src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Tue, 30 Mar 2010 15:43:03 -0400

author
tonyp
date
Tue, 30 Mar 2010 15:43:03 -0400
changeset 1823
7666957bc44d
parent 1822
0bfd3fb24150
child 1824
5dbd9300cf9c
permissions
-rw-r--r--

6937142: G1: improvements to debugging output (S-M)
Summary: Various fixes to the G1 debugging output.
Reviewed-by: johnc, iveresov

     1 /*
     2  * Copyright 2001-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_g1CollectedHeap.cpp.incl"
    28 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    30 // turn it on so that the contents of the young list (scan-only /
    31 // to-be-collected) are printed at "strategic" points before / during
    32 // / after the collection --- this is useful for debugging
    33 #define SCAN_ONLY_VERBOSE 0
    34 // CURRENT STATUS
    35 // This file is under construction.  Search for "FIXME".
    37 // INVARIANTS/NOTES
    38 //
    39 // All allocation activity covered by the G1CollectedHeap interface is
    40 //   serialized by acquiring the HeapLock.  This happens in
    41 //   mem_allocate_work, which all such allocation functions call.
    42 //   (Note that this does not apply to TLAB allocation, which is not part
    43 //   of this interface: it is done by clients of this interface.)
    45 // Local to this file.
    47 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    48   SuspendibleThreadSet* _sts;
    49   G1RemSet* _g1rs;
    50   ConcurrentG1Refine* _cg1r;
    51   bool _concurrent;
    52 public:
    53   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    54                               G1RemSet* g1rs,
    55                               ConcurrentG1Refine* cg1r) :
    56     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    57   {}
    58   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    59     _g1rs->concurrentRefineOneCard(card_ptr, worker_i);
    60     if (_concurrent && _sts->should_yield()) {
    61       // Caller will actually yield.
    62       return false;
    63     }
    64     // Otherwise, we finished successfully; return true.
    65     return true;
    66   }
    67   void set_concurrent(bool b) { _concurrent = b; }
    68 };
    71 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
    72   int _calls;
    73   G1CollectedHeap* _g1h;
    74   CardTableModRefBS* _ctbs;
    75   int _histo[256];
    76 public:
    77   ClearLoggedCardTableEntryClosure() :
    78     _calls(0)
    79   {
    80     _g1h = G1CollectedHeap::heap();
    81     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    82     for (int i = 0; i < 256; i++) _histo[i] = 0;
    83   }
    84   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    85     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
    86       _calls++;
    87       unsigned char* ujb = (unsigned char*)card_ptr;
    88       int ind = (int)(*ujb);
    89       _histo[ind]++;
    90       *card_ptr = -1;
    91     }
    92     return true;
    93   }
    94   int calls() { return _calls; }
    95   void print_histo() {
    96     gclog_or_tty->print_cr("Card table value histogram:");
    97     for (int i = 0; i < 256; i++) {
    98       if (_histo[i] != 0) {
    99         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   100       }
   101     }
   102   }
   103 };
   105 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   106   int _calls;
   107   G1CollectedHeap* _g1h;
   108   CardTableModRefBS* _ctbs;
   109 public:
   110   RedirtyLoggedCardTableEntryClosure() :
   111     _calls(0)
   112   {
   113     _g1h = G1CollectedHeap::heap();
   114     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   115   }
   116   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   117     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   118       _calls++;
   119       *card_ptr = 0;
   120     }
   121     return true;
   122   }
   123   int calls() { return _calls; }
   124 };
   126 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   127 public:
   128   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   129     *card_ptr = CardTableModRefBS::dirty_card_val();
   130     return true;
   131   }
   132 };
   134 YoungList::YoungList(G1CollectedHeap* g1h)
   135   : _g1h(g1h), _head(NULL),
   136     _scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
   137     _length(0), _scan_only_length(0),
   138     _last_sampled_rs_lengths(0),
   139     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   140 {
   141   guarantee( check_list_empty(false), "just making sure..." );
   142 }
   144 void YoungList::push_region(HeapRegion *hr) {
   145   assert(!hr->is_young(), "should not already be young");
   146   assert(hr->get_next_young_region() == NULL, "cause it should!");
   148   hr->set_next_young_region(_head);
   149   _head = hr;
   151   hr->set_young();
   152   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
   153   ++_length;
   154 }
   156 void YoungList::add_survivor_region(HeapRegion* hr) {
   157   assert(hr->is_survivor(), "should be flagged as survivor region");
   158   assert(hr->get_next_young_region() == NULL, "cause it should!");
   160   hr->set_next_young_region(_survivor_head);
   161   if (_survivor_head == NULL) {
   162     _survivor_tail = hr;
   163   }
   164   _survivor_head = hr;
   166   ++_survivor_length;
   167 }
   169 HeapRegion* YoungList::pop_region() {
   170   while (_head != NULL) {
   171     assert( length() > 0, "list should not be empty" );
   172     HeapRegion* ret = _head;
   173     _head = ret->get_next_young_region();
   174     ret->set_next_young_region(NULL);
   175     --_length;
   176     assert(ret->is_young(), "region should be very young");
   178     // Replace 'Survivor' region type with 'Young'. So the region will
   179     // be treated as a young region and will not be 'confused' with
   180     // newly created survivor regions.
   181     if (ret->is_survivor()) {
   182       ret->set_young();
   183     }
   185     if (!ret->is_scan_only()) {
   186       return ret;
   187     }
   189     // scan-only, we'll add it to the scan-only list
   190     if (_scan_only_tail == NULL) {
   191       guarantee( _scan_only_head == NULL, "invariant" );
   193       _scan_only_head = ret;
   194       _curr_scan_only = ret;
   195     } else {
   196       guarantee( _scan_only_head != NULL, "invariant" );
   197       _scan_only_tail->set_next_young_region(ret);
   198     }
   199     guarantee( ret->get_next_young_region() == NULL, "invariant" );
   200     _scan_only_tail = ret;
   202     // no need to be tagged as scan-only any more
   203     ret->set_young();
   205     ++_scan_only_length;
   206   }
   207   assert( length() == 0, "list should be empty" );
   208   return NULL;
   209 }
   211 void YoungList::empty_list(HeapRegion* list) {
   212   while (list != NULL) {
   213     HeapRegion* next = list->get_next_young_region();
   214     list->set_next_young_region(NULL);
   215     list->uninstall_surv_rate_group();
   216     list->set_not_young();
   217     list = next;
   218   }
   219 }
   221 void YoungList::empty_list() {
   222   assert(check_list_well_formed(), "young list should be well formed");
   224   empty_list(_head);
   225   _head = NULL;
   226   _length = 0;
   228   empty_list(_scan_only_head);
   229   _scan_only_head = NULL;
   230   _scan_only_tail = NULL;
   231   _scan_only_length = 0;
   232   _curr_scan_only = NULL;
   234   empty_list(_survivor_head);
   235   _survivor_head = NULL;
   236   _survivor_tail = NULL;
   237   _survivor_length = 0;
   239   _last_sampled_rs_lengths = 0;
   241   assert(check_list_empty(false), "just making sure...");
   242 }
   244 bool YoungList::check_list_well_formed() {
   245   bool ret = true;
   247   size_t length = 0;
   248   HeapRegion* curr = _head;
   249   HeapRegion* last = NULL;
   250   while (curr != NULL) {
   251     if (!curr->is_young() || curr->is_scan_only()) {
   252       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   253                              "incorrectly tagged (%d, %d)",
   254                              curr->bottom(), curr->end(),
   255                              curr->is_young(), curr->is_scan_only());
   256       ret = false;
   257     }
   258     ++length;
   259     last = curr;
   260     curr = curr->get_next_young_region();
   261   }
   262   ret = ret && (length == _length);
   264   if (!ret) {
   265     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   266     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   267                            length, _length);
   268   }
   270   bool scan_only_ret = true;
   271   length = 0;
   272   curr = _scan_only_head;
   273   last = NULL;
   274   while (curr != NULL) {
   275     if (!curr->is_young() || curr->is_scan_only()) {
   276       gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" "
   277                              "incorrectly tagged (%d, %d)",
   278                              curr->bottom(), curr->end(),
   279                              curr->is_young(), curr->is_scan_only());
   280       scan_only_ret = false;
   281     }
   282     ++length;
   283     last = curr;
   284     curr = curr->get_next_young_region();
   285   }
   286   scan_only_ret = scan_only_ret && (length == _scan_only_length);
   288   if ( (last != _scan_only_tail) ||
   289        (_scan_only_head == NULL && _scan_only_tail != NULL) ||
   290        (_scan_only_head != NULL && _scan_only_tail == NULL) ) {
   291      gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly");
   292      scan_only_ret = false;
   293   }
   295   if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) {
   296     gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly");
   297     scan_only_ret = false;
   298    }
   300   if (!scan_only_ret) {
   301     gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!");
   302     gclog_or_tty->print_cr("###   list has %d entries, _scan_only_length is %d",
   303                   length, _scan_only_length);
   304   }
   306   return ret && scan_only_ret;
   307 }
   309 bool YoungList::check_list_empty(bool ignore_scan_only_list,
   310                                  bool check_sample) {
   311   bool ret = true;
   313   if (_length != 0) {
   314     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   315                   _length);
   316     ret = false;
   317   }
   318   if (check_sample && _last_sampled_rs_lengths != 0) {
   319     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   320     ret = false;
   321   }
   322   if (_head != NULL) {
   323     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   324     ret = false;
   325   }
   326   if (!ret) {
   327     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   328   }
   330   if (ignore_scan_only_list)
   331     return ret;
   333   bool scan_only_ret = true;
   334   if (_scan_only_length != 0) {
   335     gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d",
   336                   _scan_only_length);
   337     scan_only_ret = false;
   338   }
   339   if (_scan_only_head != NULL) {
   340     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head");
   341      scan_only_ret = false;
   342   }
   343   if (_scan_only_tail != NULL) {
   344     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail");
   345     scan_only_ret = false;
   346   }
   347   if (!scan_only_ret) {
   348     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty");
   349   }
   351   return ret && scan_only_ret;
   352 }
   354 void
   355 YoungList::rs_length_sampling_init() {
   356   _sampled_rs_lengths = 0;
   357   _curr               = _head;
   358 }
   360 bool
   361 YoungList::rs_length_sampling_more() {
   362   return _curr != NULL;
   363 }
   365 void
   366 YoungList::rs_length_sampling_next() {
   367   assert( _curr != NULL, "invariant" );
   368   _sampled_rs_lengths += _curr->rem_set()->occupied();
   369   _curr = _curr->get_next_young_region();
   370   if (_curr == NULL) {
   371     _last_sampled_rs_lengths = _sampled_rs_lengths;
   372     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   373   }
   374 }
   376 void
   377 YoungList::reset_auxilary_lists() {
   378   // We could have just "moved" the scan-only list to the young list.
   379   // However, the scan-only list is ordered according to the region
   380   // age in descending order, so, by moving one entry at a time, we
   381   // ensure that it is recreated in ascending order.
   383   guarantee( is_empty(), "young list should be empty" );
   384   assert(check_list_well_formed(), "young list should be well formed");
   386   // Add survivor regions to SurvRateGroup.
   387   _g1h->g1_policy()->note_start_adding_survivor_regions();
   388   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   389   for (HeapRegion* curr = _survivor_head;
   390        curr != NULL;
   391        curr = curr->get_next_young_region()) {
   392     _g1h->g1_policy()->set_region_survivors(curr);
   393   }
   394   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   396   if (_survivor_head != NULL) {
   397     _head           = _survivor_head;
   398     _length         = _survivor_length + _scan_only_length;
   399     _survivor_tail->set_next_young_region(_scan_only_head);
   400   } else {
   401     _head           = _scan_only_head;
   402     _length         = _scan_only_length;
   403   }
   405   for (HeapRegion* curr = _scan_only_head;
   406        curr != NULL;
   407        curr = curr->get_next_young_region()) {
   408     curr->recalculate_age_in_surv_rate_group();
   409   }
   410   _scan_only_head   = NULL;
   411   _scan_only_tail   = NULL;
   412   _scan_only_length = 0;
   413   _curr_scan_only   = NULL;
   415   _survivor_head    = NULL;
   416   _survivor_tail   = NULL;
   417   _survivor_length  = 0;
   418   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   420   assert(check_list_well_formed(), "young list should be well formed");
   421 }
   423 void YoungList::print() {
   424   HeapRegion* lists[] = {_head,   _scan_only_head, _survivor_head};
   425   const char* names[] = {"YOUNG", "SCAN-ONLY",     "SURVIVOR"};
   427   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   428     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   429     HeapRegion *curr = lists[list];
   430     if (curr == NULL)
   431       gclog_or_tty->print_cr("  empty");
   432     while (curr != NULL) {
   433       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   434                              "age: %4d, y: %d, s-o: %d, surv: %d",
   435                              curr->bottom(), curr->end(),
   436                              curr->top(),
   437                              curr->prev_top_at_mark_start(),
   438                              curr->next_top_at_mark_start(),
   439                              curr->top_at_conc_mark_count(),
   440                              curr->age_in_surv_rate_group_cond(),
   441                              curr->is_young(),
   442                              curr->is_scan_only(),
   443                              curr->is_survivor());
   444       curr = curr->get_next_young_region();
   445     }
   446   }
   448   gclog_or_tty->print_cr("");
   449 }
   451 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   452 {
   453   // Claim the right to put the region on the dirty cards region list
   454   // by installing a self pointer.
   455   HeapRegion* next = hr->get_next_dirty_cards_region();
   456   if (next == NULL) {
   457     HeapRegion* res = (HeapRegion*)
   458       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   459                           NULL);
   460     if (res == NULL) {
   461       HeapRegion* head;
   462       do {
   463         // Put the region to the dirty cards region list.
   464         head = _dirty_cards_region_list;
   465         next = (HeapRegion*)
   466           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   467         if (next == head) {
   468           assert(hr->get_next_dirty_cards_region() == hr,
   469                  "hr->get_next_dirty_cards_region() != hr");
   470           if (next == NULL) {
   471             // The last region in the list points to itself.
   472             hr->set_next_dirty_cards_region(hr);
   473           } else {
   474             hr->set_next_dirty_cards_region(next);
   475           }
   476         }
   477       } while (next != head);
   478     }
   479   }
   480 }
   482 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   483 {
   484   HeapRegion* head;
   485   HeapRegion* hr;
   486   do {
   487     head = _dirty_cards_region_list;
   488     if (head == NULL) {
   489       return NULL;
   490     }
   491     HeapRegion* new_head = head->get_next_dirty_cards_region();
   492     if (head == new_head) {
   493       // The last region.
   494       new_head = NULL;
   495     }
   496     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   497                                           head);
   498   } while (hr != head);
   499   assert(hr != NULL, "invariant");
   500   hr->set_next_dirty_cards_region(NULL);
   501   return hr;
   502 }
   504 void G1CollectedHeap::stop_conc_gc_threads() {
   505   _cg1r->stop();
   506   _czft->stop();
   507   _cmThread->stop();
   508 }
   511 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   512   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   513   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   515   // Count the dirty cards at the start.
   516   CountNonCleanMemRegionClosure count1(this);
   517   ct_bs->mod_card_iterate(&count1);
   518   int orig_count = count1.n();
   520   // First clear the logged cards.
   521   ClearLoggedCardTableEntryClosure clear;
   522   dcqs.set_closure(&clear);
   523   dcqs.apply_closure_to_all_completed_buffers();
   524   dcqs.iterate_closure_all_threads(false);
   525   clear.print_histo();
   527   // Now ensure that there's no dirty cards.
   528   CountNonCleanMemRegionClosure count2(this);
   529   ct_bs->mod_card_iterate(&count2);
   530   if (count2.n() != 0) {
   531     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   532                            count2.n(), orig_count);
   533   }
   534   guarantee(count2.n() == 0, "Card table should be clean.");
   536   RedirtyLoggedCardTableEntryClosure redirty;
   537   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   538   dcqs.apply_closure_to_all_completed_buffers();
   539   dcqs.iterate_closure_all_threads(false);
   540   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   541                          clear.calls(), orig_count);
   542   guarantee(redirty.calls() == clear.calls(),
   543             "Or else mechanism is broken.");
   545   CountNonCleanMemRegionClosure count3(this);
   546   ct_bs->mod_card_iterate(&count3);
   547   if (count3.n() != orig_count) {
   548     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   549                            orig_count, count3.n());
   550     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   551   }
   553   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   554 }
   556 // Private class members.
   558 G1CollectedHeap* G1CollectedHeap::_g1h;
   560 // Private methods.
   562 // Finds a HeapRegion that can be used to allocate a given size of block.
   565 HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
   566                                                  bool do_expand,
   567                                                  bool zero_filled) {
   568   ConcurrentZFThread::note_region_alloc();
   569   HeapRegion* res = alloc_free_region_from_lists(zero_filled);
   570   if (res == NULL && do_expand) {
   571     expand(word_size * HeapWordSize);
   572     res = alloc_free_region_from_lists(zero_filled);
   573     assert(res == NULL ||
   574            (!res->isHumongous() &&
   575             (!zero_filled ||
   576              res->zero_fill_state() == HeapRegion::Allocated)),
   577            "Alloc Regions must be zero filled (and non-H)");
   578   }
   579   if (res != NULL && res->is_empty()) _free_regions--;
   580   assert(res == NULL ||
   581          (!res->isHumongous() &&
   582           (!zero_filled ||
   583            res->zero_fill_state() == HeapRegion::Allocated)),
   584          "Non-young alloc Regions must be zero filled (and non-H)");
   586   if (G1PrintHeapRegions) {
   587     if (res != NULL) {
   588       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
   589                              "top "PTR_FORMAT,
   590                              res->hrs_index(), res->bottom(), res->end(), res->top());
   591     }
   592   }
   594   return res;
   595 }
   597 HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
   598                                                          size_t word_size,
   599                                                          bool zero_filled) {
   600   HeapRegion* alloc_region = NULL;
   601   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
   602     alloc_region = newAllocRegion_work(word_size, true, zero_filled);
   603     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
   604       alloc_region->set_survivor();
   605     }
   606     ++_gc_alloc_region_counts[purpose];
   607   } else {
   608     g1_policy()->note_alloc_region_limit_reached(purpose);
   609   }
   610   return alloc_region;
   611 }
   613 // If could fit into free regions w/o expansion, try.
   614 // Otherwise, if can expand, do so.
   615 // Otherwise, if using ex regions might help, try with ex given back.
   616 HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
   617   assert(regions_accounted_for(), "Region leakage!");
   619   // We can't allocate H regions while cleanupComplete is running, since
   620   // some of the regions we find to be empty might not yet be added to the
   621   // unclean list.  (If we're already at a safepoint, this call is
   622   // unnecessary, not to mention wrong.)
   623   if (!SafepointSynchronize::is_at_safepoint())
   624     wait_for_cleanup_complete();
   626   size_t num_regions =
   627     round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   629   // Special case if < one region???
   631   // Remember the ft size.
   632   size_t x_size = expansion_regions();
   634   HeapWord* res = NULL;
   635   bool eliminated_allocated_from_lists = false;
   637   // Can the allocation potentially fit in the free regions?
   638   if (free_regions() >= num_regions) {
   639     res = _hrs->obj_allocate(word_size);
   640   }
   641   if (res == NULL) {
   642     // Try expansion.
   643     size_t fs = _hrs->free_suffix();
   644     if (fs + x_size >= num_regions) {
   645       expand((num_regions - fs) * HeapRegion::GrainBytes);
   646       res = _hrs->obj_allocate(word_size);
   647       assert(res != NULL, "This should have worked.");
   648     } else {
   649       // Expansion won't help.  Are there enough free regions if we get rid
   650       // of reservations?
   651       size_t avail = free_regions();
   652       if (avail >= num_regions) {
   653         res = _hrs->obj_allocate(word_size);
   654         if (res != NULL) {
   655           remove_allocated_regions_from_lists();
   656           eliminated_allocated_from_lists = true;
   657         }
   658       }
   659     }
   660   }
   661   if (res != NULL) {
   662     // Increment by the number of regions allocated.
   663     // FIXME: Assumes regions all of size GrainBytes.
   664 #ifndef PRODUCT
   665     mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
   666                                            HeapRegion::GrainWords));
   667 #endif
   668     if (!eliminated_allocated_from_lists)
   669       remove_allocated_regions_from_lists();
   670     _summary_bytes_used += word_size * HeapWordSize;
   671     _free_regions -= num_regions;
   672     _num_humongous_regions += (int) num_regions;
   673   }
   674   assert(regions_accounted_for(), "Region Leakage");
   675   return res;
   676 }
   678 HeapWord*
   679 G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   680                                          bool permit_collection_pause) {
   681   HeapWord* res = NULL;
   682   HeapRegion* allocated_young_region = NULL;
   684   assert( SafepointSynchronize::is_at_safepoint() ||
   685           Heap_lock->owned_by_self(), "pre condition of the call" );
   687   if (isHumongous(word_size)) {
   688     // Allocation of a humongous object can, in a sense, complete a
   689     // partial region, if the previous alloc was also humongous, and
   690     // caused the test below to succeed.
