src/cpu/sparc/vm/assembler_sparc.cpp

Tue, 11 Sep 2012 20:20:38 -0400

author
coleenp
date
Tue, 11 Sep 2012 20:20:38 -0400
changeset 4052
75f33eecc1b3
parent 4037
da91efe96a93
child 4101
2cb2f30450c7
permissions
-rw-r--r--

7196681: NPG: Some JSR 292 tests crash in Windows exception handler
Summary: There was a rogue os::breakpoint() call in log_dependency left over from the jsr292 merge. Also changed verify_oop() calls for metadata to verify_{method,klass}_ptr.
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_sparc.inline.hpp"
    28 #include "gc_interface/collectedHeap.inline.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "prims/methodHandles.hpp"
    33 #include "runtime/biasedLocking.hpp"
    34 #include "runtime/interfaceSupport.hpp"
    35 #include "runtime/objectMonitor.hpp"
    36 #include "runtime/os.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubRoutines.hpp"
    39 #ifndef SERIALGC
    40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    42 #include "gc_implementation/g1/heapRegion.hpp"
    43 #endif
    45 #ifdef PRODUCT
    46 #define BLOCK_COMMENT(str) /* nothing */
    47 #define STOP(error) stop(error)
    48 #else
    49 #define BLOCK_COMMENT(str) block_comment(str)
    50 #define STOP(error) block_comment(error); stop(error)
    51 #endif
    53 // Convert the raw encoding form into the form expected by the
    54 // constructor for Address.
    55 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
    56   assert(scale == 0, "not supported");
    57   RelocationHolder rspec;
    58   if (disp_reloc != relocInfo::none) {
    59     rspec = Relocation::spec_simple(disp_reloc);
    60   }
    62   Register rindex = as_Register(index);
    63   if (rindex != G0) {
    64     Address madr(as_Register(base), rindex);
    65     madr._rspec = rspec;
    66     return madr;
    67   } else {
    68     Address madr(as_Register(base), disp);
    69     madr._rspec = rspec;
    70     return madr;
    71   }
    72 }
    74 Address Argument::address_in_frame() const {
    75   // Warning: In LP64 mode disp will occupy more than 10 bits, but
    76   //          op codes such as ld or ldx, only access disp() to get
    77   //          their simm13 argument.
    78   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
    79   if (is_in())
    80     return Address(FP, disp); // In argument.
    81   else
    82     return Address(SP, disp); // Out argument.
    83 }
    85 static const char* argumentNames[][2] = {
    86   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
    87   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
    88   {"A(n>9)","P(n>9)"}
    89 };
    91 const char* Argument::name() const {
    92   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
    93   int num = number();
    94   if (num >= nofArgs)  num = nofArgs - 1;
    95   return argumentNames[num][is_in() ? 1 : 0];
    96 }
    98 void Assembler::print_instruction(int inst) {
    99   const char* s;
   100   switch (inv_op(inst)) {
   101   default:         s = "????"; break;
   102   case call_op:    s = "call"; break;
   103   case branch_op:
   104     switch (inv_op2(inst)) {
   105       case fb_op2:     s = "fb";   break;
   106       case fbp_op2:    s = "fbp";  break;
   107       case br_op2:     s = "br";   break;
   108       case bp_op2:     s = "bp";   break;
   109       case cb_op2:     s = "cb";   break;
   110       case bpr_op2: {
   111         if (is_cbcond(inst)) {
   112           s = is_cxb(inst) ? "cxb" : "cwb";
   113         } else {
   114           s = "bpr";
   115         }
   116         break;
   117       }
   118       default:         s = "????"; break;
   119     }
   120   }
   121   ::tty->print("%s", s);
   122 }
   125 // Patch instruction inst at offset inst_pos to refer to dest_pos
   126 // and return the resulting instruction.
   127 // We should have pcs, not offsets, but since all is relative, it will work out
   128 // OK.
   129 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
   131   int m; // mask for displacement field
   132   int v; // new value for displacement field
   133   const int word_aligned_ones = -4;
   134   switch (inv_op(inst)) {
   135   default: ShouldNotReachHere();
   136   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
   137   case branch_op:
   138     switch (inv_op2(inst)) {
   139       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   140       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   141       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   142       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   143       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   144       case bpr_op2: {
   145         if (is_cbcond(inst)) {
   146           m = wdisp10(word_aligned_ones, 0);
   147           v = wdisp10(dest_pos, inst_pos);
   148         } else {
   149           m = wdisp16(word_aligned_ones, 0);
   150           v = wdisp16(dest_pos, inst_pos);
   151         }
   152         break;
   153       }
   154       default: ShouldNotReachHere();
   155     }
   156   }
   157   return  inst & ~m  |  v;
   158 }
   160 // Return the offset of the branch destionation of instruction inst
   161 // at offset pos.
   162 // Should have pcs, but since all is relative, it works out.
