size(999999),
   254       _connector(false),
   255       _loop_alignment(0) {
   256     _nodes.push(headnode);
   257   }
   259   // Index of 'end' Node
   260   uint end_idx() const {
   261     // %%%%% add a proj after every goto
   262     // so (last->is_block_proj() != last) always, then simplify this code
   263     // This will not give correct end_idx for block 0 when it only contains root.
   264     int last_idx = _nodes.size() - 1;
   265     Node *last  = _nodes[last_idx];
   266     assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
   267     return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
   268   }
   270   // Basic blocks have a Node which ends them.  This Node determines which
   271   // basic block follows this one in the program flow.  This Node is either an
   272   // IfNode, a GotoNode, a JmpNode, or a ReturnNode.
   273   Node *end() const { return _nodes[end_idx()]; }
   275   // Add an instruction to an existing block.  It must go after the head
   276   // instruction and before the end instruction.
   277   void add_inst( Node *n ) { _nodes.insert(end_idx(),n); }
   278   // Find node in block
   279   uint find_node( const Node *n ) const;
   280   // Find and remove n from block list
   281   void find_remove( const Node *n );
   283   // helper function that adds caller save registers to MachProjNode
   284   void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe);
   285   // Schedule a call next in the block
   286   uint sched_call(Matcher &matcher, PhaseCFG* cfg, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call);
   288   // Perform basic-block local scheduling
   289   Node *select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot);
   290   void set_next_call( Node *n, VectorSet &next_call, PhaseCFG* cfg);
   291   void needed_for_next_call(Node *this_call, VectorSet &next_call, PhaseCFG* cfg);
   292   bool schedule_local(PhaseCFG *cfg, Matcher &m, GrowableArray<int> &ready_cnt, VectorSet &next_call);
   293   // Cleanup if any code lands between a Call and his Catch
   294   void call_catch_cleanup(PhaseCFG* cfg, Compile *C);
   295   // Detect implicit-null-check opportunities.  Basically, find NULL checks
   296   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
   297   // I can generate a memory op if there is not one nearby.
   298   void implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons);
   300   // Return the empty status of a block
   301   enum { not_empty, empty_with_goto, completely_empty };
   302   int is_Empty() const;
   304   // Forward through connectors
   305   Block* non_connector() {
   306     Block* s = this;
   307     while (s->is_connector()) {
   308       s = s->_succs[0];
   309     }
   310     return s;
   311   }
   313   // Return true if b is a successor of this block
   314   bool has_successor(Block* b) const {
   315     for (uint i = 0; i < _num_succs; i++ ) {
   316       if (non_connector_successor(i) == b) {
   317         return true;
   318       }
   319     }
   320     return false;
   321   }
   323   // Successor block, after forwarding through connectors
   324   Block* non_connector_successor(int i) const {
   325     return _succs[i]->non_connector();
   326   }
   328   // Examine block's code shape to predict if it is not commonly executed.
   329   bool has_uncommon_code() const;
   331   // Use frequency calculations and code shape to predict if the block
   332   // is uncommon.
   333   bool is_uncommon(PhaseCFG* cfg) const;
   335 #ifndef PRODUCT
   336   // Debugging print of basic block
   337   void dump_bidx(const Block* orig, outputStream* st = tty) const;
   338   void dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st = tty) const;
   339   void dump_head(const PhaseCFG* cfg, outputStream* st = tty) const;
   340   void dump() const;
   341   void dump(const PhaseCFG* cfg) const;
   342 #endif
   343 };
   346 //------------------------------PhaseCFG---------------------------------------
   347 // Build an array of Basic Block pointers, one per Node.