   691     if (permit_collection_pause)
   692       do_collection_pause_if_appropriate(word_size);
   693     res = humongousObjAllocate(word_size);
   694     assert(_cur_alloc_region == NULL
   695            || !_cur_alloc_region->isHumongous(),
   696            "Prevent a regression of this bug.");
   698   } else {
   699     // We may have concurrent cleanup working at the time. Wait for it
   700     // to complete. In the future we would probably want to make the
   701     // concurrent cleanup truly concurrent by decoupling it from the
   702     // allocation.
   703     if (!SafepointSynchronize::is_at_safepoint())
   704       wait_for_cleanup_complete();
   705     // If we do a collection pause, this will be reset to a non-NULL
   706     // value.  If we don't, nulling here ensures that we allocate a new
   707     // region below.
   708     if (_cur_alloc_region != NULL) {
   709       // We're finished with the _cur_alloc_region.
   710       _summary_bytes_used += _cur_alloc_region->used();
   711       _cur_alloc_region = NULL;
   712     }
   713     assert(_cur_alloc_region == NULL, "Invariant.");
   714     // Completion of a heap region is perhaps a good point at which to do
   715     // a collection pause.
   716     if (permit_collection_pause)
   717       do_collection_pause_if_appropriate(word_size);
   718     // Make sure we have an allocation region available.
   719     if (_cur_alloc_region == NULL) {
   720       if (!SafepointSynchronize::is_at_safepoint())
   721         wait_for_cleanup_complete();
   722       bool next_is_young = should_set_young_locked();
   723       // If the next region is not young, make sure it's zero-filled.
   724       _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
   725       if (_cur_alloc_region != NULL) {
   726         _summary_bytes_used -= _cur_alloc_region->used();
   727         if (next_is_young) {
   728           set_region_short_lived_locked(_cur_alloc_region);
   729           allocated_young_region = _cur_alloc_region;
   730         }
   731       }
   732     }
   733     assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
   734            "Prevent a regression of this bug.");
   736     // Now retry the allocation.
   737     if (_cur_alloc_region != NULL) {
   738       res = _cur_alloc_region->allocate(word_size);
   739     }
   740   }
   742   // NOTE: fails frequently in PRT
   743   assert(regions_accounted_for(), "Region leakage!");
   745   if (res != NULL) {
   746     if (!SafepointSynchronize::is_at_safepoint()) {
   747       assert( permit_collection_pause, "invariant" );
   748       assert( Heap_lock->owned_by_self(), "invariant" );
   749       Heap_lock->unlock();
   750     }
   752     if (allocated_young_region != NULL) {
   753       HeapRegion* hr = allocated_young_region;
   754       HeapWord* bottom = hr->bottom();
   755       HeapWord* end = hr->end();
   756       MemRegion mr(bottom, end);
   757       ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
   758     }
   759   }
   761   assert( SafepointSynchronize::is_at_safepoint() ||
   762           (res == NULL && Heap_lock->owned_by_self()) ||
   763           (res != NULL && !Heap_lock->owned_by_self()),
   764           "post condition of the call" );
   766   return res;
   767 }
   769 HeapWord*
   770 G1CollectedHeap::mem_allocate(size_t word_size,
   771                               bool   is_noref,
   772                               bool   is_tlab,
   773                               bool* gc_overhead_limit_was_exceeded) {
   774   debug_only(check_for_valid_allocation_state());
   775   assert(no_gc_in_progress(), "Allocation during gc not allowed");
   776   HeapWord* result = NULL;
   778   // Loop until the allocation is satisified,
   779   // or unsatisfied after GC.
   780   for (int try_count = 1; /* return or throw */; try_count += 1) {
   781     int gc_count_before;
   782     {
   783       Heap_lock->lock();
   784       result = attempt_allocation(word_size);
   785       if (result != NULL) {
   786         // attempt_allocation should have unlocked the heap lock
   787         assert(is_in(result), "result not in heap");
   788         return result;
   789       }
   790       // Read the gc count while the heap lock is held.
   791       gc_count_before = SharedHeap::heap()->total_collections();
   792       Heap_lock->unlock();
   793     }
   795     // Create the garbage collection operation...
   796     VM_G1CollectForAllocation op(word_size,
   797                                  gc_count_before);
   799     // ...and get the VM thread to execute it.
   800     VMThread::execute(&op);
   801     if (op.prologue_succeeded()) {
   802       result = op.result();
   803       assert(result == NULL || is_in(result), "result not in heap");
   804       return result;
   805     }
   807     // Give a warning if we seem to be looping forever.
   808     if ((QueuedAllocationWarningCount > 0) &&
   809         (try_count % QueuedAllocationWarningCount == 0)) {
   810       warning("G1CollectedHeap::mem_allocate_work retries %d times",
   811               try_count);
   812     }
   813   }
   814 }
   816 void G1CollectedHeap::abandon_cur_alloc_region() {
   817   if (_cur_alloc_region != NULL) {
   818     // We're finished with the _cur_alloc_region.
   819     if (_cur_alloc_region->is_empty()) {
   820       _free_regions++;
   821       free_region(_cur_alloc_region);
   822     } else {
   823       _summary_bytes_used += _cur_alloc_region->used();
   824     }
   825     _cur_alloc_region = NULL;
   826   }
   827 }
   829 void G1CollectedHeap::abandon_gc_alloc_regions() {
   830   // first, make sure that the GC alloc region list is empty (it should!)
   831   assert(_gc_alloc_region_list == NULL, "invariant");
   832   release_gc_alloc_regions(true /* totally */);
   833 }
   835 class PostMCRemSetClearClosure: public HeapRegionClosure {
   836   ModRefBarrierSet* _mr_bs;
   837 public:
   838   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   839   bool doHeapRegion(HeapRegion* r) {
   840     r->reset_gc_time_stamp();
   841     if (r->continuesHumongous())
   842       return false;
   843     HeapRegionRemSet* hrrs = r->rem_set();
   844     if (hrrs != NULL) hrrs->clear();
   845     // You might think here that we could clear just the cards
   846     // corresponding to the used region.  But no: if we leave a dirty card
   847     // in a region we might allocate into, then it would prevent that card
   848     // from being enqueued, and cause it to be missed.
   849     // Re: the performance cost: we shouldn't be doing full GC anyway!
   850     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
   851     return false;
   852   }
   853 };
   856 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
   857   ModRefBarrierSet* _mr_bs;
   858 public:
   859   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   860   bool doHeapRegion(HeapRegion* r) {
   861     if (r->continuesHumongous()) return false;
   862     if (r->used_region().word_size() != 0) {
   863       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
   864     }
   865     return false;
   866   }
   867 };
   869 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
   870   G1CollectedHeap*   _g1h;
   871   UpdateRSOopClosure _cl;
   872   int                _worker_i;
   873 public:
   874   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
   875     _cl(g1->g1_rem_set()->as_HRInto_G1RemSet(), worker_i),
   876     _worker_i(worker_i),
   877     _g1h(g1)
   878   { }
   879   bool doHeapRegion(HeapRegion* r) {
   880     if (!r->continuesHumongous()) {
   881       _cl.set_from(r);
   882       r->oop_iterate(&_cl);
   883     }
   884     return false;
   885   }
   886 };
   888 class ParRebuildRSTask: public AbstractGangTask {
   889   G1CollectedHeap* _g1;
   890 public:
   891   ParRebuildRSTask(G1CollectedHeap* g1)
   892     : AbstractGangTask("ParRebuildRSTask"),
   893       _g1(g1)
   894   { }
   896   void work(int i) {
   897     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
   898     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
   899                                          HeapRegion::RebuildRSClaimValue);
   900   }
   901 };
   903 void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
   904                                     size_t word_size) {
   905   if (GC_locker::check_active_before_gc()) {
   906     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   907   }
   909   ResourceMark rm;
   911   if (PrintHeapAtGC) {
   912     Universe::print_heap_before_gc();
   913   }
   915   if (full && DisableExplicitGC) {
   916     gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n");
   917     return;
   918   }
   920   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   921   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
   923   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
   924                            collector_policy()->should_clear_all_soft_refs();
   926   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
   928   {
   929     IsGCActiveMark x;
   931     // Timing
   932     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   933     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   934     TraceTime t(full ? "Full GC (System.gc())" : "Full GC",
   935                 PrintGC, true, gclog_or_tty);
   937     TraceMemoryManagerStats tms(true /* fullGC */);
   939     double start = os::elapsedTime();
   940     g1_policy()->record_full_collection_start();
   942     gc_prologue(true);
   943     increment_total_collections(true /* full gc */);
   945     size_t g1h_prev_used = used();
   946     assert(used() == recalculate_used(), "Should be equal");
   948     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
   949       HandleMark hm;  // Discard invalid handles created during verification
   950       prepare_for_verify();
   951       gclog_or_tty->print(" VerifyBeforeGC:");
   952       Universe::verify(true);
   953     }
   954     assert(regions_accounted_for(), "Region leakage!");
   956     COMPILER2_PRESENT(DerivedPointerTable::clear());
   958     // We want to discover references, but not process them yet.
   959     // This mode is disabled in
   960     // instanceRefKlass::process_discovered_references if the
   961     // generation does some collection work, or
   962     // instanceRefKlass::enqueue_discovered_references if the
   963     // generation returns without doing any work.
   964     ref_processor()->disable_discovery();
   965     ref_processor()->abandon_partial_discovery();
   966     ref_processor()->verify_no_references_recorded();
   968     // Abandon current iterations of concurrent marking and concurrent
   969     // refinement, if any are in progress.
   970     concurrent_mark()->abort();
   972     // Make sure we'll choose a new allocation region afterwards.
   973     abandon_cur_alloc_region();
   974     abandon_gc_alloc_regions();
   975     assert(_cur_alloc_region == NULL, "Invariant.");
   976     g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
   977     tear_down_region_lists();
   978     set_used_regions_to_need_zero_fill();
   979     if (g1_policy()->in_young_gc_mode()) {
   980       empty_young_list();
   981       g1_policy()->set_full_young_gcs(true);
   982     }
   984     // Temporarily make reference _discovery_ single threaded (non-MT).
   985     ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
   987     // Temporarily make refs discovery atomic
   988     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
   990     // Temporarily clear _is_alive_non_header
   991     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
   993     ref_processor()->enable_discovery();
   994     ref_processor()->setup_policy(do_clear_all_soft_refs);
   996     // Do collection work
   997     {
   998       HandleMark hm;  // Discard invalid handles created during gc
   999       G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
  1001     // Because freeing humongous regions may have added some unclean
  1002     // regions, it is necessary to tear down again before rebuilding.
  1003     tear_down_region_lists();
  1004     rebuild_region_lists();
  1006     _summary_bytes_used = recalculate_used();
  1008     ref_processor()->enqueue_discovered_references();
  1010     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1012     MemoryService::track_memory_usage();
  1014     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  1015       HandleMark hm;  // Discard invalid handles created during verification
  1016       gclog_or_tty->print(" VerifyAfterGC:");
  1017       prepare_for_verify();
  1018       Universe::verify(false);
  1020     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  1022     reset_gc_time_stamp();
  1023     // Since everything potentially moved, we will clear all remembered
  1024     // sets, and clear all cards.  Later we will rebuild remebered
  1025     // sets. We will also reset the GC time stamps of the regions.
  1026     PostMCRemSetClearClosure rs_clear(mr_bs());
  1027     heap_region_iterate(&rs_clear);
  1029     // Resize the heap if necessary.
  1030     resize_if_necessary_after_full_collection(full ? 0 : word_size);
  1032     if (_cg1r->use_cache()) {
  1033       _cg1r->clear_and_record_card_counts();
  1034       _cg1r->clear_hot_cache();
  1037     // Rebuild remembered sets of all regions.
  1038     if (ParallelGCThreads > 0) {
  1039       ParRebuildRSTask rebuild_rs_task(this);
  1040       assert(check_heap_region_claim_values(
  1041              HeapRegion::InitialClaimValue), "sanity check");
  1042       set_par_threads(workers()->total_workers());
  1043       workers()->run_task(&rebuild_rs_task);
  1044       set_par_threads(0);
  1045       assert(check_heap_region_claim_values(
  1046              HeapRegion::RebuildRSClaimValue), "sanity check");
  1047       reset_heap_region_claim_values();
  1048     } else {
  1049       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1050       heap_region_iterate(&rebuild_rs);
  1053     if (PrintGC) {
  1054       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1057     if (true) { // FIXME
  1058       // Ask the permanent generation to adjust size for full collections
  1059       perm()->compute_new_size();
  1062     double end = os::elapsedTime();
  1063     g1_policy()->record_full_collection_end();
  1065 #ifdef TRACESPINNING
  1066     ParallelTaskTerminator::print_termination_counts();
  1067 #endif
  1069     gc_epilogue(true);
  1071     // Discard all rset updates
  1072     JavaThread::dirty_card_queue_set().abandon_logs();
  1073     assert(!G1DeferredRSUpdate
  1074            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1075     assert(regions_accounted_for(), "Region leakage!");
  1078   if (g1_policy()->in_young_gc_mode()) {
  1079     _young_list->reset_sampled_info();
  1080     assert( check_young_list_empty(false, false),
  1081             "young list should be empty at this point");
  1084   if (PrintHeapAtGC) {
  1085     Universe::print_heap_after_gc();
  1089 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1090   do_collection(true, clear_all_soft_refs, 0);
  1093 // This code is mostly copied from TenuredGeneration.
  1094 void
  1095 G1CollectedHeap::
  1096 resize_if_necessary_after_full_collection(size_t word_size) {
  1097   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1099   // Include the current allocation, if any, and bytes that will be
  1100   // pre-allocated to support collections, as "used".
  1101   const size_t used_after_gc = used();
  1102   const size_t capacity_after_gc = capacity();
  1103   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1105   // We don't have floating point command-line arguments
  1106   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100;
  1107   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1108   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
  1109   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1111   size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage);
  1112   size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage);
  1114   // Don't shrink less than the initial size.
  1115   minimum_desired_capacity =
  1116     MAX2(minimum_desired_capacity,
  1117          collector_policy()->initial_heap_byte_size());
  1118   maximum_desired_capacity =
  1119     MAX2(maximum_desired_capacity,
  1120          collector_policy()->initial_heap_byte_size());
  1122   // We are failing here because minimum_desired_capacity is
  1123   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
  1124   assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check");
  1126   if (PrintGC && Verbose) {
  1127     const double free_percentage = ((double)free_after_gc) / capacity();
  1128     gclog_or_tty->print_cr("Computing new size after full GC ");
  1129     gclog_or_tty->print_cr("  "
  1130                            "  minimum_free_percentage: %6.2f",
  1131                            minimum_free_percentage);
  1132     gclog_or_tty->print_cr("  "
  1133                            "  maximum_free_percentage: %6.2f",
  1134                            maximum_free_percentage);
  1135     gclog_or_tty->print_cr("  "
  1136                            "  capacity: %6.1fK"
  1137                            "  minimum_desired_capacity: %6.1fK"
  1138                            "  maximum_desired_capacity: %6.1fK",
  1139                            capacity() / (double) K,
  1140                            minimum_desired_capacity / (double) K,
  1141                            maximum_desired_capacity / (double) K);
  1142     gclog_or_tty->print_cr("  "
  1143                            "   free_after_gc   : %6.1fK"
  1144                            "   used_after_gc   : %6.1fK",
  1145                            free_after_gc / (double) K,
  1146                            used_after_gc / (double) K);
  1147     gclog_or_tty->print_cr("  "
  1148                            "   free_percentage: %6.2f",
  1149                            free_percentage);
  1151   if (capacity() < minimum_desired_capacity) {
  1152     // Don't expand unless it's significant
  1153     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1154     expand(expand_bytes);
  1155     if (PrintGC && Verbose) {
  1156       gclog_or_tty->print_cr("    expanding:"
  1157                              "  minimum_desired_capacity: %6.1fK"
  1158                              "  expand_bytes: %6.1fK",
  1159                              minimum_desired_capacity / (double) K,
  1160                              expand_bytes / (double) K);
  1163     // No expansion, now see if we want to shrink
  1164   } else if (capacity() > maximum_desired_capacity) {
  1165     // Capacity too large, compute shrinking size
  1166     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1167     shrink(shrink_bytes);
  1168     if (PrintGC && Verbose) {
  1169       gclog_or_tty->print_cr("  "
  1170                              "  shrinking:"
  1171                              "  initSize: %.1fK"
  1172                              "  maximum_desired_capacity: %.1fK",
  1173                              collector_policy()->initial_heap_byte_size() / (double) K,
  1174                              maximum_desired_capacity / (double) K);
  1175       gclog_or_tty->print_cr("  "
  1176                              "  shrink_bytes: %.1fK",
  1177                              shrink_bytes / (double) K);
  1183 HeapWord*
  1184 G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
  1185   HeapWord* result = NULL;
  1187   // In a G1 heap, we're supposed to keep allocation from failing by
  1188   // incremental pauses.  Therefore, at least for now, we'll favor
  1189   // expansion over collection.  (This might change in the future if we can
  1190   // do something smarter than full collection to satisfy a failed alloc.)
  1192   result = expand_and_allocate(word_size);
  1193   if (result != NULL) {
  1194     assert(is_in(result), "result not in heap");
  1195     return result;
  1198   // OK, I guess we have to try collection.
  1200   do_collection(false, false, word_size);
  1202   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1204   if (result != NULL) {
  1205     assert(is_in(result), "result not in heap");
  1206     return result;
  1209   // Try collecting soft references.
  1210   do_collection(false, true, word_size);
  1211   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1212   if (result != NULL) {
  1213     assert(is_in(result), "result not in heap");
  1214     return result;
  1217   assert(!collector_policy()->should_clear_all_soft_refs(),
  1218     "Flag should have been handled and cleared prior to this point");
  1220   // What else?  We might try synchronous finalization later.  If the total
  1221   // space available is large enough for the allocation, then a more
  1222   // complete compaction phase than we've tried so far might be
  1223   // appropriate.
  1224   return NULL;
  1227 // Attempting to expand the heap sufficiently
  1228 // to support an allocation of the given "word_size".  If
  1229 // successful, perform the allocation and return the address of the
  1230 // allocated block, or else "NULL".
  1232 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1233   size_t expand_bytes = word_size * HeapWordSize;
  1234   if (expand_bytes < MinHeapDeltaBytes) {
  1235     expand_bytes = MinHeapDeltaBytes;
  1237   expand(expand_bytes);
  1238   assert(regions_accounted_for(), "Region leakage!");
  1239   HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
  1240   return result;
  1243 size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
  1244   size_t pre_used = 0;
  1245   size_t cleared_h_regions = 0;
  1246   size_t freed_regions = 0;
  1247   UncleanRegionList local_list;
  1248   free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
  1249                                     freed_regions, &local_list);
  1251   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  1252                           &local_list);
  1253   return pre_used;
  1256 void
  1257 G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
  1258                                                    size_t& pre_used,
  1259                                                    size_t& cleared_h,
  1260                                                    size_t& freed_regions,
  1261                                                    UncleanRegionList* list,
  1262                                                    bool par) {
  1263   assert(!hr->continuesHumongous(), "should have filtered these out");
  1264   size_t res = 0;
  1265   if (hr->used() > 0 && hr->garbage_bytes() == hr->used() &&
  1266       !hr->is_young()) {
  1267     if (G1PolicyVerbose > 0)
  1268       gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
  1269                                                                                " during cleanup", hr, hr->used());
  1270     free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
  1274 // FIXME: both this and shrink could probably be more efficient by
  1275 // doing one "VirtualSpace::expand_by" call rather than several.
  1276 void G1CollectedHeap::expand(size_t expand_bytes) {
  1277   size_t old_mem_size = _g1_storage.committed_size();
  1278   // We expand by a minimum of 1K.
  1279   expand_bytes = MAX2(expand_bytes, (size_t)K);
  1280   size_t aligned_expand_bytes =
  1281     ReservedSpace::page_align_size_up(expand_bytes);
  1282   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1283                                        HeapRegion::GrainBytes);
  1284   expand_bytes = aligned_expand_bytes;
  1285   while (expand_bytes > 0) {
  1286     HeapWord* base = (HeapWord*)_g1_storage.high();
  1287     // Commit more storage.
  1288     bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
  1289     if (!successful) {
  1290         expand_bytes = 0;
  1291     } else {
  1292       expand_bytes -= HeapRegion::GrainBytes;
  1293       // Expand the committed region.
  1294       HeapWord* high = (HeapWord*) _g1_storage.high();
  1295       _g1_committed.set_end(high);
  1296       // Create a new HeapRegion.
  1297       MemRegion mr(base, high);
  1298       bool is_zeroed = !_g1_max_committed.contains(base);
  1299       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
  1301       // Now update max_committed if necessary.
  1302       _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));
  1304       // Add it to the HeapRegionSeq.
  1305       _hrs->insert(hr);
  1306       // Set the zero-fill state, according to whether it's already
  1307       // zeroed.
