src/cpu/sparc/vm/templateTable_sparc.cpp

Tue, 11 Sep 2012 20:20:38 -0400

author
coleenp
date
Tue, 11 Sep 2012 20:20:38 -0400
changeset 4052
75f33eecc1b3
parent 4037
da91efe96a93
child 4133
f6b0eb4e44cf
child 4142
d8ce2825b193
permissions
-rw-r--r--

7196681: NPG: Some JSR 292 tests crash in Windows exception handler
Summary: There was a rogue os::breakpoint() call in log_dependency left over from the jsr292 merge. Also changed verify_oop() calls for metadata to verify_{method,klass}_ptr.
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "interpreter/templateTable.hpp"
    29 #include "memory/universe.inline.hpp"
    30 #include "oops/methodData.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/stubRoutines.hpp"
    36 #include "runtime/synchronizer.hpp"
    38 #ifndef CC_INTERP
    39 #define __ _masm->
    41 // Misc helpers
    43 // Do an oop store like *(base + index + offset) = val
    44 // index can be noreg,
    45 static void do_oop_store(InterpreterMacroAssembler* _masm,
    46                          Register base,
    47                          Register index,
    48                          int offset,
    49                          Register val,
    50                          Register tmp,
    51                          BarrierSet::Name barrier,
    52                          bool precise) {
    53   assert(tmp != val && tmp != base && tmp != index, "register collision");
    54   assert(index == noreg || offset == 0, "only one offset");
    55   switch (barrier) {
    56 #ifndef SERIALGC
    57     case BarrierSet::G1SATBCT:
    58     case BarrierSet::G1SATBCTLogging:
    59       {
    60         // Load and record the previous value.
    61         __ g1_write_barrier_pre(base, index, offset,
    62                                 noreg /* pre_val */,
    63                                 tmp, true /*preserve_o_regs*/);
    65         if (index == noreg ) {
    66           assert(Assembler::is_simm13(offset), "fix this code");
    67           __ store_heap_oop(val, base, offset);
    68         } else {
    69           __ store_heap_oop(val, base, index);
    70         }
    72         // No need for post barrier if storing NULL
    73         if (val != G0) {
    74           if (precise) {
    75             if (index == noreg) {
    76               __ add(base, offset, base);
    77             } else {
    78               __ add(base, index, base);
    79             }
    80           }
    81           __ g1_write_barrier_post(base, val, tmp);
    82         }
    83       }
    84       break;
    85 #endif // SERIALGC
    86     case BarrierSet::CardTableModRef:
    87     case BarrierSet::CardTableExtension:
    88       {
    89         if (index == noreg ) {
    90           assert(Assembler::is_simm13(offset), "fix this code");
    91           __ store_heap_oop(val, base, offset);
    92         } else {
    93           __ store_heap_oop(val, base, index);
    94         }
    95         // No need for post barrier if storing NULL
    96         if (val != G0) {
    97           if (precise) {
    98             if (index == noreg) {
    99               __ add(base, offset, base);
   100             } else {
   101               __ add(base, index, base);
   102             }
   103           }
   104           __ card_write_barrier_post(base, val, tmp);
   105         }
   106       }
   107       break;
   108     case BarrierSet::ModRef:
   109     case BarrierSet::Other:
   110       ShouldNotReachHere();
   111       break;
   112     default      :
   113       ShouldNotReachHere();
   115   }
   116 }
   119 //----------------------------------------------------------------------------------------------------
   120 // Platform-dependent initialization
   122 void TemplateTable::pd_initialize() {
   123   // (none)
   124 }
   127 //----------------------------------------------------------------------------------------------------
   128 // Condition conversion
   129 Assembler::Condition ccNot(TemplateTable::Condition cc) {
   130   switch (cc) {
   131     case TemplateTable::equal        : return Assembler::notEqual;
   132     case TemplateTable::not_equal    : return Assembler::equal;
   133     case TemplateTable::less         : return Assembler::greaterEqual;
   134     case TemplateTable::less_equal   : return Assembler::greater;
   135     case TemplateTable::greater      : return Assembler::lessEqual;
   136     case TemplateTable::greater_equal: return Assembler::less;
   137   }
   138   ShouldNotReachHere();
   139   return Assembler::zero;
   140 }
   142 //----------------------------------------------------------------------------------------------------
   143 // Miscelaneous helper routines
   146 Address TemplateTable::at_bcp(int offset) {
   147   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   148   return Address(Lbcp, offset);
   149 }
   152 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
   153                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
   154                                    int byte_no) {
   155   // With sharing on, may need to test Method* flag.
   156   if (!RewriteBytecodes)  return;
   157   Label L_patch_done;
   159   switch (bc) {
   160   case Bytecodes::_fast_aputfield:
   161   case Bytecodes::_fast_bputfield:
   162   case Bytecodes::_fast_cputfield:
   163   case Bytecodes::_fast_dputfield:
   164   case Bytecodes::_fast_fputfield:
   165   case Bytecodes::_fast_iputfield:
   166   case Bytecodes::_fast_lputfield:
   167   case Bytecodes::_fast_sputfield:
   168     {
   169       // We skip bytecode quickening for putfield instructions when
   170       // the put_code written to the constant pool cache is zero.
   171       // This is required so that every execution of this instruction
   172       // calls out to InterpreterRuntime::resolve_get_put to do
   173       // additional, required work.
   174       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
   175       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
   176       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
   177       __ set(bc, bc_reg);
   178       __ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done);  // don't patch
   179     }
   180     break;
   181   default:
   182     assert(byte_no == -1, "sanity");
   183     if (load_bc_into_bc_reg) {
   184       __ set(bc, bc_reg);
   185     }
   186   }
   188   if (JvmtiExport::can_post_breakpoint()) {
   189     Label L_fast_patch;
   190     __ ldub(at_bcp(0), temp_reg);
   191     __ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch);
   192     // perform the quickening, slowly, in the bowels of the breakpoint table
   193     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg);
   194     __ ba_short(L_patch_done);
   195     __ bind(L_fast_patch);
   196   }
   198 #ifdef ASSERT
   199   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
   200   Label L_okay;
   201   __ ldub(at_bcp(0), temp_reg);
   202   __ cmp(temp_reg, orig_bytecode);
   203   __ br(Assembler::equal, false, Assembler::pt, L_okay);
   204   __ delayed()->cmp(temp_reg, bc_reg);
   205   __ br(Assembler::equal, false, Assembler::pt, L_okay);
   206   __ delayed()->nop();
   207   __ stop("patching the wrong bytecode");
   208   __ bind(L_okay);
   209 #endif
   211   // patch bytecode
   212   __ stb(bc_reg, at_bcp(0));
   213   __ bind(L_patch_done);
   214 }
   216 //----------------------------------------------------------------------------------------------------
   217 // Individual instructions
   219 void TemplateTable::nop() {
   220   transition(vtos, vtos);
   221   // nothing to do
   222 }
   224 void TemplateTable::shouldnotreachhere() {
   225   transition(vtos, vtos);
   226   __ stop("shouldnotreachhere bytecode");
   227 }
   229 void TemplateTable::aconst_null() {
   230   transition(vtos, atos);
   231   __ clr(Otos_i);
   232 }
   235 void TemplateTable::iconst(int value) {
   236   transition(vtos, itos);
   237   __ set(value, Otos_i);
   238 }
   241 void TemplateTable::lconst(int value) {
   242   transition(vtos, ltos);
   243   assert(value >= 0, "check this code");
   244 #ifdef _LP64
   245   __ set(value, Otos_l);
   246 #else
   247   __ set(value, Otos_l2);
   248   __ clr( Otos_l1);
   249 #endif
   250 }
   253 void TemplateTable::fconst(int value) {
   254   transition(vtos, ftos);
   255   static float zero = 0.0, one = 1.0, two = 2.0;
   256   float* p;
   257   switch( value ) {
   258    default: ShouldNotReachHere();
   259    case 0:  p = &zero;  break;
   260    case 1:  p = &one;   break;
   261    case 2:  p = &two;   break;
   262   }
   263   AddressLiteral a(p);
   264   __ sethi(a, G3_scratch);
   265   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
   266 }
   269 void TemplateTable::dconst(int value) {
   270   transition(vtos, dtos);
   271   static double zero = 0.0, one = 1.0;
   272   double* p;
   273   switch( value ) {
   274    default: ShouldNotReachHere();
   275    case 0:  p = &zero;  break;
   276    case 1:  p = &one;   break;
   277   }
   278   AddressLiteral a(p);
   279   __ sethi(a, G3_scratch);
   280   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
   281 }
   284 // %%%%% Should factore most snippet templates across platforms
   286 void TemplateTable::bipush() {
   287   transition(vtos, itos);
   288   __ ldsb( at_bcp(1), Otos_i );
   289 }
   291 void TemplateTable::sipush() {
   292   transition(vtos, itos);
   293   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
   294 }
   296 void TemplateTable::ldc(bool wide) {
   297   transition(vtos, vtos);
   298   Label call_ldc, notInt, isString, notString, notClass, exit;
   300   if (wide) {
   301     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
   302   } else {
   303     __ ldub(Lbcp, 1, O1);
   304   }
   305   __ get_cpool_and_tags(O0, O2);
   307   const int base_offset = ConstantPool::header_size() * wordSize;
   308   const int tags_offset = Array<u1>::base_offset_in_bytes();
   310   // get type from tags
   311   __ add(O2, tags_offset, O2);
   312   __ ldub(O2, O1, O2);
   314   // unresolved class? If so, must resolve
   315   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc);
   317   // unresolved class in error state
   318   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc);
   320   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
   321   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
   322   __ delayed()->add(O0, base_offset, O0);
   324   __ bind(call_ldc);
   325   __ set(wide, O1);
   326   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
   327   __ push(atos);
   328   __ ba_short(exit);
   330   __ bind(notClass);
   331  // __ add(O0, base_offset, O0);
   332   __ sll(O1, LogBytesPerWord, O1);
   333   __ cmp(O2, JVM_CONSTANT_Integer);
   334   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
   335   __ delayed()->cmp(O2, JVM_CONSTANT_String);
   336   __ ld(O0, O1, Otos_i);
   337   __ push(itos);
   338   __ ba_short(exit);
   340   __ bind(notInt);
   341  // __ cmp(O2, JVM_CONSTANT_String);
   342   __ brx(Assembler::equal, true, Assembler::pt, isString);
   343   __ delayed()->cmp(O2, JVM_CONSTANT_Object);
   344   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
   345   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
   346   __ bind(isString);
   347   __ stop("string should be rewritten to fast_aldc");
   348   __ ba_short(exit);
   350   __ bind(notString);
   351  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
   352   __ push(ftos);
   354   __ bind(exit);
   355 }
   357 // Fast path for caching oop constants.
   358 // %%% We should use this to handle Class and String constants also.
   359 // %%% It will simplify the ldc/primitive path considerably.
   360 void TemplateTable::fast_aldc(bool wide) {
   361   transition(vtos, atos);
   363   int index_size = wide ? sizeof(u2) : sizeof(u1);
   364   Label resolved;
   366   // We are resolved if the resolved reference cache entry contains a
   367   // non-null object (CallSite, etc.)
   368   assert_different_registers(Otos_i, G3_scratch);
   369   __ get_cache_index_at_bcp(Otos_i, G3_scratch, 1, index_size);  // load index => G3_scratch
   370   __ load_resolved_reference_at_index(Otos_i, G3_scratch);
   371   __ tst(Otos_i);
   372   __ br(Assembler::notEqual, false, Assembler::pt, resolved);
   373   __ delayed()->set((int)bytecode(), O1);
   375   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
   377   // first time invocation - must resolve first
   378   __ call_VM(Otos_i, entry, O1);
   379   __ bind(resolved);
   380   __ verify_oop(Otos_i);
   381 }
   384 void TemplateTable::ldc2_w() {
   385   transition(vtos, vtos);
   386   Label Long, exit;
   388   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
   389   __ get_cpool_and_tags(O0, O2);
   391   const int base_offset = ConstantPool::header_size() * wordSize;
   392   const int tags_offset = Array<u1>::base_offset_in_bytes();
   393   // get type from tags
   394   __ add(O2, tags_offset, O2);
   395   __ ldub(O2, O1, O2);
   397   __ sll(O1, LogBytesPerWord, O1);
   398   __ add(O0, O1, G3_scratch);
   400   __ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, Long);
   401   // A double can be placed at word-aligned locations in the constant pool.
   402   // Check out Conversions.java for an example.
   403   // Also ConstantPool::header_size() is 20, which makes it very difficult
   404   // to double-align double on the constant pool.  SG, 11/7/97
   405 #ifdef _LP64
   406   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
   407 #else
   408   FloatRegister f = Ftos_d;
   409   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
   410   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
   411          f->successor());
   412 #endif
   413   __ push(dtos);
   414   __ ba_short(exit);
   416   __ bind(Long);
   417 #ifdef _LP64
   418   __ ldx(G3_scratch, base_offset, Otos_l);
   419 #else
   420   __ ld(G3_scratch, base_offset, Otos_l);
   421   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
   422 #endif
   423   __ push(ltos);
   425   __ bind(exit);
   426 }
   429 void TemplateTable::locals_index(Register reg, int offset) {
   430   __ ldub( at_bcp(offset), reg );
   431 }
   434 void TemplateTable::locals_index_wide(Register reg) {
   435   // offset is 2, not 1, because Lbcp points to wide prefix code
   436   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
   437 }
   439 void TemplateTable::iload() {
   440   transition(vtos, itos);
   441   // Rewrite iload,iload  pair into fast_iload2
   442   //         iload,caload pair into fast_icaload
   443   if (RewriteFrequentPairs) {
   444     Label rewrite, done;
   446     // get next byte
   447     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
   449     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   450     // last two iloads in a pair.  Comparing against fast_iload means that
   451     // the next bytecode is neither an iload or a caload, and therefore
   452     // an iload pair.
   453     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done);
   455     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
   456     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   457     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
   459     __ cmp(G3_scratch, (int)Bytecodes::_caload);
   460     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   461     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
   463     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
   464     // rewrite
   465     // G4_scratch: fast bytecode
   466     __ bind(rewrite);
   467     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
   468     __ bind(done);
   469   }
   471   // Get the local value into tos
   472   locals_index(G3_scratch);
   473   __ access_local_int( G3_scratch, Otos_i );
   474 }
   476 void TemplateTable::fast_iload2() {
   477   transition(vtos, itos);
   478   locals_index(G3_scratch);
   479   __ access_local_int( G3_scratch, Otos_i );
   480   __ push_i();
   481   locals_index(G3_scratch, 3);  // get next bytecode's local index.
