src/share/vm/code/dependencies.cpp

Wed, 17 Dec 2014 09:10:57 -0800

author
asaha
date
Wed, 17 Dec 2014 09:10:57 -0800
changeset 7719
7622232b7efa
parent 7717
41c3c456e326
parent 7502
c4f1e23c4139
child 7761
d8f133adf05d
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciArrayKlass.hpp"
    27 #include "ci/ciEnv.hpp"
    28 #include "ci/ciKlass.hpp"
    29 #include "ci/ciMethod.hpp"
    30 #include "code/dependencies.hpp"
    31 #include "compiler/compileLog.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "runtime/handles.hpp"
    34 #include "runtime/handles.inline.hpp"
    35 #include "runtime/thread.inline.hpp"
    36 #include "utilities/copy.hpp"
    39 #ifdef ASSERT
    40 static bool must_be_in_vm() {
    41   Thread* thread = Thread::current();
    42   if (thread->is_Java_thread())
    43     return ((JavaThread*)thread)->thread_state() == _thread_in_vm;
    44   else
    45     return true;  //something like this: thread->is_VM_thread();
    46 }
    47 #endif //ASSERT
    49 void Dependencies::initialize(ciEnv* env) {
    50   Arena* arena = env->arena();
    51   _oop_recorder = env->oop_recorder();
    52   _log = env->log();
    53   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
    54   DEBUG_ONLY(_deps[end_marker] = NULL);
    55   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
    56     _deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, 0);
    57   }
    58   _content_bytes = NULL;
    59   _size_in_bytes = (size_t)-1;
    61   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
    62 }
    64 void Dependencies::assert_evol_method(ciMethod* m) {
    65   assert_common_1(evol_method, m);
    66 }
    68 void Dependencies::assert_leaf_type(ciKlass* ctxk) {
    69   if (ctxk->is_array_klass()) {
    70     // As a special case, support this assertion on an array type,
    71     // which reduces to an assertion on its element type.
    72     // Note that this cannot be done with assertions that
    73     // relate to concreteness or abstractness.
    74     ciType* elemt = ctxk->as_array_klass()->base_element_type();
    75     if (!elemt->is_instance_klass())  return;   // Ex:  int[][]
    76     ctxk = elemt->as_instance_klass();
    77     //if (ctxk->is_final())  return;            // Ex:  String[][]
    78   }
    79   check_ctxk(ctxk);
    80   assert_common_1(leaf_type, ctxk);
    81 }
    83 void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
    84   check_ctxk_abstract(ctxk);
    85   assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
    86 }
    88 void Dependencies::assert_abstract_with_no_concrete_subtype(ciKlass* ctxk) {
    89   check_ctxk_abstract(ctxk);
    90   assert_common_1(abstract_with_no_concrete_subtype, ctxk);
    91 }
    93 void Dependencies::assert_concrete_with_no_concrete_subtype(ciKlass* ctxk) {
    94   check_ctxk_concrete(ctxk);
    95   assert_common_1(concrete_with_no_concrete_subtype, ctxk);
    96 }
    98 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
    99   check_ctxk(ctxk);
   100   assert_common_2(unique_concrete_method, ctxk, uniqm);
   101 }
   103 void Dependencies::assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2) {
   104   check_ctxk(ctxk);
   105   assert_common_3(abstract_with_exclusive_concrete_subtypes_2, ctxk, k1, k2);
   106 }
   108 void Dependencies::assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2) {
   109   check_ctxk(ctxk);
   110   assert_common_3(exclusive_concrete_methods_2, ctxk, m1, m2);
   111 }
   113 void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
   114   check_ctxk(ctxk);
   115   assert_common_1(no_finalizable_subclasses, ctxk);
   116 }
   118 void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) {
   119   check_ctxk(call_site->klass());
   120   assert_common_2(call_site_target_value, call_site, method_handle);
   121 }
   123 // Helper function.  If we are adding a new dep. under ctxk2,
   124 // try to find an old dep. under a broader* ctxk1.  If there is
   125 //
   126 bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
   127                                     int ctxk_i, ciKlass* ctxk2) {
   128   ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass();
   129   if (ctxk2->is_subtype_of(ctxk1)) {
   130     return true;  // success, and no need to change
   131   } else if (ctxk1->is_subtype_of(ctxk2)) {
   132     // new context class fully subsumes previous one
   133     deps->at_put(ctxk_i, ctxk2);
   134     return true;
   135   } else {
   136     return false;
   137   }
   138 }
   140 void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) {
   141   assert(dep_args(dept) == 1, "sanity");
   142   log_dependency(dept, x);
   143   GrowableArray<ciBaseObject*>* deps = _deps[dept];
   145   // see if the same (or a similar) dep is already recorded
   146   if (note_dep_seen(dept, x)) {
   147     assert(deps->find(x) >= 0, "sanity");
   148   } else {
   149     deps->append(x);
   150   }
   151 }
   153 void Dependencies::assert_common_2(DepType dept,
   154                                    ciBaseObject* x0, ciBaseObject* x1) {
   155   assert(dep_args(dept) == 2, "sanity");
   156   log_dependency(dept, x0, x1);
   157   GrowableArray<ciBaseObject*>* deps = _deps[dept];
   159   // see if the same (or a similar) dep is already recorded
   160   bool has_ctxk = has_explicit_context_arg(dept);
   161   if (has_ctxk) {
   162     assert(dep_context_arg(dept) == 0, "sanity");
   163     if (note_dep_seen(dept, x1)) {
   164       // look in this bucket for redundant assertions
   165       const int stride = 2;
   166       for (int i = deps->length(); (i -= stride) >= 0; ) {
   167         ciBaseObject* y1 = deps->at(i+1);
   168         if (x1 == y1) {  // same subject; check the context
   169           if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) {
   170             return;
   171           }
   172         }
   173       }
   174     }
   175   } else {
   176     assert(dep_implicit_context_arg(dept) == 0, "sanity");
   177     if (note_dep_seen(dept, x0) && note_dep_seen(dept, x1)) {
   178       // look in this bucket for redundant assertions
   179       const int stride = 2;
   180       for (int i = deps->length(); (i -= stride) >= 0; ) {
   181         ciBaseObject* y0 = deps->at(i+0);
   182         ciBaseObject* y1 = deps->at(i+1);
   183         if (x0 == y0 && x1 == y1) {
   184           return;
   185         }
   186       }
   187     }
   188   }
   190   // append the assertion in the correct bucket:
   191   deps->append(x0);
   192   deps->append(x1);
   193 }
   195 void Dependencies::assert_common_3(DepType dept,
   196                                    ciKlass* ctxk, ciBaseObject* x, ciBaseObject* x2) {
   197   assert(dep_context_arg(dept) == 0, "sanity");
   198   assert(dep_args(dept) == 3, "sanity");
   199   log_dependency(dept, ctxk, x, x2);
   200   GrowableArray<ciBaseObject*>* deps = _deps[dept];
   202   // try to normalize an unordered pair:
   203   bool swap = false;
   204   switch (dept) {
   205   case abstract_with_exclusive_concrete_subtypes_2:
   206     swap = (x->ident() > x2->ident() && x->as_metadata()->as_klass() != ctxk);
   207     break;
   208   case exclusive_concrete_methods_2:
   209     swap = (x->ident() > x2->ident() && x->as_metadata()->as_method()->holder() != ctxk);
   210     break;
   211   }
   212   if (swap) { ciBaseObject* t = x; x = x2; x2 = t; }
   214   // see if the same (or a similar) dep is already recorded
   215   if (note_dep_seen(dept, x) && note_dep_seen(dept, x2)) {
   216     // look in this bucket for redundant assertions
   217     const int stride = 3;
   218     for (int i = deps->length(); (i -= stride) >= 0; ) {
   219       ciBaseObject* y  = deps->at(i+1);
   220       ciBaseObject* y2 = deps->at(i+2);
   221       if (x == y && x2 == y2) {  // same subjects; check the context
   222         if (maybe_merge_ctxk(deps, i+0, ctxk)) {
   223           return;
   224         }
   225       }
   226     }
   227   }
   228   // append the assertion in the correct bucket:
   229   deps->append(ctxk);
   230   deps->append(x);
   231   deps->append(x2);
   232 }
   234 /// Support for encoding dependencies into an nmethod:
   236 void Dependencies::copy_to(nmethod* nm) {
   237   address beg = nm->dependencies_begin();
   238   address end = nm->dependencies_end();
   239   guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
   240   Copy::disjoint_words((HeapWord*) content_bytes(),
   241                        (HeapWord*) beg,
   242                        size_in_bytes() / sizeof(HeapWord));
   243   assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
   244 }
   246 static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) {
   247   for (int i = 0; i < narg; i++) {
   248     int diff = p1[i]->ident() - p2[i]->ident();
   249     if (diff != 0)  return diff;
   250   }
   251   return 0;
   252 }
   253 static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2)
   254 { return sort_dep(p1, p2, 1); }