  1309         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  1310         if (is_zeroed) {
  1311           hr->set_zero_fill_complete();
  1312           put_free_region_on_list_locked(hr);
  1313         } else {
  1314           hr->set_zero_fill_needed();
  1315           put_region_on_unclean_list_locked(hr);
  1318       _free_regions++;
  1319       // And we used up an expansion region to create it.
  1320       _expansion_regions--;
  1321       // Tell the cardtable about it.
  1322       Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1323       // And the offset table as well.
  1324       _bot_shared->resize(_g1_committed.word_size());
  1327   if (Verbose && PrintGC) {
  1328     size_t new_mem_size = _g1_storage.committed_size();
  1329     gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
  1330                            old_mem_size/K, aligned_expand_bytes/K,
  1331                            new_mem_size/K);
  1335 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
  1337   size_t old_mem_size = _g1_storage.committed_size();
  1338   size_t aligned_shrink_bytes =
  1339     ReservedSpace::page_align_size_down(shrink_bytes);
  1340   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1341                                          HeapRegion::GrainBytes);
  1342   size_t num_regions_deleted = 0;
  1343   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
  1345   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1346   if (mr.byte_size() > 0)
  1347     _g1_storage.shrink_by(mr.byte_size());
  1348   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1350   _g1_committed.set_end(mr.start());
  1351   _free_regions -= num_regions_deleted;
  1352   _expansion_regions += num_regions_deleted;
  1354   // Tell the cardtable about it.
  1355   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1357   // And the offset table as well.
  1358   _bot_shared->resize(_g1_committed.word_size());
  1360   HeapRegionRemSet::shrink_heap(n_regions());
  1362   if (Verbose && PrintGC) {
  1363     size_t new_mem_size = _g1_storage.committed_size();
  1364     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
  1365                            old_mem_size/K, aligned_shrink_bytes/K,
  1366                            new_mem_size/K);
  1370 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1371   release_gc_alloc_regions(true /* totally */);
  1372   tear_down_region_lists();  // We will rebuild them in a moment.
  1373   shrink_helper(shrink_bytes);
  1374   rebuild_region_lists();
  1377 // Public methods.
  1379 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1380 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1381 #endif // _MSC_VER
  1384 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1385   SharedHeap(policy_),
  1386   _g1_policy(policy_),
  1387   _dirty_card_queue_set(false),
  1388   _ref_processor(NULL),
  1389   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1390   _bot_shared(NULL),
  1391   _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
  1392   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1393   _evac_failure_scan_stack(NULL) ,
  1394   _mark_in_progress(false),
  1395   _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
  1396   _cur_alloc_region(NULL),
  1397   _refine_cte_cl(NULL),
  1398   _free_region_list(NULL), _free_region_list_size(0),
  1399   _free_regions(0),
  1400   _full_collection(false),
  1401   _unclean_region_list(),
  1402   _unclean_regions_coming(false),
  1403   _young_list(new YoungList(this)),
  1404   _gc_time_stamp(0),
  1405   _surviving_young_words(NULL),
  1406   _in_cset_fast_test(NULL),
  1407   _in_cset_fast_test_base(NULL),
  1408   _dirty_cards_region_list(NULL) {
  1409   _g1h = this; // To catch bugs.
  1410   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1411     vm_exit_during_initialization("Failed necessary allocation.");
  1414   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1416   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1417   _task_queues = new RefToScanQueueSet(n_queues);
  1419   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1420   assert(n_rem_sets > 0, "Invariant.");
  1422   HeapRegionRemSetIterator** iter_arr =
  1423     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1424   for (int i = 0; i < n_queues; i++) {
  1425     iter_arr[i] = new HeapRegionRemSetIterator();
  1427   _rem_set_iterator = iter_arr;
  1429   for (int i = 0; i < n_queues; i++) {
  1430     RefToScanQueue* q = new RefToScanQueue();
  1431     q->initialize();
  1432     _task_queues->register_queue(i, q);
  1435   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1436     _gc_alloc_regions[ap]          = NULL;
  1437     _gc_alloc_region_counts[ap]    = 0;
  1438     _retained_gc_alloc_regions[ap] = NULL;
  1439     // by default, we do not retain a GC alloc region for each ap;
  1440     // we'll override this, when appropriate, below
  1441     _retain_gc_alloc_region[ap]    = false;
  1444   // We will try to remember the last half-full tenured region we
  1445   // allocated to at the end of a collection so that we can re-use it
  1446   // during the next collection.
  1447   _retain_gc_alloc_region[GCAllocForTenured]  = true;
  1449   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1452 jint G1CollectedHeap::initialize() {
  1453   CollectedHeap::pre_initialize();
  1454   os::enable_vtime();
  1456   // Necessary to satisfy locking discipline assertions.
  1458   MutexLocker x(Heap_lock);
  1460   // While there are no constraints in the GC code that HeapWordSize
  1461   // be any particular value, there are multiple other areas in the
  1462   // system which believe this to be true (e.g. oop->object_size in some
  1463   // cases incorrectly returns the size in wordSize units rather than
  1464   // HeapWordSize).
  1465   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1467   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1468   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1470   // Ensure that the sizes are properly aligned.
  1471   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1472   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1474   _cg1r = new ConcurrentG1Refine();
  1476   // Reserve the maximum.
  1477   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1478   // Includes the perm-gen.
  1480   const size_t total_reserved = max_byte_size + pgs->max_size();
  1481   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1483   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
  1484                         HeapRegion::GrainBytes,
  1485                         false /*ism*/, addr);
  1487   if (UseCompressedOops) {
  1488     if (addr != NULL && !heap_rs.is_reserved()) {
  1489       // Failed to reserve at specified address - the requested memory
  1490       // region is taken already, for example, by 'java' launcher.
  1491       // Try again to reserver heap higher.
  1492       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1493       ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1494                              false /*ism*/, addr);
  1495       if (addr != NULL && !heap_rs0.is_reserved()) {
  1496         // Failed to reserve at specified address again - give up.
  1497         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1498         assert(addr == NULL, "");
  1499         ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1500                                false /*ism*/, addr);
  1501         heap_rs = heap_rs1;
  1502       } else {
  1503         heap_rs = heap_rs0;
  1508   if (!heap_rs.is_reserved()) {
  1509     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1510     return JNI_ENOMEM;
  1513   // It is important to do this in a way such that concurrent readers can't
  1514   // temporarily think somethings in the heap.  (I've actually seen this
  1515   // happen in asserts: DLD.)
  1516   _reserved.set_word_size(0);
  1517   _reserved.set_start((HeapWord*)heap_rs.base());
  1518   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1520   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  1522   _num_humongous_regions = 0;
  1524   // Create the gen rem set (and barrier set) for the entire reserved region.
  1525   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1526   set_barrier_set(rem_set()->bs());
  1527   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  1528     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  1529   } else {
  1530     vm_exit_during_initialization("G1 requires a mod ref bs.");
  1531     return JNI_ENOMEM;
  1534   // Also create a G1 rem set.
  1535   if (G1UseHRIntoRS) {
  1536     if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  1537       _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs());
  1538     } else {
  1539       vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  1540       return JNI_ENOMEM;
  1542   } else {
  1543     _g1_rem_set = new StupidG1RemSet(this);
  1546   // Carve out the G1 part of the heap.
  1548   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  1549   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  1550                            g1_rs.size()/HeapWordSize);
  1551   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  1553   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  1555   _g1_storage.initialize(g1_rs, 0);
  1556   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  1557   _g1_max_committed = _g1_committed;
  1558   _hrs = new HeapRegionSeq(_expansion_regions);
  1559   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  1560   guarantee(_cur_alloc_region == NULL, "from constructor");
  1562   // 6843694 - ensure that the maximum region index can fit
  1563   // in the remembered set structures.
  1564   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  1565   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  1567   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  1568   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  1569   guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
  1570             "too many cards per region");
  1572   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  1573                                              heap_word_size(init_byte_size));
  1575   _g1h = this;
  1577   // Create the ConcurrentMark data structure and thread.
  1578   // (Must do this late, so that "max_regions" is defined.)
  1579   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  1580   _cmThread = _cm->cmThread();
  1582   // ...and the concurrent zero-fill thread, if necessary.
  1583   if (G1ConcZeroFill) {
  1584     _czft = new ConcurrentZFThread();
  1587   // Initialize the from_card cache structure of HeapRegionRemSet.
  1588   HeapRegionRemSet::init_heap(max_regions());
  1590   // Now expand into the initial heap size.
  1591   expand(init_byte_size);
  1593   // Perform any initialization actions delegated to the policy.
  1594   g1_policy()->init();
  1596   g1_policy()->note_start_of_mark_thread();
  1598   _refine_cte_cl =
  1599     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  1600                                     g1_rem_set(),
  1601                                     concurrent_g1_refine());
  1602   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  1604   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  1605                                                SATB_Q_FL_lock,
  1606                                                G1SATBProcessCompletedThreshold,
  1607                                                Shared_SATB_Q_lock);
  1609   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1610                                                 DirtyCardQ_FL_lock,
  1611                                                 concurrent_g1_refine()->yellow_zone(),
  1612                                                 concurrent_g1_refine()->red_zone(),
  1613                                                 Shared_DirtyCardQ_lock);
  1615   if (G1DeferredRSUpdate) {
  1616     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1617                                       DirtyCardQ_FL_lock,
  1618                                       -1, // never trigger processing
  1619                                       -1, // no limit on length
  1620                                       Shared_DirtyCardQ_lock,
  1621                                       &JavaThread::dirty_card_queue_set());
  1623   // In case we're keeping closure specialization stats, initialize those
  1624   // counts and that mechanism.
  1625   SpecializationStats::clear();
  1627   _gc_alloc_region_list = NULL;
  1629   // Do later initialization work for concurrent refinement.
  1630   _cg1r->init();
  1632   return JNI_OK;
  1635 void G1CollectedHeap::ref_processing_init() {
  1636   SharedHeap::ref_processing_init();
  1637   MemRegion mr = reserved_region();
  1638   _ref_processor = ReferenceProcessor::create_ref_processor(
  1639                                          mr,    // span
  1640                                          false, // Reference discovery is not atomic
  1641                                                 // (though it shouldn't matter here.)
  1642                                          true,  // mt_discovery
  1643                                          NULL,  // is alive closure: need to fill this in for efficiency
  1644                                          ParallelGCThreads,
  1645                                          ParallelRefProcEnabled,
  1646                                          true); // Setting next fields of discovered
  1647                                                 // lists requires a barrier.
  1650 size_t G1CollectedHeap::capacity() const {
  1651   return _g1_committed.byte_size();
  1654 void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
  1655                                                  int worker_i) {
  1656   // Clean cards in the hot card cache
  1657   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set());
  1659   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1660   int n_completed_buffers = 0;
  1661   while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) {
  1662     n_completed_buffers++;
  1664   g1_policy()->record_update_rs_processed_buffers(worker_i,
  1665                                                   (double) n_completed_buffers);
  1666   dcqs.clear_n_completed_buffers();
  1667   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  1671 // Computes the sum of the storage used by the various regions.
  1673 size_t G1CollectedHeap::used() const {
  1674   assert(Heap_lock->owner() != NULL,
  1675          "Should be owned on this thread's behalf.");
  1676   size_t result = _summary_bytes_used;
  1677   // Read only once in case it is set to NULL concurrently
  1678   HeapRegion* hr = _cur_alloc_region;
  1679   if (hr != NULL)
  1680     result += hr->used();
  1681   return result;
  1684 size_t G1CollectedHeap::used_unlocked() const {
  1685   size_t result = _summary_bytes_used;
  1686   return result;
  1689 class SumUsedClosure: public HeapRegionClosure {
  1690   size_t _used;
  1691 public:
  1692   SumUsedClosure() : _used(0) {}
  1693   bool doHeapRegion(HeapRegion* r) {
  1694     if (!r->continuesHumongous()) {
  1695       _used += r->used();
  1697     return false;
  1699   size_t result() { return _used; }
  1700 };
  1702 size_t G1CollectedHeap::recalculate_used() const {
  1703   SumUsedClosure blk;
  1704   _hrs->iterate(&blk);
  1705   return blk.result();
  1708 #ifndef PRODUCT
  1709 class SumUsedRegionsClosure: public HeapRegionClosure {
  1710   size_t _num;
  1711 public:
  1712   SumUsedRegionsClosure() : _num(0) {}
  1713   bool doHeapRegion(HeapRegion* r) {
  1714     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
  1715       _num += 1;
  1717     return false;
  1719   size_t result() { return _num; }
  1720 };
  1722 size_t G1CollectedHeap::recalculate_used_regions() const {
  1723   SumUsedRegionsClosure blk;
  1724   _hrs->iterate(&blk);
  1725   return blk.result();
  1727 #endif // PRODUCT
  1729 size_t G1CollectedHeap::unsafe_max_alloc() {
  1730   if (_free_regions > 0) return HeapRegion::GrainBytes;
  1731   // otherwise, is there space in the current allocation region?
  1733   // We need to store the current allocation region in a local variable
  1734   // here. The problem is that this method doesn't take any locks and
  1735   // there may be other threads which overwrite the current allocation
  1736   // region field. attempt_allocation(), for example, sets it to NULL
  1737   // and this can happen *after* the NULL check here but before the call
  1738   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  1739   // to be a problem in the optimized build, since the two loads of the
  1740   // current allocation region field are optimized away.
  1741   HeapRegion* car = _cur_alloc_region;
  1743   // FIXME: should iterate over all regions?
  1744   if (car == NULL) {
  1745     return 0;
  1747   return car->free();
  1750 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  1751   assert(Thread::current()->is_VM_thread(), "Precondition#1");
  1752   assert(Heap_lock->is_locked(), "Precondition#2");
  1753   GCCauseSetter gcs(this, cause);
  1754   switch (cause) {
  1755     case GCCause::_heap_inspection:
  1756     case GCCause::_heap_dump: {
  1757       HandleMark hm;
  1758       do_full_collection(false);         // don't clear all soft refs
  1759       break;
  1761     default: // XXX FIX ME
  1762       ShouldNotReachHere(); // Unexpected use of this function
  1766 void G1CollectedHeap::collect(GCCause::Cause cause) {
  1767   // The caller doesn't have the Heap_lock
  1768   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  1770   int gc_count_before;
  1772     MutexLocker ml(Heap_lock);
  1773     // Read the GC count while holding the Heap_lock
  1774     gc_count_before = SharedHeap::heap()->total_collections();
  1776     // Don't want to do a GC until cleanup is completed.
  1777     wait_for_cleanup_complete();
  1778   } // We give up heap lock; VMThread::execute gets it back below
  1779   switch (cause) {
  1780     case GCCause::_scavenge_alot: {
  1781       // Do an incremental pause, which might sometimes be abandoned.
  1782       VM_G1IncCollectionPause op(gc_count_before, cause);
  1783       VMThread::execute(&op);
  1784       break;
  1786     default: {
  1787       // In all other cases, we currently do a full gc.
  1788       VM_G1CollectFull op(gc_count_before, cause);
  1789       VMThread::execute(&op);
  1794 bool G1CollectedHeap::is_in(const void* p) const {
  1795   if (_g1_committed.contains(p)) {
  1796     HeapRegion* hr = _hrs->addr_to_region(p);
  1797     return hr->is_in(p);
  1798   } else {
  1799     return _perm_gen->as_gen()->is_in(p);
  1803 // Iteration functions.
  1805 // Iterates an OopClosure over all ref-containing fields of objects
  1806 // within a HeapRegion.
  1808 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  1809   MemRegion _mr;
  1810   OopClosure* _cl;
  1811 public:
  1812   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  1813     : _mr(mr), _cl(cl) {}
  1814   bool doHeapRegion(HeapRegion* r) {
  1815     if (! r->continuesHumongous()) {
  1816       r->oop_iterate(_cl);
  1818     return false;
  1820 };
  1822 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  1823   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  1824   _hrs->iterate(&blk);
  1825   if (do_perm) {
  1826     perm_gen()->oop_iterate(cl);
  1830 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  1831   IterateOopClosureRegionClosure blk(mr, cl);
  1832   _hrs->iterate(&blk);
  1833   if (do_perm) {
  1834     perm_gen()->oop_iterate(cl);
  1838 // Iterates an ObjectClosure over all objects within a HeapRegion.
  1840 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  1841   ObjectClosure* _cl;
  1842 public:
  1843   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  1844   bool doHeapRegion(HeapRegion* r) {
  1845     if (! r->continuesHumongous()) {
  1846       r->object_iterate(_cl);
  1848     return false;
  1850 };
  1852 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  1853   IterateObjectClosureRegionClosure blk(cl);
  1854   _hrs->iterate(&blk);
  1855   if (do_perm) {
  1856     perm_gen()->object_iterate(cl);
  1860 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  1861   // FIXME: is this right?
  1862   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  1865 // Calls a SpaceClosure on a HeapRegion.
  1867 class SpaceClosureRegionClosure: public HeapRegionClosure {
  1868   SpaceClosure* _cl;
  1869 public:
  1870   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  1871   bool doHeapRegion(HeapRegion* r) {
  1872     _cl->do_space(r);
  1873     return false;
  1875 };
  1877 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  1878   SpaceClosureRegionClosure blk(cl);
  1879   _hrs->iterate(&blk);
  1882 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  1883   _hrs->iterate(cl);
  1886 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  1887                                                HeapRegionClosure* cl) {
  1888   _hrs->iterate_from(r, cl);
  1891 void
  1892 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  1893   _hrs->iterate_from(idx, cl);
  1896 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
  1898 void
  1899 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  1900                                                  int worker,
  1901                                                  jint claim_value) {
  1902   const size_t regions = n_regions();
  1903   const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1);
  1904   // try to spread out the starting points of the workers
  1905   const size_t start_index = regions / worker_num * (size_t) worker;
  1907   // each worker will actually look at all regions
  1908   for (size_t count = 0; count < regions; ++count) {
  1909     const size_t index = (start_index + count) % regions;
  1910     assert(0 <= index && index < regions, "sanity");
  1911     HeapRegion* r = region_at(index);
  1912     // we'll ignore "continues humongous" regions (we'll process them
  1913     // when we come across their corresponding "start humongous"
  1914     // region) and regions already claimed
  1915     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  1916       continue;
  1918     // OK, try to claim it
  1919     if (r->claimHeapRegion(claim_value)) {
  1920       // success!
  1921       assert(!r->continuesHumongous(), "sanity");
  1922       if (r->startsHumongous()) {
  1923         // If the region is "starts humongous" we'll iterate over its
  1924         // "continues humongous" first; in fact we'll do them
  1925         // first. The order is important. In on case, calling the
  1926         // closure on the "starts humongous" region might de-allocate
  1927         // and clear all its "continues humongous" regions and, as a
  1928         // result, we might end up processing them twice. So, we'll do
  1929         // them first (notice: most closures will ignore them anyway) and
  1930         // then we'll do the "starts humongous" region.
  1931         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  1932           HeapRegion* chr = region_at(ch_index);
  1934           // if the region has already been claimed or it's not
  1935           // "continues humongous" we're done
  1936           if (chr->claim_value() == claim_value ||
  1937               !chr->continuesHumongous()) {
  1938             break;
  1941           // Noone should have claimed it directly. We can given
  1942           // that we claimed its "starts humongous" region.
  1943           assert(chr->claim_value() != claim_value, "sanity");
  1944           assert(chr->humongous_start_region() == r, "sanity");
  1946           if (chr->claimHeapRegion(claim_value)) {
  1947             // we should always be able to claim it; noone else should
  1948             // be trying to claim this region
  1950             bool res2 = cl->doHeapRegion(chr);
  1951             assert(!res2, "Should not abort");
  1953             // Right now, this holds (i.e., no closure that actually
  1954             // does something with "continues humongous" regions
  1955             // clears them). We might have to weaken it in the future,
  1956             // but let's leave these two asserts here for extra safety.
  1957             assert(chr->continuesHumongous(), "should still be the case");
  1958             assert(chr->humongous_start_region() == r, "sanity");
  1959           } else {
  1960             guarantee(false, "we should not reach here");
  1965       assert(!r->continuesHumongous(), "sanity");
  1966       bool res = cl->doHeapRegion(r);
  1967       assert(!res, "Should not abort");
  1972 class ResetClaimValuesClosure: public HeapRegionClosure {
  1973 public:
  1974   bool doHeapRegion(HeapRegion* r) {
  1975     r->set_claim_value(HeapRegion::InitialClaimValue);
  1976     return false;
  1978 };
  1980 void
  1981 G1CollectedHeap::reset_heap_region_claim_values() {
  1982   ResetClaimValuesClosure blk;
  1983   heap_region_iterate(&blk);
  1986 #ifdef ASSERT
  1987 // This checks whether all regions in the heap have the correct claim
  1988 // value. I also piggy-backed on this a check to ensure that the
  1989 // humongous_start_region() information on "continues humongous"
  1990 // regions is correct.