   482   __ access_local_int( G3_scratch, Otos_i );
   483 }
   485 void TemplateTable::fast_iload() {
   486   transition(vtos, itos);
   487   locals_index(G3_scratch);
   488   __ access_local_int( G3_scratch, Otos_i );
   489 }
   491 void TemplateTable::lload() {
   492   transition(vtos, ltos);
   493   locals_index(G3_scratch);
   494   __ access_local_long( G3_scratch, Otos_l );
   495 }
   498 void TemplateTable::fload() {
   499   transition(vtos, ftos);
   500   locals_index(G3_scratch);
   501   __ access_local_float( G3_scratch, Ftos_f );
   502 }
   505 void TemplateTable::dload() {
   506   transition(vtos, dtos);
   507   locals_index(G3_scratch);
   508   __ access_local_double( G3_scratch, Ftos_d );
   509 }
   512 void TemplateTable::aload() {
   513   transition(vtos, atos);
   514   locals_index(G3_scratch);
   515   __ access_local_ptr( G3_scratch, Otos_i);
   516 }
   519 void TemplateTable::wide_iload() {
   520   transition(vtos, itos);
   521   locals_index_wide(G3_scratch);
   522   __ access_local_int( G3_scratch, Otos_i );
   523 }
   526 void TemplateTable::wide_lload() {
   527   transition(vtos, ltos);
   528   locals_index_wide(G3_scratch);
   529   __ access_local_long( G3_scratch, Otos_l );
   530 }
   533 void TemplateTable::wide_fload() {
   534   transition(vtos, ftos);
   535   locals_index_wide(G3_scratch);
   536   __ access_local_float( G3_scratch, Ftos_f );
   537 }
   540 void TemplateTable::wide_dload() {
   541   transition(vtos, dtos);
   542   locals_index_wide(G3_scratch);
   543   __ access_local_double( G3_scratch, Ftos_d );
   544 }
   547 void TemplateTable::wide_aload() {
   548   transition(vtos, atos);
   549   locals_index_wide(G3_scratch);
   550   __ access_local_ptr( G3_scratch, Otos_i );
   551   __ verify_oop(Otos_i);
   552 }
   555 void TemplateTable::iaload() {
   556   transition(itos, itos);
   557   // Otos_i: index
   558   // tos: array
   559   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
   560   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
   561 }
   564 void TemplateTable::laload() {
   565   transition(itos, ltos);
   566   // Otos_i: index
   567   // O2: array
   568   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
   569   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
   570 }
   573 void TemplateTable::faload() {
   574   transition(itos, ftos);
   575   // Otos_i: index
   576   // O2: array
   577   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
   578   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
   579 }
   582 void TemplateTable::daload() {
   583   transition(itos, dtos);
   584   // Otos_i: index
   585   // O2: array
   586   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
   587   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
   588 }
   591 void TemplateTable::aaload() {
   592   transition(itos, atos);
   593   // Otos_i: index
   594   // tos: array
   595   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
   596   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
   597   __ verify_oop(Otos_i);
   598 }
   601 void TemplateTable::baload() {
   602   transition(itos, itos);
   603   // Otos_i: index
   604   // tos: array
   605   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
   606   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
   607 }
   610 void TemplateTable::caload() {
   611   transition(itos, itos);
   612   // Otos_i: index
   613   // tos: array
   614   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   615   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
   616 }
   618 void TemplateTable::fast_icaload() {
   619   transition(vtos, itos);
   620   // Otos_i: index
   621   // tos: array
   622   locals_index(G3_scratch);
   623   __ access_local_int( G3_scratch, Otos_i );
   624   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   625   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
   626 }
   629 void TemplateTable::saload() {
   630   transition(itos, itos);
   631   // Otos_i: index
   632   // tos: array
   633   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   634   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
   635 }
   638 void TemplateTable::iload(int n) {
   639   transition(vtos, itos);
   640   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
   641 }
   644 void TemplateTable::lload(int n) {
   645   transition(vtos, ltos);
   646   assert(n+1 < Argument::n_register_parameters, "would need more code");
   647   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
   648 }
   651 void TemplateTable::fload(int n) {
   652   transition(vtos, ftos);
   653   assert(n < Argument::n_register_parameters, "would need more code");
   654   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
   655 }
   658 void TemplateTable::dload(int n) {
   659   transition(vtos, dtos);
   660   FloatRegister dst = Ftos_d;
   661   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
   662 }
   665 void TemplateTable::aload(int n) {
   666   transition(vtos, atos);
   667   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
   668 }
   671 void TemplateTable::aload_0() {
   672   transition(vtos, atos);
   674   // According to bytecode histograms, the pairs:
   675   //
   676   // _aload_0, _fast_igetfield (itos)
   677   // _aload_0, _fast_agetfield (atos)
   678   // _aload_0, _fast_fgetfield (ftos)
   679   //
   680   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   681   // bytecode checks the next bytecode and then rewrites the current
   682   // bytecode into a pair bytecode; otherwise it rewrites the current
   683   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   684   //
   685   if (RewriteFrequentPairs) {
   686     Label rewrite, done;
   688     // get next byte
   689     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
   691     // do actual aload_0
   692     aload(0);
   694     // if _getfield then wait with rewrite
   695     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done);
   697     // if _igetfield then rewrite to _fast_iaccess_0
   698     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   699     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
   700     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   701     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
   703     // if _agetfield then rewrite to _fast_aaccess_0
   704     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   705     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
   706     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   707     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
   709     // if _fgetfield then rewrite to _fast_faccess_0
   710     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   711     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
   712     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   713     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
   715     // else rewrite to _fast_aload0
   716     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   717     __ set(Bytecodes::_fast_aload_0, G4_scratch);
   719     // rewrite
   720     // G4_scratch: fast bytecode
   721     __ bind(rewrite);
   722     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
   723     __ bind(done);
   724   } else {
   725     aload(0);
   726   }
   727 }
   730 void TemplateTable::istore() {
   731   transition(itos, vtos);
   732   locals_index(G3_scratch);
   733   __ store_local_int( G3_scratch, Otos_i );
   734 }
   737 void TemplateTable::lstore() {
   738   transition(ltos, vtos);
   739   locals_index(G3_scratch);
   740   __ store_local_long( G3_scratch, Otos_l );
   741 }
   744 void TemplateTable::fstore() {
   745   transition(ftos, vtos);
   746   locals_index(G3_scratch);
   747   __ store_local_float( G3_scratch, Ftos_f );
   748 }
   751 void TemplateTable::dstore() {
   752   transition(dtos, vtos);
   753   locals_index(G3_scratch);
   754   __ store_local_double( G3_scratch, Ftos_d );
   755 }
   758 void TemplateTable::astore() {
   759   transition(vtos, vtos);
   760   __ load_ptr(0, Otos_i);
   761   __ inc(Lesp, Interpreter::stackElementSize);
   762   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   763   locals_index(G3_scratch);
   764   __ store_local_ptr(G3_scratch, Otos_i);
   765 }
   768 void TemplateTable::wide_istore() {
   769   transition(vtos, vtos);
   770   __ pop_i();
   771   locals_index_wide(G3_scratch);
   772   __ store_local_int( G3_scratch, Otos_i );
   773 }
   776 void TemplateTable::wide_lstore() {
   777   transition(vtos, vtos);
   778   __ pop_l();
   779   locals_index_wide(G3_scratch);
   780   __ store_local_long( G3_scratch, Otos_l );
   781 }
   784 void TemplateTable::wide_fstore() {
   785   transition(vtos, vtos);
   786   __ pop_f();
   787   locals_index_wide(G3_scratch);
   788   __ store_local_float( G3_scratch, Ftos_f );
   789 }
   792 void TemplateTable::wide_dstore() {
   793   transition(vtos, vtos);
   794   __ pop_d();
   795   locals_index_wide(G3_scratch);
   796   __ store_local_double( G3_scratch, Ftos_d );
   797 }
   800 void TemplateTable::wide_astore() {
   801   transition(vtos, vtos);
   802   __ load_ptr(0, Otos_i);
   803   __ inc(Lesp, Interpreter::stackElementSize);
   804   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   805   locals_index_wide(G3_scratch);
   806   __ store_local_ptr(G3_scratch, Otos_i);
   807 }
   810 void TemplateTable::iastore() {
   811   transition(itos, vtos);
   812   __ pop_i(O2); // index
   813   // Otos_i: val
   814   // O3: array
   815   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
   816   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
   817 }
   820 void TemplateTable::lastore() {
   821   transition(ltos, vtos);
   822   __ pop_i(O2); // index
   823   // Otos_l: val
   824   // O3: array
   825   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
   826   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
   827 }
   830 void TemplateTable::fastore() {
   831   transition(ftos, vtos);
   832   __ pop_i(O2); // index
   833   // Ftos_f: val
   834   // O3: array
   835   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
   836   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
   837 }
   840 void TemplateTable::dastore() {
   841   transition(dtos, vtos);
   842   __ pop_i(O2); // index
   843   // Fos_d: val
   844   // O3: array
   845   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
   846   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
   847 }
   850 void TemplateTable::aastore() {
   851   Label store_ok, is_null, done;
   852   transition(vtos, vtos);
   853   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
   854   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
   855   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
   856   // Otos_i: val
   857   // O2: index
   858   // O3: array
   859   __ verify_oop(Otos_i);
   860   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
   862   // do array store check - check for NULL value first
   863   __ br_null_short( Otos_i, Assembler::pn, is_null );
   865   __ load_klass(O3, O4); // get array klass
   866   __ load_klass(Otos_i, O5); // get value klass
   868   // do fast instanceof cache test
   870   __ ld_ptr(O4,     in_bytes(objArrayKlass::element_klass_offset()),  O4);
   872   assert(Otos_i == O0, "just checking");
   874   // Otos_i:    value
   875   // O1:        addr - offset
   876   // O2:        index
   877   // O3:        array
   878   // O4:        array element klass
   879   // O5:        value klass
   881   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   883   // Generate a fast subtype check.  Branch to store_ok if no
   884   // failure.  Throw if failure.
   885   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
   887   // Not a subtype; so must throw exception
   888   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
   890   // Store is OK.
   891   __ bind(store_ok);
   892   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
   894   __ ba(done);
   895   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
   897   __ bind(is_null);
   898   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
   900   __ profile_null_seen(G3_scratch);
   901   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
   902   __ bind(done);
   903 }
   906 void TemplateTable::bastore() {
   907   transition(itos, vtos);
   908   __ pop_i(O2); // index
   909   // Otos_i: val
   910   // O3: array
   911   __ index_check(O3, O2, 0, G3_scratch, O2);
   912   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
   913 }
   916 void TemplateTable::castore() {
   917   transition(itos, vtos);
   918   __ pop_i(O2); // index
   919   // Otos_i: val
   920   // O3: array
   921   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
   922   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
   923 }
   926 void TemplateTable::sastore() {
   927   // %%%%% Factor across platform
   928   castore();
   929 }
   932 void TemplateTable::istore(int n) {
   933   transition(itos, vtos);
   934   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
   935 }
   938 void TemplateTable::lstore(int n) {
   939   transition(ltos, vtos);
   940   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
   941   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
   943 }
   946 void TemplateTable::fstore(int n) {
   947   transition(ftos, vtos);
   948   assert(n < Argument::n_register_parameters, "only handle register cases");
   949   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
   950 }
   953 void TemplateTable::dstore(int n) {
   954   transition(dtos, vtos);
   955   FloatRegister src = Ftos_d;
   956   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
   957 }
   960 void TemplateTable::astore(int n) {
   961   transition(vtos, vtos);
   962   __ load_ptr(0, Otos_i);
   963   __ inc(Lesp, Interpreter::stackElementSize);
   964   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   965   __ store_local_ptr(n, Otos_i);
   966 }
   969 void TemplateTable::pop() {
   970   transition(vtos, vtos);
   971   __ inc(Lesp, Interpreter::stackElementSize);
   972 }
   975 void TemplateTable::pop2() {
   976   transition(vtos, vtos);
   977   __ inc(Lesp, 2 * Interpreter::stackElementSize);
   978 }
   981 void TemplateTable::dup() {
   982   transition(vtos, vtos);
   983   // stack: ..., a
   984   // load a and tag
   985   __ load_ptr(0, Otos_i);
   986   __ push_ptr(Otos_i);
   987   // stack: ..., a, a
   988 }
   991 void TemplateTable::dup_x1() {
   992   transition(vtos, vtos);
   993   // stack: ..., a, b
   994   __ load_ptr( 1, G3_scratch);  // get a
   995   __ load_ptr( 0, Otos_l1);     // get b
   996   __ store_ptr(1, Otos_l1);     // put b
   997   __ store_ptr(0, G3_scratch);  // put a - like swap
   998   __ push_ptr(Otos_l1);         // push b
   999   // stack: ..., b, a, b
  1003 void TemplateTable::dup_x2() {
  1004   transition(vtos, vtos);
  1005   // stack: ..., a, b, c
  1006   // get c and push on stack, reuse registers
  1007   __ load_ptr( 0, G3_scratch);  // get c
  1008   __ push_ptr(G3_scratch);      // push c with tag
  1009   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
  1010   // (stack offsets n+1 now)
  1011   __ load_ptr( 3, Otos_l1);     // get a
  1012   __ store_ptr(3, G3_scratch);  // put c at 3
  1013   // stack: ..., c, b, c, c  (a in reg)
  1014   __ load_ptr( 2, G3_scratch);  // get b
  1015   __ store_ptr(2, Otos_l1);     // put a at 2
  1016   // stack: ..., c, a, c, c  (b in reg)
  1017   __ store_ptr(1, G3_scratch);  // put b at 1
  1018   // stack: ..., c, a, b, c
  1022 void TemplateTable::dup2() {
  1023   transition(vtos, vtos);
  1024   __ load_ptr(1, G3_scratch);  // get a
  1025   __ load_ptr(0, Otos_l1);     // get b
  1026   __ push_ptr(G3_scratch);     // push a
  1027   __ push_ptr(Otos_l1);        // push b
  1028   // stack: ..., a, b, a, b
  1032 void TemplateTable::dup2_x1() {
  1033   transition(vtos, vtos);
  1034   // stack: ..., a, b, c
  1035   __ load_ptr( 1, Lscratch);    // get b
  1036   __ load_ptr( 2, Otos_l1);     // get a
  1037   __ store_ptr(2, Lscratch);    // put b at a
  1038   // stack: ..., b, b, c
  1039   __ load_ptr( 0, G3_scratch);  // get c
  1040   __ store_ptr(1, G3_scratch);  // put c at b
  1041   // stack: ..., b, c, c
  1042   __ store_ptr(0, Otos_l1);     // put a at c
  1043   // stack: ..., b, c, a
  1044   __ push_ptr(Lscratch);        // push b
  1045   __ push_ptr(G3_scratch);      // push c
  1046   // stack: ..., b, c, a, b, c
  1050 // The spec says that these types can be a mixture of category 1 (1 word)
  1051 // types and/or category 2 types (long and doubles)
  1052 void TemplateTable::dup2_x2() {
  1053   transition(vtos, vtos);
  1054   // stack: ..., a, b, c, d
  1055   __ load_ptr( 1, Lscratch);    // get c
  1056   __ load_ptr( 3, Otos_l1);     // get a
  1057   __ store_ptr(3, Lscratch);    // put c at 3
  1058   __ store_ptr(1, Otos_l1);     // put a at 1
  1059   // stack: ..., c, b, a, d
  1060   __ load_ptr( 2, G3_scratch);  // get b
  1061   __ load_ptr( 0, Otos_l1);     // get d
  1062   __ store_ptr(0, G3_scratch);  // put b at 0
  1063   __ store_ptr(2, Otos_l1);     // put d at 2
  1064   // stack: ..., c, d, a, b
  1065   __ push_ptr(Lscratch);        // push c
  1066   __ push_ptr(Otos_l1);         // push d
  1067   // stack: ..., c, d, a, b, c, d
  1071 void TemplateTable::swap() {
  1072   transition(vtos, vtos);
  1073   // stack: ..., a, b
  1074   __ load_ptr( 1, G3_scratch);  // get a
  1075   __ load_ptr( 0, Otos_l1);     // get b
  1076   __ store_ptr(0, G3_scratch);  // put b
  1077   __ store_ptr(1, Otos_l1);     // put a
  1078   // stack: ..., b, a
  1082 void TemplateTable::iop2(Operation op) {
  1083   transition(itos, itos);
  1084   __ pop_i(O1);
  1085   switch (op) {
  1086    case  add:  __  add(O1, Otos_i, Otos_i);  break;
  1087    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
  1088      // %%%%% Mul may not exist: better to call .mul?
