src/cpu/sparc/vm/sparc.ad

Tue, 11 Sep 2012 20:20:38 -0400

author
coleenp
date
Tue, 11 Sep 2012 20:20:38 -0400
changeset 4052
75f33eecc1b3
parent 4037
da91efe96a93
child 4106
7eca5de9e0b6
permissions
-rw-r--r--

7196681: NPG: Some JSR 292 tests crash in Windows exception handler
Summary: There was a rogue os::breakpoint() call in log_dependency left over from the jsr292 merge. Also changed verify_oop() calls for metadata to verify_{method,klass}_ptr.
Reviewed-by: kvn, twisti

     1 //
     2 // Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 extern bool use_block_zeroing(Node* count);
   465 // Macros to extract hi & lo halves from a long pair.
   466 // G0 is not part of any long pair, so assert on that.
   467 // Prevents accidentally using G1 instead of G0.
   468 #define LONG_HI_REG(x) (x)
   469 #define LONG_LO_REG(x) (x)
   471 %}
   473 source %{
   474 #define __ _masm.
   476 // tertiary op of a LoadP or StoreP encoding
   477 #define REGP_OP true
   479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   481 static Register reg_to_register_object(int register_encoding);
   483 // Used by the DFA in dfa_sparc.cpp.
   484 // Check for being able to use a V9 branch-on-register.  Requires a
   485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   486 // extended.  Doesn't work following an integer ADD, for example, because of
   487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   489 // replace them with zero, which could become sign-extension in a different OS
   490 // release.  There's no obvious reason why an interrupt will ever fill these
   491 // bits with non-zero junk (the registers are reloaded with standard LD
   492 // instructions which either zero-fill or sign-fill).
   493 bool can_branch_register( Node *bol, Node *cmp ) {
   494   if( !BranchOnRegister ) return false;
   495 #ifdef _LP64
   496   if( cmp->Opcode() == Op_CmpP )
   497     return true;  // No problems with pointer compares
   498 #endif
   499   if( cmp->Opcode() == Op_CmpL )
   500     return true;  // No problems with long compares
   502   if( !SparcV9RegsHiBitsZero ) return false;
   503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   504       bol->as_Bool()->_test._test != BoolTest::eq )
   505      return false;
   507   // Check for comparing against a 'safe' value.  Any operation which
   508   // clears out the high word is safe.  Thus, loads and certain shifts
   509   // are safe, as are non-negative constants.  Any operation which
   510   // preserves zero bits in the high word is safe as long as each of its
   511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   512   // inputs are safe.  At present, the only important case to recognize
   513   // seems to be loads.  Constants should fold away, and shifts &
   514   // logicals can use the 'cc' forms.
   515   Node *x = cmp->in(1);
   516   if( x->is_Load() ) return true;
   517   if( x->is_Phi() ) {
   518     for( uint i = 1; i < x->req(); i++ )
   519       if( !x->in(i)->is_Load() )
   520         return false;
   521     return true;
   522   }
   523   return false;
   524 }
   526 bool use_block_zeroing(Node* count) {
   527   // Use BIS for zeroing if count is not constant
   528   // or it is >= BlockZeroingLowLimit.
   529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   530 }
   532 // ****************************************************************************
   534 // REQUIRED FUNCTIONALITY
   536 // !!!!! Special hack to get all type of calls to specify the byte offset
   537 //       from the start of the call to the point where the return address
   538 //       will point.
   539 //       The "return address" is the address of the call instruction, plus 8.
   541 int MachCallStaticJavaNode::ret_addr_offset() {
   542   int offset = NativeCall::instruction_size;  // call; delay slot
   543   if (_method_handle_invoke)
   544     offset += 4;  // restore SP
   545   return offset;
   546 }
   548 int MachCallDynamicJavaNode::ret_addr_offset() {
   549   int vtable_index = this->_vtable_index;
   550   if (vtable_index < 0) {
   551     // must be invalid_vtable_index, not nonvirtual_vtable_index
   552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
   553     return (NativeMovConstReg::instruction_size +
   554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   555   } else {
   556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   559     int klass_load_size;
   560     if (UseCompressedOops && UseCompressedKlassPointers) {
   561       assert(Universe::heap() != NULL, "java heap should be initialized");
   562       if (Universe::narrow_oop_base() == NULL)
   563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   564       else
   565         klass_load_size = 3*BytesPerInstWord;
   566     } else {
   567       klass_load_size = 1*BytesPerInstWord;
   568     }
   569     if (Assembler::is_simm13(v_off)) {
   570       return klass_load_size +
   571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   572              NativeCall::instruction_size);  // call; delay slot
   573     } else {
   574       return klass_load_size +
   575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   576              NativeCall::instruction_size);  // call; delay slot
   577     }
   578   }
   579 }
   581 int MachCallRuntimeNode::ret_addr_offset() {
   582 #ifdef _LP64
   583   if (MacroAssembler::is_far_target(entry_point())) {
   584     return NativeFarCall::instruction_size;
   585   } else {
   586     return NativeCall::instruction_size;
   587   }
   588 #else
   589   return NativeCall::instruction_size;  // call; delay slot
   590 #endif
   591 }
   593 // Indicate if the safepoint node needs the polling page as an input.
   594 // Since Sparc does not have absolute addressing, it does.
   595 bool SafePointNode::needs_polling_address_input() {
   596   return true;
   597 }
   599 // emit an interrupt that is caught by the debugger (for debugging compiler)
   600 void emit_break(CodeBuffer &cbuf) {
   601   MacroAssembler _masm(&cbuf);
   602   __ breakpoint_trap();
   603 }
   605 #ifndef PRODUCT
   606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   607   st->print("TA");
   608 }
   609 #endif
   611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   612   emit_break(cbuf);
   613 }
   615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   616   return MachNode::size(ra_);
   617 }
   619 // Traceable jump
   620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   621   MacroAssembler _masm(&cbuf);
   622   Register rdest = reg_to_register_object(jump_target);
   623   __ JMP(rdest, 0);
   624   __ delayed()->nop();
   625 }
   627 // Traceable jump and set exception pc
   628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   629   MacroAssembler _masm(&cbuf);
   630   Register rdest = reg_to_register_object(jump_target);
   631   __ JMP(rdest, 0);
   632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   633 }
   635 void emit_nop(CodeBuffer &cbuf) {
   636   MacroAssembler _masm(&cbuf);
   637   __ nop();
   638 }
   640 void emit_illtrap(CodeBuffer &cbuf) {
   641   MacroAssembler _masm(&cbuf);
   642   __ illtrap(0);
   643 }
   646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   647   assert(n->rule() != loadUB_rule, "");
   649   intptr_t offset = 0;
   650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   651   const Node* addr = n->get_base_and_disp(offset, adr_type);
   652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   655   atype = atype->add_offset(offset);
   656   assert(disp32 == offset, "wrong disp32");
   657   return atype->_offset;
   658 }
   661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   662   assert(n->rule() != loadUB_rule, "");
   664   intptr_t offset = 0;
   665   Node* addr = n->in(2);
   666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   668     Node* a = addr->in(2/*AddPNode::Address*/);
   669     Node* o = addr->in(3/*AddPNode::Offset*/);
   670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   672     assert(atype->isa_oop_ptr(), "still an oop");
   673   }
   674   offset = atype->is_ptr()->_offset;
   675   if (offset != Type::OffsetBot)  offset += disp32;
   676   return offset;
   677 }
   679 static inline jdouble replicate_immI(int con, int count, int width) {
   680   // Load a constant replicated "count" times with width "width"
   681   assert(count*width == 8 && width <= 4, "sanity");
   682   int bit_width = width * 8;
   683   jlong val = con;
   684   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   685   for (int i = 0; i < count - 1; i++) {
   686     val |= (val << bit_width);
   687   }
   688   jdouble dval = *((jdouble*) &val);  // coerce to double type
   689   return dval;
   690 }
   692 static inline jdouble replicate_immF(float con) {
   693   // Replicate float con 2 times and pack into vector.
   694   int val = *((int*)&con);
   695   jlong lval = val;
   696   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
   697   jdouble dval = *((jdouble*) &lval);  // coerce to double type
   698   return dval;
   699 }
   701 // Standard Sparc opcode form2 field breakdown
   702 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   703   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   704   int op = (f30 << 30) |
   705            (f29 << 29) |
   706            (f25 << 25) |
   707            (f22 << 22) |
   708            (f20 << 20) |
   709            (f19 << 19) |
   710            (f0  <<  0);
   711   cbuf.insts()->emit_int32(op);
   712 }
   714 // Standard Sparc opcode form2 field breakdown
   715 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   716   f0 >>= 10;           // Drop 10 bits
   717   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   718   int op = (f30 << 30) |
   719            (f25 << 25) |
   720            (f22 << 22) |
   721            (f0  <<  0);
   722   cbuf.insts()->emit_int32(op);
   723 }
   725 // Standard Sparc opcode form3 field breakdown
   726 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   727   int op = (f30 << 30) |
   728            (f25 << 25) |
   729            (f19 << 19) |
   730            (f14 << 14) |
   731            (f5  <<  5) |
   732            (f0  <<  0);
   733   cbuf.insts()->emit_int32(op);
   734 }
   736 // Standard Sparc opcode form3 field breakdown
   737 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   738   simm13 &= (1<<13)-1; // Mask to 13 bits
   739   int op = (f30 << 30) |
   740            (f25 << 25) |
   741            (f19 << 19) |
   742            (f14 << 14) |
   743            (1   << 13) | // bit to indicate immediate-mode
   744            (simm13<<0);
   745   cbuf.insts()->emit_int32(op);
   746 }
   748 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   749   simm10 &= (1<<10)-1; // Mask to 10 bits
   750   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   751 }
   753 #ifdef ASSERT
   754 // Helper function for VerifyOops in emit_form3_mem_reg
   755 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   756   warning("VerifyOops encountered unexpected instruction:");
   757   n->dump(2);
   758   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   759 }
   760 #endif
   763 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   764                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   766 #ifdef ASSERT
   767   // The following code implements the +VerifyOops feature.
   768   // It verifies oop values which are loaded into or stored out of
   769   // the current method activation.  +VerifyOops complements techniques
   770   // like ScavengeALot, because it eagerly inspects oops in transit,
   771   // as they enter or leave the stack, as opposed to ScavengeALot,
   772   // which inspects oops "at rest", in the stack or heap, at safepoints.
   773   // For this reason, +VerifyOops can sometimes detect bugs very close
   774   // to their point of creation.  It can also serve as a cross-check
   775   // on the validity of oop maps, when used toegether with ScavengeALot.
   777   // It would be good to verify oops at other points, especially
   778   // when an oop is used as a base pointer for a load or store.
   779   // This is presently difficult, because it is hard to know when
   780   // a base address is biased or not.  (If we had such information,
   781   // it would be easy and useful to make a two-argument version of
   782   // verify_oop which unbiases the base, and performs verification.)
   784   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   785   bool is_verified_oop_base  = false;
   786   bool is_verified_oop_load  = false;
   787   bool is_verified_oop_store = false;
   788   int tmp_enc = -1;
   789   if (VerifyOops && src1_enc != R_SP_enc) {
   790     // classify the op, mainly for an assert check
   791     int st_op = 0, ld_op = 0;
   792     switch (primary) {
   793     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   794     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   795     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   796     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   797     case Assembler::std_op3:  st_op = Op_StoreL; break;
   798     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   799     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   801     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   802     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
   803     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   804     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   805     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   806     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   807     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   808     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   809     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   810     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   811     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   813     default: ShouldNotReachHere();
   814     }
   815     if (tertiary == REGP_OP) {
   816       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   817       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   818       else                          ShouldNotReachHere();
   819       if (st_op) {
   820         // a store
   821         // inputs are (0:control, 1:memory, 2:address, 3:value)
   822         Node* n2 = n->in(3);
   823         if (n2 != NULL) {
   824           const Type* t = n2->bottom_type();
   825           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   826         }
   827       } else {
   828         // a load
   829         const Type* t = n->bottom_type();
   830         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   831       }
   832     }
   834     if (ld_op) {
   835       // a Load
   836       // inputs are (0:control, 1:memory, 2:address)
   837       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   838           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   839           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   840           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   841           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   842           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   843           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   844           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   845           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   846           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   847           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   848           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   849           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   850           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   851           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
   852           !(n->rule() == loadUB_rule)) {
   853         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   854       }
   855     } else if (st_op) {
   856       // a Store
   857       // inputs are (0:control, 1:memory, 2:address, 3:value)
   858       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   859           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   860           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   861           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   862           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   863           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
   864           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   865         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   866       }
   867     }
   869     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   870       Node* addr = n->in(2);
   871       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   872         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   873         if (atype != NULL) {
   874           intptr_t offset = get_offset_from_base(n, atype, disp32);
   875           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   876           if (offset != offset_2) {
   877             get_offset_from_base(n, atype, disp32);
   878             get_offset_from_base_2(n, atype, disp32);
   879           }
   880           assert(offset == offset_2, "different offsets");
   881           if (offset == disp32) {
   882             // we now know that src1 is a true oop pointer
   883             is_verified_oop_base = true;
   884             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   885               if( primary == Assembler::ldd_op3 ) {
   886                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   887               } else {
   888                 tmp_enc = dst_enc;
   889                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   890                 assert(src1_enc != dst_enc, "");
   891               }
   892             }
   893           }
   894           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   895                        || offset == oopDesc::mark_offset_in_bytes())) {
   896                       // loading the mark should not be allowed either, but
   897                       // we don't check this since it conflicts with InlineObjectHash
   898                       // usage of LoadINode to get the mark. We could keep the
   899                       // check if we create a new LoadMarkNode
   900             // but do not verify the object before its header is initialized
   901             ShouldNotReachHere();
   902           }
   903         }
   904       }
   905     }
   906   }
   907 #endif
   909   uint instr;
   910   instr = (Assembler::ldst_op << 30)
   911         | (dst_enc        << 25)
   912         | (primary        << 19)
   913         | (src1_enc       << 14);
   915   uint index = src2_enc;
   916   int disp = disp32;
   918   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   919     disp += STACK_BIAS;
   921   // We should have a compiler bailout here rather than a guarantee.
   922   // Better yet would be some mechanism to handle variable-size matches correctly.
   923   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   925   if( disp == 0 ) {
   926     // use reg-reg form
   927     // bit 13 is already zero
   928     instr |= index;
   929   } else {
   930     // use reg-imm form
   931     instr |= 0x00002000;          // set bit 13 to one
   932     instr |= disp & 0x1FFF;
   933   }
   935   cbuf.insts()->emit_int32(instr);
   937 #ifdef ASSERT
   938   {
   939     MacroAssembler _masm(&cbuf);
   940     if (is_verified_oop_base) {
   941       __ verify_oop(reg_to_register_object(src1_enc));
   942     }
   943     if (is_verified_oop_store) {
   944       __ verify_oop(reg_to_register_object(dst_enc));
   945     }
   946     if (tmp_enc != -1) {
   947       __ mov(O7, reg_to_register_object(tmp_enc));
   948     }
   949     if (is_verified_oop_load) {
   950       __ verify_oop(reg_to_register_object(dst_enc));
   951     }
   952   }
   953 #endif
   954 }
   956 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   957   // The method which records debug information at every safepoint
   958   // expects the call to be the first instruction in the snippet as
   959   // it creates a PcDesc structure which tracks the offset of a call
   960   // from the start of the codeBlob. This offset is computed as
   961   // code_end() - code_begin() of the code which has been emitted
   962   // so far.
   963   // In this particular case we have skirted around the problem by
   964   // putting the "mov" instruction in the delay slot but the problem
   965   // may bite us again at some other point and a cleaner/generic
   966   // solution using relocations would be needed.
   967   MacroAssembler _masm(&cbuf);
   968   __ set_inst_mark();
   970   // We flush the current window just so that there is a valid stack copy
   971   // the fact that the current window becomes active again instantly is
   972   // not a problem there is nothing live in it.
   974 #ifdef ASSERT
   975   int startpos = __ offset();
   976 #endif /* ASSERT */
   978   __ call((address)entry_point, rtype);
   980   if (preserve_g2)   __ delayed()->mov(G2, L7);
   981   else __ delayed()->nop();
   983   if (preserve_g2)   __ mov(L7, G2);
   985 #ifdef ASSERT
   986   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   987 #ifdef _LP64
   988     // Trash argument dump slots.
   989     __ set(0xb0b8ac0db0b8ac0d, G1);
   990     __ mov(G1, G5);
   991     __ stx(G1, SP, STACK_BIAS + 0x80);
   992     __ stx(G1, SP, STACK_BIAS + 0x88);
   993     __ stx(G1, SP, STACK_BIAS + 0x90);
   994     __ stx(G1, SP, STACK_BIAS + 0x98);
   995     __ stx(G1, SP, STACK_BIAS + 0xA0);
   996     __ stx(G1, SP, STACK_BIAS + 0xA8);
   997 #else // _LP64
   998     // this is also a native call, so smash the first 7 stack locations,
   999     // and the various registers
  1001     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1002     // while [SP+0x44..0x58] are the argument dump slots.
  1003     __ set((intptr_t)0xbaadf00d, G1);
  1004     __ mov(G1, G5);
  1005     __ sllx(G1, 32, G1);
  1006     __ or3(G1, G5, G1);
  1007     __ mov(G1, G5);
  1008     __ stx(G1, SP, 0x40);
  1009     __ stx(G1, SP, 0x48);
  1010     __ stx(G1, SP, 0x50);
  1011     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1012 #endif // _LP64
  1014 #endif /*ASSERT*/
  1017 //=============================================================================
  1018 // REQUIRED FUNCTIONALITY for encoding
  1019 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1020 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1023 //=============================================================================
  1024 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1026 int Compile::ConstantTable::calculate_table_base_offset() const {
  1027   if (UseRDPCForConstantTableBase) {
  1028     // The table base offset might be less but then it fits into
  1029     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1030     return Assembler::min_simm13();
  1031   } else {
  1032     int offset = -(size() / 2);
  1033     if (!Assembler::is_simm13(offset)) {
  1034       offset = Assembler::min_simm13();
  1036     return offset;
  1040 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1041   Compile* C = ra_->C;
  1042   Compile::ConstantTable& constant_table = C->constant_table();
  1043   MacroAssembler _masm(&cbuf);
  1045   Register r = as_Register(ra_->get_encode(this));
  1046   CodeSection* consts_section = __ code()->consts();
  1047   int consts_size = consts_section->align_at_start(consts_section->size());
  1048   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1050   if (UseRDPCForConstantTableBase) {
  1051     // For the following RDPC logic to work correctly the consts
  1052     // section must be allocated right before the insts section.  This
  1053     // assert checks for that.  The layout and the SECT_* constants
  1054     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1055     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1056     int insts_offset = __ offset();
  1058     // Layout:
  1059     //
  1060     // |----------- consts section ------------|----------- insts section -----------...
  1061     // |------ constant table -----|- padding -|------------------x----
  1062     //                                                            \ current PC (RDPC instruction)
  1063     // |<------------- consts_size ----------->|<- insts_offset ->|
  1064     //                                                            \ table base
  1065     // The table base offset is later added to the load displacement
  1066     // so it has to be negative.
  1067     int table_base_offset = -(consts_size + insts_offset);
  1068     int disp;
  1070     // If the displacement from the current PC to the constant table
  1071     // base fits into simm13 we set the constant table base to the
  1072     // current PC.
  1073     if (Assembler::is_simm13(table_base_offset)) {
  1074       constant_table.set_table_base_offset(table_base_offset);
  1075       disp = 0;
  1076     } else {
  1077       // Otherwise we set the constant table base offset to the
  1078       // maximum negative displacement of load instructions to keep
  1079       // the disp as small as possible:
  1080       //
  1081       // |<------------- consts_size ----------->|<- insts_offset ->|
  1082       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1083       //                                  \ table base
  1084       table_base_offset = Assembler::min_simm13();
  1085       constant_table.set_table_base_offset(table_base_offset);
  1086       disp = (consts_size + insts_offset) + table_base_offset;
  1089     __ rdpc(r);
  1091     if (disp != 0) {
  1092       assert(r != O7, "need temporary");
  1093       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1096   else {
  1097     // Materialize the constant table base.
  1098     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1099     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1100     AddressLiteral base(baseaddr, rspec);
  1101     __ set(base, r);
  1105 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1106   if (UseRDPCForConstantTableBase) {
  1107     // This is really the worst case but generally it's only 1 instruction.
  1108     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1109   } else {
  1110     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1114 #ifndef PRODUCT
  1115 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1116   char reg[128];
  1117   ra_->dump_register(this, reg);
  1118   if (UseRDPCForConstantTableBase) {
  1119     st->print("RDPC   %s\t! constant table base", reg);
  1120   } else {
  1121     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1124 #endif
  1127 //=============================================================================
  1129 #ifndef PRODUCT
  1130 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1131   Compile* C = ra_->C;
  1133   for (int i = 0; i < OptoPrologueNops; i++) {
  1134     st->print_cr("NOP"); st->print("\t");
  1137   if( VerifyThread ) {
  1138     st->print_cr("Verify_Thread"); st->print("\t");
  1141   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1143   // Calls to C2R adapters often do not accept exceptional returns.
  1144   // We require that their callers must bang for them.  But be careful, because
  1145   // some VM calls (such as call site linkage) can use several kilobytes of
  1146   // stack.  But the stack safety zone should account for that.
  1147   // See bugs 4446381, 4468289, 4497237.
  1148   if (C->need_stack_bang(framesize)) {
  1149     st->print_cr("! stack bang"); st->print("\t");
  1152   if (Assembler::is_simm13(-framesize)) {
  1153     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1154   } else {
  1155     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1156     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1157     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1161 #endif
  1163 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1164   Compile* C = ra_->C;
  1165   MacroAssembler _masm(&cbuf);
  1167   for (int i = 0; i < OptoPrologueNops; i++) {
  1168     __ nop();
  1171   __ verify_thread();
  1173   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1174   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1175   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1177   // Calls to C2R adapters often do not accept exceptional returns.
  1178   // We require that their callers must bang for them.  But be careful, because
  1179   // some VM calls (such as call site linkage) can use several kilobytes of
  1180   // stack.  But the stack safety zone should account for that.
  1181   // See bugs 4446381, 4468289, 4497237.
  1182   if (C->need_stack_bang(framesize)) {
  1183     __ generate_stack_overflow_check(framesize);
  1186   if (Assembler::is_simm13(-framesize)) {
  1187     __ save(SP, -framesize, SP);
  1188   } else {
  1189     __ sethi(-framesize & ~0x3ff, G3);
  1190     __ add(G3, -framesize & 0x3ff, G3);
  1191     __ save(SP, G3, SP);
  1193   C->set_frame_complete( __ offset() );
  1195   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1196     // NOTE: We set the table base offset here because users might be
  1197     // emitted before MachConstantBaseNode.
  1198     Compile::ConstantTable& constant_table = C->constant_table();
  1199     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1203 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1204   return MachNode::size(ra_);
  1207 int MachPrologNode::reloc() const {
  1208   return 10; // a large enough number
  1211 //=============================================================================
  1212 #ifndef PRODUCT
  1213 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1214   Compile* C = ra_->C;
  1216   if( do_polling() && ra_->C->is_method_compilation() ) {
  1217     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1218 #ifdef _LP64
  1219     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1220 #else
  1221     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1222 #endif
  1225   if( do_polling() )
  1226     st->print("RET\n\t");
  1228   st->print("RESTORE");
  1230 #endif
  1232 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1233   MacroAssembler _masm(&cbuf);
  1234   Compile* C = ra_->C;
  1236   __ verify_thread();
  1238   // If this does safepoint polling, then do it here
  1239   if( do_polling() && ra_->C->is_method_compilation() ) {
  1240     AddressLiteral polling_page(os::get_polling_page());
  1241     __ sethi(polling_page, L0);
  1242     __ relocate(relocInfo::poll_return_type);
  1243     __ ld_ptr( L0, 0, G0 );
  1246   // If this is a return, then stuff the restore in the delay slot
  1247   if( do_polling() ) {
  1248     __ ret();
  1249     __ delayed()->restore();
  1250   } else {
  1251     __ restore();
  1255 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1256   return MachNode::size(ra_);
  1259 int MachEpilogNode::reloc() const {
  1260   return 16; // a large enough number
  1263 const Pipeline * MachEpilogNode::pipeline() const {
  1264   return MachNode::pipeline_class();
  1267 int MachEpilogNode::safepoint_offset() const {
  1268   assert( do_polling(), "no return for this epilog node");
  1269   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1272 //=============================================================================
  1274 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1275 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1276 static enum RC rc_class( OptoReg::Name reg ) {
  1277   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1278   if (OptoReg::is_stack(reg)) return rc_stack;
  1279   VMReg r = OptoReg::as_VMReg(reg);
  1280   if (r->is_Register()) return rc_int;
  1281   assert(r->is_FloatRegister(), "must be");
  1282   return rc_float;
  1285 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1286   if( cbuf ) {
  1287     // Better yet would be some mechanism to handle variable-size matches correctly
  1288     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1289       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1290     } else {
  1291       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1294 #ifndef PRODUCT
  1295   else if( !do_size ) {
  1296     if( size != 0 ) st->print("\n\t");
  1297     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1298     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1300 #endif
  1301   return size+4;
  1304 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1305   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1306 #ifndef PRODUCT
  1307   else if( !do_size ) {
  1308     if( size != 0 ) st->print("\n\t");
  1309     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1311 #endif
  1312   return size+4;
  1315 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1316                                         PhaseRegAlloc *ra_,
  1317                                         bool do_size,
  1318                                         outputStream* st ) const {
  1319   // Get registers to move
  1320   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1321   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1322   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1323   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1325   enum RC src_second_rc = rc_class(src_second);
  1326   enum RC src_first_rc = rc_class(src_first);
  1327   enum RC dst_second_rc = rc_class(dst_second);
  1328   enum RC dst_first_rc = rc_class(dst_first);
  1330   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1332   // Generate spill code!
  1333   int size = 0;
  1335   if( src_first == dst_first && src_second == dst_second )
  1336     return size;            // Self copy, no move
  1338   // --------------------------------------
  1339   // Check for mem-mem move.  Load into unused float registers and fall into
  1340   // the float-store case.
  1341   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1342     int offset = ra_->reg2offset(src_first);
  1343     // Further check for aligned-adjacent pair, so we can use a double load
  1344     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1345       src_second    = OptoReg::Name(R_F31_num);
  1346       src_second_rc = rc_float;
  1347       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1348     } else {
  1349       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1351     src_first    = OptoReg::Name(R_F30_num);
  1352     src_first_rc = rc_float;
  1355   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1356     int offset = ra_->reg2offset(src_second);
  1357     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1358     src_second    = OptoReg::Name(R_F31_num);
  1359     src_second_rc = rc_float;
  1362   // --------------------------------------
  1363   // Check for float->int copy; requires a trip through memory
  1364   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1365     int offset = frame::register_save_words*wordSize;
  1366     if (cbuf) {
  1367       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1368       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1369       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1370       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1372 #ifndef PRODUCT
  1373     else if (!do_size) {
  1374       if (size != 0) st->print("\n\t");
  1375       st->print(  "SUB    R_SP,16,R_SP\n");
  1376       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1377       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1378       st->print("\tADD    R_SP,16,R_SP\n");
  1380 #endif
  1381     size += 16;
  1384   // Check for float->int copy on T4
  1385   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1386     // Further check for aligned-adjacent pair, so we can use a double move
  1387     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1388       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1389     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1391   // Check for int->float copy on T4
  1392   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1393     // Further check for aligned-adjacent pair, so we can use a double move
  1394     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1395       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1396     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1399   // --------------------------------------
  1400   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1401   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1402   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1403   // there.  Misaligned sources only come from native-long-returns (handled
  1404   // special below).
  1405 #ifndef _LP64
  1406   if( src_first_rc == rc_int &&     // source is already big-endian
  1407       src_second_rc != rc_bad &&    // 64-bit move
  1408       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1409     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1410     // Do the big-endian flop.
  1411     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1412     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1414 #endif
  1416   // --------------------------------------
  1417   // Check for integer reg-reg copy
  1418   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1419 #ifndef _LP64
  1420     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1421       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1422       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1423       //       operand contains the least significant word of the 64-bit value and vice versa.
  1424       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1425       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1426       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1427       if( cbuf ) {
  1428         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1429         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1430         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1431 #ifndef PRODUCT
  1432       } else if( !do_size ) {
  1433         if( size != 0 ) st->print("\n\t");
  1434         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1435         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1436         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1437 #endif
  1439       return size+12;
  1441     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1442       // returning a long value in I0/I1
  1443       // a SpillCopy must be able to target a return instruction's reg_class
  1444       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1445       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1446       //       operand contains the least significant word of the 64-bit value and vice versa.
  1447       OptoReg::Name tdest = dst_first;
  1449       if (src_first == dst_first) {
  1450         tdest = OptoReg::Name(R_O7_num);
  1451         size += 4;
  1454       if( cbuf ) {
  1455         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1456         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1457         // ShrL_reg_imm6
  1458         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1459         // ShrR_reg_imm6  src, 0, dst
  1460         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1461         if (tdest != dst_first) {
  1462           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1465 #ifndef PRODUCT
  1466       else if( !do_size ) {
  1467         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1468         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1469         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1470         if (tdest != dst_first) {
  1471           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1474 #endif // PRODUCT
  1475       return size+8;
  1477 #endif // !_LP64
  1478     // Else normal reg-reg copy
  1479     assert( src_second != dst_first, "smashed second before evacuating it" );
  1480     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1481     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1482     // This moves an aligned adjacent pair.
  1483     // See if we are done.
  1484     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1485       return size;
  1488   // Check for integer store
  1489   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1490     int offset = ra_->reg2offset(dst_first);
  1491     // Further check for aligned-adjacent pair, so we can use a double store
  1492     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1493       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1494     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1497   // Check for integer load
  1498   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1499     int offset = ra_->reg2offset(src_first);
  1500     // Further check for aligned-adjacent pair, so we can use a double load
  1501     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1502       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1503     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1506   // Check for float reg-reg copy
  1507   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1508     // Further check for aligned-adjacent pair, so we can use a double move
  1509     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1510       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1511     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1514   // Check for float store
  1515   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1516     int offset = ra_->reg2offset(dst_first);
  1517     // Further check for aligned-adjacent pair, so we can use a double store
  1518     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1519       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1520     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1523   // Check for float load
  1524   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1525     int offset = ra_->reg2offset(src_first);
  1526     // Further check for aligned-adjacent pair, so we can use a double load
  1527     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1528       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1529     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1532   // --------------------------------------------------------------------
  1533   // Check for hi bits still needing moving.  Only happens for misaligned
  1534   // arguments to native calls.
  1535   if( src_second == dst_second )
  1536     return size;               // Self copy; no move
  1537   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1539 #ifndef _LP64
  1540   // In the LP64 build, all registers can be moved as aligned/adjacent
  1541   // pairs, so there's never any need to move the high bits separately.
  1542   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1543   // all sorts of silly alignment problems.
  1545   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1546   // 32-bits of a 64-bit register, but are needed in low bits of another
  1547   // register (else it's a hi-bits-to-hi-bits copy which should have
  1548   // happened already as part of a 64-bit move)
  1549   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1550     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1551     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1552     // Shift src_second down to dst_second's low bits.
  1553     if( cbuf ) {
  1554       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1555 #ifndef PRODUCT
  1556     } else if( !do_size ) {
  1557       if( size != 0 ) st->print("\n\t");
  1558       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1559 #endif
  1561     return size+4;
  1564   // Check for high word integer store.  Must down-shift the hi bits
  1565   // into a temp register, then fall into the case of storing int bits.
  1566   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1567     // Shift src_second down to dst_second's low bits.
  1568     if( cbuf ) {
  1569       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1570 #ifndef PRODUCT
  1571     } else if( !do_size ) {
  1572       if( size != 0 ) st->print("\n\t");
  1573       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1574 #endif
  1576     size+=4;
  1577     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1580   // Check for high word integer load
  1581   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1582     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1584   // Check for high word integer store
  1585   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1586     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1588   // Check for high word float store
  1589   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1590     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1592 #endif // !_LP64
  1594   Unimplemented();
  1597 #ifndef PRODUCT
  1598 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1599   implementation( NULL, ra_, false, st );
  1601 #endif
  1603 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1604   implementation( &cbuf, ra_, false, NULL );
  1607 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1608   return implementation( NULL, ra_, true, NULL );
  1611 //=============================================================================
  1612 #ifndef PRODUCT
  1613 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1614   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1616 #endif
  1618 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1619   MacroAssembler _masm(&cbuf);
  1620   for(int i = 0; i < _count; i += 1) {
  1621     __ nop();
  1625 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1626   return 4 * _count;
  1630 //=============================================================================
  1631 #ifndef PRODUCT
  1632 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1633   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1634   int reg = ra_->get_reg_first(this);
  1635   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1637 #endif
  1639 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1640   MacroAssembler _masm(&cbuf);
  1641   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1642   int reg = ra_->get_encode(this);
  1644   if (Assembler::is_simm13(offset)) {
  1645      __ add(SP, offset, reg_to_register_object(reg));
  1646   } else {
  1647      __ set(offset, O7);
  1648      __ add(SP, O7, reg_to_register_object(reg));
  1652 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1653   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1654   assert(ra_ == ra_->C->regalloc(), "sanity");
  1655   return ra_->C->scratch_emit_size(this);
  1658 //=============================================================================
  1660 // emit call stub, compiled java to interpretor
  1661 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1663   // Stub is fixed up when the corresponding call is converted from calling
  1664   // compiled code to calling interpreted code.
  1665   // set (empty), G5
  1666   // jmp -1
  1668   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1670   MacroAssembler _masm(&cbuf);
  1672   address base =
  1673   __ start_a_stub(Compile::MAX_stubs_size);
  1674   if (base == NULL)  return;  // CodeBuffer::expand failed
  1676   // static stub relocation stores the instruction address of the call
  1677   __ relocate(static_stub_Relocation::spec(mark));
  1679   __ set_metadata(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1681   __ set_inst_mark();
  1682   AddressLiteral addrlit(-1);
  1683   __ JUMP(addrlit, G3, 0);
  1685   __ delayed()->nop();
  1687   // Update current stubs pointer and restore code_end.
  1688   __ end_a_stub();
  1691 // size of call stub, compiled java to interpretor
  1692 uint size_java_to_interp() {
  1693   // This doesn't need to be accurate but it must be larger or equal to
  1694   // the real size of the stub.
  1695   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1696           NativeJump::instruction_size + // sethi; jmp; nop
  1697           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1699 // relocation entries for call stub, compiled java to interpretor
  1700 uint reloc_java_to_interp() {
  1701   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1705 //=============================================================================
  1706 #ifndef PRODUCT
  1707 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1708   st->print_cr("\nUEP:");
  1709 #ifdef    _LP64
  1710   if (UseCompressedOops) {
  1711     assert(Universe::heap() != NULL, "java heap should be initialized");
  1712     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1713     st->print_cr("\tSLL    R_G5,3,R_G5");
  1714     if (Universe::narrow_oop_base() != NULL)
  1715       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1716   } else {
  1717     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1719   st->print_cr("\tCMP    R_G5,R_G3" );
  1720   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1721 #else  // _LP64
  1722   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1723   st->print_cr("\tCMP    R_G5,R_G3" );
  1724   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1725 #endif // _LP64
  1727 #endif
  1729 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1730   MacroAssembler _masm(&cbuf);
  1731   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1732   Register temp_reg   = G3;
  1733   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1735   // Load klass from receiver
  1736   __ load_klass(O0, temp_reg);
  1737   // Compare against expected klass
  1738   __ cmp(temp_reg, G5_ic_reg);
  1739   // Branch to miss code, checks xcc or icc depending
  1740   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1743 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1744   return MachNode::size(ra_);
  1748 //=============================================================================
  1750 uint size_exception_handler() {
  1751   if (TraceJumps) {
  1752     return (400); // just a guess
  1754   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1757 uint size_deopt_handler() {
  1758   if (TraceJumps) {
  1759     return (400); // just a guess
  1761   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1764 // Emit exception handler code.
  1765 int emit_exception_handler(CodeBuffer& cbuf) {
  1766   Register temp_reg = G3;
  1767   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1768   MacroAssembler _masm(&cbuf);
  1770   address base =
  1771   __ start_a_stub(size_exception_handler());
  1772   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1774   int offset = __ offset();
  1776   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1777   __ delayed()->nop();
  1779   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1781   __ end_a_stub();
  1783   return offset;
  1786 int emit_deopt_handler(CodeBuffer& cbuf) {
  1787   // Can't use any of the current frame's registers as we may have deopted
  1788   // at a poll and everything (including G3) can be live.
  1789   Register temp_reg = L0;
  1790   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1791   MacroAssembler _masm(&cbuf);
  1793   address base =
  1794   __ start_a_stub(size_deopt_handler());
  1795   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1797   int offset = __ offset();
  1798   __ save_frame(0);
  1799   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1800   __ delayed()->restore();
  1802   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1804   __ end_a_stub();
  1805   return offset;
  1809 // Given a register encoding, produce a Integer Register object
  1810 static Register reg_to_register_object(int register_encoding) {
  1811   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1812   return as_Register(register_encoding);
  1815 // Given a register encoding, produce a single-precision Float Register object
  1816 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1817   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1818   return as_SingleFloatRegister(register_encoding);
  1821 // Given a register encoding, produce a double-precision Float Register object
  1822 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1823   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1824   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1825   return as_DoubleFloatRegister(register_encoding);
  1828 const bool Matcher::match_rule_supported(int opcode) {
  1829   if (!has_match_rule(opcode))
  1830     return false;
  1832   switch (opcode) {
  1833   case Op_CountLeadingZerosI:
  1834   case Op_CountLeadingZerosL:
  1835   case Op_CountTrailingZerosI:
  1836   case Op_CountTrailingZerosL:
  1837   case Op_PopCountI:
  1838   case Op_PopCountL:
  1839     if (!UsePopCountInstruction)
  1840       return false;
  1841     break;
  1844   return true;  // Per default match rules are supported.