   163 int Assembler::branch_destination(int inst, int pos) {
   164   int r;
   165   switch (inv_op(inst)) {
   166   default: ShouldNotReachHere();
   167   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
   168   case branch_op:
   169     switch (inv_op2(inst)) {
   170       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
   171       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
   172       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   173       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   174       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   175       case bpr_op2: {
   176         if (is_cbcond(inst)) {
   177           r = inv_wdisp10(inst, pos);
   178         } else {
   179           r = inv_wdisp16(inst, pos);
   180         }
   181         break;
   182       }
   183       default: ShouldNotReachHere();
   184     }
   185   }
   186   return r;
   187 }
   189 int AbstractAssembler::code_fill_byte() {
   190   return 0x00;                  // illegal instruction 0x00000000
   191 }
   193 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
   194   switch (in) {
   195   case rc_z:   return equal;
   196   case rc_lez: return lessEqual;
   197   case rc_lz:  return less;
   198   case rc_nz:  return notEqual;
   199   case rc_gz:  return greater;
   200   case rc_gez: return greaterEqual;
   201   default:
   202     ShouldNotReachHere();
   203   }
   204   return equal;
   205 }
   207 // Generate a bunch 'o stuff (including v9's
   208 #ifndef PRODUCT
   209 void Assembler::test_v9() {
   210   add(    G0, G1, G2 );
   211   add(    G3,  0, G4 );
   213   addcc(  G5, G6, G7 );
   214   addcc(  I0,  1, I1 );
   215   addc(   I2, I3, I4 );
   216   addc(   I5, -1, I6 );
   217   addccc( I7, L0, L1 );
   218   addccc( L2, (1 << 12) - 2, L3 );
   220   Label lbl1, lbl2, lbl3;
   222   bind(lbl1);
   224   bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
   225   delayed()->nop();
   226   bpr( rc_lez, false, pt, L5, lbl1);
   227   delayed()->nop();
   229   fb( f_never,     true, pc() + 4,  relocInfo::none);
   230   delayed()->nop();
   231   fb( f_notEqual, false, lbl2 );
   232   delayed()->nop();
   234   fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
   235   delayed()->nop();
   236   fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
   237   delayed()->nop();
   239   br( equal,  true, pc() + 1024, relocInfo::none);
   240   delayed()->nop();
   241   br( lessEqual, false, lbl1 );
   242   delayed()->nop();
   243   br( never, false, lbl1 );
   244   delayed()->nop();
   246   bp( less,               true, icc, pn, pc(), relocInfo::none);
   247   delayed()->nop();
   248   bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
   249   delayed()->nop();
   251   call( pc(), relocInfo::none);
   252   delayed()->nop();
   253   call( lbl3 );
   254   delayed()->nop();
   257   casa(  L6, L7, O0 );
   258   casxa( O1, O2, O3, 0 );
   260   udiv(   O4, O5, O7 );
   261   udiv(   G0, (1 << 12) - 1, G1 );
   262   sdiv(   G1, G2, G3 );
   263   sdiv(   G4, -((1 << 12) - 1), G5 );
   264   udivcc( G6, G7, I0 );
   265   udivcc( I1, -((1 << 12) - 2), I2 );
   266   sdivcc( I3, I4, I5 );
   267   sdivcc( I6, -((1 << 12) - 0), I7 );
   269   done();
   270   retry();
   272   fadd( FloatRegisterImpl::S, F0,  F1, F2 );
   273   fsub( FloatRegisterImpl::D, F34, F0, F62 );
   275   fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
   276   fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
   278   ftox( FloatRegisterImpl::D, F2, F4 );
   279   ftoi( FloatRegisterImpl::Q, F4, F8 );
   281   ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
   283   fxtof( FloatRegisterImpl::S, F4, F5 );
   284   fitof( FloatRegisterImpl::D, F6, F8 );
   286   fmov( FloatRegisterImpl::Q, F16, F20 );
   287   fneg( FloatRegisterImpl::S, F6, F7 );
   288   fabs( FloatRegisterImpl::D, F10, F12 );
   290   fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
   291   fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
   292   fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
   294   fsqrt( FloatRegisterImpl::S, F13, F14 );
   296   flush( L0, L1 );
   297   flush( L2, -1 );
   299   flushw();
   301   illtrap( (1 << 22) - 2);
   303   impdep1( 17, (1 << 19) - 1 );
   304   impdep2( 3,  0 );
   306   jmpl( L3, L4, L5 );
   307   delayed()->nop();
   308   jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
   309   delayed()->nop();
   312   ldf(    FloatRegisterImpl::S, O0, O1, F15 );
   313   ldf(    FloatRegisterImpl::D, O2, -1, F14 );
   316   ldfsr(  O3, O4 );
   317   ldfsr(  O5, -1 );
   318   ldxfsr( O6, O7 );
   319   ldxfsr( I0, -1 );
   321   ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
   322   ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
   324   ldsb(  I4, I5, I6 );
   325   ldsb(  I7, -1, G0 );
   326   ldsh(  G1, G3, G4 );
   327   ldsh(  G5, -1, G6 );
   328   ldsw(  G7, L0, L1 );
   329   ldsw(  L2, -1, L3 );
   330   ldub(  L4, L5, L6 );
   331   ldub(  L7, -1, O0 );
   332   lduh(  O1, O2, O3 );
   333   lduh(  O4, -1, O5 );
   334   lduw(  O6, O7, G0 );
   335   lduw(  G1, -1, G2 );
   336   ldx(   G3, G4, G5 );
   337   ldx(   G6, -1, G7 );
   338   ldd(   I0, I1, I2 );
   339   ldd(   I3, -1, I4 );
   341   ldsba(  I5, I6, 2, I7 );
   342   ldsba(  L0, -1, L1 );
   343   ldsha(  L2, L3, 3, L4 );
   344   ldsha(  L5, -1, L6 );
   345   ldswa(  L7, O0, (1 << 8) - 1, O1 );
   346   ldswa(  O2, -1, O3 );
   347   lduba(  O4, O5, 0, O6 );
   348   lduba(  O7, -1, I0 );
   349   lduha(  I1, I2, 1, I3 );
   350   lduha(  I4, -1, I5 );
   351   lduwa(  I6, I7, 2, L0 );
   352   lduwa(  L1, -1, L2 );
   353   ldxa(   L3, L4, 3, L5 );
   354   ldxa(   L6, -1, L7 );