  1089    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
  1090    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
  1091    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
  1092    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
  1093    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
  1094    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
  1095    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
  1096    default: ShouldNotReachHere();
  1101 void TemplateTable::lop2(Operation op) {
  1102   transition(ltos, ltos);
  1103   __ pop_l(O2);
  1104   switch (op) {
  1105 #ifdef _LP64
  1106    case  add:  __  add(O2, Otos_l, Otos_l);  break;
  1107    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
  1108    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
  1109    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
  1110    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
  1111 #else
  1112    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
  1113    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
  1114    case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
  1115    case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
  1116    case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
  1117 #endif
  1118    default: ShouldNotReachHere();
  1123 void TemplateTable::idiv() {
  1124   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
  1125   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
  1127   transition(itos, itos);
  1128   __ pop_i(O1); // get 1st op
  1130   // Y contains upper 32 bits of result, set it to 0 or all ones
  1131   __ wry(G0);
  1132   __ mov(~0, G3_scratch);
  1134   __ tst(O1);
  1135      Label neg;
  1136   __ br(Assembler::negative, true, Assembler::pn, neg);
  1137   __ delayed()->wry(G3_scratch);
  1138   __ bind(neg);
  1140      Label ok;
  1141   __ tst(Otos_i);
  1142   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
  1144   const int min_int = 0x80000000;
  1145   Label regular;
  1146   __ cmp(Otos_i, -1);
  1147   __ br(Assembler::notEqual, false, Assembler::pt, regular);
  1148 #ifdef _LP64
  1149   // Don't put set in delay slot
  1150   // Set will turn into multiple instructions in 64 bit mode
  1151   __ delayed()->nop();
  1152   __ set(min_int, G4_scratch);
  1153 #else
  1154   __ delayed()->set(min_int, G4_scratch);
  1155 #endif
  1156   Label done;
  1157   __ cmp(O1, G4_scratch);
  1158   __ br(Assembler::equal, true, Assembler::pt, done);
  1159   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
  1161   __ bind(regular);
  1162   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
  1163   __ bind(done);
  1167 void TemplateTable::irem() {
  1168   transition(itos, itos);
  1169   __ mov(Otos_i, O2); // save divisor
  1170   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
  1171   __ smul(Otos_i, O2, Otos_i);
  1172   __ sub(O1, Otos_i, Otos_i);
  1176 void TemplateTable::lmul() {
  1177   transition(ltos, ltos);
  1178   __ pop_l(O2);
  1179 #ifdef _LP64
  1180   __ mulx(Otos_l, O2, Otos_l);
  1181 #else
  1182   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
  1183 #endif
  1188 void TemplateTable::ldiv() {
  1189   transition(ltos, ltos);
  1191   // check for zero
  1192   __ pop_l(O2);
  1193 #ifdef _LP64
  1194   __ tst(Otos_l);
  1195   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1196   __ sdivx(O2, Otos_l, Otos_l);
  1197 #else
  1198   __ orcc(Otos_l1, Otos_l2, G0);
  1199   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1200   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1201 #endif
  1205 void TemplateTable::lrem() {
  1206   transition(ltos, ltos);
  1208   // check for zero
  1209   __ pop_l(O2);
  1210 #ifdef _LP64
  1211   __ tst(Otos_l);
  1212   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1213   __ sdivx(O2, Otos_l, Otos_l2);
  1214   __ mulx (Otos_l2, Otos_l, Otos_l2);
  1215   __ sub  (O2, Otos_l2, Otos_l);
  1216 #else
  1217   __ orcc(Otos_l1, Otos_l2, G0);
  1218   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1219   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1220 #endif
  1224 void TemplateTable::lshl() {
  1225   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
  1227   __ pop_l(O2);                          // shift value in O2, O3
  1228 #ifdef _LP64
  1229   __ sllx(O2, Otos_i, Otos_l);
  1230 #else
  1231   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1232 #endif
  1236 void TemplateTable::lshr() {
  1237   transition(itos, ltos); // %%%% see lshl comment
  1239   __ pop_l(O2);                          // shift value in O2, O3
  1240 #ifdef _LP64
  1241   __ srax(O2, Otos_i, Otos_l);
  1242 #else
  1243   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1244 #endif
  1249 void TemplateTable::lushr() {
  1250   transition(itos, ltos); // %%%% see lshl comment
  1252   __ pop_l(O2);                          // shift value in O2, O3
  1253 #ifdef _LP64
  1254   __ srlx(O2, Otos_i, Otos_l);
  1255 #else
  1256   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1257 #endif
  1261 void TemplateTable::fop2(Operation op) {
  1262   transition(ftos, ftos);
  1263   switch (op) {
  1264    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1265    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1266    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1267    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1268    case  rem:
  1269      assert(Ftos_f == F0, "just checking");
  1270 #ifdef _LP64
  1271      // LP64 calling conventions use F1, F3 for passing 2 floats
  1272      __ pop_f(F1);
  1273      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
  1274 #else
  1275      __ pop_i(O0);
  1276      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
  1277      __ ld( __ d_tmp, O1 );
  1278 #endif
  1279      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
  1280      assert( Ftos_f == F0, "fix this code" );
  1281      break;
  1283    default: ShouldNotReachHere();
  1288 void TemplateTable::dop2(Operation op) {
  1289   transition(dtos, dtos);
  1290   switch (op) {
  1291    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1292    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1293    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1294    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1295    case  rem:
  1296 #ifdef _LP64
  1297      // Pass arguments in D0, D2
  1298      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
  1299      __ pop_d( F0 );
  1300 #else
  1301      // Pass arguments in O0O1, O2O3
  1302      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
  1303      __ ldd( __ d_tmp, O2 );
  1304      __ pop_d(Ftos_f);
  1305      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
  1306      __ ldd( __ d_tmp, O0 );
  1307 #endif
  1308      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
  1309      assert( Ftos_d == F0, "fix this code" );
  1310      break;
  1312    default: ShouldNotReachHere();
  1317 void TemplateTable::ineg() {
  1318   transition(itos, itos);
  1319   __ neg(Otos_i);
  1323 void TemplateTable::lneg() {
  1324   transition(ltos, ltos);
  1325 #ifdef _LP64
  1326   __ sub(G0, Otos_l, Otos_l);
  1327 #else
  1328   __ lneg(Otos_l1, Otos_l2);
  1329 #endif
  1333 void TemplateTable::fneg() {
  1334   transition(ftos, ftos);
  1335   __ fneg(FloatRegisterImpl::S, Ftos_f);
  1339 void TemplateTable::dneg() {
  1340   transition(dtos, dtos);
  1341   // v8 has fnegd if source and dest are the same
  1342   __ fneg(FloatRegisterImpl::D, Ftos_f);
  1346 void TemplateTable::iinc() {
  1347   transition(vtos, vtos);
  1348   locals_index(G3_scratch);
  1349   __ ldsb(Lbcp, 2, O2);  // load constant
  1350   __ access_local_int(G3_scratch, Otos_i);
  1351   __ add(Otos_i, O2, Otos_i);
  1352   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
  1356 void TemplateTable::wide_iinc() {
  1357   transition(vtos, vtos);
  1358   locals_index_wide(G3_scratch);
  1359   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
  1360   __ access_local_int(G3_scratch, Otos_i);
  1361   __ add(Otos_i, O3, Otos_i);
  1362   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
  1366 void TemplateTable::convert() {
  1367 // %%%%% Factor this first part accross platforms
  1368   #ifdef ASSERT
  1369     TosState tos_in  = ilgl;
  1370     TosState tos_out = ilgl;
  1371     switch (bytecode()) {
  1372       case Bytecodes::_i2l: // fall through
  1373       case Bytecodes::_i2f: // fall through
  1374       case Bytecodes::_i2d: // fall through
  1375       case Bytecodes::_i2b: // fall through
  1376       case Bytecodes::_i2c: // fall through
  1377       case Bytecodes::_i2s: tos_in = itos; break;
  1378       case Bytecodes::_l2i: // fall through
  1379       case Bytecodes::_l2f: // fall through
  1380       case Bytecodes::_l2d: tos_in = ltos; break;
  1381       case Bytecodes::_f2i: // fall through
  1382       case Bytecodes::_f2l: // fall through
  1383       case Bytecodes::_f2d: tos_in = ftos; break;
  1384       case Bytecodes::_d2i: // fall through
  1385       case Bytecodes::_d2l: // fall through
  1386       case Bytecodes::_d2f: tos_in = dtos; break;
  1387       default             : ShouldNotReachHere();
  1389     switch (bytecode()) {
  1390       case Bytecodes::_l2i: // fall through
  1391       case Bytecodes::_f2i: // fall through
  1392       case Bytecodes::_d2i: // fall through
  1393       case Bytecodes::_i2b: // fall through
  1394       case Bytecodes::_i2c: // fall through
  1395       case Bytecodes::_i2s: tos_out = itos; break;
  1396       case Bytecodes::_i2l: // fall through
  1397       case Bytecodes::_f2l: // fall through
  1398       case Bytecodes::_d2l: tos_out = ltos; break;
  1399       case Bytecodes::_i2f: // fall through
  1400       case Bytecodes::_l2f: // fall through
  1401       case Bytecodes::_d2f: tos_out = ftos; break;
  1402       case Bytecodes::_i2d: // fall through
  1403       case Bytecodes::_l2d: // fall through
  1404       case Bytecodes::_f2d: tos_out = dtos; break;
  1405       default             : ShouldNotReachHere();
  1407     transition(tos_in, tos_out);
  1408   #endif
  1411   // Conversion
  1412   Label done;
  1413   switch (bytecode()) {
  1414    case Bytecodes::_i2l:
  1415 #ifdef _LP64
  1416     // Sign extend the 32 bits
  1417     __ sra ( Otos_i, 0, Otos_l );
  1418 #else
  1419     __ addcc(Otos_i, 0, Otos_l2);
  1420     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
  1421     __ delayed()->clr(Otos_l1);
  1422     __ set(~0, Otos_l1);
  1423 #endif
  1424     break;
  1426    case Bytecodes::_i2f:
  1427     __ st(Otos_i, __ d_tmp );
  1428     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
  1429     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
  1430     break;
  1432    case Bytecodes::_i2d:
  1433     __ st(Otos_i, __ d_tmp);
  1434     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
  1435     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
  1436     break;
  1438    case Bytecodes::_i2b:
  1439     __ sll(Otos_i, 24, Otos_i);
  1440     __ sra(Otos_i, 24, Otos_i);
  1441     break;
  1443    case Bytecodes::_i2c:
  1444     __ sll(Otos_i, 16, Otos_i);
  1445     __ srl(Otos_i, 16, Otos_i);
  1446     break;
  1448    case Bytecodes::_i2s:
  1449     __ sll(Otos_i, 16, Otos_i);
  1450     __ sra(Otos_i, 16, Otos_i);
  1451     break;
  1453    case Bytecodes::_l2i:
  1454 #ifndef _LP64
  1455     __ mov(Otos_l2, Otos_i);
  1456 #else
  1457     // Sign-extend into the high 32 bits
  1458     __ sra(Otos_l, 0, Otos_i);
  1459 #endif
  1460     break;
  1462    case Bytecodes::_l2f:
  1463    case Bytecodes::_l2d:
  1464     __ st_long(Otos_l, __ d_tmp);
  1465     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
  1467     if (VM_Version::v9_instructions_work()) {
  1468       if (bytecode() == Bytecodes::_l2f) {
  1469         __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
  1470       } else {
  1471         __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
  1473     } else {
  1474       __ call_VM_leaf(
  1475         Lscratch,
  1476         bytecode() == Bytecodes::_l2f
  1477           ? CAST_FROM_FN_PTR(address, SharedRuntime::l2f)
  1478           : CAST_FROM_FN_PTR(address, SharedRuntime::l2d)
  1479       );
  1481     break;
  1483   case Bytecodes::_f2i:  {
  1484       Label isNaN;
  1485       // result must be 0 if value is NaN; test by comparing value to itself
  1486       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
  1487       // According to the v8 manual, you have to have a non-fp instruction
  1488       // between fcmp and fb.