  1992 class CheckClaimValuesClosure : public HeapRegionClosure {
  1993 private:
  1994   jint _claim_value;
  1995   size_t _failures;
  1996   HeapRegion* _sh_region;
  1997 public:
  1998   CheckClaimValuesClosure(jint claim_value) :
  1999     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2000   bool doHeapRegion(HeapRegion* r) {
  2001     if (r->claim_value() != _claim_value) {
  2002       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  2003                              "claim value = %d, should be %d",
  2004                              r->bottom(), r->end(), r->claim_value(),
  2005                              _claim_value);
  2006       ++_failures;
  2008     if (!r->isHumongous()) {
  2009       _sh_region = NULL;
  2010     } else if (r->startsHumongous()) {
  2011       _sh_region = r;
  2012     } else if (r->continuesHumongous()) {
  2013       if (r->humongous_start_region() != _sh_region) {
  2014         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  2015                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2016                                r->bottom(), r->end(),
  2017                                r->humongous_start_region(),
  2018                                _sh_region);
  2019         ++_failures;
  2022     return false;
  2024   size_t failures() {
  2025     return _failures;
  2027 };
  2029 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2030   CheckClaimValuesClosure cl(claim_value);
  2031   heap_region_iterate(&cl);
  2032   return cl.failures() == 0;
  2034 #endif // ASSERT
  2036 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2037   HeapRegion* r = g1_policy()->collection_set();
  2038   while (r != NULL) {
  2039     HeapRegion* next = r->next_in_collection_set();
  2040     if (cl->doHeapRegion(r)) {
  2041       cl->incomplete();
  2042       return;
  2044     r = next;
  2048 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2049                                                   HeapRegionClosure *cl) {
  2050   assert(r->in_collection_set(),
  2051          "Start region must be a member of the collection set.");
  2052   HeapRegion* cur = r;
  2053   while (cur != NULL) {
  2054     HeapRegion* next = cur->next_in_collection_set();
  2055     if (cl->doHeapRegion(cur) && false) {
  2056       cl->incomplete();
  2057       return;
  2059     cur = next;
  2061   cur = g1_policy()->collection_set();
  2062   while (cur != r) {
  2063     HeapRegion* next = cur->next_in_collection_set();
  2064     if (cl->doHeapRegion(cur) && false) {
  2065       cl->incomplete();
  2066       return;
  2068     cur = next;
  2072 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2073   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
  2077 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2078   Space* res = heap_region_containing(addr);
  2079   if (res == NULL)
  2080     res = perm_gen()->space_containing(addr);
  2081   return res;
  2084 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2085   Space* sp = space_containing(addr);
  2086   if (sp != NULL) {
  2087     return sp->block_start(addr);
  2089   return NULL;
  2092 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2093   Space* sp = space_containing(addr);
  2094   assert(sp != NULL, "block_size of address outside of heap");
  2095   return sp->block_size(addr);
  2098 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2099   Space* sp = space_containing(addr);
  2100   return sp->block_is_obj(addr);
  2103 bool G1CollectedHeap::supports_tlab_allocation() const {
  2104   return true;
  2107 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2108   return HeapRegion::GrainBytes;
  2111 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2112   // Return the remaining space in the cur alloc region, but not less than
  2113   // the min TLAB size.
  2115   // Also, this value can be at most the humongous object threshold,
  2116   // since we can't allow tlabs to grow big enough to accomodate
  2117   // humongous objects.
  2119   // We need to store the cur alloc region locally, since it might change
  2120   // between when we test for NULL and when we use it later.
  2121   ContiguousSpace* cur_alloc_space = _cur_alloc_region;
  2122   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2124   if (cur_alloc_space == NULL) {
  2125     return max_tlab_size;
  2126   } else {
  2127     return MIN2(MAX2(cur_alloc_space->free(), (size_t)MinTLABSize),
  2128                 max_tlab_size);
  2132 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) {
  2133   bool dummy;
  2134   return G1CollectedHeap::mem_allocate(size, false, true, &dummy);
  2137 bool G1CollectedHeap::allocs_are_zero_filled() {
  2138   return false;
  2141 size_t G1CollectedHeap::large_typearray_limit() {
  2142   // FIXME
  2143   return HeapRegion::GrainBytes/HeapWordSize;
  2146 size_t G1CollectedHeap::max_capacity() const {
  2147   return g1_reserved_obj_bytes();
  2150 jlong G1CollectedHeap::millis_since_last_gc() {
  2151   // assert(false, "NYI");
  2152   return 0;
  2156 void G1CollectedHeap::prepare_for_verify() {
  2157   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2158     ensure_parsability(false);
  2160   g1_rem_set()->prepare_for_verify();
  2163 class VerifyLivenessOopClosure: public OopClosure {
  2164   G1CollectedHeap* g1h;
  2165 public:
  2166   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
  2167     g1h = _g1h;
  2169   void do_oop(narrowOop *p) { do_oop_work(p); }
  2170   void do_oop(      oop *p) { do_oop_work(p); }
  2172   template <class T> void do_oop_work(T *p) {
  2173     oop obj = oopDesc::load_decode_heap_oop(p);
  2174     guarantee(obj == NULL || !g1h->is_obj_dead(obj),
  2175               "Dead object referenced by a not dead object");
  2177 };
  2179 class VerifyObjsInRegionClosure: public ObjectClosure {
  2180 private:
  2181   G1CollectedHeap* _g1h;
  2182   size_t _live_bytes;
  2183   HeapRegion *_hr;
  2184   bool _use_prev_marking;
  2185 public:
  2186   // use_prev_marking == true  -> use "prev" marking information,
  2187   // use_prev_marking == false -> use "next" marking information
  2188   VerifyObjsInRegionClosure(HeapRegion *hr, bool use_prev_marking)
  2189     : _live_bytes(0), _hr(hr), _use_prev_marking(use_prev_marking) {
  2190     _g1h = G1CollectedHeap::heap();
  2192   void do_object(oop o) {
  2193     VerifyLivenessOopClosure isLive(_g1h);
  2194     assert(o != NULL, "Huh?");
  2195     if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
  2196       o->oop_iterate(&isLive);
  2197       if (!_hr->obj_allocated_since_prev_marking(o))
  2198         _live_bytes += (o->size() * HeapWordSize);
  2201   size_t live_bytes() { return _live_bytes; }
  2202 };
  2204 class PrintObjsInRegionClosure : public ObjectClosure {
  2205   HeapRegion *_hr;
  2206   G1CollectedHeap *_g1;
  2207 public:
  2208   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2209     _g1 = G1CollectedHeap::heap();
  2210   };
  2212   void do_object(oop o) {
  2213     if (o != NULL) {
  2214       HeapWord *start = (HeapWord *) o;
  2215       size_t word_sz = o->size();
  2216       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2217                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2218                           (void*) o, word_sz,
  2219                           _g1->isMarkedPrev(o),
  2220                           _g1->isMarkedNext(o),
  2221                           _hr->obj_allocated_since_prev_marking(o));
  2222       HeapWord *end = start + word_sz;
  2223       HeapWord *cur;
  2224       int *val;
  2225       for (cur = start; cur < end; cur++) {
  2226         val = (int *) cur;
  2227         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2231 };
  2233 class VerifyRegionClosure: public HeapRegionClosure {
  2234 private:
  2235   bool _allow_dirty;
  2236   bool _par;
  2237   bool _use_prev_marking;
  2238   bool _failures;
  2239 public:
  2240   // use_prev_marking == true  -> use "prev" marking information,
  2241   // use_prev_marking == false -> use "next" marking information
  2242   VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking)
  2243     : _allow_dirty(allow_dirty),
  2244       _par(par),
  2245       _use_prev_marking(use_prev_marking),
  2246       _failures(false) {}
  2248   bool failures() {
  2249     return _failures;
  2252   bool doHeapRegion(HeapRegion* r) {
  2253     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  2254               "Should be unclaimed at verify points.");
  2255     if (!r->continuesHumongous()) {
  2256       bool failures = false;
  2257       r->verify(_allow_dirty, _use_prev_marking, &failures);
  2258       if (failures) {
  2259         _failures = true;
  2260       } else {
  2261         VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
  2262         r->object_iterate(&not_dead_yet_cl);
  2263         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  2264           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  2265                                  "max_live_bytes "SIZE_FORMAT" "
  2266                                  "< calculated "SIZE_FORMAT,
  2267                                  r->bottom(), r->end(),
  2268                                  r->max_live_bytes(),
  2269                                  not_dead_yet_cl.live_bytes());
  2270           _failures = true;
  2274     return false; // stop the region iteration if we hit a failure
  2276 };
  2278 class VerifyRootsClosure: public OopsInGenClosure {
  2279 private:
  2280   G1CollectedHeap* _g1h;
  2281   bool             _use_prev_marking;
  2282   bool             _failures;
  2283 public:
  2284   // use_prev_marking == true  -> use "prev" marking information,
  2285   // use_prev_marking == false -> use "next" marking information
  2286   VerifyRootsClosure(bool use_prev_marking) :
  2287     _g1h(G1CollectedHeap::heap()),
  2288     _use_prev_marking(use_prev_marking),
  2289     _failures(false) { }
  2291   bool failures() { return _failures; }
  2293   template <class T> void do_oop_nv(T* p) {
  2294     T heap_oop = oopDesc::load_heap_oop(p);
  2295     if (!oopDesc::is_null(heap_oop)) {
  2296       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2297       if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
  2298         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2299                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2300         obj->print_on(gclog_or_tty);
  2301         _failures = true;
  2306   void do_oop(oop* p)       { do_oop_nv(p); }
  2307   void do_oop(narrowOop* p) { do_oop_nv(p); }
  2308 };
  2310 // This is the task used for parallel heap verification.
  2312 class G1ParVerifyTask: public AbstractGangTask {
  2313 private:
  2314   G1CollectedHeap* _g1h;
  2315   bool _allow_dirty;
  2316   bool _use_prev_marking;
  2317   bool _failures;
  2319 public:
  2320   // use_prev_marking == true  -> use "prev" marking information,
  2321   // use_prev_marking == false -> use "next" marking information
  2322   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty,
  2323                   bool use_prev_marking) :
  2324     AbstractGangTask("Parallel verify task"),
  2325     _g1h(g1h),
  2326     _allow_dirty(allow_dirty),
  2327     _use_prev_marking(use_prev_marking),
  2328     _failures(false) { }
  2330   bool failures() {
  2331     return _failures;
  2334   void work(int worker_i) {
  2335     HandleMark hm;
  2336     VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking);
  2337     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
  2338                                           HeapRegion::ParVerifyClaimValue);
  2339     if (blk.failures()) {
  2340       _failures = true;
  2343 };
  2345 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  2346   verify(allow_dirty, silent, /* use_prev_marking */ true);
  2349 void G1CollectedHeap::verify(bool allow_dirty,
  2350                              bool silent,
  2351                              bool use_prev_marking) {
  2352   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2353     if (!silent) { gclog_or_tty->print("roots "); }
  2354     VerifyRootsClosure rootsCl(use_prev_marking);
  2355     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  2356     process_strong_roots(true,  // activate StrongRootsScope
  2357                          false,
  2358                          SharedHeap::SO_AllClasses,
  2359                          &rootsCl,
  2360                          &blobsCl,
  2361                          &rootsCl);
  2362     bool failures = rootsCl.failures();
  2363     rem_set()->invalidate(perm_gen()->used_region(), false);
  2364     if (!silent) { gclog_or_tty->print("heapRegions "); }
  2365     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  2366       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2367              "sanity check");
  2369       G1ParVerifyTask task(this, allow_dirty, use_prev_marking);
  2370       int n_workers = workers()->total_workers();
  2371       set_par_threads(n_workers);
  2372       workers()->run_task(&task);
  2373       set_par_threads(0);
  2374       if (task.failures()) {
  2375         failures = true;
  2378       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  2379              "sanity check");
  2381       reset_heap_region_claim_values();
  2383       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2384              "sanity check");
  2385     } else {
  2386       VerifyRegionClosure blk(allow_dirty, false, use_prev_marking);
  2387       _hrs->iterate(&blk);
  2388       if (blk.failures()) {
  2389         failures = true;
  2392     if (!silent) gclog_or_tty->print("remset ");
  2393     rem_set()->verify();
  2395     if (failures) {
  2396       gclog_or_tty->print_cr("Heap:");
  2397       print_on(gclog_or_tty, true /* extended */);
  2398       gclog_or_tty->print_cr("");
  2399       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  2400         concurrent_mark()->print_reachable("at-verification-failure",
  2401                                            use_prev_marking, false /* all */);
  2403       gclog_or_tty->flush();
  2405     guarantee(!failures, "there should not have been any failures");
  2406   } else {
  2407     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  2411 class PrintRegionClosure: public HeapRegionClosure {
  2412   outputStream* _st;
  2413 public:
  2414   PrintRegionClosure(outputStream* st) : _st(st) {}
  2415   bool doHeapRegion(HeapRegion* r) {
  2416     r->print_on(_st);
  2417     return false;
  2419 };
  2421 void G1CollectedHeap::print() const { print_on(tty); }
  2423 void G1CollectedHeap::print_on(outputStream* st) const {
  2424   print_on(st, PrintHeapAtGCExtended);
  2427 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  2428   st->print(" %-20s", "garbage-first heap");
  2429   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  2430             capacity()/K, used_unlocked()/K);
  2431   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  2432             _g1_storage.low_boundary(),
  2433             _g1_storage.high(),
  2434             _g1_storage.high_boundary());
  2435   st->cr();
  2436   st->print("  region size " SIZE_FORMAT "K, ",
  2437             HeapRegion::GrainBytes/K);
  2438   size_t young_regions = _young_list->length();
  2439   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
  2440             young_regions, young_regions * HeapRegion::GrainBytes / K);
  2441   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  2442   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
  2443             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  2444   st->cr();
  2445   perm()->as_gen()->print_on(st);
  2446   if (extended) {
  2447     st->cr();
  2448     print_on_extended(st);
  2452 void G1CollectedHeap::print_on_extended(outputStream* st) const {
  2453   PrintRegionClosure blk(st);
  2454   _hrs->iterate(&blk);
  2457 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  2458   if (ParallelGCThreads > 0) {
  2459     workers()->print_worker_threads_on(st);
  2462   _cmThread->print_on(st);
  2463   st->cr();
  2465   _cm->print_worker_threads_on(st);
  2467   _cg1r->print_worker_threads_on(st);
  2469   _czft->print_on(st);
  2470   st->cr();
  2473 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  2474   if (ParallelGCThreads > 0) {
  2475     workers()->threads_do(tc);
  2477   tc->do_thread(_cmThread);
  2478   _cg1r->threads_do(tc);
  2479   tc->do_thread(_czft);
  2482 void G1CollectedHeap::print_tracing_info() const {
  2483   // We'll overload this to mean "trace GC pause statistics."
  2484   if (TraceGen0Time || TraceGen1Time) {
  2485     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  2486     // to that.
  2487     g1_policy()->print_tracing_info();
  2489   if (G1SummarizeRSetStats) {
  2490     g1_rem_set()->print_summary_info();
  2492   if (G1SummarizeConcMark) {
  2493     concurrent_mark()->print_summary_info();
  2495   if (G1SummarizeZFStats) {
  2496     ConcurrentZFThread::print_summary_info();
  2498   g1_policy()->print_yg_surv_rate_info();
  2500   SpecializationStats::print();
  2504 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  2505   HeapRegion* hr = heap_region_containing(addr);
  2506   if (hr == NULL) {
  2507     return 0;
  2508   } else {
  2509     return 1;
  2513 G1CollectedHeap* G1CollectedHeap::heap() {
  2514   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  2515          "not a garbage-first heap");
  2516   return _g1h;
  2519 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  2520   // always_do_update_barrier = false;
  2521   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  2522   // Call allocation profiler
  2523   AllocationProfiler::iterate_since_last_gc();
  2524   // Fill TLAB's and such
  2525   ensure_parsability(true);
  2528 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  2529   // FIXME: what is this about?
  2530   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  2531   // is set.
  2532   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  2533                         "derived pointer present"));
  2534   // always_do_update_barrier = true;
  2537 void G1CollectedHeap::do_collection_pause() {
  2538   // Read the GC count while holding the Heap_lock
  2539   // we need to do this _before_ wait_for_cleanup_complete(), to
  2540   // ensure that we do not give up the heap lock and potentially
  2541   // pick up the wrong count
  2542   int gc_count_before = SharedHeap::heap()->total_collections();
  2544   // Don't want to do a GC pause while cleanup is being completed!
  2545   wait_for_cleanup_complete();
  2547   g1_policy()->record_stop_world_start();
  2549     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  2550     VM_G1IncCollectionPause op(gc_count_before);
  2551     VMThread::execute(&op);
  2555 void
  2556 G1CollectedHeap::doConcurrentMark() {
  2557   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2558   if (!_cmThread->in_progress()) {
  2559     _cmThread->set_started();
  2560     CGC_lock->notify();
  2564 class VerifyMarkedObjsClosure: public ObjectClosure {
  2565     G1CollectedHeap* _g1h;
  2566     public:
  2567     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
  2568     void do_object(oop obj) {
  2569       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
  2570              "markandsweep mark should agree with concurrent deadness");
  2572 };
  2574 void
  2575 G1CollectedHeap::checkConcurrentMark() {
  2576     VerifyMarkedObjsClosure verifycl(this);
  2577     //    MutexLockerEx x(getMarkBitMapLock(),
  2578     //              Mutex::_no_safepoint_check_flag);
  2579     object_iterate(&verifycl, false);
  2582 void G1CollectedHeap::do_sync_mark() {
  2583   _cm->checkpointRootsInitial();
  2584   _cm->markFromRoots();
  2585   _cm->checkpointRootsFinal(false);
  2588 // <NEW PREDICTION>
  2590 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  2591                                                        bool young) {
  2592   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  2595 void G1CollectedHeap::check_if_region_is_too_expensive(double
  2596                                                            predicted_time_ms) {
  2597   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  2600 size_t G1CollectedHeap::pending_card_num() {
  2601   size_t extra_cards = 0;
  2602   JavaThread *curr = Threads::first();
  2603   while (curr != NULL) {
  2604     DirtyCardQueue& dcq = curr->dirty_card_queue();
  2605     extra_cards += dcq.size();
  2606     curr = curr->next();
  2608   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2609   size_t buffer_size = dcqs.buffer_size();
  2610   size_t buffer_num = dcqs.completed_buffers_num();
  2611   return buffer_size * buffer_num + extra_cards;
  2614 size_t G1CollectedHeap::max_pending_card_num() {
  2615   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2616   size_t buffer_size = dcqs.buffer_size();
  2617   size_t buffer_num  = dcqs.completed_buffers_num();
  2618   int thread_num  = Threads::number_of_threads();
  2619   return (buffer_num + thread_num) * buffer_size;
  2622 size_t G1CollectedHeap::cards_scanned() {
  2623   HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set();
  2624   return g1_rset->cardsScanned();
  2627 void
  2628 G1CollectedHeap::setup_surviving_young_words() {
  2629   guarantee( _surviving_young_words == NULL, "pre-condition" );
  2630   size_t array_length = g1_policy()->young_cset_length();
  2631   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  2632   if (_surviving_young_words == NULL) {
  2633     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  2634                           "Not enough space for young surv words summary.");
  2636   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  2637 #ifdef ASSERT
  2638   for (size_t i = 0;  i < array_length; ++i) {
  2639     assert( _surviving_young_words[i] == 0, "memset above" );
  2641 #endif // !ASSERT
  2644 void
  2645 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  2646   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2647   size_t array_length = g1_policy()->young_cset_length();
  2648   for (size_t i = 0; i < array_length; ++i)
  2649     _surviving_young_words[i] += surv_young_words[i];
  2652 void
  2653 G1CollectedHeap::cleanup_surviving_young_words() {
  2654   guarantee( _surviving_young_words != NULL, "pre-condition" );
  2655   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  2656   _surviving_young_words = NULL;
  2659 // </NEW PREDICTION>
  2661 struct PrepareForRSScanningClosure : public HeapRegionClosure {
  2662   bool doHeapRegion(HeapRegion *r) {
  2663     r->rem_set()->set_iter_claimed(0);
  2664     return false;
  2666 };
  2668 void
  2669 G1CollectedHeap::do_collection_pause_at_safepoint() {
  2670   if (GC_locker::check_active_before_gc()) {
  2671     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
  2674   if (PrintHeapAtGC) {
  2675     Universe::print_heap_before_gc();
  2679     ResourceMark rm;
  2681     // This call will decide whether this pause is an initial-mark
  2682     // pause. If it is, during_initial_mark_pause() will return true
  2683     // for the duration of this pause.
  2684     g1_policy()->decide_on_conc_mark_initiation();
  2686     char verbose_str[128];
  2687     sprintf(verbose_str, "GC pause ");
  2688     if (g1_policy()->in_young_gc_mode()) {
  2689       if (g1_policy()->full_young_gcs())
  2690         strcat(verbose_str, "(young)");
  2691       else
  2692         strcat(verbose_str, "(partial)");
  2694     if (g1_policy()->during_initial_mark_pause())
  2695       strcat(verbose_str, " (initial-mark)");
  2697     // if PrintGCDetails is on, we'll print long statistics information
  2698     // in the collector policy code, so let's not print this as the output
  2699     // is messy if we do.