   255 static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2)
   256 { return sort_dep(p1, p2, 2); }
   257 static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2)
   258 { return sort_dep(p1, p2, 3); }
   260 void Dependencies::sort_all_deps() {
   261   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   262     DepType dept = (DepType)deptv;
   263     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   264     if (deps->length() <= 1)  continue;
   265     switch (dep_args(dept)) {
   266     case 1: deps->sort(sort_dep_arg_1, 1); break;
   267     case 2: deps->sort(sort_dep_arg_2, 2); break;
   268     case 3: deps->sort(sort_dep_arg_3, 3); break;
   269     default: ShouldNotReachHere();
   270     }
   271   }
   272 }
   274 size_t Dependencies::estimate_size_in_bytes() {
   275   size_t est_size = 100;
   276   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   277     DepType dept = (DepType)deptv;
   278     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   279     est_size += deps->length()*2;  // tags and argument(s)
   280   }
   281   return est_size;
   282 }
   284 ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) {
   285   switch (dept) {
   286   case abstract_with_exclusive_concrete_subtypes_2:
   287     return x->as_metadata()->as_klass();
   288   case unique_concrete_method:
   289   case exclusive_concrete_methods_2:
   290     return x->as_metadata()->as_method()->holder();
   291   }
   292   return NULL;  // let NULL be NULL
   293 }
   295 Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
   296   assert(must_be_in_vm(), "raw oops here");
   297   switch (dept) {
   298   case abstract_with_exclusive_concrete_subtypes_2:
   299     assert(x->is_klass(), "sanity");
   300     return (Klass*) x;
   301   case unique_concrete_method:
   302   case exclusive_concrete_methods_2:
   303     assert(x->is_method(), "sanity");
   304     return ((Method*)x)->method_holder();
   305   }
   306   return NULL;  // let NULL be NULL
   307 }
   309 void Dependencies::encode_content_bytes() {
   310   sort_all_deps();
   312   // cast is safe, no deps can overflow INT_MAX
   313   CompressedWriteStream bytes((int)estimate_size_in_bytes());
   315   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   316     DepType dept = (DepType)deptv;
   317     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   318     if (deps->length() == 0)  continue;
   319     int stride = dep_args(dept);
   320     int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
   321     assert(stride > 0, "sanity");
   322     for (int i = 0; i < deps->length(); i += stride) {
   323       jbyte code_byte = (jbyte)dept;
   324       int skipj = -1;
   325       if (ctxkj >= 0 && ctxkj+1 < stride) {
   326         ciKlass*  ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass();
   327         ciBaseObject* x     = deps->at(i+ctxkj+1);  // following argument
   328         if (ctxk == ctxk_encoded_as_null(dept, x)) {
   329           skipj = ctxkj;  // we win:  maybe one less oop to keep track of
   330           code_byte |= default_context_type_bit;
   331         }
   332       }
   333       bytes.write_byte(code_byte);
   334       for (int j = 0; j < stride; j++) {
   335         if (j == skipj)  continue;
   336         ciBaseObject* v = deps->at(i+j);
   337         int idx;
   338         if (v->is_object()) {
   339           idx = _oop_recorder->find_index(v->as_object()->constant_encoding());
   340         } else {
   341           ciMetadata* meta = v->as_metadata();
   342           idx = _oop_recorder->find_index(meta->constant_encoding());
   343         }
   344         bytes.write_int(idx);
   345       }
   346     }
   347   }
   349   // write a sentinel byte to mark the end
   350   bytes.write_byte(end_marker);
   352   // round it out to a word boundary
   353   while (bytes.position() % sizeof(HeapWord) != 0) {
   354     bytes.write_byte(end_marker);
   355   }
   357   // check whether the dept byte encoding really works
   358   assert((jbyte)default_context_type_bit != 0, "byte overflow");
   360   _content_bytes = bytes.buffer();
   361   _size_in_bytes = bytes.position();
   362 }
   365 const char* Dependencies::_dep_name[TYPE_LIMIT] = {
   366   "end_marker",
   367   "evol_method",
   368   "leaf_type",
   369   "abstract_with_unique_concrete_subtype",
   370   "abstract_with_no_concrete_subtype",
   371   "concrete_with_no_concrete_subtype",
   372   "unique_concrete_method",
   373   "abstract_with_exclusive_concrete_subtypes_2",
   374   "exclusive_concrete_methods_2",
   375   "no_finalizable_subclasses",
   376   "call_site_target_value"
   377 };
   379 int Dependencies::_dep_args[TYPE_LIMIT] = {
   380   -1,// end_marker
   381   1, // evol_method m
   382   1, // leaf_type ctxk
   383   2, // abstract_with_unique_concrete_subtype ctxk, k
   384   1, // abstract_with_no_concrete_subtype ctxk
   385   1, // concrete_with_no_concrete_subtype ctxk
   386   2, // unique_concrete_method ctxk, m
   387   3, // unique_concrete_subtypes_2 ctxk, k1, k2
   388   3, // unique_concrete_methods_2 ctxk, m1, m2
   389   1, // no_finalizable_subclasses ctxk
   390   2  // call_site_target_value call_site, method_handle
   391 };
   393 const char* Dependencies::dep_name(Dependencies::DepType dept) {
   394   if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
   395   return _dep_name[dept];
   396 }
   398 int Dependencies::dep_args(Dependencies::DepType dept) {
   399   if (!dept_in_mask(dept, all_types))  return -1;
   400   return _dep_args[dept];
   401 }
   403 void Dependencies::check_valid_dependency_type(DepType dept) {
   404   guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, err_msg("invalid dependency type: %d", (int) dept));
   405 }
   407 // for the sake of the compiler log, print out current dependencies:
   408 void Dependencies::log_all_dependencies() {
   409   if (log() == NULL)  return;
   410   ResourceMark rm;
   411   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   412     DepType dept = (DepType)deptv;
   413     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   414     int deplen = deps->length();
   415     if (deplen == 0) {
   416       continue;
   417     }
   418     int stride = dep_args(dept);
   419     GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(stride);
   420     for (int i = 0; i < deps->length(); i += stride) {
   421       for (int j = 0; j < stride; j++) {
   422         // flush out the identities before printing
   423         ciargs->push(deps->at(i+j));
   424       }
   425       write_dependency_to(log(), dept, ciargs);
   426       ciargs->clear();
   427     }
   428     guarantee(deplen == deps->length(), "deps array cannot grow inside nested ResoureMark scope");
   429   }
   430 }
   432 void Dependencies::write_dependency_to(CompileLog* log,
   433                                        DepType dept,
   434                                        GrowableArray<DepArgument>* args,
   435                                        Klass* witness) {
   436   if (log == NULL) {
   437     return;
   438   }
   439   ResourceMark rm;
   440   ciEnv* env = ciEnv::current();
   441   GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(args->length());
   442   for (GrowableArrayIterator<DepArgument> it = args->begin(); it != args->end(); ++it) {
   443     DepArgument arg = *it;
   444     if (arg.is_oop()) {
   445       ciargs->push(env->get_object(arg.oop_value()));
   446     } else {
   447       ciargs->push(env->get_metadata(arg.metadata_value()));
   448     }
   449   }
   450   int argslen = ciargs->length();
   451   Dependencies::write_dependency_to(log, dept, ciargs, witness);
   452   guarantee(argslen == ciargs->length(), "ciargs array cannot grow inside nested ResoureMark scope");
   453 }
   455 void Dependencies::write_dependency_to(CompileLog* log,
   456                                        DepType dept,
   457                                        GrowableArray<ciBaseObject*>* args,
   458                                        Klass* witness) {
   459   if (log == NULL) {
   460     return;
   461   }
   462   ResourceMark rm;
   463   GrowableArray<int>* argids = new GrowableArray<int>(args->length());
   464   for (GrowableArrayIterator<ciBaseObject*> it = args->begin(); it != args->end(); ++it) {
   465     ciBaseObject* obj = *it;
   466     if (obj->is_object()) {
   467       argids->push(log->identify(obj->as_object()));
   468     } else {
   469       argids->push(log->identify(obj->as_metadata()));
   470     }
   471   }
   472   if (witness != NULL) {
   473     log->begin_elem("dependency_failed");
   474   } else {
   475     log->begin_elem("dependency");
   476   }
   477   log->print(" type='%s'", dep_name(dept));
   478   const int ctxkj = dep_context_arg(dept);  // -1 if no context arg
   479   if (ctxkj >= 0 && ctxkj < argids->length()) {
   480     log->print(" ctxk='%d'", argids->at(ctxkj));
   481   }
   482   // write remaining arguments, if any.
