src/share/vm/opto/loopnode.hpp

Thu, 06 Mar 2008 10:53:33 -0800

author
kvn
date
Thu, 06 Mar 2008 10:53:33 -0800
changeset 474
76256d272075
parent 452
ff5961f4c095
child 631
d1605aabd0a1
permissions
-rw-r--r--

6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
Summary: Cloning an allocation will not allow scalar replacement since memory operations could not be associated with one allocation.
Reviewed-by: rasbold

     1 /*
     2  * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class CmpNode;
    26 class CountedLoopEndNode;
    27 class CountedLoopNode;
    28 class IdealLoopTree;
    29 class LoopNode;
    30 class Node;
    31 class PhaseIdealLoop;
    32 class VectorSet;
    33 struct small_cache;
    35 //
    36 //                  I D E A L I Z E D   L O O P S
    37 //
    38 // Idealized loops are the set of loops I perform more interesting
    39 // transformations on, beyond simple hoisting.
    41 //------------------------------LoopNode---------------------------------------
    42 // Simple loop header.  Fall in path on left, loop-back path on right.
    43 class LoopNode : public RegionNode {
    44   // Size is bigger to hold the flags.  However, the flags do not change
    45   // the semantics so it does not appear in the hash & cmp functions.
    46   virtual uint size_of() const { return sizeof(*this); }
    47 protected:
    48   short _loop_flags;
    49   // Names for flag bitfields
    50   enum { pre_post_main=0, inner_loop=8, partial_peel_loop=16, partial_peel_failed=32  };
    51   char _unswitch_count;
    52   enum { _unswitch_max=3 };
    54 public:
    55   // Names for edge indices
    56   enum { Self=0, EntryControl, LoopBackControl };
    58   int is_inner_loop() const { return _loop_flags & inner_loop; }
    59   void set_inner_loop() { _loop_flags |= inner_loop; }
    61   int is_partial_peel_loop() const { return _loop_flags & partial_peel_loop; }
    62   void set_partial_peel_loop() { _loop_flags |= partial_peel_loop; }
    63   int partial_peel_has_failed() const { return _loop_flags & partial_peel_failed; }
    64   void mark_partial_peel_failed() { _loop_flags |= partial_peel_failed; }
    66   int unswitch_max() { return _unswitch_max; }
    67   int unswitch_count() { return _unswitch_count; }
    68   void set_unswitch_count(int val) {
    69     assert (val <= unswitch_max(), "too many unswitches");
    70     _unswitch_count = val;
    71   }
    73   LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
    74     init_class_id(Class_Loop);
    75     init_req(EntryControl, entry);
    76     init_req(LoopBackControl, backedge);
    77   }
    79   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    80   virtual int Opcode() const;
    81   bool can_be_counted_loop(PhaseTransform* phase) const {
    82     return req() == 3 && in(0) != NULL &&
    83       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
    84       in(2) != NULL && phase->type(in(2)) != Type::TOP;
    85   }
    86 #ifndef PRODUCT
    87   virtual void dump_spec(outputStream *st) const;
    88 #endif
    89 };
    91 //------------------------------Counted Loops----------------------------------
    92 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
    93 // path (and maybe some other exit paths).  The trip-counter exit is always
    94 // last in the loop.  The trip-counter does not have to stride by a constant,
    95 // but it does have to stride by a loop-invariant amount; the exit value is
    96 // also loop invariant.
    98 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
    99 // CountedLoopNode has the incoming loop control and the loop-back-control
   100 // which is always the IfTrue before the matching CountedLoopEndNode.  The
   101 // CountedLoopEndNode has an incoming control (possibly not the
   102 // CountedLoopNode if there is control flow in the loop), the post-increment
   103 // trip-counter value, and the limit.  The trip-counter value is always of
   104 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
   105 // by a Phi connected to the CountedLoopNode.  The stride is loop invariant.
   106 // The Op is any commutable opcode, including Add, Mul, Xor.  The
   107 // CountedLoopEndNode also takes in the loop-invariant limit value.
   109 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
   110 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
   111 // via the old-trip-counter from the Op node.