  2700     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2701     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2702     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  2704     TraceMemoryManagerStats tms(false /* fullGC */);
  2706     assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  2707     assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
  2708     guarantee(!is_gc_active(), "collection is not reentrant");
  2709     assert(regions_accounted_for(), "Region leakage!");
  2711     increment_gc_time_stamp();
  2713     if (g1_policy()->in_young_gc_mode()) {
  2714       assert(check_young_list_well_formed(),
  2715              "young list should be well formed");
  2718     bool abandoned = false;
  2719     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  2720       IsGCActiveMark x;
  2722       gc_prologue(false);
  2723       increment_total_collections(false /* full gc */);
  2725 #if G1_REM_SET_LOGGING
  2726       gclog_or_tty->print_cr("\nJust chose CS, heap:");
  2727       print();
  2728 #endif
  2730       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  2731         HandleMark hm;  // Discard invalid handles created during verification
  2732         prepare_for_verify();
  2733         gclog_or_tty->print(" VerifyBeforeGC:");
  2734         Universe::verify(false);
  2737       COMPILER2_PRESENT(DerivedPointerTable::clear());
  2739       // We want to turn off ref discovery, if necessary, and turn it back on
  2740       // on again later if we do. XXX Dubious: why is discovery disabled?
  2741       bool was_enabled = ref_processor()->discovery_enabled();
  2742       if (was_enabled) ref_processor()->disable_discovery();
  2744       // Forget the current alloc region (we might even choose it to be part
  2745       // of the collection set!).
  2746       abandon_cur_alloc_region();
  2748       // The elapsed time induced by the start time below deliberately elides
  2749       // the possible verification above.
  2750       double start_time_sec = os::elapsedTime();
  2751       size_t start_used_bytes = used();
  2753       g1_policy()->record_collection_pause_start(start_time_sec,
  2754                                                  start_used_bytes);
  2756       guarantee(_in_cset_fast_test == NULL, "invariant");
  2757       guarantee(_in_cset_fast_test_base == NULL, "invariant");
  2758       _in_cset_fast_test_length = max_regions();
  2759       _in_cset_fast_test_base =
  2760                              NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  2761       memset(_in_cset_fast_test_base, false,
  2762                                      _in_cset_fast_test_length * sizeof(bool));
  2763       // We're biasing _in_cset_fast_test to avoid subtracting the
  2764       // beginning of the heap every time we want to index; basically
  2765       // it's the same with what we do with the card table.
  2766       _in_cset_fast_test = _in_cset_fast_test_base -
  2767               ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2769 #if SCAN_ONLY_VERBOSE
  2770       _young_list->print();
  2771 #endif // SCAN_ONLY_VERBOSE
  2773       if (g1_policy()->during_initial_mark_pause()) {
  2774         concurrent_mark()->checkpointRootsInitialPre();
  2776       save_marks();
  2778       // We must do this before any possible evacuation that should propagate
  2779       // marks.
  2780       if (mark_in_progress()) {
  2781         double start_time_sec = os::elapsedTime();
  2783         _cm->drainAllSATBBuffers();
  2784         double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  2785         g1_policy()->record_satb_drain_time(finish_mark_ms);
  2787       // Record the number of elements currently on the mark stack, so we
  2788       // only iterate over these.  (Since evacuation may add to the mark
  2789       // stack, doing more exposes race conditions.)  If no mark is in
  2790       // progress, this will be zero.
  2791       _cm->set_oops_do_bound();
  2793       assert(regions_accounted_for(), "Region leakage.");
  2795       if (mark_in_progress())
  2796         concurrent_mark()->newCSet();
  2798       // Now choose the CS.
  2799       g1_policy()->choose_collection_set();
  2801       // We may abandon a pause if we find no region that will fit in the MMU
  2802       // pause.
  2803       bool abandoned = (g1_policy()->collection_set() == NULL);
  2805       // Nothing to do if we were unable to choose a collection set.
  2806       if (!abandoned) {
  2807 #if G1_REM_SET_LOGGING
  2808         gclog_or_tty->print_cr("\nAfter pause, heap:");
  2809         print();
  2810 #endif
  2811         PrepareForRSScanningClosure prepare_for_rs_scan;
  2812         collection_set_iterate(&prepare_for_rs_scan);
  2814         setup_surviving_young_words();
  2816         // Set up the gc allocation regions.
  2817         get_gc_alloc_regions();
  2819         // Actually do the work...
  2820         evacuate_collection_set();
  2821         free_collection_set(g1_policy()->collection_set());
  2822         g1_policy()->clear_collection_set();
  2824         FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
  2825         // this is more for peace of mind; we're nulling them here and
  2826         // we're expecting them to be null at the beginning of the next GC
  2827         _in_cset_fast_test = NULL;
  2828         _in_cset_fast_test_base = NULL;
  2830         cleanup_surviving_young_words();
  2832         if (g1_policy()->in_young_gc_mode()) {
  2833           _young_list->reset_sampled_info();
  2834           assert(check_young_list_empty(true),
  2835                  "young list should be empty");
  2837 #if SCAN_ONLY_VERBOSE
  2838           _young_list->print();
  2839 #endif // SCAN_ONLY_VERBOSE
  2841           g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  2842                                           _young_list->first_survivor_region(),
  2843                                           _young_list->last_survivor_region());
  2844           _young_list->reset_auxilary_lists();
  2846       } else {
  2847         if (_in_cset_fast_test != NULL) {
  2848           assert(_in_cset_fast_test_base != NULL, "Since _in_cset_fast_test isn't");
  2849           FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
  2850           //  this is more for peace of mind; we're nulling them here and
  2851           // we're expecting them to be null at the beginning of the next GC
  2852           _in_cset_fast_test = NULL;
  2853           _in_cset_fast_test_base = NULL;
  2855         // This looks confusing, because the DPT should really be empty
  2856         // at this point -- since we have not done any collection work,
  2857         // there should not be any derived pointers in the table to update;
  2858         // however, there is some additional state in the DPT which is
  2859         // reset at the end of the (null) "gc" here via the following call.
  2860         // A better approach might be to split off that state resetting work
  2861         // into a separate method that asserts that the DPT is empty and call
  2862         // that here. That is deferred for now.
  2863         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  2866       if (evacuation_failed()) {
  2867         _summary_bytes_used = recalculate_used();
  2868       } else {
  2869         // The "used" of the the collection set have already been subtracted
  2870         // when they were freed.  Add in the bytes evacuated.
  2871         _summary_bytes_used += g1_policy()->bytes_in_to_space();
  2874       if (g1_policy()->in_young_gc_mode() &&
  2875           g1_policy()->during_initial_mark_pause()) {
  2876         concurrent_mark()->checkpointRootsInitialPost();
  2877         set_marking_started();
  2878         // CAUTION: after the doConcurrentMark() call below,
  2879         // the concurrent marking thread(s) could be running
  2880         // concurrently with us. Make sure that anything after
  2881         // this point does not assume that we are the only GC thread
  2882         // running. Note: of course, the actual marking work will
  2883         // not start until the safepoint itself is released in
  2884         // ConcurrentGCThread::safepoint_desynchronize().
  2885         doConcurrentMark();
  2888 #if SCAN_ONLY_VERBOSE
  2889       _young_list->print();
  2890 #endif // SCAN_ONLY_VERBOSE
  2892       double end_time_sec = os::elapsedTime();
  2893       double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  2894       g1_policy()->record_pause_time_ms(pause_time_ms);
  2895       g1_policy()->record_collection_pause_end(abandoned);
  2897       assert(regions_accounted_for(), "Region leakage.");
  2899       MemoryService::track_memory_usage();
  2901       if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  2902         HandleMark hm;  // Discard invalid handles created during verification
  2903         gclog_or_tty->print(" VerifyAfterGC:");
  2904         prepare_for_verify();
  2905         Universe::verify(false);
  2908       if (was_enabled) ref_processor()->enable_discovery();
  2911         size_t expand_bytes = g1_policy()->expansion_amount();
  2912         if (expand_bytes > 0) {
  2913           size_t bytes_before = capacity();
  2914           expand(expand_bytes);
  2918       if (mark_in_progress()) {
  2919         concurrent_mark()->update_g1_committed();
  2922 #ifdef TRACESPINNING
  2923       ParallelTaskTerminator::print_termination_counts();
  2924 #endif
  2926       gc_epilogue(false);
  2929     assert(verify_region_lists(), "Bad region lists.");
  2931     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  2932       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  2933       print_tracing_info();
  2934       vm_exit(-1);
  2938   if (PrintHeapAtGC) {
  2939     Universe::print_heap_after_gc();
  2941   if (G1SummarizeRSetStats &&
  2942       (G1SummarizeRSetStatsPeriod > 0) &&
  2943       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  2944     g1_rem_set()->print_summary_info();
  2948 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  2949   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
  2950   // make sure we don't call set_gc_alloc_region() multiple times on
  2951   // the same region
  2952   assert(r == NULL || !r->is_gc_alloc_region(),
  2953          "shouldn't already be a GC alloc region");
  2954   assert(r == NULL || !r->isHumongous(),
  2955          "humongous regions shouldn't be used as GC alloc regions");
  2957   HeapWord* original_top = NULL;
  2958   if (r != NULL)
  2959     original_top = r->top();
  2961   // We will want to record the used space in r as being there before gc.
  2962   // One we install it as a GC alloc region it's eligible for allocation.
  2963   // So record it now and use it later.
  2964   size_t r_used = 0;
  2965   if (r != NULL) {
  2966     r_used = r->used();
  2968     if (ParallelGCThreads > 0) {
  2969       // need to take the lock to guard against two threads calling
  2970       // get_gc_alloc_region concurrently (very unlikely but...)
  2971       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2972       r->save_marks();
  2975   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  2976   _gc_alloc_regions[purpose] = r;
  2977   if (old_alloc_region != NULL) {
  2978     // Replace aliases too.
  2979     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2980       if (_gc_alloc_regions[ap] == old_alloc_region) {
  2981         _gc_alloc_regions[ap] = r;
  2985   if (r != NULL) {
  2986     push_gc_alloc_region(r);
  2987     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
  2988       // We are using a region as a GC alloc region after it has been used
  2989       // as a mutator allocation region during the current marking cycle.
  2990       // The mutator-allocated objects are currently implicitly marked, but
  2991       // when we move hr->next_top_at_mark_start() forward at the the end
  2992       // of the GC pause, they won't be.  We therefore mark all objects in
  2993       // the "gap".  We do this object-by-object, since marking densely
  2994       // does not currently work right with marking bitmap iteration.  This
  2995       // means we rely on TLAB filling at the start of pauses, and no
  2996       // "resuscitation" of filled TLAB's.  If we want to do this, we need
  2997       // to fix the marking bitmap iteration.
  2998       HeapWord* curhw = r->next_top_at_mark_start();
  2999       HeapWord* t = original_top;
  3001       while (curhw < t) {
  3002         oop cur = (oop)curhw;
  3003         // We'll assume parallel for generality.  This is rare code.
  3004         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
  3005         curhw = curhw + cur->size();
  3007       assert(curhw == t, "Should have parsed correctly.");
  3009     if (G1PolicyVerbose > 1) {
  3010       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
  3011                           "for survivors:", r->bottom(), original_top, r->end());
  3012       r->print();
  3014     g1_policy()->record_before_bytes(r_used);
  3018 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  3019   assert(Thread::current()->is_VM_thread() ||
  3020          par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
  3021   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
  3022          "Precondition.");
  3023   hr->set_is_gc_alloc_region(true);
  3024   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  3025   _gc_alloc_region_list = hr;
  3028 #ifdef G1_DEBUG
  3029 class FindGCAllocRegion: public HeapRegionClosure {
  3030 public:
  3031   bool doHeapRegion(HeapRegion* r) {
  3032     if (r->is_gc_alloc_region()) {
  3033       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
  3034                              r->hrs_index(), r->bottom());
  3036     return false;
  3038 };
  3039 #endif // G1_DEBUG
  3041 void G1CollectedHeap::forget_alloc_region_list() {
  3042   assert(Thread::current()->is_VM_thread(), "Precondition");
  3043   while (_gc_alloc_region_list != NULL) {
  3044     HeapRegion* r = _gc_alloc_region_list;
  3045     assert(r->is_gc_alloc_region(), "Invariant.");
  3046     // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
  3047     // newly allocated data in order to be able to apply deferred updates
  3048     // before the GC is done for verification purposes (i.e to allow
  3049     // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
  3050     // collection.
  3051     r->ContiguousSpace::set_saved_mark();
  3052     _gc_alloc_region_list = r->next_gc_alloc_region();
  3053     r->set_next_gc_alloc_region(NULL);
  3054     r->set_is_gc_alloc_region(false);
  3055     if (r->is_survivor()) {
  3056       if (r->is_empty()) {
  3057         r->set_not_young();
  3058       } else {
  3059         _young_list->add_survivor_region(r);
  3062     if (r->is_empty()) {
  3063       ++_free_regions;
  3066 #ifdef G1_DEBUG
  3067   FindGCAllocRegion fa;
  3068   heap_region_iterate(&fa);
  3069 #endif // G1_DEBUG
  3073 bool G1CollectedHeap::check_gc_alloc_regions() {
  3074   // TODO: allocation regions check
  3075   return true;
  3078 void G1CollectedHeap::get_gc_alloc_regions() {
  3079   // First, let's check that the GC alloc region list is empty (it should)
  3080   assert(_gc_alloc_region_list == NULL, "invariant");
  3082   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3083     assert(_gc_alloc_regions[ap] == NULL, "invariant");
  3084     assert(_gc_alloc_region_counts[ap] == 0, "invariant");
  3086     // Create new GC alloc regions.
  3087     HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
  3088     _retained_gc_alloc_regions[ap] = NULL;
  3090     if (alloc_region != NULL) {
  3091       assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");
  3093       // let's make sure that the GC alloc region is not tagged as such
  3094       // outside a GC operation
  3095       assert(!alloc_region->is_gc_alloc_region(), "sanity");
  3097       if (alloc_region->in_collection_set() ||
  3098           alloc_region->top() == alloc_region->end() ||
  3099           alloc_region->top() == alloc_region->bottom() ||
  3100           alloc_region->isHumongous()) {
  3101         // we will discard the current GC alloc region if
  3102         // * it's in the collection set (it can happen!),
  3103         // * it's already full (no point in using it),
  3104         // * it's empty (this means that it was emptied during
  3105         // a cleanup and it should be on the free list now), or
  3106         // * it's humongous (this means that it was emptied
  3107         // during a cleanup and was added to the free list, but
  3108         // has been subseqently used to allocate a humongous
  3109         // object that may be less than the region size).
  3111         alloc_region = NULL;
  3115     if (alloc_region == NULL) {
  3116       // we will get a new GC alloc region
  3117       alloc_region = newAllocRegionWithExpansion(ap, 0);
  3118     } else {
  3119       // the region was retained from the last collection
  3120       ++_gc_alloc_region_counts[ap];
  3121       if (G1PrintHeapRegions) {
  3122         gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
  3123                                "top "PTR_FORMAT,
  3124                                alloc_region->hrs_index(), alloc_region->bottom(), alloc_region->end(), alloc_region->top());
  3128     if (alloc_region != NULL) {
  3129       assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
  3130       set_gc_alloc_region(ap, alloc_region);
  3133     assert(_gc_alloc_regions[ap] == NULL ||
  3134            _gc_alloc_regions[ap]->is_gc_alloc_region(),
  3135            "the GC alloc region should be tagged as such");
  3136     assert(_gc_alloc_regions[ap] == NULL ||
  3137            _gc_alloc_regions[ap] == _gc_alloc_region_list,
  3138            "the GC alloc region should be the same as the GC alloc list head");
  3140   // Set alternative regions for allocation purposes that have reached
  3141   // their limit.
  3142   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3143     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
  3144     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
  3145       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
  3148   assert(check_gc_alloc_regions(), "alloc regions messed up");
  3151 void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
  3152   // We keep a separate list of all regions that have been alloc regions in
  3153   // the current collection pause. Forget that now. This method will
  3154   // untag the GC alloc regions and tear down the GC alloc region
  3155   // list. It's desirable that no regions are tagged as GC alloc
  3156   // outside GCs.
  3157   forget_alloc_region_list();
  3159   // The current alloc regions contain objs that have survived
  3160   // collection. Make them no longer GC alloc regions.
  3161   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3162     HeapRegion* r = _gc_alloc_regions[ap];
  3163     _retained_gc_alloc_regions[ap] = NULL;
  3164     _gc_alloc_region_counts[ap] = 0;
  3166     if (r != NULL) {
  3167       // we retain nothing on _gc_alloc_regions between GCs
  3168       set_gc_alloc_region(ap, NULL);
  3170       if (r->is_empty()) {
  3171         // we didn't actually allocate anything in it; let's just put
  3172         // it on the free list
  3173         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  3174         r->set_zero_fill_complete();
  3175         put_free_region_on_list_locked(r);
  3176       } else if (_retain_gc_alloc_region[ap] && !totally) {
  3177         // retain it so that we can use it at the beginning of the next GC
  3178         _retained_gc_alloc_regions[ap] = r;
  3184 #ifndef PRODUCT
  3185 // Useful for debugging
  3187 void G1CollectedHeap::print_gc_alloc_regions() {
  3188   gclog_or_tty->print_cr("GC alloc regions");
  3189   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3190     HeapRegion* r = _gc_alloc_regions[ap];
  3191     if (r == NULL) {
  3192       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
  3193     } else {
  3194       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
  3195                              ap, r->bottom(), r->used());
  3199 #endif // PRODUCT
  3201 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  3202   _drain_in_progress = false;
  3203   set_evac_failure_closure(cl);
  3204   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3207 void G1CollectedHeap::finalize_for_evac_failure() {
  3208   assert(_evac_failure_scan_stack != NULL &&
  3209          _evac_failure_scan_stack->length() == 0,
  3210          "Postcondition");
  3211   assert(!_drain_in_progress, "Postcondition");
  3212   delete _evac_failure_scan_stack;
  3213   _evac_failure_scan_stack = NULL;
  3218 // *** Sequential G1 Evacuation
  3220 HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
  3221   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3222   // let the caller handle alloc failure
  3223   if (alloc_region == NULL) return NULL;
  3224   assert(isHumongous(word_size) || !alloc_region->isHumongous(),
  3225          "Either the object is humongous or the region isn't");
  3226   HeapWord* block = alloc_region->allocate(word_size);
  3227   if (block == NULL) {
  3228     block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
  3230   return block;
  3233 class G1IsAliveClosure: public BoolObjectClosure {
  3234   G1CollectedHeap* _g1;
  3235 public:
  3236   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3237   void do_object(oop p) { assert(false, "Do not call."); }
  3238   bool do_object_b(oop p) {
  3239     // It is reachable if it is outside the collection set, or is inside
  3240     // and forwarded.
  3242 #ifdef G1_DEBUG
  3243     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
  3244                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
  3245                            !_g1->obj_in_cs(p) || p->is_forwarded());
  3246 #endif // G1_DEBUG
  3248     return !_g1->obj_in_cs(p) || p->is_forwarded();
  3250 };
  3252 class G1KeepAliveClosure: public OopClosure {
  3253   G1CollectedHeap* _g1;
  3254 public:
  3255   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3256   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  3257   void do_oop(      oop* p) {
  3258     oop obj = *p;
  3259 #ifdef G1_DEBUG
  3260     if (PrintGC && Verbose) {
  3261       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
  3262                              p, (void*) obj, (void*) *p);
  3264 #endif // G1_DEBUG
  3266     if (_g1->obj_in_cs(obj)) {
  3267       assert( obj->is_forwarded(), "invariant" );
  3268       *p = obj->forwardee();
  3269 #ifdef G1_DEBUG
  3270       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
  3271                              (void*) obj, (void*) *p);
  3272 #endif // G1_DEBUG
  3275 };
  3277 class UpdateRSetImmediate : public OopsInHeapRegionClosure {
  3278 private:
  3279   G1CollectedHeap* _g1;
  3280   G1RemSet* _g1_rem_set;
  3281 public:
  3282   UpdateRSetImmediate(G1CollectedHeap* g1) :
  3283     _g1(g1), _g1_rem_set(g1->g1_rem_set()) {}
  3285   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3286   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3287   template <class T> void do_oop_work(T* p) {
  3288     assert(_from->is_in_reserved(p), "paranoia");
  3289     T heap_oop = oopDesc::load_heap_oop(p);
  3290     if (!oopDesc::is_null(heap_oop) && !_from->is_survivor()) {
  3291       _g1_rem_set->par_write_ref(_from, p, 0);
  3294 };
  3296 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  3297 private:
  3298   G1CollectedHeap* _g1;
  3299   DirtyCardQueue *_dcq;
  3300   CardTableModRefBS* _ct_bs;
  3302 public:
  3303   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
  3304     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
  3306   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3307   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3308   template <class T> void do_oop_work(T* p) {
  3309     assert(_from->is_in_reserved(p), "paranoia");
  3310     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
  3311         !_from->is_survivor()) {
  3312       size_t card_index = _ct_bs->index_for(p);
  3313       if (_ct_bs->mark_card_deferred(card_index)) {
  3314         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
  3318 };
  3322 class RemoveSelfPointerClosure: public ObjectClosure {
  3323 private:
  3324   G1CollectedHeap* _g1;
  3325   ConcurrentMark* _cm;
  3326   HeapRegion* _hr;
  3327   size_t _prev_marked_bytes;
  3328   size_t _next_marked_bytes;
  3329   OopsInHeapRegionClosure *_cl;
  3330 public:
  3331   RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
  3332     _g1(g1), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
  3333     _next_marked_bytes(0), _cl(cl) {}
  3335   size_t prev_marked_bytes() { return _prev_marked_bytes; }
  3336   size_t next_marked_bytes() { return _next_marked_bytes; }
  3338   // The original idea here was to coalesce evacuated and dead objects.