  1489       if (!VM_Version::v9_instructions_work()) {
  1490         __ nop();
  1492       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
  1493       __ delayed()->clr(Otos_i);                                     // NaN
  1494       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
  1495       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
  1496       __ ld(__ d_tmp, Otos_i);
  1497       __ bind(isNaN);
  1499     break;
  1501    case Bytecodes::_f2l:
  1502     // must uncache tos
  1503     __ push_f();
  1504 #ifdef _LP64
  1505     __ pop_f(F1);
  1506 #else
  1507     __ pop_i(O0);
  1508 #endif
  1509     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
  1510     break;
  1512    case Bytecodes::_f2d:
  1513     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
  1514     break;
  1516    case Bytecodes::_d2i:
  1517    case Bytecodes::_d2l:
  1518     // must uncache tos
  1519     __ push_d();
  1520 #ifdef _LP64
  1521     // LP64 calling conventions pass first double arg in D0
  1522     __ pop_d( Ftos_d );
  1523 #else
  1524     __ pop_i( O0 );
  1525     __ pop_i( O1 );
  1526 #endif
  1527     __ call_VM_leaf(Lscratch,
  1528         bytecode() == Bytecodes::_d2i
  1529           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
  1530           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  1531     break;
  1533     case Bytecodes::_d2f:
  1534     if (VM_Version::v9_instructions_work()) {
  1535       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
  1537     else {
  1538       // must uncache tos
  1539       __ push_d();
  1540       __ pop_i(O0);
  1541       __ pop_i(O1);
  1542       __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::d2f));
  1544     break;
  1546     default: ShouldNotReachHere();
  1548   __ bind(done);
  1552 void TemplateTable::lcmp() {
  1553   transition(ltos, itos);
  1555 #ifdef _LP64
  1556   __ pop_l(O1); // pop off value 1, value 2 is in O0
  1557   __ lcmp( O1, Otos_l, Otos_i );
  1558 #else
  1559   __ pop_l(O2); // cmp O2,3 to O0,1
  1560   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
  1561 #endif
  1565 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1567   if (is_float) __ pop_f(F2);
  1568   else          __ pop_d(F2);
  1570   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
  1572   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
  1575 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1576   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
  1577   __ verify_thread();
  1579   const Register O2_bumped_count = O2;
  1580   __ profile_taken_branch(G3_scratch, O2_bumped_count);
  1582   // get (wide) offset to O1_disp
  1583   const Register O1_disp = O1;
  1584   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
  1585   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
  1587   // Handle all the JSR stuff here, then exit.
  1588   // It's much shorter and cleaner than intermingling with the
  1589   // non-JSR normal-branch stuff occurring below.
  1590   if( is_jsr ) {
  1591     // compute return address as bci in Otos_i
  1592     __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
  1593     __ sub(Lbcp, G3_scratch, G3_scratch);
  1594     __ sub(G3_scratch, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
  1596     // Bump Lbcp to target of JSR
  1597     __ add(Lbcp, O1_disp, Lbcp);
  1598     // Push returnAddress for "ret" on stack
  1599     __ push_ptr(Otos_i);
  1600     // And away we go!
  1601     __ dispatch_next(vtos);
  1602     return;
  1605   // Normal (non-jsr) branch handling
  1607   // Save the current Lbcp
  1608   const Register O0_cur_bcp = O0;
  1609   __ mov( Lbcp, O0_cur_bcp );
  1612   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
  1613   if ( increment_invocation_counter_for_backward_branches ) {
  1614     Label Lforward;
  1615     // check branch direction
  1616     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
  1617     // Bump bytecode pointer by displacement (take the branch)
  1618     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
  1620     if (TieredCompilation) {
  1621       Label Lno_mdo, Loverflow;
  1622       int increment = InvocationCounter::count_increment;
  1623       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1624       if (ProfileInterpreter) {
  1625         // If no method data exists, go to profile_continue.
  1626         __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
  1627         __ br_null_short(G4_scratch, Assembler::pn, Lno_mdo);
  1629         // Increment backedge counter in the MDO
  1630         Address mdo_backedge_counter(G4_scratch, in_bytes(MethodData::backedge_counter_offset()) +
  1631                                                  in_bytes(InvocationCounter::counter_offset()));
  1632         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, Lscratch,
  1633                                    Assembler::notZero, &Lforward);
  1634         __ ba_short(Loverflow);
  1637       // If there's no MDO, increment counter in Method*
  1638       __ bind(Lno_mdo);
  1639       Address backedge_counter(Lmethod, in_bytes(Method::backedge_counter_offset()) +
  1640                                         in_bytes(InvocationCounter::counter_offset()));
  1641       __ increment_mask_and_jump(backedge_counter, increment, mask, G3_scratch, Lscratch,
  1642                                  Assembler::notZero, &Lforward);
  1643       __ bind(Loverflow);
  1645       // notify point for loop, pass branch bytecode
  1646       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O0_cur_bcp);
  1648       // Was an OSR adapter generated?
  1649       // O0 = osr nmethod
  1650       __ br_null_short(O0, Assembler::pn, Lforward);
  1652       // Has the nmethod been invalidated already?
  1653       __ ld(O0, nmethod::entry_bci_offset(), O2);
  1654       __ cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, Lforward);
  1656       // migrate the interpreter frame off of the stack
  1658       __ mov(G2_thread, L7);
  1659       // save nmethod
  1660       __ mov(O0, L6);
  1661       __ set_last_Java_frame(SP, noreg);
  1662       __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
  1663       __ reset_last_Java_frame();
  1664       __ mov(L7, G2_thread);
  1666       // move OSR nmethod to I1
  1667       __ mov(L6, I1);
  1669       // OSR buffer to I0
  1670       __ mov(O0, I0);
  1672       // remove the interpreter frame
  1673       __ restore(I5_savedSP, 0, SP);
  1675       // Jump to the osr code.
  1676       __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
  1677       __ jmp(O2, G0);
  1678       __ delayed()->nop();
  1680     } else {
  1681       // Update Backedge branch separately from invocations
  1682       const Register G4_invoke_ctr = G4;
  1683       __ increment_backedge_counter(G4_invoke_ctr, G1_scratch);
  1684       if (ProfileInterpreter) {
  1685         __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_scratch, Lforward);
  1686         if (UseOnStackReplacement) {
  1687           __ test_backedge_count_for_osr(O2_bumped_count, O0_cur_bcp, G3_scratch);
  1689       } else {
  1690         if (UseOnStackReplacement) {
  1691           __ test_backedge_count_for_osr(G4_invoke_ctr, O0_cur_bcp, G3_scratch);
  1696     __ bind(Lforward);
  1697   } else
  1698     // Bump bytecode pointer by displacement (take the branch)
  1699     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
  1701   // continue with bytecode @ target
  1702   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
  1703   // %%%%% and changing dispatch_next to dispatch_only
  1704   __ dispatch_next(vtos);
  1708 // Note Condition in argument is TemplateTable::Condition
  1709 // arg scope is within class scope
  1711 void TemplateTable::if_0cmp(Condition cc) {
  1712   // no pointers, integer only!
  1713   transition(itos, vtos);
  1714   // assume branch is more often taken than not (loops use backward branches)
  1715   __ cmp( Otos_i, 0);
  1716   __ if_cmp(ccNot(cc), false);
  1720 void TemplateTable::if_icmp(Condition cc) {
  1721   transition(itos, vtos);
  1722   __ pop_i(O1);
  1723   __ cmp(O1, Otos_i);
  1724   __ if_cmp(ccNot(cc), false);
  1728 void TemplateTable::if_nullcmp(Condition cc) {
  1729   transition(atos, vtos);
  1730   __ tst(Otos_i);
  1731   __ if_cmp(ccNot(cc), true);
  1735 void TemplateTable::if_acmp(Condition cc) {
  1736   transition(atos, vtos);
  1737   __ pop_ptr(O1);
  1738   __ verify_oop(O1);
  1739   __ verify_oop(Otos_i);
  1740   __ cmp(O1, Otos_i);
  1741   __ if_cmp(ccNot(cc), true);
  1746 void TemplateTable::ret() {
  1747   transition(vtos, vtos);
  1748   locals_index(G3_scratch);
  1749   __ access_local_returnAddress(G3_scratch, Otos_i);
  1750   // Otos_i contains the bci, compute the bcp from that
  1752 #ifdef _LP64
  1753 #ifdef ASSERT
  1754   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
  1755   // the result.  The return address (really a BCI) was stored with an
  1756   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
  1757   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
  1758   // loaded value.
  1759   { Label zzz ;
  1760      __ set (65536, G3_scratch) ;
  1761      __ cmp (Otos_i, G3_scratch) ;
  1762      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
  1763      __ delayed()->nop();
  1764      __ stop("BCI is in the wrong register half?");
  1765      __ bind (zzz) ;
  1767 #endif
  1768 #endif
  1770   __ profile_ret(vtos, Otos_i, G4_scratch);
  1772   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
  1773   __ add(G3_scratch, Otos_i, G3_scratch);
  1774   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
  1775   __ dispatch_next(vtos);
  1779 void TemplateTable::wide_ret() {
  1780   transition(vtos, vtos);
  1781   locals_index_wide(G3_scratch);
  1782   __ access_local_returnAddress(G3_scratch, Otos_i);
  1783   // Otos_i contains the bci, compute the bcp from that
  1785   __ profile_ret(vtos, Otos_i, G4_scratch);
  1787   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
  1788   __ add(G3_scratch, Otos_i, G3_scratch);
  1789   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
  1790   __ dispatch_next(vtos);
  1794 void TemplateTable::tableswitch() {
  1795   transition(itos, vtos);
  1796   Label default_case, continue_execution;
  1798   // align bcp
  1799   __ add(Lbcp, BytesPerInt, O1);
  1800   __ and3(O1, -BytesPerInt, O1);
  1801   // load lo, hi
  1802   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
  1803   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
  1804 #ifdef _LP64
  1805   // Sign extend the 32 bits
  1806   __ sra ( Otos_i, 0, Otos_i );
  1807 #endif /* _LP64 */
  1809   // check against lo & hi
  1810   __ cmp( Otos_i, O2);
  1811   __ br( Assembler::less, false, Assembler::pn, default_case);
  1812   __ delayed()->cmp( Otos_i, O3 );
  1813   __ br( Assembler::greater, false, Assembler::pn, default_case);
  1814   // lookup dispatch offset
  1815   __ delayed()->sub(Otos_i, O2, O2);
  1816   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
  1817   __ sll(O2, LogBytesPerInt, O2);
  1818   __ add(O2, 3 * BytesPerInt, O2);
  1819   __ ba(continue_execution);
  1820   __ delayed()->ld(O1, O2, O2);
  1821   // handle default
  1822   __ bind(default_case);
  1823   __ profile_switch_default(O3);
  1824   __ ld(O1, 0, O2); // get default offset
  1825   // continue execution
  1826   __ bind(continue_execution);
  1827   __ add(Lbcp, O2, Lbcp);
  1828   __ dispatch_next(vtos);
  1832 void TemplateTable::lookupswitch() {
  1833   transition(itos, itos);
  1834   __ stop("lookupswitch bytecode should have been rewritten");
  1837 void TemplateTable::fast_linearswitch() {
  1838   transition(itos, vtos);
  1839     Label loop_entry, loop, found, continue_execution;
  1840   // align bcp
  1841   __ add(Lbcp, BytesPerInt, O1);
  1842   __ and3(O1, -BytesPerInt, O1);
  1843  // set counter
  1844   __ ld(O1, BytesPerInt, O2);
  1845   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
  1846   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
  1847   __ ba(loop_entry);
  1848   __ delayed()->add(O3, O2, O2); // counter now points past last pair
  1850   // table search
  1851   __ bind(loop);
  1852   __ cmp(O4, Otos_i);
  1853   __ br(Assembler::equal, true, Assembler::pn, found);
  1854   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
  1855   __ inc(O3, 2 * BytesPerInt);
  1857   __ bind(loop_entry);
  1858   __ cmp(O2, O3);
  1859   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
  1860   __ delayed()->ld(O3, 0, O4);
  1862   // default case
  1863   __ ld(O1, 0, O4); // get default offset
  1864   if (ProfileInterpreter) {
  1865     __ profile_switch_default(O3);
  1866     __ ba_short(continue_execution);
  1869   // entry found -> get offset
  1870   __ bind(found);
  1871   if (ProfileInterpreter) {
  1872     __ sub(O3, O1, O3);
  1873     __ sub(O3, 2*BytesPerInt, O3);
  1874     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
  1875     __ profile_switch_case(O3, O1, O2, G3_scratch);
  1877     __ bind(continue_execution);
  1879   __ add(Lbcp, O4, Lbcp);
  1880   __ dispatch_next(vtos);
  1884 void TemplateTable::fast_binaryswitch() {
  1885   transition(itos, vtos);
  1886   // Implementation using the following core algorithm: (copied from Intel)
  1887   //
  1888   // int binary_search(int key, LookupswitchPair* array, int n) {
  1889   //   // Binary search according to "Methodik des Programmierens" by
  1890   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1891   //   int i = 0;
  1892   //   int j = n;
  1893   //   while (i+1 < j) {
  1894   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1895   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1896   //     // where a stands for the array and assuming that the (inexisting)
  1897   //     // element a[n] is infinitely big.
  1898   //     int h = (i + j) >> 1;
  1899   //     // i < h < j
  1900   //     if (key < array[h].fast_match()) {
  1901   //       j = h;
  1902   //     } else {
  1903   //       i = h;
  1904   //     }
  1905   //   }
  1906   //   // R: a[i] <= key < a[i+1] or Q
  1907   //   // (i.e., if key is within array, i is the correct index)
  1908   //   return i;
  1909   // }
  1911   // register allocation
  1912   assert(Otos_i == O0, "alias checking");
  1913   const Register Rkey     = Otos_i;                    // already set (tosca)
  1914   const Register Rarray   = O1;
  1915   const Register Ri       = O2;
  1916   const Register Rj       = O3;
  1917   const Register Rh       = O4;
  1918   const Register Rscratch = O5;
  1920   const int log_entry_size = 3;
  1921   const int entry_size = 1 << log_entry_size;
  1923   Label found;
  1924   // Find Array start
  1925   __ add(Lbcp, 3 * BytesPerInt, Rarray);
  1926   __ and3(Rarray, -BytesPerInt, Rarray);
  1927   // initialize i & j (in delay slot)
  1928   __ clr( Ri );
  1930   // and start
  1931   Label entry;
  1932   __ ba(entry);
  1933   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
  1934   // (Rj is already in the native byte-ordering.)