   113 //------------------------------CountedLoopNode--------------------------------
   114 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
   115 // inputs the incoming loop-start control and the loop-back control, so they
   116 // act like RegionNodes.  They also take in the initial trip counter, the
   117 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
   118 // produce a loop-body control and the trip counter value.  Since
   119 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
   121 class CountedLoopNode : public LoopNode {
   122   // Size is bigger to hold _main_idx.  However, _main_idx does not change
   123   // the semantics so it does not appear in the hash & cmp functions.
   124   virtual uint size_of() const { return sizeof(*this); }
   126   // For Pre- and Post-loops during debugging ONLY, this holds the index of
   127   // the Main CountedLoop.  Used to assert that we understand the graph shape.
   128   node_idx_t _main_idx;
   130   // Known trip count calculated by policy_maximally_unroll
   131   int   _trip_count;
   133   // Expected trip count from profile data
   134   float _profile_trip_cnt;
   136   // Log2 of original loop bodies in unrolled loop
   137   int _unrolled_count_log2;
   139   // Node count prior to last unrolling - used to decide if
   140   // unroll,optimize,unroll,optimize,... is making progress
   141   int _node_count_before_unroll;
   143 public:
   144   CountedLoopNode( Node *entry, Node *backedge )
   145     : LoopNode(entry, backedge), _trip_count(max_jint),
   146       _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
   147       _node_count_before_unroll(0) {
   148     init_class_id(Class_CountedLoop);
   149     // Initialize _trip_count to the largest possible value.
   150     // Will be reset (lower) if the loop's trip count is known.
   151   }
   153   virtual int Opcode() const;
   154   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   156   Node *init_control() const { return in(EntryControl); }
   157   Node *back_control() const { return in(LoopBackControl); }
   158   CountedLoopEndNode *loopexit() const;
   159   Node *init_trip() const;
   160   Node *stride() const;
   161   int   stride_con() const;
   162   bool  stride_is_con() const;
   163   Node *limit() const;
   164   Node *incr() const;
   165   Node *phi() const;
   167   // Match increment with optional truncation
   168   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
   170   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
   171   // can run short a few iterations and may start a few iterations in.
   172   // It will be RCE'd and unrolled and aligned.
   174   // A following 'post' loop will run any remaining iterations.  Used
   175   // during Range Check Elimination, the 'post' loop will do any final
   176   // iterations with full checks.  Also used by Loop Unrolling, where
   177   // the 'post' loop will do any epilog iterations needed.  Basically,
   178   // a 'post' loop can not profitably be further unrolled or RCE'd.
   180   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
   181   // it may do under-flow checks for RCE and may do alignment iterations
   182   // so the following main loop 'knows' that it is striding down cache
   183   // lines.
   185   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
   186   // Aligned, may be missing it's pre-loop.
   187   enum { Normal=0, Pre=1, Main=2, Post=3, PrePostFlagsMask=3, Main_Has_No_Pre_Loop=4 };
   188   int is_normal_loop() const { return (_loop_flags&PrePostFlagsMask) == Normal; }
   189   int is_pre_loop   () const { return (_loop_flags&PrePostFlagsMask) == Pre;    }
   190   int is_main_loop  () const { return (_loop_flags&PrePostFlagsMask) == Main;   }
   191   int is_post_loop  () const { return (_loop_flags&PrePostFlagsMask) == Post;   }
   192   int is_main_no_pre_loop() const { return _loop_flags & Main_Has_No_Pre_Loop; }
   193   void set_main_no_pre_loop() { _loop_flags |= Main_Has_No_Pre_Loop; }
   196   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
   197   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
   198   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
   199   void set_normal_loop(                    ) { _loop_flags &= ~PrePostFlagsMask; }
   201   void set_trip_count(int tc) { _trip_count = tc; }
   202   int trip_count()            { return _trip_count; }
   204   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
   205   float profile_trip_cnt()             { return _profile_trip_cnt; }
   207   void double_unrolled_count() { _unrolled_count_log2++; }
   208   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
   210   void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; }
   211   int  node_count_before_unroll()           { return _node_count_before_unroll; }
   213 #ifndef PRODUCT
   214   virtual void dump_spec(outputStream *st) const;
   215 #endif
   216 };
   218 //------------------------------CountedLoopEndNode-----------------------------
   219 // CountedLoopEndNodes end simple trip counted loops.  They act much like
   220 // IfNodes.