  3339   // However that caused complications with the block offset table (BOT).
  3340   // In particular if there were two TLABs, one of them partially refined.
  3341   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  3342   // The BOT entries of the unrefined part of TLAB_2 point to the start
  3343   // of TLAB_2. If the last object of the TLAB_1 and the first object
  3344   // of TLAB_2 are coalesced, then the cards of the unrefined part
  3345   // would point into middle of the filler object.
  3346   //
  3347   // The current approach is to not coalesce and leave the BOT contents intact.
  3348   void do_object(oop obj) {
  3349     if (obj->is_forwarded() && obj->forwardee() == obj) {
  3350       // The object failed to move.
  3351       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
  3352       _cm->markPrev(obj);
  3353       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3354       _prev_marked_bytes += (obj->size() * HeapWordSize);
  3355       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
  3356         _cm->markAndGrayObjectIfNecessary(obj);
  3358       obj->set_mark(markOopDesc::prototype());
  3359       // While we were processing RSet buffers during the
  3360       // collection, we actually didn't scan any cards on the
  3361       // collection set, since we didn't want to update remebered
  3362       // sets with entries that point into the collection set, given
  3363       // that live objects fromthe collection set are about to move
  3364       // and such entries will be stale very soon. This change also
  3365       // dealt with a reliability issue which involved scanning a
  3366       // card in the collection set and coming across an array that
  3367       // was being chunked and looking malformed. The problem is
  3368       // that, if evacuation fails, we might have remembered set
  3369       // entries missing given that we skipped cards on the
  3370       // collection set. So, we'll recreate such entries now.
  3371       obj->oop_iterate(_cl);
  3372       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3373     } else {
  3374       // The object has been either evacuated or is dead. Fill it with a
  3375       // dummy object.
  3376       MemRegion mr((HeapWord*)obj, obj->size());
  3377       CollectedHeap::fill_with_object(mr);
  3378       _cm->clearRangeBothMaps(mr);
  3381 };
  3383 void G1CollectedHeap::remove_self_forwarding_pointers() {
  3384   UpdateRSetImmediate immediate_update(_g1h);
  3385   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  3386   UpdateRSetDeferred deferred_update(_g1h, &dcq);
  3387   OopsInHeapRegionClosure *cl;
  3388   if (G1DeferredRSUpdate) {
  3389     cl = &deferred_update;
  3390   } else {
  3391     cl = &immediate_update;
  3393   HeapRegion* cur = g1_policy()->collection_set();
  3394   while (cur != NULL) {
  3395     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3397     RemoveSelfPointerClosure rspc(_g1h, cl);
  3398     if (cur->evacuation_failed()) {
  3399       assert(cur->in_collection_set(), "bad CS");
  3400       cl->set_region(cur);
  3401       cur->object_iterate(&rspc);
  3403       // A number of manipulations to make the TAMS be the current top,
  3404       // and the marked bytes be the ones observed in the iteration.
  3405       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
  3406         // The comments below are the postconditions achieved by the
  3407         // calls.  Note especially the last such condition, which says that
  3408         // the count of marked bytes has been properly restored.
  3409         cur->note_start_of_marking(false);
  3410         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3411         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
  3412         // _next_marked_bytes == prev_marked_bytes.
  3413         cur->note_end_of_marking();
  3414         // _prev_top_at_mark_start == top(),
  3415         // _prev_marked_bytes == prev_marked_bytes
  3417       // If there is no mark in progress, we modified the _next variables
  3418       // above needlessly, but harmlessly.
  3419       if (_g1h->mark_in_progress()) {
  3420         cur->note_start_of_marking(false);
  3421         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3422         // _next_marked_bytes == next_marked_bytes.
  3425       // Now make sure the region has the right index in the sorted array.
  3426       g1_policy()->note_change_in_marked_bytes(cur);
  3428     cur = cur->next_in_collection_set();
  3430   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3432   // Now restore saved marks, if any.
  3433   if (_objs_with_preserved_marks != NULL) {
  3434     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  3435     assert(_objs_with_preserved_marks->length() ==
  3436            _preserved_marks_of_objs->length(), "Both or none.");
  3437     guarantee(_objs_with_preserved_marks->length() ==
  3438               _preserved_marks_of_objs->length(), "Both or none.");
  3439     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  3440       oop obj   = _objs_with_preserved_marks->at(i);
  3441       markOop m = _preserved_marks_of_objs->at(i);
  3442       obj->set_mark(m);
  3444     // Delete the preserved marks growable arrays (allocated on the C heap).
  3445     delete _objs_with_preserved_marks;
  3446     delete _preserved_marks_of_objs;
  3447     _objs_with_preserved_marks = NULL;
  3448     _preserved_marks_of_objs = NULL;
  3452 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  3453   _evac_failure_scan_stack->push(obj);
  3456 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  3457   assert(_evac_failure_scan_stack != NULL, "precondition");
  3459   while (_evac_failure_scan_stack->length() > 0) {
  3460      oop obj = _evac_failure_scan_stack->pop();
  3461      _evac_failure_closure->set_region(heap_region_containing(obj));
  3462      obj->oop_iterate_backwards(_evac_failure_closure);
  3466 void G1CollectedHeap::handle_evacuation_failure(oop old) {
  3467   markOop m = old->mark();
  3468   // forward to self
  3469   assert(!old->is_forwarded(), "precondition");
  3471   old->forward_to(old);
  3472   handle_evacuation_failure_common(old, m);
  3475 oop
  3476 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  3477                                                oop old) {
  3478   markOop m = old->mark();
  3479   oop forward_ptr = old->forward_to_atomic(old);
  3480   if (forward_ptr == NULL) {
  3481     // Forward-to-self succeeded.
  3482     if (_evac_failure_closure != cl) {
  3483       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  3484       assert(!_drain_in_progress,
  3485              "Should only be true while someone holds the lock.");
  3486       // Set the global evac-failure closure to the current thread's.
  3487       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  3488       set_evac_failure_closure(cl);
  3489       // Now do the common part.
  3490       handle_evacuation_failure_common(old, m);
  3491       // Reset to NULL.
  3492       set_evac_failure_closure(NULL);
  3493     } else {
  3494       // The lock is already held, and this is recursive.
  3495       assert(_drain_in_progress, "This should only be the recursive case.");
  3496       handle_evacuation_failure_common(old, m);
  3498     return old;
  3499   } else {
  3500     // Someone else had a place to copy it.
  3501     return forward_ptr;
  3505 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  3506   set_evacuation_failed(true);
  3508   preserve_mark_if_necessary(old, m);
  3510   HeapRegion* r = heap_region_containing(old);
  3511   if (!r->evacuation_failed()) {
  3512     r->set_evacuation_failed(true);
  3513     if (G1PrintHeapRegions) {
  3514       gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" "
  3515                           "["PTR_FORMAT","PTR_FORMAT")\n",
  3516                           r, r->bottom(), r->end());
  3520   push_on_evac_failure_scan_stack(old);
  3522   if (!_drain_in_progress) {
  3523     // prevent recursion in copy_to_survivor_space()
  3524     _drain_in_progress = true;
  3525     drain_evac_failure_scan_stack();
  3526     _drain_in_progress = false;
  3530 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  3531   if (m != markOopDesc::prototype()) {
  3532     if (_objs_with_preserved_marks == NULL) {
  3533       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  3534       _objs_with_preserved_marks =
  3535         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3536       _preserved_marks_of_objs =
  3537         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  3539     _objs_with_preserved_marks->push(obj);
  3540     _preserved_marks_of_objs->push(m);
  3544 // *** Parallel G1 Evacuation
  3546 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  3547                                                   size_t word_size) {
  3548   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3549   // let the caller handle alloc failure
  3550   if (alloc_region == NULL) return NULL;
  3552   HeapWord* block = alloc_region->par_allocate(word_size);
  3553   if (block == NULL) {
  3554     MutexLockerEx x(par_alloc_during_gc_lock(),
  3555                     Mutex::_no_safepoint_check_flag);
  3556     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  3558   return block;
  3561 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
  3562                                             bool par) {
  3563   // Another thread might have obtained alloc_region for the given
  3564   // purpose, and might be attempting to allocate in it, and might
  3565   // succeed.  Therefore, we can't do the "finalization" stuff on the
  3566   // region below until we're sure the last allocation has happened.
  3567   // We ensure this by allocating the remaining space with a garbage
  3568   // object.
  3569   if (par) par_allocate_remaining_space(alloc_region);
  3570   // Now we can do the post-GC stuff on the region.
  3571   alloc_region->note_end_of_copying();
  3572   g1_policy()->record_after_bytes(alloc_region->used());
  3575 HeapWord*
  3576 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
  3577                                          HeapRegion*    alloc_region,
  3578                                          bool           par,
  3579                                          size_t         word_size) {
  3580   HeapWord* block = NULL;
  3581   // In the parallel case, a previous thread to obtain the lock may have
  3582   // already assigned a new gc_alloc_region.
  3583   if (alloc_region != _gc_alloc_regions[purpose]) {
  3584     assert(par, "But should only happen in parallel case.");
  3585     alloc_region = _gc_alloc_regions[purpose];
  3586     if (alloc_region == NULL) return NULL;
  3587     block = alloc_region->par_allocate(word_size);
  3588     if (block != NULL) return block;
  3589     // Otherwise, continue; this new region is empty, too.
  3591   assert(alloc_region != NULL, "We better have an allocation region");
  3592   retire_alloc_region(alloc_region, par);
  3594   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
  3595     // Cannot allocate more regions for the given purpose.
  3596     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
  3597     // Is there an alternative?
  3598     if (purpose != alt_purpose) {
  3599       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
  3600       // Has not the alternative region been aliased?
  3601       if (alloc_region != alt_region && alt_region != NULL) {
  3602         // Try to allocate in the alternative region.
  3603         if (par) {
  3604           block = alt_region->par_allocate(word_size);
  3605         } else {
  3606           block = alt_region->allocate(word_size);
  3608         // Make an alias.
  3609         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
  3610         if (block != NULL) {
  3611           return block;
  3613         retire_alloc_region(alt_region, par);
  3615       // Both the allocation region and the alternative one are full
  3616       // and aliased, replace them with a new allocation region.
  3617       purpose = alt_purpose;
  3618     } else {
  3619       set_gc_alloc_region(purpose, NULL);
  3620       return NULL;
  3624   // Now allocate a new region for allocation.
  3625   alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);
  3627   // let the caller handle alloc failure
  3628   if (alloc_region != NULL) {
  3630     assert(check_gc_alloc_regions(), "alloc regions messed up");
  3631     assert(alloc_region->saved_mark_at_top(),
  3632            "Mark should have been saved already.");
  3633     // We used to assert that the region was zero-filled here, but no
  3634     // longer.
  3636     // This must be done last: once it's installed, other regions may
  3637     // allocate in it (without holding the lock.)
  3638     set_gc_alloc_region(purpose, alloc_region);
  3640     if (par) {
  3641       block = alloc_region->par_allocate(word_size);
  3642     } else {
  3643       block = alloc_region->allocate(word_size);
  3645     // Caller handles alloc failure.
  3646   } else {
  3647     // This sets other apis using the same old alloc region to NULL, also.
  3648     set_gc_alloc_region(purpose, NULL);
  3650   return block;  // May be NULL.
  3653 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  3654   HeapWord* block = NULL;
  3655   size_t free_words;
  3656   do {
  3657     free_words = r->free()/HeapWordSize;
  3658     // If there's too little space, no one can allocate, so we're done.
  3659     if (free_words < (size_t)oopDesc::header_size()) return;
  3660     // Otherwise, try to claim it.
  3661     block = r->par_allocate(free_words);
  3662   } while (block == NULL);
  3663   fill_with_object(block, free_words);
  3666 #ifndef PRODUCT
  3667 bool GCLabBitMapClosure::do_bit(size_t offset) {
  3668   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  3669   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  3670   return true;
  3672 #endif // PRODUCT
  3674 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  3675   : _g1h(g1h),
  3676     _refs(g1h->task_queue(queue_num)),
  3677     _dcq(&g1h->dirty_card_queue_set()),
  3678     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  3679     _g1_rem(g1h->g1_rem_set()),
  3680     _hash_seed(17), _queue_num(queue_num),
  3681     _term_attempts(0),
  3682     _age_table(false),
  3683 #if G1_DETAILED_STATS
  3684     _pushes(0), _pops(0), _steals(0),
  3685     _steal_attempts(0),  _overflow_pushes(0),
  3686 #endif
  3687     _strong_roots_time(0), _term_time(0),
  3688     _alloc_buffer_waste(0), _undo_waste(0)
  3690   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  3691   // we "sacrifice" entry 0 to keep track of surviving bytes for
  3692   // non-young regions (where the age is -1)
  3693   // We also add a few elements at the beginning and at the end in
  3694   // an attempt to eliminate cache contention
  3695   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  3696   size_t array_length = PADDING_ELEM_NUM +
  3697                         real_length +
  3698                         PADDING_ELEM_NUM;
  3699   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  3700   if (_surviving_young_words_base == NULL)
  3701     vm_exit_out_of_memory(array_length * sizeof(size_t),
  3702                           "Not enough space for young surv histo.");
  3703   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  3704   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  3706   _overflowed_refs = new OverflowQueue(10);
  3708   _start = os::elapsedTime();
  3711 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  3712   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  3713   _par_scan_state(par_scan_state) { }
  3715 template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
  3716   // This is called _after_ do_oop_work has been called, hence after
  3717   // the object has been relocated to its new location and *p points
  3718   // to its new location.
  3720   T heap_oop = oopDesc::load_heap_oop(p);
  3721   if (!oopDesc::is_null(heap_oop)) {
  3722     oop obj = oopDesc::decode_heap_oop(heap_oop);
  3723     assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(obj)),
  3724            "shouldn't still be in the CSet if evacuation didn't fail.");
  3725     HeapWord* addr = (HeapWord*)obj;
  3726     if (_g1->is_in_g1_reserved(addr))
  3727       _cm->grayRoot(oop(addr));
  3731 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  3732   size_t    word_sz = old->size();
  3733   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  3734   // +1 to make the -1 indexes valid...
  3735   int       young_index = from_region->young_index_in_cset()+1;
  3736   assert( (from_region->is_young() && young_index > 0) ||
  3737           (!from_region->is_young() && young_index == 0), "invariant" );
  3738   G1CollectorPolicy* g1p = _g1->g1_policy();
  3739   markOop m = old->mark();
  3740   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  3741                                            : m->age();
  3742   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  3743                                                              word_sz);
  3744   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  3745   oop       obj     = oop(obj_ptr);
  3747   if (obj_ptr == NULL) {
  3748     // This will either forward-to-self, or detect that someone else has
  3749     // installed a forwarding pointer.
  3750     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  3751     return _g1->handle_evacuation_failure_par(cl, old);
  3754   // We're going to allocate linearly, so might as well prefetch ahead.
  3755   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  3757   oop forward_ptr = old->forward_to_atomic(obj);
  3758   if (forward_ptr == NULL) {
  3759     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  3760     if (g1p->track_object_age(alloc_purpose)) {
  3761       // We could simply do obj->incr_age(). However, this causes a
  3762       // performance issue. obj->incr_age() will first check whether
  3763       // the object has a displaced mark by checking its mark word;
  3764       // getting the mark word from the new location of the object
  3765       // stalls. So, given that we already have the mark word and we
  3766       // are about to install it anyway, it's better to increase the
  3767       // age on the mark word, when the object does not have a
  3768       // displaced mark word. We're not expecting many objects to have
  3769       // a displaced marked word, so that case is not optimized
  3770       // further (it could be...) and we simply call obj->incr_age().
  3772       if (m->has_displaced_mark_helper()) {
  3773         // in this case, we have to install the mark word first,
  3774         // otherwise obj looks to be forwarded (the old mark word,
  3775         // which contains the forward pointer, was copied)
  3776         obj->set_mark(m);
  3777         obj->incr_age();
  3778       } else {
  3779         m = m->incr_age();
  3780         obj->set_mark(m);
  3782       _par_scan_state->age_table()->add(obj, word_sz);
  3783     } else {
  3784       obj->set_mark(m);
  3787     // preserve "next" mark bit
  3788     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
  3789       if (!use_local_bitmaps ||
  3790           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  3791         // if we couldn't mark it on the local bitmap (this happens when
  3792         // the object was not allocated in the GCLab), we have to bite
  3793         // the bullet and do the standard parallel mark
  3794         _cm->markAndGrayObjectIfNecessary(obj);
  3796 #if 1
  3797       if (_g1->isMarkedNext(old)) {
  3798         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  3800 #endif
  3803     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  3804     surv_young_words[young_index] += word_sz;
  3806     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  3807       arrayOop(old)->set_length(0);
  3808       oop* old_p = set_partial_array_mask(old);
  3809       _par_scan_state->push_on_queue(old_p);
  3810     } else {
  3811       // No point in using the slower heap_region_containing() method,
  3812       // given that we know obj is in the heap.
  3813       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  3814       obj->oop_iterate_backwards(_scanner);
  3816   } else {
  3817     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  3818     obj = forward_ptr;
  3820   return obj;
  3823 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
  3824 template <class T>
  3825 void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>
  3826 ::do_oop_work(T* p) {
  3827   oop obj = oopDesc::load_decode_heap_oop(p);
  3828   assert(barrier != G1BarrierRS || obj != NULL,
  3829          "Precondition: G1BarrierRS implies obj is nonNull");
  3831   // here the null check is implicit in the cset_fast_test() test
  3832   if (_g1->in_cset_fast_test(obj)) {
  3833 #if G1_REM_SET_LOGGING
  3834     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
  3835                            "into CS.", p, (void*) obj);
  3836 #endif
  3837     if (obj->is_forwarded()) {
  3838       oopDesc::encode_store_heap_oop(p, obj->forwardee());
  3839     } else {
  3840       oop copy_oop = copy_to_survivor_space(obj);
  3841       oopDesc::encode_store_heap_oop(p, copy_oop);
  3843     // When scanning the RS, we only care about objs in CS.
  3844     if (barrier == G1BarrierRS) {
  3845       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  3849   if (barrier == G1BarrierEvac && obj != NULL) {
  3850     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  3853   if (do_gen_barrier && obj != NULL) {
  3854     par_do_barrier(p);
  3858 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  3859 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  3861 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  3862   assert(has_partial_array_mask(p), "invariant");
  3863   oop old = clear_partial_array_mask(p);
  3864   assert(old->is_objArray(), "must be obj array");
  3865   assert(old->is_forwarded(), "must be forwarded");
  3866   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  3868   objArrayOop obj = objArrayOop(old->forwardee());
  3869   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  3870   // Process ParGCArrayScanChunk elements now
  3871   // and push the remainder back onto queue
  3872   int start     = arrayOop(old)->length();
  3873   int end       = obj->length();
  3874   int remainder = end - start;
  3875   assert(start <= end, "just checking");
  3876   if (remainder > 2 * ParGCArrayScanChunk) {
  3877     // Test above combines last partial chunk with a full chunk
  3878     end = start + ParGCArrayScanChunk;
  3879     arrayOop(old)->set_length(end);
  3880     // Push remainder.
  3881     oop* old_p = set_partial_array_mask(old);
  3882     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
  3883     _par_scan_state->push_on_queue(old_p);
  3884   } else {
  3885     // Restore length so that the heap remains parsable in
  3886     // case of evacuation failure.