  1936   // binary search loop
  1937   { Label loop;
  1938     __ bind( loop );
  1939     // int h = (i + j) >> 1;
  1940     __ sra( Rh, 1, Rh );
  1941     // if (key < array[h].fast_match()) {
  1942     //   j = h;
  1943     // } else {
  1944     //   i = h;
  1945     // }
  1946     __ sll( Rh, log_entry_size, Rscratch );
  1947     __ ld( Rarray, Rscratch, Rscratch );
  1948     // (Rscratch is already in the native byte-ordering.)
  1949     __ cmp( Rkey, Rscratch );
  1950     if ( VM_Version::v9_instructions_work() ) {
  1951       __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
  1952       __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
  1954     else {
  1955       Label end_of_if;
  1956       __ br( Assembler::less, true, Assembler::pt, end_of_if );
  1957       __ delayed()->mov( Rh, Rj ); // if (<) Rj = Rh
  1958       __ mov( Rh, Ri );            // else i = h
  1959       __ bind(end_of_if);          // }
  1962     // while (i+1 < j)
  1963     __ bind( entry );
  1964     __ add( Ri, 1, Rscratch );
  1965     __ cmp(Rscratch, Rj);
  1966     __ br( Assembler::less, true, Assembler::pt, loop );
  1967     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
  1970   // end of binary search, result index is i (must check again!)
  1971   Label default_case;
  1972   Label continue_execution;
  1973   if (ProfileInterpreter) {
  1974     __ mov( Ri, Rh );              // Save index in i for profiling
  1976   __ sll( Ri, log_entry_size, Ri );
  1977   __ ld( Rarray, Ri, Rscratch );
  1978   // (Rscratch is already in the native byte-ordering.)
  1979   __ cmp( Rkey, Rscratch );
  1980   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
  1981   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
  1983   // entry found -> j = offset
  1984   __ inc( Ri, BytesPerInt );
  1985   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
  1986   __ ld( Rarray, Ri, Rj );
  1987   // (Rj is already in the native byte-ordering.)
  1989   if (ProfileInterpreter) {
  1990     __ ba_short(continue_execution);
  1993   __ bind(default_case); // fall through (if not profiling)
  1994   __ profile_switch_default(Ri);
  1996   __ bind(continue_execution);
  1997   __ add( Lbcp, Rj, Lbcp );
  1998   __ dispatch_next( vtos );
  2002 void TemplateTable::_return(TosState state) {
  2003   transition(state, state);
  2004   assert(_desc->calls_vm(), "inconsistent calls_vm information");
  2006   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2007     assert(state == vtos, "only valid state");
  2008     __ mov(G0, G3_scratch);
  2009     __ access_local_ptr(G3_scratch, Otos_i);
  2010     __ load_klass(Otos_i, O2);
  2011     __ set(JVM_ACC_HAS_FINALIZER, G3);
  2012     __ ld(O2, in_bytes(Klass::access_flags_offset()), O2);
  2013     __ andcc(G3, O2, G0);
  2014     Label skip_register_finalizer;
  2015     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
  2016     __ delayed()->nop();
  2018     // Call out to do finalizer registration
  2019     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
  2021     __ bind(skip_register_finalizer);
  2024   __ remove_activation(state, /* throw_monitor_exception */ true);
  2026   // The caller's SP was adjusted upon method entry to accomodate
  2027   // the callee's non-argument locals. Undo that adjustment.
  2028   __ ret();                             // return to caller
  2029   __ delayed()->restore(I5_savedSP, G0, SP);
  2033 // ----------------------------------------------------------------------------
  2034 // Volatile variables demand their effects be made known to all CPU's in
  2035 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2036 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2037 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2038 // reorder volatile references, the hardware also must not reorder them).
  2039 //
  2040 // According to the new Java Memory Model (JMM):
  2041 // (1) All volatiles are serialized wrt to each other.
  2042 // ALSO reads & writes act as aquire & release, so:
  2043 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2044 // the read float up to before the read.  It's OK for non-volatile memory refs
  2045 // that happen before the volatile read to float down below it.
  2046 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2047 // that happen BEFORE the write float down to after the write.  It's OK for
  2048 // non-volatile memory refs that happen after the volatile write to float up
  2049 // before it.
  2050 //
  2051 // We only put in barriers around volatile refs (they are expensive), not
  2052 // _between_ memory refs (that would require us to track the flavor of the
  2053 // previous memory refs).  Requirements (2) and (3) require some barriers
  2054 // before volatile stores and after volatile loads.  These nearly cover
  2055 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2056 // case is placed after volatile-stores although it could just as well go
  2057 // before volatile-loads.
  2058 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
  2059   // Helper function to insert a is-volatile test and memory barrier
  2060   // All current sparc implementations run in TSO, needing only StoreLoad
  2061   if ((order_constraint & Assembler::StoreLoad) == 0) return;
  2062   __ membar( order_constraint );
  2065 // ----------------------------------------------------------------------------
  2066 void TemplateTable::resolve_cache_and_index(int byte_no,
  2067                                             Register Rcache,
  2068                                             Register index,
  2069                                             size_t index_size) {
  2070   // Depends on cpCacheOop layout!
  2071   Label resolved;
  2073     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2074     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size);
  2075     __ cmp(Lbyte_code, (int) bytecode());  // have we resolved this bytecode?
  2076     __ br(Assembler::equal, false, Assembler::pt, resolved);
  2077     __ delayed()->set((int)bytecode(), O1);
  2079   address entry;
  2080   switch (bytecode()) {
  2081     case Bytecodes::_getstatic      : // fall through
  2082     case Bytecodes::_putstatic      : // fall through
  2083     case Bytecodes::_getfield       : // fall through
  2084     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  2085     case Bytecodes::_invokevirtual  : // fall through
  2086     case Bytecodes::_invokespecial  : // fall through
  2087     case Bytecodes::_invokestatic   : // fall through
  2088     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  2089     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);  break;
  2090     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
  2091     default:
  2092       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
  2093       break;
  2095   // first time invocation - must resolve first
  2096   __ call_VM(noreg, entry, O1);
  2097   // Update registers with resolved info
  2098   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2099   __ bind(resolved);
  2102 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2103                                                Register method,
  2104                                                Register itable_index,
  2105                                                Register flags,
  2106                                                bool is_invokevirtual,
  2107                                                bool is_invokevfinal,
  2108                                                bool is_invokedynamic) {
  2109   // Uses both G3_scratch and G4_scratch
  2110   Register cache = G3_scratch;
  2111   Register index = G4_scratch;
  2112   assert_different_registers(cache, method, itable_index);
  2114   // determine constant pool cache field offsets
  2115   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
  2116   const int method_offset = in_bytes(
  2117       ConstantPoolCache::base_offset() +
  2118       ((byte_no == f2_byte)
  2119        ? ConstantPoolCacheEntry::f2_offset()
  2120        : ConstantPoolCacheEntry::f1_offset()
  2122     );
  2123   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
  2124                                     ConstantPoolCacheEntry::flags_offset());
  2125   // access constant pool cache fields
  2126   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
  2127                                     ConstantPoolCacheEntry::f2_offset());
  2129   if (is_invokevfinal) {
  2130     __ get_cache_and_index_at_bcp(cache, index, 1);
  2131     __ ld_ptr(Address(cache, method_offset), method);
  2132   } else {
  2133     size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
  2134     resolve_cache_and_index(byte_no, cache, index, index_size);
  2135     __ ld_ptr(Address(cache, method_offset), method);
  2138   if (itable_index != noreg) {
  2139     // pick up itable or appendix index from f2 also:
  2140     __ ld_ptr(Address(cache, index_offset), itable_index);
  2142   __ ld_ptr(Address(cache, flags_offset), flags);
  2145 // The Rcache register must be set before call
  2146 void TemplateTable::load_field_cp_cache_entry(Register Robj,
  2147                                               Register Rcache,
  2148                                               Register index,
  2149                                               Register Roffset,
  2150                                               Register Rflags,
  2151                                               bool is_static) {
  2152   assert_different_registers(Rcache, Rflags, Roffset);
  2154   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2156   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2157   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2158   if (is_static) {
  2159     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
  2160     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  2161     __ ld_ptr( Robj, mirror_offset, Robj);
  2165 // The registers Rcache and index expected to be set before call.
  2166 // Correct values of the Rcache and index registers are preserved.
  2167 void TemplateTable::jvmti_post_field_access(Register Rcache,
  2168                                             Register index,
  2169                                             bool is_static,
  2170                                             bool has_tos) {
  2171   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2173   if (JvmtiExport::can_post_field_access()) {
  2174     // Check to see if a field access watch has been set before we take
  2175     // the time to call into the VM.
  2176     Label Label1;
  2177     assert_different_registers(Rcache, index, G1_scratch);
  2178     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
  2179     __ load_contents(get_field_access_count_addr, G1_scratch);
  2180     __ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1);
  2182     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
  2184     if (is_static) {
  2185       __ clr(Otos_i);
  2186     } else {
  2187       if (has_tos) {
  2188       // save object pointer before call_VM() clobbers it
  2189         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
  2190       } else {
  2191         // Load top of stack (do not pop the value off the stack);
  2192         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
  2194       __ verify_oop(Otos_i);
  2196     // Otos_i: object pointer or NULL if static
  2197     // Rcache: cache entry pointer
  2198     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2199                Otos_i, Rcache);
  2200     if (!is_static && has_tos) {
  2201       __ pop_ptr(Otos_i);  // restore object pointer
  2202       __ verify_oop(Otos_i);
  2204     __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2205     __ bind(Label1);
  2209 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2210   transition(vtos, vtos);
  2212   Register Rcache = G3_scratch;
  2213   Register index  = G4_scratch;
  2214   Register Rclass = Rcache;
  2215   Register Roffset= G4_scratch;
  2216   Register Rflags = G1_scratch;
  2217   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2219   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
  2220   jvmti_post_field_access(Rcache, index, is_static, false);
  2221   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
  2223   if (!is_static) {
  2224     pop_and_check_object(Rclass);
  2225   } else {
  2226     __ verify_oop(Rclass);
  2229   Label exit;
  2231   Assembler::Membar_mask_bits membar_bits =
  2232     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2234   if (__ membar_has_effect(membar_bits)) {
  2235     // Get volatile flag
  2236     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2237     __ and3(Rflags, Lscratch, Lscratch);
  2240   Label checkVolatile;
  2242   // compute field type
  2243   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
  2244   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
  2245   // Make sure we don't need to mask Rflags after the above shift
  2246   ConstantPoolCacheEntry::verify_tos_state_shift();
  2248   // Check atos before itos for getstatic, more likely (in Queens at least)
  2249   __ cmp(Rflags, atos);
  2250   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2251   __ delayed() ->cmp(Rflags, itos);
  2253   // atos
  2254   __ load_heap_oop(Rclass, Roffset, Otos_i);
  2255   __ verify_oop(Otos_i);
  2256   __ push(atos);
  2257   if (!is_static) {
  2258     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
  2260   __ ba(checkVolatile);
  2261   __ delayed()->tst(Lscratch);
  2263   __ bind(notObj);
  2265   // cmp(Rflags, itos);
  2266   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2267   __ delayed() ->cmp(Rflags, ltos);
  2269   // itos
  2270   __ ld(Rclass, Roffset, Otos_i);
  2271   __ push(itos);
  2272   if (!is_static) {
  2273     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
  2275   __ ba(checkVolatile);
  2276   __ delayed()->tst(Lscratch);
  2278   __ bind(notInt);
  2280   // cmp(Rflags, ltos);
  2281   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  2282   __ delayed() ->cmp(Rflags, btos);
  2284   // ltos
  2285   // load must be atomic
  2286   __ ld_long(Rclass, Roffset, Otos_l);
  2287   __ push(ltos);
  2288   if (!is_static) {
  2289     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
  2291   __ ba(checkVolatile);
  2292   __ delayed()->tst(Lscratch);
  2294   __ bind(notLong);
  2296   // cmp(Rflags, btos);
  2297   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  2298   __ delayed() ->cmp(Rflags, ctos);
  2300   // btos
  2301   __ ldsb(Rclass, Roffset, Otos_i);
  2302   __ push(itos);
  2303   if (!is_static) {
  2304     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
  2306   __ ba(checkVolatile);
  2307   __ delayed()->tst(Lscratch);
  2309   __ bind(notByte);
  2311   // cmp(Rflags, ctos);
  2312   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  2313   __ delayed() ->cmp(Rflags, stos);
  2315   // ctos
  2316   __ lduh(Rclass, Roffset, Otos_i);
  2317   __ push(itos);
  2318   if (!is_static) {
  2319     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
  2321   __ ba(checkVolatile);
  2322   __ delayed()->tst(Lscratch);
  2324   __ bind(notChar);
  2326   // cmp(Rflags, stos);
  2327   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  2328   __ delayed() ->cmp(Rflags, ftos);
  2330   // stos
  2331   __ ldsh(Rclass, Roffset, Otos_i);
  2332   __ push(itos);
  2333   if (!is_static) {
  2334     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
  2336   __ ba(checkVolatile);
  2337   __ delayed()->tst(Lscratch);
  2339   __ bind(notShort);
  2342   // cmp(Rflags, ftos);
  2343   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
  2344   __ delayed() ->tst(Lscratch);
  2346   // ftos
  2347   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
  2348   __ push(ftos);
  2349   if (!is_static) {
  2350     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
  2352   __ ba(checkVolatile);
  2353   __ delayed()->tst(Lscratch);
  2355   __ bind(notFloat);
  2358   // dtos
  2359   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
  2360   __ push(dtos);
  2361   if (!is_static) {
  2362     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
  2365   __ bind(checkVolatile);
  2366   if (__ membar_has_effect(membar_bits)) {
  2367     // __ tst(Lscratch); executed in delay slot
  2368     __ br(Assembler::zero, false, Assembler::pt, exit);
  2369     __ delayed()->nop();
  2370     volatile_barrier(membar_bits);
  2373   __ bind(exit);
  2377 void TemplateTable::getfield(int byte_no) {
  2378   getfield_or_static(byte_no, false);
  2381 void TemplateTable::getstatic(int byte_no) {
  2382   getfield_or_static(byte_no, true);
  2386 void TemplateTable::fast_accessfield(TosState state) {
  2387   transition(atos, state);
  2388   Register Rcache  = G3_scratch;
  2389   Register index   = G4_scratch;
  2390   Register Roffset = G4_scratch;
  2391   Register Rflags  = Rcache;
  2392   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2394   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2395   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
  2397   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2399   __ null_check(Otos_i);
  2400   __ verify_oop(Otos_i);
  2402   Label exit;
  2404   Assembler::Membar_mask_bits membar_bits =
  2405     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2406   if (__ membar_has_effect(membar_bits)) {
  2407     // Get volatile flag
  2408     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
  2409     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2412   switch (bytecode()) {
  2413     case Bytecodes::_fast_bgetfield:
  2414       __ ldsb(Otos_i, Roffset, Otos_i);
  2415       break;
  2416     case Bytecodes::_fast_cgetfield:
  2417       __ lduh(Otos_i, Roffset, Otos_i);
  2418       break;
  2419     case Bytecodes::_fast_sgetfield:
  2420       __ ldsh(Otos_i, Roffset, Otos_i);
  2421       break;
  2422     case Bytecodes::_fast_igetfield:
  2423       __ ld(Otos_i, Roffset, Otos_i);
  2424       break;
  2425     case Bytecodes::_fast_lgetfield:
  2426       __ ld_long(Otos_i, Roffset, Otos_l);
  2427       break;
  2428     case Bytecodes::_fast_fgetfield:
  2429       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
  2430       break;
  2431     case Bytecodes::_fast_dgetfield:
  2432       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
  2433       break;
  2434     case Bytecodes::_fast_agetfield:
  2435       __ load_heap_oop(Otos_i, Roffset, Otos_i);
  2436       break;
  2437     default:
  2438       ShouldNotReachHere();
  2441   if (__ membar_has_effect(membar_bits)) {
  2442     __ btst(Lscratch, Rflags);
  2443     __ br(Assembler::zero, false, Assembler::pt, exit);
  2444     __ delayed()->nop();
  2445     volatile_barrier(membar_bits);
  2446     __ bind(exit);
  2449   if (state == atos) {
  2450     __ verify_oop(Otos_i);    // does not blow flags!