   355   ldda(   G0, G1, 4, G2 );
   356   ldda(   G3, -1, G4 );
   358   ldstub(  G5, G6, G7 );
   359   ldstub(  O0, -1, O1 );
   361   ldstuba( O2, O3, 5, O4 );
   362   ldstuba( O5, -1, O6 );
   364   and3(    I0, L0, O0 );
   365   and3(    G7, -1, O7 );
   366   andcc(   L2, I2, G2 );
   367   andcc(   L4, -1, G4 );
   368   andn(    I5, I6, I7 );
   369   andn(    I6, -1, I7 );
   370   andncc(  I5, I6, I7 );
   371   andncc(  I7, -1, I6 );
   372   or3(     I5, I6, I7 );
   373   or3(     I7, -1, I6 );
   374   orcc(    I5, I6, I7 );
   375   orcc(    I7, -1, I6 );
   376   orn(     I5, I6, I7 );
   377   orn(     I7, -1, I6 );
   378   orncc(   I5, I6, I7 );
   379   orncc(   I7, -1, I6 );
   380   xor3(    I5, I6, I7 );
   381   xor3(    I7, -1, I6 );
   382   xorcc(   I5, I6, I7 );
   383   xorcc(   I7, -1, I6 );
   384   xnor(    I5, I6, I7 );
   385   xnor(    I7, -1, I6 );
   386   xnorcc(  I5, I6, I7 );
   387   xnorcc(  I7, -1, I6 );
   389   membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
   390   membar( StoreStore );
   391   membar( LoadStore );
   392   membar( StoreLoad );
   393   membar( LoadLoad );
   394   membar( Sync );
   395   membar( MemIssue );
   396   membar( Lookaside );
   398   fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
   399   fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
   401   movcc( overflowClear,  false, icc, I6, L4 );
   402   movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
   404   movr( rc_nz, I5, I6, I7 );
   405   movr( rc_gz, L1, -1,  L2 );
   407   mulx(  I5, I6, I7 );
   408   mulx(  I7, -1, I6 );
   409   sdivx( I5, I6, I7 );
   410   sdivx( I7, -1, I6 );
   411   udivx( I5, I6, I7 );
   412   udivx( I7, -1, I6 );
   414   umul(   I5, I6, I7 );
   415   umul(   I7, -1, I6 );
   416   smul(   I5, I6, I7 );
   417   smul(   I7, -1, I6 );
   418   umulcc( I5, I6, I7 );
   419   umulcc( I7, -1, I6 );
   420   smulcc( I5, I6, I7 );
   421   smulcc( I7, -1, I6 );
   423   mulscc(   I5, I6, I7 );
   424   mulscc(   I7, -1, I6 );
   426   nop();
   429   popc( G0,  G1);
   430   popc( -1, G2);
   432   prefetch(   L1, L2,    severalReads );
   433   prefetch(   L3, -1,    oneRead );
   434   prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
   435   prefetcha(  G2, -1,    oneWrite );
   437   rett( I7, I7);
   438   delayed()->nop();
   439   rett( G0, -1, relocInfo::none);
   440   delayed()->nop();
   442   save(    I5, I6, I7 );
   443   save(    I7, -1, I6 );
   444   restore( I5, I6, I7 );
   445   restore( I7, -1, I6 );
   447   saved();
   448   restored();
   450   sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
   452   sll(  I5, I6, I7 );
   453   sll(  I7, 31, I6 );
   454   srl(  I5, I6, I7 );
   455   srl(  I7,  0, I6 );
   456   sra(  I5, I6, I7 );
   457   sra(  I7, 30, I6 );
   458   sllx( I5, I6, I7 );
   459   sllx( I7, 63, I6 );
   460   srlx( I5, I6, I7 );
   461   srlx( I7,  0, I6 );
   462   srax( I5, I6, I7 );
   463   srax( I7, 62, I6 );
   465   sir( -1 );
   467   stbar();
   469   stf(    FloatRegisterImpl::Q, F40, G0, I7 );
   470   stf(    FloatRegisterImpl::S, F18, I3, -1 );
   472   stfsr(  L1, L2 );
   473   stfsr(  I7, -1 );
   474   stxfsr( I6, I5 );
   475   stxfsr( L4, -1 );
   477   stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
   478   stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
   480   stb(  L5, O2, I7 );
   481   stb(  I7, I6, -1 );
   482   sth(  L5, O2, I7 );
   483   sth(  I7, I6, -1 );
   484   stw(  L5, O2, I7 );
   485   stw(  I7, I6, -1 );
   486   stx(  L5, O2, I7 );
   487   stx(  I7, I6, -1 );
   488   std(  L5, O2, I7 );
   489   std(  I7, I6, -1 );
   491   stba(  L5, O2, I7, 8 );
   492   stba(  I7, I6, -1    );
   493   stha(  L5, O2, I7, 9 );
   494   stha(  I7, I6, -1    );
   495   stwa(  L5, O2, I7, 0 );
   496   stwa(  I7, I6, -1    );
   497   stxa(  L5, O2, I7, 11 );
   498   stxa(  I7, I6, -1     );
   499   stda(  L5, O2, I7, 12 );
   500   stda(  I7, I6, -1     );
   502   sub(    I5, I6, I7 );
   503   sub(    I7, -1, I6 );
   504   subcc(  I5, I6, I7 );
   505   subcc(  I7, -1, I6 );
   506   subc(   I5, I6, I7 );
   507   subc(   I7, -1, I6 );
   508   subccc( I5, I6, I7 );
   509   subccc( I7, -1, I6 );
   511   swap( I5, I6, I7 );
   512   swap( I7, -1, I6 );
   514   swapa(   G0, G1, 13, G2 );
   515   swapa(   I7, -1,     I6 );
   517   taddcc(    I5, I6, I7 );
   518   taddcc(    I7, -1, I6 );
   519   taddcctv(  I5, I6, I7 );
   520   taddcctv(  I7, -1, I6 );
   522   tsubcc(    I5, I6, I7 );
   523   tsubcc(    I7, -1, I6 );
   524   tsubcctv(  I5, I6, I7 );
   525   tsubcctv(  I7, -1, I6 );
   527   trap( overflowClear, xcc, G0, G1 );
   528   trap( lessEqual,     icc, I7, 17 );
   530   bind(lbl2);
   531   bind(lbl3);
   533   code()->decode();
   534 }
   536 // Generate a bunch 'o stuff unique to V8
   537 void Assembler::test_v8_onlys() {
   538   Label lbl1;
   540   cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
   541   delayed()->nop();
   542   cb( cp_never,    true, lbl1);
   543   delayed()->nop();
   545   cpop1(1, 2, 3, 4);
   546   cpop2(5, 6, 7, 8);
   548   ldc( I0, I1, 31);
   549   ldc( I2, -1,  0);
   551   lddc( I4, I4, 30);
   552   lddc( I6,  0, 1 );
   554   ldcsr( L0, L1, 0);
   555   ldcsr( L1, (1 << 12) - 1, 17 );
   557   stc( 31, L4, L5);
   558   stc( 30, L6, -(1 << 12) );
   560   stdc( 0, L7, G0);
   561   stdc( 1, G1, 0 );
   563   stcsr( 16, G2, G3);
   564   stcsr( 17, G4, 1 );
   566   stdcq( 4, G5, G6);
   567   stdcq( 5, G7, -1 );
   569   bind(lbl1);
   571   code()->decode();
   572 }
   573 #endif
   575 // Implementation of MacroAssembler
   577 void MacroAssembler::null_check(Register reg, int offset) {
   578   if (needs_explicit_null_check((intptr_t)offset)) {