  3887     arrayOop(old)->set_length(end);
  3889   _scanner.set_region(_g1->heap_region_containing_raw(obj));
  3890   // process our set of indices (include header in first chunk)
  3891   obj->oop_iterate_range(&_scanner, start, end);
  3894 class G1ParEvacuateFollowersClosure : public VoidClosure {
  3895 protected:
  3896   G1CollectedHeap*              _g1h;
  3897   G1ParScanThreadState*         _par_scan_state;
  3898   RefToScanQueueSet*            _queues;
  3899   ParallelTaskTerminator*       _terminator;
  3901   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  3902   RefToScanQueueSet*      queues()         { return _queues; }
  3903   ParallelTaskTerminator* terminator()     { return _terminator; }
  3905 public:
  3906   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  3907                                 G1ParScanThreadState* par_scan_state,
  3908                                 RefToScanQueueSet* queues,
  3909                                 ParallelTaskTerminator* terminator)
  3910     : _g1h(g1h), _par_scan_state(par_scan_state),
  3911       _queues(queues), _terminator(terminator) {}
  3913   void do_void() {
  3914     G1ParScanThreadState* pss = par_scan_state();
  3915     while (true) {
  3916       pss->trim_queue();
  3917       IF_G1_DETAILED_STATS(pss->note_steal_attempt());
  3919       StarTask stolen_task;
  3920       if (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  3921         IF_G1_DETAILED_STATS(pss->note_steal());
  3923         // slightly paranoid tests; I'm trying to catch potential
  3924         // problems before we go into push_on_queue to know where the
  3925         // problem is coming from
  3926         assert((oop*)stolen_task != NULL, "Error");
  3927         if (stolen_task.is_narrow()) {
  3928           assert(UseCompressedOops, "Error");
  3929           narrowOop* p = (narrowOop*) stolen_task;
  3930           assert(has_partial_array_mask(p) ||
  3931                  _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "Error");
  3932           pss->push_on_queue(p);
  3933         } else {
  3934           oop* p = (oop*) stolen_task;
  3935           assert(has_partial_array_mask(p) || _g1h->is_in_g1_reserved(*p), "Error");
  3936           pss->push_on_queue(p);
  3938         continue;
  3940       pss->start_term_time();
  3941       if (terminator()->offer_termination()) break;
  3942       pss->end_term_time();
  3944     pss->end_term_time();
  3945     pss->retire_alloc_buffers();
  3947 };
  3949 class G1ParTask : public AbstractGangTask {
  3950 protected:
  3951   G1CollectedHeap*       _g1h;
  3952   RefToScanQueueSet      *_queues;
  3953   ParallelTaskTerminator _terminator;
  3954   int _n_workers;
  3956   Mutex _stats_lock;
  3957   Mutex* stats_lock() { return &_stats_lock; }
  3959   size_t getNCards() {
  3960     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  3961       / G1BlockOffsetSharedArray::N_bytes;
  3964 public:
  3965   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
  3966     : AbstractGangTask("G1 collection"),
  3967       _g1h(g1h),
  3968       _queues(task_queues),
  3969       _terminator(workers, _queues),
  3970       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
  3971       _n_workers(workers)
  3972   {}
  3974   RefToScanQueueSet* queues() { return _queues; }
  3976   RefToScanQueue *work_queue(int i) {
  3977     return queues()->queue(i);
  3980   void work(int i) {
  3981     if (i >= _n_workers) return;  // no work needed this round
  3982     ResourceMark rm;
  3983     HandleMark   hm;
  3985     G1ParScanThreadState            pss(_g1h, i);
  3986     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
  3987     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
  3988     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
  3990     pss.set_evac_closure(&scan_evac_cl);
  3991     pss.set_evac_failure_closure(&evac_failure_cl);
  3992     pss.set_partial_scan_closure(&partial_scan_cl);
  3994     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
  3995     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
  3996     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
  3997     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  3999     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
  4000     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
  4001     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
  4003     OopsInHeapRegionClosure        *scan_root_cl;
  4004     OopsInHeapRegionClosure        *scan_perm_cl;
  4005     OopsInHeapRegionClosure        *scan_so_cl;
  4007     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4008       scan_root_cl = &scan_mark_root_cl;
  4009       scan_perm_cl = &scan_mark_perm_cl;
  4010       scan_so_cl   = &scan_mark_heap_rs_cl;
  4011     } else {
  4012       scan_root_cl = &only_scan_root_cl;
  4013       scan_perm_cl = &only_scan_perm_cl;
  4014       scan_so_cl   = &only_scan_heap_rs_cl;
  4017     pss.start_strong_roots();
  4018     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4019                                   SharedHeap::SO_AllClasses,
  4020                                   scan_root_cl,
  4021                                   &push_heap_rs_cl,
  4022                                   scan_so_cl,
  4023                                   scan_perm_cl,
  4024                                   i);
  4025     pss.end_strong_roots();
  4027       double start = os::elapsedTime();
  4028       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4029       evac.do_void();
  4030       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4031       double term_ms = pss.term_time()*1000.0;
  4032       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
  4033       _g1h->g1_policy()->record_termination_time(i, term_ms);
  4035     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4036     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4038     // Clean up any par-expanded rem sets.
  4039     HeapRegionRemSet::par_cleanup();
  4041     MutexLocker x(stats_lock());
  4042     if (ParallelGCVerbose) {
  4043       gclog_or_tty->print("Thread %d complete:\n", i);
  4044 #if G1_DETAILED_STATS
  4045       gclog_or_tty->print("  Pushes: %7d    Pops: %7d   Overflows: %7d   Steals %7d (in %d attempts)\n",
  4046                           pss.pushes(),
  4047                           pss.pops(),
  4048                           pss.overflow_pushes(),
  4049                           pss.steals(),
  4050                           pss.steal_attempts());
  4051 #endif
  4052       double elapsed      = pss.elapsed();
  4053       double strong_roots = pss.strong_roots_time();
  4054       double term         = pss.term_time();
  4055       gclog_or_tty->print("  Elapsed: %7.2f ms.\n"
  4056                           "    Strong roots: %7.2f ms (%6.2f%%)\n"
  4057                           "    Termination:  %7.2f ms (%6.2f%%) (in %d entries)\n",
  4058                           elapsed * 1000.0,
  4059                           strong_roots * 1000.0, (strong_roots*100.0/elapsed),
  4060                           term * 1000.0, (term*100.0/elapsed),
  4061                           pss.term_attempts());
  4062       size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste();
  4063       gclog_or_tty->print("  Waste: %8dK\n"
  4064                  "    Alloc Buffer: %8dK\n"
  4065                  "    Undo: %8dK\n",
  4066                  (total_waste * HeapWordSize) / K,
  4067                  (pss.alloc_buffer_waste() * HeapWordSize) / K,
  4068                  (pss.undo_waste() * HeapWordSize) / K);
  4071     assert(pss.refs_to_scan() == 0, "Task queue should be empty");
  4072     assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty");
  4074 };
  4076 // *** Common G1 Evacuation Stuff
  4078 void
  4079 G1CollectedHeap::
  4080 g1_process_strong_roots(bool collecting_perm_gen,
  4081                         SharedHeap::ScanningOption so,
  4082                         OopClosure* scan_non_heap_roots,
  4083                         OopsInHeapRegionClosure* scan_rs,
  4084                         OopsInHeapRegionClosure* scan_so,
  4085                         OopsInGenClosure* scan_perm,
  4086                         int worker_i) {
  4087   // First scan the strong roots, including the perm gen.
  4088   double ext_roots_start = os::elapsedTime();
  4089   double closure_app_time_sec = 0.0;
  4091   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4092   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4093   buf_scan_perm.set_generation(perm_gen());
  4095   // Walk the code cache w/o buffering, because StarTask cannot handle
  4096   // unaligned oop locations.
  4097   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
  4099   process_strong_roots(false, // no scoping; this is parallel code
  4100                        collecting_perm_gen, so,
  4101                        &buf_scan_non_heap_roots,
  4102                        &eager_scan_code_roots,
  4103                        &buf_scan_perm);
  4104   // Finish up any enqueued closure apps.
  4105   buf_scan_non_heap_roots.done();
  4106   buf_scan_perm.done();
  4107   double ext_roots_end = os::elapsedTime();
  4108   g1_policy()->reset_obj_copy_time(worker_i);
  4109   double obj_copy_time_sec =
  4110     buf_scan_non_heap_roots.closure_app_seconds() +
  4111     buf_scan_perm.closure_app_seconds();
  4112   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4113   double ext_root_time_ms =
  4114     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4115   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4117   // Scan strong roots in mark stack.
  4118   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4119     concurrent_mark()->oops_do(scan_non_heap_roots);
  4121   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4122   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4124   // XXX What should this be doing in the parallel case?
  4125   g1_policy()->record_collection_pause_end_CH_strong_roots();
  4126   if (scan_so != NULL) {
  4127     scan_scan_only_set(scan_so, worker_i);
  4129   // Now scan the complement of the collection set.
  4130   if (scan_rs != NULL) {
  4131     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4133   // Finish with the ref_processor roots.
  4134   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4135     ref_processor()->oops_do(scan_non_heap_roots);
  4137   g1_policy()->record_collection_pause_end_G1_strong_roots();
  4138   _process_strong_tasks->all_tasks_completed();
  4141 void
  4142 G1CollectedHeap::scan_scan_only_region(HeapRegion* r,
  4143                                        OopsInHeapRegionClosure* oc,
  4144                                        int worker_i) {
  4145   HeapWord* startAddr = r->bottom();
  4146   HeapWord* endAddr = r->used_region().end();
  4148   oc->set_region(r);
  4150   HeapWord* p = r->bottom();
  4151   HeapWord* t = r->top();
  4152   guarantee( p == r->next_top_at_mark_start(), "invariant" );
  4153   while (p < t) {
  4154     oop obj = oop(p);
  4155     p += obj->oop_iterate(oc);
  4159 void
  4160 G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc,
  4161                                     int worker_i) {
  4162   double start = os::elapsedTime();
  4164   BufferingOopsInHeapRegionClosure boc(oc);
  4166   FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc);
  4167   FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark());
  4169   OopsInHeapRegionClosure *foc;
  4170   if (g1_policy()->during_initial_mark_pause())
  4171     foc = &scan_and_mark;
  4172   else
  4173     foc = &scan_only;
  4175   HeapRegion* hr;
  4176   int n = 0;
  4177   while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) {
  4178     scan_scan_only_region(hr, foc, worker_i);
  4179     ++n;
  4181   boc.done();
  4183   double closure_app_s = boc.closure_app_seconds();
  4184   g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0);
  4185   double ms = (os::elapsedTime() - start - closure_app_s)*1000.0;
  4186   g1_policy()->record_scan_only_time(worker_i, ms, n);
  4189 void
  4190 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4191                                        OopClosure* non_root_closure) {
  4192   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  4193   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  4197 class SaveMarksClosure: public HeapRegionClosure {
  4198 public:
  4199   bool doHeapRegion(HeapRegion* r) {
  4200     r->save_marks();
  4201     return false;
  4203 };
  4205 void G1CollectedHeap::save_marks() {
  4206   if (ParallelGCThreads == 0) {
  4207     SaveMarksClosure sm;
  4208     heap_region_iterate(&sm);
  4210   // We do this even in the parallel case
  4211   perm_gen()->save_marks();
  4214 void G1CollectedHeap::evacuate_collection_set() {
  4215   set_evacuation_failed(false);
  4217   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  4218   concurrent_g1_refine()->set_use_cache(false);
  4219   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  4221   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  4222   set_par_threads(n_workers);
  4223   G1ParTask g1_par_task(this, n_workers, _task_queues);
  4225   init_for_evac_failure(NULL);
  4227   rem_set()->prepare_for_younger_refs_iterate(true);
  4229   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  4230   double start_par = os::elapsedTime();
  4231   if (ParallelGCThreads > 0) {
  4232     // The individual threads will set their evac-failure closures.
  4233     StrongRootsScope srs(this);
  4234     workers()->run_task(&g1_par_task);
  4235   } else {
  4236     StrongRootsScope srs(this);
  4237     g1_par_task.work(0);
  4240   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  4241   g1_policy()->record_par_time(par_time);
  4242   set_par_threads(0);
  4243   // Is this the right thing to do here?  We don't save marks
  4244   // on individual heap regions when we allocate from
  4245   // them in parallel, so this seems like the correct place for this.
  4246   retire_all_alloc_regions();
  4248     G1IsAliveClosure is_alive(this);
  4249     G1KeepAliveClosure keep_alive(this);
  4250     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  4252   release_gc_alloc_regions(false /* totally */);
  4253   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  4255   concurrent_g1_refine()->clear_hot_cache();
  4256   concurrent_g1_refine()->set_use_cache(true);
  4258   finalize_for_evac_failure();
  4260   // Must do this before removing self-forwarding pointers, which clears
  4261   // the per-region evac-failure flags.
  4262   concurrent_mark()->complete_marking_in_collection_set();
  4264   if (evacuation_failed()) {
  4265     remove_self_forwarding_pointers();
  4266     if (PrintGCDetails) {
  4267       gclog_or_tty->print(" (evacuation failed)");
  4268     } else if (PrintGC) {
  4269       gclog_or_tty->print("--");
  4273   if (G1DeferredRSUpdate) {
  4274     RedirtyLoggedCardTableEntryFastClosure redirty;
  4275     dirty_card_queue_set().set_closure(&redirty);
  4276     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  4278     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  4279     dcq.merge_bufferlists(&dirty_card_queue_set());
  4280     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  4282   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  4285 void G1CollectedHeap::free_region(HeapRegion* hr) {
  4286   size_t pre_used = 0;
  4287   size_t cleared_h_regions = 0;
  4288   size_t freed_regions = 0;
  4289   UncleanRegionList local_list;
  4291   HeapWord* start = hr->bottom();
  4292   HeapWord* end   = hr->prev_top_at_mark_start();
  4293   size_t used_bytes = hr->used();
  4294   size_t live_bytes = hr->max_live_bytes();
  4295   if (used_bytes > 0) {
  4296     guarantee( live_bytes <= used_bytes, "invariant" );
  4297   } else {
  4298     guarantee( live_bytes == 0, "invariant" );
  4301   size_t garbage_bytes = used_bytes - live_bytes;
  4302   if (garbage_bytes > 0)
  4303     g1_policy()->decrease_known_garbage_bytes(garbage_bytes);
  4305   free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
  4306                    &local_list);
  4307   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  4308                           &local_list);
  4311 void
  4312 G1CollectedHeap::free_region_work(HeapRegion* hr,
  4313                                   size_t& pre_used,
  4314                                   size_t& cleared_h_regions,
  4315                                   size_t& freed_regions,
  4316                                   UncleanRegionList* list,
  4317                                   bool par) {
  4318   pre_used += hr->used();
  4319   if (hr->isHumongous()) {
  4320     assert(hr->startsHumongous(),
  4321            "Only the start of a humongous region should be freed.");
  4322     int ind = _hrs->find(hr);
  4323     assert(ind != -1, "Should have an index.");
  4324     // Clear the start region.
  4325     hr->hr_clear(par, true /*clear_space*/);
  4326     list->insert_before_head(hr);
  4327     cleared_h_regions++;
  4328     freed_regions++;
  4329     // Clear any continued regions.
  4330     ind++;
  4331     while ((size_t)ind < n_regions()) {
  4332       HeapRegion* hrc = _hrs->at(ind);
  4333       if (!hrc->continuesHumongous()) break;
  4334       // Otherwise, does continue the H region.
  4335       assert(hrc->humongous_start_region() == hr, "Huh?");
  4336       hrc->hr_clear(par, true /*clear_space*/);
  4337       cleared_h_regions++;
  4338       freed_regions++;
  4339       list->insert_before_head(hrc);
  4340       ind++;
  4342   } else {
  4343     hr->hr_clear(par, true /*clear_space*/);
  4344     list->insert_before_head(hr);
  4345     freed_regions++;
  4346     // If we're using clear2, this should not be enabled.
  4347     // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
  4351 void G1CollectedHeap::finish_free_region_work(size_t pre_used,
  4352                                               size_t cleared_h_regions,
  4353                                               size_t freed_regions,
  4354                                               UncleanRegionList* list) {
  4355   if (list != NULL && list->sz() > 0) {
  4356     prepend_region_list_on_unclean_list(list);
  4358   // Acquire a lock, if we're parallel, to update possibly-shared
  4359   // variables.
  4360   Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
  4362     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  4363     _summary_bytes_used -= pre_used;
  4364     _num_humongous_regions -= (int) cleared_h_regions;
  4365     _free_regions += freed_regions;
  4370 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  4371   while (list != NULL) {
  4372     guarantee( list->is_young(), "invariant" );
  4374     HeapWord* bottom = list->bottom();
  4375     HeapWord* end = list->end();
  4376     MemRegion mr(bottom, end);
  4377     ct_bs->dirty(mr);
  4379     list = list->get_next_young_region();
  4384 class G1ParCleanupCTTask : public AbstractGangTask {
  4385   CardTableModRefBS* _ct_bs;
  4386   G1CollectedHeap* _g1h;
  4387   HeapRegion* volatile _so_head;
  4388   HeapRegion* volatile _su_head;
  4389 public:
  4390   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  4391                      G1CollectedHeap* g1h,
  4392                      HeapRegion* scan_only_list,
  4393                      HeapRegion* survivor_list) :
  4394     AbstractGangTask("G1 Par Cleanup CT Task"),
  4395     _ct_bs(ct_bs),
  4396     _g1h(g1h),
  4397     _so_head(scan_only_list),
  4398     _su_head(survivor_list)
  4399   { }
  4401   void work(int i) {
  4402     HeapRegion* r;
  4403     while (r = _g1h->pop_dirty_cards_region()) {
  4404       clear_cards(r);
  4406     // Redirty the cards of the scan-only and survivor regions.
  4407     dirty_list(&this->_so_head);
  4408     dirty_list(&this->_su_head);
  4411   void clear_cards(HeapRegion* r) {
  4412     // Cards for Survivor and Scan-Only regions will be dirtied later.
  4413     if (!r->is_scan_only() && !r->is_survivor()) {
  4414       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  4418   void dirty_list(HeapRegion* volatile * head_ptr) {
  4419     HeapRegion* head;
  4420     do {
  4421       // Pop region off the list.
  4422       head = *head_ptr;
  4423       if (head != NULL) {
  4424         HeapRegion* r = (HeapRegion*)
  4425           Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head);
  4426         if (r == head) {
  4427           assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list");
  4428           _ct_bs->dirty(MemRegion(r->bottom(), r->end()));
  4431     } while (*head_ptr != NULL);
  4433 };
  4436 #ifndef PRODUCT
  4437 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  4438   CardTableModRefBS* _ct_bs;
  4439 public:
  4440   G1VerifyCardTableCleanup(CardTableModRefBS* ct_bs)
  4441     : _ct_bs(ct_bs)
  4442   { }
  4443   virtual bool doHeapRegion(HeapRegion* r)
  4445     MemRegion mr(r->bottom(), r->end());
  4446     if (r->is_scan_only() || r->is_survivor()) {
  4447       _ct_bs->verify_dirty_region(mr);
  4448     } else {
  4449       _ct_bs->verify_clean_region(mr);
  4451     return false;
  4453 };
  4454 #endif
  4456 void G1CollectedHeap::cleanUpCardTable() {
  4457   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  4458   double start = os::elapsedTime();
  4460   // Iterate over the dirty cards region list.
  4461   G1ParCleanupCTTask cleanup_task(ct_bs, this,
  4462                                   _young_list->first_scan_only_region(),
  4463                                   _young_list->first_survivor_region());
  4464   if (ParallelGCThreads > 0) {
  4465     set_par_threads(workers()->total_workers());
  4466     workers()->run_task(&cleanup_task);
  4467     set_par_threads(0);
  4468   } else {
  4469     while (_dirty_cards_region_list) {
  4470       HeapRegion* r = _dirty_cards_region_list;
  4471       cleanup_task.clear_cards(r);
  4472       _dirty_cards_region_list = r->get_next_dirty_cards_region();
  4473       if (_dirty_cards_region_list == r) {
  4474         // The last region.
  4475         _dirty_cards_region_list = NULL;
  4477       r->set_next_dirty_cards_region(NULL);
  4479     // now, redirty the cards of the scan-only and survivor regions
  4480     // (it seemed faster to do it this way, instead of iterating over
  4481     // all regions and then clearing / dirtying as appropriate)
  4482     dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
  4483     dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
  4485   double elapsed = os::elapsedTime() - start;
  4486   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
  4487 #ifndef PRODUCT
  4488   if (G1VerifyCTCleanup || VerifyAfterGC) {
  4489     G1VerifyCardTableCleanup cleanup_verifier(ct_bs);
  4490     heap_region_iterate(&cleanup_verifier);
  4492 #endif
  4495 void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
  4496   if (g1_policy()->should_do_collection_pause(word_size)) {
  4497     do_collection_pause();
  4501 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  4502   double young_time_ms     = 0.0;
  4503   double non_young_time_ms = 0.0;
  4505   G1CollectorPolicy* policy = g1_policy();
  4507   double start_sec = os::elapsedTime();
  4508   bool non_young = true;
  4510   HeapRegion* cur = cs_head;
  4511   int age_bound = -1;
  4512   size_t rs_lengths = 0;
  4514   while (cur != NULL) {
  4515     if (non_young) {
  4516       if (cur->is_young()) {
  4517         double end_sec = os::elapsedTime();
  4518         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4519         non_young_time_ms += elapsed_ms;
  4521         start_sec = os::elapsedTime();
  4522         non_young = false;
  4524     } else {
  4525       if (!cur->is_on_free_list()) {
  4526         double end_sec = os::elapsedTime();
  4527         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4528         young_time_ms += elapsed_ms;
  4530         start_sec = os::elapsedTime();
  4531         non_young = true;
  4535     rs_lengths += cur->rem_set()->occupied();
  4537     HeapRegion* next = cur->next_in_collection_set();
  4538     assert(cur->in_collection_set(), "bad CS");
  4539     cur->set_next_in_collection_set(NULL);
  4540     cur->set_in_collection_set(false);
  4542     if (cur->is_young()) {
  4543       int index = cur->young_index_in_cset();
  4544       guarantee( index != -1, "invariant" );
  4545       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
  4546       size_t words_survived = _surviving_young_words[index];
  4547       cur->record_surv_words_in_group(words_survived);
  4548     } else {
  4549       int index = cur->young_index_in_cset();
  4550       guarantee( index == -1, "invariant" );
  4553     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  4554             (!cur->is_young() && cur->young_index_in_cset() == -1),
  4555             "invariant" );
  4557     if (!cur->evacuation_failed()) {
  4558       // And the region is empty.