   483   for (int j = 0; j < argids->length(); j++) {
   484     if (j == ctxkj)  continue;  // already logged
   485     if (j == 1) {
   486       log->print(  " x='%d'",    argids->at(j));
   487     } else {
   488       log->print(" x%d='%d'", j, argids->at(j));
   489     }
   490   }
   491   if (witness != NULL) {
   492     log->object("witness", witness);
   493     log->stamp();
   494   }
   495   log->end_elem();
   496 }
   498 void Dependencies::write_dependency_to(xmlStream* xtty,
   499                                        DepType dept,
   500                                        GrowableArray<DepArgument>* args,
   501                                        Klass* witness) {
   502   if (xtty == NULL) {
   503     return;
   504   }
   505   ResourceMark rm;
   506   ttyLocker ttyl;
   507   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
   508   if (witness != NULL) {
   509     xtty->begin_elem("dependency_failed");
   510   } else {
   511     xtty->begin_elem("dependency");
   512   }
   513   xtty->print(" type='%s'", dep_name(dept));
   514   if (ctxkj >= 0) {
   515     xtty->object("ctxk", args->at(ctxkj).metadata_value());
   516   }
   517   // write remaining arguments, if any.
   518   for (int j = 0; j < args->length(); j++) {
   519     if (j == ctxkj)  continue;  // already logged
   520     DepArgument arg = args->at(j);
   521     if (j == 1) {
   522       if (arg.is_oop()) {
   523         xtty->object("x", arg.oop_value());
   524       } else {
   525         xtty->object("x", arg.metadata_value());
   526       }
   527     } else {
   528       char xn[10]; sprintf(xn, "x%d", j);
   529       if (arg.is_oop()) {
   530         xtty->object(xn, arg.oop_value());
   531       } else {
   532         xtty->object(xn, arg.metadata_value());
   533       }
   534     }
   535   }
   536   if (witness != NULL) {
   537     xtty->object("witness", witness);
   538     xtty->stamp();
   539   }
   540   xtty->end_elem();
   541 }
   543 void Dependencies::print_dependency(DepType dept, GrowableArray<DepArgument>* args,
   544                                     Klass* witness) {
   545   ResourceMark rm;
   546   ttyLocker ttyl;   // keep the following output all in one block
   547   tty->print_cr("%s of type %s",
   548                 (witness == NULL)? "Dependency": "Failed dependency",
   549                 dep_name(dept));
   550   // print arguments
   551   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
   552   for (int j = 0; j < args->length(); j++) {
   553     DepArgument arg = args->at(j);
   554     bool put_star = false;
   555     if (arg.is_null())  continue;
   556     const char* what;
   557     if (j == ctxkj) {
   558       assert(arg.is_metadata(), "must be");
   559       what = "context";
   560       put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
   561     } else if (arg.is_method()) {
   562       what = "method ";
   563       put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value(), NULL);
   564     } else if (arg.is_klass()) {
   565       what = "class  ";
   566     } else {
   567       what = "object ";
   568     }
   569     tty->print("  %s = %s", what, (put_star? "*": ""));
   570     if (arg.is_klass())
   571       tty->print("%s", ((Klass*)arg.metadata_value())->external_name());
   572     else if (arg.is_method())
   573       ((Method*)arg.metadata_value())->print_value();
   574     else
   575       ShouldNotReachHere(); // Provide impl for this type.
   576     tty->cr();
   577   }
   578   if (witness != NULL) {
   579     bool put_star = !Dependencies::is_concrete_klass(witness);
   580     tty->print_cr("  witness = %s%s",
   581                   (put_star? "*": ""),
   582                   witness->external_name());
   583   }
   584 }
   586 void Dependencies::DepStream::log_dependency(Klass* witness) {
   587   if (_deps == NULL && xtty == NULL)  return;  // fast cutout for runtime
   588   ResourceMark rm;
   589   const int nargs = argument_count();
   590   GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
   591   for (int j = 0; j < nargs; j++) {
   592     if (type() == call_site_target_value) {
   593       args->push(argument_oop(j));
   594     } else {
   595       args->push(argument(j));
   596     }
   597   }
   598   int argslen = args->length();
   599   if (_deps != NULL && _deps->log() != NULL) {
   600     Dependencies::write_dependency_to(_deps->log(), type(), args, witness);
   601   } else {
   602     Dependencies::write_dependency_to(xtty, type(), args, witness);
   603   }
   604   guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
   605 }
   607 void Dependencies::DepStream::print_dependency(Klass* witness, bool verbose) {
   608   ResourceMark rm;
   609   int nargs = argument_count();
   610   GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
   611   for (int j = 0; j < nargs; j++) {
   612     args->push(argument(j));
   613   }
   614   int argslen = args->length();
   615   Dependencies::print_dependency(type(), args, witness);
   616   if (verbose) {
   617     if (_code != NULL) {
   618       tty->print("  code: ");
   619       _code->print_value_on(tty);
   620       tty->cr();
   621     }
   622   }
   623   guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
   624 }
   627 /// Dependency stream support (decodes dependencies from an nmethod):
   629 #ifdef ASSERT
   630 void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
   631   assert(must_be_in_vm(), "raw oops here");
   632   _byte_limit = byte_limit;
   633   _type       = (DepType)(end_marker-1);  // defeat "already at end" assert
   634   assert((_code!=NULL) + (_deps!=NULL) == 1, "one or t'other");
   635 }
   636 #endif //ASSERT
   638 bool Dependencies::DepStream::next() {
   639   assert(_type != end_marker, "already at end");
   640   if (_bytes.position() == 0 && _code != NULL
   641       && _code->dependencies_size() == 0) {
   642     // Method has no dependencies at all.