  2454 void TemplateTable::jvmti_post_fast_field_mod() {
  2455   if (JvmtiExport::can_post_field_modification()) {
  2456     // Check to see if a field modification watch has been set before we take
  2457     // the time to call into the VM.
  2458     Label done;
  2459     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
  2460     __ load_contents(get_field_modification_count_addr, G4_scratch);
  2461     __ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done);
  2462     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
  2463     __ verify_oop(G4_scratch);
  2464     __ push_ptr(G4_scratch);    // put the object pointer back on tos
  2465     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
  2466     // Save tos values before call_VM() clobbers them. Since we have
  2467     // to do it for every data type, we use the saved values as the
  2468     // jvalue object.
  2469     switch (bytecode()) {  // save tos values before call_VM() clobbers them
  2470     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
  2471     case Bytecodes::_fast_bputfield: // fall through
  2472     case Bytecodes::_fast_sputfield: // fall through
  2473     case Bytecodes::_fast_cputfield: // fall through
  2474     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
  2475     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
  2476     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
  2477     // get words in right order for use as jvalue object
  2478     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
  2480     // setup pointer to jvalue object
  2481     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
  2482     // G4_scratch:  object pointer
  2483     // G1_scratch: cache entry pointer
  2484     // G3_scratch: jvalue object on the stack
  2485     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
  2486     switch (bytecode()) {             // restore tos values
  2487     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
  2488     case Bytecodes::_fast_bputfield: // fall through
  2489     case Bytecodes::_fast_sputfield: // fall through
  2490     case Bytecodes::_fast_cputfield: // fall through
  2491     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
  2492     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
  2493     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
  2494     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
  2496     __ bind(done);
  2500 // The registers Rcache and index expected to be set before call.
  2501 // The function may destroy various registers, just not the Rcache and index registers.
  2502 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
  2503   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2505   if (JvmtiExport::can_post_field_modification()) {
  2506     // Check to see if a field modification watch has been set before we take
  2507     // the time to call into the VM.
  2508     Label Label1;
  2509     assert_different_registers(Rcache, index, G1_scratch);
  2510     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
  2511     __ load_contents(get_field_modification_count_addr, G1_scratch);
  2512     __ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1);
  2514     // The Rcache and index registers have been already set.
  2515     // This allows to eliminate this call but the Rcache and index
  2516     // registers must be correspondingly used after this line.
  2517     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
  2519     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
  2520     if (is_static) {
  2521       // Life is simple.  Null out the object pointer.
  2522       __ clr(G4_scratch);
  2523     } else {
  2524       Register Rflags = G1_scratch;
  2525       // Life is harder. The stack holds the value on top, followed by the
  2526       // object.  We don't know the size of the value, though; it could be
  2527       // one or two words depending on its type. As a result, we must find
  2528       // the type to determine where the object is.
  2530       Label two_word, valsizeknown;
  2531       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2532       __ mov(Lesp, G4_scratch);
  2533       __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
  2534       // Make sure we don't need to mask Rflags after the above shift
  2535       ConstantPoolCacheEntry::verify_tos_state_shift();
  2536       __ cmp(Rflags, ltos);
  2537       __ br(Assembler::equal, false, Assembler::pt, two_word);
  2538       __ delayed()->cmp(Rflags, dtos);
  2539       __ br(Assembler::equal, false, Assembler::pt, two_word);
  2540       __ delayed()->nop();
  2541       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
  2542       __ ba_short(valsizeknown);
  2543       __ bind(two_word);
  2545       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
  2547       __ bind(valsizeknown);
  2548       // setup object pointer
  2549       __ ld_ptr(G4_scratch, 0, G4_scratch);
  2550       __ verify_oop(G4_scratch);
  2552     // setup pointer to jvalue object
  2553     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
  2554     // G4_scratch:  object pointer or NULL if static
  2555     // G3_scratch: cache entry pointer
  2556     // G1_scratch: jvalue object on the stack
  2557     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2558                G4_scratch, G3_scratch, G1_scratch);
  2559     __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2560     __ bind(Label1);
  2564 void TemplateTable::pop_and_check_object(Register r) {
  2565   __ pop_ptr(r);
  2566   __ null_check(r);  // for field access must check obj.
  2567   __ verify_oop(r);
  2570 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2571   transition(vtos, vtos);
  2572   Register Rcache = G3_scratch;
  2573   Register index  = G4_scratch;
  2574   Register Rclass = Rcache;
  2575   Register Roffset= G4_scratch;
  2576   Register Rflags = G1_scratch;
  2577   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2579   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
  2580   jvmti_post_field_mod(Rcache, index, is_static);
  2581   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
  2583   Assembler::Membar_mask_bits read_bits =
  2584     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  2585   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
  2587   Label notVolatile, checkVolatile, exit;
  2588   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
  2589     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2590     __ and3(Rflags, Lscratch, Lscratch);
  2592     if (__ membar_has_effect(read_bits)) {
  2593       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
  2594       volatile_barrier(read_bits);
  2595       __ bind(notVolatile);
  2599   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
  2600   // Make sure we don't need to mask Rflags after the above shift
  2601   ConstantPoolCacheEntry::verify_tos_state_shift();
  2603   // compute field type
  2604   Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;
  2606   if (is_static) {
  2607     // putstatic with object type most likely, check that first
  2608     __ cmp(Rflags, atos);
  2609     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2610     __ delayed()->cmp(Rflags, itos);
  2612     // atos
  2614       __ pop_ptr();
  2615       __ verify_oop(Otos_i);
  2616       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2617       __ ba(checkVolatile);
  2618       __ delayed()->tst(Lscratch);
  2621     __ bind(notObj);
  2622     // cmp(Rflags, itos);
  2623     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2624     __ delayed()->cmp(Rflags, btos);
  2626     // itos
  2628       __ pop_i();
  2629       __ st(Otos_i, Rclass, Roffset);
  2630       __ ba(checkVolatile);
  2631       __ delayed()->tst(Lscratch);
  2634     __ bind(notInt);
  2635   } else {
  2636     // putfield with int type most likely, check that first
  2637     __ cmp(Rflags, itos);
  2638     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2639     __ delayed()->cmp(Rflags, atos);
  2641     // itos
  2643       __ pop_i();
  2644       pop_and_check_object(Rclass);
  2645       __ st(Otos_i, Rclass, Roffset);
  2646       patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no);
  2647       __ ba(checkVolatile);
  2648       __ delayed()->tst(Lscratch);
  2651     __ bind(notInt);
  2652     // cmp(Rflags, atos);
  2653     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2654     __ delayed()->cmp(Rflags, btos);
  2656     // atos
  2658       __ pop_ptr();
  2659       pop_and_check_object(Rclass);
  2660       __ verify_oop(Otos_i);
  2661       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2662       patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no);
  2663       __ ba(checkVolatile);
  2664       __ delayed()->tst(Lscratch);
  2667     __ bind(notObj);
  2670   // cmp(Rflags, btos);
  2671   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  2672   __ delayed()->cmp(Rflags, ltos);
  2674   // btos
  2676     __ pop_i();
  2677     if (!is_static) pop_and_check_object(Rclass);
  2678     __ stb(Otos_i, Rclass, Roffset);
  2679     if (!is_static) {
  2680       patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no);
  2682     __ ba(checkVolatile);
  2683     __ delayed()->tst(Lscratch);
  2686   __ bind(notByte);
  2687   // cmp(Rflags, ltos);
  2688   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  2689   __ delayed()->cmp(Rflags, ctos);
  2691   // ltos
  2693     __ pop_l();
  2694     if (!is_static) pop_and_check_object(Rclass);
  2695     __ st_long(Otos_l, Rclass, Roffset);
  2696     if (!is_static) {
  2697       patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no);
  2699     __ ba(checkVolatile);
  2700     __ delayed()->tst(Lscratch);
  2703   __ bind(notLong);
  2704   // cmp(Rflags, ctos);
  2705   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  2706   __ delayed()->cmp(Rflags, stos);
  2708   // ctos (char)
  2710     __ pop_i();
  2711     if (!is_static) pop_and_check_object(Rclass);
  2712     __ sth(Otos_i, Rclass, Roffset);
  2713     if (!is_static) {
  2714       patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no);
  2716     __ ba(checkVolatile);
  2717     __ delayed()->tst(Lscratch);
  2720   __ bind(notChar);
  2721   // cmp(Rflags, stos);
  2722   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  2723   __ delayed()->cmp(Rflags, ftos);
  2725   // stos (short)
  2727     __ pop_i();
  2728     if (!is_static) pop_and_check_object(Rclass);
  2729     __ sth(Otos_i, Rclass, Roffset);
  2730     if (!is_static) {
  2731       patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no);
  2733     __ ba(checkVolatile);
  2734     __ delayed()->tst(Lscratch);
  2737   __ bind(notShort);
  2738   // cmp(Rflags, ftos);
  2739   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
  2740   __ delayed()->nop();
  2742   // ftos
  2744     __ pop_f();
  2745     if (!is_static) pop_and_check_object(Rclass);
  2746     __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  2747     if (!is_static) {
  2748       patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no);
  2750     __ ba(checkVolatile);
  2751     __ delayed()->tst(Lscratch);
  2754   __ bind(notFloat);
  2756   // dtos
  2758     __ pop_d();
  2759     if (!is_static) pop_and_check_object(Rclass);
  2760     __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  2761     if (!is_static) {
  2762       patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no);
  2766   __ bind(checkVolatile);
  2767   __ tst(Lscratch);
  2769   if (__ membar_has_effect(write_bits)) {
  2770     // __ tst(Lscratch); in delay slot
  2771     __ br(Assembler::zero, false, Assembler::pt, exit);
  2772     __ delayed()->nop();
  2773     volatile_barrier(Assembler::StoreLoad);
  2774     __ bind(exit);
  2778 void TemplateTable::fast_storefield(TosState state) {
  2779   transition(state, vtos);
  2780   Register Rcache = G3_scratch;
  2781   Register Rclass = Rcache;
  2782   Register Roffset= G4_scratch;
  2783   Register Rflags = G1_scratch;
  2784   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2786   jvmti_post_fast_field_mod();
  2788   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
  2790   Assembler::Membar_mask_bits read_bits =
  2791     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  2792   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
  2794   Label notVolatile, checkVolatile, exit;
  2795   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
  2796     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2797     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2798     __ and3(Rflags, Lscratch, Lscratch);
  2799     if (__ membar_has_effect(read_bits)) {
  2800       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
  2801       volatile_barrier(read_bits);
  2802       __ bind(notVolatile);
  2806   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2807   pop_and_check_object(Rclass);
  2809   switch (bytecode()) {
  2810     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
  2811     case Bytecodes::_fast_cputfield: /* fall through */
  2812     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
  2813     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
  2814     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
  2815     case Bytecodes::_fast_fputfield:
  2816       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  2817       break;
  2818     case Bytecodes::_fast_dputfield:
  2819       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  2820       break;
  2821     case Bytecodes::_fast_aputfield:
  2822       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2823       break;
  2824     default:
  2825       ShouldNotReachHere();
  2828   if (__ membar_has_effect(write_bits)) {
  2829     __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit);
  2830     volatile_barrier(Assembler::StoreLoad);
  2831     __ bind(exit);
  2836 void TemplateTable::putfield(int byte_no) {
  2837   putfield_or_static(byte_no, false);
  2840 void TemplateTable::putstatic(int byte_no) {
  2841   putfield_or_static(byte_no, true);
  2845 void TemplateTable::fast_xaccess(TosState state) {
  2846   transition(vtos, state);
  2847   Register Rcache = G3_scratch;
  2848   Register Roffset = G4_scratch;
  2849   Register Rflags  = G4_scratch;
  2850   Register Rreceiver = Lscratch;
  2852   __ ld_ptr(Llocals, 0, Rreceiver);
  2854   // access constant pool cache  (is resolved)
  2855   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
  2856   __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2857   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
  2859   __ verify_oop(Rreceiver);
  2860   __ null_check(Rreceiver);
  2861   if (state == atos) {
  2862     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
  2863   } else if (state == itos) {
  2864     __ ld (Rreceiver, Roffset, Otos_i) ;
  2865   } else if (state == ftos) {
  2866     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
  2867   } else {
  2868     ShouldNotReachHere();
  2871   Assembler::Membar_mask_bits membar_bits =
  2872     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2873   if (__ membar_has_effect(membar_bits)) {
  2875     // Get is_volatile value in Rflags and check if membar is needed
  2876     __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2878     // Test volatile
  2879     Label notVolatile;
  2880     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
  2881     __ btst(Rflags, Lscratch);
  2882     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
  2883     __ delayed()->nop();
  2884     volatile_barrier(membar_bits);
  2885     __ bind(notVolatile);
  2888   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  2889   __ sub(Lbcp, 1, Lbcp);
  2892 //----------------------------------------------------------------------------------------------------
  2893 // Calls
  2895 void TemplateTable::count_calls(Register method, Register temp) {
  2896   // implemented elsewhere
  2897   ShouldNotReachHere();
  2900 void TemplateTable::prepare_invoke(int byte_no,
  2901                                    Register method,  // linked method (or i-klass)
  2902                                    Register ra,      // return address
  2903                                    Register index,   // itable index, MethodType, etc.
  2904                                    Register recv,    // if caller wants to see it
  2905                                    Register flags    // if caller wants to test it
  2906                                    ) {
  2907   // determine flags
  2908   const Bytecodes::Code code = bytecode();
  2909   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2910   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2911   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
  2912   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2913   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2914   const bool load_receiver       = (recv != noreg);
  2915   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
  2916   assert(recv  == noreg || recv  == O0, "");
  2917   assert(flags == noreg || flags == O1, "");
  2919   // setup registers & access constant pool cache
  2920   if (recv  == noreg)  recv  = O0;
  2921   if (flags == noreg)  flags = O1;
  2922   const Register temp = O2;
  2923   assert_different_registers(method, ra, index, recv, flags, temp);
  2925   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2927   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
  2929   // maybe push appendix to arguments
  2930   if (is_invokedynamic || is_invokehandle) {
  2931     Label L_no_push;
  2932     __ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp);
  2933     __ btst(flags, temp);
  2934     __ br(Assembler::zero, false, Assembler::pt, L_no_push);
  2935     __ delayed()->nop();
  2936     // Push the appendix as a trailing parameter.