  1847 int Matcher::regnum_to_fpu_offset(int regnum) {
  1848   return regnum - 32; // The FP registers are in the second chunk
  1851 #ifdef ASSERT
  1852 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1853 #endif
  1855 // Vector width in bytes
  1856 const int Matcher::vector_width_in_bytes(BasicType bt) {
  1857   assert(MaxVectorSize == 8, "");
  1858   return 8;
  1861 // Vector ideal reg
  1862 const int Matcher::vector_ideal_reg(int size) {
  1863   assert(MaxVectorSize == 8, "");
  1864   return Op_RegD;
  1867 // Limits on vector size (number of elements) loaded into vector.
  1868 const int Matcher::max_vector_size(const BasicType bt) {
  1869   assert(is_java_primitive(bt), "only primitive type vectors");
  1870   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  1873 const int Matcher::min_vector_size(const BasicType bt) {
  1874   return max_vector_size(bt); // Same as max.
  1877 // SPARC doesn't support misaligned vectors store/load.
  1878 const bool Matcher::misaligned_vectors_ok() {
  1879   return false;
  1882 // USII supports fxtof through the whole range of number, USIII doesn't
  1883 const bool Matcher::convL2FSupported(void) {
  1884   return VM_Version::has_fast_fxtof();
  1887 // Is this branch offset short enough that a short branch can be used?
  1888 //
  1889 // NOTE: If the platform does not provide any short branch variants, then
  1890 //       this method should return false for offset 0.
  1891 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1892   // The passed offset is relative to address of the branch.
  1893   // Don't need to adjust the offset.
  1894   return UseCBCond && Assembler::is_simm12(offset);
  1897 const bool Matcher::isSimpleConstant64(jlong value) {
  1898   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1899   // Depends on optimizations in MacroAssembler::setx.
  1900   int hi = (int)(value >> 32);
  1901   int lo = (int)(value & ~0);
  1902   return (hi == 0) || (hi == -1) || (lo == 0);
  1905 // No scaling for the parameter the ClearArray node.
  1906 const bool Matcher::init_array_count_is_in_bytes = true;
  1908 // Threshold size for cleararray.
  1909 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1911 // No additional cost for CMOVL.
  1912 const int Matcher::long_cmove_cost() { return 0; }
  1914 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1915 const int Matcher::float_cmove_cost() {
  1916   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1919 // Should the Matcher clone shifts on addressing modes, expecting them to
  1920 // be subsumed into complex addressing expressions or compute them into
  1921 // registers?  True for Intel but false for most RISCs
  1922 const bool Matcher::clone_shift_expressions = false;
  1924 // Do we need to mask the count passed to shift instructions or does
  1925 // the cpu only look at the lower 5/6 bits anyway?
  1926 const bool Matcher::need_masked_shift_count = false;
  1928 bool Matcher::narrow_oop_use_complex_address() {
  1929   NOT_LP64(ShouldNotCallThis());
  1930   assert(UseCompressedOops, "only for compressed oops code");
  1931   return false;
  1934 // Is it better to copy float constants, or load them directly from memory?
  1935 // Intel can load a float constant from a direct address, requiring no
  1936 // extra registers.  Most RISCs will have to materialize an address into a
  1937 // register first, so they would do better to copy the constant from stack.
  1938 const bool Matcher::rematerialize_float_constants = false;
  1940 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1941 // needed.  Else we split the double into 2 integer pieces and move it
  1942 // piece-by-piece.  Only happens when passing doubles into C code as the
  1943 // Java calling convention forces doubles to be aligned.
  1944 #ifdef _LP64
  1945 const bool Matcher::misaligned_doubles_ok = true;
  1946 #else
  1947 const bool Matcher::misaligned_doubles_ok = false;
  1948 #endif
  1950 // No-op on SPARC.
  1951 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1954 // Advertise here if the CPU requires explicit rounding operations
  1955 // to implement the UseStrictFP mode.
  1956 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1958 // Are floats conerted to double when stored to stack during deoptimization?
  1959 // Sparc does not handle callee-save floats.
  1960 bool Matcher::float_in_double() { return false; }
  1962 // Do ints take an entire long register or just half?
  1963 // Note that we if-def off of _LP64.
  1964 // The relevant question is how the int is callee-saved.  In _LP64
  1965 // the whole long is written but de-opt'ing will have to extract
  1966 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1967 #ifdef _LP64
  1968 const bool Matcher::int_in_long = true;
  1969 #else
  1970 const bool Matcher::int_in_long = false;
  1971 #endif
  1973 // Return whether or not this register is ever used as an argument.  This
  1974 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1975 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1976 // arguments in those registers not be available to the callee.
  1977 bool Matcher::can_be_java_arg( int reg ) {
  1978   // Standard sparc 6 args in registers
  1979   if( reg == R_I0_num ||
  1980       reg == R_I1_num ||
  1981       reg == R_I2_num ||
  1982       reg == R_I3_num ||
  1983       reg == R_I4_num ||
  1984       reg == R_I5_num ) return true;
  1985 #ifdef _LP64
  1986   // 64-bit builds can pass 64-bit pointers and longs in
  1987   // the high I registers
  1988   if( reg == R_I0H_num ||
  1989       reg == R_I1H_num ||
  1990       reg == R_I2H_num ||
  1991       reg == R_I3H_num ||
  1992       reg == R_I4H_num ||
  1993       reg == R_I5H_num ) return true;
  1995   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1996     return true;
  1999 #else
  2000   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  2001   // Longs cannot be passed in O regs, because O regs become I regs
  2002   // after a 'save' and I regs get their high bits chopped off on
  2003   // interrupt.
  2004   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  2005   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  2006 #endif
  2007   // A few float args in registers
  2008   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  2010   return false;
  2013 bool Matcher::is_spillable_arg( int reg ) {
  2014   return can_be_java_arg(reg);
  2017 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  2018   // Use hardware SDIVX instruction when it is
  2019   // faster than a code which use multiply.
  2020   return VM_Version::has_fast_idiv();
  2023 // Register for DIVI projection of divmodI
  2024 RegMask Matcher::divI_proj_mask() {
  2025   ShouldNotReachHere();
  2026   return RegMask();
  2029 // Register for MODI projection of divmodI
  2030 RegMask Matcher::modI_proj_mask() {
  2031   ShouldNotReachHere();
  2032   return RegMask();
  2035 // Register for DIVL projection of divmodL
  2036 RegMask Matcher::divL_proj_mask() {
  2037   ShouldNotReachHere();
  2038   return RegMask();
  2041 // Register for MODL projection of divmodL
  2042 RegMask Matcher::modL_proj_mask() {
  2043   ShouldNotReachHere();
  2044   return RegMask();
  2047 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2048   return L7_REGP_mask();
  2051 %}
  2054 // The intptr_t operand types, defined by textual substitution.
  2055 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2056 #ifdef _LP64
  2057 #define immX      immL
  2058 #define immX13    immL13
  2059 #define immX13m7  immL13m7
  2060 #define iRegX     iRegL
  2061 #define g1RegX    g1RegL
  2062 #else
  2063 #define immX      immI
  2064 #define immX13    immI13
  2065 #define immX13m7  immI13m7
  2066 #define iRegX     iRegI
  2067 #define g1RegX    g1RegI
  2068 #endif
  2070 //----------ENCODING BLOCK-----------------------------------------------------
  2071 // This block specifies the encoding classes used by the compiler to output
  2072 // byte streams.  Encoding classes are parameterized macros used by
  2073 // Machine Instruction Nodes in order to generate the bit encoding of the
  2074 // instruction.  Operands specify their base encoding interface with the
  2075 // interface keyword.  There are currently supported four interfaces,
  2076 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2077 // operand to generate a function which returns its register number when
  2078 // queried.   CONST_INTER causes an operand to generate a function which
  2079 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2080 // operand to generate four functions which return the Base Register, the
  2081 // Index Register, the Scale Value, and the Offset Value of the operand when
  2082 // queried.  COND_INTER causes an operand to generate six functions which
  2083 // return the encoding code (ie - encoding bits for the instruction)
  2084 // associated with each basic boolean condition for a conditional instruction.
  2085 //
  2086 // Instructions specify two basic values for encoding.  Again, a function
  2087 // is available to check if the constant displacement is an oop. They use the
  2088 // ins_encode keyword to specify their encoding classes (which must be
  2089 // a sequence of enc_class names, and their parameters, specified in
  2090 // the encoding block), and they use the
  2091 // opcode keyword to specify, in order, their primary, secondary, and
  2092 // tertiary opcode.  Only the opcode sections which a particular instruction
  2093 // needs for encoding need to be specified.
  2094 encode %{
  2095   enc_class enc_untested %{
  2096 #ifdef ASSERT
  2097     MacroAssembler _masm(&cbuf);
  2098     __ untested("encoding");
  2099 #endif
  2100   %}
  2102   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2103     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2104                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2105   %}
  2107   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2108     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2109                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2110   %}
  2112   enc_class form3_mem_prefetch_read( memory mem ) %{
  2113     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2114                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2115   %}
  2117   enc_class form3_mem_prefetch_write( memory mem ) %{
  2118     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2119                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2120   %}
  2122   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2123     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2124     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2125     guarantee($mem$$index == R_G0_enc, "double index?");
  2126     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2127     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2128     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2129     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2130   %}
  2132   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2133     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2134     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2135     guarantee($mem$$index == R_G0_enc, "double index?");
  2136     // Load long with 2 instructions
  2137     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2138     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2139   %}
  2141   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2142   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2143     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2144     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2145   %}
  2147   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2148     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2149     if( $rs2$$reg != $rd$$reg )
  2150       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2151   %}
  2153   // Target lo half of long
  2154   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2155     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2156     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2157       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2158   %}
  2160   // Source lo half of long
  2161   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2162     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2163     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2164       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2165   %}
  2167   // Target hi half of long
  2168   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2169     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2170   %}
  2172   // Source lo half of long, and leave it sign extended.
  2173   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2174     // Sign extend low half
  2175     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2176   %}
  2178   // Source hi half of long, and leave it sign extended.
  2179   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2180     // Shift high half to low half
  2181     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2182   %}
  2184   // Source hi half of long
  2185   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2186     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2187     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2188       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2189   %}
  2191   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2192     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2193   %}
  2195   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2196     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2197     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2198   %}
  2200   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2201     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2202     // clear if nothing else is happening
  2203     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2204     // blt,a,pn done
  2205     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2206     // mov dst,-1 in delay slot
  2207     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2208   %}
  2210   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2211     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2212   %}
  2214   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2215     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2216   %}
  2218   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2219     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2220   %}
  2222   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2223     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2224   %}
  2226   enc_class move_return_pc_to_o1() %{
  2227     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2228   %}
  2230 #ifdef _LP64
  2231   /* %%% merge with enc_to_bool */
  2232   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2233     MacroAssembler _masm(&cbuf);
  2235     Register   src_reg = reg_to_register_object($src$$reg);
  2236     Register   dst_reg = reg_to_register_object($dst$$reg);
  2237     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2238   %}
  2239 #endif
  2241   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2242     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2243     MacroAssembler _masm(&cbuf);
  2245     Register   p_reg = reg_to_register_object($p$$reg);
  2246     Register   q_reg = reg_to_register_object($q$$reg);
  2247     Register   y_reg = reg_to_register_object($y$$reg);
  2248     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2250     __ subcc( p_reg, q_reg,   p_reg );
  2251     __ add  ( p_reg, y_reg, tmp_reg );
  2252     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2253   %}
  2255   enc_class form_d2i_helper(regD src, regF dst) %{
  2256     // fcmp %fcc0,$src,$src
  2257     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2258     // branch %fcc0 not-nan, predict taken
  2259     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2260     // fdtoi $src,$dst
  2261     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2262     // fitos $dst,$dst (if nan)
  2263     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2264     // clear $dst (if nan)
  2265     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2266     // carry on here...
  2267   %}
  2269   enc_class form_d2l_helper(regD src, regD dst) %{
  2270     // fcmp %fcc0,$src,$src  check for NAN
  2271     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2272     // branch %fcc0 not-nan, predict taken
  2273     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2274     // fdtox $src,$dst   convert in delay slot
  2275     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2276     // fxtod $dst,$dst  (if nan)
  2277     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2278     // clear $dst (if nan)
  2279     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2280     // carry on here...
  2281   %}
  2283   enc_class form_f2i_helper(regF src, regF dst) %{
  2284     // fcmps %fcc0,$src,$src
  2285     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2286     // branch %fcc0 not-nan, predict taken
  2287     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2288     // fstoi $src,$dst
  2289     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2290     // fitos $dst,$dst (if nan)
  2291     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2292     // clear $dst (if nan)
  2293     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2294     // carry on here...
  2295   %}
  2297   enc_class form_f2l_helper(regF src, regD dst) %{
  2298     // fcmps %fcc0,$src,$src
  2299     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2300     // branch %fcc0 not-nan, predict taken
  2301     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2302     // fstox $src,$dst
  2303     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2304     // fxtod $dst,$dst (if nan)
  2305     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2306     // clear $dst (if nan)
  2307     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2308     // carry on here...
  2309   %}
  2311   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2312   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2313   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2314   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2316   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2318   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2319   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2321   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2322     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2323   %}
  2325   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2326     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2327   %}
  2329   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2330     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2331   %}
  2333   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2334     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2335   %}
  2337   enc_class form3_convI2F(regF rs2, regF rd) %{
  2338     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2339   %}
  2341   // Encloding class for traceable jumps
  2342   enc_class form_jmpl(g3RegP dest) %{
  2343     emit_jmpl(cbuf, $dest$$reg);
  2344   %}
  2346   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2347     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2348   %}
  2350   enc_class form2_nop() %{
  2351     emit_nop(cbuf);
  2352   %}
  2354   enc_class form2_illtrap() %{
  2355     emit_illtrap(cbuf);
  2356   %}
  2359   // Compare longs and convert into -1, 0, 1.
  2360   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2361     // CMP $src1,$src2
  2362     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2363     // blt,a,pn done
  2364     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2365     // mov dst,-1 in delay slot
  2366     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2367     // bgt,a,pn done
  2368     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2369     // mov dst,1 in delay slot
  2370     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2371     // CLR    $dst
  2372     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2373   %}
  2375   enc_class enc_PartialSubtypeCheck() %{
  2376     MacroAssembler _masm(&cbuf);
  2377     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2378     __ delayed()->nop();
  2379   %}
  2381   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2382     MacroAssembler _masm(&cbuf);
  2383     Label* L = $labl$$label;
  2384     Assembler::Predict predict_taken =
  2385       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2387     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2388     __ delayed()->nop();
  2389   %}
  2391   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2392     MacroAssembler _masm(&cbuf);
  2393     Label* L = $labl$$label;
  2394     Assembler::Predict predict_taken =
  2395       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2397     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2398     __ delayed()->nop();
  2399   %}
  2401   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2402     int op = (Assembler::arith_op << 30) |
  2403              ($dst$$reg << 25) |
  2404              (Assembler::movcc_op3 << 19) |
  2405              (1 << 18) |                    // cc2 bit for 'icc'
  2406              ($cmp$$cmpcode << 14) |
  2407              (0 << 13) |                    // select register move
  2408              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2409              ($src$$reg << 0);
  2410     cbuf.insts()->emit_int32(op);
  2411   %}
  2413   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2414     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2415     int op = (Assembler::arith_op << 30) |
  2416              ($dst$$reg << 25) |
  2417              (Assembler::movcc_op3 << 19) |
  2418              (1 << 18) |                    // cc2 bit for 'icc'
  2419              ($cmp$$cmpcode << 14) |
  2420              (1 << 13) |                    // select immediate move
  2421              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2422              (simm11 << 0);
  2423     cbuf.insts()->emit_int32(op);
  2424   %}
  2426   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2427     int op = (Assembler::arith_op << 30) |
  2428              ($dst$$reg << 25) |
  2429              (Assembler::movcc_op3 << 19) |
  2430              (0 << 18) |                    // cc2 bit for 'fccX'
  2431              ($cmp$$cmpcode << 14) |
  2432              (0 << 13) |                    // select register move
  2433              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2434              ($src$$reg << 0);
  2435     cbuf.insts()->emit_int32(op);
  2436   %}
  2438   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2439     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2440     int op = (Assembler::arith_op << 30) |
  2441              ($dst$$reg << 25) |
  2442              (Assembler::movcc_op3 << 19) |
  2443              (0 << 18) |                    // cc2 bit for 'fccX'
  2444              ($cmp$$cmpcode << 14) |
  2445              (1 << 13) |                    // select immediate move
  2446              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2447              (simm11 << 0);
  2448     cbuf.insts()->emit_int32(op);
  2449   %}
  2451   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2452     int op = (Assembler::arith_op << 30) |
  2453              ($dst$$reg << 25) |
  2454              (Assembler::fpop2_op3 << 19) |
  2455              (0 << 18) |
  2456              ($cmp$$cmpcode << 14) |
  2457              (1 << 13) |                    // select register move
  2458              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2459              ($primary << 5) |              // select single, double or quad
  2460              ($src$$reg << 0);
  2461     cbuf.insts()->emit_int32(op);
  2462   %}
  2464   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2465     int op = (Assembler::arith_op << 30) |
  2466              ($dst$$reg << 25) |
  2467              (Assembler::fpop2_op3 << 19) |
  2468              (0 << 18) |
  2469              ($cmp$$cmpcode << 14) |
  2470              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2471              ($primary << 5) |              // select single, double or quad
  2472              ($src$$reg << 0);
  2473     cbuf.insts()->emit_int32(op);
  2474   %}
  2476   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2477   // the condition comes from opcode-field instead of an argument.
  2478   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2479     int op = (Assembler::arith_op << 30) |
  2480              ($dst$$reg << 25) |
  2481              (Assembler::movcc_op3 << 19) |
  2482              (1 << 18) |                    // cc2 bit for 'icc'
  2483              ($primary << 14) |
  2484              (0 << 13) |                    // select register move
  2485              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2486              ($src$$reg << 0);
  2487     cbuf.insts()->emit_int32(op);
  2488   %}
  2490   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2491     int op = (Assembler::arith_op << 30) |
  2492              ($dst$$reg << 25) |
  2493              (Assembler::movcc_op3 << 19) |
  2494              (6 << 16) |                    // cc2 bit for 'xcc'
  2495              ($primary << 14) |
  2496              (0 << 13) |                    // select register move
  2497              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2498              ($src$$reg << 0);
  2499     cbuf.insts()->emit_int32(op);
  2500   %}
  2502   enc_class Set13( immI13 src, iRegI rd ) %{
  2503     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2504   %}
  2506   enc_class SetHi22( immI src, iRegI rd ) %{
  2507     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2508   %}
  2510   enc_class Set32( immI src, iRegI rd ) %{
  2511     MacroAssembler _masm(&cbuf);
  2512     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2513   %}
  2515   enc_class call_epilog %{
  2516     if( VerifyStackAtCalls ) {
  2517       MacroAssembler _masm(&cbuf);
  2518       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2519       Register temp_reg = G3;
  2520       __ add(SP, framesize, temp_reg);
  2521       __ cmp(temp_reg, FP);
  2522       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2524   %}
  2526   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2527   // to G1 so the register allocator will not have to deal with the misaligned register
  2528   // pair.
  2529   enc_class adjust_long_from_native_call %{
  2530 #ifndef _LP64
  2531     if (returns_long()) {
  2532       //    sllx  O0,32,O0
  2533       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2534       //    srl   O1,0,O1
  2535       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2536       //    or    O0,O1,G1
  2537       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2539 #endif
  2540   %}
  2542   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2543     // CALL directly to the runtime
  2544     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2545     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2546                     /*preserve_g2=*/true);
  2547   %}
  2549   enc_class preserve_SP %{
  2550     MacroAssembler _masm(&cbuf);
  2551     __ mov(SP, L7_mh_SP_save);
  2552   %}
  2554   enc_class restore_SP %{
  2555     MacroAssembler _masm(&cbuf);
  2556     __ mov(L7_mh_SP_save, SP);
  2557   %}
  2559   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2560     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2561     // who we intended to call.
  2562     if ( !_method ) {
  2563       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2564     } else if (_optimized_virtual) {
  2565       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2566     } else {
  2567       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2569     if( _method ) {  // Emit stub for static call
  2570       emit_java_to_interp(cbuf);
  2572   %}
  2574   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2575     MacroAssembler _masm(&cbuf);
  2576     __ set_inst_mark();
  2577     int vtable_index = this->_vtable_index;
  2578     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2579     if (vtable_index < 0) {
  2580       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2581       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  2582       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2583       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2584       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2585       __ ic_call((address)$meth$$method);
  2586     } else {
  2587       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2588       // Just go thru the vtable
  2589       // get receiver klass (receiver already checked for non-null)
  2590       // If we end up going thru a c2i adapter interpreter expects method in G5
  2591       int off = __ offset();
  2592       __ load_klass(O0, G3_scratch);
  2593       int klass_load_size;
  2594       if (UseCompressedOops && UseCompressedKlassPointers) {
  2595         assert(Universe::heap() != NULL, "java heap should be initialized");
  2596         if (Universe::narrow_oop_base() == NULL)
  2597           klass_load_size = 2*BytesPerInstWord;
  2598         else
  2599           klass_load_size = 3*BytesPerInstWord;
  2600       } else {
  2601         klass_load_size = 1*BytesPerInstWord;
  2603       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2604       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2605       if (Assembler::is_simm13(v_off)) {
  2606         __ ld_ptr(G3, v_off, G5_method);
  2607       } else {
  2608         // Generate 2 instructions
  2609         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2610         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2611         // ld_ptr, set_hi, set
  2612         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2613                "Unexpected instruction size(s)");
  2614         __ ld_ptr(G3, G5_method, G5_method);
  2616       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2617       // However it may very well end up in handle_wrong_method if the
  2618       // method is abstract for the particular class.
  2619       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
  2620       // jump to target (either compiled code or c2iadapter)
  2621       __ jmpl(G3_scratch, G0, O7);
  2622       __ delayed()->nop();
  2624   %}
  2626   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2627     MacroAssembler _masm(&cbuf);
  2629     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2630     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2631                               // we might be calling a C2I adapter which needs it.
  2633     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2634     // Load nmethod
  2635     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
  2637     // CALL to compiled java, indirect the contents of G3
  2638     __ set_inst_mark();
  2639     __ callr(temp_reg, G0);
  2640     __ delayed()->nop();
  2641   %}
  2643 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2644     MacroAssembler _masm(&cbuf);
  2645     Register Rdividend = reg_to_register_object($src1$$reg);
  2646     Register Rdivisor = reg_to_register_object($src2$$reg);
  2647     Register Rresult = reg_to_register_object($dst$$reg);
  2649     __ sra(Rdivisor, 0, Rdivisor);
  2650     __ sra(Rdividend, 0, Rdividend);
  2651     __ sdivx(Rdividend, Rdivisor, Rresult);
  2652 %}
  2654 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2655     MacroAssembler _masm(&cbuf);
  2657     Register Rdividend = reg_to_register_object($src1$$reg);
  2658     int divisor = $imm$$constant;
  2659     Register Rresult = reg_to_register_object($dst$$reg);
  2661     __ sra(Rdividend, 0, Rdividend);
  2662     __ sdivx(Rdividend, divisor, Rresult);
  2663 %}
  2665 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2666     MacroAssembler _masm(&cbuf);
  2667     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2668     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2669     Register Rdst  = reg_to_register_object($dst$$reg);
  2671     __ sra( Rsrc1, 0, Rsrc1 );
  2672     __ sra( Rsrc2, 0, Rsrc2 );
  2673     __ mulx( Rsrc1, Rsrc2, Rdst );
  2674     __ srlx( Rdst, 32, Rdst );
  2675 %}
  2677 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2678     MacroAssembler _masm(&cbuf);
  2679     Register Rdividend = reg_to_register_object($src1$$reg);
  2680     Register Rdivisor = reg_to_register_object($src2$$reg);
  2681     Register Rresult = reg_to_register_object($dst$$reg);
  2682     Register Rscratch = reg_to_register_object($scratch$$reg);
  2684     assert(Rdividend != Rscratch, "");
  2685     assert(Rdivisor  != Rscratch, "");
  2687     __ sra(Rdividend, 0, Rdividend);
  2688     __ sra(Rdivisor, 0, Rdivisor);
  2689     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2690     __ mulx(Rscratch, Rdivisor, Rscratch);
  2691     __ sub(Rdividend, Rscratch, Rresult);
  2692 %}
  2694 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2695     MacroAssembler _masm(&cbuf);
  2697     Register Rdividend = reg_to_register_object($src1$$reg);
  2698     int divisor = $imm$$constant;
  2699     Register Rresult = reg_to_register_object($dst$$reg);
  2700     Register Rscratch = reg_to_register_object($scratch$$reg);
  2702     assert(Rdividend != Rscratch, "");
  2704     __ sra(Rdividend, 0, Rdividend);
  2705     __ sdivx(Rdividend, divisor, Rscratch);
  2706     __ mulx(Rscratch, divisor, Rscratch);
  2707     __ sub(Rdividend, Rscratch, Rresult);
  2708 %}
  2710 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2711     MacroAssembler _masm(&cbuf);
  2713     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2714     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2716     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2717 %}
  2719 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2720     MacroAssembler _masm(&cbuf);
  2722     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2723     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2725     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2726 %}
  2728 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2729     MacroAssembler _masm(&cbuf);
  2731     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2732     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2734     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2735 %}
  2737 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2738     MacroAssembler _masm(&cbuf);
  2740     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2741     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2743     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2744 %}
  2746 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2747     MacroAssembler _masm(&cbuf);
  2749     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2750     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2752     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2753 %}
  2755 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2756     MacroAssembler _masm(&cbuf);
  2758     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2759     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2761     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2762 %}
  2764 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2765     MacroAssembler _masm(&cbuf);
  2767     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2768     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2770     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2771 %}
  2773 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2774     MacroAssembler _masm(&cbuf);
  2776     Register Roop  = reg_to_register_object($oop$$reg);
  2777     Register Rbox  = reg_to_register_object($box$$reg);
  2778     Register Rscratch = reg_to_register_object($scratch$$reg);
  2779     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2781     assert(Roop  != Rscratch, "");
  2782     assert(Roop  != Rmark, "");
  2783     assert(Rbox  != Rscratch, "");
  2784     assert(Rbox  != Rmark, "");
  2786     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2787 %}
  2789 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2790     MacroAssembler _masm(&cbuf);
  2792     Register Roop  = reg_to_register_object($oop$$reg);
  2793     Register Rbox  = reg_to_register_object($box$$reg);
  2794     Register Rscratch = reg_to_register_object($scratch$$reg);
  2795     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2797     assert(Roop  != Rscratch, "");
  2798     assert(Roop  != Rmark, "");
  2799     assert(Rbox  != Rscratch, "");
  2800     assert(Rbox  != Rmark, "");
  2802     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2803   %}
  2805   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2806     MacroAssembler _masm(&cbuf);
  2807     Register Rmem = reg_to_register_object($mem$$reg);
  2808     Register Rold = reg_to_register_object($old$$reg);
  2809     Register Rnew = reg_to_register_object($new$$reg);
  2811     // casx_under_lock picks 1 of 3 encodings:
  2812     // For 32-bit pointers you get a 32-bit CAS
  2813     // For 64-bit pointers you get a 64-bit CASX
  2814     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2815     __ cmp( Rold, Rnew );
  2816   %}
  2818   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2819     Register Rmem = reg_to_register_object($mem$$reg);
  2820     Register Rold = reg_to_register_object($old$$reg);
  2821     Register Rnew = reg_to_register_object($new$$reg);
  2823     MacroAssembler _masm(&cbuf);
  2824     __ mov(Rnew, O7);
  2825     __ casx(Rmem, Rold, O7);
  2826     __ cmp( Rold, O7 );
  2827   %}
  2829   // raw int cas, used for compareAndSwap
  2830   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2831     Register Rmem = reg_to_register_object($mem$$reg);
  2832     Register Rold = reg_to_register_object($old$$reg);
  2833     Register Rnew = reg_to_register_object($new$$reg);
  2835     MacroAssembler _masm(&cbuf);
  2836     __ mov(Rnew, O7);
  2837     __ cas(Rmem, Rold, O7);
  2838     __ cmp( Rold, O7 );
  2839   %}
  2841   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2842     Register Rres = reg_to_register_object($res$$reg);
  2844     MacroAssembler _masm(&cbuf);
  2845     __ mov(1, Rres);
  2846     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2847   %}
  2849   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2850     Register Rres = reg_to_register_object($res$$reg);
  2852     MacroAssembler _masm(&cbuf);
  2853     __ mov(1, Rres);
  2854     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2855   %}
  2857   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2858     MacroAssembler _masm(&cbuf);
  2859     Register Rdst = reg_to_register_object($dst$$reg);
  2860     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2861                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2862     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2863                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2865     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2866     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2867   %}
  2870   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2871     Label Ldone, Lloop;
  2872     MacroAssembler _masm(&cbuf);
  2874     Register   str1_reg = reg_to_register_object($str1$$reg);
  2875     Register   str2_reg = reg_to_register_object($str2$$reg);
  2876     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2877     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2878     Register result_reg = reg_to_register_object($result$$reg);
  2880     assert(result_reg != str1_reg &&
  2881            result_reg != str2_reg &&
  2882            result_reg != cnt1_reg &&
  2883            result_reg != cnt2_reg ,
  2884            "need different registers");
  2886     // Compute the minimum of the string lengths(str1_reg) and the
  2887     // difference of the string lengths (stack)
  2889     // See if the lengths are different, and calculate min in str1_reg.
  2890     // Stash diff in O7 in case we need it for a tie-breaker.
  2891     Label Lskip;
  2892     __ subcc(cnt1_reg, cnt2_reg, O7);
  2893     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2894     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2895     // cnt2 is shorter, so use its count:
  2896     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2897     __ bind(Lskip);
  2899     // reallocate cnt1_reg, cnt2_reg, result_reg
  2900     // Note:  limit_reg holds the string length pre-scaled by 2
  2901     Register limit_reg =   cnt1_reg;
  2902     Register  chr2_reg =   cnt2_reg;
  2903     Register  chr1_reg = result_reg;
  2904     // str{12} are the base pointers
  2906     // Is the minimum length zero?
  2907     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2908     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2909     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2911     // Load first characters
  2912     __ lduh(str1_reg, 0, chr1_reg);
  2913     __ lduh(str2_reg, 0, chr2_reg);
  2915     // Compare first characters
  2916     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2917     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2918     assert(chr1_reg == result_reg, "result must be pre-placed");
  2919     __ delayed()->nop();
  2922       // Check after comparing first character to see if strings are equivalent
  2923       Label LSkip2;
  2924       // Check if the strings start at same location
  2925       __ cmp(str1_reg, str2_reg);
  2926       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2927       __ delayed()->nop();
  2929       // Check if the length difference is zero (in O7)
  2930       __ cmp(G0, O7);
  2931       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2932       __ delayed()->mov(G0, result_reg);  // result is zero
  2934       // Strings might not be equal
  2935       __ bind(LSkip2);
  2938     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2939     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2940     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2942     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2943     __ add(str1_reg, limit_reg, str1_reg);
  2944     __ add(str2_reg, limit_reg, str2_reg);
  2945     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2947     // Compare the rest of the characters
  2948     __ lduh(str1_reg, limit_reg, chr1_reg);
  2949     __ bind(Lloop);
  2950     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2951     __ lduh(str2_reg, limit_reg, chr2_reg);
  2952     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2953     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2954     assert(chr1_reg == result_reg, "result must be pre-placed");
  2955     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2956     // annul LDUH if branch is not taken to prevent access past end of string
  2957     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2958     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2960     // If strings are equal up to min length, return the length difference.
  2961     __ mov(O7, result_reg);
  2963     // Otherwise, return the difference between the first mismatched chars.
  2964     __ bind(Ldone);
  2965   %}
  2967 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2968     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2969     MacroAssembler _masm(&cbuf);
  2971     Register   str1_reg = reg_to_register_object($str1$$reg);
  2972     Register   str2_reg = reg_to_register_object($str2$$reg);
  2973     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2974     Register   tmp1_reg = O7;
  2975     Register result_reg = reg_to_register_object($result$$reg);
  2977     assert(result_reg != str1_reg &&
  2978            result_reg != str2_reg &&
  2979            result_reg !=  cnt_reg &&
  2980            result_reg != tmp1_reg ,
  2981            "need different registers");
  2983     __ cmp(str1_reg, str2_reg); //same char[] ?
  2984     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2985     __ delayed()->add(G0, 1, result_reg);
  2987     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  2988     __ delayed()->add(G0, 1, result_reg); // count == 0
  2990     //rename registers
  2991     Register limit_reg =    cnt_reg;
  2992     Register  chr1_reg = result_reg;
  2993     Register  chr2_reg =   tmp1_reg;
  2995     //check for alignment and position the pointers to the ends
  2996     __ or3(str1_reg, str2_reg, chr1_reg);
  2997     __ andcc(chr1_reg, 0x3, chr1_reg);
  2998     // notZero means at least one not 4-byte aligned.
  2999     // We could optimize the case when both arrays are not aligned
  3000     // but it is not frequent case and it requires additional checks.
  3001     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  3002     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  3004     // Compare char[] arrays aligned to 4 bytes.
  3005     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  3006                           chr1_reg, chr2_reg, Ldone);
  3007     __ ba(Ldone);
  3008     __ delayed()->add(G0, 1, result_reg);
  3010     // char by char compare
  3011     __ bind(Lchar);
  3012     __ add(str1_reg, limit_reg, str1_reg);
  3013     __ add(str2_reg, limit_reg, str2_reg);
  3014     __ neg(limit_reg); //negate count
  3016     __ lduh(str1_reg, limit_reg, chr1_reg);
  3017     // Lchar_loop
  3018     __ bind(Lchar_loop);
  3019     __ lduh(str2_reg, limit_reg, chr2_reg);
  3020     __ cmp(chr1_reg, chr2_reg);
  3021     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3022     __ delayed()->mov(G0, result_reg); //not equal
  3023     __ inccc(limit_reg, sizeof(jchar));
  3024     // annul LDUH if branch is not taken to prevent access past end of string
  3025     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3026     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3028     __ add(G0, 1, result_reg);  //equal
  3030     __ bind(Ldone);
  3031   %}
  3033 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3034     Label Lvector, Ldone, Lloop;
  3035     MacroAssembler _masm(&cbuf);
  3037     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3038     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3039     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3040     Register   tmp2_reg = O7;
  3041     Register result_reg = reg_to_register_object($result$$reg);
  3043     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3044     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3046     // return true if the same array
  3047     __ cmp(ary1_reg, ary2_reg);
  3048     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3049     __ delayed()->add(G0, 1, result_reg); // equal
  3051     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3052     __ delayed()->mov(G0, result_reg);    // not equal
  3054     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3055     __ delayed()->mov(G0, result_reg);    // not equal
  3057     //load the lengths of arrays
  3058     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3059     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3061     // return false if the two arrays are not equal length
  3062     __ cmp(tmp1_reg, tmp2_reg);
  3063     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3064     __ delayed()->mov(G0, result_reg);     // not equal
  3066     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3067     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3069     // load array addresses
  3070     __ add(ary1_reg, base_offset, ary1_reg);
  3071     __ add(ary2_reg, base_offset, ary2_reg);
  3073     // renaming registers
  3074     Register chr1_reg  =  result_reg; // for characters in ary1
  3075     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3076     Register limit_reg =  tmp1_reg;   // length
  3078     // set byte count
  3079     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3081     // Compare char[] arrays aligned to 4 bytes.
  3082     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3083                           chr1_reg, chr2_reg, Ldone);
  3084     __ add(G0, 1, result_reg); // equals
  3086     __ bind(Ldone);
  3087   %}
  3089   enc_class enc_rethrow() %{
  3090     cbuf.set_insts_mark();
  3091     Register temp_reg = G3;
  3092     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3093     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3094     MacroAssembler _masm(&cbuf);
  3095 #ifdef ASSERT
  3096     __ save_frame(0);
  3097     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3098     __ sethi(last_rethrow_addrlit, L1);
  3099     Address addr(L1, last_rethrow_addrlit.low10());
  3100     __ get_pc(L2);
  3101     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3102     __ st_ptr(L2, addr);
  3103     __ restore();
  3104 #endif
  3105     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3106     __ delayed()->nop();
  3107   %}
  3109   enc_class emit_mem_nop() %{
  3110     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3111     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3112   %}
  3114   enc_class emit_fadd_nop() %{
  3115     // Generates the instruction FMOVS f31,f31
  3116     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3117   %}
  3119   enc_class emit_br_nop() %{
  3120     // Generates the instruction BPN,PN .
  3121     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3122   %}
  3124   enc_class enc_membar_acquire %{
  3125     MacroAssembler _masm(&cbuf);
  3126     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3127   %}
  3129   enc_class enc_membar_release %{
  3130     MacroAssembler _masm(&cbuf);
  3131     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3132   %}
  3134   enc_class enc_membar_volatile %{
  3135     MacroAssembler _masm(&cbuf);
  3136     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3137   %}
  3139 %}
  3141 //----------FRAME--------------------------------------------------------------
  3142 // Definition of frame structure and management information.