   221 class CountedLoopEndNode : public IfNode {
   222 public:
   223   enum { TestControl, TestValue };
   225   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
   226     : IfNode( control, test, prob, cnt) {
   227     init_class_id(Class_CountedLoopEnd);
   228   }
   229   virtual int Opcode() const;
   231   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
   232   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
   233   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
   234   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
   235   Node *phi() const                 { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
   236   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
   237   int stride_con() const;
   238   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
   239   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
   240   CountedLoopNode *loopnode() const {
   241     Node *ln = phi()->in(0);
   242     assert( ln->Opcode() == Op_CountedLoop, "malformed loop" );
   243     return (CountedLoopNode*)ln; }
   245 #ifndef PRODUCT
   246   virtual void dump_spec(outputStream *st) const;
   247 #endif
   248 };
   251 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
   252   Node *bc = back_control();
   253   if( bc == NULL ) return NULL;
   254   Node *le = bc->in(0);
   255   if( le->Opcode() != Op_CountedLoopEnd )
   256     return NULL;
   257   return (CountedLoopEndNode*)le;
   258 }
   259 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
   260 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
   261 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
   262 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
   263 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
   264 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
   265 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
   268 // -----------------------------IdealLoopTree----------------------------------
   269 class IdealLoopTree : public ResourceObj {
   270 public:
   271   IdealLoopTree *_parent;       // Parent in loop tree
   272   IdealLoopTree *_next;         // Next sibling in loop tree
   273   IdealLoopTree *_child;        // First child in loop tree
   275   // The head-tail backedge defines the loop.
   276   // If tail is NULL then this loop has multiple backedges as part of the
   277   // same loop.  During cleanup I'll peel off the multiple backedges; merge
   278   // them at the loop bottom and flow 1 real backedge into the loop.
   279   Node *_head;                  // Head of loop
   280   Node *_tail;                  // Tail of loop
   281   inline Node *tail();          // Handle lazy update of _tail field
   282   PhaseIdealLoop* _phase;
   284   Node_List _body;              // Loop body for inner loops
   286   uint8 _nest;                  // Nesting depth
   287   uint8 _irreducible:1,         // True if irreducible
   288         _has_call:1,            // True if has call safepoint
   289         _has_sfpt:1,            // True if has non-call safepoint
   290         _rce_candidate:1;       // True if candidate for range check elimination
   292   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
   293   bool  _allow_optimizations;   // Allow loop optimizations
   295   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
   296     : _parent(0), _next(0), _child(0),
   297       _head(head), _tail(tail),
   298       _phase(phase),
   299       _required_safept(NULL),
   300       _allow_optimizations(true),
   301       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0)
   302   { }
   304   // Is 'l' a member of 'this'?
   305   int is_member( const IdealLoopTree *l ) const; // Test for nested membership
   307   // Set loop nesting depth.  Accumulate has_call bits.
   308   int set_nest( uint depth );
   310   // Split out multiple fall-in edges from the loop header.  Move them to a
   311   // private RegionNode before the loop.  This becomes the loop landing pad.
   312   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
   314   // Split out the outermost loop from this shared header.
   315   void split_outer_loop( PhaseIdealLoop *phase );
   317   // Merge all the backedges from the shared header into a private Region.
   318   // Feed that region as the one backedge to this loop.
   319   void merge_many_backedges( PhaseIdealLoop *phase );
   321   // Split shared headers and insert loop landing pads.
   322   // Insert a LoopNode to replace the RegionNode.
   323   // Returns TRUE if loop tree is structurally changed.
   324   bool beautify_loops( PhaseIdealLoop *phase );
   326   // Perform iteration-splitting on inner loops.  Split iterations to avoid
   327   // range checks or one-shot null checks.
   328   void iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
   330   // Driver for various flavors of iteration splitting
   331   void iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
   333   // Given dominators, try to find loops with calls that must always be
   334   // executed (call dominates loop tail).  These loops do not need non-call
   335   // safepoints (ncsfpt).