   579     // provoke OS NULL exception if reg = NULL by
   580     // accessing M[reg] w/o changing any registers
   581     ld_ptr(reg, 0, G0);
   582   }
   583   else {
   584     // nothing to do, (later) access of M[reg + offset]
   585     // will provoke OS NULL exception if reg = NULL
   586   }
   587 }
   589 // Ring buffer jumps
   591 #ifndef PRODUCT
   592 void MacroAssembler::ret(  bool trace )   { if (trace) {
   593                                                     mov(I7, O7); // traceable register
   594                                                     JMP(O7, 2 * BytesPerInstWord);
   595                                                   } else {
   596                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
   597                                                   }
   598                                                 }
   600 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
   601                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
   602 #endif /* PRODUCT */
   605 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
   606   assert_not_delayed();
   607   // This can only be traceable if r1 & r2 are visible after a window save
   608   if (TraceJumps) {
   609 #ifndef PRODUCT
   610     save_frame(0);
   611     verify_thread();
   612     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   613     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   614     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   615     add(O2, O1, O1);
   617     add(r1->after_save(), r2->after_save(), O2);
   618     set((intptr_t)file, O3);
   619     set(line, O4);
   620     Label L;
   621     // get nearby pc, store jmp target
   622     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   623     delayed()->st(O2, O1, 0);
   624     bind(L);
   626     // store nearby pc
   627     st(O7, O1, sizeof(intptr_t));
   628     // store file
   629     st(O3, O1, 2*sizeof(intptr_t));
   630     // store line
   631     st(O4, O1, 3*sizeof(intptr_t));
   632     add(O0, 1, O0);
   633     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   634     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   635     restore();
   636 #endif /* PRODUCT */
   637   }
   638   jmpl(r1, r2, G0);
   639 }
   640 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
   641   assert_not_delayed();
   642   // This can only be traceable if r1 is visible after a window save
   643   if (TraceJumps) {
   644 #ifndef PRODUCT
   645     save_frame(0);
   646     verify_thread();
   647     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   648     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   649     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   650     add(O2, O1, O1);
   652     add(r1->after_save(), offset, O2);
   653     set((intptr_t)file, O3);
   654     set(line, O4);
   655     Label L;
   656     // get nearby pc, store jmp target
   657     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   658     delayed()->st(O2, O1, 0);
   659     bind(L);
   661     // store nearby pc
   662     st(O7, O1, sizeof(intptr_t));
   663     // store file
   664     st(O3, O1, 2*sizeof(intptr_t));
   665     // store line
   666     st(O4, O1, 3*sizeof(intptr_t));
   667     add(O0, 1, O0);
   668     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   669     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   670     restore();
   671 #endif /* PRODUCT */
   672   }
   673   jmp(r1, offset);
   674 }
   676 // This code sequence is relocatable to any address, even on LP64.
   677 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
   678   assert_not_delayed();
   679   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   680   // variable length instruction streams.
   681   patchable_sethi(addrlit, temp);
   682   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
   683   if (TraceJumps) {
   684 #ifndef PRODUCT
   685     // Must do the add here so relocation can find the remainder of the
   686     // value to be relocated.
   687     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
   688     save_frame(0);
   689     verify_thread();
   690     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   691     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   692     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   693     add(O2, O1, O1);
   695     set((intptr_t)file, O3);
   696     set(line, O4);
   697     Label L;
   699     // get nearby pc, store jmp target
   700     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   701     delayed()->st(a.base()->after_save(), O1, 0);
   702     bind(L);
   704     // store nearby pc
   705     st(O7, O1, sizeof(intptr_t));
   706     // store file
   707     st(O3, O1, 2*sizeof(intptr_t));
   708     // store line
   709     st(O4, O1, 3*sizeof(intptr_t));
   710     add(O0, 1, O0);
   711     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   712     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   713     restore();
   714     jmpl(a.base(), G0, d);
   715 #else
   716     jmpl(a.base(), a.disp(), d);
   717 #endif /* PRODUCT */
   718   } else {
   719     jmpl(a.base(), a.disp(), d);
   720   }
   721 }
   723 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
   724   jumpl(addrlit, temp, G0, offset, file, line);
   725 }
   728 // Convert to C varargs format
   729 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
   730   // spill register-resident args to their memory slots
   731   // (SPARC calling convention requires callers to have already preallocated these)
   732   // Note that the inArg might in fact be an outgoing argument,
   733   // if a leaf routine or stub does some tricky argument shuffling.