   643     return false;
   644   }
   645   int code_byte = (_bytes.read_byte() & 0xFF);
   646   if (code_byte == end_marker) {
   647     DEBUG_ONLY(_type = end_marker);
   648     return false;
   649   } else {
   650     int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
   651     code_byte -= ctxk_bit;
   652     DepType dept = (DepType)code_byte;
   653     _type = dept;
   654     Dependencies::check_valid_dependency_type(dept);
   655     int stride = _dep_args[dept];
   656     assert(stride == dep_args(dept), "sanity");
   657     int skipj = -1;
   658     if (ctxk_bit != 0) {
   659       skipj = 0;  // currently the only context argument is at zero
   660       assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
   661     }
   662     for (int j = 0; j < stride; j++) {
   663       _xi[j] = (j == skipj)? 0: _bytes.read_int();
   664     }
   665     DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
   666     return true;
   667   }
   668 }
   670 inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
   671   Metadata* o = NULL;
   672   if (_code != NULL) {
   673     o = _code->metadata_at(i);
   674   } else {
   675     o = _deps->oop_recorder()->metadata_at(i);
   676   }
   677   return o;
   678 }
   680 inline oop Dependencies::DepStream::recorded_oop_at(int i) {
   681   return (_code != NULL)
   682          ? _code->oop_at(i)
   683     : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
   684 }
   686 Metadata* Dependencies::DepStream::argument(int i) {
   687   Metadata* result = recorded_metadata_at(argument_index(i));
   689   if (result == NULL) { // Explicit context argument can be compressed
   690     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
   691     if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) {
   692       result = ctxk_encoded_as_null(type(), argument(ctxkj+1));
   693     }
   694   }
   696   assert(result == NULL || result->is_klass() || result->is_method(), "must be");
   697   return result;
   698 }
   700 oop Dependencies::DepStream::argument_oop(int i) {
   701   oop result = recorded_oop_at(argument_index(i));
   702   assert(result == NULL || result->is_oop(), "must be");
   703   return result;
   704 }
   706 Klass* Dependencies::DepStream::context_type() {
   707   assert(must_be_in_vm(), "raw oops here");
   709   // Most dependencies have an explicit context type argument.
   710   {
   711     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
   712     if (ctxkj >= 0) {
   713       Metadata* k = argument(ctxkj);
   714       assert(k != NULL && k->is_klass(), "type check");
   715       return (Klass*)k;
   716     }
   717   }
   719   // Some dependencies are using the klass of the first object
   720   // argument as implicit context type (e.g. call_site_target_value).
   721   {
   722     int ctxkj = dep_implicit_context_arg(type());
   723     if (ctxkj >= 0) {
   724       Klass* k = argument_oop(ctxkj)->klass();
   725       assert(k != NULL && k->is_klass(), "type check");
   726       return (Klass*) k;
   727     }
   728   }
   730   // And some dependencies don't have a context type at all,
   731   // e.g. evol_method.
   732   return NULL;
   733 }
   735 /// Checking dependencies:
   737 // This hierarchy walker inspects subtypes of a given type,
   738 // trying to find a "bad" class which breaks a dependency.
   739 // Such a class is called a "witness" to the broken dependency.
   740 // While searching around, we ignore "participants", which
   741 // are already known to the dependency.
   742 class ClassHierarchyWalker {
   743  public:
   744   enum { PARTICIPANT_LIMIT = 3 };
   746  private:
   747   // optional method descriptor to check for:
   748   Symbol* _name;
   749   Symbol* _signature;
   751   // special classes which are not allowed to be witnesses:
   752   Klass*    _participants[PARTICIPANT_LIMIT+1];
   753   int       _num_participants;
   755   // cache of method lookups
   756   Method* _found_methods[PARTICIPANT_LIMIT+1];
   758   // if non-zero, tells how many witnesses to convert to participants
   759   int       _record_witnesses;
   761   void initialize(Klass* participant) {
   762     _record_witnesses = 0;
   763     _participants[0]  = participant;
   764     _found_methods[0] = NULL;
   765     _num_participants = 0;
   766     if (participant != NULL) {
   767       // Terminating NULL.
   768       _participants[1] = NULL;
   769       _found_methods[1] = NULL;
   770       _num_participants = 1;
   771     }
   772   }
   774   void initialize_from_method(Method* m) {
   775     assert(m != NULL && m->is_method(), "sanity");
   776     _name      = m->name();
   777     _signature = m->signature();
   778   }
   780  public:
   781   // The walker is initialized to recognize certain methods and/or types
   782   // as friendly participants.
   783   ClassHierarchyWalker(Klass* participant, Method* m) {
   784     initialize_from_method(m);
   785     initialize(participant);
   786   }
   787   ClassHierarchyWalker(Method* m) {
   788     initialize_from_method(m);
   789     initialize(NULL);
   790   }
   791   ClassHierarchyWalker(Klass* participant = NULL) {
   792     _name      = NULL;
   793     _signature = NULL;
   794     initialize(participant);
   795   }
   797   // This is common code for two searches:  One for concrete subtypes,
   798   // the other for concrete method implementations and overrides.
   799   bool doing_subtype_search() {
   800     return _name == NULL;
   801   }
   803   int num_participants() { return _num_participants; }
   804   Klass* participant(int n) {
   805     assert((uint)n <= (uint)_num_participants, "oob");
   806     return _participants[n];
   807   }
   809   // Note:  If n==num_participants, returns NULL.
   810   Method* found_method(int n) {
   811     assert((uint)n <= (uint)_num_participants, "oob");
   812     Method* fm = _found_methods[n];
   813     assert(n == _num_participants || fm != NULL, "proper usage");
   814     assert(fm == NULL || fm->method_holder() == _participants[n], "sanity");
   815     return fm;
   816   }
   818 #ifdef ASSERT
   819   // Assert that m is inherited into ctxk, without intervening overrides.
   820   // (May return true even if this is not true, in corner cases where we punt.)
   821   bool check_method_context(Klass* ctxk, Method* m) {
   822     if (m->method_holder() == ctxk)
   823       return true;  // Quick win.
   824     if (m->is_private())
   825       return false; // Quick lose.  Should not happen.
   826     if (!(m->is_public() || m->is_protected()))
   827       // The override story is complex when packages get involved.
   828       return true;  // Must punt the assertion to true.
   829     Klass* k = ctxk;
   830     Method* lm = k->lookup_method(m->name(), m->signature());
   831     if (lm == NULL && k->oop_is_instance()) {
   832       // It might be an interface method
   833         lm = ((InstanceKlass*)k)->lookup_method_in_ordered_interfaces(m->name(),
   834                                                                 m->signature());
   835     }
   836     if (lm == m)
   837       // Method m is inherited into ctxk.
   838       return true;
   839     if (lm != NULL) {
   840       if (!(lm->is_public() || lm->is_protected())) {
   841         // Method is [package-]private, so the override story is complex.
   842         return true;  // Must punt the assertion to true.
   843       }
   844       if (lm->is_static()) {
   845         // Static methods don't override non-static so punt
   846         return true;
   847       }
   848       if (   !Dependencies::is_concrete_method(lm, k)
   849           && !Dependencies::is_concrete_method(m, ctxk)
   850           && lm->method_holder()->is_subtype_of(m->method_holder()))
   851         // Method m is overridden by lm, but both are non-concrete.
   852         return true;
   853     }
   854     ResourceMark rm;
   855     tty->print_cr("Dependency method not found in the associated context:");
   856     tty->print_cr("  context = %s", ctxk->external_name());
   857     tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
   858     if (lm != NULL) {
   859       tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
   860     }
   861     return false;
   862   }
   863 #endif
   865   void add_participant(Klass* participant) {
   866     assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
   867     int np = _num_participants++;
   868     _participants[np] = participant;
   869     _participants[np+1] = NULL;
   870     _found_methods[np+1] = NULL;
   871   }
   873   void record_witnesses(int add) {
   874     if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
   875     assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
   876     _record_witnesses = add;
   877   }
   879   bool is_witness(Klass* k) {
   880     if (doing_subtype_search()) {
   881       return Dependencies::is_concrete_klass(k);
   882     } else if (!k->oop_is_instance()) {
   883       return false; // no methods to find in an array type
   884     } else {
   885       // Search class hierarchy first.
   886       Method* m = InstanceKlass::cast(k)->find_instance_method(_name, _signature);
   887       if (!Dependencies::is_concrete_method(m, k)) {
   888         // Check interface defaults also, if any exist.
   889         Array<Method*>* default_methods = InstanceKlass::cast(k)->default_methods();
   890         if (default_methods == NULL)
   891             return false;
   892         m = InstanceKlass::cast(k)->find_method(default_methods, _name, _signature);
   893         if (!Dependencies::is_concrete_method(m, NULL))
   894             return false;
   895       }
   896       _found_methods[_num_participants] = m;
   897       // Note:  If add_participant(k) is called,
   898       // the method m will already be memoized for it.