   336   void check_safepts(VectorSet &visited, Node_List &stack);
   338   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
   339   // encountered.
   340   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
   342   // Convert to counted loops where possible
   343   void counted_loop( PhaseIdealLoop *phase );
   345   // Check for Node being a loop-breaking test
   346   Node *is_loop_exit(Node *iff) const;
   348   // Returns true if ctrl is executed on every complete iteration
   349   bool dominates_backedge(Node* ctrl);
   351   // Remove simplistic dead code from loop body
   352   void DCE_loop_body();
   354   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
   355   // Replace with a 1-in-10 exit guess.
   356   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
   358   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
   359   // Useful for unrolling loops with NO array accesses.
   360   bool policy_peel_only( PhaseIdealLoop *phase ) const;
   362   // Return TRUE or FALSE if the loop should be unswitched -- clone
   363   // loop with an invariant test
   364   bool policy_unswitching( PhaseIdealLoop *phase ) const;
   366   // Micro-benchmark spamming.  Remove empty loops.
   367   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
   369   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
   370   // make some loop-invariant test (usually a null-check) happen before the
   371   // loop.
   372   bool policy_peeling( PhaseIdealLoop *phase ) const;
   374   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
   375   // known trip count in the counted loop node.
   376   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
   378   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   379   // the loop is a CountedLoop and the body is small enough.
   380   bool policy_unroll( PhaseIdealLoop *phase ) const;
   382   // Return TRUE or FALSE if the loop should be range-check-eliminated.
   383   // Gather a list of IF tests that are dominated by iteration splitting;
   384   // also gather the end of the first split and the start of the 2nd split.
   385   bool policy_range_check( PhaseIdealLoop *phase ) const;
   387   // Return TRUE or FALSE if the loop should be cache-line aligned.
   388   // Gather the expression that does the alignment.  Note that only
   389   // one array base can be aligned in a loop (unless the VM guarentees
   390   // mutual alignment).  Note that if we vectorize short memory ops
   391   // into longer memory ops, we may want to increase alignment.
   392   bool policy_align( PhaseIdealLoop *phase ) const;
   394   // Compute loop trip count from profile data
   395   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
   397   // Reassociate invariant expressions.
   398   void reassociate_invariants(PhaseIdealLoop *phase);
   399   // Reassociate invariant add and subtract expressions.
   400   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
   401   // Return nonzero index of invariant operand if invariant and variant
   402   // are combined with an Add or Sub. Helper for reassoicate_invariants.
   403   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
   405   // Return true if n is invariant
   406   bool is_invariant(Node* n) const;
   408   // Put loop body on igvn work list
   409   void record_for_igvn();
   411   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
   412   bool is_inner()   { return is_loop() && _child == NULL; }
   413   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
   415 #ifndef PRODUCT
   416   void dump_head( ) const;      // Dump loop head only
   417   void dump() const;            // Dump this loop recursively
   418   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
   419 #endif
   421 };
   423 // -----------------------------PhaseIdealLoop---------------------------------
   424 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
   425 // loop tree.  Drives the loop-based transformations on the ideal graph.
   426 class PhaseIdealLoop : public PhaseTransform {
   427   friend class IdealLoopTree;
   428   friend class SuperWord;
   429   // Pre-computed def-use info
   430   PhaseIterGVN &_igvn;
   432   // Head of loop tree
   433   IdealLoopTree *_ltree_root;
   435   // Array of pre-order numbers, plus post-visited bit.
   436   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
   437   // ODD for post-visited.  Other bits are the pre-order number.
   438   uint *_preorders;
   439   uint _max_preorder;
   441   // Allocate _preorders[] array
   442   void allocate_preorders() {
   443     _max_preorder = C->unique()+8;
   444     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
   445     memset(_preorders, 0, sizeof(uint) * _max_preorder);
   446   }
   448   // Allocate _preorders[] array
   449   void reallocate_preorders() {
   450     if ( _max_preorder < C->unique() ) {
   451       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
   452       _max_preorder = C->unique();
   453     }
   454     memset(_preorders, 0, sizeof(uint) * _max_preorder);
   455   }
   457   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
   458   // adds new nodes.