  3143 //
  3144 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3145 //                             |   (to get allocators register number
  3146 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3147 //  r   CALLER     |        |
  3148 //  o     |        +--------+      pad to even-align allocators stack-slot
  3149 //  w     V        |  pad0  |        numbers; owned by CALLER
  3150 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3151 //  h     ^        |   in   |  5
  3152 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3153 //  |     |        |        |  3
  3154 //  |     |        +--------+
  3155 //  V     |        | old out|      Empty on Intel, window on Sparc
  3156 //        |    old |preserve|      Must be even aligned.
  3157 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3158 //        |        |   in   |  3   area for Intel ret address
  3159 //     Owned by    |preserve|      Empty on Sparc.
  3160 //       SELF      +--------+
  3161 //        |        |  pad2  |  2   pad to align old SP
  3162 //        |        +--------+  1
  3163 //        |        | locks  |  0
  3164 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3165 //        |        |  pad1  | 11   pad to align new SP
  3166 //        |        +--------+
  3167 //        |        |        | 10
  3168 //        |        | spills |  9   spills
  3169 //        V        |        |  8   (pad0 slot for callee)
  3170 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3171 //        ^        |  out   |  7
  3172 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3173 //     Owned by    +--------+
  3174 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3175 //        |    new |preserve|      Must be even-aligned.
  3176 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3177 //        |        |        |
  3178 //
  3179 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3180 //         known from SELF's arguments and the Java calling convention.
  3181 //         Region 6-7 is determined per call site.
  3182 // Note 2: If the calling convention leaves holes in the incoming argument
  3183 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3184 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3185 //         incoming area, as the Java calling convention is completely under
  3186 //         the control of the AD file.  Doubles can be sorted and packed to
  3187 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3188 //         varargs C calling conventions.
  3189 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3190 //         even aligned with pad0 as needed.
  3191 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3192 //         region 6-11 is even aligned; it may be padded out more so that
  3193 //         the region from SP to FP meets the minimum stack alignment.
  3195 frame %{
  3196   // What direction does stack grow in (assumed to be same for native & Java)
  3197   stack_direction(TOWARDS_LOW);
  3199   // These two registers define part of the calling convention
  3200   // between compiled code and the interpreter.
  3201   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
  3202   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3204   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3205   cisc_spilling_operand_name(indOffset);
  3207   // Number of stack slots consumed by a Monitor enter
  3208 #ifdef _LP64
  3209   sync_stack_slots(2);
  3210 #else
  3211   sync_stack_slots(1);
  3212 #endif
  3214   // Compiled code's Frame Pointer
  3215   frame_pointer(R_SP);
  3217   // Stack alignment requirement
  3218   stack_alignment(StackAlignmentInBytes);
  3219   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3220   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3222   // Number of stack slots between incoming argument block and the start of
  3223   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3224   // EPILOG must remove this many slots.
  3225   in_preserve_stack_slots(0);
  3227   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3228   // for calls to C.  Supports the var-args backing area for register parms.
  3229   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3230 #ifdef _LP64
  3231   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3232   varargs_C_out_slots_killed(12);
  3233 #else
  3234   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3235   varargs_C_out_slots_killed( 7);
  3236 #endif
  3238   // The after-PROLOG location of the return address.  Location of
  3239   // return address specifies a type (REG or STACK) and a number
  3240   // representing the register number (i.e. - use a register name) or
  3241   // stack slot.
  3242   return_addr(REG R_I7);          // Ret Addr is in register I7
  3244   // Body of function which returns an OptoRegs array locating
  3245   // arguments either in registers or in stack slots for calling
  3246   // java
  3247   calling_convention %{
  3248     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3250   %}
  3252   // Body of function which returns an OptoRegs array locating
  3253   // arguments either in registers or in stack slots for callin
  3254   // C.
  3255   c_calling_convention %{
  3256     // This is obviously always outgoing
  3257     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3258   %}
  3260   // Location of native (C/C++) and interpreter return values.  This is specified to
  3261   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3262   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3263   // to and from the register pairs is done by the appropriate call and epilog
  3264   // opcodes.  This simplifies the register allocator.
  3265   c_return_value %{
  3266     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3267 #ifdef     _LP64
  3268     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3269     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3270     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3271     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3272 #else  // !_LP64
  3273     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3274     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3275     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3276     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3277 #endif
  3278     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3279                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3280   %}
  3282   // Location of compiled Java return values.  Same as C
  3283   return_value %{
  3284     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3285 #ifdef     _LP64
  3286     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3287     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3288     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3289     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3290 #else  // !_LP64
  3291     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3292     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3293     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3294     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3295 #endif
  3296     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3297                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3298   %}
  3300 %}
  3303 //----------ATTRIBUTES---------------------------------------------------------
  3304 //----------Operand Attributes-------------------------------------------------
  3305 op_attrib op_cost(1);          // Required cost attribute
  3307 //----------Instruction Attributes---------------------------------------------
  3308 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3309 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3310 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3311 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3312                                    // non-matching short branch variant of some
  3313                                                             // long branch?
  3315 //----------OPERANDS-----------------------------------------------------------
  3316 // Operand definitions must precede instruction definitions for correct parsing
  3317 // in the ADLC because operands constitute user defined types which are used in
  3318 // instruction definitions.
  3320 //----------Simple Operands----------------------------------------------------
  3321 // Immediate Operands
  3322 // Integer Immediate: 32-bit
  3323 operand immI() %{
  3324   match(ConI);
  3326   op_cost(0);
  3327   // formats are generated automatically for constants and base registers
  3328   format %{ %}
  3329   interface(CONST_INTER);
  3330 %}
  3332 // Integer Immediate: 8-bit
  3333 operand immI8() %{
  3334   predicate(Assembler::is_simm8(n->get_int()));
  3335   match(ConI);
  3336   op_cost(0);
  3337   format %{ %}
  3338   interface(CONST_INTER);
  3339 %}
  3341 // Integer Immediate: 13-bit
  3342 operand immI13() %{
  3343   predicate(Assembler::is_simm13(n->get_int()));
  3344   match(ConI);
  3345   op_cost(0);
  3347   format %{ %}
  3348   interface(CONST_INTER);
  3349 %}
  3351 // Integer Immediate: 13-bit minus 7
  3352 operand immI13m7() %{
  3353   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3354   match(ConI);
  3355   op_cost(0);
  3357   format %{ %}
  3358   interface(CONST_INTER);
  3359 %}
  3361 // Integer Immediate: 16-bit
  3362 operand immI16() %{
  3363   predicate(Assembler::is_simm16(n->get_int()));
  3364   match(ConI);
  3365   op_cost(0);
  3366   format %{ %}
  3367   interface(CONST_INTER);
  3368 %}
  3370 // Unsigned (positive) Integer Immediate: 13-bit
  3371 operand immU13() %{
  3372   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3373   match(ConI);
  3374   op_cost(0);
  3376   format %{ %}
  3377   interface(CONST_INTER);
  3378 %}
  3380 // Integer Immediate: 6-bit
  3381 operand immU6() %{
  3382   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3383   match(ConI);
  3384   op_cost(0);
  3385   format %{ %}
  3386   interface(CONST_INTER);
  3387 %}
  3389 // Integer Immediate: 11-bit
  3390 operand immI11() %{
  3391   predicate(Assembler::is_simm11(n->get_int()));
  3392   match(ConI);
  3393   op_cost(0);
  3394   format %{ %}
  3395   interface(CONST_INTER);
  3396 %}
  3398 // Integer Immediate: 5-bit
  3399 operand immI5() %{
  3400   predicate(Assembler::is_simm5(n->get_int()));
  3401   match(ConI);
  3402   op_cost(0);
  3403   format %{ %}
  3404   interface(CONST_INTER);
  3405 %}
  3407 // Integer Immediate: 0-bit
  3408 operand immI0() %{
  3409   predicate(n->get_int() == 0);
  3410   match(ConI);
  3411   op_cost(0);
  3413   format %{ %}
  3414   interface(CONST_INTER);
  3415 %}
  3417 // Integer Immediate: the value 10
  3418 operand immI10() %{
  3419   predicate(n->get_int() == 10);
  3420   match(ConI);
  3421   op_cost(0);
  3423   format %{ %}
  3424   interface(CONST_INTER);
  3425 %}
  3427 // Integer Immediate: the values 0-31
  3428 operand immU5() %{
  3429   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3430   match(ConI);
  3431   op_cost(0);
  3433   format %{ %}
  3434   interface(CONST_INTER);
  3435 %}
  3437 // Integer Immediate: the values 1-31
  3438 operand immI_1_31() %{
  3439   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3440   match(ConI);
  3441   op_cost(0);
  3443   format %{ %}
  3444   interface(CONST_INTER);
  3445 %}
  3447 // Integer Immediate: the values 32-63
  3448 operand immI_32_63() %{
  3449   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3450   match(ConI);
  3451   op_cost(0);
  3453   format %{ %}
  3454   interface(CONST_INTER);
  3455 %}
  3457 // Immediates for special shifts (sign extend)
  3459 // Integer Immediate: the value 16
  3460 operand immI_16() %{
  3461   predicate(n->get_int() == 16);
  3462   match(ConI);
  3463   op_cost(0);
  3465   format %{ %}
  3466   interface(CONST_INTER);
  3467 %}
  3469 // Integer Immediate: the value 24
  3470 operand immI_24() %{
  3471   predicate(n->get_int() == 24);
  3472   match(ConI);
  3473   op_cost(0);
  3475   format %{ %}
  3476   interface(CONST_INTER);
  3477 %}
  3479 // Integer Immediate: the value 255
  3480 operand immI_255() %{
  3481   predicate( n->get_int() == 255 );
  3482   match(ConI);
  3483   op_cost(0);
  3485   format %{ %}
  3486   interface(CONST_INTER);
  3487 %}
  3489 // Integer Immediate: the value 65535
  3490 operand immI_65535() %{
  3491   predicate(n->get_int() == 65535);
  3492   match(ConI);
  3493   op_cost(0);
  3495   format %{ %}
  3496   interface(CONST_INTER);
  3497 %}
  3499 // Long Immediate: the value FF
  3500 operand immL_FF() %{
  3501   predicate( n->get_long() == 0xFFL );
  3502   match(ConL);
  3503   op_cost(0);
  3505   format %{ %}
  3506   interface(CONST_INTER);
  3507 %}
  3509 // Long Immediate: the value FFFF
  3510 operand immL_FFFF() %{
  3511   predicate( n->get_long() == 0xFFFFL );
  3512   match(ConL);
  3513   op_cost(0);
  3515   format %{ %}
  3516   interface(CONST_INTER);
  3517 %}
  3519 // Pointer Immediate: 32 or 64-bit
  3520 operand immP() %{
  3521   match(ConP);
  3523   op_cost(5);
  3524   // formats are generated automatically for constants and base registers
  3525   format %{ %}
  3526   interface(CONST_INTER);
  3527 %}
  3529 #ifdef _LP64
  3530 // Pointer Immediate: 64-bit
  3531 operand immP_set() %{
  3532   predicate(!VM_Version::is_niagara_plus());
  3533   match(ConP);
  3535   op_cost(5);
  3536   // formats are generated automatically for constants and base registers
  3537   format %{ %}
  3538   interface(CONST_INTER);
  3539 %}
  3541 // Pointer Immediate: 64-bit
  3542 // From Niagara2 processors on a load should be better than materializing.
  3543 operand immP_load() %{
  3544   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3545   match(ConP);
  3547   op_cost(5);
  3548   // formats are generated automatically for constants and base registers
  3549   format %{ %}
  3550   interface(CONST_INTER);
  3551 %}
  3553 // Pointer Immediate: 64-bit
  3554 operand immP_no_oop_cheap() %{
  3555   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3556   match(ConP);
  3558   op_cost(5);
  3559   // formats are generated automatically for constants and base registers
  3560   format %{ %}
  3561   interface(CONST_INTER);
  3562 %}
  3563 #endif
  3565 operand immP13() %{
  3566   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3567   match(ConP);
  3568   op_cost(0);
  3570   format %{ %}
  3571   interface(CONST_INTER);
  3572 %}
  3574 operand immP0() %{
  3575   predicate(n->get_ptr() == 0);
  3576   match(ConP);
  3577   op_cost(0);
  3579   format %{ %}
  3580   interface(CONST_INTER);
  3581 %}
  3583 operand immP_poll() %{
  3584   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3585   match(ConP);
  3587   // formats are generated automatically for constants and base registers
  3588   format %{ %}
  3589   interface(CONST_INTER);
  3590 %}
  3592 // Pointer Immediate
  3593 operand immN()
  3594 %{
  3595   match(ConN);
  3597   op_cost(10);
  3598   format %{ %}
  3599   interface(CONST_INTER);
  3600 %}
  3602 // NULL Pointer Immediate
  3603 operand immN0()
  3604 %{
  3605   predicate(n->get_narrowcon() == 0);
  3606   match(ConN);
  3608   op_cost(0);
  3609   format %{ %}
  3610   interface(CONST_INTER);
  3611 %}
  3613 operand immL() %{
  3614   match(ConL);
  3615   op_cost(40);
  3616   // formats are generated automatically for constants and base registers
  3617   format %{ %}
  3618   interface(CONST_INTER);
  3619 %}
  3621 operand immL0() %{
  3622   predicate(n->get_long() == 0L);
  3623   match(ConL);
  3624   op_cost(0);
  3625   // formats are generated automatically for constants and base registers
  3626   format %{ %}
  3627   interface(CONST_INTER);
  3628 %}
  3630 // Integer Immediate: 5-bit
  3631 operand immL5() %{
  3632   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3633   match(ConL);
  3634   op_cost(0);
  3635   format %{ %}
  3636   interface(CONST_INTER);
  3637 %}
  3639 // Long Immediate: 13-bit
  3640 operand immL13() %{
  3641   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3642   match(ConL);
  3643   op_cost(0);
  3645   format %{ %}
  3646   interface(CONST_INTER);
  3647 %}
  3649 // Long Immediate: 13-bit minus 7
  3650 operand immL13m7() %{
  3651   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3652   match(ConL);
  3653   op_cost(0);
  3655   format %{ %}
  3656   interface(CONST_INTER);
  3657 %}
  3659 // Long Immediate: low 32-bit mask
  3660 operand immL_32bits() %{
  3661   predicate(n->get_long() == 0xFFFFFFFFL);
  3662   match(ConL);
  3663   op_cost(0);
  3665   format %{ %}
  3666   interface(CONST_INTER);
  3667 %}
  3669 // Long Immediate: cheap (materialize in <= 3 instructions)
  3670 operand immL_cheap() %{
  3671   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3672   match(ConL);
  3673   op_cost(0);
  3675   format %{ %}
  3676   interface(CONST_INTER);
  3677 %}
  3679 // Long Immediate: expensive (materialize in > 3 instructions)
  3680 operand immL_expensive() %{
  3681   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3682   match(ConL);
  3683   op_cost(0);
  3685   format %{ %}
  3686   interface(CONST_INTER);
  3687 %}
  3689 // Double Immediate
  3690 operand immD() %{
  3691   match(ConD);
  3693   op_cost(40);
  3694   format %{ %}
  3695   interface(CONST_INTER);
  3696 %}
  3698 operand immD0() %{
  3699 #ifdef _LP64
  3700   // on 64-bit architectures this comparision is faster
  3701   predicate(jlong_cast(n->getd()) == 0);
  3702 #else
  3703   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3704 #endif
  3705   match(ConD);
  3707   op_cost(0);
  3708   format %{ %}
  3709   interface(CONST_INTER);
  3710 %}
  3712 // Float Immediate
  3713 operand immF() %{
  3714   match(ConF);
  3716   op_cost(20);
  3717   format %{ %}
  3718   interface(CONST_INTER);
  3719 %}
  3721 // Float Immediate: 0
  3722 operand immF0() %{
  3723   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3724   match(ConF);
  3726   op_cost(0);
  3727   format %{ %}
  3728   interface(CONST_INTER);
  3729 %}
  3731 // Integer Register Operands
  3732 // Integer Register
  3733 operand iRegI() %{
  3734   constraint(ALLOC_IN_RC(int_reg));
  3735   match(RegI);
  3737   match(notemp_iRegI);
  3738   match(g1RegI);
  3739   match(o0RegI);
  3740   match(iRegIsafe);
  3742   format %{ %}
  3743   interface(REG_INTER);
  3744 %}
  3746 operand notemp_iRegI() %{
  3747   constraint(ALLOC_IN_RC(notemp_int_reg));
  3748   match(RegI);
  3750   match(o0RegI);
  3752   format %{ %}
  3753   interface(REG_INTER);
  3754 %}
  3756 operand o0RegI() %{
  3757   constraint(ALLOC_IN_RC(o0_regI));
  3758   match(iRegI);
  3760   format %{ %}
  3761   interface(REG_INTER);
  3762 %}
  3764 // Pointer Register
  3765 operand iRegP() %{
  3766   constraint(ALLOC_IN_RC(ptr_reg));
  3767   match(RegP);
  3769   match(lock_ptr_RegP);
  3770   match(g1RegP);
  3771   match(g2RegP);
  3772   match(g3RegP);
  3773   match(g4RegP);
  3774   match(i0RegP);
  3775   match(o0RegP);
  3776   match(o1RegP);
  3777   match(l7RegP);
  3779   format %{ %}
  3780   interface(REG_INTER);
  3781 %}
  3783 operand sp_ptr_RegP() %{
  3784   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3785   match(RegP);
  3786   match(iRegP);
  3788   format %{ %}
  3789   interface(REG_INTER);
  3790 %}
  3792 operand lock_ptr_RegP() %{
  3793   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3794   match(RegP);
  3795   match(i0RegP);
  3796   match(o0RegP);
  3797   match(o1RegP);
  3798   match(l7RegP);
  3800   format %{ %}
  3801   interface(REG_INTER);
  3802 %}
  3804 operand g1RegP() %{
  3805   constraint(ALLOC_IN_RC(g1_regP));
  3806   match(iRegP);
  3808   format %{ %}
  3809   interface(REG_INTER);
  3810 %}
  3812 operand g2RegP() %{
  3813   constraint(ALLOC_IN_RC(g2_regP));
  3814   match(iRegP);
  3816   format %{ %}
  3817   interface(REG_INTER);
  3818 %}
  3820 operand g3RegP() %{
  3821   constraint(ALLOC_IN_RC(g3_regP));
  3822   match(iRegP);
  3824   format %{ %}
  3825   interface(REG_INTER);
  3826 %}
  3828 operand g1RegI() %{
  3829   constraint(ALLOC_IN_RC(g1_regI));
  3830   match(iRegI);
  3832   format %{ %}
  3833   interface(REG_INTER);
  3834 %}
  3836 operand g3RegI() %{
  3837   constraint(ALLOC_IN_RC(g3_regI));
  3838   match(iRegI);
  3840   format %{ %}
  3841   interface(REG_INTER);
  3842 %}
  3844 operand g4RegI() %{
  3845   constraint(ALLOC_IN_RC(g4_regI));
  3846   match(iRegI);
  3848   format %{ %}
  3849   interface(REG_INTER);
  3850 %}
  3852 operand g4RegP() %{
  3853   constraint(ALLOC_IN_RC(g4_regP));
  3854   match(iRegP);
  3856   format %{ %}
  3857   interface(REG_INTER);
  3858 %}
  3860 operand i0RegP() %{
  3861   constraint(ALLOC_IN_RC(i0_regP));
  3862   match(iRegP);
  3864   format %{ %}
  3865   interface(REG_INTER);
  3866 %}
  3868 operand o0RegP() %{
  3869   constraint(ALLOC_IN_RC(o0_regP));
  3870   match(iRegP);
  3872   format %{ %}
  3873   interface(REG_INTER);
  3874 %}
  3876 operand o1RegP() %{
  3877   constraint(ALLOC_IN_RC(o1_regP));
  3878   match(iRegP);
  3880   format %{ %}
  3881   interface(REG_INTER);
  3882 %}
  3884 operand o2RegP() %{
  3885   constraint(ALLOC_IN_RC(o2_regP));
  3886   match(iRegP);
  3888   format %{ %}
  3889   interface(REG_INTER);
  3890 %}
  3892 operand o7RegP() %{
  3893   constraint(ALLOC_IN_RC(o7_regP));
  3894   match(iRegP);
  3896   format %{ %}
  3897   interface(REG_INTER);
  3898 %}
  3900 operand l7RegP() %{
  3901   constraint(ALLOC_IN_RC(l7_regP));
  3902   match(iRegP);
  3904   format %{ %}
  3905   interface(REG_INTER);
  3906 %}
  3908 operand o7RegI() %{
  3909   constraint(ALLOC_IN_RC(o7_regI));
  3910   match(iRegI);
  3912   format %{ %}
  3913   interface(REG_INTER);
  3914 %}
  3916 operand iRegN() %{
  3917   constraint(ALLOC_IN_RC(int_reg));
  3918   match(RegN);
  3920   format %{ %}
  3921   interface(REG_INTER);
  3922 %}
  3924 // Long Register
  3925 operand iRegL() %{
  3926   constraint(ALLOC_IN_RC(long_reg));
  3927   match(RegL);
  3929   format %{ %}
  3930   interface(REG_INTER);
  3931 %}
  3933 operand o2RegL() %{
  3934   constraint(ALLOC_IN_RC(o2_regL));
  3935   match(iRegL);
  3937   format %{ %}
  3938   interface(REG_INTER);
  3939 %}
  3941 operand o7RegL() %{
  3942   constraint(ALLOC_IN_RC(o7_regL));
  3943   match(iRegL);
  3945   format %{ %}
  3946   interface(REG_INTER);
  3947 %}
  3949 operand g1RegL() %{
  3950   constraint(ALLOC_IN_RC(g1_regL));
  3951   match(iRegL);
  3953   format %{ %}
  3954   interface(REG_INTER);
  3955 %}
  3957 operand g3RegL() %{
  3958   constraint(ALLOC_IN_RC(g3_regL));
  3959   match(iRegL);
  3961   format %{ %}
  3962   interface(REG_INTER);
  3963 %}
  3965 // Int Register safe
  3966 // This is 64bit safe
  3967 operand iRegIsafe() %{
  3968   constraint(ALLOC_IN_RC(long_reg));
  3970   match(iRegI);
  3972   format %{ %}
  3973   interface(REG_INTER);
  3974 %}
  3976 // Condition Code Flag Register
  3977 operand flagsReg() %{
  3978   constraint(ALLOC_IN_RC(int_flags));
  3979   match(RegFlags);
  3981   format %{ "ccr" %} // both ICC and XCC
  3982   interface(REG_INTER);
  3983 %}
  3985 // Condition Code Register, unsigned comparisons.
  3986 operand flagsRegU() %{
  3987   constraint(ALLOC_IN_RC(int_flags));
  3988   match(RegFlags);
  3990   format %{ "icc_U" %}
  3991   interface(REG_INTER);
  3992 %}
  3994 // Condition Code Register, pointer comparisons.
  3995 operand flagsRegP() %{
  3996   constraint(ALLOC_IN_RC(int_flags));
  3997   match(RegFlags);
  3999 #ifdef _LP64
  4000   format %{ "xcc_P" %}
  4001 #else
  4002   format %{ "icc_P" %}
  4003 #endif
  4004   interface(REG_INTER);
  4005 %}
  4007 // Condition Code Register, long comparisons.
  4008 operand flagsRegL() %{
  4009   constraint(ALLOC_IN_RC(int_flags));
  4010   match(RegFlags);
  4012   format %{ "xcc_L" %}
  4013   interface(REG_INTER);
  4014 %}
  4016 // Condition Code Register, floating comparisons, unordered same as "less".
  4017 operand flagsRegF() %{
  4018   constraint(ALLOC_IN_RC(float_flags));
  4019   match(RegFlags);
  4020   match(flagsRegF0);
  4022   format %{ %}
  4023   interface(REG_INTER);
  4024 %}
  4026 operand flagsRegF0() %{
  4027   constraint(ALLOC_IN_RC(float_flag0));
  4028   match(RegFlags);
  4030   format %{ %}
  4031   interface(REG_INTER);
  4032 %}
  4035 // Condition Code Flag Register used by long compare
  4036 operand flagsReg_long_LTGE() %{
  4037   constraint(ALLOC_IN_RC(int_flags));
  4038   match(RegFlags);
  4039   format %{ "icc_LTGE" %}
  4040   interface(REG_INTER);
  4041 %}
  4042 operand flagsReg_long_EQNE() %{
  4043   constraint(ALLOC_IN_RC(int_flags));
  4044   match(RegFlags);
  4045   format %{ "icc_EQNE" %}
  4046   interface(REG_INTER);
  4047 %}
  4048 operand flagsReg_long_LEGT() %{
  4049   constraint(ALLOC_IN_RC(int_flags));
  4050   match(RegFlags);
  4051   format %{ "icc_LEGT" %}
  4052   interface(REG_INTER);
  4053 %}
  4056 operand regD() %{
  4057   constraint(ALLOC_IN_RC(dflt_reg));
  4058   match(RegD);
  4060   match(regD_low);
  4062   format %{ %}
  4063   interface(REG_INTER);
  4064 %}
  4066 operand regF() %{
  4067   constraint(ALLOC_IN_RC(sflt_reg));
  4068   match(RegF);
  4070   format %{ %}
  4071   interface(REG_INTER);
  4072 %}
  4074 operand regD_low() %{
  4075   constraint(ALLOC_IN_RC(dflt_low_reg));
  4076   match(regD);
  4078   format %{ %}
  4079   interface(REG_INTER);
  4080 %}
  4082 // Special Registers
  4084 // Method Register
  4085 operand inline_cache_regP(iRegP reg) %{
  4086   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4087   match(reg);
  4088   format %{ %}
  4089   interface(REG_INTER);
  4090 %}
  4092 operand interpreter_method_oop_regP(iRegP reg) %{
  4093   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4094   match(reg);
  4095   format %{ %}
  4096   interface(REG_INTER);
  4097 %}
  4100 //----------Complex Operands---------------------------------------------------
  4101 // Indirect Memory Reference
  4102 operand indirect(sp_ptr_RegP reg) %{
  4103   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4104   match(reg);
  4106   op_cost(100);
  4107   format %{ "[$reg]" %}
  4108   interface(MEMORY_INTER) %{
  4109     base($reg);
  4110     index(0x0);
  4111     scale(0x0);
  4112     disp(0x0);
  4113   %}
  4114 %}
  4116 // Indirect with simm13 Offset
  4117 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4118   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4119   match(AddP reg offset);
  4121   op_cost(100);
  4122   format %{ "[$reg + $offset]" %}
  4123   interface(MEMORY_INTER) %{
  4124     base($reg);
  4125     index(0x0);
  4126     scale(0x0);
  4127     disp($offset);
  4128   %}
  4129 %}
  4131 // Indirect with simm13 Offset minus 7
  4132 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4133   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4134   match(AddP reg offset);
  4136   op_cost(100);
  4137   format %{ "[$reg + $offset]" %}
  4138   interface(MEMORY_INTER) %{
  4139     base($reg);
  4140     index(0x0);
  4141     scale(0x0);
  4142     disp($offset);
  4143   %}
  4144 %}
  4146 // Note:  Intel has a swapped version also, like this:
  4147 //operand indOffsetX(iRegI reg, immP offset) %{
  4148 //  constraint(ALLOC_IN_RC(int_reg));
  4149 //  match(AddP offset reg);
  4150 //
  4151 //  op_cost(100);
  4152 //  format %{ "[$reg + $offset]" %}
  4153 //  interface(MEMORY_INTER) %{
  4154 //    base($reg);
  4155 //    index(0x0);
  4156 //    scale(0x0);
  4157 //    disp($offset);
  4158 //  %}
  4159 //%}
  4160 //// However, it doesn't make sense for SPARC, since
  4161 // we have no particularly good way to embed oops in
  4162 // single instructions.
  4164 // Indirect with Register Index
  4165 operand indIndex(iRegP addr, iRegX index) %{
  4166   constraint(ALLOC_IN_RC(ptr_reg));
  4167   match(AddP addr index);
  4169   op_cost(100);
  4170   format %{ "[$addr + $index]" %}
  4171   interface(MEMORY_INTER) %{
  4172     base($addr);
  4173     index($index);
  4174     scale(0x0);
  4175     disp(0x0);
  4176   %}
  4177 %}
  4179 //----------Special Memory Operands--------------------------------------------
  4180 // Stack Slot Operand - This operand is used for loading and storing temporary
  4181 //                      values on the stack where a match requires a value to
  4182 //                      flow through memory.
  4183 operand stackSlotI(sRegI reg) %{
  4184   constraint(ALLOC_IN_RC(stack_slots));
  4185   op_cost(100);
  4186   //match(RegI);
  4187   format %{ "[$reg]" %}
  4188   interface(MEMORY_INTER) %{
  4189     base(0xE);   // R_SP
  4190     index(0x0);
  4191     scale(0x0);
  4192     disp($reg);  // Stack Offset
  4193   %}
  4194 %}
  4196 operand stackSlotP(sRegP reg) %{
  4197   constraint(ALLOC_IN_RC(stack_slots));
  4198   op_cost(100);
  4199   //match(RegP);
  4200   format %{ "[$reg]" %}
  4201   interface(MEMORY_INTER) %{
  4202     base(0xE);   // R_SP
  4203     index(0x0);
  4204     scale(0x0);
  4205     disp($reg);  // Stack Offset
  4206   %}
  4207 %}
  4209 operand stackSlotF(sRegF reg) %{
  4210   constraint(ALLOC_IN_RC(stack_slots));
  4211   op_cost(100);
  4212   //match(RegF);
  4213   format %{ "[$reg]" %}
  4214   interface(MEMORY_INTER) %{
  4215     base(0xE);   // R_SP
  4216     index(0x0);
  4217     scale(0x0);
  4218     disp($reg);  // Stack Offset
  4219   %}
  4220 %}
  4221 operand stackSlotD(sRegD reg) %{
  4222   constraint(ALLOC_IN_RC(stack_slots));
  4223   op_cost(100);
  4224   //match(RegD);
  4225   format %{ "[$reg]" %}
  4226   interface(MEMORY_INTER) %{
  4227     base(0xE);   // R_SP
  4228     index(0x0);
  4229     scale(0x0);
  4230     disp($reg);  // Stack Offset
  4231   %}
  4232 %}
  4233 operand stackSlotL(sRegL reg) %{
  4234   constraint(ALLOC_IN_RC(stack_slots));
  4235   op_cost(100);
  4236   //match(RegL);
  4237   format %{ "[$reg]" %}
  4238   interface(MEMORY_INTER) %{
  4239     base(0xE);   // R_SP
  4240     index(0x0);
  4241     scale(0x0);
  4242     disp($reg);  // Stack Offset
  4243   %}
  4244 %}
  4246 // Operands for expressing Control Flow
  4247 // NOTE:  Label is a predefined operand which should not be redefined in
  4248 //        the AD file.  It is generically handled within the ADLC.
  4250 //----------Conditional Branch Operands----------------------------------------
  4251 // Comparison Op  - This is the operation of the comparison, and is limited to
  4252 //                  the following set of codes:
  4253 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4254 //
  4255 // Other attributes of the comparison, such as unsignedness, are specified
  4256 // by the comparison instruction that sets a condition code flags register.
  4257 // That result is represented by a flags operand whose subtype is appropriate
  4258 // to the unsignedness (etc.) of the comparison.
  4259 //
  4260 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4261 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4262 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4264 operand cmpOp() %{
  4265   match(Bool);
  4267   format %{ "" %}
  4268   interface(COND_INTER) %{
  4269     equal(0x1);
  4270     not_equal(0x9);
  4271     less(0x3);
  4272     greater_equal(0xB);
  4273     less_equal(0x2);
  4274     greater(0xA);
  4275   %}
  4276 %}
  4278 // Comparison Op, unsigned
  4279 operand cmpOpU() %{
  4280   match(Bool);
  4282   format %{ "u" %}
  4283   interface(COND_INTER) %{
  4284     equal(0x1);
  4285     not_equal(0x9);
  4286     less(0x5);
  4287     greater_equal(0xD);
  4288     less_equal(0x4);
  4289     greater(0xC);
  4290   %}
  4291 %}
  4293 // Comparison Op, pointer (same as unsigned)
  4294 operand cmpOpP() %{
  4295   match(Bool);
  4297   format %{ "p" %}
  4298   interface(COND_INTER) %{
  4299     equal(0x1);
  4300     not_equal(0x9);
  4301     less(0x5);
  4302     greater_equal(0xD);
  4303     less_equal(0x4);
  4304     greater(0xC);
  4305   %}
  4306 %}
  4308 // Comparison Op, branch-register encoding
  4309 operand cmpOp_reg() %{
  4310   match(Bool);
  4312   format %{ "" %}
  4313   interface(COND_INTER) %{
  4314     equal        (0x1);
  4315     not_equal    (0x5);
  4316     less         (0x3);
  4317     greater_equal(0x7);
  4318     less_equal   (0x2);
  4319     greater      (0x6);
  4320   %}
  4321 %}
  4323 // Comparison Code, floating, unordered same as less
  4324 operand cmpOpF() %{
  4325   match(Bool);
  4327   format %{ "fl" %}
  4328   interface(COND_INTER) %{
  4329     equal(0x9);
  4330     not_equal(0x1);
  4331     less(0x3);
  4332     greater_equal(0xB);
  4333     less_equal(0xE);
  4334     greater(0x6);
  4335   %}
  4336 %}
  4338 // Used by long compare
  4339 operand cmpOp_commute() %{
  4340   match(Bool);
  4342   format %{ "" %}
  4343   interface(COND_INTER) %{
  4344     equal(0x1);
  4345     not_equal(0x9);
  4346     less(0xA);
  4347     greater_equal(0x2);
  4348     less_equal(0xB);
  4349     greater(0x3);
  4350   %}
  4351 %}
  4353 //----------OPERAND CLASSES----------------------------------------------------
  4354 // Operand Classes are groups of operands that are used to simplify
  4355 // instruction definitions by not requiring the AD writer to specify separate
  4356 // instructions for every form of operand when the instruction accepts
  4357 // multiple operand types with the same basic encoding and format.  The classic
  4358 // case of this is memory operands.
  4359 opclass memory( indirect, indOffset13, indIndex );
  4360 opclass indIndexMemory( indIndex );
  4362 //----------PIPELINE-----------------------------------------------------------
  4363 pipeline %{
  4365 //----------ATTRIBUTES---------------------------------------------------------
  4366 attributes %{
  4367   fixed_size_instructions;           // Fixed size instructions
  4368   branch_has_delay_slot;             // Branch has delay slot following
  4369   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4370   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4371   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4372   instruction_fetch_units = 1;       // of 16 bytes
  4374   // List of nop instructions
  4375   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4376 %}
  4378 //----------RESOURCES----------------------------------------------------------
  4379 // Resources are the functional units available to the machine
  4380 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4382 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4383 // Pipeline Description specifies the stages in the machine's pipeline
  4385 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4387 //----------PIPELINE CLASSES---------------------------------------------------
  4388 // Pipeline Classes describe the stages in which input and output are
  4389 // referenced by the hardware pipeline.
  4391 // Integer ALU reg-reg operation
  4392 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4393     single_instruction;
  4394     dst   : E(write);
  4395     src1  : R(read);
  4396     src2  : R(read);
  4397     IALU  : R;
  4398 %}
  4400 // Integer ALU reg-reg long operation
  4401 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4402     instruction_count(2);
  4403     dst   : E(write);
  4404     src1  : R(read);
  4405     src2  : R(read);
  4406     IALU  : R;
  4407     IALU  : R;
  4408 %}
  4410 // Integer ALU reg-reg long dependent operation
  4411 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4412     instruction_count(1); multiple_bundles;
  4413     dst   : E(write);
  4414     src1  : R(read);
  4415     src2  : R(read);
  4416     cr    : E(write);
  4417     IALU  : R(2);
  4418 %}
  4420 // Integer ALU reg-imm operaion
  4421 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4422     single_instruction;
  4423     dst   : E(write);
  4424     src1  : R(read);
  4425     IALU  : R;
  4426 %}
  4428 // Integer ALU reg-reg operation with condition code
  4429 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4430     single_instruction;
  4431     dst   : E(write);
  4432     cr    : E(write);
  4433     src1  : R(read);
  4434     src2  : R(read);
  4435     IALU  : R;
  4436 %}
  4438 // Integer ALU reg-imm operation with condition code
  4439 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4440     single_instruction;
  4441     dst   : E(write);
  4442     cr    : E(write);
  4443     src1  : R(read);
  4444     IALU  : R;
  4445 %}
  4447 // Integer ALU zero-reg operation
  4448 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4449     single_instruction;
  4450     dst   : E(write);
  4451     src2  : R(read);
  4452     IALU  : R;
  4453 %}
  4455 // Integer ALU zero-reg operation with condition code only
  4456 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4457     single_instruction;
  4458     cr    : E(write);
  4459     src   : R(read);
  4460     IALU  : R;
  4461 %}
  4463 // Integer ALU reg-reg operation with condition code only
  4464 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4465     single_instruction;
  4466     cr    : E(write);
  4467     src1  : R(read);
  4468     src2  : R(read);
  4469     IALU  : R;
  4470 %}
  4472 // Integer ALU reg-imm operation with condition code only
  4473 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4474     single_instruction;
  4475     cr    : E(write);
  4476     src1  : R(read);
  4477     IALU  : R;
  4478 %}
  4480 // Integer ALU reg-reg-zero operation with condition code only
  4481 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4482     single_instruction;
  4483     cr    : E(write);
  4484     src1  : R(read);
  4485     src2  : R(read);
  4486     IALU  : R;
  4487 %}
  4489 // Integer ALU reg-imm-zero operation with condition code only
  4490 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4491     single_instruction;
  4492     cr    : E(write);
  4493     src1  : R(read);
  4494     IALU  : R;
  4495 %}
  4497 // Integer ALU reg-reg operation with condition code, src1 modified
  4498 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4499     single_instruction;
  4500     cr    : E(write);
  4501     src1  : E(write);
  4502     src1  : R(read);
  4503     src2  : R(read);
  4504     IALU  : R;
  4505 %}
  4507 // Integer ALU reg-imm operation with condition code, src1 modified
  4508 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4509     single_instruction;
  4510     cr    : E(write);
  4511     src1  : E(write);
  4512     src1  : R(read);
  4513     IALU  : R;
  4514 %}
  4516 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4517     multiple_bundles;
  4518     dst   : E(write)+4;
  4519     cr    : E(write);
  4520     src1  : R(read);
  4521     src2  : R(read);
  4522     IALU  : R(3);
  4523     BR    : R(2);
  4524 %}
  4526 // Integer ALU operation
  4527 pipe_class ialu_none(iRegI dst) %{
  4528     single_instruction;
  4529     dst   : E(write);
  4530     IALU  : R;
  4531 %}
  4533 // Integer ALU reg operation
  4534 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4535     single_instruction; may_have_no_code;
  4536     dst   : E(write);
  4537     src   : R(read);
  4538     IALU  : R;
  4539 %}
  4541 // Integer ALU reg conditional operation
  4542 // This instruction has a 1 cycle stall, and cannot execute
  4543 // in the same cycle as the instruction setting the condition
  4544 // code. We kludge this by pretending to read the condition code
  4545 // 1 cycle earlier, and by marking the functional units as busy
  4546 // for 2 cycles with the result available 1 cycle later than
  4547 // is really the case.