  2937     // This must be done before we get the receiver,
  2938     // since the parameter_size includes it.
  2939     __ load_resolved_reference_at_index(temp, index);
  2940     __ verify_oop(temp);
  2941     __ push_ptr(temp);  // push appendix (MethodType, CallSite, etc.)
  2942     __ bind(L_no_push);
  2945   // load receiver if needed (after appendix is pushed so parameter size is correct)
  2946   if (load_receiver) {
  2947     __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp);  // get parameter size
  2948     __ load_receiver(temp, recv);  //  __ argument_address uses Gargs but we need Lesp
  2949     __ verify_oop(recv);
  2952   // compute return type
  2953   __ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra);
  2954   // Make sure we don't need to mask flags after the above shift
  2955   ConstantPoolCacheEntry::verify_tos_state_shift();
  2956   // load return address
  2958     const address table_addr = (is_invokeinterface || is_invokedynamic) ?
  2959         (address)Interpreter::return_5_addrs_by_index_table() :
  2960         (address)Interpreter::return_3_addrs_by_index_table();
  2961     AddressLiteral table(table_addr);
  2962     __ set(table, temp);
  2963     __ sll(ra, LogBytesPerWord, ra);
  2964     __ ld_ptr(Address(temp, ra), ra);
  2969 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
  2970   Register Rtemp = G4_scratch;
  2971   Register Rcall = Rindex;
  2972   assert_different_registers(Rcall, G5_method, Gargs, Rret);
  2974   // get target Method* & entry point
  2975   __ lookup_virtual_method(Rrecv, Rindex, G5_method);
  2976   __ call_from_interpreter(Rcall, Gargs, Rret);
  2979 void TemplateTable::invokevirtual(int byte_no) {
  2980   transition(vtos, vtos);
  2981   assert(byte_no == f2_byte, "use this argument");
  2983   Register Rscratch = G3_scratch;
  2984   Register Rtemp    = G4_scratch;
  2985   Register Rret     = Lscratch;
  2986   Register O0_recv  = O0;
  2987   Label notFinal;
  2989   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
  2990   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  2992   // Check for vfinal
  2993   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch);
  2994   __ btst(Rret, G4_scratch);
  2995   __ br(Assembler::zero, false, Assembler::pt, notFinal);
  2996   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
  2998   patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
  3000   invokevfinal_helper(Rscratch, Rret);
  3002   __ bind(notFinal);
  3004   __ mov(G5_method, Rscratch);  // better scratch register
  3005   __ load_receiver(G4_scratch, O0_recv);  // gets receiverOop
  3006   // receiver is in O0_recv
  3007   __ verify_oop(O0_recv);
  3009   // get return address
  3010   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  3011   __ set(table, Rtemp);
  3012   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
  3013   // Make sure we don't need to mask Rret after the above shift
  3014   ConstantPoolCacheEntry::verify_tos_state_shift();
  3015   __ sll(Rret,  LogBytesPerWord, Rret);
  3016   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  3018   // get receiver klass
  3019   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
  3020   __ load_klass(O0_recv, O0_recv);
  3021   __ verify_klass_ptr(O0_recv);
  3023   __ profile_virtual_call(O0_recv, O4);
  3025   generate_vtable_call(O0_recv, Rscratch, Rret);
  3028 void TemplateTable::fast_invokevfinal(int byte_no) {
  3029   transition(vtos, vtos);
  3030   assert(byte_no == f2_byte, "use this argument");
  3032   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
  3033                              /*is_invokevfinal*/true, false);
  3034   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  3035   invokevfinal_helper(G3_scratch, Lscratch);
  3038 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
  3039   Register Rtemp = G4_scratch;
  3041   // Load receiver from stack slot
  3042   __ lduh(G5_method, in_bytes(Method::size_of_parameters_offset()), G4_scratch);
  3043   __ load_receiver(G4_scratch, O0);
  3045   // receiver NULL check
  3046   __ null_check(O0);
  3048   __ profile_final_call(O4);
  3050   // get return address
  3051   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  3052   __ set(table, Rtemp);
  3053   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
  3054   // Make sure we don't need to mask Rret after the above shift
  3055   ConstantPoolCacheEntry::verify_tos_state_shift();
  3056   __ sll(Rret,  LogBytesPerWord, Rret);
  3057   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  3060   // do the call
  3061   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3065 void TemplateTable::invokespecial(int byte_no) {
  3066   transition(vtos, vtos);
  3067   assert(byte_no == f1_byte, "use this argument");
  3069   const Register Rret     = Lscratch;
  3070   const Register O0_recv  = O0;
  3071   const Register Rscratch = G3_scratch;
  3073   prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv);  // get receiver also for null check
  3074   __ null_check(O0_recv);
  3076   // do the call
  3077   __ profile_call(O4);
  3078   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3082 void TemplateTable::invokestatic(int byte_no) {
  3083   transition(vtos, vtos);
  3084   assert(byte_no == f1_byte, "use this argument");
  3086   const Register Rret     = Lscratch;
  3087   const Register Rscratch = G3_scratch;
  3089   prepare_invoke(byte_no, G5_method, Rret);  // get f1 Method*
  3091   // do the call
  3092   __ profile_call(O4);
  3093   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3096 void TemplateTable::invokeinterface_object_method(Register RKlass,
  3097                                                   Register Rcall,
  3098                                                   Register Rret,
  3099                                                   Register Rflags) {
  3100   Register Rscratch = G4_scratch;
  3101   Register Rindex = Lscratch;
  3103   assert_different_registers(Rscratch, Rindex, Rret);
  3105   Label notFinal;
  3107   // Check for vfinal
  3108   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch);
  3109   __ btst(Rflags, Rscratch);
  3110   __ br(Assembler::zero, false, Assembler::pt, notFinal);
  3111   __ delayed()->nop();
  3113   __ profile_final_call(O4);
  3115   // do the call - the index (f2) contains the Method*
  3116   assert_different_registers(G5_method, Gargs, Rcall);
  3117   __ mov(Rindex, G5_method);
  3118   __ call_from_interpreter(Rcall, Gargs, Rret);
  3119   __ bind(notFinal);
  3121   __ profile_virtual_call(RKlass, O4);
  3122   generate_vtable_call(RKlass, Rindex, Rret);
  3126 void TemplateTable::invokeinterface(int byte_no) {
  3127   transition(vtos, vtos);
  3128   assert(byte_no == f1_byte, "use this argument");
  3130   const Register Rinterface  = G1_scratch;
  3131   const Register Rret        = G3_scratch;
  3132   const Register Rindex      = Lscratch;
  3133   const Register O0_recv     = O0;
  3134   const Register O1_flags    = O1;
  3135   const Register O2_Klass    = O2;
  3136   const Register Rscratch    = G4_scratch;
  3137   assert_different_registers(Rscratch, G5_method);
  3139   prepare_invoke(byte_no, Rinterface, Rret, Rindex, O0_recv, O1_flags);
  3141   // get receiver klass
  3142   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
  3143   __ load_klass(O0_recv, O2_Klass);
  3145   // Special case of invokeinterface called for virtual method of
  3146   // java.lang.Object.  See cpCacheOop.cpp for details.
  3147   // This code isn't produced by javac, but could be produced by
  3148   // another compliant java compiler.
  3149   Label notMethod;
  3150   __ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch);
  3151   __ btst(O1_flags, Rscratch);
  3152   __ br(Assembler::zero, false, Assembler::pt, notMethod);
  3153   __ delayed()->nop();
  3155   invokeinterface_object_method(O2_Klass, Rinterface, Rret, O1_flags);
  3157   __ bind(notMethod);
  3159   __ profile_virtual_call(O2_Klass, O4);
  3161   //
  3162   // find entry point to call
  3163   //
  3165   // compute start of first itableOffsetEntry (which is at end of vtable)
  3166   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  3167   Label search;
  3168   Register Rtemp = O1_flags;
  3170   __ ld(O2_Klass, InstanceKlass::vtable_length_offset() * wordSize, Rtemp);
  3171   if (align_object_offset(1) > 1) {
  3172     __ round_to(Rtemp, align_object_offset(1));
  3174   __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
  3175   if (Assembler::is_simm13(base)) {
  3176     __ add(Rtemp, base, Rtemp);
  3177   } else {
  3178     __ set(base, Rscratch);
  3179     __ add(Rscratch, Rtemp, Rtemp);
  3181   __ add(O2_Klass, Rtemp, Rscratch);
  3183   __ bind(search);
  3185   __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
  3187     Label ok;
  3189     // Check that entry is non-null.  Null entries are probably a bytecode
  3190     // problem.  If the interface isn't implemented by the receiver class,
  3191     // the VM should throw IncompatibleClassChangeError.  linkResolver checks
  3192     // this too but that's only if the entry isn't already resolved, so we
  3193     // need to check again.
  3194     __ br_notnull_short( Rtemp, Assembler::pt, ok);
  3195     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
  3196     __ should_not_reach_here();
  3197     __ bind(ok);
  3200   __ cmp(Rinterface, Rtemp);
  3201   __ brx(Assembler::notEqual, true, Assembler::pn, search);
  3202   __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
  3204   // entry found and Rscratch points to it
  3205   __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
  3207   assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
  3208   __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
  3209   __ add(Rscratch, Rindex, Rscratch);
  3210   __ ld_ptr(O2_Klass, Rscratch, G5_method);
  3212   // Check for abstract method error.
  3214     Label ok;
  3215     __ br_notnull_short(G5_method, Assembler::pt, ok);
  3216     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3217     __ should_not_reach_here();
  3218     __ bind(ok);
  3221   Register Rcall = Rinterface;
  3222   assert_different_registers(Rcall, G5_method, Gargs, Rret);
  3224   __ call_from_interpreter(Rcall, Gargs, Rret);
  3227 void TemplateTable::invokehandle(int byte_no) {
  3228   transition(vtos, vtos);
  3229   assert(byte_no == f1_byte, "use this argument");
  3231   if (!EnableInvokeDynamic) {
  3232     // rewriter does not generate this bytecode
  3233     __ should_not_reach_here();
  3234     return;
  3237   const Register Rret       = Lscratch;
  3238   const Register G4_mtype   = G4_scratch;  // f1
  3239   const Register O0_recv    = O0;
  3240   const Register Rscratch   = G3_scratch;
  3242   prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv);
  3243   __ null_check(O0_recv);
  3245   // G4: MethodType object (from cpool->resolved_references[])
  3246   // G5: MH.linkToCallSite method (from f2)
  3248   // Note:  G4_mtype is already pushed (if necessary) by prepare_invoke
  3250   // do the call
  3251   __ verify_oop(G4_mtype);
  3252   __ profile_final_call(O4);  // FIXME: profile the LambdaForm also
  3253   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3257 void TemplateTable::invokedynamic(int byte_no) {
  3258   transition(vtos, vtos);
  3259   assert(byte_no == f1_byte, "use this argument");
  3261   if (!EnableInvokeDynamic) {
  3262     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3263     // The verifier will stop it.  However, if we get past the verifier,
  3264     // this will stop the thread in a reasonable way, without crashing the JVM.
  3265     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3266                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3267     // the call_VM checks for exception, so we should never return here.
  3268     __ should_not_reach_here();
  3269     return;
  3272   const Register Rret        = Lscratch;
  3273   const Register G4_callsite = G4_scratch;
  3274   const Register Rscratch    = G3_scratch;
  3276   prepare_invoke(byte_no, G5_method, Rret, G4_callsite);
  3278   // G4: CallSite object (from cpool->resolved_references[])
  3279   // G5: MH.linkToCallSite method (from f1)
  3281   // Note:  G4_callsite is already pushed by prepare_invoke
  3283   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3284   // profile this call
  3285   __ profile_call(O4);
  3287   // do the call
  3288   __ verify_oop(G4_callsite);
  3289   __ call_from_interpreter(Rscratch, Gargs, Rret);
  3293 //----------------------------------------------------------------------------------------------------
  3294 // Allocation
  3296 void TemplateTable::_new() {
  3297   transition(vtos, atos);
  3299   Label slow_case;
  3300   Label done;
  3301   Label initialize_header;
  3302   Label initialize_object;  // including clearing the fields
  3304   Register RallocatedObject = Otos_i;
  3305   Register RinstanceKlass = O1;
  3306   Register Roffset = O3;
  3307   Register Rscratch = O4;
  3309   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3310   __ get_cpool_and_tags(Rscratch, G3_scratch);
  3311   // make sure the class we're about to instantiate has been resolved
  3312   // This is done before loading InstanceKlass to be consistent with the order
  3313   // how Constant Pool is updated (see ConstantPool::klass_at_put)
  3314   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
  3315   __ ldub(G3_scratch, Roffset, G3_scratch);
  3316   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3317   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  3318   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3319   // get InstanceKlass
  3320   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
  3321   __ add(Roffset, sizeof(ConstantPool), Roffset);
  3322   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
  3324   // make sure klass is fully initialized:
  3325   __ ldub(RinstanceKlass, in_bytes(InstanceKlass::init_state_offset()), G3_scratch);
  3326   __ cmp(G3_scratch, InstanceKlass::fully_initialized);
  3327   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  3328   __ delayed()->ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
  3330   // get instance_size in InstanceKlass (already aligned)
  3331   //__ ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
  3333   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
  3334   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
  3335   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
  3336   __ delayed()->nop();
  3338   // allocate the instance
  3339   // 1) Try to allocate in the TLAB
  3340   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
  3341   // 3) if the above fails (or is not applicable), go to a slow case
  3342   // (creates a new TLAB, etc.)