   459   void check_grow_preorders( ) {
   460     if ( _max_preorder < C->unique() ) {
   461       uint newsize = _max_preorder<<1;  // double size of array
   462       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
   463       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
   464       _max_preorder = newsize;
   465     }
   466   }
   467   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
   468   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
   469   // Pre-order numbers are written to the Nodes array as low-bit-set values.
   470   void set_preorder_visited( Node *n, int pre_order ) {
   471     assert( !is_visited( n ), "already set" );
   472     _preorders[n->_idx] = (pre_order<<1);
   473   };
   474   // Return pre-order number.
   475   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
   477   // Check for being post-visited.
   478   // Should be previsited already (checked with assert(is_visited(n))).
   479   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
   481   // Mark as post visited
   482   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
   484   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
   485   // Returns true if "n" is a data node, false if it's a control node.
   486   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
   488   // clear out dead code after build_loop_late
   489   Node_List _deadlist;
   491   // Support for faster execution of get_late_ctrl()/dom_lca()
   492   // when a node has many uses and dominator depth is deep.
   493   Node_Array _dom_lca_tags;
   494   void   init_dom_lca_tags();
   495   void   clear_dom_lca_tags();
   496   // Inline wrapper for frequent cases:
   497   // 1) only one use
   498   // 2) a use is the same as the current LCA passed as 'n1'
   499   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
   500     assert( n->is_CFG(), "" );
   501     // Fast-path NULL lca
   502     if( lca != NULL && lca != n ) {
   503       assert( lca->is_CFG(), "" );
   504       // find LCA of all uses
   505       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
   506     }
   507     return find_non_split_ctrl(n);
   508   }
   509   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
   510   // true if CFG node d dominates CFG node n
   511   bool is_dominator(Node *d, Node *n);
   513   // Helper function for directing control inputs away from CFG split
   514   // points.
   515   Node *find_non_split_ctrl( Node *ctrl ) const {
   516     if (ctrl != NULL) {
   517       if (ctrl->is_MultiBranch()) {
   518         ctrl = ctrl->in(0);
   519       }
   520       assert(ctrl->is_CFG(), "CFG");
   521     }
   522     return ctrl;
   523   }
   525 public:
   526   bool has_node( Node* n ) const { return _nodes[n->_idx] != NULL; }
   527   // check if transform created new nodes that need _ctrl recorded
   528   Node *get_late_ctrl( Node *n, Node *early );
   529   Node *get_early_ctrl( Node *n );
   530   void set_early_ctrl( Node *n );
   531   void set_subtree_ctrl( Node *root );
   532   void set_ctrl( Node *n, Node *ctrl ) {
   533     assert( !has_node(n) || has_ctrl(n), "" );
   534     assert( ctrl->in(0), "cannot set dead control node" );
   535     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
   536     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
   537   }
   538   // Set control and update loop membership
   539   void set_ctrl_and_loop(Node* n, Node* ctrl) {
   540     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
   541     IdealLoopTree* new_loop = get_loop(ctrl);
   542     if (old_loop != new_loop) {
   543       if (old_loop->_child == NULL) old_loop->_body.yank(n);
   544       if (new_loop->_child == NULL) new_loop->_body.push(n);
   545     }
   546     set_ctrl(n, ctrl);
   547   }
   548   // Control nodes can be replaced or subsumed.  During this pass they
   549   // get their replacement Node in slot 1.  Instead of updating the block
   550   // location of all Nodes in the subsumed block, we lazily do it.  As we
   551   // pull such a subsumed block out of the array, we write back the final
   552   // correct block.
   553   Node *get_ctrl( Node *i ) {
   554     assert(has_node(i), "");
   555     Node *n = get_ctrl_no_update(i);
   556     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
   557     assert(has_node(i) && has_ctrl(i), "");
   558     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
   559     return n;
   560   }
   562 private:
   563   Node *get_ctrl_no_update( Node *i ) const {
   564     assert( has_ctrl(i), "" );
   565     Node *n = (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
   566     if (!n->in(0)) {
   567       // Skip dead CFG nodes
   568       do {
   569         n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
   570       } while (!n->in(0));
   571       n = find_non_split_ctrl(n);
   572     }
   573     return n;
   574   }
   576   // Check for loop being set
   577   // "n" must be a control node. Returns true if "n" is known to be in a loop.