   348 class PhaseCFG : public Phase {
   349   friend class VMStructs;
   350  private:
   352   // Root of whole program
   353   RootNode* _root;
   355   // The block containing the root node
   356   Block* _root_block;
   358   // List of basic blocks that are created during CFG creation
   359   Block_List _blocks;
   361   // Count of basic blocks
   362   uint _number_of_blocks;
   364   // Arena for the blocks to be stored in
   365   Arena* _block_arena;
   367   // The matcher for this compilation
   368   Matcher& _matcher;
   370   // Map nodes to owning basic block
   371   Block_Array _node_to_block_mapping;
   373   // Loop from the root
   374   CFGLoop* _root_loop;
   376   // Outmost loop frequency
   377   float _outer_loop_frequency;
   379   // Per node latency estimation, valid only during GCM
   380   GrowableArray<uint>* _node_latency;
   382   // Build a proper looking cfg.  Return count of basic blocks
   383   uint build_cfg();
   385   // Build the dominator tree so that we know where we can move instructions
   386   void build_dominator_tree();
   388   // Estimate block frequencies based on IfNode probabilities, so that we know where we want to move instructions
   389   void estimate_block_frequency();
   391   // Global Code Motion.  See Click's PLDI95 paper.  Place Nodes in specific
   392   // basic blocks; i.e. _node_to_block_mapping now maps _idx for all Nodes to some Block.
   393   // Move nodes to ensure correctness from GVN and also try to move nodes out of loops.
   394   void global_code_motion();
   396   // Schedule Nodes early in their basic blocks.
   397   bool schedule_early(VectorSet &visited, Node_List &roots);
   399   // For each node, find the latest block it can be scheduled into
   400   // and then select the cheapest block between the latest and earliest
   401   // block to place the node.
   402   void schedule_late(VectorSet &visited, Node_List &stack);
   404   // Compute the (backwards) latency of a node from a single use
   405   int latency_from_use(Node *n, const Node *def, Node *use);
   407   // Compute the (backwards) latency of a node from the uses of this instruction
   408   void partial_latency_of_defs(Node *n);
   410   // Compute the instruction global latency with a backwards walk
   411   void compute_latencies_backwards(VectorSet &visited, Node_List &stack);
   413   // Pick a block between early and late that is a cheaper alternative
   414   // to late. Helper for schedule_late.
   415   Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
   417   // Perform a Depth First Search (DFS).
   418   // Setup 'vertex' as DFS to vertex mapping.
   419   // Setup 'semi' as vertex to DFS mapping.
   420   // Set 'parent' to DFS parent.
   421   uint do_DFS(Tarjan* tarjan, uint rpo_counter);
   423   // Helper function to insert a node into a block
   424   void schedule_node_into_block( Node *n, Block *b );
   426   void replace_block_proj_ctrl( Node *n );
   428   // Set the basic block for pinned Nodes
   429   void schedule_pinned_nodes( VectorSet &visited );
   431   // I'll need a few machine-specific GotoNodes.  Clone from this one.
   432   // Used when building the CFG and creating end nodes for blocks.
   433   MachNode* _goto;
   435   Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
   436   void verify_anti_dependences(Block* LCA, Node* load) {
   437     assert(LCA == get_block_for_node(load), "should already be scheduled");
   438     insert_anti_dependences(LCA, load, true);
   439   }
   441   bool move_to_next(Block* bx, uint b_index);
   442   void move_to_end(Block* bx, uint b_index);
   444   void insert_goto_at(uint block_no, uint succ_no);
   446   // Check for NeverBranch at block end.  This needs to become a GOTO to the
   447   // true target.  NeverBranch are treated as a conditional branch that always
   448   // goes the same direction for most of the optimizer and are used to give a
   449   // fake exit path to infinite loops.  At this late stage they need to turn
   450   // into Goto's so that when you enter the infinite loop you indeed hang.