  4559       assert(!cur->is_empty(),
  4560              "Should not have empty regions in a CS.");
  4561       free_region(cur);
  4562     } else {
  4563       guarantee( !cur->is_scan_only(), "should not be scan only" );
  4564       cur->uninstall_surv_rate_group();
  4565       if (cur->is_young())
  4566         cur->set_young_index_in_cset(-1);
  4567       cur->set_not_young();
  4568       cur->set_evacuation_failed(false);
  4570     cur = next;
  4573   policy->record_max_rs_lengths(rs_lengths);
  4574   policy->cset_regions_freed();
  4576   double end_sec = os::elapsedTime();
  4577   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4578   if (non_young)
  4579     non_young_time_ms += elapsed_ms;
  4580   else
  4581     young_time_ms += elapsed_ms;
  4583   policy->record_young_free_cset_time_ms(young_time_ms);
  4584   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  4587 HeapRegion*
  4588 G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
  4589   assert(ZF_mon->owned_by_self(), "Precondition");
  4590   HeapRegion* res = pop_unclean_region_list_locked();
  4591   if (res != NULL) {
  4592     assert(!res->continuesHumongous() &&
  4593            res->zero_fill_state() != HeapRegion::Allocated,
  4594            "Only free regions on unclean list.");
  4595     if (zero_filled) {
  4596       res->ensure_zero_filled_locked();
  4597       res->set_zero_fill_allocated();
  4600   return res;
  4603 HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
  4604   MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
  4605   return alloc_region_from_unclean_list_locked(zero_filled);
  4608 void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
  4609   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4610   put_region_on_unclean_list_locked(r);
  4611   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4614 void G1CollectedHeap::set_unclean_regions_coming(bool b) {
  4615   MutexLockerEx x(Cleanup_mon);
  4616   set_unclean_regions_coming_locked(b);
  4619 void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
  4620   assert(Cleanup_mon->owned_by_self(), "Precondition");
  4621   _unclean_regions_coming = b;
  4622   // Wake up mutator threads that might be waiting for completeCleanup to
  4623   // finish.
  4624   if (!b) Cleanup_mon->notify_all();
  4627 void G1CollectedHeap::wait_for_cleanup_complete() {
  4628   MutexLockerEx x(Cleanup_mon);
  4629   wait_for_cleanup_complete_locked();
  4632 void G1CollectedHeap::wait_for_cleanup_complete_locked() {
  4633   assert(Cleanup_mon->owned_by_self(), "precondition");
  4634   while (_unclean_regions_coming) {
  4635     Cleanup_mon->wait();
  4639 void
  4640 G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
  4641   assert(ZF_mon->owned_by_self(), "precondition.");
  4642   _unclean_region_list.insert_before_head(r);
  4645 void
  4646 G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
  4647   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4648   prepend_region_list_on_unclean_list_locked(list);
  4649   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4652 void
  4653 G1CollectedHeap::
  4654 prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
  4655   assert(ZF_mon->owned_by_self(), "precondition.");
  4656   _unclean_region_list.prepend_list(list);
  4659 HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
  4660   assert(ZF_mon->owned_by_self(), "precondition.");
  4661   HeapRegion* res = _unclean_region_list.pop();
  4662   if (res != NULL) {
  4663     // Inform ZF thread that there's a new unclean head.
  4664     if (_unclean_region_list.hd() != NULL && should_zf())
  4665       ZF_mon->notify_all();
  4667   return res;
  4670 HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
  4671   assert(ZF_mon->owned_by_self(), "precondition.");
  4672   return _unclean_region_list.hd();
  4676 bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
  4677   assert(ZF_mon->owned_by_self(), "Precondition");
  4678   HeapRegion* r = peek_unclean_region_list_locked();
  4679   if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
  4680     // Result of below must be equal to "r", since we hold the lock.
  4681     (void)pop_unclean_region_list_locked();
  4682     put_free_region_on_list_locked(r);
  4683     return true;
  4684   } else {
  4685     return false;
  4689 bool G1CollectedHeap::move_cleaned_region_to_free_list() {
  4690   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4691   return move_cleaned_region_to_free_list_locked();
  4695 void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
  4696   assert(ZF_mon->owned_by_self(), "precondition.");
  4697   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4698   assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
  4699         "Regions on free list must be zero filled");
  4700   assert(!r->isHumongous(), "Must not be humongous.");
  4701   assert(r->is_empty(), "Better be empty");
  4702   assert(!r->is_on_free_list(),
  4703          "Better not already be on free list");
  4704   assert(!r->is_on_unclean_list(),
  4705          "Better not already be on unclean list");
  4706   r->set_on_free_list(true);
  4707   r->set_next_on_free_list(_free_region_list);
  4708   _free_region_list = r;
  4709   _free_region_list_size++;
  4710   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4713 void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
  4714   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4715   put_free_region_on_list_locked(r);
  4718 HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
  4719   assert(ZF_mon->owned_by_self(), "precondition.");
  4720   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4721   HeapRegion* res = _free_region_list;
  4722   if (res != NULL) {
  4723     _free_region_list = res->next_from_free_list();
  4724     _free_region_list_size--;
  4725     res->set_on_free_list(false);
  4726     res->set_next_on_free_list(NULL);
  4727     assert(_free_region_list_size == free_region_list_length(), "Inv");
  4729   return res;
  4733 HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
  4734   // By self, or on behalf of self.
  4735   assert(Heap_lock->is_locked(), "Precondition");
  4736   HeapRegion* res = NULL;
  4737   bool first = true;
  4738   while (res == NULL) {
  4739     if (zero_filled || !first) {
  4740       MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4741       res = pop_free_region_list_locked();
  4742       if (res != NULL) {
  4743         assert(!res->zero_fill_is_allocated(),
  4744                "No allocated regions on free list.");
  4745         res->set_zero_fill_allocated();
  4746       } else if (!first) {
  4747         break;  // We tried both, time to return NULL.
  4751     if (res == NULL) {
  4752       res = alloc_region_from_unclean_list(zero_filled);
  4754     assert(res == NULL ||
  4755            !zero_filled ||
  4756            res->zero_fill_is_allocated(),
  4757            "We must have allocated the region we're returning");
  4758     first = false;
  4760   return res;
  4763 void G1CollectedHeap::remove_allocated_regions_from_lists() {
  4764   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4766     HeapRegion* prev = NULL;
  4767     HeapRegion* cur = _unclean_region_list.hd();
  4768     while (cur != NULL) {
  4769       HeapRegion* next = cur->next_from_unclean_list();
  4770       if (cur->zero_fill_is_allocated()) {
  4771         // Remove from the list.
  4772         if (prev == NULL) {
  4773           (void)_unclean_region_list.pop();
  4774         } else {
  4775           _unclean_region_list.delete_after(prev);
  4777         cur->set_on_unclean_list(false);
  4778         cur->set_next_on_unclean_list(NULL);
  4779       } else {
  4780         prev = cur;
  4782       cur = next;
  4784     assert(_unclean_region_list.sz() == unclean_region_list_length(),
  4785            "Inv");
  4789     HeapRegion* prev = NULL;
  4790     HeapRegion* cur = _free_region_list;
  4791     while (cur != NULL) {
  4792       HeapRegion* next = cur->next_from_free_list();
  4793       if (cur->zero_fill_is_allocated()) {
  4794         // Remove from the list.
  4795         if (prev == NULL) {
  4796           _free_region_list = cur->next_from_free_list();
  4797         } else {
  4798           prev->set_next_on_free_list(cur->next_from_free_list());
  4800         cur->set_on_free_list(false);
  4801         cur->set_next_on_free_list(NULL);
  4802         _free_region_list_size--;
  4803       } else {
  4804         prev = cur;
  4806       cur = next;
  4808     assert(_free_region_list_size == free_region_list_length(), "Inv");
  4812 bool G1CollectedHeap::verify_region_lists() {
  4813   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4814   return verify_region_lists_locked();
  4817 bool G1CollectedHeap::verify_region_lists_locked() {
  4818   HeapRegion* unclean = _unclean_region_list.hd();
  4819   while (unclean != NULL) {
  4820     guarantee(unclean->is_on_unclean_list(), "Well, it is!");
  4821     guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
  4822     guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
  4823               "Everything else is possible.");
  4824     unclean = unclean->next_from_unclean_list();
  4826   guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");
  4828   HeapRegion* free_r = _free_region_list;
  4829   while (free_r != NULL) {
  4830     assert(free_r->is_on_free_list(), "Well, it is!");
  4831     assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
  4832     switch (free_r->zero_fill_state()) {
  4833     case HeapRegion::NotZeroFilled:
  4834     case HeapRegion::ZeroFilling:
  4835       guarantee(false, "Should not be on free list.");
  4836       break;
  4837     default:
  4838       // Everything else is possible.
  4839       break;
  4841     free_r = free_r->next_from_free_list();
  4843   guarantee(_free_region_list_size == free_region_list_length(), "Inv");
  4844   // If we didn't do an assertion...
  4845   return true;
  4848 size_t G1CollectedHeap::free_region_list_length() {
  4849   assert(ZF_mon->owned_by_self(), "precondition.");
  4850   size_t len = 0;
  4851   HeapRegion* cur = _free_region_list;
  4852   while (cur != NULL) {
  4853     len++;
  4854     cur = cur->next_from_free_list();
  4856   return len;
  4859 size_t G1CollectedHeap::unclean_region_list_length() {
  4860   assert(ZF_mon->owned_by_self(), "precondition.");
  4861   return _unclean_region_list.length();
  4864 size_t G1CollectedHeap::n_regions() {
  4865   return _hrs->length();
  4868 size_t G1CollectedHeap::max_regions() {
  4869   return
  4870     (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
  4871     HeapRegion::GrainBytes;
  4874 size_t G1CollectedHeap::free_regions() {
  4875   /* Possibly-expensive assert.
  4876   assert(_free_regions == count_free_regions(),
  4877          "_free_regions is off.");
  4878   */
  4879   return _free_regions;
  4882 bool G1CollectedHeap::should_zf() {
  4883   return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
  4886 class RegionCounter: public HeapRegionClosure {
  4887   size_t _n;
  4888 public:
  4889   RegionCounter() : _n(0) {}
  4890   bool doHeapRegion(HeapRegion* r) {
  4891     if (r->is_empty()) {
  4892       assert(!r->isHumongous(), "H regions should not be empty.");
  4893       _n++;
  4895     return false;
  4897   int res() { return (int) _n; }
  4898 };
  4900 size_t G1CollectedHeap::count_free_regions() {
  4901   RegionCounter rc;
  4902   heap_region_iterate(&rc);
  4903   size_t n = rc.res();
  4904   if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
  4905     n--;
  4906   return n;
  4909 size_t G1CollectedHeap::count_free_regions_list() {
  4910   size_t n = 0;
  4911   size_t o = 0;
  4912   ZF_mon->lock_without_safepoint_check();
  4913   HeapRegion* cur = _free_region_list;
  4914   while (cur != NULL) {
  4915     cur = cur->next_from_free_list();
  4916     n++;
  4918   size_t m = unclean_region_list_length();
  4919   ZF_mon->unlock();
  4920   return n + m;
  4923 bool G1CollectedHeap::should_set_young_locked() {
  4924   assert(heap_lock_held_for_gc(),
  4925               "the heap lock should already be held by or for this thread");
  4926   return  (g1_policy()->in_young_gc_mode() &&
  4927            g1_policy()->should_add_next_region_to_young_list());
  4930 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  4931   assert(heap_lock_held_for_gc(),
  4932               "the heap lock should already be held by or for this thread");
  4933   _young_list->push_region(hr);
  4934   g1_policy()->set_region_short_lived(hr);
  4937 class NoYoungRegionsClosure: public HeapRegionClosure {
  4938 private:
  4939   bool _success;
  4940 public:
  4941   NoYoungRegionsClosure() : _success(true) { }
  4942   bool doHeapRegion(HeapRegion* r) {
  4943     if (r->is_young()) {
  4944       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  4945                              r->bottom(), r->end());
  4946       _success = false;
  4948     return false;
  4950   bool success() { return _success; }
  4951 };
  4953 bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list,
  4954                                              bool check_sample) {
  4955   bool ret = true;
  4957   ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample);
  4958   if (!ignore_scan_only_list) {
  4959     NoYoungRegionsClosure closure;
  4960     heap_region_iterate(&closure);
  4961     ret = ret && closure.success();
  4964   return ret;
  4967 void G1CollectedHeap::empty_young_list() {
  4968   assert(heap_lock_held_for_gc(),
  4969               "the heap lock should already be held by or for this thread");
  4970   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
  4972   _young_list->empty_list();
  4975 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  4976   bool no_allocs = true;
  4977   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
  4978     HeapRegion* r = _gc_alloc_regions[ap];
  4979     no_allocs = r == NULL || r->saved_mark_at_top();
  4981   return no_allocs;
  4984 void G1CollectedHeap::retire_all_alloc_regions() {
  4985   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  4986     HeapRegion* r = _gc_alloc_regions[ap];
  4987     if (r != NULL) {
  4988       // Check for aliases.
  4989       bool has_processed_alias = false;
  4990       for (int i = 0; i < ap; ++i) {
  4991         if (_gc_alloc_regions[i] == r) {
  4992           has_processed_alias = true;
  4993           break;
  4996       if (!has_processed_alias) {
  4997         retire_alloc_region(r, false /* par */);
  5004 // Done at the start of full GC.
  5005 void G1CollectedHeap::tear_down_region_lists() {
  5006   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5007   while (pop_unclean_region_list_locked() != NULL) ;
  5008   assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
  5009          "Postconditions of loop.")
  5010   while (pop_free_region_list_locked() != NULL) ;
  5011   assert(_free_region_list == NULL, "Postcondition of loop.");
  5012   if (_free_region_list_size != 0) {
  5013     gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
  5014     print_on(gclog_or_tty, true /* extended */);
  5016   assert(_free_region_list_size == 0, "Postconditions of loop.");
  5020 class RegionResetter: public HeapRegionClosure {
  5021   G1CollectedHeap* _g1;
  5022   int _n;
  5023 public:
  5024   RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  5025   bool doHeapRegion(HeapRegion* r) {
  5026     if (r->continuesHumongous()) return false;
  5027     if (r->top() > r->bottom()) {
  5028       if (r->top() < r->end()) {
  5029         Copy::fill_to_words(r->top(),
  5030                           pointer_delta(r->end(), r->top()));
  5032       r->set_zero_fill_allocated();
  5033     } else {
  5034       assert(r->is_empty(), "tautology");
  5035       _n++;
  5036       switch (r->zero_fill_state()) {
  5037         case HeapRegion::NotZeroFilled:
  5038         case HeapRegion::ZeroFilling:
  5039           _g1->put_region_on_unclean_list_locked(r);
  5040           break;
  5041         case HeapRegion::Allocated:
  5042           r->set_zero_fill_complete();
  5043           // no break; go on to put on free list.
  5044         case HeapRegion::ZeroFilled:
  5045           _g1->put_free_region_on_list_locked(r);
  5046           break;
  5049     return false;
  5052   int getFreeRegionCount() {return _n;}
  5053 };
  5055 // Done at the end of full GC.
  5056 void G1CollectedHeap::rebuild_region_lists() {
  5057   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5058   // This needs to go at the end of the full GC.
  5059   RegionResetter rs;
  5060   heap_region_iterate(&rs);
  5061   _free_regions = rs.getFreeRegionCount();
  5062   // Tell the ZF thread it may have work to do.
  5063   if (should_zf()) ZF_mon->notify_all();
  5066 class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
  5067   G1CollectedHeap* _g1;
  5068   int _n;
  5069 public:
  5070   UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  5071   bool doHeapRegion(HeapRegion* r) {
  5072     if (r->continuesHumongous()) return false;
  5073     if (r->top() > r->bottom()) {
  5074       // There are assertions in "set_zero_fill_needed()" below that
  5075       // require top() == bottom(), so this is technically illegal.
  5076       // We'll skirt the law here, by making that true temporarily.
  5077       DEBUG_ONLY(HeapWord* save_top = r->top();
  5078                  r->set_top(r->bottom()));
  5079       r->set_zero_fill_needed();
  5080       DEBUG_ONLY(r->set_top(save_top));
  5082     return false;
  5084 };
  5086 // Done at the start of full GC.
  5087 void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
  5088   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  5089   // This needs to go at the end of the full GC.
  5090   UsedRegionsNeedZeroFillSetter rs;
  5091   heap_region_iterate(&rs);
  5094 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  5095   _refine_cte_cl->set_concurrent(concurrent);
  5098 #ifndef PRODUCT
  5100 class PrintHeapRegionClosure: public HeapRegionClosure {
  5101 public:
  5102   bool doHeapRegion(HeapRegion *r) {
  5103     gclog_or_tty->print("Region: "PTR_FORMAT":", r);
  5104     if (r != NULL) {
  5105       if (r->is_on_free_list())
  5106         gclog_or_tty->print("Free ");
  5107       if (r->is_young())
  5108         gclog_or_tty->print("Young ");
  5109       if (r->isHumongous())
  5110         gclog_or_tty->print("Is Humongous ");
  5111       r->print();
  5113     return false;
  5115 };
  5117 class SortHeapRegionClosure : public HeapRegionClosure {
  5118   size_t young_regions,free_regions, unclean_regions;
  5119   size_t hum_regions, count;
  5120   size_t unaccounted, cur_unclean, cur_alloc;
  5121   size_t total_free;
  5122   HeapRegion* cur;
  5123 public:
  5124   SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
  5125     free_regions(0), unclean_regions(0),
  5126     hum_regions(0),
  5127     count(0), unaccounted(0),
  5128     cur_alloc(0), total_free(0)
  5129   {}
  5130   bool doHeapRegion(HeapRegion *r) {
  5131     count++;
  5132     if (r->is_on_free_list()) free_regions++;
  5133     else if (r->is_on_unclean_list()) unclean_regions++;
  5134     else if (r->isHumongous())  hum_regions++;
  5135     else if (r->is_young()) young_regions++;
  5136     else if (r == cur) cur_alloc++;
  5137     else unaccounted++;
  5138     return false;
  5140   void print() {
  5141     total_free = free_regions + unclean_regions;
  5142     gclog_or_tty->print("%d regions\n", count);
  5143     gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
  5144                         total_free, free_regions, unclean_regions);
  5145     gclog_or_tty->print("%d humongous %d young\n",
  5146                         hum_regions, young_regions);
  5147     gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
  5148     gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
  5150 };
  5152 void G1CollectedHeap::print_region_counts() {
  5153   SortHeapRegionClosure sc(_cur_alloc_region);
  5154   PrintHeapRegionClosure cl;
  5155   heap_region_iterate(&cl);
  5156   heap_region_iterate(&sc);
  5157   sc.print();
  5158   print_region_accounting_info();
  5159 };
  5161 bool G1CollectedHeap::regions_accounted_for() {
  5162   // TODO: regions accounting for young/survivor/tenured
  5163   return true;
  5166 bool G1CollectedHeap::print_region_accounting_info() {
  5167   gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
  5168                          free_regions(),
  5169                          count_free_regions(), count_free_regions_list(),
  5170                          _free_region_list_size, _unclean_region_list.sz());
  5171   gclog_or_tty->print_cr("cur_alloc: %d.",
  5172                          (_cur_alloc_region == NULL ? 0 : 1));
  5173   gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);
  5175   // TODO: check regions accounting for young/survivor/tenured
  5176   return true;
  5179 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5180   HeapRegion* hr = heap_region_containing(p);
  5181   if (hr == NULL) {
  5182     return is_in_permanent(p);
  5183   } else {
  5184     return hr->is_in(p);
  5187 #endif // !PRODUCT
  5189 void G1CollectedHeap::g1_unimplemented() {
  5190   // Unimplemented();

mercurial