   578   bool has_loop( Node *n ) const {
   579     assert(!has_node(n) || !has_ctrl(n), "");
   580     return has_node(n);
   581   }
   582   // Set loop
   583   void set_loop( Node *n, IdealLoopTree *loop ) {
   584     _nodes.map(n->_idx, (Node*)loop);
   585   }
   586   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
   587   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
   588   // from old_node to new_node to support the lazy update.  Reference
   589   // replaces loop reference, since that is not neede for dead node.
   590 public:
   591   void lazy_update( Node *old_node, Node *new_node ) {
   592     assert( old_node != new_node, "no cycles please" );
   593     //old_node->set_req( 1, new_node /*NO DU INFO*/ );
   594     // Nodes always have DU info now, so re-use the side array slot
   595     // for this node to provide the forwarding pointer.
   596     _nodes.map( old_node->_idx, (Node*)((intptr_t)new_node + 1) );
   597   }
   598   void lazy_replace( Node *old_node, Node *new_node ) {
   599     _igvn.hash_delete(old_node);
   600     _igvn.subsume_node( old_node, new_node );
   601     lazy_update( old_node, new_node );
   602   }
   603   void lazy_replace_proj( Node *old_node, Node *new_node ) {
   604     assert( old_node->req() == 1, "use this for Projs" );
   605     _igvn.hash_delete(old_node); // Must hash-delete before hacking edges
   606     old_node->add_req( NULL );
   607     lazy_replace( old_node, new_node );
   608   }
   610 private:
   612   // Place 'n' in some loop nest, where 'n' is a CFG node
   613   void build_loop_tree();
   614   int build_loop_tree_impl( Node *n, int pre_order );
   615   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
   616   // loop tree, not the root.
   617   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
   619   // Place Data nodes in some loop nest
   620   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me );
   621   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me );
   622   void build_loop_late_post ( Node* n, const PhaseIdealLoop *verify_me );
   624   // Array of immediate dominance info for each CFG node indexed by node idx
   625 private:
   626   uint _idom_size;
   627   Node **_idom;                 // Array of immediate dominators
   628   uint *_dom_depth;           // Used for fast LCA test
   629   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
   631   Node* idom_no_update(Node* d) const {
   632     assert(d->_idx < _idom_size, "oob");
   633     Node* n = _idom[d->_idx];
   634     assert(n != NULL,"Bad immediate dominator info.");
   635     while (n->in(0) == NULL) {  // Skip dead CFG nodes
   636       //n = n->in(1);
   637       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
   638       assert(n != NULL,"Bad immediate dominator info.");
   639     }
   640     return n;
   641   }
   642   Node *idom(Node* d) const {
   643     uint didx = d->_idx;
   644     Node *n = idom_no_update(d);
   645     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
   646     return n;
   647   }
   648   uint dom_depth(Node* d) const {
   649     assert(d->_idx < _idom_size, "");
   650     return _dom_depth[d->_idx];
   651   }
   652   void set_idom(Node* d, Node* n, uint dom_depth);
   653   // Locally compute IDOM using dom_lca call
   654   Node *compute_idom( Node *region ) const;
   655   // Recompute dom_depth
   656   void recompute_dom_depth();
   658   // Is safept not required by an outer loop?
   659   bool is_deleteable_safept(Node* sfpt);
   661 public:
   662   // Dominators for the sea of nodes
   663   void Dominators();
   664   Node *dom_lca( Node *n1, Node *n2 ) const {
   665     return find_non_split_ctrl(dom_lca_internal(n1, n2));
   666   }
   667   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
   669   // Compute the Ideal Node to Loop mapping
   670   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me, bool do_split_ifs );
   672   // True if the method has at least 1 irreducible loop
   673   bool _has_irreducible_loops;
   675   // Per-Node transform
   676   virtual Node *transform( Node *a_node ) { return 0; }
   678   Node *is_counted_loop( Node *x, IdealLoopTree *loop );
   680   // Return a post-walked LoopNode
   681   IdealLoopTree *get_loop( Node *n ) const {
   682     // Dead nodes have no loop, so return the top level loop instead
   683     if (!has_node(n))  return _ltree_root;
   684     assert(!has_ctrl(n), "");
   685     return (IdealLoopTree*)_nodes[n->_idx];
   686   }
   688   // Is 'n' a (nested) member of 'loop'?