  4548 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4549     single_instruction;
  4550     op2_out : C(write);
  4551     op1     : R(read);
  4552     cr      : R(read);       // This is really E, with a 1 cycle stall
  4553     BR      : R(2);
  4554     MS      : R(2);
  4555 %}
  4557 #ifdef _LP64
  4558 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4559     instruction_count(1); multiple_bundles;
  4560     dst     : C(write)+1;
  4561     src     : R(read)+1;
  4562     IALU    : R(1);
  4563     BR      : E(2);
  4564     MS      : E(2);
  4565 %}
  4566 #endif
  4568 // Integer ALU reg operation
  4569 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4570     single_instruction; may_have_no_code;
  4571     dst   : E(write);
  4572     src   : R(read);
  4573     IALU  : R;
  4574 %}
  4575 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4576     single_instruction; may_have_no_code;
  4577     dst   : E(write);
  4578     src   : R(read);
  4579     IALU  : R;
  4580 %}
  4582 // Two integer ALU reg operations
  4583 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4584     instruction_count(2);
  4585     dst   : E(write);
  4586     src   : R(read);
  4587     A0    : R;
  4588     A1    : R;
  4589 %}
  4591 // Two integer ALU reg operations
  4592 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4593     instruction_count(2); may_have_no_code;
  4594     dst   : E(write);
  4595     src   : R(read);
  4596     A0    : R;
  4597     A1    : R;
  4598 %}
  4600 // Integer ALU imm operation
  4601 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4602     single_instruction;
  4603     dst   : E(write);
  4604     IALU  : R;
  4605 %}
  4607 // Integer ALU reg-reg with carry operation
  4608 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4609     single_instruction;
  4610     dst   : E(write);
  4611     src1  : R(read);
  4612     src2  : R(read);
  4613     IALU  : R;
  4614 %}
  4616 // Integer ALU cc operation
  4617 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4618     single_instruction;
  4619     dst   : E(write);
  4620     cc    : R(read);
  4621     IALU  : R;
  4622 %}
  4624 // Integer ALU cc / second IALU operation
  4625 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4626     instruction_count(1); multiple_bundles;
  4627     dst   : E(write)+1;
  4628     src   : R(read);
  4629     IALU  : R;
  4630 %}
  4632 // Integer ALU cc / second IALU operation
  4633 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4634     instruction_count(1); multiple_bundles;
  4635     dst   : E(write)+1;
  4636     p     : R(read);
  4637     q     : R(read);
  4638     IALU  : R;
  4639 %}
  4641 // Integer ALU hi-lo-reg operation
  4642 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4643     instruction_count(1); multiple_bundles;
  4644     dst   : E(write)+1;
  4645     IALU  : R(2);
  4646 %}
  4648 // Float ALU hi-lo-reg operation (with temp)
  4649 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4650     instruction_count(1); multiple_bundles;
  4651     dst   : E(write)+1;
  4652     IALU  : R(2);
  4653 %}
  4655 // Long Constant
  4656 pipe_class loadConL( iRegL dst, immL src ) %{
  4657     instruction_count(2); multiple_bundles;
  4658     dst   : E(write)+1;
  4659     IALU  : R(2);
  4660     IALU  : R(2);
  4661 %}
  4663 // Pointer Constant
  4664 pipe_class loadConP( iRegP dst, immP src ) %{
  4665     instruction_count(0); multiple_bundles;
  4666     fixed_latency(6);
  4667 %}
  4669 // Polling Address
  4670 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4671 #ifdef _LP64
  4672     instruction_count(0); multiple_bundles;
  4673     fixed_latency(6);
  4674 #else
  4675     dst   : E(write);
  4676     IALU  : R;
  4677 #endif
  4678 %}
  4680 // Long Constant small
  4681 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4682     instruction_count(2);
  4683     dst   : E(write);
  4684     IALU  : R;
  4685     IALU  : R;
  4686 %}
  4688 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4689 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4690     instruction_count(1); multiple_bundles;
  4691     src   : R(read);
  4692     dst   : M(write)+1;
  4693     IALU  : R;
  4694     MS    : E;
  4695 %}
  4697 // Integer ALU nop operation
  4698 pipe_class ialu_nop() %{
  4699     single_instruction;
  4700     IALU  : R;
  4701 %}
  4703 // Integer ALU nop operation
  4704 pipe_class ialu_nop_A0() %{
  4705     single_instruction;
  4706     A0    : R;
  4707 %}
  4709 // Integer ALU nop operation
  4710 pipe_class ialu_nop_A1() %{
  4711     single_instruction;
  4712     A1    : R;
  4713 %}
  4715 // Integer Multiply reg-reg operation
  4716 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4717     single_instruction;
  4718     dst   : E(write);
  4719     src1  : R(read);
  4720     src2  : R(read);
  4721     MS    : R(5);
  4722 %}
  4724 // Integer Multiply reg-imm operation
  4725 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4726     single_instruction;
  4727     dst   : E(write);
  4728     src1  : R(read);
  4729     MS    : R(5);
  4730 %}
  4732 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4733     single_instruction;
  4734     dst   : E(write)+4;
  4735     src1  : R(read);
  4736     src2  : R(read);
  4737     MS    : R(6);
  4738 %}
  4740 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4741     single_instruction;
  4742     dst   : E(write)+4;
  4743     src1  : R(read);
  4744     MS    : R(6);
  4745 %}
  4747 // Integer Divide reg-reg
  4748 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4749     instruction_count(1); multiple_bundles;
  4750     dst   : E(write);
  4751     temp  : E(write);
  4752     src1  : R(read);
  4753     src2  : R(read);
  4754     temp  : R(read);
  4755     MS    : R(38);
  4756 %}
  4758 // Integer Divide reg-imm
  4759 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4760     instruction_count(1); multiple_bundles;
  4761     dst   : E(write);
  4762     temp  : E(write);
  4763     src1  : R(read);
  4764     temp  : R(read);
  4765     MS    : R(38);
  4766 %}
  4768 // Long Divide
  4769 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4770     dst  : E(write)+71;
  4771     src1 : R(read);
  4772     src2 : R(read)+1;
  4773     MS   : R(70);
  4774 %}
  4776 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4777     dst  : E(write)+71;
  4778     src1 : R(read);
  4779     MS   : R(70);
  4780 %}
  4782 // Floating Point Add Float
  4783 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4784     single_instruction;
  4785     dst   : X(write);
  4786     src1  : E(read);
  4787     src2  : E(read);
  4788     FA    : R;
  4789 %}
  4791 // Floating Point Add Double
  4792 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4793     single_instruction;
  4794     dst   : X(write);
  4795     src1  : E(read);
  4796     src2  : E(read);
  4797     FA    : R;
  4798 %}
  4800 // Floating Point Conditional Move based on integer flags
  4801 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4802     single_instruction;
  4803     dst   : X(write);
  4804     src   : E(read);
  4805     cr    : R(read);
  4806     FA    : R(2);
  4807     BR    : R(2);
  4808 %}
  4810 // Floating Point Conditional Move based on integer flags
  4811 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4812     single_instruction;
  4813     dst   : X(write);
  4814     src   : E(read);
  4815     cr    : R(read);
  4816     FA    : R(2);
  4817     BR    : R(2);
  4818 %}
  4820 // Floating Point Multiply Float
  4821 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4822     single_instruction;
  4823     dst   : X(write);
  4824     src1  : E(read);
  4825     src2  : E(read);
  4826     FM    : R;
  4827 %}
  4829 // Floating Point Multiply Double
  4830 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4831     single_instruction;
  4832     dst   : X(write);
  4833     src1  : E(read);
  4834     src2  : E(read);
  4835     FM    : R;
  4836 %}
  4838 // Floating Point Divide Float
  4839 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4840     single_instruction;
  4841     dst   : X(write);
  4842     src1  : E(read);
  4843     src2  : E(read);
  4844     FM    : R;
  4845     FDIV  : C(14);
  4846 %}
  4848 // Floating Point Divide Double
  4849 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4850     single_instruction;
  4851     dst   : X(write);
  4852     src1  : E(read);
  4853     src2  : E(read);
  4854     FM    : R;
  4855     FDIV  : C(17);
  4856 %}
  4858 // Floating Point Move/Negate/Abs Float
  4859 pipe_class faddF_reg(regF dst, regF src) %{
  4860     single_instruction;
  4861     dst   : W(write);
  4862     src   : E(read);
  4863     FA    : R(1);
  4864 %}
  4866 // Floating Point Move/Negate/Abs Double
  4867 pipe_class faddD_reg(regD dst, regD src) %{
  4868     single_instruction;
  4869     dst   : W(write);
  4870     src   : E(read);
  4871     FA    : R;
  4872 %}
  4874 // Floating Point Convert F->D
  4875 pipe_class fcvtF2D(regD dst, regF src) %{
  4876     single_instruction;
  4877     dst   : X(write);
  4878     src   : E(read);
  4879     FA    : R;
  4880 %}
  4882 // Floating Point Convert I->D
  4883 pipe_class fcvtI2D(regD dst, regF src) %{
  4884     single_instruction;
  4885     dst   : X(write);
  4886     src   : E(read);
  4887     FA    : R;
  4888 %}
  4890 // Floating Point Convert LHi->D
  4891 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4892     single_instruction;
  4893     dst   : X(write);
  4894     src   : E(read);
  4895     FA    : R;
  4896 %}
  4898 // Floating Point Convert L->D
  4899 pipe_class fcvtL2D(regD dst, regF src) %{
  4900     single_instruction;
  4901     dst   : X(write);
  4902     src   : E(read);
  4903     FA    : R;
  4904 %}
  4906 // Floating Point Convert L->F
  4907 pipe_class fcvtL2F(regD dst, regF src) %{
  4908     single_instruction;
  4909     dst   : X(write);
  4910     src   : E(read);
  4911     FA    : R;
  4912 %}
  4914 // Floating Point Convert D->F
  4915 pipe_class fcvtD2F(regD dst, regF src) %{
  4916     single_instruction;
  4917     dst   : X(write);
  4918     src   : E(read);
  4919     FA    : R;
  4920 %}
  4922 // Floating Point Convert I->L
  4923 pipe_class fcvtI2L(regD dst, regF src) %{
  4924     single_instruction;
  4925     dst   : X(write);
  4926     src   : E(read);
  4927     FA    : R;
  4928 %}
  4930 // Floating Point Convert D->F
  4931 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4932     instruction_count(1); multiple_bundles;
  4933     dst   : X(write)+6;
  4934     src   : E(read);
  4935     FA    : R;
  4936 %}
  4938 // Floating Point Convert D->L
  4939 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4940     instruction_count(1); multiple_bundles;
  4941     dst   : X(write)+6;
  4942     src   : E(read);
  4943     FA    : R;
  4944 %}
  4946 // Floating Point Convert F->I
  4947 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4948     instruction_count(1); multiple_bundles;
  4949     dst   : X(write)+6;
  4950     src   : E(read);
  4951     FA    : R;
  4952 %}
  4954 // Floating Point Convert F->L
  4955 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4956     instruction_count(1); multiple_bundles;
  4957     dst   : X(write)+6;
  4958     src   : E(read);
  4959     FA    : R;
  4960 %}
  4962 // Floating Point Convert I->F
  4963 pipe_class fcvtI2F(regF dst, regF src) %{
  4964     single_instruction;
  4965     dst   : X(write);
  4966     src   : E(read);
  4967     FA    : R;
  4968 %}
  4970 // Floating Point Compare
  4971 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4972     single_instruction;
  4973     cr    : X(write);
  4974     src1  : E(read);
  4975     src2  : E(read);
  4976     FA    : R;
  4977 %}
  4979 // Floating Point Compare
  4980 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4981     single_instruction;
  4982     cr    : X(write);
  4983     src1  : E(read);
  4984     src2  : E(read);
  4985     FA    : R;
  4986 %}
  4988 // Floating Add Nop
  4989 pipe_class fadd_nop() %{
  4990     single_instruction;
  4991     FA  : R;
  4992 %}
  4994 // Integer Store to Memory
  4995 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  4996     single_instruction;
  4997     mem   : R(read);
  4998     src   : C(read);
  4999     MS    : R;
  5000 %}
  5002 // Integer Store to Memory
  5003 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5004     single_instruction;
  5005     mem   : R(read);
  5006     src   : C(read);
  5007     MS    : R;
  5008 %}
  5010 // Integer Store Zero to Memory
  5011 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5012     single_instruction;
  5013     mem   : R(read);
  5014     MS    : R;
  5015 %}
  5017 // Special Stack Slot Store
  5018 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5019     single_instruction;
  5020     stkSlot : R(read);
  5021     src     : C(read);
  5022     MS      : R;
  5023 %}
  5025 // Special Stack Slot Store
  5026 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5027     instruction_count(2); multiple_bundles;
  5028     stkSlot : R(read);
  5029     src     : C(read);
  5030     MS      : R(2);
  5031 %}
  5033 // Float Store
  5034 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5035     single_instruction;
  5036     mem : R(read);
  5037     src : C(read);
  5038     MS  : R;
  5039 %}
  5041 // Float Store
  5042 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5043     single_instruction;
  5044     mem : R(read);
  5045     MS  : R;
  5046 %}
  5048 // Double Store
  5049 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5050     instruction_count(1);
  5051     mem : R(read);
  5052     src : C(read);
  5053     MS  : R;
  5054 %}
  5056 // Double Store
  5057 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5058     single_instruction;
  5059     mem : R(read);
  5060     MS  : R;
  5061 %}
  5063 // Special Stack Slot Float Store
  5064 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5065     single_instruction;
  5066     stkSlot : R(read);
  5067     src     : C(read);
  5068     MS      : R;
  5069 %}
  5071 // Special Stack Slot Double Store
  5072 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5073     single_instruction;
  5074     stkSlot : R(read);
  5075     src     : C(read);
  5076     MS      : R;
  5077 %}
  5079 // Integer Load (when sign bit propagation not needed)
  5080 pipe_class iload_mem(iRegI dst, memory mem) %{
  5081     single_instruction;
  5082     mem : R(read);
  5083     dst : C(write);
  5084     MS  : R;
  5085 %}
  5087 // Integer Load from stack operand
  5088 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5089     single_instruction;
  5090     mem : R(read);
  5091     dst : C(write);
  5092     MS  : R;
  5093 %}
  5095 // Integer Load (when sign bit propagation or masking is needed)
  5096 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5097     single_instruction;
  5098     mem : R(read);
  5099     dst : M(write);
  5100     MS  : R;
  5101 %}
  5103 // Float Load
  5104 pipe_class floadF_mem(regF dst, memory mem) %{
  5105     single_instruction;
  5106     mem : R(read);
  5107     dst : M(write);
  5108     MS  : R;
  5109 %}
  5111 // Float Load
  5112 pipe_class floadD_mem(regD dst, memory mem) %{
  5113     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5114     mem : R(read);
  5115     dst : M(write);
  5116     MS  : R;
  5117 %}
  5119 // Float Load
  5120 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5121     single_instruction;
  5122     stkSlot : R(read);
  5123     dst : M(write);
  5124     MS  : R;
  5125 %}
  5127 // Float Load
  5128 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5129     single_instruction;
  5130     stkSlot : R(read);
  5131     dst : M(write);
  5132     MS  : R;
  5133 %}
  5135 // Memory Nop
  5136 pipe_class mem_nop() %{
  5137     single_instruction;
  5138     MS  : R;
  5139 %}
  5141 pipe_class sethi(iRegP dst, immI src) %{
  5142     single_instruction;
  5143     dst  : E(write);
  5144     IALU : R;
  5145 %}
  5147 pipe_class loadPollP(iRegP poll) %{
  5148     single_instruction;
  5149     poll : R(read);
  5150     MS   : R;
  5151 %}
  5153 pipe_class br(Universe br, label labl) %{
  5154     single_instruction_with_delay_slot;
  5155     BR  : R;
  5156 %}
  5158 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5159     single_instruction_with_delay_slot;
  5160     cr    : E(read);
  5161     BR    : R;
  5162 %}
  5164 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5165     single_instruction_with_delay_slot;
  5166     op1 : E(read);
  5167     BR  : R;
  5168     MS  : R;
  5169 %}
  5171 // Compare and branch
  5172 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5173     instruction_count(2); has_delay_slot;
  5174     cr    : E(write);
  5175     src1  : R(read);
  5176     src2  : R(read);
  5177     IALU  : R;
  5178     BR    : R;
  5179 %}
  5181 // Compare and branch
  5182 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5183     instruction_count(2); has_delay_slot;
  5184     cr    : E(write);
  5185     src1  : R(read);
  5186     IALU  : R;
  5187     BR    : R;
  5188 %}
  5190 // Compare and branch using cbcond
  5191 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5192     single_instruction;
  5193     src1  : E(read);
  5194     src2  : E(read);
  5195     IALU  : R;
  5196     BR    : R;
  5197 %}
  5199 // Compare and branch using cbcond
  5200 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5201     single_instruction;
  5202     src1  : E(read);
  5203     IALU  : R;
  5204     BR    : R;
  5205 %}
  5207 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5208     single_instruction_with_delay_slot;
  5209     cr    : E(read);
  5210     BR    : R;
  5211 %}
  5213 pipe_class br_nop() %{
  5214     single_instruction;
  5215     BR  : R;
  5216 %}
  5218 pipe_class simple_call(method meth) %{
  5219     instruction_count(2); multiple_bundles; force_serialization;
  5220     fixed_latency(100);
  5221     BR  : R(1);
  5222     MS  : R(1);
  5223     A0  : R(1);
  5224 %}
  5226 pipe_class compiled_call(method meth) %{
  5227     instruction_count(1); multiple_bundles; force_serialization;
  5228     fixed_latency(100);
  5229     MS  : R(1);
  5230 %}
  5232 pipe_class call(method meth) %{
  5233     instruction_count(0); multiple_bundles; force_serialization;
  5234     fixed_latency(100);
  5235 %}
  5237 pipe_class tail_call(Universe ignore, label labl) %{
  5238     single_instruction; has_delay_slot;
  5239     fixed_latency(100);
  5240     BR  : R(1);
  5241     MS  : R(1);
  5242 %}
  5244 pipe_class ret(Universe ignore) %{
  5245     single_instruction; has_delay_slot;
  5246     BR  : R(1);
  5247     MS  : R(1);
  5248 %}
  5250 pipe_class ret_poll(g3RegP poll) %{
  5251     instruction_count(3); has_delay_slot;
  5252     poll : E(read);
  5253     MS   : R;
  5254 %}
  5256 // The real do-nothing guy
  5257 pipe_class empty( ) %{
  5258     instruction_count(0);
  5259 %}
  5261 pipe_class long_memory_op() %{
  5262     instruction_count(0); multiple_bundles; force_serialization;
  5263     fixed_latency(25);
  5264     MS  : R(1);
  5265 %}
  5267 // Check-cast
  5268 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5269     array : R(read);
  5270     match  : R(read);
  5271     IALU   : R(2);
  5272     BR     : R(2);
  5273     MS     : R;
  5274 %}
  5276 // Convert FPU flags into +1,0,-1
  5277 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5278     src1  : E(read);
  5279     src2  : E(read);
  5280     dst   : E(write);
  5281     FA    : R;
  5282     MS    : R(2);
  5283     BR    : R(2);
  5284 %}
  5286 // Compare for p < q, and conditionally add y
  5287 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5288     p     : E(read);
  5289     q     : E(read);
  5290     y     : E(read);
  5291     IALU  : R(3)
  5292 %}
  5294 // Perform a compare, then move conditionally in a branch delay slot.
  5295 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5296     src2   : E(read);
  5297     srcdst : E(read);
  5298     IALU   : R;
  5299     BR     : R;
  5300 %}
  5302 // Define the class for the Nop node
  5303 define %{
  5304    MachNop = ialu_nop;
  5305 %}
  5307 %}
  5309 //----------INSTRUCTIONS-------------------------------------------------------
  5311 //------------Special Stack Slot instructions - no match rules-----------------
  5312 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5313   // No match rule to avoid chain rule match.
  5314   effect(DEF dst, USE src);
  5315   ins_cost(MEMORY_REF_COST);
  5316   size(4);
  5317   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5318   opcode(Assembler::ldf_op3);
  5319   ins_encode(simple_form3_mem_reg(src, dst));
  5320   ins_pipe(floadF_stk);
  5321 %}
  5323 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5324   // No match rule to avoid chain rule match.
  5325   effect(DEF dst, USE src);
  5326   ins_cost(MEMORY_REF_COST);
  5327   size(4);
  5328   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5329   opcode(Assembler::lddf_op3);
  5330   ins_encode(simple_form3_mem_reg(src, dst));
  5331   ins_pipe(floadD_stk);
  5332 %}
  5334 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5335   // No match rule to avoid chain rule match.
  5336   effect(DEF dst, USE src);
  5337   ins_cost(MEMORY_REF_COST);
  5338   size(4);
  5339   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5340   opcode(Assembler::stf_op3);
  5341   ins_encode(simple_form3_mem_reg(dst, src));
  5342   ins_pipe(fstoreF_stk_reg);
  5343 %}
  5345 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5346   // No match rule to avoid chain rule match.
  5347   effect(DEF dst, USE src);
  5348   ins_cost(MEMORY_REF_COST);
  5349   size(4);
  5350   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5351   opcode(Assembler::stdf_op3);
  5352   ins_encode(simple_form3_mem_reg(dst, src));
  5353   ins_pipe(fstoreD_stk_reg);
  5354 %}
  5356 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5357   effect(DEF dst, USE src);
  5358   ins_cost(MEMORY_REF_COST*2);
  5359   size(8);
  5360   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5361             "STW    R_G0,$dst.lo" %}
  5362   opcode(Assembler::stw_op3);
  5363   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5364   ins_pipe(lstoreI_stk_reg);
  5365 %}
  5367 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5368   // No match rule to avoid chain rule match.
  5369   effect(DEF dst, USE src);
  5370   ins_cost(MEMORY_REF_COST);
  5371   size(4);
  5372   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5373   opcode(Assembler::stx_op3);
  5374   ins_encode(simple_form3_mem_reg( dst, src ) );
  5375   ins_pipe(istore_stk_reg);
  5376 %}
  5378 //---------- Chain stack slots between similar types --------
  5380 // Load integer from stack slot
  5381 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5382   match(Set dst src);
  5383   ins_cost(MEMORY_REF_COST);
  5385   size(4);
  5386   format %{ "LDUW   $src,$dst\t!stk" %}
  5387   opcode(Assembler::lduw_op3);
  5388   ins_encode(simple_form3_mem_reg( src, dst ) );
  5389   ins_pipe(iload_mem);
  5390 %}
  5392 // Store integer to stack slot
  5393 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5394   match(Set dst src);
  5395   ins_cost(MEMORY_REF_COST);
  5397   size(4);
  5398   format %{ "STW    $src,$dst\t!stk" %}
  5399   opcode(Assembler::stw_op3);
  5400   ins_encode(simple_form3_mem_reg( dst, src ) );
  5401   ins_pipe(istore_mem_reg);
  5402 %}
  5404 // Load long from stack slot
  5405 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5406   match(Set dst src);
  5408   ins_cost(MEMORY_REF_COST);
  5409   size(4);
  5410   format %{ "LDX    $src,$dst\t! long" %}
  5411   opcode(Assembler::ldx_op3);
  5412   ins_encode(simple_form3_mem_reg( src, dst ) );
  5413   ins_pipe(iload_mem);
  5414 %}
  5416 // Store long to stack slot
  5417 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5418   match(Set dst src);
  5420   ins_cost(MEMORY_REF_COST);
  5421   size(4);
  5422   format %{ "STX    $src,$dst\t! long" %}
  5423   opcode(Assembler::stx_op3);
  5424   ins_encode(simple_form3_mem_reg( dst, src ) );
  5425   ins_pipe(istore_mem_reg);
  5426 %}
  5428 #ifdef _LP64
  5429 // Load pointer from stack slot, 64-bit encoding
  5430 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5431   match(Set dst src);
  5432   ins_cost(MEMORY_REF_COST);
  5433   size(4);
  5434   format %{ "LDX    $src,$dst\t!ptr" %}
  5435   opcode(Assembler::ldx_op3);
  5436   ins_encode(simple_form3_mem_reg( src, dst ) );
  5437   ins_pipe(iload_mem);
  5438 %}
  5440 // Store pointer to stack slot
  5441 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5442   match(Set dst src);
  5443   ins_cost(MEMORY_REF_COST);
  5444   size(4);
  5445   format %{ "STX    $src,$dst\t!ptr" %}
  5446   opcode(Assembler::stx_op3);
  5447   ins_encode(simple_form3_mem_reg( dst, src ) );
  5448   ins_pipe(istore_mem_reg);
  5449 %}
  5450 #else // _LP64
  5451 // Load pointer from stack slot, 32-bit encoding
  5452 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5453   match(Set dst src);
  5454   ins_cost(MEMORY_REF_COST);
  5455   format %{ "LDUW   $src,$dst\t!ptr" %}
  5456   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5457   ins_encode(simple_form3_mem_reg( src, dst ) );
  5458   ins_pipe(iload_mem);
  5459 %}
  5461 // Store pointer to stack slot
  5462 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5463   match(Set dst src);
  5464   ins_cost(MEMORY_REF_COST);
  5465   format %{ "STW    $src,$dst\t!ptr" %}
  5466   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5467   ins_encode(simple_form3_mem_reg( dst, src ) );
  5468   ins_pipe(istore_mem_reg);
  5469 %}
  5470 #endif // _LP64
  5472 //------------Special Nop instructions for bundling - no match rules-----------
  5473 // Nop using the A0 functional unit
  5474 instruct Nop_A0() %{
  5475   ins_cost(0);
  5477   format %{ "NOP    ! Alu Pipeline" %}
  5478   opcode(Assembler::or_op3, Assembler::arith_op);
  5479   ins_encode( form2_nop() );
  5480   ins_pipe(ialu_nop_A0);
  5481 %}
  5483 // Nop using the A1 functional unit
  5484 instruct Nop_A1( ) %{
  5485   ins_cost(0);
  5487   format %{ "NOP    ! Alu Pipeline" %}
  5488   opcode(Assembler::or_op3, Assembler::arith_op);
  5489   ins_encode( form2_nop() );
  5490   ins_pipe(ialu_nop_A1);
  5491 %}
  5493 // Nop using the memory functional unit
  5494 instruct Nop_MS( ) %{
  5495   ins_cost(0);
  5497   format %{ "NOP    ! Memory Pipeline" %}
  5498   ins_encode( emit_mem_nop );
  5499   ins_pipe(mem_nop);
  5500 %}
  5502 // Nop using the floating add functional unit
  5503 instruct Nop_FA( ) %{
  5504   ins_cost(0);
  5506   format %{ "NOP    ! Floating Add Pipeline" %}
  5507   ins_encode( emit_fadd_nop );
  5508   ins_pipe(fadd_nop);
  5509 %}
  5511 // Nop using the branch functional unit
  5512 instruct Nop_BR( ) %{
  5513   ins_cost(0);
  5515   format %{ "NOP    ! Branch Pipeline" %}
  5516   ins_encode( emit_br_nop );
  5517   ins_pipe(br_nop);
  5518 %}
  5520 //----------Load/Store/Move Instructions---------------------------------------
  5521 //----------Load Instructions--------------------------------------------------
  5522 // Load Byte (8bit signed)
  5523 instruct loadB(iRegI dst, memory mem) %{
  5524   match(Set dst (LoadB mem));
  5525   ins_cost(MEMORY_REF_COST);
  5527   size(4);
  5528   format %{ "LDSB   $mem,$dst\t! byte" %}
  5529   ins_encode %{
  5530     __ ldsb($mem$$Address, $dst$$Register);
  5531   %}
  5532   ins_pipe(iload_mask_mem);
  5533 %}
  5535 // Load Byte (8bit signed) into a Long Register
  5536 instruct loadB2L(iRegL dst, memory mem) %{
  5537   match(Set dst (ConvI2L (LoadB mem)));
  5538   ins_cost(MEMORY_REF_COST);
  5540   size(4);
  5541   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5542   ins_encode %{
  5543     __ ldsb($mem$$Address, $dst$$Register);
  5544   %}
  5545   ins_pipe(iload_mask_mem);
  5546 %}
  5548 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5549 instruct loadUB(iRegI dst, memory mem) %{
  5550   match(Set dst (LoadUB mem));
  5551   ins_cost(MEMORY_REF_COST);
  5553   size(4);
  5554   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5555   ins_encode %{
  5556     __ ldub($mem$$Address, $dst$$Register);
  5557   %}
  5558   ins_pipe(iload_mem);
  5559 %}
  5561 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5562 instruct loadUB2L(iRegL dst, memory mem) %{
  5563   match(Set dst (ConvI2L (LoadUB mem)));
  5564   ins_cost(MEMORY_REF_COST);
  5566   size(4);
  5567   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5568   ins_encode %{
  5569     __ ldub($mem$$Address, $dst$$Register);
  5570   %}
  5571   ins_pipe(iload_mem);
  5572 %}
  5574 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5575 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5576   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5577   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5579   size(2*4);
  5580   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5581             "AND    $dst,$mask,$dst" %}
  5582   ins_encode %{
  5583     __ ldub($mem$$Address, $dst$$Register);
  5584     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5585   %}
  5586   ins_pipe(iload_mem);
  5587 %}
  5589 // Load Short (16bit signed)
  5590 instruct loadS(iRegI dst, memory mem) %{
  5591   match(Set dst (LoadS mem));
  5592   ins_cost(MEMORY_REF_COST);
  5594   size(4);
  5595   format %{ "LDSH   $mem,$dst\t! short" %}
  5596   ins_encode %{
  5597     __ ldsh($mem$$Address, $dst$$Register);
  5598   %}
  5599   ins_pipe(iload_mask_mem);
  5600 %}
  5602 // Load Short (16 bit signed) to Byte (8 bit signed)
  5603 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5604   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5605   ins_cost(MEMORY_REF_COST);
  5607   size(4);
  5609   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5610   ins_encode %{
  5611     __ ldsb($mem$$Address, $dst$$Register, 1);
  5612   %}
  5613   ins_pipe(iload_mask_mem);
  5614 %}
  5616 // Load Short (16bit signed) into a Long Register
  5617 instruct loadS2L(iRegL dst, memory mem) %{
  5618   match(Set dst (ConvI2L (LoadS mem)));
  5619   ins_cost(MEMORY_REF_COST);
  5621   size(4);
  5622   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5623   ins_encode %{
  5624     __ ldsh($mem$$Address, $dst$$Register);
  5625   %}
  5626   ins_pipe(iload_mask_mem);
  5627 %}
  5629 // Load Unsigned Short/Char (16bit UNsigned)
  5630 instruct loadUS(iRegI dst, memory mem) %{
  5631   match(Set dst (LoadUS mem));
  5632   ins_cost(MEMORY_REF_COST);
  5634   size(4);
  5635   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5636   ins_encode %{
  5637     __ lduh($mem$$Address, $dst$$Register);
  5638   %}
  5639   ins_pipe(iload_mem);
  5640 %}
  5642 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5643 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5644   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5645   ins_cost(MEMORY_REF_COST);
  5647   size(4);
  5648   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5649   ins_encode %{
  5650     __ ldsb($mem$$Address, $dst$$Register, 1);
  5651   %}
  5652   ins_pipe(iload_mask_mem);
  5653 %}
  5655 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5656 instruct loadUS2L(iRegL dst, memory mem) %{
  5657   match(Set dst (ConvI2L (LoadUS mem)));
  5658   ins_cost(MEMORY_REF_COST);
  5660   size(4);
  5661   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5662   ins_encode %{
  5663     __ lduh($mem$$Address, $dst$$Register);
  5664   %}
  5665   ins_pipe(iload_mem);
  5666 %}
  5668 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5669 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5670   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5671   ins_cost(MEMORY_REF_COST);
  5673   size(4);
  5674   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5675   ins_encode %{
  5676     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5677   %}
  5678   ins_pipe(iload_mem);
  5679 %}
  5681 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5682 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5683   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5684   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5686   size(2*4);
  5687   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5688             "AND    $dst,$mask,$dst" %}
  5689   ins_encode %{
  5690     Register Rdst = $dst$$Register;
  5691     __ lduh($mem$$Address, Rdst);
  5692     __ and3(Rdst, $mask$$constant, Rdst);
  5693   %}
  5694   ins_pipe(iload_mem);
  5695 %}
  5697 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5698 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5699   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5700   effect(TEMP dst, TEMP tmp);
  5701   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5703   size((3+1)*4);  // set may use two instructions.
  5704   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5705             "SET    $mask,$tmp\n\t"
  5706             "AND    $dst,$tmp,$dst" %}
  5707   ins_encode %{
  5708     Register Rdst = $dst$$Register;
  5709     Register Rtmp = $tmp$$Register;
  5710     __ lduh($mem$$Address, Rdst);
  5711     __ set($mask$$constant, Rtmp);
  5712     __ and3(Rdst, Rtmp, Rdst);
  5713   %}
  5714   ins_pipe(iload_mem);
  5715 %}
  5717 // Load Integer
  5718 instruct loadI(iRegI dst, memory mem) %{
  5719   match(Set dst (LoadI mem));
  5720   ins_cost(MEMORY_REF_COST);
  5722   size(4);
  5723   format %{ "LDUW   $mem,$dst\t! int" %}
  5724   ins_encode %{
  5725     __ lduw($mem$$Address, $dst$$Register);
  5726   %}
  5727   ins_pipe(iload_mem);
  5728 %}
  5730 // Load Integer to Byte (8 bit signed)
  5731 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5732   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5733   ins_cost(MEMORY_REF_COST);
  5735   size(4);
  5737   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5738   ins_encode %{
  5739     __ ldsb($mem$$Address, $dst$$Register, 3);
  5740   %}
  5741   ins_pipe(iload_mask_mem);
  5742 %}
  5744 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5745 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5746   match(Set dst (AndI (LoadI mem) mask));
  5747   ins_cost(MEMORY_REF_COST);
  5749   size(4);
  5751   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5752   ins_encode %{
  5753     __ ldub($mem$$Address, $dst$$Register, 3);
  5754   %}
  5755   ins_pipe(iload_mask_mem);
  5756 %}
  5758 // Load Integer to Short (16 bit signed)
  5759 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5760   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5761   ins_cost(MEMORY_REF_COST);
  5763   size(4);
  5765   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5766   ins_encode %{
  5767     __ ldsh($mem$$Address, $dst$$Register, 2);
  5768   %}
  5769   ins_pipe(iload_mask_mem);
  5770 %}
  5772 // Load Integer to Unsigned Short (16 bit UNsigned)
  5773 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5774   match(Set dst (AndI (LoadI mem) mask));
  5775   ins_cost(MEMORY_REF_COST);
  5777   size(4);
  5779   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5780   ins_encode %{
  5781     __ lduh($mem$$Address, $dst$$Register, 2);
  5782   %}
  5783   ins_pipe(iload_mask_mem);
  5784 %}
  5786 // Load Integer into a Long Register
  5787 instruct loadI2L(iRegL dst, memory mem) %{
  5788   match(Set dst (ConvI2L (LoadI mem)));
  5789   ins_cost(MEMORY_REF_COST);
  5791   size(4);
  5792   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5793   ins_encode %{
  5794     __ ldsw($mem$$Address, $dst$$Register);
  5795   %}
  5796   ins_pipe(iload_mask_mem);
  5797 %}
  5799 // Load Integer with mask 0xFF into a Long Register
  5800 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5801   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5802   ins_cost(MEMORY_REF_COST);
  5804   size(4);
  5805   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5806   ins_encode %{
  5807     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5808   %}
  5809   ins_pipe(iload_mem);
  5810 %}
  5812 // Load Integer with mask 0xFFFF into a Long Register
  5813 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5814   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5815   ins_cost(MEMORY_REF_COST);
  5817   size(4);
  5818   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5819   ins_encode %{
  5820     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5821   %}
  5822   ins_pipe(iload_mem);
  5823 %}
  5825 // Load Integer with a 13-bit mask into a Long Register
  5826 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5827   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5828   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5830   size(2*4);
  5831   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5832             "AND    $dst,$mask,$dst" %}
  5833   ins_encode %{
  5834     Register Rdst = $dst$$Register;
  5835     __ lduw($mem$$Address, Rdst);
  5836     __ and3(Rdst, $mask$$constant, Rdst);
  5837   %}
  5838   ins_pipe(iload_mem);
  5839 %}
  5841 // Load Integer with a 32-bit mask into a Long Register
  5842 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5843   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5844   effect(TEMP dst, TEMP tmp);
  5845   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5847   size((3+1)*4);  // set may use two instructions.