   899       return true;
   900     }
   901   }
   903   bool is_participant(Klass* k) {
   904     if (k == _participants[0]) {
   905       return true;
   906     } else if (_num_participants <= 1) {
   907       return false;
   908     } else {
   909       return in_list(k, &_participants[1]);
   910     }
   911   }
   912   bool ignore_witness(Klass* witness) {
   913     if (_record_witnesses == 0) {
   914       return false;
   915     } else {
   916       --_record_witnesses;
   917       add_participant(witness);
   918       return true;
   919     }
   920   }
   921   static bool in_list(Klass* x, Klass** list) {
   922     for (int i = 0; ; i++) {
   923       Klass* y = list[i];
   924       if (y == NULL)  break;
   925       if (y == x)  return true;
   926     }
   927     return false;  // not in list
   928   }
   930  private:
   931   // the actual search method:
   932   Klass* find_witness_anywhere(Klass* context_type,
   933                                  bool participants_hide_witnesses,
   934                                  bool top_level_call = true);
   935   // the spot-checking version:
   936   Klass* find_witness_in(KlassDepChange& changes,
   937                          Klass* context_type,
   938                            bool participants_hide_witnesses);
   939  public:
   940   Klass* find_witness_subtype(Klass* context_type, KlassDepChange* changes = NULL) {
   941     assert(doing_subtype_search(), "must set up a subtype search");
   942     // When looking for unexpected concrete types,
   943     // do not look beneath expected ones.
   944     const bool participants_hide_witnesses = true;
   945     // CX > CC > C' is OK, even if C' is new.
   946     // CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
   947     if (changes != NULL) {
   948       return find_witness_in(*changes, context_type, participants_hide_witnesses);
   949     } else {
   950       return find_witness_anywhere(context_type, participants_hide_witnesses);
   951     }
   952   }
   953   Klass* find_witness_definer(Klass* context_type, KlassDepChange* changes = NULL) {
   954     assert(!doing_subtype_search(), "must set up a method definer search");
   955     // When looking for unexpected concrete methods,
   956     // look beneath expected ones, to see if there are overrides.
   957     const bool participants_hide_witnesses = true;
   958     // CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
   959     if (changes != NULL) {
   960       return find_witness_in(*changes, context_type, !participants_hide_witnesses);
   961     } else {
   962       return find_witness_anywhere(context_type, !participants_hide_witnesses);
   963     }
   964   }
   965 };
   967 #ifndef PRODUCT
   968 static int deps_find_witness_calls = 0;
   969 static int deps_find_witness_steps = 0;
   970 static int deps_find_witness_recursions = 0;
   971 static int deps_find_witness_singles = 0;
   972 static int deps_find_witness_print = 0; // set to -1 to force a final print
   973 static bool count_find_witness_calls() {
   974   if (TraceDependencies || LogCompilation) {
   975     int pcount = deps_find_witness_print + 1;
   976     bool final_stats      = (pcount == 0);
   977     bool initial_call     = (pcount == 1);
   978     bool occasional_print = ((pcount & ((1<<10) - 1)) == 0);
   979     if (pcount < 0)  pcount = 1; // crude overflow protection
   980     deps_find_witness_print = pcount;
   981     if (VerifyDependencies && initial_call) {
   982       tty->print_cr("Warning:  TraceDependencies results may be inflated by VerifyDependencies");
   983     }
   984     if (occasional_print || final_stats) {
   985       // Every now and then dump a little info about dependency searching.
   986       if (xtty != NULL) {
   987        ttyLocker ttyl;
   988        xtty->elem("deps_find_witness calls='%d' steps='%d' recursions='%d' singles='%d'",
   989                    deps_find_witness_calls,
   990                    deps_find_witness_steps,
   991                    deps_find_witness_recursions,
   992                    deps_find_witness_singles);
   993       }
   994       if (final_stats || (TraceDependencies && WizardMode)) {
   995         ttyLocker ttyl;
   996         tty->print_cr("Dependency check (find_witness) "
   997                       "calls=%d, steps=%d (avg=%.1f), recursions=%d, singles=%d",
   998                       deps_find_witness_calls,
   999                       deps_find_witness_steps,
  1000                       (double)deps_find_witness_steps / deps_find_witness_calls,
  1001                       deps_find_witness_recursions,
  1002                       deps_find_witness_singles);
  1005     return true;
  1007   return false;
  1009 #else
  1010 #define count_find_witness_calls() (0)
  1011 #endif //PRODUCT
  1014 Klass* ClassHierarchyWalker::find_witness_in(KlassDepChange& changes,
  1015                                                Klass* context_type,
  1016                                                bool participants_hide_witnesses) {
  1017   assert(changes.involves_context(context_type), "irrelevant dependency");
  1018   Klass* new_type = changes.new_type();
  1020   (void)count_find_witness_calls();
  1021   NOT_PRODUCT(deps_find_witness_singles++);
  1023   // Current thread must be in VM (not native mode, as in CI):
  1024   assert(must_be_in_vm(), "raw oops here");
  1025   // Must not move the class hierarchy during this check:
  1026   assert_locked_or_safepoint(Compile_lock);
  1028   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
  1029   if (nof_impls > 1) {
  1030     // Avoid this case: *I.m > { A.m, C }; B.m > C
  1031     // %%% Until this is fixed more systematically, bail out.
  1032     // See corresponding comment in find_witness_anywhere.
  1033     return context_type;
  1036   assert(!is_participant(new_type), "only old classes are participants");
  1037   if (participants_hide_witnesses) {
  1038     // If the new type is a subtype of a participant, we are done.
  1039     for (int i = 0; i < num_participants(); i++) {
  1040       Klass* part = participant(i);
  1041       if (part == NULL)  continue;
  1042       assert(changes.involves_context(part) == new_type->is_subtype_of(part),
  1043              "correct marking of participants, b/c new_type is unique");
  1044       if (changes.involves_context(part)) {
  1045         // new guy is protected from this check by previous participant
  1046         return NULL;
  1051   if (is_witness(new_type) &&
  1052       !ignore_witness(new_type)) {
  1053     return new_type;
  1056   return NULL;
  1060 // Walk hierarchy under a context type, looking for unexpected types.
  1061 // Do not report participant types, and recursively walk beneath
  1062 // them only if participants_hide_witnesses is false.
  1063 // If top_level_call is false, skip testing the context type,
  1064 // because the caller has already considered it.
  1065 Klass* ClassHierarchyWalker::find_witness_anywhere(Klass* context_type,
  1066                                                      bool participants_hide_witnesses,
  1067                                                      bool top_level_call) {
  1068   // Current thread must be in VM (not native mode, as in CI):
  1069   assert(must_be_in_vm(), "raw oops here");
  1070   // Must not move the class hierarchy during this check:
  1071   assert_locked_or_safepoint(Compile_lock);
  1073   bool do_counts = count_find_witness_calls();
  1075   // Check the root of the sub-hierarchy first.
  1076   if (top_level_call) {
  1077     if (do_counts) {
  1078       NOT_PRODUCT(deps_find_witness_calls++);
  1079       NOT_PRODUCT(deps_find_witness_steps++);
  1081     if (is_participant(context_type)) {
  1082       if (participants_hide_witnesses)  return NULL;
  1083       // else fall through to search loop...
  1084     } else if (is_witness(context_type) && !ignore_witness(context_type)) {
  1085       // The context is an abstract class or interface, to start with.
  1086       return context_type;
  1090   // Now we must check each implementor and each subclass.
  1091   // Use a short worklist to avoid blowing the stack.
  1092   // Each worklist entry is a *chain* of subklass siblings to process.