   689   int is_member( const IdealLoopTree *loop, Node *n ) const {
   690     return loop->is_member(get_loop(n)); }
   692   // This is the basic building block of the loop optimizations.  It clones an
   693   // entire loop body.  It makes an old_new loop body mapping; with this
   694   // mapping you can find the new-loop equivalent to an old-loop node.  All
   695   // new-loop nodes are exactly equal to their old-loop counterparts, all
   696   // edges are the same.  All exits from the old-loop now have a RegionNode
   697   // that merges the equivalent new-loop path.  This is true even for the
   698   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
   699   // now come from (one or more) Phis that merge their new-loop equivalents.
   700   // Parameter side_by_side_idom:
   701   //   When side_by_size_idom is NULL, the dominator tree is constructed for
   702   //      the clone loop to dominate the original.  Used in construction of
   703   //      pre-main-post loop sequence.
   704   //   When nonnull, the clone and original are side-by-side, both are
   705   //      dominated by the passed in side_by_side_idom node.  Used in
   706   //      construction of unswitched loops.
   707   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
   708                    Node* side_by_side_idom = NULL);
   710   // If we got the effect of peeling, either by actually peeling or by
   711   // making a pre-loop which must execute at least once, we can remove
   712   // all loop-invariant dominated tests in the main body.
   713   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
   715   // Generate code to do a loop peel for the given loop (and body).
   716   // old_new is a temp array.
   717   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
   719   // Add pre and post loops around the given loop.  These loops are used
   720   // during RCE, unrolling and aligning loops.
   721   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
   722   // If Node n lives in the back_ctrl block, we clone a private version of n
   723   // in preheader_ctrl block and return that, otherwise return n.
   724   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n );
   726   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
   727   // unroll to do double iterations.  The next round of major loop transforms
   728   // will repeat till the doubled loop body does all remaining iterations in 1
   729   // pass.
   730   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
   732   // Unroll the loop body one step - make each trip do 2 iterations.
   733   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
   735   // Return true if exp is a constant times an induction var
   736   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
   738   // Return true if exp is a scaled induction var plus (or minus) constant
   739   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
   741   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
   742   void do_range_check( IdealLoopTree *loop, Node_List &old_new );
   744   // Create a slow version of the loop by cloning the loop
   745   // and inserting an if to select fast-slow versions.
   746   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
   747                                         Node_List &old_new);
   749   // Clone loop with an invariant test (that does not exit) and
   750   // insert a clone of the test that selects which version to
   751   // execute.
   752   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
   754   // Find candidate "if" for unswitching
   755   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
   757   // Range Check Elimination uses this function!
   758   // Constrain the main loop iterations so the affine function:
   759   //    scale_con * I + offset  <  limit
   760   // always holds true.  That is, either increase the number of iterations in
   761   // the pre-loop or the post-loop until the condition holds true in the main
   762   // loop.  Scale_con, offset and limit are all loop invariant.
   763   void add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
   765   // Partially peel loop up through last_peel node.
   766   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
   768   // Create a scheduled list of nodes control dependent on ctrl set.
   769   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
   770   // Has a use in the vector set
   771   bool has_use_in_set( Node* n, VectorSet& vset );
   772   // Has use internal to the vector set (ie. not in a phi at the loop head)
   773   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
   774   // clone "n" for uses that are outside of loop
   775   void clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
   776   // clone "n" for special uses that are in the not_peeled region
   777   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
   778                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
   779   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
   780   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
   781 #ifdef ASSERT
   782   // Validate the loop partition sets: peel and not_peel
   783   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
   784   // Ensure that uses outside of loop are of the right form
   785   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
   786                                  uint orig_exit_idx, uint clone_exit_idx);
   787   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
   788 #endif
   790   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
   791   int stride_of_possible_iv( Node* iff );
   792   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
   793   // Return the (unique) control output node that's in the loop (if it exists.)