   451   void convert_NeverBranch_to_Goto(Block *b);
   453   CFGLoop* create_loop_tree();
   455   #ifndef PRODUCT
   456   bool _trace_opto_pipelining;  // tracing flag
   457   #endif
   459  public:
   460   PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher);
   462   void set_latency_for_node(Node* node, int latency) {
   463     _node_latency->at_put_grow(node->_idx, latency);
   464   }
   466   uint get_latency_for_node(Node* node) {
   467     return _node_latency->at_grow(node->_idx);
   468   }
   470   // Get the outer most frequency
   471   float get_outer_loop_frequency() const {
   472     return _outer_loop_frequency;
   473   }
   475   // Get the root node of the CFG
   476   RootNode* get_root_node() const {
   477     return _root;
   478   }
   480   // Get the block of the root node
   481   Block* get_root_block() const {
   482     return _root_block;
   483   }
   485   // Add a block at a position and moves the later ones one step
   486   void add_block_at(uint pos, Block* block) {
   487     _blocks.insert(pos, block);
   488     _number_of_blocks++;
   489   }
   491   // Adds a block to the top of the block list
   492   void add_block(Block* block) {
   493     _blocks.push(block);
   494     _number_of_blocks++;
   495   }
   497   // Clear the list of blocks
   498   void clear_blocks() {
   499     _blocks.reset();
   500     _number_of_blocks = 0;
   501   }
   503   // Get the block at position pos in _blocks
   504   Block* get_block(uint pos) const {
   505     return _blocks[pos];
   506   }
   508   // Number of blocks
   509   uint number_of_blocks() const {
   510     return _number_of_blocks;
   511   }
   513   // set which block this node should reside in
   514   void map_node_to_block(const Node* node, Block* block) {
   515     _node_to_block_mapping.map(node->_idx, block);
   516   }
   518   // removes the mapping from a node to a block
   519   void unmap_node_from_block(const Node* node) {
   520     _node_to_block_mapping.map(node->_idx, NULL);
   521   }
   523   // get the block in which this node resides
   524   Block* get_block_for_node(const Node* node) const {
   525     return _node_to_block_mapping[node->_idx];
   526   }
   528   // does this node reside in a block; return true
   529   bool has_block(const Node* node) const {
   530     return (_node_to_block_mapping.lookup(node->_idx) != NULL);
   531   }
   533 #ifdef ASSERT
   534   Unique_Node_List _raw_oops;
   535 #endif
   537   // Do global code motion by first building dominator tree and estimate block frequency
   538   // Returns true on success
   539   bool do_global_code_motion();
   541   // Compute the (backwards) latency of a node from the uses
   542   void latency_from_uses(Node *n);
   544   // Set loop alignment
   545   void set_loop_alignment();
   547   // Remove empty basic blocks
   548   void remove_empty_blocks();
   549   void fixup_flow();
   551   // Insert a node into a block at index and map the node to the block
   552   void insert(Block *b, uint idx, Node *n) {
   553     b->_nodes.insert( idx, n );
   554     map_node_to_block(n, b);
   555   }
   557 #ifndef PRODUCT
   558   bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
   560   // Debugging print of CFG
   561   void dump( ) const;           // CFG only
   562   void _dump_cfg( const Node *end, VectorSet &visited  ) const;
   563   void verify() const;
   564   void dump_headers();
   565 #else
   566   bool trace_opto_pipelining() const { return false; }
   567 #endif
   568 };
   571 //------------------------------UnionFind--------------------------------------
   572 // Map Block indices to a block-index for a cfg-cover.
   573 // Array lookup in the optimized case.
   574 class UnionFind : public ResourceObj {
   575   uint _cnt, _max;
   576   uint* _indices;
   577   ReallocMark _nesting;  // assertion check for reallocations
   578 public:
   579   UnionFind( uint max );
   580   void reset( uint max );  // Reset to identity map for [0..max]
   582   uint lookup( uint nidx ) const {
   583     return _indices[nidx];
   584   }
   585   uint operator[] (uint nidx) const { return lookup(nidx); }
   587   void map( uint from_idx, uint to_idx ) {
   588     assert( from_idx < _cnt, "oob" );
   589     _indices[from_idx] = to_idx;
   590   }
   591   void extend( uint from_idx, uint to_idx );
   593   uint Size() const { return _cnt; }
   595   uint Find( uint idx ) {
   596     assert( idx < 65536, "Must fit into uint");
   597     uint uf_idx = lookup(idx);
   598     return (uf_idx == idx) ? uf_idx : Find_compress(idx);
   599   }
   600   uint Find_compress( uint idx );
   601   uint Find_const( uint idx ) const;
   602   void Union( uint idx1, uint idx2 );
   604 };
   606 //----------------------------BlockProbPair---------------------------
   607 // Ordered pair of Node*.