  1093   const int CHAINMAX = 100;  // >= 1 + InstanceKlass::implementors_limit
  1094   Klass* chains[CHAINMAX];
  1095   int    chaini = 0;  // index into worklist
  1096   Klass* chain;       // scratch variable
  1097 #define ADD_SUBCLASS_CHAIN(k)                     {  \
  1098     assert(chaini < CHAINMAX, "oob");                \
  1099     chain = k->subklass();                           \
  1100     if (chain != NULL)  chains[chaini++] = chain;    }
  1102   // Look for non-abstract subclasses.
  1103   // (Note:  Interfaces do not have subclasses.)
  1104   ADD_SUBCLASS_CHAIN(context_type);
  1106   // If it is an interface, search its direct implementors.
  1107   // (Their subclasses are additional indirect implementors.
  1108   // See InstanceKlass::add_implementor.)
  1109   // (Note:  nof_implementors is always zero for non-interfaces.)
  1110   if (top_level_call) {
  1111     int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
  1112     if (nof_impls > 1) {
  1113       // Avoid this case: *I.m > { A.m, C }; B.m > C
  1114       // Here, I.m has 2 concrete implementations, but m appears unique
  1115       // as A.m, because the search misses B.m when checking C.
  1116       // The inherited method B.m was getting missed by the walker
  1117       // when interface 'I' was the starting point.
  1118       // %%% Until this is fixed more systematically, bail out.
  1119       // (Old CHA had the same limitation.)
  1120       return context_type;
  1122     if (nof_impls > 0) {
  1123       Klass* impl = InstanceKlass::cast(context_type)->implementor();
  1124       assert(impl != NULL, "just checking");
  1125       // If impl is the same as the context_type, then more than one
  1126       // implementor has seen. No exact info in this case.
  1127       if (impl == context_type) {
  1128         return context_type;  // report an inexact witness to this sad affair
  1130       if (do_counts)
  1131         { NOT_PRODUCT(deps_find_witness_steps++); }
  1132       if (is_participant(impl)) {
  1133         if (!participants_hide_witnesses) {
  1134           ADD_SUBCLASS_CHAIN(impl);
  1136       } else if (is_witness(impl) && !ignore_witness(impl)) {
  1137         return impl;
  1138       } else {
  1139         ADD_SUBCLASS_CHAIN(impl);
  1144   // Recursively process each non-trivial sibling chain.
  1145   while (chaini > 0) {
  1146     Klass* chain = chains[--chaini];
  1147     for (Klass* sub = chain; sub != NULL; sub = sub->next_sibling()) {
  1148       if (do_counts) { NOT_PRODUCT(deps_find_witness_steps++); }
  1149       if (is_participant(sub)) {
  1150         if (participants_hide_witnesses)  continue;
  1151         // else fall through to process this guy's subclasses
  1152       } else if (is_witness(sub) && !ignore_witness(sub)) {
  1153         return sub;
  1155       if (chaini < (VerifyDependencies? 2: CHAINMAX)) {
  1156         // Fast path.  (Partially disabled if VerifyDependencies.)
  1157         ADD_SUBCLASS_CHAIN(sub);
  1158       } else {
  1159         // Worklist overflow.  Do a recursive call.  Should be rare.
  1160         // The recursive call will have its own worklist, of course.
  1161         // (Note that sub has already been tested, so that there is
  1162         // no need for the recursive call to re-test.  That's handy,
  1163         // since the recursive call sees sub as the context_type.)
  1164         if (do_counts) { NOT_PRODUCT(deps_find_witness_recursions++); }
  1165         Klass* witness = find_witness_anywhere(sub,
  1166                                                  participants_hide_witnesses,
  1167                                                  /*top_level_call=*/ false);
  1168         if (witness != NULL)  return witness;
  1173   // No witness found.  The dependency remains unbroken.
  1174   return NULL;
  1175 #undef ADD_SUBCLASS_CHAIN
  1179 bool Dependencies::is_concrete_klass(Klass* k) {
  1180   if (k->is_abstract())  return false;
  1181   // %%% We could treat classes which are concrete but
  1182   // have not yet been instantiated as virtually abstract.
  1183   // This would require a deoptimization barrier on first instantiation.
  1184   //if (k->is_not_instantiated())  return false;
  1185   return true;
  1188 bool Dependencies::is_concrete_method(Method* m, Klass * k) {
  1189   // NULL is not a concrete method,
  1190   // statics are irrelevant to virtual call sites,
  1191   // abstract methods are not concrete,
  1192   // overpass (error) methods are not concrete if k is abstract
  1193   //
  1194   // note "true" is conservative answer --
  1195   //     overpass clause is false if k == NULL, implies return true if
  1196   //     answer depends on overpass clause.
  1197   return ! ( m == NULL || m -> is_static() || m -> is_abstract() ||
  1198              m->is_overpass() && k != NULL && k -> is_abstract() );
  1202 Klass* Dependencies::find_finalizable_subclass(Klass* k) {
  1203   if (k->is_interface())  return NULL;
  1204   if (k->has_finalizer()) return k;
  1205   k = k->subklass();
  1206   while (k != NULL) {
  1207     Klass* result = find_finalizable_subclass(k);
  1208     if (result != NULL) return result;
  1209     k = k->next_sibling();
  1211   return NULL;
  1215 bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
  1216   if (k->is_abstract())  return false;
  1217   // We could also return false if k does not yet appear to be
  1218   // instantiated, if the VM version supports this distinction also.
  1219   //if (k->is_not_instantiated())  return false;
  1220   return true;
  1223 bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
  1224   return k->has_finalizable_subclass();
  1228 // Any use of the contents (bytecodes) of a method must be
  1229 // marked by an "evol_method" dependency, if those contents
  1230 // can change.  (Note: A method is always dependent on itself.)
  1231 Klass* Dependencies::check_evol_method(Method* m) {
  1232   assert(must_be_in_vm(), "raw oops here");
  1233   // Did somebody do a JVMTI RedefineClasses while our backs were turned?
  1234   // Or is there a now a breakpoint?
  1235   // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
  1236   if (m->is_old()
  1237       || m->number_of_breakpoints() > 0) {
  1238     return m->method_holder();
  1239   } else {
  1240     return NULL;
  1244 // This is a strong assertion:  It is that the given type
  1245 // has no subtypes whatever.  It is most useful for
  1246 // optimizing checks on reflected types or on array types.
  1247 // (Checks on types which are derived from real instances
  1248 // can be optimized more strongly than this, because we
  1249 // know that the checked type comes from a concrete type,
  1250 // and therefore we can disregard abstract types.)
  1251 Klass* Dependencies::check_leaf_type(Klass* ctxk) {
  1252   assert(must_be_in_vm(), "raw oops here");
  1253   assert_locked_or_safepoint(Compile_lock);
  1254   InstanceKlass* ctx = InstanceKlass::cast(ctxk);
  1255   Klass* sub = ctx->subklass();
  1256   if (sub != NULL) {
  1257     return sub;
  1258   } else if (ctx->nof_implementors() != 0) {
  1259     // if it is an interface, it must be unimplemented
  1260     // (if it is not an interface, nof_implementors is always zero)
  1261     Klass* impl = ctx->implementor();
  1262     assert(impl != NULL, "must be set");
  1263     return impl;
  1264   } else {
  1265     return NULL;
  1269 // Test the assertion that conck is the only concrete subtype* of ctxk.
  1270 // The type conck itself is allowed to have have further concrete subtypes.
  1271 // This allows the compiler to narrow occurrences of ctxk by conck,
  1272 // when dealing with the types of actual instances.
  1273 Klass* Dependencies::check_abstract_with_unique_concrete_subtype(Klass* ctxk,
  1274                                                                    Klass* conck,
  1275                                                                    KlassDepChange* changes) {
  1276   ClassHierarchyWalker wf(conck);
  1277   return wf.find_witness_subtype(ctxk, changes);
  1280 // If a non-concrete class has no concrete subtypes, it is not (yet)
  1281 // instantiatable.  This can allow the compiler to make some paths go
  1282 // dead, if they are gated by a test of the type.