   734   // This routine must work even though one of the saved arguments
   735   // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
   736   for (Argument savePtr = inArg;
   737        savePtr.is_register();
   738        savePtr = savePtr.successor()) {
   739     st_ptr(savePtr.as_register(), savePtr.address_in_frame());
   740   }
   741   // return the address of the first memory slot
   742   Address a = inArg.address_in_frame();
   743   add(a.base(), a.disp(), d);
   744 }
   746 // Conditional breakpoint (for assertion checks in assembly code)
   747 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
   748   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
   749 }
   751 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
   752 void MacroAssembler::breakpoint_trap() {
   753   trap(ST_RESERVED_FOR_USER_0);
   754 }
   756 // flush windows (except current) using flushw instruction if avail.
   757 void MacroAssembler::flush_windows() {
   758   if (VM_Version::v9_instructions_work())  flushw();
   759   else                                     flush_windows_trap();
   760 }
   762 // Write serialization page so VM thread can do a pseudo remote membar
   763 // We use the current thread pointer to calculate a thread specific
   764 // offset to write to within the page. This minimizes bus traffic
   765 // due to cache line collision.
   766 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
   767   srl(thread, os::get_serialize_page_shift_count(), tmp2);
   768   if (Assembler::is_simm13(os::vm_page_size())) {
   769     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
   770   }
   771   else {
   772     set((os::vm_page_size() - sizeof(int)), tmp1);
   773     and3(tmp2, tmp1, tmp2);
   774   }
   775   set(os::get_memory_serialize_page(), tmp1);
   776   st(G0, tmp1, tmp2);
   777 }
   781 void MacroAssembler::enter() {
   782   Unimplemented();
   783 }
   785 void MacroAssembler::leave() {
   786   Unimplemented();
   787 }
   789 void MacroAssembler::mult(Register s1, Register s2, Register d) {
   790   if(VM_Version::v9_instructions_work()) {
   791     mulx (s1, s2, d);
   792   } else {
   793     smul (s1, s2, d);
   794   }
   795 }
   797 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
   798   if(VM_Version::v9_instructions_work()) {
   799     mulx (s1, simm13a, d);
   800   } else {
   801     smul (s1, simm13a, d);
   802   }
   803 }
   806 #ifdef ASSERT
   807 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
   808   const Register s1 = G3_scratch;
   809   const Register s2 = G4_scratch;
   810   Label get_psr_test;
   811   // Get the condition codes the V8 way.
   812   read_ccr_trap(s1);
   813   mov(ccr_save, s2);
   814   // This is a test of V8 which has icc but not xcc
   815   // so mask off the xcc bits
   816   and3(s2, 0xf, s2);
   817   // Compare condition codes from the V8 and V9 ways.
   818   subcc(s2, s1, G0);
   819   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
   820   delayed()->breakpoint_trap();
   821   bind(get_psr_test);
   822 }
   824 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
   825   const Register s1 = G3_scratch;
   826   const Register s2 = G4_scratch;
   827   Label set_psr_test;
   828   // Write out the saved condition codes the V8 way
   829   write_ccr_trap(ccr_save, s1, s2);
   830   // Read back the condition codes using the V9 instruction
   831   rdccr(s1);
   832   mov(ccr_save, s2);
   833   // This is a test of V8 which has icc but not xcc
   834   // so mask off the xcc bits
   835   and3(s2, 0xf, s2);
   836   and3(s1, 0xf, s1);
   837   // Compare the V8 way with the V9 way.
   838   subcc(s2, s1, G0);
   839   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
   840   delayed()->breakpoint_trap();
   841   bind(set_psr_test);
   842 }
   843 #else
   844 #define read_ccr_v8_assert(x)
   845 #define write_ccr_v8_assert(x)
   846 #endif // ASSERT
   848 void MacroAssembler::read_ccr(Register ccr_save) {
   849   if (VM_Version::v9_instructions_work()) {
   850     rdccr(ccr_save);
   851     // Test code sequence used on V8.  Do not move above rdccr.
   852     read_ccr_v8_assert(ccr_save);
   853   } else {
   854     read_ccr_trap(ccr_save);
   855   }
   856 }
   858 void MacroAssembler::write_ccr(Register ccr_save) {
   859   if (VM_Version::v9_instructions_work()) {
   860     // Test code sequence used on V8.  Do not move below wrccr.
   861     write_ccr_v8_assert(ccr_save);
   862     wrccr(ccr_save);
   863   } else {
   864     const Register temp_reg1 = G3_scratch;
   865     const Register temp_reg2 = G4_scratch;
   866     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
   867   }
   868 }
   871 // Calls to C land
   873 #ifdef ASSERT
   874 // a hook for debugging
   875 static Thread* reinitialize_thread() {
   876   return ThreadLocalStorage::thread();
   877 }
   878 #else
   879 #define reinitialize_thread ThreadLocalStorage::thread
   880 #endif
   882 #ifdef ASSERT
   883 address last_get_thread = NULL;
   884 #endif
   886 // call this when G2_thread is not known to be valid
   887 void MacroAssembler::get_thread() {
   888   save_frame(0);                // to avoid clobbering O0
   889   mov(G1, L0);                  // avoid clobbering G1
   890   mov(G5_method, L1);           // avoid clobbering G5
   891   mov(G3, L2);                  // avoid clobbering G3 also
   892   mov(G4, L5);                  // avoid clobbering G4
   893 #ifdef ASSERT
   894   AddressLiteral last_get_thread_addrlit(&last_get_thread);
   895   set(last_get_thread_addrlit, L3);
   896   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
   897   st_ptr(L4, L3, 0);
   898 #endif
   899   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
   900   delayed()->nop();
   901   mov(L0, G1);
   902   mov(L1, G5_method);
   903   mov(L2, G3);
   904   mov(L5, G4);
   905   restore(O0, 0, G2_thread);
   906 }
   908 static Thread* verify_thread_subroutine(Thread* gthread_value) {
   909   Thread* correct_value = ThreadLocalStorage::thread();
   910   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
   911   return correct_value;
   912 }
   914 void MacroAssembler::verify_thread() {
   915   if (VerifyThread) {
   916     // NOTE: this chops off the heads of the 64-bit O registers.