   794   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
   795   // Insert a signed compare loop exit cloned from an unsigned compare.
   796   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
   797   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
   798   // Utility to register node "n" with PhaseIdealLoop
   799   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
   800   // Utility to create an if-projection
   801   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
   802   // Force the iff control output to be the live_proj
   803   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
   804   // Insert a region before an if projection
   805   RegionNode* insert_region_before_proj(ProjNode* proj);
   806   // Insert a new if before an if projection
   807   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
   809   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
   810   // "Nearly" because all Nodes have been cloned from the original in the loop,
   811   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
   812   // through the Phi recursively, and return a Bool.
   813   BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
   814   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
   817   // Rework addressing expressions to get the most loop-invariant stuff
   818   // moved out.  We'd like to do all associative operators, but it's especially
   819   // important (common) to do address expressions.
   820   Node *remix_address_expressions( Node *n );
   822   // Attempt to use a conditional move instead of a phi/branch
   823   Node *conditional_move( Node *n );
   825   // Reorganize offset computations to lower register pressure.
   826   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
   827   // (which are then alive with the post-incremented trip counter
   828   // forcing an extra register move)
   829   void reorg_offsets( IdealLoopTree *loop );
   831   // Check for aggressive application of 'split-if' optimization,
   832   // using basic block level info.
   833   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
   834   Node *split_if_with_blocks_pre ( Node *n );
   835   void  split_if_with_blocks_post( Node *n );
   836   Node *has_local_phi_input( Node *n );
   837   // Mark an IfNode as being dominated by a prior test,
   838   // without actually altering the CFG (and hence IDOM info).
   839   void dominated_by( Node *prevdom, Node *iff );
   841   // Split Node 'n' through merge point
   842   Node *split_thru_region( Node *n, Node *region );
   843   // Split Node 'n' through merge point if there is enough win.
   844   Node *split_thru_phi( Node *n, Node *region, int policy );
   845   // Found an If getting its condition-code input from a Phi in the
   846   // same block.  Split thru the Region.
   847   void do_split_if( Node *iff );
   849 private:
   850   // Return a type based on condition control flow
   851   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
   852   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
   853  // Helpers for filtered type
   854   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
   856   // Helper functions
   857   void register_new_node( Node *n, Node *blk );
   858   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
   859   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
   860   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
   861   bool split_up( Node *n, Node *blk1, Node *blk2 );
   862   void sink_use( Node *use, Node *post_loop );
   863   Node *place_near_use( Node *useblock ) const;
   865   bool _created_loop_node;
   866 public:
   867   void set_created_loop_node() { _created_loop_node = true; }
   868   bool created_loop_node()     { return _created_loop_node; }
   870 #ifndef PRODUCT
   871   void dump( ) const;
   872   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
   873   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
   874   void verify() const;          // Major slow  :-)
   875   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
   876   IdealLoopTree *get_loop_idx(Node* n) const {
   877     // Dead nodes have no loop, so return the top level loop instead
   878     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
   879   }
   880   // Print some stats
   881   static void print_statistics();
   882   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
   883   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
   884 #endif
   885 };
   887 inline Node* IdealLoopTree::tail() {
   888 // Handle lazy update of _tail field
   889   Node *n = _tail;
   890   //while( !n->in(0) )  // Skip dead CFG nodes
   891     //n = n->in(1);
   892   if (n->in(0) == NULL)
   893     n = _phase->get_ctrl(n);
   894   _tail = n;
   895   return n;
   896 }
   899 // Iterate over the loop tree using a preorder, left-to-right traversal.
   900 //
   901 // Example that visits all counted loops from within PhaseIdealLoop
   902 //
   903 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
   904 //   IdealLoopTree* lpt = iter.current();
   905 //   if (!lpt->is_counted()) continue;
   906 //   ...
   907 class LoopTreeIterator : public StackObj {
   908 private:
   909   IdealLoopTree* _root;
   910   IdealLoopTree* _curnt;
   912 public:
   913   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
   915   bool done() { return _curnt == NULL; }       // Finished iterating?
   917   void next();                                 // Advance to next loop tree
   919   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
   920 };

mercurial