  1283 Klass* Dependencies::check_abstract_with_no_concrete_subtype(Klass* ctxk,
  1284                                                                KlassDepChange* changes) {
  1285   // Find any concrete subtype, with no participants:
  1286   ClassHierarchyWalker wf;
  1287   return wf.find_witness_subtype(ctxk, changes);
  1291 // If a concrete class has no concrete subtypes, it can always be
  1292 // exactly typed.  This allows the use of a cheaper type test.
  1293 Klass* Dependencies::check_concrete_with_no_concrete_subtype(Klass* ctxk,
  1294                                                                KlassDepChange* changes) {
  1295   // Find any concrete subtype, with only the ctxk as participant:
  1296   ClassHierarchyWalker wf(ctxk);
  1297   return wf.find_witness_subtype(ctxk, changes);
  1301 // Find the unique concrete proper subtype of ctxk, or NULL if there
  1302 // is more than one concrete proper subtype.  If there are no concrete
  1303 // proper subtypes, return ctxk itself, whether it is concrete or not.
  1304 // The returned subtype is allowed to have have further concrete subtypes.
  1305 // That is, return CC1 for CX > CC1 > CC2, but NULL for CX > { CC1, CC2 }.
  1306 Klass* Dependencies::find_unique_concrete_subtype(Klass* ctxk) {
  1307   ClassHierarchyWalker wf(ctxk);   // Ignore ctxk when walking.
  1308   wf.record_witnesses(1);          // Record one other witness when walking.
  1309   Klass* wit = wf.find_witness_subtype(ctxk);
  1310   if (wit != NULL)  return NULL;   // Too many witnesses.
  1311   Klass* conck = wf.participant(0);
  1312   if (conck == NULL) {
  1313 #ifndef PRODUCT
  1314     // Make sure the dependency mechanism will pass this discovery:
  1315     if (VerifyDependencies) {
  1316       // Turn off dependency tracing while actually testing deps.
  1317       FlagSetting fs(TraceDependencies, false);
  1318       if (!Dependencies::is_concrete_klass(ctxk)) {
  1319         guarantee(NULL ==
  1320                   (void *)check_abstract_with_no_concrete_subtype(ctxk),
  1321                   "verify dep.");
  1322       } else {
  1323         guarantee(NULL ==
  1324                   (void *)check_concrete_with_no_concrete_subtype(ctxk),
  1325                   "verify dep.");
  1328 #endif //PRODUCT
  1329     return ctxk;                   // Return ctxk as a flag for "no subtypes".
  1330   } else {
  1331 #ifndef PRODUCT
  1332     // Make sure the dependency mechanism will pass this discovery:
  1333     if (VerifyDependencies) {
  1334       // Turn off dependency tracing while actually testing deps.
  1335       FlagSetting fs(TraceDependencies, false);
  1336       if (!Dependencies::is_concrete_klass(ctxk)) {
  1337         guarantee(NULL == (void *)
  1338                   check_abstract_with_unique_concrete_subtype(ctxk, conck),
  1339                   "verify dep.");
  1342 #endif //PRODUCT
  1343     return conck;
  1347 // Test the assertion that the k[12] are the only concrete subtypes of ctxk,
  1348 // except possibly for further subtypes of k[12] themselves.
  1349 // The context type must be abstract.  The types k1 and k2 are themselves
  1350 // allowed to have further concrete subtypes.
  1351 Klass* Dependencies::check_abstract_with_exclusive_concrete_subtypes(
  1352                                                 Klass* ctxk,
  1353                                                 Klass* k1,
  1354                                                 Klass* k2,
  1355                                                 KlassDepChange* changes) {
  1356   ClassHierarchyWalker wf;
  1357   wf.add_participant(k1);
  1358   wf.add_participant(k2);
  1359   return wf.find_witness_subtype(ctxk, changes);
  1362 // Search ctxk for concrete implementations.  If there are klen or fewer,
  1363 // pack them into the given array and return the number.
  1364 // Otherwise, return -1, meaning the given array would overflow.
  1365 // (Note that a return of 0 means there are exactly no concrete subtypes.)
  1366 // In this search, if ctxk is concrete, it will be reported alone.
  1367 // For any type CC reported, no proper subtypes of CC will be reported.
  1368 int Dependencies::find_exclusive_concrete_subtypes(Klass* ctxk,
  1369                                                    int klen,
  1370                                                    Klass* karray[]) {
  1371   ClassHierarchyWalker wf;
  1372   wf.record_witnesses(klen);
  1373   Klass* wit = wf.find_witness_subtype(ctxk);
  1374   if (wit != NULL)  return -1;  // Too many witnesses.
  1375   int num = wf.num_participants();
  1376   assert(num <= klen, "oob");
  1377   // Pack the result array with the good news.
  1378   for (int i = 0; i < num; i++)
  1379     karray[i] = wf.participant(i);
  1380 #ifndef PRODUCT
  1381   // Make sure the dependency mechanism will pass this discovery:
  1382   if (VerifyDependencies) {
  1383     // Turn off dependency tracing while actually testing deps.
  1384     FlagSetting fs(TraceDependencies, false);
  1385     switch (Dependencies::is_concrete_klass(ctxk)? -1: num) {
  1386     case -1: // ctxk was itself concrete
  1387       guarantee(num == 1 && karray[0] == ctxk, "verify dep.");
  1388       break;
  1389     case 0:
  1390       guarantee(NULL == (void *)check_abstract_with_no_concrete_subtype(ctxk),
  1391                 "verify dep.");
  1392       break;
  1393     case 1:
  1394       guarantee(NULL == (void *)
  1395                 check_abstract_with_unique_concrete_subtype(ctxk, karray[0]),
  1396                 "verify dep.");
  1397       break;
  1398     case 2:
  1399       guarantee(NULL == (void *)
  1400                 check_abstract_with_exclusive_concrete_subtypes(ctxk,
  1401                                                                 karray[0],
  1402                                                                 karray[1]),
  1403                 "verify dep.");
  1404       break;
  1405     default:
  1406       ShouldNotReachHere();  // klen > 2 yet supported
  1409 #endif //PRODUCT
  1410   return num;
  1413 // If a class (or interface) has a unique concrete method uniqm, return NULL.
  1414 // Otherwise, return a class that contains an interfering method.
  1415 Klass* Dependencies::check_unique_concrete_method(Klass* ctxk, Method* uniqm,
  1416                                                     KlassDepChange* changes) {
  1417   // Here is a missing optimization:  If uniqm->is_final(),
  1418   // we don't really need to search beneath it for overrides.
  1419   // This is probably not important, since we don't use dependencies
  1420   // to track final methods.  (They can't be "definalized".)
  1421   ClassHierarchyWalker wf(uniqm->method_holder(), uniqm);
  1422   return wf.find_witness_definer(ctxk, changes);
  1425 // Find the set of all non-abstract methods under ctxk that match m.
  1426 // (The method m must be defined or inherited in ctxk.)
  1427 // Include m itself in the set, unless it is abstract.
  1428 // If this set has exactly one element, return that element.
  1429 Method* Dependencies::find_unique_concrete_method(Klass* ctxk, Method* m) {
  1430   ClassHierarchyWalker wf(m);
  1431   assert(wf.check_method_context(ctxk, m), "proper context");
  1432   wf.record_witnesses(1);
  1433   Klass* wit = wf.find_witness_definer(ctxk);
  1434   if (wit != NULL)  return NULL;  // Too many witnesses.
  1435   Method* fm = wf.found_method(0);  // Will be NULL if num_parts == 0.
  1436   if (Dependencies::is_concrete_method(m, ctxk)) {
  1437     if (fm == NULL) {
  1438       // It turns out that m was always the only implementation.
  1439       fm = m;
  1440     } else if (fm != m) {
  1441       // Two conflicting implementations after all.
  1442       // (This can happen if m is inherited into ctxk and fm overrides it.)