   917 #ifdef CC_INTERP
   918     save_frame(0);
   919 #else
   920     // make sure G2_thread contains the right value
   921     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
   922     mov(G1, L1);                // avoid clobbering G1
   923     // G2 saved below
   924     mov(G3, L3);                // avoid clobbering G3
   925     mov(G4, L4);                // avoid clobbering G4
   926     mov(G5_method, L5);         // avoid clobbering G5_method
   927 #endif /* CC_INTERP */
   928 #if defined(COMPILER2) && !defined(_LP64)
   929     // Save & restore possible 64-bit Long arguments in G-regs
   930     srlx(G1,32,L0);
   931     srlx(G4,32,L6);
   932 #endif
   933     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
   934     delayed()->mov(G2_thread, O0);
   936     mov(L1, G1);                // Restore G1
   937     // G2 restored below
   938     mov(L3, G3);                // restore G3
   939     mov(L4, G4);                // restore G4
   940     mov(L5, G5_method);         // restore G5_method
   941 #if defined(COMPILER2) && !defined(_LP64)
   942     // Save & restore possible 64-bit Long arguments in G-regs
   943     sllx(L0,32,G2);             // Move old high G1 bits high in G2
   944     srl(G1, 0,G1);              // Clear current high G1 bits
   945     or3 (G1,G2,G1);             // Recover 64-bit G1
   946     sllx(L6,32,G2);             // Move old high G4 bits high in G2
   947     srl(G4, 0,G4);              // Clear current high G4 bits
   948     or3 (G4,G2,G4);             // Recover 64-bit G4
   949 #endif
   950     restore(O0, 0, G2_thread);
   951   }
   952 }
   955 void MacroAssembler::save_thread(const Register thread_cache) {
   956   verify_thread();
   957   if (thread_cache->is_valid()) {
   958     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   959     mov(G2_thread, thread_cache);
   960   }
   961   if (VerifyThread) {
   962     // smash G2_thread, as if the VM were about to anyway
   963     set(0x67676767, G2_thread);
   964   }
   965 }
   968 void MacroAssembler::restore_thread(const Register thread_cache) {
   969   if (thread_cache->is_valid()) {
   970     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   971     mov(thread_cache, G2_thread);
   972     verify_thread();
   973   } else {
   974     // do it the slow way
   975     get_thread();
   976   }
   977 }
   980 // %%% maybe get rid of [re]set_last_Java_frame
   981 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
   982   assert_not_delayed();
   983   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
   984                            JavaFrameAnchor::flags_offset());
   985   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
   987   // Always set last_Java_pc and flags first because once last_Java_sp is visible
   988   // has_last_Java_frame is true and users will look at the rest of the fields.
   989   // (Note: flags should always be zero before we get here so doesn't need to be set.)
   991 #ifdef ASSERT
   992   // Verify that flags was zeroed on return to Java
   993   Label PcOk;
   994   save_frame(0);                // to avoid clobbering O0
   995   ld_ptr(pc_addr, L0);
   996   br_null_short(L0, Assembler::pt, PcOk);
   997   STOP("last_Java_pc not zeroed before leaving Java");
   998   bind(PcOk);
  1000   // Verify that flags was zeroed on return to Java
  1001   Label FlagsOk;
  1002   ld(flags, L0);
  1003   tst(L0);
  1004   br(Assembler::zero, false, Assembler::pt, FlagsOk);
  1005   delayed() -> restore();
  1006   STOP("flags not zeroed before leaving Java");
  1007   bind(FlagsOk);
  1008 #endif /* ASSERT */
  1009   //
  1010   // When returning from calling out from Java mode the frame anchor's last_Java_pc
  1011   // will always be set to NULL. It is set here so that if we are doing a call to
  1012   // native (not VM) that we capture the known pc and don't have to rely on the
  1013   // native call having a standard frame linkage where we can find the pc.
  1015   if (last_Java_pc->is_valid()) {
  1016     st_ptr(last_Java_pc, pc_addr);
  1019 #ifdef _LP64
  1020 #ifdef ASSERT
  1021   // Make sure that we have an odd stack
  1022   Label StackOk;
  1023   andcc(last_java_sp, 0x01, G0);
  1024   br(Assembler::notZero, false, Assembler::pt, StackOk);
  1025   delayed()->nop();
  1026   STOP("Stack Not Biased in set_last_Java_frame");
  1027   bind(StackOk);
  1028 #endif // ASSERT
  1029   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
  1030   add( last_java_sp, STACK_BIAS, G4_scratch );
  1031   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
  1032 #else
  1033   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
  1034 #endif // _LP64
  1037 void MacroAssembler::reset_last_Java_frame(void) {
  1038   assert_not_delayed();
  1040   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
  1041   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  1042   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  1044 #ifdef ASSERT
  1045   // check that it WAS previously set
  1046 #ifdef CC_INTERP
  1047     save_frame(0);
  1048 #else
  1049     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
  1050 #endif /* CC_INTERP */
  1051     ld_ptr(sp_addr, L0);
  1052     tst(L0);
  1053     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
  1054     restore();
  1055 #endif // ASSERT
  1057   st_ptr(G0, sp_addr);
  1058   // Always return last_Java_pc to zero
  1059   st_ptr(G0, pc_addr);
  1060   // Always null flags after return to Java
  1061   st(G0, flags);
  1065 void MacroAssembler::call_VM_base(
  1066   Register        oop_result,
  1067   Register        thread_cache,
  1068   Register        last_java_sp,
  1069   address         entry_point,
  1070   int             number_of_arguments,
  1071   bool            check_exceptions)
  1073   assert_not_delayed();
  1075   // determine last_java_sp register
  1076   if (!last_java_sp->is_valid()) {
  1077     last_java_sp = SP;
  1079   // debugging support
  1080   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1082   // 64-bit last_java_sp is biased!