  5848   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5849             "SET    $mask,$tmp\n\t"
  5850             "AND    $dst,$tmp,$dst" %}
  5851   ins_encode %{
  5852     Register Rdst = $dst$$Register;
  5853     Register Rtmp = $tmp$$Register;
  5854     __ lduw($mem$$Address, Rdst);
  5855     __ set($mask$$constant, Rtmp);
  5856     __ and3(Rdst, Rtmp, Rdst);
  5857   %}
  5858   ins_pipe(iload_mem);
  5859 %}
  5861 // Load Unsigned Integer into a Long Register
  5862 instruct loadUI2L(iRegL dst, memory mem) %{
  5863   match(Set dst (LoadUI2L mem));
  5864   ins_cost(MEMORY_REF_COST);
  5866   size(4);
  5867   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5868   ins_encode %{
  5869     __ lduw($mem$$Address, $dst$$Register);
  5870   %}
  5871   ins_pipe(iload_mem);
  5872 %}
  5874 // Load Long - aligned
  5875 instruct loadL(iRegL dst, memory mem ) %{
  5876   match(Set dst (LoadL mem));
  5877   ins_cost(MEMORY_REF_COST);
  5879   size(4);
  5880   format %{ "LDX    $mem,$dst\t! long" %}
  5881   ins_encode %{
  5882     __ ldx($mem$$Address, $dst$$Register);
  5883   %}
  5884   ins_pipe(iload_mem);
  5885 %}
  5887 // Load Long - UNaligned
  5888 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5889   match(Set dst (LoadL_unaligned mem));
  5890   effect(KILL tmp);
  5891   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5892   size(16);
  5893   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5894           "\tLDUW   $mem  ,$dst\n"
  5895           "\tSLLX   #32, $dst, $dst\n"
  5896           "\tOR     $dst, R_O7, $dst" %}
  5897   opcode(Assembler::lduw_op3);
  5898   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5899   ins_pipe(iload_mem);
  5900 %}
  5902 // Load Range
  5903 instruct loadRange(iRegI dst, memory mem) %{
  5904   match(Set dst (LoadRange mem));
  5905   ins_cost(MEMORY_REF_COST);
  5907   size(4);
  5908   format %{ "LDUW   $mem,$dst\t! range" %}
  5909   opcode(Assembler::lduw_op3);
  5910   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5911   ins_pipe(iload_mem);
  5912 %}
  5914 // Load Integer into %f register (for fitos/fitod)
  5915 instruct loadI_freg(regF dst, memory mem) %{
  5916   match(Set dst (LoadI mem));
  5917   ins_cost(MEMORY_REF_COST);
  5918   size(4);
  5920   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5921   opcode(Assembler::ldf_op3);
  5922   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5923   ins_pipe(floadF_mem);
  5924 %}
  5926 // Load Pointer
  5927 instruct loadP(iRegP dst, memory mem) %{
  5928   match(Set dst (LoadP mem));
  5929   ins_cost(MEMORY_REF_COST);
  5930   size(4);
  5932 #ifndef _LP64
  5933   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5934   ins_encode %{
  5935     __ lduw($mem$$Address, $dst$$Register);
  5936   %}
  5937 #else
  5938   format %{ "LDX    $mem,$dst\t! ptr" %}
  5939   ins_encode %{
  5940     __ ldx($mem$$Address, $dst$$Register);
  5941   %}
  5942 #endif
  5943   ins_pipe(iload_mem);
  5944 %}
  5946 // Load Compressed Pointer
  5947 instruct loadN(iRegN dst, memory mem) %{
  5948   match(Set dst (LoadN mem));
  5949   ins_cost(MEMORY_REF_COST);
  5950   size(4);
  5952   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5953   ins_encode %{
  5954     __ lduw($mem$$Address, $dst$$Register);
  5955   %}
  5956   ins_pipe(iload_mem);
  5957 %}
  5959 // Load Klass Pointer
  5960 instruct loadKlass(iRegP dst, memory mem) %{
  5961   match(Set dst (LoadKlass mem));
  5962   ins_cost(MEMORY_REF_COST);
  5963   size(4);
  5965 #ifndef _LP64
  5966   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5967   ins_encode %{
  5968     __ lduw($mem$$Address, $dst$$Register);
  5969   %}
  5970 #else
  5971   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5972   ins_encode %{
  5973     __ ldx($mem$$Address, $dst$$Register);
  5974   %}
  5975 #endif
  5976   ins_pipe(iload_mem);
  5977 %}
  5979 // Load narrow Klass Pointer
  5980 instruct loadNKlass(iRegN dst, memory mem) %{
  5981   match(Set dst (LoadNKlass mem));
  5982   ins_cost(MEMORY_REF_COST);
  5983   size(4);
  5985   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  5986   ins_encode %{
  5987     __ lduw($mem$$Address, $dst$$Register);
  5988   %}
  5989   ins_pipe(iload_mem);
  5990 %}
  5992 // Load Double
  5993 instruct loadD(regD dst, memory mem) %{
  5994   match(Set dst (LoadD mem));
  5995   ins_cost(MEMORY_REF_COST);
  5997   size(4);
  5998   format %{ "LDDF   $mem,$dst" %}
  5999   opcode(Assembler::lddf_op3);
  6000   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6001   ins_pipe(floadD_mem);
  6002 %}
  6004 // Load Double - UNaligned
  6005 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6006   match(Set dst (LoadD_unaligned mem));
  6007   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6008   size(8);
  6009   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6010           "\tLDF    $mem+4,$dst.lo\t!" %}
  6011   opcode(Assembler::ldf_op3);
  6012   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6013   ins_pipe(iload_mem);
  6014 %}
  6016 // Load Float
  6017 instruct loadF(regF dst, memory mem) %{
  6018   match(Set dst (LoadF mem));
  6019   ins_cost(MEMORY_REF_COST);
  6021   size(4);
  6022   format %{ "LDF    $mem,$dst" %}
  6023   opcode(Assembler::ldf_op3);
  6024   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6025   ins_pipe(floadF_mem);
  6026 %}
  6028 // Load Constant
  6029 instruct loadConI( iRegI dst, immI src ) %{
  6030   match(Set dst src);
  6031   ins_cost(DEFAULT_COST * 3/2);
  6032   format %{ "SET    $src,$dst" %}
  6033   ins_encode( Set32(src, dst) );
  6034   ins_pipe(ialu_hi_lo_reg);
  6035 %}
  6037 instruct loadConI13( iRegI dst, immI13 src ) %{
  6038   match(Set dst src);
  6040   size(4);
  6041   format %{ "MOV    $src,$dst" %}
  6042   ins_encode( Set13( src, dst ) );
  6043   ins_pipe(ialu_imm);
  6044 %}
  6046 #ifndef _LP64
  6047 instruct loadConP(iRegP dst, immP con) %{
  6048   match(Set dst con);
  6049   ins_cost(DEFAULT_COST * 3/2);
  6050   format %{ "SET    $con,$dst\t!ptr" %}
  6051   ins_encode %{
  6052     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6053       intptr_t val = $con$$constant;
  6054     if (constant_reloc == relocInfo::oop_type) {
  6055       __ set_oop_constant((jobject) val, $dst$$Register);
  6056     } else if (constant_reloc == relocInfo::metadata_type) {
  6057       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6058     } else {          // non-oop pointers, e.g. card mark base, heap top
  6059       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6060       __ set(val, $dst$$Register);
  6062   %}
  6063   ins_pipe(loadConP);
  6064 %}
  6065 #else
  6066 instruct loadConP_set(iRegP dst, immP_set con) %{
  6067   match(Set dst con);
  6068   ins_cost(DEFAULT_COST * 3/2);
  6069   format %{ "SET    $con,$dst\t! ptr" %}
  6070   ins_encode %{
  6071     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6072       intptr_t val = $con$$constant;
  6073     if (constant_reloc == relocInfo::oop_type) {
  6074       __ set_oop_constant((jobject) val, $dst$$Register);
  6075     } else if (constant_reloc == relocInfo::metadata_type) {
  6076       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6077     } else {          // non-oop pointers, e.g. card mark base, heap top
  6078       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6079       __ set(val, $dst$$Register);
  6081   %}
  6082   ins_pipe(loadConP);
  6083 %}
  6085 instruct loadConP_load(iRegP dst, immP_load con) %{
  6086   match(Set dst con);
  6087   ins_cost(MEMORY_REF_COST);
  6088   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6089   ins_encode %{
  6090     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6091     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6092   %}
  6093   ins_pipe(loadConP);
  6094 %}
  6096 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6097   match(Set dst con);
  6098   ins_cost(DEFAULT_COST * 3/2);
  6099   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6100   ins_encode %{
  6101     __ set($con$$constant, $dst$$Register);
  6102   %}
  6103   ins_pipe(loadConP);
  6104 %}
  6105 #endif // _LP64
  6107 instruct loadConP0(iRegP dst, immP0 src) %{
  6108   match(Set dst src);
  6110   size(4);
  6111   format %{ "CLR    $dst\t!ptr" %}
  6112   ins_encode %{
  6113     __ clr($dst$$Register);
  6114   %}
  6115   ins_pipe(ialu_imm);
  6116 %}
  6118 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6119   match(Set dst src);
  6120   ins_cost(DEFAULT_COST);
  6121   format %{ "SET    $src,$dst\t!ptr" %}
  6122   ins_encode %{
  6123     AddressLiteral polling_page(os::get_polling_page());
  6124     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6125   %}
  6126   ins_pipe(loadConP_poll);
  6127 %}
  6129 instruct loadConN0(iRegN dst, immN0 src) %{
  6130   match(Set dst src);
  6132   size(4);
  6133   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6134   ins_encode %{
  6135     __ clr($dst$$Register);
  6136   %}
  6137   ins_pipe(ialu_imm);
  6138 %}
  6140 instruct loadConN(iRegN dst, immN src) %{
  6141   match(Set dst src);
  6142   ins_cost(DEFAULT_COST * 3/2);
  6143   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6144   ins_encode %{
  6145     Register dst = $dst$$Register;
  6146     __ set_narrow_oop((jobject)$src$$constant, dst);
  6147   %}
  6148   ins_pipe(ialu_hi_lo_reg);
  6149 %}
  6151 // Materialize long value (predicated by immL_cheap).
  6152 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6153   match(Set dst con);
  6154   effect(KILL tmp);
  6155   ins_cost(DEFAULT_COST * 3);
  6156   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6157   ins_encode %{
  6158     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6159   %}
  6160   ins_pipe(loadConL);
  6161 %}
  6163 // Load long value from constant table (predicated by immL_expensive).
  6164 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6165   match(Set dst con);
  6166   ins_cost(MEMORY_REF_COST);
  6167   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6168   ins_encode %{
  6169       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6170     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6171   %}
  6172   ins_pipe(loadConL);
  6173 %}
  6175 instruct loadConL0( iRegL dst, immL0 src ) %{
  6176   match(Set dst src);
  6177   ins_cost(DEFAULT_COST);
  6178   size(4);
  6179   format %{ "CLR    $dst\t! long" %}
  6180   ins_encode( Set13( src, dst ) );
  6181   ins_pipe(ialu_imm);
  6182 %}
  6184 instruct loadConL13( iRegL dst, immL13 src ) %{
  6185   match(Set dst src);
  6186   ins_cost(DEFAULT_COST * 2);
  6188   size(4);
  6189   format %{ "MOV    $src,$dst\t! long" %}
  6190   ins_encode( Set13( src, dst ) );
  6191   ins_pipe(ialu_imm);
  6192 %}
  6194 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6195   match(Set dst con);
  6196   effect(KILL tmp);
  6197   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6198   ins_encode %{
  6199       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6200     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6201   %}
  6202   ins_pipe(loadConFD);
  6203 %}
  6205 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6206   match(Set dst con);
  6207   effect(KILL tmp);
  6208   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6209   ins_encode %{
  6210     // XXX This is a quick fix for 6833573.
  6211     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6212     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6213     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6214   %}
  6215   ins_pipe(loadConFD);
  6216 %}
  6218 // Prefetch instructions.
  6219 // Must be safe to execute with invalid address (cannot fault).
  6221 instruct prefetchr( memory mem ) %{
  6222   match( PrefetchRead mem );
  6223   ins_cost(MEMORY_REF_COST);
  6224   size(4);
  6226   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6227   opcode(Assembler::prefetch_op3);
  6228   ins_encode( form3_mem_prefetch_read( mem ) );
  6229   ins_pipe(iload_mem);
  6230 %}
  6232 instruct prefetchw( memory mem ) %{
  6233   match( PrefetchWrite mem );
  6234   ins_cost(MEMORY_REF_COST);
  6235   size(4);
  6237   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6238   opcode(Assembler::prefetch_op3);
  6239   ins_encode( form3_mem_prefetch_write( mem ) );
  6240   ins_pipe(iload_mem);
  6241 %}
  6243 // Prefetch instructions for allocation.
  6245 instruct prefetchAlloc( memory mem ) %{
  6246   predicate(AllocatePrefetchInstr == 0);
  6247   match( PrefetchAllocation mem );
  6248   ins_cost(MEMORY_REF_COST);
  6249   size(4);
  6251   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6252   opcode(Assembler::prefetch_op3);
  6253   ins_encode( form3_mem_prefetch_write( mem ) );
  6254   ins_pipe(iload_mem);
  6255 %}
  6257 // Use BIS instruction to prefetch for allocation.
  6258 // Could fault, need space at the end of TLAB.
  6259 instruct prefetchAlloc_bis( iRegP dst ) %{
  6260   predicate(AllocatePrefetchInstr == 1);
  6261   match( PrefetchAllocation dst );
  6262   ins_cost(MEMORY_REF_COST);
  6263   size(4);
  6265   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6266   ins_encode %{
  6267     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6268   %}
  6269   ins_pipe(istore_mem_reg);
  6270 %}
  6272 // Next code is used for finding next cache line address to prefetch.
  6273 #ifndef _LP64
  6274 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6275   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6276   ins_cost(DEFAULT_COST);
  6277   size(4);
  6279   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6280   ins_encode %{
  6281     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6282   %}
  6283   ins_pipe(ialu_reg_imm);
  6284 %}
  6285 #else
  6286 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6287   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6288   ins_cost(DEFAULT_COST);
  6289   size(4);
  6291   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6292   ins_encode %{
  6293     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6294   %}
  6295   ins_pipe(ialu_reg_imm);
  6296 %}
  6297 #endif
  6299 //----------Store Instructions-------------------------------------------------
  6300 // Store Byte
  6301 instruct storeB(memory mem, iRegI src) %{
  6302   match(Set mem (StoreB mem src));
  6303   ins_cost(MEMORY_REF_COST);
  6305   size(4);
  6306   format %{ "STB    $src,$mem\t! byte" %}
  6307   opcode(Assembler::stb_op3);
  6308   ins_encode(simple_form3_mem_reg( mem, src ) );
  6309   ins_pipe(istore_mem_reg);
  6310 %}
  6312 instruct storeB0(memory mem, immI0 src) %{
  6313   match(Set mem (StoreB mem src));
  6314   ins_cost(MEMORY_REF_COST);
  6316   size(4);
  6317   format %{ "STB    $src,$mem\t! byte" %}
  6318   opcode(Assembler::stb_op3);
  6319   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6320   ins_pipe(istore_mem_zero);
  6321 %}
  6323 instruct storeCM0(memory mem, immI0 src) %{
  6324   match(Set mem (StoreCM mem src));
  6325   ins_cost(MEMORY_REF_COST);
  6327   size(4);
  6328   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6329   opcode(Assembler::stb_op3);
  6330   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6331   ins_pipe(istore_mem_zero);
  6332 %}
  6334 // Store Char/Short
  6335 instruct storeC(memory mem, iRegI src) %{
  6336   match(Set mem (StoreC mem src));
  6337   ins_cost(MEMORY_REF_COST);
  6339   size(4);
  6340   format %{ "STH    $src,$mem\t! short" %}
  6341   opcode(Assembler::sth_op3);
  6342   ins_encode(simple_form3_mem_reg( mem, src ) );
  6343   ins_pipe(istore_mem_reg);
  6344 %}
  6346 instruct storeC0(memory mem, immI0 src) %{
  6347   match(Set mem (StoreC mem src));
  6348   ins_cost(MEMORY_REF_COST);
  6350   size(4);
  6351   format %{ "STH    $src,$mem\t! short" %}
  6352   opcode(Assembler::sth_op3);
  6353   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6354   ins_pipe(istore_mem_zero);
  6355 %}
  6357 // Store Integer
  6358 instruct storeI(memory mem, iRegI src) %{
  6359   match(Set mem (StoreI mem src));
  6360   ins_cost(MEMORY_REF_COST);
  6362   size(4);
  6363   format %{ "STW    $src,$mem" %}
  6364   opcode(Assembler::stw_op3);
  6365   ins_encode(simple_form3_mem_reg( mem, src ) );
  6366   ins_pipe(istore_mem_reg);
  6367 %}
  6369 // Store Long
  6370 instruct storeL(memory mem, iRegL src) %{
  6371   match(Set mem (StoreL mem src));
  6372   ins_cost(MEMORY_REF_COST);
  6373   size(4);
  6374   format %{ "STX    $src,$mem\t! long" %}
  6375   opcode(Assembler::stx_op3);
  6376   ins_encode(simple_form3_mem_reg( mem, src ) );
  6377   ins_pipe(istore_mem_reg);
  6378 %}
  6380 instruct storeI0(memory mem, immI0 src) %{
  6381   match(Set mem (StoreI mem src));
  6382   ins_cost(MEMORY_REF_COST);
  6384   size(4);
  6385   format %{ "STW    $src,$mem" %}
  6386   opcode(Assembler::stw_op3);
  6387   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6388   ins_pipe(istore_mem_zero);
  6389 %}
  6391 instruct storeL0(memory mem, immL0 src) %{
  6392   match(Set mem (StoreL mem src));
  6393   ins_cost(MEMORY_REF_COST);
  6395   size(4);
  6396   format %{ "STX    $src,$mem" %}
  6397   opcode(Assembler::stx_op3);
  6398   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6399   ins_pipe(istore_mem_zero);
  6400 %}
  6402 // Store Integer from float register (used after fstoi)
  6403 instruct storeI_Freg(memory mem, regF src) %{
  6404   match(Set mem (StoreI mem src));
  6405   ins_cost(MEMORY_REF_COST);
  6407   size(4);
  6408   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6409   opcode(Assembler::stf_op3);
  6410   ins_encode(simple_form3_mem_reg( mem, src ) );
  6411   ins_pipe(fstoreF_mem_reg);
  6412 %}
  6414 // Store Pointer
  6415 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6416   match(Set dst (StoreP dst src));
  6417   ins_cost(MEMORY_REF_COST);
  6418   size(4);
  6420 #ifndef _LP64
  6421   format %{ "STW    $src,$dst\t! ptr" %}
  6422   opcode(Assembler::stw_op3, 0, REGP_OP);
  6423 #else
  6424   format %{ "STX    $src,$dst\t! ptr" %}
  6425   opcode(Assembler::stx_op3, 0, REGP_OP);
  6426 #endif
  6427   ins_encode( form3_mem_reg( dst, src ) );
  6428   ins_pipe(istore_mem_spORreg);
  6429 %}
  6431 instruct storeP0(memory dst, immP0 src) %{
  6432   match(Set dst (StoreP dst src));
  6433   ins_cost(MEMORY_REF_COST);
  6434   size(4);
  6436 #ifndef _LP64
  6437   format %{ "STW    $src,$dst\t! ptr" %}
  6438   opcode(Assembler::stw_op3, 0, REGP_OP);
  6439 #else
  6440   format %{ "STX    $src,$dst\t! ptr" %}
  6441   opcode(Assembler::stx_op3, 0, REGP_OP);
  6442 #endif
  6443   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6444   ins_pipe(istore_mem_zero);
  6445 %}
  6447 // Store Compressed Pointer
  6448 instruct storeN(memory dst, iRegN src) %{
  6449    match(Set dst (StoreN dst src));
  6450    ins_cost(MEMORY_REF_COST);
  6451    size(4);
  6453    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6454    ins_encode %{
  6455      Register base = as_Register($dst$$base);
  6456      Register index = as_Register($dst$$index);
  6457      Register src = $src$$Register;
  6458      if (index != G0) {
  6459        __ stw(src, base, index);
  6460      } else {
  6461        __ stw(src, base, $dst$$disp);
  6463    %}
  6464    ins_pipe(istore_mem_spORreg);
  6465 %}
  6467 instruct storeN0(memory dst, immN0 src) %{
  6468    match(Set dst (StoreN dst src));
  6469    ins_cost(MEMORY_REF_COST);
  6470    size(4);
  6472    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6473    ins_encode %{
  6474      Register base = as_Register($dst$$base);
  6475      Register index = as_Register($dst$$index);
  6476      if (index != G0) {
  6477        __ stw(0, base, index);
  6478      } else {
  6479        __ stw(0, base, $dst$$disp);
  6481    %}
  6482    ins_pipe(istore_mem_zero);
  6483 %}
  6485 // Store Double
  6486 instruct storeD( memory mem, regD src) %{
  6487   match(Set mem (StoreD mem src));
  6488   ins_cost(MEMORY_REF_COST);
  6490   size(4);
  6491   format %{ "STDF   $src,$mem" %}
  6492   opcode(Assembler::stdf_op3);
  6493   ins_encode(simple_form3_mem_reg( mem, src ) );
  6494   ins_pipe(fstoreD_mem_reg);
  6495 %}
  6497 instruct storeD0( memory mem, immD0 src) %{
  6498   match(Set mem (StoreD mem src));
  6499   ins_cost(MEMORY_REF_COST);
  6501   size(4);
  6502   format %{ "STX    $src,$mem" %}
  6503   opcode(Assembler::stx_op3);
  6504   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6505   ins_pipe(fstoreD_mem_zero);
  6506 %}
  6508 // Store Float
  6509 instruct storeF( memory mem, regF src) %{
  6510   match(Set mem (StoreF mem src));
  6511   ins_cost(MEMORY_REF_COST);
  6513   size(4);
  6514   format %{ "STF    $src,$mem" %}
  6515   opcode(Assembler::stf_op3);
  6516   ins_encode(simple_form3_mem_reg( mem, src ) );
  6517   ins_pipe(fstoreF_mem_reg);
  6518 %}
  6520 instruct storeF0( memory mem, immF0 src) %{
  6521   match(Set mem (StoreF mem src));
  6522   ins_cost(MEMORY_REF_COST);
  6524   size(4);
  6525   format %{ "STW    $src,$mem\t! storeF0" %}
  6526   opcode(Assembler::stw_op3);
  6527   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6528   ins_pipe(fstoreF_mem_zero);
  6529 %}
  6531 // Convert oop pointer into compressed form
  6532 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6533   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6534   match(Set dst (EncodeP src));
  6535   format %{ "encode_heap_oop $src, $dst" %}
  6536   ins_encode %{
  6537     __ encode_heap_oop($src$$Register, $dst$$Register);
  6538   %}
  6539   ins_pipe(ialu_reg);
  6540 %}
  6542 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6543   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6544   match(Set dst (EncodeP src));
  6545   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6546   ins_encode %{
  6547     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6548   %}
  6549   ins_pipe(ialu_reg);
  6550 %}
  6552 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6553   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6554             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6555   match(Set dst (DecodeN src));
  6556   format %{ "decode_heap_oop $src, $dst" %}
  6557   ins_encode %{
  6558     __ decode_heap_oop($src$$Register, $dst$$Register);
  6559   %}
  6560   ins_pipe(ialu_reg);
  6561 %}
  6563 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6564   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6565             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6566   match(Set dst (DecodeN src));
  6567   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6568   ins_encode %{
  6569     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6570   %}
  6571   ins_pipe(ialu_reg);
  6572 %}
  6575 //----------MemBar Instructions-----------------------------------------------
  6576 // Memory barrier flavors
  6578 instruct membar_acquire() %{
  6579   match(MemBarAcquire);
  6580   ins_cost(4*MEMORY_REF_COST);
  6582   size(0);
  6583   format %{ "MEMBAR-acquire" %}
  6584   ins_encode( enc_membar_acquire );
  6585   ins_pipe(long_memory_op);
  6586 %}
  6588 instruct membar_acquire_lock() %{
  6589   match(MemBarAcquireLock);
  6590   ins_cost(0);
  6592   size(0);
  6593   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6594   ins_encode( );
  6595   ins_pipe(empty);
  6596 %}
  6598 instruct membar_release() %{
  6599   match(MemBarRelease);
  6600   ins_cost(4*MEMORY_REF_COST);
  6602   size(0);
  6603   format %{ "MEMBAR-release" %}
  6604   ins_encode( enc_membar_release );
  6605   ins_pipe(long_memory_op);
  6606 %}
  6608 instruct membar_release_lock() %{
  6609   match(MemBarReleaseLock);
  6610   ins_cost(0);
  6612   size(0);
  6613   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6614   ins_encode( );
  6615   ins_pipe(empty);
  6616 %}
  6618 instruct membar_volatile() %{
  6619   match(MemBarVolatile);
  6620   ins_cost(4*MEMORY_REF_COST);
  6622   size(4);
  6623   format %{ "MEMBAR-volatile" %}
  6624   ins_encode( enc_membar_volatile );
  6625   ins_pipe(long_memory_op);
  6626 %}
  6628 instruct unnecessary_membar_volatile() %{
  6629   match(MemBarVolatile);
  6630   predicate(Matcher::post_store_load_barrier(n));
  6631   ins_cost(0);
  6633   size(0);
  6634   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6635   ins_encode( );
  6636   ins_pipe(empty);
  6637 %}
  6639 instruct membar_storestore() %{
  6640   match(MemBarStoreStore);
  6641   ins_cost(0);
  6643   size(0);
  6644   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6645   ins_encode( );
  6646   ins_pipe(empty);
  6647 %}
  6649 //----------Register Move Instructions-----------------------------------------
  6650 instruct roundDouble_nop(regD dst) %{
  6651   match(Set dst (RoundDouble dst));
  6652   ins_cost(0);
  6653   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6654   ins_encode( );
  6655   ins_pipe(empty);
  6656 %}
  6659 instruct roundFloat_nop(regF dst) %{
  6660   match(Set dst (RoundFloat dst));
  6661   ins_cost(0);
  6662   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6663   ins_encode( );
  6664   ins_pipe(empty);
  6665 %}
  6668 // Cast Index to Pointer for unsafe natives
  6669 instruct castX2P(iRegX src, iRegP dst) %{
  6670   match(Set dst (CastX2P src));
  6672   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6673   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6674   ins_pipe(ialu_reg);
  6675 %}
  6677 // Cast Pointer to Index for unsafe natives
  6678 instruct castP2X(iRegP src, iRegX dst) %{
  6679   match(Set dst (CastP2X src));
  6681   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6682   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6683   ins_pipe(ialu_reg);
  6684 %}
  6686 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6687   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6688   match(Set stkSlot src);   // chain rule
  6689   ins_cost(MEMORY_REF_COST);
  6690   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6691   opcode(Assembler::stdf_op3);
  6692   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6693   ins_pipe(fstoreD_stk_reg);
  6694 %}
  6696 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6697   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6698   match(Set dst stkSlot);   // chain rule
  6699   ins_cost(MEMORY_REF_COST);
  6700   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6701   opcode(Assembler::lddf_op3);
  6702   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6703   ins_pipe(floadD_stk);
  6704 %}
  6706 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6707   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6708   match(Set stkSlot src);   // chain rule
  6709   ins_cost(MEMORY_REF_COST);
  6710   format %{ "STF   $src,$stkSlot\t!stk" %}
  6711   opcode(Assembler::stf_op3);
  6712   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6713   ins_pipe(fstoreF_stk_reg);
  6714 %}
  6716 //----------Conditional Move---------------------------------------------------
  6717 // Conditional move
  6718 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6719   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6720   ins_cost(150);
  6721   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6722   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6723   ins_pipe(ialu_reg);
  6724 %}
  6726 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6727   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6728   ins_cost(140);
  6729   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6730   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6731   ins_pipe(ialu_imm);
  6732 %}
  6734 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6735   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6736   ins_cost(150);
  6737   size(4);
  6738   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6739   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6740   ins_pipe(ialu_reg);
  6741 %}
  6743 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6744   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6745   ins_cost(140);
  6746   size(4);
  6747   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6748   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6749   ins_pipe(ialu_imm);
  6750 %}
  6752 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6753   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6754   ins_cost(150);
  6755   size(4);
  6756   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6757   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6758   ins_pipe(ialu_reg);
  6759 %}
  6761 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6762   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6763   ins_cost(140);
  6764   size(4);
  6765   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6766   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6767   ins_pipe(ialu_imm);
  6768 %}
  6770 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6771   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6772   ins_cost(150);
  6773   size(4);
  6774   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6775   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6776   ins_pipe(ialu_reg);
  6777 %}
  6779 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6780   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6781   ins_cost(140);
  6782   size(4);
  6783   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6784   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6785   ins_pipe(ialu_imm);
  6786 %}
  6788 // Conditional move for RegN. Only cmov(reg,reg).
  6789 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6790   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6791   ins_cost(150);
  6792   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6793   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6794   ins_pipe(ialu_reg);
  6795 %}
  6797 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6798 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6799   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6800   ins_cost(150);
  6801   size(4);
  6802   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6803   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6804   ins_pipe(ialu_reg);
  6805 %}
  6807 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6808 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6809   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6810   ins_cost(150);
  6811   size(4);
  6812   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6813   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6814   ins_pipe(ialu_reg);
  6815 %}
  6817 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6818   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6819   ins_cost(150);
  6820   size(4);
  6821   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6822   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6823   ins_pipe(ialu_reg);
  6824 %}
  6826 // Conditional move
  6827 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6828   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6829   ins_cost(150);
  6830   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6831   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6832   ins_pipe(ialu_reg);
  6833 %}
  6835 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6836   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6837   ins_cost(140);
  6838   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6839   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6840   ins_pipe(ialu_imm);
  6841 %}
  6843 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6844 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6845   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6846   ins_cost(150);
  6848   size(4);
  6849   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6850   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6851   ins_pipe(ialu_reg);
  6852 %}
  6854 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6855   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6856   ins_cost(150);
  6858   size(4);
  6859   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6860   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6861   ins_pipe(ialu_reg);
  6862 %}
  6864 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6865   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6866   ins_cost(140);
  6868   size(4);
  6869   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6870   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6871   ins_pipe(ialu_imm);
  6872 %}
  6874 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6875   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6876   ins_cost(140);
  6878   size(4);
  6879   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6880   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6881   ins_pipe(ialu_imm);
  6882 %}
  6884 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6885   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6886   ins_cost(150);
  6887   size(4);
  6888   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6889   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6890   ins_pipe(ialu_imm);
  6891 %}
  6893 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6894   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6895   ins_cost(140);
  6896   size(4);
  6897   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6898   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6899   ins_pipe(ialu_imm);
  6900 %}
  6902 // Conditional move
  6903 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6904   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6905   ins_cost(150);
  6906   opcode(0x101);
  6907   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6908   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6909   ins_pipe(int_conditional_float_move);
  6910 %}
  6912 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6913   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6914   ins_cost(150);
  6916   size(4);
  6917   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6918   opcode(0x101);
  6919   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6920   ins_pipe(int_conditional_float_move);
  6921 %}
  6923 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6924   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6925   ins_cost(150);
  6927   size(4);
  6928   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6929   opcode(0x101);
  6930   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6931   ins_pipe(int_conditional_float_move);
  6932 %}
  6934 // Conditional move,
  6935 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6936   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6937   ins_cost(150);
  6938   size(4);
  6939   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6940   opcode(0x1);
  6941   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6942   ins_pipe(int_conditional_double_move);
  6943 %}
  6945 // Conditional move
  6946 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6947   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6948   ins_cost(150);
  6949   size(4);
  6950   opcode(0x102);
  6951   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6952   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6953   ins_pipe(int_conditional_double_move);
  6954 %}
  6956 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6957   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6958   ins_cost(150);
  6960   size(4);
  6961   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6962   opcode(0x102);
  6963   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6964   ins_pipe(int_conditional_double_move);
  6965 %}
  6967 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  6968   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6969   ins_cost(150);
  6971   size(4);
  6972   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6973   opcode(0x102);
  6974   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6975   ins_pipe(int_conditional_double_move);
  6976 %}
  6978 // Conditional move,
  6979 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  6980   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  6981   ins_cost(150);
  6982   size(4);
  6983   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  6984   opcode(0x2);
  6985   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6986   ins_pipe(int_conditional_double_move);
  6987 %}
  6989 // Conditional move
  6990 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  6991   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6992   ins_cost(150);
  6993   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6994   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6995   ins_pipe(ialu_reg);
  6996 %}
  6998 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  6999   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7000   ins_cost(140);
  7001   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7002   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7003   ins_pipe(ialu_imm);
  7004 %}
  7006 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7007   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7008   ins_cost(150);
  7010   size(4);
  7011   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7012   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7013   ins_pipe(ialu_reg);
  7014 %}
  7017 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7018   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7019   ins_cost(150);
  7021   size(4);
  7022   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7023   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7024   ins_pipe(ialu_reg);
  7025 %}
  7028 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7029   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7030   ins_cost(150);
  7032   size(4);
  7033   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7034   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7035   ins_pipe(ialu_reg);
  7036 %}
  7040 //----------OS and Locking Instructions----------------------------------------
  7042 // This name is KNOWN by the ADLC and cannot be changed.
  7043 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7044 // for this guy.
  7045 instruct tlsLoadP(g2RegP dst) %{
  7046   match(Set dst (ThreadLocal));
  7048   size(0);
  7049   ins_cost(0);
  7050   format %{ "# TLS is in G2" %}
  7051   ins_encode( /*empty encoding*/ );
  7052   ins_pipe(ialu_none);
  7053 %}
  7055 instruct checkCastPP( iRegP dst ) %{
  7056   match(Set dst (CheckCastPP dst));
  7058   size(0);
  7059   format %{ "# checkcastPP of $dst" %}
  7060   ins_encode( /*empty encoding*/ );
  7061   ins_pipe(empty);
  7062 %}
  7065 instruct castPP( iRegP dst ) %{
  7066   match(Set dst (CastPP dst));
  7067   format %{ "# castPP of $dst" %}
  7068   ins_encode( /*empty encoding*/ );
  7069   ins_pipe(empty);
  7070 %}
  7072 instruct castII( iRegI dst ) %{
  7073   match(Set dst (CastII dst));
  7074   format %{ "# castII of $dst" %}
  7075   ins_encode( /*empty encoding*/ );
  7076   ins_cost(0);
  7077   ins_pipe(empty);
  7078 %}
  7080 //----------Arithmetic Instructions--------------------------------------------
  7081 // Addition Instructions
  7082 // Register Addition
  7083 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7084   match(Set dst (AddI src1 src2));
  7086   size(4);
  7087   format %{ "ADD    $src1,$src2,$dst" %}
  7088   ins_encode %{
  7089     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7090   %}
  7091   ins_pipe(ialu_reg_reg);
  7092 %}
  7094 // Immediate Addition
  7095 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7096   match(Set dst (AddI src1 src2));
  7098   size(4);
  7099   format %{ "ADD    $src1,$src2,$dst" %}
  7100   opcode(Assembler::add_op3, Assembler::arith_op);
  7101   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7102   ins_pipe(ialu_reg_imm);
  7103 %}
  7105 // Pointer Register Addition
  7106 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7107   match(Set dst (AddP src1 src2));
  7109   size(4);
  7110   format %{ "ADD    $src1,$src2,$dst" %}
  7111   opcode(Assembler::add_op3, Assembler::arith_op);
  7112   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7113   ins_pipe(ialu_reg_reg);
  7114 %}
  7116 // Pointer Immediate Addition
  7117 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7118   match(Set dst (AddP src1 src2));
  7120   size(4);
  7121   format %{ "ADD    $src1,$src2,$dst" %}
  7122   opcode(Assembler::add_op3, Assembler::arith_op);
  7123   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7124   ins_pipe(ialu_reg_imm);
  7125 %}
  7127 // Long Addition
  7128 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7129   match(Set dst (AddL src1 src2));
  7131   size(4);
  7132   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7133   opcode(Assembler::add_op3, Assembler::arith_op);
  7134   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7135   ins_pipe(ialu_reg_reg);
  7136 %}
  7138 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7139   match(Set dst (AddL src1 con));
  7141   size(4);
  7142   format %{ "ADD    $src1,$con,$dst" %}
  7143   opcode(Assembler::add_op3, Assembler::arith_op);
  7144   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7145   ins_pipe(ialu_reg_imm);
  7146 %}
  7148 //----------Conditional_store--------------------------------------------------
  7149 // Conditional-store of the updated heap-top.