   608 class BlockProbPair VALUE_OBJ_CLASS_SPEC {
   609 protected:
   610   Block* _target;      // block target
   611   float  _prob;        // probability of edge to block
   612 public:
   613   BlockProbPair() : _target(NULL), _prob(0.0) {}
   614   BlockProbPair(Block* b, float p) : _target(b), _prob(p) {}
   616   Block* get_target() const { return _target; }
   617   float get_prob() const { return _prob; }
   618 };
   620 //------------------------------CFGLoop-------------------------------------------
   621 class CFGLoop : public CFGElement {
   622   friend class VMStructs;
   623   int _id;
   624   int _depth;
   625   CFGLoop *_parent;      // root of loop tree is the method level "pseudo" loop, it's parent is null
   626   CFGLoop *_sibling;     // null terminated list
   627   CFGLoop *_child;       // first child, use child's sibling to visit all immediately nested loops
   628   GrowableArray<CFGElement*> _members; // list of members of loop
   629   GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
   630   float _exit_prob;       // probability any loop exit is taken on a single loop iteration
   631   void update_succ_freq(Block* b, float freq);
   633  public:
   634   CFGLoop(int id) :
   635     CFGElement(),
   636     _id(id),
   637     _depth(0),
   638     _parent(NULL),
   639     _sibling(NULL),
   640     _child(NULL),
   641     _exit_prob(1.0f) {}
   642   CFGLoop* parent() { return _parent; }
   643   void push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg);
   644   void add_member(CFGElement *s) { _members.push(s); }
   645   void add_nested_loop(CFGLoop* cl);
   646   Block* head() {
   647     assert(_members.at(0)->is_block(), "head must be a block");
   648     Block* hd = _members.at(0)->as_Block();
   649     assert(hd->_loop == this, "just checking");
   650     assert(hd->head()->is_Loop(), "must begin with loop head node");
   651     return hd;
   652   }
   653   Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
   654   void compute_loop_depth(int depth);
   655   void compute_freq(); // compute frequency with loop assuming head freq 1.0f
   656   void scale_freq();   // scale frequency by loop trip count (including outer loops)
   657   float outer_loop_freq() const; // frequency of outer loop
   658   bool in_loop_nest(Block* b);
   659   float trip_count() const { return 1.0f / _exit_prob; }
   660   virtual bool is_loop()  { return true; }
   661   int id() { return _id; }
   663 #ifndef PRODUCT
   664   void dump( ) const;
   665   void dump_tree() const;
   666 #endif
   667 };
   670 //----------------------------------CFGEdge------------------------------------
   671 // A edge between two basic blocks that will be embodied by a branch or a
   672 // fall-through.
   673 class CFGEdge : public ResourceObj {
   674   friend class VMStructs;
   675  private:
   676   Block * _from;        // Source basic block
   677   Block * _to;          // Destination basic block
   678   float _freq;          // Execution frequency (estimate)
   679   int   _state;
   680   bool  _infrequent;
   681   int   _from_pct;
   682   int   _to_pct;
   684   // Private accessors
   685   int  from_pct() const { return _from_pct; }
   686   int  to_pct()   const { return _to_pct;   }
   687   int  from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
   688   int  to_infrequent()   const { return to_pct()   < BlockLayoutMinDiamondPercentage; }
   690  public:
   691   enum {
   692     open,               // initial edge state; unprocessed
   693     connected,          // edge used to connect two traces together
   694     interior            // edge is interior to trace (could be backedge)
   695   };
   697   CFGEdge(Block *from, Block *to, float freq, int from_pct, int to_pct) :
   698     _from(from), _to(to), _freq(freq),
   699     _from_pct(from_pct), _to_pct(to_pct), _state(open) {
   700     _infrequent = from_infrequent() || to_infrequent();
   701   }
   703   float  freq() const { return _freq; }
   704   Block* from() const { return _from; }
   705   Block* to  () const { return _to;   }
   706   int  infrequent() const { return _infrequent; }
   707   int state() const { return _state; }
   709   void set_state(int state) { _state = state; }
   711 #ifndef PRODUCT
   712   void dump( ) const;
   713 #endif
   714 };
   717 //-----------------------------------Trace-------------------------------------
   718 // An ordered list of basic blocks.