  1443       return NULL;
  1446 #ifndef PRODUCT
  1447   // Make sure the dependency mechanism will pass this discovery:
  1448   if (VerifyDependencies && fm != NULL) {
  1449     guarantee(NULL == (void *)check_unique_concrete_method(ctxk, fm),
  1450               "verify dep.");
  1452 #endif //PRODUCT
  1453   return fm;
  1456 Klass* Dependencies::check_exclusive_concrete_methods(Klass* ctxk,
  1457                                                         Method* m1,
  1458                                                         Method* m2,
  1459                                                         KlassDepChange* changes) {
  1460   ClassHierarchyWalker wf(m1);
  1461   wf.add_participant(m1->method_holder());
  1462   wf.add_participant(m2->method_holder());
  1463   return wf.find_witness_definer(ctxk, changes);
  1466 Klass* Dependencies::check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes) {
  1467   Klass* search_at = ctxk;
  1468   if (changes != NULL)
  1469     search_at = changes->new_type(); // just look at the new bit
  1470   return find_finalizable_subclass(search_at);
  1473 Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
  1474   assert(call_site    ->is_a(SystemDictionary::CallSite_klass()),     "sanity");
  1475   assert(method_handle->is_a(SystemDictionary::MethodHandle_klass()), "sanity");
  1476   if (changes == NULL) {
  1477     // Validate all CallSites
  1478     if (java_lang_invoke_CallSite::target(call_site) != method_handle)
  1479       return call_site->klass();  // assertion failed
  1480   } else {
  1481     // Validate the given CallSite
  1482     if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
  1483       assert(method_handle != changes->method_handle(), "must be");
  1484       return call_site->klass();  // assertion failed
  1487   return NULL;  // assertion still valid
  1491 void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
  1492   if (witness != NULL) {
  1493     if (TraceDependencies) {
  1494       print_dependency(witness, /*verbose=*/ true);
  1496     // The following is a no-op unless logging is enabled:
  1497     log_dependency(witness);
  1502 Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
  1503   assert_locked_or_safepoint(Compile_lock);
  1504   Dependencies::check_valid_dependency_type(type());
  1506   Klass* witness = NULL;
  1507   switch (type()) {
  1508   case evol_method:
  1509     witness = check_evol_method(method_argument(0));
  1510     break;
  1511   case leaf_type:
  1512     witness = check_leaf_type(context_type());
  1513     break;
  1514   case abstract_with_unique_concrete_subtype:
  1515     witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
  1516     break;
  1517   case abstract_with_no_concrete_subtype:
  1518     witness = check_abstract_with_no_concrete_subtype(context_type(), changes);
  1519     break;
  1520   case concrete_with_no_concrete_subtype:
  1521     witness = check_concrete_with_no_concrete_subtype(context_type(), changes);
  1522     break;
  1523   case unique_concrete_method:
  1524     witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
  1525     break;
  1526   case abstract_with_exclusive_concrete_subtypes_2:
  1527     witness = check_abstract_with_exclusive_concrete_subtypes(context_type(), type_argument(1), type_argument(2), changes);
  1528     break;
  1529   case exclusive_concrete_methods_2:
  1530     witness = check_exclusive_concrete_methods(context_type(), method_argument(1), method_argument(2), changes);
  1531     break;
  1532   case no_finalizable_subclasses:
  1533     witness = check_has_no_finalizable_subclasses(context_type(), changes);
  1534     break;
  1535   default:
  1536     witness = NULL;
  1537     break;
  1539   trace_and_log_witness(witness);
  1540   return witness;
  1544 Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
  1545   assert_locked_or_safepoint(Compile_lock);
  1546   Dependencies::check_valid_dependency_type(type());
  1548   Klass* witness = NULL;
  1549   switch (type()) {
  1550   case call_site_target_value:
  1551     witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
  1552     break;
  1553   default:
  1554     witness = NULL;
  1555     break;
  1557   trace_and_log_witness(witness);
  1558   return witness;
  1562 Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
  1563   // Handle klass dependency
  1564   if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
  1565     return check_klass_dependency(changes.as_klass_change());
  1567   // Handle CallSite dependency
  1568   if (changes.is_call_site_change())
  1569     return check_call_site_dependency(changes.as_call_site_change());
  1571   // irrelevant dependency; skip it
  1572   return NULL;
  1576 void DepChange::print() {
  1577   int nsup = 0, nint = 0;
  1578   for (ContextStream str(*this); str.next(); ) {
  1579     Klass* k = str.klass();
  1580     switch (str.change_type()) {
  1581     case Change_new_type:
  1582       tty->print_cr("  dependee = %s", InstanceKlass::cast(k)->external_name());
  1583       break;
  1584     case Change_new_sub:
  1585       if (!WizardMode) {
  1586         ++nsup;
  1587       } else {
  1588         tty->print_cr("  context super = %s", InstanceKlass::cast(k)->external_name());
  1590       break;
  1591     case Change_new_impl:
  1592       if (!WizardMode) {
  1593         ++nint;
  1594       } else {
  1595         tty->print_cr("  context interface = %s", InstanceKlass::cast(k)->external_name());
  1597       break;
  1600   if (nsup + nint != 0) {
  1601     tty->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
  1605 void DepChange::ContextStream::start() {
  1606   Klass* new_type = _changes.is_klass_change() ? _changes.as_klass_change()->new_type() : (Klass*) NULL;
  1607   _change_type = (new_type == NULL ? NO_CHANGE : Start_Klass);
  1608   _klass = new_type;
  1609   _ti_base = NULL;
  1610   _ti_index = 0;
  1611   _ti_limit = 0;
  1614 bool DepChange::ContextStream::next() {
  1615   switch (_change_type) {
  1616   case Start_Klass:             // initial state; _klass is the new type
  1617     _ti_base = InstanceKlass::cast(_klass)->transitive_interfaces();
  1618     _ti_index = 0;
  1619     _change_type = Change_new_type;
  1620     return true;
  1621   case Change_new_type:
  1622     // fall through:
  1623     _change_type = Change_new_sub;
  1624   case Change_new_sub:
  1625     // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
  1627       _klass = InstanceKlass::cast(_klass)->super();
  1628       if (_klass != NULL) {
  1629         return true;
  1632     // else set up _ti_limit and fall through:
  1633     _ti_limit = (_ti_base == NULL) ? 0 : _ti_base->length();
  1634     _change_type = Change_new_impl;
  1635   case Change_new_impl:
  1636     if (_ti_index < _ti_limit) {
  1637       _klass = _ti_base->at(_ti_index++);
  1638       return true;
  1640     // fall through:
  1641     _change_type = NO_CHANGE;  // iterator is exhausted
  1642   case NO_CHANGE:
  1643     break;
  1644   default:
  1645     ShouldNotReachHere();
  1647   return false;
  1650 void KlassDepChange::initialize() {
  1651   // entire transaction must be under this lock:
  1652   assert_lock_strong(Compile_lock);
  1654   // Mark all dependee and all its superclasses
  1655   // Mark transitive interfaces
  1656   for (ContextStream str(*this); str.next(); ) {
  1657     Klass* d = str.klass();
  1658     assert(!InstanceKlass::cast(d)->is_marked_dependent(), "checking");
  1659     InstanceKlass::cast(d)->set_is_marked_dependent(true);
  1663 KlassDepChange::~KlassDepChange() {
  1664   // Unmark all dependee and all its superclasses
  1665   // Unmark transitive interfaces
  1666   for (ContextStream str(*this); str.next(); ) {
  1667     Klass* d = str.klass();
  1668     InstanceKlass::cast(d)->set_is_marked_dependent(false);
  1672 bool KlassDepChange::involves_context(Klass* k) {
  1673   if (k == NULL || !k->oop_is_instance()) {
  1674     return false;
  1676   InstanceKlass* ik = InstanceKlass::cast(k);
  1677   bool is_contained = ik->is_marked_dependent();
  1678   assert(is_contained == new_type()->is_subtype_of(k),
  1679          "correct marking of potential context types");
  1680   return is_contained;
  1683 #ifndef PRODUCT
  1684 void Dependencies::print_statistics() {
  1685   if (deps_find_witness_print != 0) {
  1686     // Call one final time, to flush out the data.
  1687     deps_find_witness_print = -1;
  1688     count_find_witness_calls();
  1691 #endif

mercurial