  7150 // Used during allocation of the shared heap.
  7151 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7153 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7154 instruct loadPLocked(iRegP dst, memory mem) %{
  7155   match(Set dst (LoadPLocked mem));
  7156   ins_cost(MEMORY_REF_COST);
  7158 #ifndef _LP64
  7159   size(4);
  7160   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7161   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7162 #else
  7163   format %{ "LDX    $mem,$dst\t! ptr" %}
  7164   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7165 #endif
  7166   ins_encode( form3_mem_reg( mem, dst ) );
  7167   ins_pipe(iload_mem);
  7168 %}
  7170 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7171   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7172   effect( KILL newval );
  7173   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7174             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7175   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7176   ins_pipe( long_memory_op );
  7177 %}
  7179 // Conditional-store of an int value.
  7180 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7181   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7182   effect( KILL newval );
  7183   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7184             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7185   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7186   ins_pipe( long_memory_op );
  7187 %}
  7189 // Conditional-store of a long value.
  7190 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7191   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7192   effect( KILL newval );
  7193   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7194             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7195   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7196   ins_pipe( long_memory_op );
  7197 %}
  7199 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7201 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7202   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7203   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7204   format %{
  7205             "MOV    $newval,O7\n\t"
  7206             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7207             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7208             "MOV    1,$res\n\t"
  7209             "MOVne  xcc,R_G0,$res"
  7210   %}
  7211   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7212               enc_lflags_ne_to_boolean(res) );
  7213   ins_pipe( long_memory_op );
  7214 %}
  7217 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7218   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7219   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7220   format %{
  7221             "MOV    $newval,O7\n\t"
  7222             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7223             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7224             "MOV    1,$res\n\t"
  7225             "MOVne  icc,R_G0,$res"
  7226   %}
  7227   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7228               enc_iflags_ne_to_boolean(res) );
  7229   ins_pipe( long_memory_op );
  7230 %}
  7232 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7233   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7234   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7235   format %{
  7236             "MOV    $newval,O7\n\t"
  7237             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7238             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7239             "MOV    1,$res\n\t"
  7240             "MOVne  xcc,R_G0,$res"
  7241   %}
  7242 #ifdef _LP64
  7243   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7244               enc_lflags_ne_to_boolean(res) );
  7245 #else
  7246   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7247               enc_iflags_ne_to_boolean(res) );
  7248 #endif
  7249   ins_pipe( long_memory_op );
  7250 %}
  7252 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7253   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7254   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7255   format %{
  7256             "MOV    $newval,O7\n\t"
  7257             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7258             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7259             "MOV    1,$res\n\t"
  7260             "MOVne  icc,R_G0,$res"
  7261   %}
  7262   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7263               enc_iflags_ne_to_boolean(res) );
  7264   ins_pipe( long_memory_op );
  7265 %}
  7267 //---------------------
  7268 // Subtraction Instructions
  7269 // Register Subtraction
  7270 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7271   match(Set dst (SubI src1 src2));
  7273   size(4);
  7274   format %{ "SUB    $src1,$src2,$dst" %}
  7275   opcode(Assembler::sub_op3, Assembler::arith_op);
  7276   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7277   ins_pipe(ialu_reg_reg);
  7278 %}
  7280 // Immediate Subtraction
  7281 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7282   match(Set dst (SubI src1 src2));
  7284   size(4);
  7285   format %{ "SUB    $src1,$src2,$dst" %}
  7286   opcode(Assembler::sub_op3, Assembler::arith_op);
  7287   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7288   ins_pipe(ialu_reg_imm);
  7289 %}
  7291 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7292   match(Set dst (SubI zero src2));
  7294   size(4);
  7295   format %{ "NEG    $src2,$dst" %}
  7296   opcode(Assembler::sub_op3, Assembler::arith_op);
  7297   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7298   ins_pipe(ialu_zero_reg);
  7299 %}
  7301 // Long subtraction
  7302 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7303   match(Set dst (SubL src1 src2));
  7305   size(4);
  7306   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7307   opcode(Assembler::sub_op3, Assembler::arith_op);
  7308   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7309   ins_pipe(ialu_reg_reg);
  7310 %}
  7312 // Immediate Subtraction
  7313 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7314   match(Set dst (SubL src1 con));
  7316   size(4);
  7317   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7318   opcode(Assembler::sub_op3, Assembler::arith_op);
  7319   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7320   ins_pipe(ialu_reg_imm);
  7321 %}
  7323 // Long negation
  7324 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7325   match(Set dst (SubL zero src2));
  7327   size(4);
  7328   format %{ "NEG    $src2,$dst\t! long" %}
  7329   opcode(Assembler::sub_op3, Assembler::arith_op);
  7330   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7331   ins_pipe(ialu_zero_reg);
  7332 %}
  7334 // Multiplication Instructions
  7335 // Integer Multiplication
  7336 // Register Multiplication
  7337 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7338   match(Set dst (MulI src1 src2));
  7340   size(4);
  7341   format %{ "MULX   $src1,$src2,$dst" %}
  7342   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7343   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7344   ins_pipe(imul_reg_reg);
  7345 %}
  7347 // Immediate Multiplication
  7348 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7349   match(Set dst (MulI src1 src2));
  7351   size(4);
  7352   format %{ "MULX   $src1,$src2,$dst" %}
  7353   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7354   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7355   ins_pipe(imul_reg_imm);
  7356 %}
  7358 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7359   match(Set dst (MulL src1 src2));
  7360   ins_cost(DEFAULT_COST * 5);
  7361   size(4);
  7362   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7363   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7364   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7365   ins_pipe(mulL_reg_reg);
  7366 %}
  7368 // Immediate Multiplication
  7369 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7370   match(Set dst (MulL src1 src2));
  7371   ins_cost(DEFAULT_COST * 5);
  7372   size(4);
  7373   format %{ "MULX   $src1,$src2,$dst" %}
  7374   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7375   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7376   ins_pipe(mulL_reg_imm);
  7377 %}
  7379 // Integer Division
  7380 // Register Division
  7381 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7382   match(Set dst (DivI src1 src2));
  7383   ins_cost((2+71)*DEFAULT_COST);
  7385   format %{ "SRA     $src2,0,$src2\n\t"
  7386             "SRA     $src1,0,$src1\n\t"
  7387             "SDIVX   $src1,$src2,$dst" %}
  7388   ins_encode( idiv_reg( src1, src2, dst ) );
  7389   ins_pipe(sdiv_reg_reg);
  7390 %}
  7392 // Immediate Division
  7393 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7394   match(Set dst (DivI src1 src2));
  7395   ins_cost((2+71)*DEFAULT_COST);
  7397   format %{ "SRA     $src1,0,$src1\n\t"
  7398             "SDIVX   $src1,$src2,$dst" %}
  7399   ins_encode( idiv_imm( src1, src2, dst ) );
  7400   ins_pipe(sdiv_reg_imm);
  7401 %}
  7403 //----------Div-By-10-Expansion------------------------------------------------
  7404 // Extract hi bits of a 32x32->64 bit multiply.
  7405 // Expand rule only, not matched
  7406 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7407   effect( DEF dst, USE src1, USE src2 );
  7408   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7409             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7410   ins_encode( enc_mul_hi(dst,src1,src2));
  7411   ins_pipe(sdiv_reg_reg);
  7412 %}
  7414 // Magic constant, reciprocal of 10
  7415 instruct loadConI_x66666667(iRegIsafe dst) %{
  7416   effect( DEF dst );
  7418   size(8);
  7419   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7420   ins_encode( Set32(0x66666667, dst) );
  7421   ins_pipe(ialu_hi_lo_reg);
  7422 %}
  7424 // Register Shift Right Arithmetic Long by 32-63
  7425 instruct sra_31( iRegI dst, iRegI src ) %{
  7426   effect( DEF dst, USE src );
  7427   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7428   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7429   ins_pipe(ialu_reg_reg);
  7430 %}
  7432 // Arithmetic Shift Right by 8-bit immediate
  7433 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7434   effect( DEF dst, USE src );
  7435   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7436   opcode(Assembler::sra_op3, Assembler::arith_op);
  7437   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7438   ins_pipe(ialu_reg_imm);
  7439 %}
  7441 // Integer DIV with 10
  7442 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7443   match(Set dst (DivI src div));
  7444   ins_cost((6+6)*DEFAULT_COST);
  7445   expand %{
  7446     iRegIsafe tmp1;               // Killed temps;
  7447     iRegIsafe tmp2;               // Killed temps;
  7448     iRegI tmp3;                   // Killed temps;
  7449     iRegI tmp4;                   // Killed temps;
  7450     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7451     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7452     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7453     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7454     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7455   %}
  7456 %}
  7458 // Register Long Division
  7459 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7460   match(Set dst (DivL src1 src2));
  7461   ins_cost(DEFAULT_COST*71);
  7462   size(4);
  7463   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7464   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7465   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7466   ins_pipe(divL_reg_reg);
  7467 %}
  7469 // Register Long Division
  7470 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7471   match(Set dst (DivL src1 src2));
  7472   ins_cost(DEFAULT_COST*71);
  7473   size(4);
  7474   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7475   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7476   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7477   ins_pipe(divL_reg_imm);
  7478 %}
  7480 // Integer Remainder
  7481 // Register Remainder
  7482 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7483   match(Set dst (ModI src1 src2));
  7484   effect( KILL ccr, KILL temp);
  7486   format %{ "SREM   $src1,$src2,$dst" %}
  7487   ins_encode( irem_reg(src1, src2, dst, temp) );
  7488   ins_pipe(sdiv_reg_reg);
  7489 %}
  7491 // Immediate Remainder
  7492 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7493   match(Set dst (ModI src1 src2));
  7494   effect( KILL ccr, KILL temp);
  7496   format %{ "SREM   $src1,$src2,$dst" %}
  7497   ins_encode( irem_imm(src1, src2, dst, temp) );
  7498   ins_pipe(sdiv_reg_imm);
  7499 %}
  7501 // Register Long Remainder
  7502 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7503   effect(DEF dst, USE src1, USE src2);
  7504   size(4);
  7505   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7506   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7507   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7508   ins_pipe(divL_reg_reg);
  7509 %}
  7511 // Register Long Division
  7512 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7513   effect(DEF dst, USE src1, USE src2);
  7514   size(4);
  7515   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7516   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7517   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7518   ins_pipe(divL_reg_imm);
  7519 %}
  7521 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7522   effect(DEF dst, USE src1, USE src2);
  7523   size(4);
  7524   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7525   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7526   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7527   ins_pipe(mulL_reg_reg);
  7528 %}
  7530 // Immediate Multiplication
  7531 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7532   effect(DEF dst, USE src1, USE src2);
  7533   size(4);
  7534   format %{ "MULX   $src1,$src2,$dst" %}
  7535   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7536   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7537   ins_pipe(mulL_reg_imm);
  7538 %}
  7540 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7541   effect(DEF dst, USE src1, USE src2);
  7542   size(4);
  7543   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7544   opcode(Assembler::sub_op3, Assembler::arith_op);
  7545   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7546   ins_pipe(ialu_reg_reg);
  7547 %}
  7549 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7550   effect(DEF dst, USE src1, USE src2);
  7551   size(4);
  7552   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7553   opcode(Assembler::sub_op3, Assembler::arith_op);
  7554   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7555   ins_pipe(ialu_reg_reg);
  7556 %}
  7558 // Register Long Remainder
  7559 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7560   match(Set dst (ModL src1 src2));
  7561   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7562   expand %{
  7563     iRegL tmp1;
  7564     iRegL tmp2;
  7565     divL_reg_reg_1(tmp1, src1, src2);
  7566     mulL_reg_reg_1(tmp2, tmp1, src2);
  7567     subL_reg_reg_1(dst,  src1, tmp2);
  7568   %}
  7569 %}
  7571 // Register Long Remainder
  7572 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7573   match(Set dst (ModL src1 src2));
  7574   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7575   expand %{
  7576     iRegL tmp1;
  7577     iRegL tmp2;
  7578     divL_reg_imm13_1(tmp1, src1, src2);
  7579     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7580     subL_reg_reg_2  (dst,  src1, tmp2);
  7581   %}
  7582 %}
  7584 // Integer Shift Instructions
  7585 // Register Shift Left
  7586 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7587   match(Set dst (LShiftI src1 src2));
  7589   size(4);
  7590   format %{ "SLL    $src1,$src2,$dst" %}
  7591   opcode(Assembler::sll_op3, Assembler::arith_op);
  7592   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7593   ins_pipe(ialu_reg_reg);
  7594 %}
  7596 // Register Shift Left Immediate
  7597 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7598   match(Set dst (LShiftI src1 src2));
  7600   size(4);
  7601   format %{ "SLL    $src1,$src2,$dst" %}
  7602   opcode(Assembler::sll_op3, Assembler::arith_op);
  7603   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7604   ins_pipe(ialu_reg_imm);
  7605 %}
  7607 // Register Shift Left
  7608 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7609   match(Set dst (LShiftL src1 src2));
  7611   size(4);
  7612   format %{ "SLLX   $src1,$src2,$dst" %}
  7613   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7614   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7615   ins_pipe(ialu_reg_reg);
  7616 %}
  7618 // Register Shift Left Immediate
  7619 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7620   match(Set dst (LShiftL src1 src2));
  7622   size(4);
  7623   format %{ "SLLX   $src1,$src2,$dst" %}
  7624   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7625   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7626   ins_pipe(ialu_reg_imm);
  7627 %}
  7629 // Register Arithmetic Shift Right
  7630 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7631   match(Set dst (RShiftI src1 src2));
  7632   size(4);
  7633   format %{ "SRA    $src1,$src2,$dst" %}
  7634   opcode(Assembler::sra_op3, Assembler::arith_op);
  7635   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7636   ins_pipe(ialu_reg_reg);
  7637 %}
  7639 // Register Arithmetic Shift Right Immediate
  7640 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7641   match(Set dst (RShiftI src1 src2));
  7643   size(4);
  7644   format %{ "SRA    $src1,$src2,$dst" %}
  7645   opcode(Assembler::sra_op3, Assembler::arith_op);
  7646   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7647   ins_pipe(ialu_reg_imm);
  7648 %}
  7650 // Register Shift Right Arithmatic Long
  7651 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7652   match(Set dst (RShiftL src1 src2));
  7654   size(4);
  7655   format %{ "SRAX   $src1,$src2,$dst" %}
  7656   opcode(Assembler::srax_op3, Assembler::arith_op);
  7657   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7658   ins_pipe(ialu_reg_reg);
  7659 %}
  7661 // Register Shift Left Immediate
  7662 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7663   match(Set dst (RShiftL src1 src2));
  7665   size(4);
  7666   format %{ "SRAX   $src1,$src2,$dst" %}
  7667   opcode(Assembler::srax_op3, Assembler::arith_op);
  7668   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7669   ins_pipe(ialu_reg_imm);
  7670 %}
  7672 // Register Shift Right
  7673 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7674   match(Set dst (URShiftI src1 src2));
  7676   size(4);
  7677   format %{ "SRL    $src1,$src2,$dst" %}
  7678   opcode(Assembler::srl_op3, Assembler::arith_op);
  7679   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7680   ins_pipe(ialu_reg_reg);
  7681 %}
  7683 // Register Shift Right Immediate
  7684 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7685   match(Set dst (URShiftI src1 src2));
  7687   size(4);
  7688   format %{ "SRL    $src1,$src2,$dst" %}
  7689   opcode(Assembler::srl_op3, Assembler::arith_op);
  7690   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7691   ins_pipe(ialu_reg_imm);
  7692 %}
  7694 // Register Shift Right
  7695 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7696   match(Set dst (URShiftL src1 src2));
  7698   size(4);
  7699   format %{ "SRLX   $src1,$src2,$dst" %}
  7700   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7701   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7702   ins_pipe(ialu_reg_reg);
  7703 %}
  7705 // Register Shift Right Immediate
  7706 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7707   match(Set dst (URShiftL src1 src2));
  7709   size(4);
  7710   format %{ "SRLX   $src1,$src2,$dst" %}
  7711   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7712   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7713   ins_pipe(ialu_reg_imm);
  7714 %}
  7716 // Register Shift Right Immediate with a CastP2X
  7717 #ifdef _LP64
  7718 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7719   match(Set dst (URShiftL (CastP2X src1) src2));
  7720   size(4);
  7721   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7722   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7723   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7724   ins_pipe(ialu_reg_imm);
  7725 %}
  7726 #else
  7727 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7728   match(Set dst (URShiftI (CastP2X src1) src2));
  7729   size(4);
  7730   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7731   opcode(Assembler::srl_op3, Assembler::arith_op);
  7732   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7733   ins_pipe(ialu_reg_imm);
  7734 %}
  7735 #endif
  7738 //----------Floating Point Arithmetic Instructions-----------------------------
  7740 //  Add float single precision
  7741 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7742   match(Set dst (AddF src1 src2));
  7744   size(4);
  7745   format %{ "FADDS  $src1,$src2,$dst" %}
  7746   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7747   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7748   ins_pipe(faddF_reg_reg);
  7749 %}
  7751 //  Add float double precision
  7752 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7753   match(Set dst (AddD src1 src2));
  7755   size(4);
  7756   format %{ "FADDD  $src1,$src2,$dst" %}
  7757   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7758   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7759   ins_pipe(faddD_reg_reg);
  7760 %}
  7762 //  Sub float single precision
  7763 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7764   match(Set dst (SubF src1 src2));
  7766   size(4);
  7767   format %{ "FSUBS  $src1,$src2,$dst" %}
  7768   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7769   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7770   ins_pipe(faddF_reg_reg);
  7771 %}
  7773 //  Sub float double precision
  7774 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7775   match(Set dst (SubD src1 src2));
  7777   size(4);
  7778   format %{ "FSUBD  $src1,$src2,$dst" %}
  7779   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7780   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7781   ins_pipe(faddD_reg_reg);
  7782 %}
  7784 //  Mul float single precision
  7785 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7786   match(Set dst (MulF src1 src2));
  7788   size(4);
  7789   format %{ "FMULS  $src1,$src2,$dst" %}
  7790   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7791   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7792   ins_pipe(fmulF_reg_reg);
  7793 %}
  7795 //  Mul float double precision
  7796 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7797   match(Set dst (MulD src1 src2));
  7799   size(4);
  7800   format %{ "FMULD  $src1,$src2,$dst" %}
  7801   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7802   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7803   ins_pipe(fmulD_reg_reg);
  7804 %}
  7806 //  Div float single precision
  7807 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7808   match(Set dst (DivF src1 src2));
  7810   size(4);
  7811   format %{ "FDIVS  $src1,$src2,$dst" %}
  7812   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7813   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7814   ins_pipe(fdivF_reg_reg);
  7815 %}
  7817 //  Div float double precision
  7818 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7819   match(Set dst (DivD src1 src2));
  7821   size(4);
  7822   format %{ "FDIVD  $src1,$src2,$dst" %}
  7823   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7824   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7825   ins_pipe(fdivD_reg_reg);
  7826 %}
  7828 //  Absolute float double precision
  7829 instruct absD_reg(regD dst, regD src) %{
  7830   match(Set dst (AbsD src));
  7832   format %{ "FABSd  $src,$dst" %}
  7833   ins_encode(fabsd(dst, src));
  7834   ins_pipe(faddD_reg);
  7835 %}
  7837 //  Absolute float single precision
  7838 instruct absF_reg(regF dst, regF src) %{
  7839   match(Set dst (AbsF src));
  7841   format %{ "FABSs  $src,$dst" %}
  7842   ins_encode(fabss(dst, src));
  7843   ins_pipe(faddF_reg);
  7844 %}
  7846 instruct negF_reg(regF dst, regF src) %{
  7847   match(Set dst (NegF src));
  7849   size(4);
  7850   format %{ "FNEGs  $src,$dst" %}
  7851   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7852   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7853   ins_pipe(faddF_reg);
  7854 %}
  7856 instruct negD_reg(regD dst, regD src) %{
  7857   match(Set dst (NegD src));
  7859   format %{ "FNEGd  $src,$dst" %}
  7860   ins_encode(fnegd(dst, src));
  7861   ins_pipe(faddD_reg);
  7862 %}
  7864 //  Sqrt float double precision
  7865 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7866   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7868   size(4);
  7869   format %{ "FSQRTS $src,$dst" %}
  7870   ins_encode(fsqrts(dst, src));
  7871   ins_pipe(fdivF_reg_reg);
  7872 %}
  7874 //  Sqrt float double precision
  7875 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7876   match(Set dst (SqrtD src));
  7878   size(4);
  7879   format %{ "FSQRTD $src,$dst" %}
  7880   ins_encode(fsqrtd(dst, src));
  7881   ins_pipe(fdivD_reg_reg);
  7882 %}
  7884 //----------Logical Instructions-----------------------------------------------
  7885 // And Instructions
  7886 // Register And
  7887 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7888   match(Set dst (AndI src1 src2));
  7890   size(4);
  7891   format %{ "AND    $src1,$src2,$dst" %}
  7892   opcode(Assembler::and_op3, Assembler::arith_op);
  7893   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7894   ins_pipe(ialu_reg_reg);
  7895 %}
  7897 // Immediate And
  7898 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7899   match(Set dst (AndI src1 src2));
  7901   size(4);
  7902   format %{ "AND    $src1,$src2,$dst" %}
  7903   opcode(Assembler::and_op3, Assembler::arith_op);
  7904   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7905   ins_pipe(ialu_reg_imm);
  7906 %}
  7908 // Register And Long
  7909 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7910   match(Set dst (AndL src1 src2));
  7912   ins_cost(DEFAULT_COST);
  7913   size(4);
  7914   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7915   opcode(Assembler::and_op3, Assembler::arith_op);
  7916   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7917   ins_pipe(ialu_reg_reg);
  7918 %}
  7920 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7921   match(Set dst (AndL src1 con));
  7923   ins_cost(DEFAULT_COST);
  7924   size(4);
  7925   format %{ "AND    $src1,$con,$dst\t! long" %}
  7926   opcode(Assembler::and_op3, Assembler::arith_op);
  7927   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7928   ins_pipe(ialu_reg_imm);
  7929 %}
  7931 // Or Instructions
  7932 // Register Or
  7933 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7934   match(Set dst (OrI src1 src2));
  7936   size(4);
  7937   format %{ "OR     $src1,$src2,$dst" %}
  7938   opcode(Assembler::or_op3, Assembler::arith_op);
  7939   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7940   ins_pipe(ialu_reg_reg);
  7941 %}
  7943 // Immediate Or
  7944 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7945   match(Set dst (OrI src1 src2));
  7947   size(4);
  7948   format %{ "OR     $src1,$src2,$dst" %}
  7949   opcode(Assembler::or_op3, Assembler::arith_op);
  7950   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7951   ins_pipe(ialu_reg_imm);
  7952 %}
  7954 // Register Or Long
  7955 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7956   match(Set dst (OrL src1 src2));
  7958   ins_cost(DEFAULT_COST);
  7959   size(4);
  7960   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7961   opcode(Assembler::or_op3, Assembler::arith_op);
  7962   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7963   ins_pipe(ialu_reg_reg);
  7964 %}
  7966 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7967   match(Set dst (OrL src1 con));
  7968   ins_cost(DEFAULT_COST*2);
  7970   ins_cost(DEFAULT_COST);
  7971   size(4);
  7972   format %{ "OR     $src1,$con,$dst\t! long" %}
  7973   opcode(Assembler::or_op3, Assembler::arith_op);
  7974   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7975   ins_pipe(ialu_reg_imm);
  7976 %}
  7978 #ifndef _LP64
  7980 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  7981 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  7982   match(Set dst (OrI src1 (CastP2X src2)));
  7984   size(4);
  7985   format %{ "OR     $src1,$src2,$dst" %}
  7986   opcode(Assembler::or_op3, Assembler::arith_op);
  7987   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7988   ins_pipe(ialu_reg_reg);
  7989 %}
  7991 #else
  7993 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  7994   match(Set dst (OrL src1 (CastP2X src2)));
  7996   ins_cost(DEFAULT_COST);
  7997   size(4);
  7998   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7999   opcode(Assembler::or_op3, Assembler::arith_op);
  8000   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8001   ins_pipe(ialu_reg_reg);
  8002 %}
  8004 #endif
  8006 // Xor Instructions
  8007 // Register Xor
  8008 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8009   match(Set dst (XorI src1 src2));
  8011   size(4);
  8012   format %{ "XOR    $src1,$src2,$dst" %}
  8013   opcode(Assembler::xor_op3, Assembler::arith_op);
  8014   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8015   ins_pipe(ialu_reg_reg);
  8016 %}
  8018 // Immediate Xor
  8019 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8020   match(Set dst (XorI src1 src2));
  8022   size(4);
  8023   format %{ "XOR    $src1,$src2,$dst" %}
  8024   opcode(Assembler::xor_op3, Assembler::arith_op);
  8025   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8026   ins_pipe(ialu_reg_imm);
  8027 %}
  8029 // Register Xor Long
  8030 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8031   match(Set dst (XorL src1 src2));
  8033   ins_cost(DEFAULT_COST);
  8034   size(4);
  8035   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8036   opcode(Assembler::xor_op3, Assembler::arith_op);
  8037   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8038   ins_pipe(ialu_reg_reg);
  8039 %}
  8041 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8042   match(Set dst (XorL src1 con));
  8044   ins_cost(DEFAULT_COST);
  8045   size(4);
  8046   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8047   opcode(Assembler::xor_op3, Assembler::arith_op);
  8048   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8049   ins_pipe(ialu_reg_imm);
  8050 %}
  8052 //----------Convert to Boolean-------------------------------------------------
  8053 // Nice hack for 32-bit tests but doesn't work for
  8054 // 64-bit pointers.
  8055 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8056   match(Set dst (Conv2B src));
  8057   effect( KILL ccr );
  8058   ins_cost(DEFAULT_COST*2);
  8059   format %{ "CMP    R_G0,$src\n\t"
  8060             "ADDX   R_G0,0,$dst" %}
  8061   ins_encode( enc_to_bool( src, dst ) );
  8062   ins_pipe(ialu_reg_ialu);
  8063 %}
  8065 #ifndef _LP64
  8066 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8067   match(Set dst (Conv2B src));
  8068   effect( KILL ccr );
  8069   ins_cost(DEFAULT_COST*2);
  8070   format %{ "CMP    R_G0,$src\n\t"
  8071             "ADDX   R_G0,0,$dst" %}
  8072   ins_encode( enc_to_bool( src, dst ) );
  8073   ins_pipe(ialu_reg_ialu);
  8074 %}
  8075 #else
  8076 instruct convP2B( iRegI dst, iRegP src ) %{
  8077   match(Set dst (Conv2B src));
  8078   ins_cost(DEFAULT_COST*2);
  8079   format %{ "MOV    $src,$dst\n\t"
  8080             "MOVRNZ $src,1,$dst" %}
  8081   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8082   ins_pipe(ialu_clr_and_mover);
  8083 %}
  8084 #endif
  8086 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8087   match(Set dst (CmpLTMask src zero));
  8088   effect(KILL ccr);
  8089   size(4);
  8090   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8091   ins_encode %{
  8092     __ sra($src$$Register, 31, $dst$$Register);
  8093   %}
  8094   ins_pipe(ialu_reg_imm);
  8095 %}
  8097 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8098   match(Set dst (CmpLTMask p q));
  8099   effect( KILL ccr );
  8100   ins_cost(DEFAULT_COST*4);
  8101   format %{ "CMP    $p,$q\n\t"
  8102             "MOV    #0,$dst\n\t"
  8103             "BLT,a  .+8\n\t"
  8104             "MOV    #-1,$dst" %}
  8105   ins_encode( enc_ltmask(p,q,dst) );
  8106   ins_pipe(ialu_reg_reg_ialu);
  8107 %}
  8109 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8110   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8111   effect(KILL ccr, TEMP tmp);
  8112   ins_cost(DEFAULT_COST*3);
  8114   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8115             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8116             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8117   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8118   ins_pipe( cadd_cmpltmask );
  8119 %}
  8122 //-----------------------------------------------------------------
  8123 // Direct raw moves between float and general registers using VIS3.
  8125 //  ins_pipe(faddF_reg);
  8126 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8127   predicate(UseVIS >= 3);
  8128   match(Set dst (MoveF2I src));
  8130   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8131   ins_encode %{
  8132     __ movstouw($src$$FloatRegister, $dst$$Register);
  8133   %}
  8134   ins_pipe(ialu_reg_reg);
  8135 %}
  8137 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8138   predicate(UseVIS >= 3);
  8139   match(Set dst (MoveI2F src));
  8141   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8142   ins_encode %{
  8143     __ movwtos($src$$Register, $dst$$FloatRegister);
  8144   %}
  8145   ins_pipe(ialu_reg_reg);
  8146 %}
  8148 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8149   predicate(UseVIS >= 3);
  8150   match(Set dst (MoveD2L src));
  8152   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8153   ins_encode %{
  8154     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8155   %}
  8156   ins_pipe(ialu_reg_reg);
  8157 %}
  8159 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8160   predicate(UseVIS >= 3);
  8161   match(Set dst (MoveL2D src));
  8163   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8164   ins_encode %{
  8165     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8166   %}
  8167   ins_pipe(ialu_reg_reg);
  8168 %}
  8171 // Raw moves between float and general registers using stack.
  8173 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8174   match(Set dst (MoveF2I src));
  8175   effect(DEF dst, USE src);
  8176   ins_cost(MEMORY_REF_COST);
  8178   size(4);
  8179   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8180   opcode(Assembler::lduw_op3);
  8181   ins_encode(simple_form3_mem_reg( src, dst ) );
  8182   ins_pipe(iload_mem);
  8183 %}
  8185 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8186   match(Set dst (MoveI2F src));
  8187   effect(DEF dst, USE src);
  8188   ins_cost(MEMORY_REF_COST);
  8190   size(4);
  8191   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8192   opcode(Assembler::ldf_op3);
  8193   ins_encode(simple_form3_mem_reg(src, dst));
  8194   ins_pipe(floadF_stk);
  8195 %}
  8197 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8198   match(Set dst (MoveD2L src));
  8199   effect(DEF dst, USE src);
  8200   ins_cost(MEMORY_REF_COST);
  8202   size(4);
  8203   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8204   opcode(Assembler::ldx_op3);
  8205   ins_encode(simple_form3_mem_reg( src, dst ) );
  8206   ins_pipe(iload_mem);
  8207 %}
  8209 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8210   match(Set dst (MoveL2D src));
  8211   effect(DEF dst, USE src);
  8212   ins_cost(MEMORY_REF_COST);
  8214   size(4);
  8215   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8216   opcode(Assembler::lddf_op3);
  8217   ins_encode(simple_form3_mem_reg(src, dst));
  8218   ins_pipe(floadD_stk);
  8219 %}
  8221 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8222   match(Set dst (MoveF2I src));
  8223   effect(DEF dst, USE src);
  8224   ins_cost(MEMORY_REF_COST);
  8226   size(4);
  8227   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8228   opcode(Assembler::stf_op3);
  8229   ins_encode(simple_form3_mem_reg(dst, src));
  8230   ins_pipe(fstoreF_stk_reg);
  8231 %}
  8233 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8234   match(Set dst (MoveI2F src));
  8235   effect(DEF dst, USE src);
  8236   ins_cost(MEMORY_REF_COST);
  8238   size(4);
  8239   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8240   opcode(Assembler::stw_op3);
  8241   ins_encode(simple_form3_mem_reg( dst, src ) );
  8242   ins_pipe(istore_mem_reg);
  8243 %}
  8245 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8246   match(Set dst (MoveD2L src));
  8247   effect(DEF dst, USE src);
  8248   ins_cost(MEMORY_REF_COST);
  8250   size(4);
  8251   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8252   opcode(Assembler::stdf_op3);
  8253   ins_encode(simple_form3_mem_reg(dst, src));
  8254   ins_pipe(fstoreD_stk_reg);
  8255 %}
  8257 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8258   match(Set dst (MoveL2D src));
  8259   effect(DEF dst, USE src);
  8260   ins_cost(MEMORY_REF_COST);
  8262   size(4);
  8263   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8264   opcode(Assembler::stx_op3);
  8265   ins_encode(simple_form3_mem_reg( dst, src ) );
  8266   ins_pipe(istore_mem_reg);
  8267 %}
  8270 //----------Arithmetic Conversion Instructions---------------------------------
  8271 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8273 instruct convD2F_reg(regF dst, regD src) %{
  8274   match(Set dst (ConvD2F src));
  8275   size(4);
  8276   format %{ "FDTOS  $src,$dst" %}
  8277   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8278   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8279   ins_pipe(fcvtD2F);
  8280 %}
  8283 // Convert a double to an int in a float register.
  8284 // If the double is a NAN, stuff a zero in instead.
  8285 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8286   effect(DEF dst, USE src, KILL fcc0);
  8287   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8288             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8289             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8290             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8291             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8292       "skip:" %}
  8293   ins_encode(form_d2i_helper(src,dst));
  8294   ins_pipe(fcvtD2I);
  8295 %}
  8297 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8298   match(Set dst (ConvD2I src));
  8299   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8300   expand %{
  8301     regF tmp;
  8302     convD2I_helper(tmp, src);
  8303     regF_to_stkI(dst, tmp);
  8304   %}
  8305 %}
  8307 instruct convD2I_reg(iRegI dst, regD src) %{
  8308   predicate(UseVIS >= 3);
  8309   match(Set dst (ConvD2I src));
  8310   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8311   expand %{
  8312     regF tmp;
  8313     convD2I_helper(tmp, src);
  8314     MoveF2I_reg_reg(dst, tmp);
  8315   %}
  8316 %}
  8319 // Convert a double to a long in a double register.
  8320 // If the double is a NAN, stuff a zero in instead.
  8321 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8322   effect(DEF dst, USE src, KILL fcc0);
  8323   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8324             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8325             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8326             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8327             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8328       "skip:" %}
  8329   ins_encode(form_d2l_helper(src,dst));
  8330   ins_pipe(fcvtD2L);
  8331 %}
  8333 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8334   match(Set dst (ConvD2L src));
  8335   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8336   expand %{
  8337     regD tmp;
  8338     convD2L_helper(tmp, src);
  8339     regD_to_stkL(dst, tmp);
  8340   %}
  8341 %}
  8343 instruct convD2L_reg(iRegL dst, regD src) %{
  8344   predicate(UseVIS >= 3);
  8345   match(Set dst (ConvD2L src));
  8346   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8347   expand %{
  8348     regD tmp;
  8349     convD2L_helper(tmp, src);
  8350     MoveD2L_reg_reg(dst, tmp);
  8351   %}
  8352 %}
  8355 instruct convF2D_reg(regD dst, regF src) %{
  8356   match(Set dst (ConvF2D src));
  8357   format %{ "FSTOD  $src,$dst" %}
  8358   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8359   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8360   ins_pipe(fcvtF2D);
  8361 %}
  8364 // Convert a float to an int in a float register.
  8365 // If the float is a NAN, stuff a zero in instead.
  8366 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8367   effect(DEF dst, USE src, KILL fcc0);
  8368   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8369             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8370             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8371             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8372             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8373       "skip:" %}
  8374   ins_encode(form_f2i_helper(src,dst));
  8375   ins_pipe(fcvtF2I);
  8376 %}
  8378 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8379   match(Set dst (ConvF2I src));
  8380   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8381   expand %{
  8382     regF tmp;
  8383     convF2I_helper(tmp, src);
  8384     regF_to_stkI(dst, tmp);
  8385   %}
  8386 %}
  8388 instruct convF2I_reg(iRegI dst, regF src) %{
  8389   predicate(UseVIS >= 3);
  8390   match(Set dst (ConvF2I src));
  8391   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8392   expand %{
  8393     regF tmp;
  8394     convF2I_helper(tmp, src);
  8395     MoveF2I_reg_reg(dst, tmp);
  8396   %}
  8397 %}
  8400 // Convert a float to a long in a float register.
  8401 // If the float is a NAN, stuff a zero in instead.