  3344   const bool allow_shared_alloc =
  3345     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3347   if(UseTLAB) {
  3348     Register RoldTopValue = RallocatedObject;
  3349     Register RtlabWasteLimitValue = G3_scratch;
  3350     Register RnewTopValue = G1_scratch;
  3351     Register RendValue = Rscratch;
  3352     Register RfreeValue = RnewTopValue;
  3354     // check if we can allocate in the TLAB
  3355     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
  3356     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
  3357     __ add(RoldTopValue, Roffset, RnewTopValue);
  3359     // if there is enough space, we do not CAS and do not clear
  3360     __ cmp(RnewTopValue, RendValue);
  3361     if(ZeroTLAB) {
  3362       // the fields have already been cleared
  3363       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
  3364     } else {
  3365       // initialize both the header and fields
  3366       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
  3368     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3370     if (allow_shared_alloc) {
  3371       // Check if tlab should be discarded (refill_waste_limit >= free)
  3372       __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
  3373       __ sub(RendValue, RoldTopValue, RfreeValue);
  3374 #ifdef _LP64
  3375       __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
  3376 #else
  3377       __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
  3378 #endif
  3379       __ cmp_and_brx_short(RtlabWasteLimitValue, RfreeValue, Assembler::greaterEqualUnsigned, Assembler::pt, slow_case); // tlab waste is small
  3381       // increment waste limit to prevent getting stuck on this slow path
  3382       __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
  3383       __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  3384     } else {
  3385       // No allocation in the shared eden.
  3386       __ ba_short(slow_case);
  3390   // Allocation in the shared Eden
  3391   if (allow_shared_alloc) {
  3392     Register RoldTopValue = G1_scratch;
  3393     Register RtopAddr = G3_scratch;
  3394     Register RnewTopValue = RallocatedObject;
  3395     Register RendValue = Rscratch;
  3397     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
  3399     Label retry;
  3400     __ bind(retry);
  3401     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
  3402     __ ld_ptr(RendValue, 0, RendValue);
  3403     __ ld_ptr(RtopAddr, 0, RoldTopValue);
  3404     __ add(RoldTopValue, Roffset, RnewTopValue);
  3406     // RnewTopValue contains the top address after the new object
  3407     // has been allocated.
  3408     __ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case);
  3410     __ casx_under_lock(RtopAddr, RoldTopValue, RnewTopValue,
  3411       VM_Version::v9_instructions_work() ? NULL :
  3412       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3414     // if someone beat us on the allocation, try again, otherwise continue
  3415     __ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry);
  3417     // bump total bytes allocated by this thread
  3418     // RoldTopValue and RtopAddr are dead, so can use G1 and G3
  3419     __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
  3422   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3423     // clear object fields
  3424     __ bind(initialize_object);
  3425     __ deccc(Roffset, sizeof(oopDesc));
  3426     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
  3427     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
  3429     // initialize remaining object fields
  3430     if (UseBlockZeroing) {
  3431       // Use BIS for zeroing
  3432       __ bis_zeroing(G3_scratch, Roffset, G1_scratch, initialize_header);
  3433     } else {
  3434       Label loop;
  3435       __ subcc(Roffset, wordSize, Roffset);
  3436       __ bind(loop);
  3437       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
  3438       __ st_ptr(G0, G3_scratch, Roffset);
  3439       __ br(Assembler::notEqual, false, Assembler::pt, loop);
  3440       __ delayed()->subcc(Roffset, wordSize, Roffset);
  3442     __ ba_short(initialize_header);
  3445   // slow case
  3446   __ bind(slow_case);
  3447   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
  3448   __ get_constant_pool(O1);
  3450   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
  3452   __ ba_short(done);
  3454   // Initialize the header: mark, klass
  3455   __ bind(initialize_header);
  3457   if (UseBiasedLocking) {
  3458     __ ld_ptr(RinstanceKlass, in_bytes(Klass::prototype_header_offset()), G4_scratch);
  3459   } else {
  3460     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
  3462   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
  3463   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
  3464   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
  3467     SkipIfEqual skip_if(
  3468       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
  3469     // Trigger dtrace event
  3470     __ push(atos);
  3471     __ call_VM_leaf(noreg,
  3472        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
  3473     __ pop(atos);
  3476   // continue
  3477   __ bind(done);
  3482 void TemplateTable::newarray() {
  3483   transition(itos, atos);
  3484   __ ldub(Lbcp, 1, O1);
  3485      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
  3489 void TemplateTable::anewarray() {
  3490   transition(itos, atos);
  3491   __ get_constant_pool(O1);
  3492   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
  3493      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
  3497 void TemplateTable::arraylength() {
  3498   transition(atos, itos);
  3499   Label ok;
  3500   __ verify_oop(Otos_i);
  3501   __ tst(Otos_i);
  3502   __ throw_if_not_1_x( Assembler::notZero, ok );
  3503   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
  3504   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  3508 void TemplateTable::checkcast() {
  3509   transition(atos, atos);
  3510   Label done, is_null, quicked, cast_ok, resolved;
  3511   Register Roffset = G1_scratch;
  3512   Register RobjKlass = O5;
  3513   Register RspecifiedKlass = O4;
  3515   // Check for casting a NULL
  3516   __ br_null_short(Otos_i, Assembler::pn, is_null);
  3518   // Get value klass in RobjKlass
  3519   __ load_klass(Otos_i, RobjKlass); // get value klass
  3521   // Get constant pool tag
  3522   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3524   // See if the checkcast has been quickened
  3525   __ get_cpool_and_tags(Lscratch, G3_scratch);
  3526   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
  3527   __ ldub(G3_scratch, Roffset, G3_scratch);
  3528   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3529   __ br(Assembler::equal, true, Assembler::pt, quicked);
  3530   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3532   __ push_ptr(); // save receiver for result, and for GC
  3533   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3534   __ get_vm_result_2(RspecifiedKlass);
  3535   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
  3537   __ ba_short(resolved);
  3539   // Extract target class from constant pool
  3540   __ bind(quicked);
  3541   __ add(Roffset, sizeof(ConstantPool), Roffset);
  3542   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  3543   __ bind(resolved);
  3544   __ load_klass(Otos_i, RobjKlass); // get value klass
  3546   // Generate a fast subtype check.  Branch to cast_ok if no
  3547   // failure.  Throw exception if failure.
  3548   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
  3550   // Not a subtype; so must throw exception
  3551   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
  3553   __ bind(cast_ok);
  3555   if (ProfileInterpreter) {
  3556     __ ba_short(done);
  3558   __ bind(is_null);
  3559   __ profile_null_seen(G3_scratch);
  3560   __ bind(done);
  3564 void TemplateTable::instanceof() {
  3565   Label done, is_null, quicked, resolved;
  3566   transition(atos, itos);
  3567   Register Roffset = G1_scratch;
  3568   Register RobjKlass = O5;
  3569   Register RspecifiedKlass = O4;
  3571   // Check for casting a NULL
  3572   __ br_null_short(Otos_i, Assembler::pt, is_null);
  3574   // Get value klass in RobjKlass
  3575   __ load_klass(Otos_i, RobjKlass); // get value klass
  3577   // Get constant pool tag
  3578   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3580   // See if the checkcast has been quickened
  3581   __ get_cpool_and_tags(Lscratch, G3_scratch);
  3582   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
  3583   __ ldub(G3_scratch, Roffset, G3_scratch);
  3584   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3585   __ br(Assembler::equal, true, Assembler::pt, quicked);
  3586   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3588   __ push_ptr(); // save receiver for result, and for GC
  3589   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3590   __ get_vm_result_2(RspecifiedKlass);
  3591   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
  3593   __ ba_short(resolved);
  3595   // Extract target class from constant pool
  3596   __ bind(quicked);
  3597   __ add(Roffset, sizeof(ConstantPool), Roffset);
  3598   __ get_constant_pool(Lscratch);
  3599   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  3600   __ bind(resolved);
  3601   __ load_klass(Otos_i, RobjKlass); // get value klass
  3603   // Generate a fast subtype check.  Branch to cast_ok if no
  3604   // failure.  Return 0 if failure.
  3605   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
  3606   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
  3607   // Not a subtype; return 0;
  3608   __ clr( Otos_i );
  3610   if (ProfileInterpreter) {
  3611     __ ba_short(done);
  3613   __ bind(is_null);
  3614   __ profile_null_seen(G3_scratch);
  3615   __ bind(done);
  3618 void TemplateTable::_breakpoint() {
  3620    // Note: We get here even if we are single stepping..
  3621    // jbug inists on setting breakpoints at every bytecode
  3622    // even if we are in single step mode.
  3624    transition(vtos, vtos);
  3625    // get the unpatched byte code
  3626    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
  3627    __ mov(O0, Lbyte_code);
  3629    // post the breakpoint event
  3630    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
  3632    // complete the execution of original bytecode
  3633    __ dispatch_normal(vtos);
  3637 //----------------------------------------------------------------------------------------------------
  3638 // Exceptions
  3640 void TemplateTable::athrow() {
  3641   transition(atos, vtos);
  3643   // This works because exception is cached in Otos_i which is same as O0,
  3644   // which is same as what throw_exception_entry_expects
  3645   assert(Otos_i == Oexception, "see explanation above");
  3647   __ verify_oop(Otos_i);
  3648   __ null_check(Otos_i);
  3649   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
  3653 //----------------------------------------------------------------------------------------------------
  3654 // Synchronization
  3657 // See frame_sparc.hpp for monitor block layout.
  3658 // Monitor elements are dynamically allocated by growing stack as needed.
  3660 void TemplateTable::monitorenter() {
  3661   transition(atos, vtos);
  3662   __ verify_oop(Otos_i);
  3663   // Try to acquire a lock on the object
  3664   // Repeat until succeeded (i.e., until
  3665   // monitorenter returns true).
  3667   {   Label ok;
  3668     __ tst(Otos_i);
  3669     __ throw_if_not_1_x( Assembler::notZero,  ok);
  3670     __ delayed()->mov(Otos_i, Lscratch); // save obj
  3671     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  3674   assert(O0 == Otos_i, "Be sure where the object to lock is");
  3676   // find a free slot in the monitor block
  3679   // initialize entry pointer
  3680   __ clr(O1); // points to free slot or NULL
  3683     Label entry, loop, exit;
  3684     __ add( __ top_most_monitor(), O2 ); // last one to check
  3685     __ ba( entry );
  3686     __ delayed()->mov( Lmonitors, O3 ); // first one to check
  3689     __ bind( loop );
  3691     __ verify_oop(O4);          // verify each monitor's oop
  3692     __ tst(O4); // is this entry unused?
  3693     if (VM_Version::v9_instructions_work())
  3694       __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
  3695     else {
  3696       Label L;
  3697       __ br( Assembler::zero, true, Assembler::pn, L );
  3698       __ delayed()->mov(O3, O1); // rememeber this one if match
  3699       __ bind(L);
  3702     __ cmp(O4, O0); // check if current entry is for same object
  3703     __ brx( Assembler::equal, false, Assembler::pn, exit );
  3704     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
  3706     __ bind( entry );
  3708     __ cmp( O3, O2 );
  3709     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
  3710     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
  3712     __ bind( exit );
  3715   { Label allocated;
  3717     // found free slot?
  3718     __ br_notnull_short(O1, Assembler::pn, allocated);
  3720     __ add_monitor_to_stack( false, O2, O3 );
  3721     __ mov(Lmonitors, O1);
  3723     __ bind(allocated);
  3726   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3727   // The object has already been poped from the stack, so the expression stack looks correct.
  3728   __ inc(Lbcp);
  3730   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
  3731   __ lock_object(O1, O0);
  3733   // check if there's enough space on the stack for the monitors after locking
  3734   __ generate_stack_overflow_check(0);
  3736   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3737   __ dispatch_next(vtos);
  3741 void TemplateTable::monitorexit() {
  3742   transition(atos, vtos);
  3743   __ verify_oop(Otos_i);
  3744   __ tst(Otos_i);
  3745   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
  3747   assert(O0 == Otos_i, "just checking");
  3749   { Label entry, loop, found;
  3750     __ add( __ top_most_monitor(), O2 ); // last one to check
  3751     __ ba(entry);
  3752     // use Lscratch to hold monitor elem to check, start with most recent monitor,
  3753     // By using a local it survives the call to the C routine.
  3754     __ delayed()->mov( Lmonitors, Lscratch );
  3756     __ bind( loop );
  3758     __ verify_oop(O4);          // verify each monitor's oop
  3759     __ cmp(O4, O0); // check if current entry is for desired object
  3760     __ brx( Assembler::equal, true, Assembler::pt, found );
  3761     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
  3763     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
  3765     __ bind( entry );
  3767     __ cmp( Lscratch, O2 );
  3768     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
  3769     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
  3771     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3772     __ should_not_reach_here();
  3774     __ bind(found);
  3776   __ unlock_object(O1);
  3780 //----------------------------------------------------------------------------------------------------
  3781 // Wide instructions
  3783 void TemplateTable::wide() {
  3784   transition(vtos, vtos);
  3785   __ ldub(Lbcp, 1, G3_scratch);// get next bc
  3786   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
  3787   AddressLiteral ep(Interpreter::_wentry_point);
  3788   __ set(ep, G4_scratch);
  3789   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
  3790   __ jmp(G3_scratch, G0);
  3791   __ delayed()->nop();
  3792   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
  3796 //----------------------------------------------------------------------------------------------------
  3797 // Multi arrays
  3799 void TemplateTable::multianewarray() {
  3800   transition(vtos, atos);
  3801      // put ndims * wordSize into Lscratch
  3802   __ ldub( Lbcp,     3,               Lscratch);
  3803   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
  3804      // Lesp points past last_dim, so set to O1 to first_dim address
  3805   __ add(  Lesp,     Lscratch,        O1);
  3806      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
  3807   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
  3809 #endif /* !CC_INTERP */

mercurial