  1083   set_last_Java_frame(last_java_sp, noreg);
  1084   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
  1085   save_thread(thread_cache);
  1086   // do the call
  1087   call(entry_point, relocInfo::runtime_call_type);
  1088   if (!VerifyThread)
  1089     delayed()->mov(G2_thread, O0);  // pass thread as first argument
  1090   else
  1091     delayed()->nop();             // (thread already passed)
  1092   restore_thread(thread_cache);
  1093   reset_last_Java_frame();
  1095   // check for pending exceptions. use Gtemp as scratch register.
  1096   if (check_exceptions) {
  1097     check_and_forward_exception(Gtemp);
  1100 #ifdef ASSERT
  1101   set(badHeapWordVal, G3);
  1102   set(badHeapWordVal, G4);
  1103   set(badHeapWordVal, G5);
  1104 #endif
  1106   // get oop result if there is one and reset the value in the thread
  1107   if (oop_result->is_valid()) {
  1108     get_vm_result(oop_result);
  1112 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
  1114   Label L;
  1116   check_and_handle_popframe(scratch_reg);
  1117   check_and_handle_earlyret(scratch_reg);
  1119   Address exception_addr(G2_thread, Thread::pending_exception_offset());
  1120   ld_ptr(exception_addr, scratch_reg);
  1121   br_null_short(scratch_reg, pt, L);
  1122   // we use O7 linkage so that forward_exception_entry has the issuing PC
  1123   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1124   delayed()->nop();
  1125   bind(L);
  1129 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
  1133 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
  1137 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1138   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
  1142 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
  1143   // O0 is reserved for the thread
  1144   mov(arg_1, O1);
  1145   call_VM(oop_result, entry_point, 1, check_exceptions);
  1149 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1150   // O0 is reserved for the thread
  1151   mov(arg_1, O1);
  1152   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1153   call_VM(oop_result, entry_point, 2, check_exceptions);
  1157 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1158   // O0 is reserved for the thread
  1159   mov(arg_1, O1);
  1160   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1161   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1162   call_VM(oop_result, entry_point, 3, check_exceptions);
  1167 // Note: The following call_VM overloadings are useful when a "save"
  1168 // has already been performed by a stub, and the last Java frame is
  1169 // the previous one.  In that case, last_java_sp must be passed as FP
  1170 // instead of SP.
  1173 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
  1174   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1178 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
  1179   // O0 is reserved for the thread
  1180   mov(arg_1, O1);
  1181   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1185 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1186   // O0 is reserved for the thread
  1187   mov(arg_1, O1);
  1188   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1189   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1193 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1194   // O0 is reserved for the thread
  1195   mov(arg_1, O1);
  1196   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1197   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1198   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1203 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
  1204   assert_not_delayed();
  1205   save_thread(thread_cache);
  1206   // do the call
  1207   call(entry_point, relocInfo::runtime_call_type);
  1208   delayed()->nop();
  1209   restore_thread(thread_cache);
  1210 #ifdef ASSERT
  1211   set(badHeapWordVal, G3);
  1212   set(badHeapWordVal, G4);
  1213   set(badHeapWordVal, G5);
  1214 #endif
  1218 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
  1219   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
  1223 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
  1224   mov(arg_1, O0);
  1225   call_VM_leaf(thread_cache, entry_point, 1);
  1229 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
  1230   mov(arg_1, O0);
  1231   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
  1232   call_VM_leaf(thread_cache, entry_point, 2);
  1236 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
  1237   mov(arg_1, O0);
  1238   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
  1239   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
  1240   call_VM_leaf(thread_cache, entry_point, 3);
  1244 void MacroAssembler::get_vm_result(Register oop_result) {
  1245   verify_thread();
  1246   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
  1247   ld_ptr(    vm_result_addr, oop_result);
  1248   st_ptr(G0, vm_result_addr);
  1249   verify_oop(oop_result);
  1253 void MacroAssembler::get_vm_result_2(Register metadata_result) {
  1254   verify_thread();
  1255   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
  1256   ld_ptr(vm_result_addr_2, metadata_result);
  1257   st_ptr(G0, vm_result_addr_2);
  1261 // We require that C code which does not return a value in vm_result will
  1262 // leave it undisturbed.
  1263 void MacroAssembler::set_vm_result(Register oop_result) {
  1264   verify_thread();
  1265   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
  1266   verify_oop(oop_result);
  1268 # ifdef ASSERT
  1269     // Check that we are not overwriting any other oop.
  1270 #ifdef CC_INTERP
  1271     save_frame(0);
  1272 #else
  1273     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
  1274 #endif /* CC_INTERP */
  1275     ld_ptr(vm_result_addr, L0);
  1276     tst(L0);
  1277     restore();
  1278     breakpoint_trap(notZero, Assembler::ptr_cc);
  1279     // }
  1280 # endif
  1282   st_ptr(oop_result, vm_result_addr);
  1286 void MacroAssembler::ic_call(address entry, bool emit_delay) {
  1287   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
  1288   patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
  1289   relocate(rspec);
  1290   call(entry, relocInfo::none);
  1291   if (emit_delay) {
  1292     delayed()->nop();
  1297 void MacroAssembler::card_table_write(jbyte* byte_map_base,
  1298                                       Register tmp, Register obj) {
  1299 #ifdef _LP64
  1300   srlx(obj, CardTableModRefBS::card_shift, obj);
  1301 #else
  1302   srl(obj, CardTableModRefBS::card_shift, obj);
  1303 #endif
  1304   assert(tmp != obj, "need separate temp reg");
  1305   set((address) byte_map_base, tmp);
  1306   stb(G0, tmp, obj);
  1310 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
  1311   address save_pc;
  1312   int shiftcnt;
  1313 #ifdef _LP64
  1314 # ifdef CHECK_DELAY
  1315   assert_not_delayed((char*) "cannot put two instructions in delay slot");
  1316 # endif
  1317   v9_dep();
  1318   save_pc = pc();
  1320   int msb32 = (int) (addrlit.value() >> 32);
  1321   int lsb32 = (int) (addrlit.value());
  1323   if (msb32 == 0 && lsb32 >= 0) {
  1324     Assembler::sethi(lsb32, d, addrlit.rspec());
  1326   else if (msb32 == -1) {
  1327     Assembler::sethi(~lsb32, d, addrlit.rspec());
  1328     xor3(d, ~low10(~0), d);
  1330   else {
  1331     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
  1332     if (msb32 & 0x3ff)                            // Any bits?