  8402 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8403   effect(DEF dst, USE src, KILL fcc0);
  8404   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8405             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8406             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8407             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8408             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8409       "skip:" %}
  8410   ins_encode(form_f2l_helper(src,dst));
  8411   ins_pipe(fcvtF2L);
  8412 %}
  8414 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8415   match(Set dst (ConvF2L src));
  8416   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8417   expand %{
  8418     regD tmp;
  8419     convF2L_helper(tmp, src);
  8420     regD_to_stkL(dst, tmp);
  8421   %}
  8422 %}
  8424 instruct convF2L_reg(iRegL dst, regF src) %{
  8425   predicate(UseVIS >= 3);
  8426   match(Set dst (ConvF2L src));
  8427   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8428   expand %{
  8429     regD tmp;
  8430     convF2L_helper(tmp, src);
  8431     MoveD2L_reg_reg(dst, tmp);
  8432   %}
  8433 %}
  8436 instruct convI2D_helper(regD dst, regF tmp) %{
  8437   effect(USE tmp, DEF dst);
  8438   format %{ "FITOD  $tmp,$dst" %}
  8439   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8440   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8441   ins_pipe(fcvtI2D);
  8442 %}
  8444 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8445   match(Set dst (ConvI2D src));
  8446   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8447   expand %{
  8448     regF tmp;
  8449     stkI_to_regF(tmp, src);
  8450     convI2D_helper(dst, tmp);
  8451   %}
  8452 %}
  8454 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8455   predicate(UseVIS >= 3);
  8456   match(Set dst (ConvI2D src));
  8457   expand %{
  8458     regF tmp;
  8459     MoveI2F_reg_reg(tmp, src);
  8460     convI2D_helper(dst, tmp);
  8461   %}
  8462 %}
  8464 instruct convI2D_mem(regD_low dst, memory mem) %{
  8465   match(Set dst (ConvI2D (LoadI mem)));
  8466   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8467   size(8);
  8468   format %{ "LDF    $mem,$dst\n\t"
  8469             "FITOD  $dst,$dst" %}
  8470   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8471   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8472   ins_pipe(floadF_mem);
  8473 %}
  8476 instruct convI2F_helper(regF dst, regF tmp) %{
  8477   effect(DEF dst, USE tmp);
  8478   format %{ "FITOS  $tmp,$dst" %}
  8479   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8480   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8481   ins_pipe(fcvtI2F);
  8482 %}
  8484 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8485   match(Set dst (ConvI2F src));
  8486   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8487   expand %{
  8488     regF tmp;
  8489     stkI_to_regF(tmp,src);
  8490     convI2F_helper(dst, tmp);
  8491   %}
  8492 %}
  8494 instruct convI2F_reg(regF dst, iRegI src) %{
  8495   predicate(UseVIS >= 3);
  8496   match(Set dst (ConvI2F src));
  8497   ins_cost(DEFAULT_COST);
  8498   expand %{
  8499     regF tmp;
  8500     MoveI2F_reg_reg(tmp, src);
  8501     convI2F_helper(dst, tmp);
  8502   %}
  8503 %}
  8505 instruct convI2F_mem( regF dst, memory mem ) %{
  8506   match(Set dst (ConvI2F (LoadI mem)));
  8507   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8508   size(8);
  8509   format %{ "LDF    $mem,$dst\n\t"
  8510             "FITOS  $dst,$dst" %}
  8511   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8512   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8513   ins_pipe(floadF_mem);
  8514 %}
  8517 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8518   match(Set dst (ConvI2L src));
  8519   size(4);
  8520   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8521   opcode(Assembler::sra_op3, Assembler::arith_op);
  8522   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8523   ins_pipe(ialu_reg_reg);
  8524 %}
  8526 // Zero-extend convert int to long
  8527 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8528   match(Set dst (AndL (ConvI2L src) mask) );
  8529   size(4);
  8530   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8531   opcode(Assembler::srl_op3, Assembler::arith_op);
  8532   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8533   ins_pipe(ialu_reg_reg);
  8534 %}
  8536 // Zero-extend long
  8537 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8538   match(Set dst (AndL src mask) );
  8539   size(4);
  8540   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8541   opcode(Assembler::srl_op3, Assembler::arith_op);
  8542   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8543   ins_pipe(ialu_reg_reg);
  8544 %}
  8547 //-----------
  8548 // Long to Double conversion using V8 opcodes.
  8549 // Still useful because cheetah traps and becomes
  8550 // amazingly slow for some common numbers.
  8552 // Magic constant, 0x43300000
  8553 instruct loadConI_x43300000(iRegI dst) %{
  8554   effect(DEF dst);
  8555   size(4);
  8556   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8557   ins_encode(SetHi22(0x43300000, dst));
  8558   ins_pipe(ialu_none);
  8559 %}
  8561 // Magic constant, 0x41f00000
  8562 instruct loadConI_x41f00000(iRegI dst) %{
  8563   effect(DEF dst);
  8564   size(4);
  8565   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8566   ins_encode(SetHi22(0x41f00000, dst));
  8567   ins_pipe(ialu_none);
  8568 %}
  8570 // Construct a double from two float halves
  8571 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8572   effect(DEF dst, USE src1, USE src2);
  8573   size(8);
  8574   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8575             "FMOVS  $src2.lo,$dst.lo" %}
  8576   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8577   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8578   ins_pipe(faddD_reg_reg);
  8579 %}
  8581 // Convert integer in high half of a double register (in the lower half of
  8582 // the double register file) to double
  8583 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8584   effect(DEF dst, USE src);
  8585   size(4);
  8586   format %{ "FITOD  $src,$dst" %}
  8587   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8588   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8589   ins_pipe(fcvtLHi2D);
  8590 %}
  8592 // Add float double precision
  8593 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8594   effect(DEF dst, USE src1, USE src2);
  8595   size(4);
  8596   format %{ "FADDD  $src1,$src2,$dst" %}
  8597   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8598   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8599   ins_pipe(faddD_reg_reg);
  8600 %}
  8602 // Sub float double precision
  8603 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8604   effect(DEF dst, USE src1, USE src2);
  8605   size(4);
  8606   format %{ "FSUBD  $src1,$src2,$dst" %}
  8607   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8608   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8609   ins_pipe(faddD_reg_reg);
  8610 %}
  8612 // Mul float double precision
  8613 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8614   effect(DEF dst, USE src1, USE src2);
  8615   size(4);
  8616   format %{ "FMULD  $src1,$src2,$dst" %}
  8617   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8618   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8619   ins_pipe(fmulD_reg_reg);
  8620 %}
  8622 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8623   match(Set dst (ConvL2D src));
  8624   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8626   expand %{
  8627     regD_low   tmpsrc;
  8628     iRegI      ix43300000;
  8629     iRegI      ix41f00000;
  8630     stackSlotL lx43300000;
  8631     stackSlotL lx41f00000;
  8632     regD_low   dx43300000;
  8633     regD       dx41f00000;
  8634     regD       tmp1;
  8635     regD_low   tmp2;
  8636     regD       tmp3;
  8637     regD       tmp4;
  8639     stkL_to_regD(tmpsrc, src);
  8641     loadConI_x43300000(ix43300000);
  8642     loadConI_x41f00000(ix41f00000);
  8643     regI_to_stkLHi(lx43300000, ix43300000);
  8644     regI_to_stkLHi(lx41f00000, ix41f00000);
  8645     stkL_to_regD(dx43300000, lx43300000);
  8646     stkL_to_regD(dx41f00000, lx41f00000);
  8648     convI2D_regDHi_regD(tmp1, tmpsrc);
  8649     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8650     subD_regD_regD(tmp3, tmp2, dx43300000);
  8651     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8652     addD_regD_regD(dst, tmp3, tmp4);
  8653   %}
  8654 %}
  8656 // Long to Double conversion using fast fxtof
  8657 instruct convL2D_helper(regD dst, regD tmp) %{
  8658   effect(DEF dst, USE tmp);
  8659   size(4);
  8660   format %{ "FXTOD  $tmp,$dst" %}
  8661   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8662   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8663   ins_pipe(fcvtL2D);
  8664 %}
  8666 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8667   predicate(VM_Version::has_fast_fxtof());
  8668   match(Set dst (ConvL2D src));
  8669   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8670   expand %{
  8671     regD tmp;
  8672     stkL_to_regD(tmp, src);
  8673     convL2D_helper(dst, tmp);
  8674   %}
  8675 %}
  8677 instruct convL2D_reg(regD dst, iRegL src) %{
  8678   predicate(UseVIS >= 3);
  8679   match(Set dst (ConvL2D src));
  8680   expand %{
  8681     regD tmp;
  8682     MoveL2D_reg_reg(tmp, src);
  8683     convL2D_helper(dst, tmp);
  8684   %}
  8685 %}
  8687 // Long to Float conversion using fast fxtof
  8688 instruct convL2F_helper(regF dst, regD tmp) %{
  8689   effect(DEF dst, USE tmp);
  8690   size(4);
  8691   format %{ "FXTOS  $tmp,$dst" %}
  8692   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8693   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8694   ins_pipe(fcvtL2F);
  8695 %}
  8697 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8698   match(Set dst (ConvL2F src));
  8699   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8700   expand %{
  8701     regD tmp;
  8702     stkL_to_regD(tmp, src);
  8703     convL2F_helper(dst, tmp);
  8704   %}
  8705 %}
  8707 instruct convL2F_reg(regF dst, iRegL src) %{
  8708   predicate(UseVIS >= 3);
  8709   match(Set dst (ConvL2F src));
  8710   ins_cost(DEFAULT_COST);
  8711   expand %{
  8712     regD tmp;
  8713     MoveL2D_reg_reg(tmp, src);
  8714     convL2F_helper(dst, tmp);
  8715   %}
  8716 %}
  8718 //-----------
  8720 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8721   match(Set dst (ConvL2I src));
  8722 #ifndef _LP64
  8723   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8724   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8725   ins_pipe(ialu_move_reg_I_to_L);
  8726 #else
  8727   size(4);
  8728   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8729   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8730   ins_pipe(ialu_reg);
  8731 #endif
  8732 %}
  8734 // Register Shift Right Immediate
  8735 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8736   match(Set dst (ConvL2I (RShiftL src cnt)));
  8738   size(4);
  8739   format %{ "SRAX   $src,$cnt,$dst" %}
  8740   opcode(Assembler::srax_op3, Assembler::arith_op);
  8741   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8742   ins_pipe(ialu_reg_imm);
  8743 %}
  8745 //----------Control Flow Instructions------------------------------------------
  8746 // Compare Instructions
  8747 // Compare Integers
  8748 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8749   match(Set icc (CmpI op1 op2));
  8750   effect( DEF icc, USE op1, USE op2 );
  8752   size(4);
  8753   format %{ "CMP    $op1,$op2" %}
  8754   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8755   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8756   ins_pipe(ialu_cconly_reg_reg);
  8757 %}
  8759 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8760   match(Set icc (CmpU op1 op2));
  8762   size(4);
  8763   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8764   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8765   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8766   ins_pipe(ialu_cconly_reg_reg);
  8767 %}
  8769 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8770   match(Set icc (CmpI op1 op2));
  8771   effect( DEF icc, USE op1 );
  8773   size(4);
  8774   format %{ "CMP    $op1,$op2" %}
  8775   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8776   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8777   ins_pipe(ialu_cconly_reg_imm);
  8778 %}
  8780 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8781   match(Set icc (CmpI (AndI op1 op2) zero));
  8783   size(4);
  8784   format %{ "BTST   $op2,$op1" %}
  8785   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8786   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8787   ins_pipe(ialu_cconly_reg_reg_zero);
  8788 %}
  8790 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8791   match(Set icc (CmpI (AndI op1 op2) zero));
  8793   size(4);
  8794   format %{ "BTST   $op2,$op1" %}
  8795   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8796   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8797   ins_pipe(ialu_cconly_reg_imm_zero);
  8798 %}
  8800 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8801   match(Set xcc (CmpL op1 op2));
  8802   effect( DEF xcc, USE op1, USE op2 );
  8804   size(4);
  8805   format %{ "CMP    $op1,$op2\t\t! long" %}
  8806   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8807   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8808   ins_pipe(ialu_cconly_reg_reg);
  8809 %}
  8811 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8812   match(Set xcc (CmpL op1 con));
  8813   effect( DEF xcc, USE op1, USE con );
  8815   size(4);
  8816   format %{ "CMP    $op1,$con\t\t! long" %}
  8817   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8818   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8819   ins_pipe(ialu_cconly_reg_reg);
  8820 %}
  8822 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8823   match(Set xcc (CmpL (AndL op1 op2) zero));
  8824   effect( DEF xcc, USE op1, USE op2 );
  8826   size(4);
  8827   format %{ "BTST   $op1,$op2\t\t! long" %}
  8828   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8829   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8830   ins_pipe(ialu_cconly_reg_reg);
  8831 %}
  8833 // useful for checking the alignment of a pointer:
  8834 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8835   match(Set xcc (CmpL (AndL op1 con) zero));
  8836   effect( DEF xcc, USE op1, USE con );
  8838   size(4);
  8839   format %{ "BTST   $op1,$con\t\t! long" %}
  8840   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8841   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8842   ins_pipe(ialu_cconly_reg_reg);
  8843 %}
  8845 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8846   match(Set icc (CmpU op1 op2));
  8848   size(4);
  8849   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8850   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8851   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8852   ins_pipe(ialu_cconly_reg_imm);
  8853 %}
  8855 // Compare Pointers
  8856 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8857   match(Set pcc (CmpP op1 op2));
  8859   size(4);
  8860   format %{ "CMP    $op1,$op2\t! ptr" %}
  8861   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8862   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8863   ins_pipe(ialu_cconly_reg_reg);
  8864 %}
  8866 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8867   match(Set pcc (CmpP op1 op2));
  8869   size(4);
  8870   format %{ "CMP    $op1,$op2\t! ptr" %}
  8871   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8872   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8873   ins_pipe(ialu_cconly_reg_imm);
  8874 %}
  8876 // Compare Narrow oops
  8877 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8878   match(Set icc (CmpN op1 op2));
  8880   size(4);
  8881   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8882   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8883   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8884   ins_pipe(ialu_cconly_reg_reg);
  8885 %}
  8887 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8888   match(Set icc (CmpN op1 op2));
  8890   size(4);
  8891   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8892   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8893   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8894   ins_pipe(ialu_cconly_reg_imm);
  8895 %}
  8897 //----------Max and Min--------------------------------------------------------
  8898 // Min Instructions
  8899 // Conditional move for min
  8900 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8901   effect( USE_DEF op2, USE op1, USE icc );
  8903   size(4);
  8904   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8905   opcode(Assembler::less);
  8906   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8907   ins_pipe(ialu_reg_flags);
  8908 %}
  8910 // Min Register with Register.
  8911 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8912   match(Set op2 (MinI op1 op2));
  8913   ins_cost(DEFAULT_COST*2);
  8914   expand %{
  8915     flagsReg icc;
  8916     compI_iReg(icc,op1,op2);
  8917     cmovI_reg_lt(op2,op1,icc);
  8918   %}
  8919 %}
  8921 // Max Instructions
  8922 // Conditional move for max
  8923 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8924   effect( USE_DEF op2, USE op1, USE icc );
  8925   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8926   opcode(Assembler::greater);
  8927   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8928   ins_pipe(ialu_reg_flags);
  8929 %}
  8931 // Max Register with Register
  8932 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8933   match(Set op2 (MaxI op1 op2));
  8934   ins_cost(DEFAULT_COST*2);
  8935   expand %{
  8936     flagsReg icc;
  8937     compI_iReg(icc,op1,op2);
  8938     cmovI_reg_gt(op2,op1,icc);
  8939   %}
  8940 %}
  8943 //----------Float Compares----------------------------------------------------
  8944 // Compare floating, generate condition code
  8945 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  8946   match(Set fcc (CmpF src1 src2));
  8948   size(4);
  8949   format %{ "FCMPs  $fcc,$src1,$src2" %}
  8950   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  8951   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  8952   ins_pipe(faddF_fcc_reg_reg_zero);
  8953 %}
  8955 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  8956   match(Set fcc (CmpD src1 src2));
  8958   size(4);
  8959   format %{ "FCMPd  $fcc,$src1,$src2" %}
  8960   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  8961   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  8962   ins_pipe(faddD_fcc_reg_reg_zero);
  8963 %}
  8966 // Compare floating, generate -1,0,1
  8967 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  8968   match(Set dst (CmpF3 src1 src2));
  8969   effect(KILL fcc0);
  8970   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8971   format %{ "fcmpl  $dst,$src1,$src2" %}
  8972   // Primary = float
  8973   opcode( true );
  8974   ins_encode( floating_cmp( dst, src1, src2 ) );
  8975   ins_pipe( floating_cmp );
  8976 %}
  8978 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  8979   match(Set dst (CmpD3 src1 src2));
  8980   effect(KILL fcc0);
  8981   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8982   format %{ "dcmpl  $dst,$src1,$src2" %}
  8983   // Primary = double (not float)
  8984   opcode( false );
  8985   ins_encode( floating_cmp( dst, src1, src2 ) );
  8986   ins_pipe( floating_cmp );
  8987 %}
  8989 //----------Branches---------------------------------------------------------
  8990 // Jump
  8991 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  8992 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  8993   match(Jump switch_val);
  8994   effect(TEMP table);
  8996   ins_cost(350);
  8998   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  8999              "LD     [O7 + $switch_val], O7\n\t"
  9000              "JUMP   O7" %}
  9001   ins_encode %{
  9002     // Calculate table address into a register.
  9003     Register table_reg;
  9004     Register label_reg = O7;
  9005     // If we are calculating the size of this instruction don't trust
  9006     // zero offsets because they might change when
  9007     // MachConstantBaseNode decides to optimize the constant table
  9008     // base.
  9009     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9010       table_reg = $constanttablebase;
  9011     } else {
  9012       table_reg = O7;
  9013       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9014       __ add($constanttablebase, con_offset, table_reg);
  9017     // Jump to base address + switch value
  9018     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9019     __ jmp(label_reg, G0);
  9020     __ delayed()->nop();
  9021   %}
  9022   ins_pipe(ialu_reg_reg);
  9023 %}
  9025 // Direct Branch.  Use V8 version with longer range.
  9026 instruct branch(label labl) %{
  9027   match(Goto);
  9028   effect(USE labl);
  9030   size(8);
  9031   ins_cost(BRANCH_COST);
  9032   format %{ "BA     $labl" %}
  9033   ins_encode %{
  9034     Label* L = $labl$$label;
  9035     __ ba(*L);
  9036     __ delayed()->nop();
  9037   %}
  9038   ins_pipe(br);
  9039 %}
  9041 // Direct Branch, short with no delay slot
  9042 instruct branch_short(label labl) %{
  9043   match(Goto);
  9044   predicate(UseCBCond);
  9045   effect(USE labl);
  9047   size(4);
  9048   ins_cost(BRANCH_COST);
  9049   format %{ "BA     $labl\t! short branch" %}
  9050   ins_encode %{ 
  9051     Label* L = $labl$$label;
  9052     assert(__ use_cbcond(*L), "back to back cbcond");
  9053     __ ba_short(*L);
  9054   %}
  9055   ins_short_branch(1);
  9056   ins_avoid_back_to_back(1);
  9057   ins_pipe(cbcond_reg_imm);
  9058 %}
  9060 // Conditional Direct Branch
  9061 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9062   match(If cmp icc);
  9063   effect(USE labl);
  9065   size(8);
  9066   ins_cost(BRANCH_COST);
  9067   format %{ "BP$cmp   $icc,$labl" %}
  9068   // Prim = bits 24-22, Secnd = bits 31-30
  9069   ins_encode( enc_bp( labl, cmp, icc ) );
  9070   ins_pipe(br_cc);
  9071 %}
  9073 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9074   match(If cmp icc);
  9075   effect(USE labl);
  9077   ins_cost(BRANCH_COST);
  9078   format %{ "BP$cmp  $icc,$labl" %}
  9079   // Prim = bits 24-22, Secnd = bits 31-30
  9080   ins_encode( enc_bp( labl, cmp, icc ) );
  9081   ins_pipe(br_cc);
  9082 %}
  9084 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9085   match(If cmp pcc);
  9086   effect(USE labl);
  9088   size(8);
  9089   ins_cost(BRANCH_COST);
  9090   format %{ "BP$cmp  $pcc,$labl" %}
  9091   ins_encode %{
  9092     Label* L = $labl$$label;
  9093     Assembler::Predict predict_taken =
  9094       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9096     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9097     __ delayed()->nop();
  9098   %}
  9099   ins_pipe(br_cc);
  9100 %}
  9102 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9103   match(If cmp fcc);
  9104   effect(USE labl);
  9106   size(8);
  9107   ins_cost(BRANCH_COST);
  9108   format %{ "FBP$cmp $fcc,$labl" %}
  9109   ins_encode %{
  9110     Label* L = $labl$$label;
  9111     Assembler::Predict predict_taken =
  9112       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9114     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9115     __ delayed()->nop();
  9116   %}
  9117   ins_pipe(br_fcc);
  9118 %}
  9120 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9121   match(CountedLoopEnd cmp icc);
  9122   effect(USE labl);
  9124   size(8);
  9125   ins_cost(BRANCH_COST);
  9126   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9127   // Prim = bits 24-22, Secnd = bits 31-30
  9128   ins_encode( enc_bp( labl, cmp, icc ) );
  9129   ins_pipe(br_cc);
  9130 %}
  9132 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9133   match(CountedLoopEnd cmp icc);
  9134   effect(USE labl);
  9136   size(8);
  9137   ins_cost(BRANCH_COST);
  9138   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9139   // Prim = bits 24-22, Secnd = bits 31-30
  9140   ins_encode( enc_bp( labl, cmp, icc ) );
  9141   ins_pipe(br_cc);
  9142 %}
  9144 // Compare and branch instructions
  9145 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9146   match(If cmp (CmpI op1 op2));
  9147   effect(USE labl, KILL icc);
  9149   size(12);
  9150   ins_cost(BRANCH_COST);
  9151   format %{ "CMP    $op1,$op2\t! int\n\t"
  9152             "BP$cmp   $labl" %}
  9153   ins_encode %{
  9154     Label* L = $labl$$label;
  9155     Assembler::Predict predict_taken =
  9156       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9157     __ cmp($op1$$Register, $op2$$Register);
  9158     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9159     __ delayed()->nop();
  9160   %}
  9161   ins_pipe(cmp_br_reg_reg);
  9162 %}
  9164 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9165   match(If cmp (CmpI op1 op2));
  9166   effect(USE labl, KILL icc);
  9168   size(12);
  9169   ins_cost(BRANCH_COST);
  9170   format %{ "CMP    $op1,$op2\t! int\n\t"
  9171             "BP$cmp   $labl" %}
  9172   ins_encode %{
  9173     Label* L = $labl$$label;
  9174     Assembler::Predict predict_taken =
  9175       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9176     __ cmp($op1$$Register, $op2$$constant);
  9177     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9178     __ delayed()->nop();
  9179   %}
  9180   ins_pipe(cmp_br_reg_imm);
  9181 %}
  9183 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9184   match(If cmp (CmpU op1 op2));
  9185   effect(USE labl, KILL icc);
  9187   size(12);
  9188   ins_cost(BRANCH_COST);
  9189   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9190             "BP$cmp  $labl" %}
  9191   ins_encode %{
  9192     Label* L = $labl$$label;
  9193     Assembler::Predict predict_taken =
  9194       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9195     __ cmp($op1$$Register, $op2$$Register);
  9196     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9197     __ delayed()->nop();
  9198   %}
  9199   ins_pipe(cmp_br_reg_reg);
  9200 %}
  9202 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9203   match(If cmp (CmpU op1 op2));
  9204   effect(USE labl, KILL icc);
  9206   size(12);
  9207   ins_cost(BRANCH_COST);
  9208   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9209             "BP$cmp  $labl" %}
  9210   ins_encode %{
  9211     Label* L = $labl$$label;
  9212     Assembler::Predict predict_taken =
  9213       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9214     __ cmp($op1$$Register, $op2$$constant);
  9215     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9216     __ delayed()->nop();
  9217   %}
  9218   ins_pipe(cmp_br_reg_imm);
  9219 %}
  9221 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9222   match(If cmp (CmpL op1 op2));
  9223   effect(USE labl, KILL xcc);
  9225   size(12);
  9226   ins_cost(BRANCH_COST);
  9227   format %{ "CMP    $op1,$op2\t! long\n\t"
  9228             "BP$cmp   $labl" %}
  9229   ins_encode %{
  9230     Label* L = $labl$$label;
  9231     Assembler::Predict predict_taken =
  9232       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9233     __ cmp($op1$$Register, $op2$$Register);
  9234     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9235     __ delayed()->nop();
  9236   %}
  9237   ins_pipe(cmp_br_reg_reg);
  9238 %}
  9240 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9241   match(If cmp (CmpL op1 op2));
  9242   effect(USE labl, KILL xcc);
  9244   size(12);
  9245   ins_cost(BRANCH_COST);
  9246   format %{ "CMP    $op1,$op2\t! long\n\t"
  9247             "BP$cmp   $labl" %}
  9248   ins_encode %{
  9249     Label* L = $labl$$label;
  9250     Assembler::Predict predict_taken =
  9251       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9252     __ cmp($op1$$Register, $op2$$constant);
  9253     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9254     __ delayed()->nop();
  9255   %}
  9256   ins_pipe(cmp_br_reg_imm);
  9257 %}
  9259 // Compare Pointers and branch
  9260 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9261   match(If cmp (CmpP op1 op2));
  9262   effect(USE labl, KILL pcc);
  9264   size(12);
  9265   ins_cost(BRANCH_COST);
  9266   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9267             "B$cmp   $labl" %}
  9268   ins_encode %{
  9269     Label* L = $labl$$label;
  9270     Assembler::Predict predict_taken =
  9271       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9272     __ cmp($op1$$Register, $op2$$Register);
  9273     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9274     __ delayed()->nop();
  9275   %}
  9276   ins_pipe(cmp_br_reg_reg);
  9277 %}
  9279 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9280   match(If cmp (CmpP op1 null));
  9281   effect(USE labl, KILL pcc);
  9283   size(12);
  9284   ins_cost(BRANCH_COST);
  9285   format %{ "CMP    $op1,0\t! ptr\n\t"
  9286             "B$cmp   $labl" %}
  9287   ins_encode %{
  9288     Label* L = $labl$$label;
  9289     Assembler::Predict predict_taken =
  9290       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9291     __ cmp($op1$$Register, G0);
  9292     // bpr() is not used here since it has shorter distance.
  9293     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9294     __ delayed()->nop();
  9295   %}
  9296   ins_pipe(cmp_br_reg_reg);
  9297 %}
  9299 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9300   match(If cmp (CmpN op1 op2));
  9301   effect(USE labl, KILL icc);
  9303   size(12);
  9304   ins_cost(BRANCH_COST);
  9305   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9306             "BP$cmp   $labl" %}
  9307   ins_encode %{
  9308     Label* L = $labl$$label;
  9309     Assembler::Predict predict_taken =
  9310       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9311     __ cmp($op1$$Register, $op2$$Register);
  9312     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9313     __ delayed()->nop();
  9314   %}
  9315   ins_pipe(cmp_br_reg_reg);
  9316 %}
  9318 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9319   match(If cmp (CmpN op1 null));
  9320   effect(USE labl, KILL icc);
  9322   size(12);
  9323   ins_cost(BRANCH_COST);
  9324   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9325             "BP$cmp   $labl" %}
  9326   ins_encode %{
  9327     Label* L = $labl$$label;
  9328     Assembler::Predict predict_taken =
  9329       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9330     __ cmp($op1$$Register, G0);
  9331     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9332     __ delayed()->nop();
  9333   %}
  9334   ins_pipe(cmp_br_reg_reg);
  9335 %}
  9337 // Loop back branch
  9338 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9339   match(CountedLoopEnd cmp (CmpI op1 op2));
  9340   effect(USE labl, KILL icc);
  9342   size(12);
  9343   ins_cost(BRANCH_COST);
  9344   format %{ "CMP    $op1,$op2\t! int\n\t"
  9345             "BP$cmp   $labl\t! Loop end" %}
  9346   ins_encode %{
  9347     Label* L = $labl$$label;
  9348     Assembler::Predict predict_taken =
  9349       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9350     __ cmp($op1$$Register, $op2$$Register);
  9351     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9352     __ delayed()->nop();
  9353   %}
  9354   ins_pipe(cmp_br_reg_reg);
  9355 %}
  9357 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9358   match(CountedLoopEnd cmp (CmpI op1 op2));
  9359   effect(USE labl, KILL icc);
  9361   size(12);
  9362   ins_cost(BRANCH_COST);
  9363   format %{ "CMP    $op1,$op2\t! int\n\t"
  9364             "BP$cmp   $labl\t! Loop end" %}
  9365   ins_encode %{
  9366     Label* L = $labl$$label;
  9367     Assembler::Predict predict_taken =
  9368       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9369     __ cmp($op1$$Register, $op2$$constant);
  9370     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9371     __ delayed()->nop();
  9372   %}
  9373   ins_pipe(cmp_br_reg_imm);
  9374 %}
  9376 // Short compare and branch instructions
  9377 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9378   match(If cmp (CmpI op1 op2));
  9379   predicate(UseCBCond);
  9380   effect(USE labl, KILL icc);
  9382   size(4);
  9383   ins_cost(BRANCH_COST);
  9384   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9385   ins_encode %{
  9386     Label* L = $labl$$label;
  9387     assert(__ use_cbcond(*L), "back to back cbcond");
  9388     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9389   %}
  9390   ins_short_branch(1);
  9391   ins_avoid_back_to_back(1);
  9392   ins_pipe(cbcond_reg_reg);
  9393 %}
  9395 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9396   match(If cmp (CmpI op1 op2));
  9397   predicate(UseCBCond);
  9398   effect(USE labl, KILL icc);
  9400   size(4);
  9401   ins_cost(BRANCH_COST);
  9402   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9403   ins_encode %{
  9404     Label* L = $labl$$label;
  9405     assert(__ use_cbcond(*L), "back to back cbcond");
  9406     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9407   %}
  9408   ins_short_branch(1);
  9409   ins_avoid_back_to_back(1);
  9410   ins_pipe(cbcond_reg_imm);
  9411 %}
  9413 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9414   match(If cmp (CmpU op1 op2));
  9415   predicate(UseCBCond);
  9416   effect(USE labl, KILL icc);
  9418   size(4);
  9419   ins_cost(BRANCH_COST);
  9420   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9421   ins_encode %{
  9422     Label* L = $labl$$label;
  9423     assert(__ use_cbcond(*L), "back to back cbcond");
  9424     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9425   %}
  9426   ins_short_branch(1);
  9427   ins_avoid_back_to_back(1);
  9428   ins_pipe(cbcond_reg_reg);
  9429 %}
  9431 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9432   match(If cmp (CmpU op1 op2));
  9433   predicate(UseCBCond);
  9434   effect(USE labl, KILL icc);
  9436   size(4);
  9437   ins_cost(BRANCH_COST);
  9438   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9439   ins_encode %{
  9440     Label* L = $labl$$label;
  9441     assert(__ use_cbcond(*L), "back to back cbcond");
  9442     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9443   %}
  9444   ins_short_branch(1);
  9445   ins_avoid_back_to_back(1);
  9446   ins_pipe(cbcond_reg_imm);
  9447 %}
  9449 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9450   match(If cmp (CmpL op1 op2));
  9451   predicate(UseCBCond);
  9452   effect(USE labl, KILL xcc);
  9454   size(4);
  9455   ins_cost(BRANCH_COST);
  9456   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9457   ins_encode %{
  9458     Label* L = $labl$$label;
  9459     assert(__ use_cbcond(*L), "back to back cbcond");
  9460     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9461   %}
  9462   ins_short_branch(1);
  9463   ins_avoid_back_to_back(1);
  9464   ins_pipe(cbcond_reg_reg);
  9465 %}
  9467 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9468   match(If cmp (CmpL op1 op2));
  9469   predicate(UseCBCond);
  9470   effect(USE labl, KILL xcc);
  9472   size(4);
  9473   ins_cost(BRANCH_COST);
  9474   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9475   ins_encode %{
  9476     Label* L = $labl$$label;
  9477     assert(__ use_cbcond(*L), "back to back cbcond");
  9478     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9479   %}
  9480   ins_short_branch(1);
  9481   ins_avoid_back_to_back(1);
  9482   ins_pipe(cbcond_reg_imm);
  9483 %}
  9485 // Compare Pointers and branch
  9486 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9487   match(If cmp (CmpP op1 op2));
  9488   predicate(UseCBCond);
  9489   effect(USE labl, KILL pcc);
  9491   size(4);
  9492   ins_cost(BRANCH_COST);
  9493 #ifdef _LP64
  9494   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9495 #else
  9496   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9497 #endif
  9498   ins_encode %{
  9499     Label* L = $labl$$label;
  9500     assert(__ use_cbcond(*L), "back to back cbcond");
  9501     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9502   %}
  9503   ins_short_branch(1);
  9504   ins_avoid_back_to_back(1);
  9505   ins_pipe(cbcond_reg_reg);
  9506 %}
  9508 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9509   match(If cmp (CmpP op1 null));
  9510   predicate(UseCBCond);
  9511   effect(USE labl, KILL pcc);
  9513   size(4);
  9514   ins_cost(BRANCH_COST);
  9515 #ifdef _LP64
  9516   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9517 #else
  9518   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9519 #endif
  9520   ins_encode %{
  9521     Label* L = $labl$$label;
  9522     assert(__ use_cbcond(*L), "back to back cbcond");
  9523     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9524   %}
  9525   ins_short_branch(1);
  9526   ins_avoid_back_to_back(1);
  9527   ins_pipe(cbcond_reg_reg);
  9528 %}
  9530 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9531   match(If cmp (CmpN op1 op2));
  9532   predicate(UseCBCond);
  9533   effect(USE labl, KILL icc);
  9535   size(4);
  9536   ins_cost(BRANCH_COST);
  9537   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9538   ins_encode %{
  9539     Label* L = $labl$$label;
  9540     assert(__ use_cbcond(*L), "back to back cbcond");
  9541     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9542   %}
  9543   ins_short_branch(1);
  9544   ins_avoid_back_to_back(1);
  9545   ins_pipe(cbcond_reg_reg);
  9546 %}
  9548 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9549   match(If cmp (CmpN op1 null));
  9550   predicate(UseCBCond);
  9551   effect(USE labl, KILL icc);
  9553   size(4);
  9554   ins_cost(BRANCH_COST);
  9555   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9556   ins_encode %{
  9557     Label* L = $labl$$label;
  9558     assert(__ use_cbcond(*L), "back to back cbcond");
  9559     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9560   %}
  9561   ins_short_branch(1);
  9562   ins_avoid_back_to_back(1);
  9563   ins_pipe(cbcond_reg_reg);
  9564 %}
  9566 // Loop back branch
  9567 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9568   match(CountedLoopEnd cmp (CmpI op1 op2));
  9569   predicate(UseCBCond);
  9570   effect(USE labl, KILL icc);
  9572   size(4);
  9573   ins_cost(BRANCH_COST);
  9574   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9575   ins_encode %{
  9576     Label* L = $labl$$label;
  9577     assert(__ use_cbcond(*L), "back to back cbcond");
  9578     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9579   %}
  9580   ins_short_branch(1);
  9581   ins_avoid_back_to_back(1);
  9582   ins_pipe(cbcond_reg_reg);
  9583 %}
  9585 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9586   match(CountedLoopEnd cmp (CmpI op1 op2));
  9587   predicate(UseCBCond);
  9588   effect(USE labl, KILL icc);
  9590   size(4);
  9591   ins_cost(BRANCH_COST);
  9592   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9593   ins_encode %{
  9594     Label* L = $labl$$label;
  9595     assert(__ use_cbcond(*L), "back to back cbcond");
  9596     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9597   %}
  9598   ins_short_branch(1);
  9599   ins_avoid_back_to_back(1);
  9600   ins_pipe(cbcond_reg_imm);
  9601 %}
  9603 // Branch-on-register tests all 64 bits.  We assume that values
  9604 // in 64-bit registers always remains zero or sign extended
  9605 // unless our code munges the high bits.  Interrupts can chop
  9606 // the high order bits to zero or sign at any time.
  9607 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9608   match(If cmp (CmpI op1 zero));
  9609   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9610   effect(USE labl);
  9612   size(8);
  9613   ins_cost(BRANCH_COST);
  9614   format %{ "BR$cmp   $op1,$labl" %}
  9615   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9616   ins_pipe(br_reg);
  9617 %}
  9619 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9620   match(If cmp (CmpP op1 null));
  9621   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9622   effect(USE labl);
  9624   size(8);
  9625   ins_cost(BRANCH_COST);
  9626   format %{ "BR$cmp   $op1,$labl" %}
  9627   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9628   ins_pipe(br_reg);
  9629 %}
  9631 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9632   match(If cmp (CmpL op1 zero));
  9633   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9634   effect(USE labl);
  9636   size(8);
  9637   ins_cost(BRANCH_COST);
  9638   format %{ "BR$cmp   $op1,$labl" %}
  9639   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9640   ins_pipe(br_reg);
  9641 %}
  9644 // ============================================================================
  9645 // Long Compare
  9646 //
  9647 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9648 // is tricky.  The flavor of compare used depends on whether we are testing
  9649 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9650 // The GE test is the negated LT test.  The LE test can be had by commuting
  9651 // the operands (yielding a GE test) and then negating; negate again for the
  9652 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9653 // NE test is negated from that.
  9655 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9656 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9657 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9658 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9659 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9660 // foo match ends up with the wrong leaf.  One fix is to not match both
  9661 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9662 // both forms beat the trinary form of long-compare and both are very useful
  9663 // on Intel which has so few registers.
  9665 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9666   match(If cmp xcc);
  9667   effect(USE labl);
  9669   size(8);
  9670   ins_cost(BRANCH_COST);
  9671   format %{ "BP$cmp   $xcc,$labl" %}
  9672   ins_encode %{
  9673     Label* L = $labl$$label;
  9674     Assembler::Predict predict_taken =
  9675       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9677     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9678     __ delayed()->nop();
  9679   %}
  9680   ins_pipe(br_cc);
  9681 %}
  9683 // Manifest a CmpL3 result in an integer register.  Very painful.
  9684 // This is the test to avoid.