   719 class Trace : public ResourceObj {
   720  private:
   721   uint _id;             // Unique Trace id (derived from initial block)
   722   Block ** _next_list;  // Array mapping index to next block
   723   Block ** _prev_list;  // Array mapping index to previous block
   724   Block * _first;       // First block in the trace
   725   Block * _last;        // Last block in the trace
   727   // Return the block that follows "b" in the trace.
   728   Block * next(Block *b) const { return _next_list[b->_pre_order]; }
   729   void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }
   731   // Return the block that precedes "b" in the trace.
   732   Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
   733   void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }
   735   // We've discovered a loop in this trace. Reset last to be "b", and first as
   736   // the block following "b
   737   void break_loop_after(Block *b) {
   738     _last = b;
   739     _first = next(b);
   740     set_prev(_first, NULL);
   741     set_next(_last, NULL);
   742   }
   744  public:
   746   Trace(Block *b, Block **next_list, Block **prev_list) :
   747     _first(b),
   748     _last(b),
   749     _next_list(next_list),
   750     _prev_list(prev_list),
   751     _id(b->_pre_order) {
   752     set_next(b, NULL);
   753     set_prev(b, NULL);
   754   };
   756   // Return the id number
   757   uint id() const { return _id; }
   758   void set_id(uint id) { _id = id; }
   760   // Return the first block in the trace
   761   Block * first_block() const { return _first; }
   763   // Return the last block in the trace
   764   Block * last_block() const { return _last; }
   766   // Insert a trace in the middle of this one after b
   767   void insert_after(Block *b, Trace *tr) {
   768     set_next(tr->last_block(), next(b));
   769     if (next(b) != NULL) {
   770       set_prev(next(b), tr->last_block());
   771     }
   773     set_next(b, tr->first_block());
   774     set_prev(tr->first_block(), b);
   776     if (b == _last) {
   777       _last = tr->last_block();
   778     }
   779   }
   781   void insert_before(Block *b, Trace *tr) {
   782     Block *p = prev(b);
   783     assert(p != NULL, "use append instead");
   784     insert_after(p, tr);
   785   }
   787   // Append another trace to this one.
   788   void append(Trace *tr) {
   789     insert_after(_last, tr);
   790   }
   792   // Append a block at the end of this trace
   793   void append(Block *b) {
   794     set_next(_last, b);
   795     set_prev(b, _last);
   796     _last = b;
   797   }
   799   // Adjust the the blocks in this trace
   800   void fixup_blocks(PhaseCFG &cfg);
   801   bool backedge(CFGEdge *e);
   803 #ifndef PRODUCT
   804   void dump( ) const;
   805 #endif
   806 };
   808 //------------------------------PhaseBlockLayout-------------------------------
   809 // Rearrange blocks into some canonical order, based on edges and their frequencies
   810 class PhaseBlockLayout : public Phase {
   811   friend class VMStructs;
   812   PhaseCFG &_cfg;               // Control flow graph
   814   GrowableArray<CFGEdge *> *edges;
   815   Trace **traces;
   816   Block **next;
   817   Block **prev;
   818   UnionFind *uf;
   820   // Given a block, find its encompassing Trace
   821   Trace * trace(Block *b) {
   822     return traces[uf->Find_compress(b->_pre_order)];
   823   }
   824  public:
   825   PhaseBlockLayout(PhaseCFG &cfg);
   827   void find_edges();
   828   void grow_traces();
   829   void merge_traces(bool loose_connections);
   830   void reorder_traces(int count);
   831   void union_traces(Trace* from, Trace* to);
   832 };
   834 #endif // SHARE_VM_OPTO_BLOCK_HPP

mercurial