  9685 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9686   match(Set dst (CmpL3 src1 src2) );
  9687   effect( KILL ccr );
  9688   ins_cost(6*DEFAULT_COST);
  9689   size(24);
  9690   format %{ "CMP    $src1,$src2\t\t! long\n"
  9691           "\tBLT,a,pn done\n"
  9692           "\tMOV    -1,$dst\t! delay slot\n"
  9693           "\tBGT,a,pn done\n"
  9694           "\tMOV    1,$dst\t! delay slot\n"
  9695           "\tCLR    $dst\n"
  9696     "done:"     %}
  9697   ins_encode( cmpl_flag(src1,src2,dst) );
  9698   ins_pipe(cmpL_reg);
  9699 %}
  9701 // Conditional move
  9702 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9703   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9704   ins_cost(150);
  9705   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9706   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9707   ins_pipe(ialu_reg);
  9708 %}
  9710 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9711   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9712   ins_cost(140);
  9713   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9714   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9715   ins_pipe(ialu_imm);
  9716 %}
  9718 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9719   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9720   ins_cost(150);
  9721   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9722   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9723   ins_pipe(ialu_reg);
  9724 %}
  9726 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9727   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9728   ins_cost(140);
  9729   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9730   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9731   ins_pipe(ialu_imm);
  9732 %}
  9734 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9735   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9736   ins_cost(150);
  9737   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9738   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9739   ins_pipe(ialu_reg);
  9740 %}
  9742 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9743   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9744   ins_cost(150);
  9745   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9746   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9747   ins_pipe(ialu_reg);
  9748 %}
  9750 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9751   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9752   ins_cost(140);
  9753   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9754   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9755   ins_pipe(ialu_imm);
  9756 %}
  9758 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9759   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9760   ins_cost(150);
  9761   opcode(0x101);
  9762   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9763   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9764   ins_pipe(int_conditional_float_move);
  9765 %}
  9767 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9768   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9769   ins_cost(150);
  9770   opcode(0x102);
  9771   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9772   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9773   ins_pipe(int_conditional_float_move);
  9774 %}
  9776 // ============================================================================
  9777 // Safepoint Instruction
  9778 instruct safePoint_poll(iRegP poll) %{
  9779   match(SafePoint poll);
  9780   effect(USE poll);
  9782   size(4);
  9783 #ifdef _LP64
  9784   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9785 #else
  9786   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9787 #endif
  9788   ins_encode %{
  9789     __ relocate(relocInfo::poll_type);
  9790     __ ld_ptr($poll$$Register, 0, G0);
  9791   %}
  9792   ins_pipe(loadPollP);
  9793 %}
  9795 // ============================================================================
  9796 // Call Instructions
  9797 // Call Java Static Instruction
  9798 instruct CallStaticJavaDirect( method meth ) %{
  9799   match(CallStaticJava);
  9800   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9801   effect(USE meth);
  9803   size(8);
  9804   ins_cost(CALL_COST);
  9805   format %{ "CALL,static  ; NOP ==> " %}
  9806   ins_encode( Java_Static_Call( meth ), call_epilog );
  9807   ins_pipe(simple_call);
  9808 %}
  9810 // Call Java Static Instruction (method handle version)
  9811 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9812   match(CallStaticJava);
  9813   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9814   effect(USE meth, KILL l7_mh_SP_save);
  9816   size(16);
  9817   ins_cost(CALL_COST);
  9818   format %{ "CALL,static/MethodHandle" %}
  9819   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9820   ins_pipe(simple_call);
  9821 %}
  9823 // Call Java Dynamic Instruction
  9824 instruct CallDynamicJavaDirect( method meth ) %{
  9825   match(CallDynamicJava);
  9826   effect(USE meth);
  9828   ins_cost(CALL_COST);
  9829   format %{ "SET    (empty),R_G5\n\t"
  9830             "CALL,dynamic  ; NOP ==> " %}
  9831   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9832   ins_pipe(call);
  9833 %}
  9835 // Call Runtime Instruction
  9836 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9837   match(CallRuntime);
  9838   effect(USE meth, KILL l7);
  9839   ins_cost(CALL_COST);
  9840   format %{ "CALL,runtime" %}
  9841   ins_encode( Java_To_Runtime( meth ),
  9842               call_epilog, adjust_long_from_native_call );
  9843   ins_pipe(simple_call);
  9844 %}
  9846 // Call runtime without safepoint - same as CallRuntime
  9847 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9848   match(CallLeaf);
  9849   effect(USE meth, KILL l7);
  9850   ins_cost(CALL_COST);
  9851   format %{ "CALL,runtime leaf" %}
  9852   ins_encode( Java_To_Runtime( meth ),
  9853               call_epilog,
  9854               adjust_long_from_native_call );
  9855   ins_pipe(simple_call);
  9856 %}
  9858 // Call runtime without safepoint - same as CallLeaf
  9859 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9860   match(CallLeafNoFP);
  9861   effect(USE meth, KILL l7);
  9862   ins_cost(CALL_COST);
  9863   format %{ "CALL,runtime leaf nofp" %}
  9864   ins_encode( Java_To_Runtime( meth ),
  9865               call_epilog,
  9866               adjust_long_from_native_call );
  9867   ins_pipe(simple_call);
  9868 %}
  9870 // Tail Call; Jump from runtime stub to Java code.
  9871 // Also known as an 'interprocedural jump'.
  9872 // Target of jump will eventually return to caller.
  9873 // TailJump below removes the return address.
  9874 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9875   match(TailCall jump_target method_oop );
  9877   ins_cost(CALL_COST);
  9878   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9879   ins_encode(form_jmpl(jump_target));
  9880   ins_pipe(tail_call);
  9881 %}
  9884 // Return Instruction
  9885 instruct Ret() %{
  9886   match(Return);
  9888   // The epilogue node did the ret already.
  9889   size(0);
  9890   format %{ "! return" %}
  9891   ins_encode();
  9892   ins_pipe(empty);
  9893 %}
  9896 // Tail Jump; remove the return address; jump to target.
  9897 // TailCall above leaves the return address around.
  9898 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  9899 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  9900 // "restore" before this instruction (in Epilogue), we need to materialize it
  9901 // in %i0.
  9902 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  9903   match( TailJump jump_target ex_oop );
  9904   ins_cost(CALL_COST);
  9905   format %{ "! discard R_O7\n\t"
  9906             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  9907   ins_encode(form_jmpl_set_exception_pc(jump_target));
  9908   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  9909   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  9910   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  9911   ins_pipe(tail_call);
  9912 %}
  9914 // Create exception oop: created by stack-crawling runtime code.
  9915 // Created exception is now available to this handler, and is setup
  9916 // just prior to jumping to this handler.  No code emitted.
  9917 instruct CreateException( o0RegP ex_oop )
  9918 %{
  9919   match(Set ex_oop (CreateEx));
  9920   ins_cost(0);
  9922   size(0);
  9923   // use the following format syntax
  9924   format %{ "! exception oop is in R_O0; no code emitted" %}
  9925   ins_encode();
  9926   ins_pipe(empty);
  9927 %}
  9930 // Rethrow exception:
  9931 // The exception oop will come in the first argument position.
  9932 // Then JUMP (not call) to the rethrow stub code.
  9933 instruct RethrowException()
  9934 %{
  9935   match(Rethrow);
  9936   ins_cost(CALL_COST);
  9938   // use the following format syntax
  9939   format %{ "Jmp    rethrow_stub" %}
  9940   ins_encode(enc_rethrow);
  9941   ins_pipe(tail_call);
  9942 %}
  9945 // Die now
  9946 instruct ShouldNotReachHere( )
  9947 %{
  9948   match(Halt);
  9949   ins_cost(CALL_COST);
  9951   size(4);
  9952   // Use the following format syntax
  9953   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  9954   ins_encode( form2_illtrap() );
  9955   ins_pipe(tail_call);
  9956 %}
  9958 // ============================================================================
  9959 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  9960 // array for an instance of the superklass.  Set a hidden internal cache on a
  9961 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
  9962 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  9963 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  9964   match(Set index (PartialSubtypeCheck sub super));
  9965   effect( KILL pcc, KILL o7 );
  9966   ins_cost(DEFAULT_COST*10);
  9967   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  9968   ins_encode( enc_PartialSubtypeCheck() );
  9969   ins_pipe(partial_subtype_check_pipe);
  9970 %}
  9972 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  9973   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  9974   effect( KILL idx, KILL o7 );
  9975   ins_cost(DEFAULT_COST*10);
  9976   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  9977   ins_encode( enc_PartialSubtypeCheck() );
  9978   ins_pipe(partial_subtype_check_pipe);
  9979 %}
  9982 // ============================================================================
  9983 // inlined locking and unlocking
  9985 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
  9986   match(Set pcc (FastLock object box));
  9988   effect(TEMP scratch2, USE_KILL box, KILL scratch);
  9989   ins_cost(100);
  9991   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
  9992   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  9993   ins_pipe(long_memory_op);
  9994 %}
  9997 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
  9998   match(Set pcc (FastUnlock object box));
  9999   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10000   ins_cost(100);
 10002   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10003   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10004   ins_pipe(long_memory_op);
 10005 %}
 10007 // The encodings are generic.
 10008 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10009   predicate(!use_block_zeroing(n->in(2)) );
 10010   match(Set dummy (ClearArray cnt base));
 10011   effect(TEMP temp, KILL ccr);
 10012   ins_cost(300);
 10013   format %{ "MOV    $cnt,$temp\n"
 10014     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10015     "        BRge   loop\t\t! Clearing loop\n"
 10016     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10018   ins_encode %{
 10019     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10020     Register nof_bytes_arg    = $cnt$$Register;
 10021     Register nof_bytes_tmp    = $temp$$Register;
 10022     Register base_pointer_arg = $base$$Register;
 10024     Label loop;
 10025     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10027     // Loop and clear, walking backwards through the array.
 10028     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10029     __ bind(loop);
 10030     __ deccc(nof_bytes_tmp, 8);
 10031     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10032     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10033     // %%%% this mini-loop must not cross a cache boundary!
 10034   %}
 10035   ins_pipe(long_memory_op);
 10036 %}
 10038 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10039   predicate(use_block_zeroing(n->in(2)));
 10040   match(Set dummy (ClearArray cnt base));
 10041   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10042   ins_cost(300);
 10043   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10045   ins_encode %{
 10047     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10048     Register to    = $base$$Register;
 10049     Register count = $cnt$$Register;
 10051     Label Ldone;
 10052     __ nop(); // Separate short branches
 10053     // Use BIS for zeroing (temp is not used).
 10054     __ bis_zeroing(to, count, G0, Ldone);
 10055     __ bind(Ldone);
 10057   %}
 10058   ins_pipe(long_memory_op);
 10059 %}
 10061 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10062   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10063   match(Set dummy (ClearArray cnt base));
 10064   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10065   ins_cost(300);
 10066   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10068   ins_encode %{
 10070     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10071     Register to    = $base$$Register;
 10072     Register count = $cnt$$Register;
 10073     Register temp  = $tmp$$Register;
 10075     Label Ldone;
 10076     __ nop(); // Separate short branches
 10077     // Use BIS for zeroing
 10078     __ bis_zeroing(to, count, temp, Ldone);
 10079     __ bind(Ldone);
 10081   %}
 10082   ins_pipe(long_memory_op);
 10083 %}
 10085 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10086                         o7RegI tmp, flagsReg ccr) %{
 10087   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10088   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10089   ins_cost(300);
 10090   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10091   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10092   ins_pipe(long_memory_op);
 10093 %}
 10095 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10096                        o7RegI tmp, flagsReg ccr) %{
 10097   match(Set result (StrEquals (Binary str1 str2) cnt));
 10098   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10099   ins_cost(300);
 10100   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10101   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10102   ins_pipe(long_memory_op);
 10103 %}
 10105 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10106                       o7RegI tmp2, flagsReg ccr) %{
 10107   match(Set result (AryEq ary1 ary2));
 10108   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10109   ins_cost(300);
 10110   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10111   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10112   ins_pipe(long_memory_op);
 10113 %}
 10116 //---------- Zeros Count Instructions ------------------------------------------
 10118 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10119   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10120   match(Set dst (CountLeadingZerosI src));
 10121   effect(TEMP dst, TEMP tmp, KILL cr);
 10123   // x |= (x >> 1);
 10124   // x |= (x >> 2);
 10125   // x |= (x >> 4);
 10126   // x |= (x >> 8);
 10127   // x |= (x >> 16);
 10128   // return (WORDBITS - popc(x));
 10129   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10130             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10131             "OR      $dst,$tmp,$dst\n\t"
 10132             "SRL     $dst,2,$tmp\n\t"
 10133             "OR      $dst,$tmp,$dst\n\t"
 10134             "SRL     $dst,4,$tmp\n\t"
 10135             "OR      $dst,$tmp,$dst\n\t"
 10136             "SRL     $dst,8,$tmp\n\t"
 10137             "OR      $dst,$tmp,$dst\n\t"
 10138             "SRL     $dst,16,$tmp\n\t"
 10139             "OR      $dst,$tmp,$dst\n\t"
 10140             "POPC    $dst,$dst\n\t"
 10141             "MOV     32,$tmp\n\t"
 10142             "SUB     $tmp,$dst,$dst" %}
 10143   ins_encode %{
 10144     Register Rdst = $dst$$Register;
 10145     Register Rsrc = $src$$Register;
 10146     Register Rtmp = $tmp$$Register;
 10147     __ srl(Rsrc, 1,    Rtmp);
 10148     __ srl(Rsrc, 0,    Rdst);
 10149     __ or3(Rdst, Rtmp, Rdst);
 10150     __ srl(Rdst, 2,    Rtmp);
 10151     __ or3(Rdst, Rtmp, Rdst);
 10152     __ srl(Rdst, 4,    Rtmp);
 10153     __ or3(Rdst, Rtmp, Rdst);
 10154     __ srl(Rdst, 8,    Rtmp);
 10155     __ or3(Rdst, Rtmp, Rdst);
 10156     __ srl(Rdst, 16,   Rtmp);
 10157     __ or3(Rdst, Rtmp, Rdst);
 10158     __ popc(Rdst, Rdst);
 10159     __ mov(BitsPerInt, Rtmp);
 10160     __ sub(Rtmp, Rdst, Rdst);
 10161   %}
 10162   ins_pipe(ialu_reg);
 10163 %}
 10165 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10166   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10167   match(Set dst (CountLeadingZerosL src));
 10168   effect(TEMP dst, TEMP tmp, KILL cr);
 10170   // x |= (x >> 1);
 10171   // x |= (x >> 2);
 10172   // x |= (x >> 4);
 10173   // x |= (x >> 8);
 10174   // x |= (x >> 16);
 10175   // x |= (x >> 32);
 10176   // return (WORDBITS - popc(x));
 10177   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10178             "OR      $src,$tmp,$dst\n\t"
 10179             "SRLX    $dst,2,$tmp\n\t"
 10180             "OR      $dst,$tmp,$dst\n\t"
 10181             "SRLX    $dst,4,$tmp\n\t"
 10182             "OR      $dst,$tmp,$dst\n\t"
 10183             "SRLX    $dst,8,$tmp\n\t"
 10184             "OR      $dst,$tmp,$dst\n\t"
 10185             "SRLX    $dst,16,$tmp\n\t"
 10186             "OR      $dst,$tmp,$dst\n\t"
 10187             "SRLX    $dst,32,$tmp\n\t"
 10188             "OR      $dst,$tmp,$dst\n\t"
 10189             "POPC    $dst,$dst\n\t"
 10190             "MOV     64,$tmp\n\t"
 10191             "SUB     $tmp,$dst,$dst" %}
 10192   ins_encode %{
 10193     Register Rdst = $dst$$Register;
 10194     Register Rsrc = $src$$Register;
 10195     Register Rtmp = $tmp$$Register;
 10196     __ srlx(Rsrc, 1,    Rtmp);
 10197     __ or3( Rsrc, Rtmp, Rdst);
 10198     __ srlx(Rdst, 2,    Rtmp);
 10199     __ or3( Rdst, Rtmp, Rdst);
 10200     __ srlx(Rdst, 4,    Rtmp);
 10201     __ or3( Rdst, Rtmp, Rdst);
 10202     __ srlx(Rdst, 8,    Rtmp);
 10203     __ or3( Rdst, Rtmp, Rdst);
 10204     __ srlx(Rdst, 16,   Rtmp);
 10205     __ or3( Rdst, Rtmp, Rdst);
 10206     __ srlx(Rdst, 32,   Rtmp);
 10207     __ or3( Rdst, Rtmp, Rdst);
 10208     __ popc(Rdst, Rdst);
 10209     __ mov(BitsPerLong, Rtmp);
 10210     __ sub(Rtmp, Rdst, Rdst);
 10211   %}
 10212   ins_pipe(ialu_reg);
 10213 %}
 10215 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
 10216   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10217   match(Set dst (CountTrailingZerosI src));
 10218   effect(TEMP dst, KILL cr);
 10220   // return popc(~x & (x - 1));
 10221   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10222             "ANDN    $dst,$src,$dst\n\t"
 10223             "SRL     $dst,R_G0,$dst\n\t"
 10224             "POPC    $dst,$dst" %}
 10225   ins_encode %{
 10226     Register Rdst = $dst$$Register;
 10227     Register Rsrc = $src$$Register;
 10228     __ sub(Rsrc, 1, Rdst);
 10229     __ andn(Rdst, Rsrc, Rdst);
 10230     __ srl(Rdst, G0, Rdst);
 10231     __ popc(Rdst, Rdst);
 10232   %}
 10233   ins_pipe(ialu_reg);
 10234 %}
 10236 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10237   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10238   match(Set dst (CountTrailingZerosL src));
 10239   effect(TEMP dst, KILL cr);
 10241   // return popc(~x & (x - 1));
 10242   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10243             "ANDN    $dst,$src,$dst\n\t"
 10244             "POPC    $dst,$dst" %}
 10245   ins_encode %{
 10246     Register Rdst = $dst$$Register;
 10247     Register Rsrc = $src$$Register;
 10248     __ sub(Rsrc, 1, Rdst);
 10249     __ andn(Rdst, Rsrc, Rdst);
 10250     __ popc(Rdst, Rdst);
 10251   %}
 10252   ins_pipe(ialu_reg);
 10253 %}
 10256 //---------- Population Count Instructions -------------------------------------
 10258 instruct popCountI(iRegI dst, iRegI src) %{
 10259   predicate(UsePopCountInstruction);
 10260   match(Set dst (PopCountI src));
 10262   format %{ "POPC   $src, $dst" %}
 10263   ins_encode %{
 10264     __ popc($src$$Register, $dst$$Register);
 10265   %}
 10266   ins_pipe(ialu_reg);
 10267 %}
 10269 // Note: Long.bitCount(long) returns an int.
 10270 instruct popCountL(iRegI dst, iRegL src) %{
 10271   predicate(UsePopCountInstruction);
 10272   match(Set dst (PopCountL src));
 10274   format %{ "POPC   $src, $dst" %}
 10275   ins_encode %{
 10276     __ popc($src$$Register, $dst$$Register);
 10277   %}
 10278   ins_pipe(ialu_reg);
 10279 %}
 10282 // ============================================================================
 10283 //------------Bytes reverse--------------------------------------------------
 10285 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10286   match(Set dst (ReverseBytesI src));
 10288   // Op cost is artificially doubled to make sure that load or store
 10289   // instructions are preferred over this one which requires a spill
 10290   // onto a stack slot.
 10291   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10292   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10294   ins_encode %{
 10295     __ set($src$$disp + STACK_BIAS, O7);
 10296     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10297   %}
 10298   ins_pipe( iload_mem );
 10299 %}
 10301 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10302   match(Set dst (ReverseBytesL src));
 10304   // Op cost is artificially doubled to make sure that load or store
 10305   // instructions are preferred over this one which requires a spill
 10306   // onto a stack slot.
 10307   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10308   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10310   ins_encode %{
 10311     __ set($src$$disp + STACK_BIAS, O7);
 10312     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10313   %}
 10314   ins_pipe( iload_mem );
 10315 %}
 10317 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10318   match(Set dst (ReverseBytesUS src));
 10320   // Op cost is artificially doubled to make sure that load or store
 10321   // instructions are preferred over this one which requires a spill
 10322   // onto a stack slot.
 10323   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10324   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10326   ins_encode %{
 10327     // the value was spilled as an int so bias the load
 10328     __ set($src$$disp + STACK_BIAS + 2, O7);
 10329     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10330   %}
 10331   ins_pipe( iload_mem );
 10332 %}
 10334 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10335   match(Set dst (ReverseBytesS src));
 10337   // Op cost is artificially doubled to make sure that load or store
 10338   // instructions are preferred over this one which requires a spill
 10339   // onto a stack slot.
 10340   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10341   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10343   ins_encode %{
 10344     // the value was spilled as an int so bias the load
 10345     __ set($src$$disp + STACK_BIAS + 2, O7);
 10346     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10347   %}
 10348   ins_pipe( iload_mem );
 10349 %}
 10351 // Load Integer reversed byte order
 10352 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10353   match(Set dst (ReverseBytesI (LoadI src)));
 10355   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10356   size(4);
 10357   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10359   ins_encode %{
 10360     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10361   %}
 10362   ins_pipe(iload_mem);
 10363 %}
 10365 // Load Long - aligned and reversed
 10366 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10367   match(Set dst (ReverseBytesL (LoadL src)));
 10369   ins_cost(MEMORY_REF_COST);
 10370   size(4);
 10371   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10373   ins_encode %{
 10374     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10375   %}
 10376   ins_pipe(iload_mem);
 10377 %}
 10379 // Load unsigned short / char reversed byte order
 10380 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10381   match(Set dst (ReverseBytesUS (LoadUS src)));
 10383   ins_cost(MEMORY_REF_COST);
 10384   size(4);
 10385   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10387   ins_encode %{
 10388     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10389   %}
 10390   ins_pipe(iload_mem);
 10391 %}
 10393 // Load short reversed byte order
 10394 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10395   match(Set dst (ReverseBytesS (LoadS src)));
 10397   ins_cost(MEMORY_REF_COST);
 10398   size(4);
 10399   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10401   ins_encode %{
 10402     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10403   %}
 10404   ins_pipe(iload_mem);
 10405 %}
 10407 // Store Integer reversed byte order
 10408 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10409   match(Set dst (StoreI dst (ReverseBytesI src)));
 10411   ins_cost(MEMORY_REF_COST);
 10412   size(4);
 10413   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10415   ins_encode %{
 10416     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10417   %}
 10418   ins_pipe(istore_mem_reg);
 10419 %}
 10421 // Store Long reversed byte order
 10422 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10423   match(Set dst (StoreL dst (ReverseBytesL src)));
 10425   ins_cost(MEMORY_REF_COST);
 10426   size(4);
 10427   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10429   ins_encode %{
 10430     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10431   %}
 10432   ins_pipe(istore_mem_reg);
 10433 %}
 10435 // Store unsighed short/char reversed byte order
 10436 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10437   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10439   ins_cost(MEMORY_REF_COST);
 10440   size(4);
 10441   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10443   ins_encode %{
 10444     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10445   %}
 10446   ins_pipe(istore_mem_reg);
 10447 %}
 10449 // Store short reversed byte order
 10450 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10451   match(Set dst (StoreC dst (ReverseBytesS src)));
 10453   ins_cost(MEMORY_REF_COST);
 10454   size(4);
 10455   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10457   ins_encode %{
 10458     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10459   %}
 10460   ins_pipe(istore_mem_reg);
 10461 %}
 10463 // ====================VECTOR INSTRUCTIONS=====================================
 10465 // Load Aligned Packed values into a Double Register
 10466 instruct loadV8(regD dst, memory mem) %{
 10467   predicate(n->as_LoadVector()->memory_size() == 8);
 10468   match(Set dst (LoadVector mem));
 10469   ins_cost(MEMORY_REF_COST);
 10470   size(4);
 10471   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
 10472   ins_encode %{
 10473     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
 10474   %}
 10475   ins_pipe(floadD_mem);
 10476 %}
 10478 // Store Vector in Double register to memory
 10479 instruct storeV8(memory mem, regD src) %{
 10480   predicate(n->as_StoreVector()->memory_size() == 8);
 10481   match(Set mem (StoreVector mem src));
 10482   ins_cost(MEMORY_REF_COST);
 10483   size(4);
 10484   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
 10485   ins_encode %{
 10486     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
 10487   %}
 10488   ins_pipe(fstoreD_mem_reg);
 10489 %}
 10491 // Store Zero into vector in memory
 10492 instruct storeV8B_zero(memory mem, immI0 zero) %{
 10493   predicate(n->as_StoreVector()->memory_size() == 8);
 10494   match(Set mem (StoreVector mem (ReplicateB zero)));
 10495   ins_cost(MEMORY_REF_COST);
 10496   size(4);
 10497   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
 10498   ins_encode %{
 10499     __ stx(G0, $mem$$Address);
 10500   %}
 10501   ins_pipe(fstoreD_mem_zero);
 10502 %}
 10504 instruct storeV4S_zero(memory mem, immI0 zero) %{
 10505   predicate(n->as_StoreVector()->memory_size() == 8);
 10506   match(Set mem (StoreVector mem (ReplicateS zero)));
 10507   ins_cost(MEMORY_REF_COST);
 10508   size(4);
 10509   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
 10510   ins_encode %{
 10511     __ stx(G0, $mem$$Address);
 10512   %}
 10513   ins_pipe(fstoreD_mem_zero);
 10514 %}
 10516 instruct storeV2I_zero(memory mem, immI0 zero) %{
 10517   predicate(n->as_StoreVector()->memory_size() == 8);
 10518   match(Set mem (StoreVector mem (ReplicateI zero)));
 10519   ins_cost(MEMORY_REF_COST);
 10520   size(4);
 10521   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
 10522   ins_encode %{
 10523     __ stx(G0, $mem$$Address);
 10524   %}
 10525   ins_pipe(fstoreD_mem_zero);
 10526 %}
 10528 instruct storeV2F_zero(memory mem, immF0 zero) %{
 10529   predicate(n->as_StoreVector()->memory_size() == 8);
 10530   match(Set mem (StoreVector mem (ReplicateF zero)));
 10531   ins_cost(MEMORY_REF_COST);
 10532   size(4);
 10533   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
 10534   ins_encode %{
 10535     __ stx(G0, $mem$$Address);
 10536   %}
 10537   ins_pipe(fstoreD_mem_zero);
 10538 %}
 10540 // Replicate scalar to packed byte values into Double register
 10541 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10542   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
 10543   match(Set dst (ReplicateB src));
 10544   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10545   format %{ "SLLX  $src,56,$tmp\n\t"
 10546             "SRLX  $tmp, 8,$tmp2\n\t"
 10547             "OR    $tmp,$tmp2,$tmp\n\t"
 10548             "SRLX  $tmp,16,$tmp2\n\t"
 10549             "OR    $tmp,$tmp2,$tmp\n\t"
 10550             "SRLX  $tmp,32,$tmp2\n\t"
 10551             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10552             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10553   ins_encode %{
 10554     Register Rsrc = $src$$Register;
 10555     Register Rtmp = $tmp$$Register;
 10556     Register Rtmp2 = $tmp2$$Register;
 10557     __ sllx(Rsrc,    56, Rtmp);
 10558     __ srlx(Rtmp,     8, Rtmp2);
 10559     __ or3 (Rtmp, Rtmp2, Rtmp);
 10560     __ srlx(Rtmp,    16, Rtmp2);
 10561     __ or3 (Rtmp, Rtmp2, Rtmp);
 10562     __ srlx(Rtmp,    32, Rtmp2);
 10563     __ or3 (Rtmp, Rtmp2, Rtmp);
 10564     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10565   %}
 10566   ins_pipe(ialu_reg);
 10567 %}
 10569 // Replicate scalar to packed byte values into Double stack
 10570 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10571   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
 10572   match(Set dst (ReplicateB src));
 10573   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10574   format %{ "SLLX  $src,56,$tmp\n\t"
 10575             "SRLX  $tmp, 8,$tmp2\n\t"
 10576             "OR    $tmp,$tmp2,$tmp\n\t"
 10577             "SRLX  $tmp,16,$tmp2\n\t"
 10578             "OR    $tmp,$tmp2,$tmp\n\t"
 10579             "SRLX  $tmp,32,$tmp2\n\t"
 10580             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10581             "STX   $tmp,$dst\t! regL to stkD" %}
 10582   ins_encode %{
 10583     Register Rsrc = $src$$Register;
 10584     Register Rtmp = $tmp$$Register;
 10585     Register Rtmp2 = $tmp2$$Register;
 10586     __ sllx(Rsrc,    56, Rtmp);
 10587     __ srlx(Rtmp,     8, Rtmp2);
 10588     __ or3 (Rtmp, Rtmp2, Rtmp);
 10589     __ srlx(Rtmp,    16, Rtmp2);
 10590     __ or3 (Rtmp, Rtmp2, Rtmp);
 10591     __ srlx(Rtmp,    32, Rtmp2);
 10592     __ or3 (Rtmp, Rtmp2, Rtmp);
 10593     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10594     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10595   %}
 10596   ins_pipe(ialu_reg);
 10597 %}
 10599 // Replicate scalar constant to packed byte values in Double register
 10600 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
 10601   predicate(n->as_Vector()->length() == 8);
 10602   match(Set dst (ReplicateB con));
 10603   effect(KILL tmp);
 10604   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
 10605   ins_encode %{
 10606     // XXX This is a quick fix for 6833573.
 10607     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
 10608     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
 10609     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10610   %}
 10611   ins_pipe(loadConFD);
 10612 %}
 10614 // Replicate scalar to packed char/short values into Double register
 10615 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10616   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
 10617   match(Set dst (ReplicateS src));
 10618   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10619   format %{ "SLLX  $src,48,$tmp\n\t"
 10620             "SRLX  $tmp,16,$tmp2\n\t"
 10621             "OR    $tmp,$tmp2,$tmp\n\t"
 10622             "SRLX  $tmp,32,$tmp2\n\t"
 10623             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10624             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10625   ins_encode %{
 10626     Register Rsrc = $src$$Register;
 10627     Register Rtmp = $tmp$$Register;
 10628     Register Rtmp2 = $tmp2$$Register;
 10629     __ sllx(Rsrc,    48, Rtmp);
 10630     __ srlx(Rtmp,    16, Rtmp2);
 10631     __ or3 (Rtmp, Rtmp2, Rtmp);
 10632     __ srlx(Rtmp,    32, Rtmp2);
 10633     __ or3 (Rtmp, Rtmp2, Rtmp);
 10634     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10635   %}
 10636   ins_pipe(ialu_reg);
 10637 %}
 10639 // Replicate scalar to packed char/short values into Double stack
 10640 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10641   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
 10642   match(Set dst (ReplicateS src));
 10643   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10644   format %{ "SLLX  $src,48,$tmp\n\t"
 10645             "SRLX  $tmp,16,$tmp2\n\t"
 10646             "OR    $tmp,$tmp2,$tmp\n\t"
 10647             "SRLX  $tmp,32,$tmp2\n\t"
 10648             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10649             "STX   $tmp,$dst\t! regL to stkD" %}
 10650   ins_encode %{
 10651     Register Rsrc = $src$$Register;
 10652     Register Rtmp = $tmp$$Register;
 10653     Register Rtmp2 = $tmp2$$Register;
 10654     __ sllx(Rsrc,    48, Rtmp);
 10655     __ srlx(Rtmp,    16, Rtmp2);
 10656     __ or3 (Rtmp, Rtmp2, Rtmp);
 10657     __ srlx(Rtmp,    32, Rtmp2);
 10658     __ or3 (Rtmp, Rtmp2, Rtmp);
 10659     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10660     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10661   %}
 10662   ins_pipe(ialu_reg);
 10663 %}
 10665 // Replicate scalar constant to packed char/short values in Double register
 10666 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
 10667   predicate(n->as_Vector()->length() == 4);
 10668   match(Set dst (ReplicateS con));
 10669   effect(KILL tmp);
 10670   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
 10671   ins_encode %{
 10672     // XXX This is a quick fix for 6833573.
 10673     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
 10674     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
 10675     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10676   %}
 10677   ins_pipe(loadConFD);
 10678 %}
 10680 // Replicate scalar to packed int values into Double register
 10681 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10682   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
 10683   match(Set dst (ReplicateI src));
 10684   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10685   format %{ "SLLX  $src,32,$tmp\n\t"
 10686             "SRLX  $tmp,32,$tmp2\n\t"
 10687             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10688             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10689   ins_encode %{
 10690     Register Rsrc = $src$$Register;
 10691     Register Rtmp = $tmp$$Register;
 10692     Register Rtmp2 = $tmp2$$Register;
 10693     __ sllx(Rsrc,    32, Rtmp);
 10694     __ srlx(Rtmp,    32, Rtmp2);
 10695     __ or3 (Rtmp, Rtmp2, Rtmp);
 10696     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10697   %}
 10698   ins_pipe(ialu_reg);
 10699 %}
 10701 // Replicate scalar to packed int values into Double stack
 10702 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10703   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
 10704   match(Set dst (ReplicateI src));
 10705   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10706   format %{ "SLLX  $src,32,$tmp\n\t"
 10707             "SRLX  $tmp,32,$tmp2\n\t"
 10708             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10709             "STX   $tmp,$dst\t! regL to stkD" %}
 10710   ins_encode %{
 10711     Register Rsrc = $src$$Register;
 10712     Register Rtmp = $tmp$$Register;
 10713     Register Rtmp2 = $tmp2$$Register;
 10714     __ sllx(Rsrc,    32, Rtmp);
 10715     __ srlx(Rtmp,    32, Rtmp2);
 10716     __ or3 (Rtmp, Rtmp2, Rtmp);
 10717     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10718     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10719   %}
 10720   ins_pipe(ialu_reg);
 10721 %}
 10723 // Replicate scalar zero constant to packed int values in Double register
 10724 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
 10725   predicate(n->as_Vector()->length() == 2);
 10726   match(Set dst (ReplicateI con));
 10727   effect(KILL tmp);
 10728   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
 10729   ins_encode %{
 10730     // XXX This is a quick fix for 6833573.
 10731     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
 10732     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
 10733     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10734   %}
 10735   ins_pipe(loadConFD);
 10736 %}
 10738 // Replicate scalar to packed float values into Double stack
 10739 instruct Repl2F_stk(stackSlotD dst, regF src) %{
 10740   predicate(n->as_Vector()->length() == 2);
 10741   match(Set dst (ReplicateF src));
 10742   ins_cost(MEMORY_REF_COST*2);
 10743   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
 10744             "STF    $src,$dst.lo" %}
 10745   opcode(Assembler::stf_op3);
 10746   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
 10747   ins_pipe(fstoreF_stk_reg);
 10748 %}
 10750 // Replicate scalar zero constant to packed float values in Double register
 10751 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
 10752   predicate(n->as_Vector()->length() == 2);
 10753   match(Set dst (ReplicateF con));
 10754   effect(KILL tmp);
 10755   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
 10756   ins_encode %{
 10757     // XXX This is a quick fix for 6833573.
 10758     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
 10759     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
 10760     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10761   %}
 10762   ins_pipe(loadConFD);
 10763 %}
 10765 //----------PEEPHOLE RULES-----------------------------------------------------
 10766 // These must follow all instruction definitions as they use the names
 10767 // defined in the instructions definitions.
 10768 //
 10769 // peepmatch ( root_instr_name [preceding_instruction]* );
 10770 //
 10771 // peepconstraint %{
 10772 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10773 //  [, ...] );
 10774 // // instruction numbers are zero-based using left to right order in peepmatch
 10775 //
 10776 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10777 // // provide an instruction_number.operand_name for each operand that appears
 10778 // // in the replacement instruction's match rule
 10779 //
 10780 // ---------VM FLAGS---------------------------------------------------------
 10781 //
 10782 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10783 //
 10784 // Each peephole rule is given an identifying number starting with zero and
 10785 // increasing by one in the order seen by the parser.  An individual peephole
 10786 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10787 // on the command-line.
 10788 //
 10789 // ---------CURRENT LIMITATIONS----------------------------------------------
 10790 //
 10791 // Only match adjacent instructions in same basic block
 10792 // Only equality constraints
 10793 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10794 // Only one replacement instruction
 10795 //
 10796 // ---------EXAMPLE----------------------------------------------------------
 10797 //
 10798 // // pertinent parts of existing instructions in architecture description
 10799 // instruct movI(eRegI dst, eRegI src) %{
 10800 //   match(Set dst (CopyI src));
 10801 // %}
 10802 //
 10803 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10804 //   match(Set dst (AddI dst src));
 10805 //   effect(KILL cr);
 10806 // %}
 10807 //
 10808 // // Change (inc mov) to lea
 10809 // peephole %{
 10810 //   // increment preceeded by register-register move
 10811 //   peepmatch ( incI_eReg movI );
 10812 //   // require that the destination register of the increment
 10813 //   // match the destination register of the move
 10814 //   peepconstraint ( 0.dst == 1.dst );
 10815 //   // construct a replacement instruction that sets
 10816 //   // the destination to ( move's source register + one )
 10817 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10818 // %}
 10819 //
 10821 // // Change load of spilled value to only a spill
 10822 // instruct storeI(memory mem, eRegI src) %{
 10823 //   match(Set mem (StoreI mem src));
 10824 // %}
 10825 //
 10826 // instruct loadI(eRegI dst, memory mem) %{
 10827 //   match(Set dst (LoadI mem));
 10828 // %}
 10829 //
 10830 // peephole %{
 10831 //   peepmatch ( loadI storeI );
 10832 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10833 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10834 // %}
 10836 //----------SMARTSPILL RULES---------------------------------------------------
 10837 // These must follow all instruction definitions as they use the names
 10838 // defined in the instructions definitions.
 10839 //
 10840 // SPARC will probably not have any of these rules due to RISC instruction set.
 10842 //----------PIPELINE-----------------------------------------------------------
 10843 // Rules which define the behavior of the target architectures pipeline.

mercurial