  1333       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
  1334     if (lsb32 & 0xFFFFFC00) {                     // done?
  1335       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
  1336         sllx(d, 12, d);                           // Make room for next 12 bits
  1337         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
  1338         shiftcnt = 0;                             // We already shifted
  1340       else
  1341         shiftcnt = 12;
  1342       if ((lsb32 >> 10) & 0x3ff) {
  1343         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
  1344         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
  1345         shiftcnt = 0;
  1347       else
  1348         shiftcnt = 10;
  1349       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
  1351     else
  1352       sllx(d, 32, d);
  1354   // Pad out the instruction sequence so it can be patched later.
  1355   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
  1356                            addrlit.rtype() != relocInfo::runtime_call_type)) {
  1357     while (pc() < (save_pc + (7 * BytesPerInstWord)))
  1358       nop();
  1360 #else
  1361   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
  1362 #endif
  1366 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
  1367   internal_sethi(addrlit, d, false);
  1371 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
  1372   internal_sethi(addrlit, d, true);
  1376 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
  1377 #ifdef _LP64
  1378   if (worst_case)  return 7;
  1379   intptr_t iaddr = (intptr_t) a;
  1380   int msb32 = (int) (iaddr >> 32);
  1381   int lsb32 = (int) (iaddr);
  1382   int count;
  1383   if (msb32 == 0 && lsb32 >= 0)
  1384     count = 1;
  1385   else if (msb32 == -1)
  1386     count = 2;
  1387   else {
  1388     count = 2;
  1389     if (msb32 & 0x3ff)
  1390       count++;
  1391     if (lsb32 & 0xFFFFFC00 ) {
  1392       if ((lsb32 >> 20) & 0xfff)  count += 2;
  1393       if ((lsb32 >> 10) & 0x3ff)  count += 2;
  1396   return count;
  1397 #else
  1398   return 1;
  1399 #endif
  1402 int MacroAssembler::worst_case_insts_for_set() {
  1403   return insts_for_sethi(NULL, true) + 1;
  1407 // Keep in sync with MacroAssembler::insts_for_internal_set
  1408 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
  1409   intptr_t value = addrlit.value();
  1411   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
  1412     // can optimize
  1413     if (-4096 <= value && value <= 4095) {
  1414       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
  1415       return;
  1417     if (inv_hi22(hi22(value)) == value) {
  1418       sethi(addrlit, d);
  1419       return;
  1422   assert_not_delayed((char*) "cannot put two instructions in delay slot");
  1423   internal_sethi(addrlit, d, ForceRelocatable);
  1424   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
  1425     add(d, addrlit.low10(), d, addrlit.rspec());
  1429 // Keep in sync with MacroAssembler::internal_set
  1430 int MacroAssembler::insts_for_internal_set(intptr_t value) {
  1431   // can optimize
  1432   if (-4096 <= value && value <= 4095) {
  1433     return 1;
  1435   if (inv_hi22(hi22(value)) == value) {
  1436     return insts_for_sethi((address) value);
  1438   int count = insts_for_sethi((address) value);
  1439   AddressLiteral al(value);
  1440   if (al.low10() != 0) {
  1441     count++;
  1443   return count;
  1446 void MacroAssembler::set(const AddressLiteral& al, Register d) {
  1447   internal_set(al, d, false);
  1450 void MacroAssembler::set(intptr_t value, Register d) {
  1451   AddressLiteral al(value);
  1452   internal_set(al, d, false);
  1455 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
  1456   AddressLiteral al(addr, rspec);
  1457   internal_set(al, d, false);
  1460 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
  1461   internal_set(al, d, true);
  1464 void MacroAssembler::patchable_set(intptr_t value, Register d) {
  1465   AddressLiteral al(value);
  1466   internal_set(al, d, true);
  1470 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
  1471   assert_not_delayed();
  1472   v9_dep();
  1474   int hi = (int)(value >> 32);
  1475   int lo = (int)(value & ~0);
  1476   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1477   if (Assembler::is_simm13(lo) && value == lo) {
  1478     or3(G0, lo, d);
  1479   } else if (hi == 0) {
  1480     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
  1481     if (low10(lo) != 0)
  1482       or3(d, low10(lo), d);
  1484   else if (hi == -1) {
  1485     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
  1486     xor3(d, low10(lo) ^ ~low10(~0), d);
  1488   else if (lo == 0) {
  1489     if (Assembler::is_simm13(hi)) {
  1490       or3(G0, hi, d);
  1491     } else {
  1492       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
  1493       if (low10(hi) != 0)
  1494         or3(d, low10(hi), d);
  1496     sllx(d, 32, d);
  1498   else {
  1499     Assembler::sethi(hi, tmp);
  1500     Assembler::sethi(lo,   d); // macro assembler version sign-extends
  1501     if (low10(hi) != 0)
  1502       or3 (tmp, low10(hi), tmp);
  1503     if (low10(lo) != 0)
  1504       or3 (  d, low10(lo),   d);
  1505     sllx(tmp, 32, tmp);
  1506     or3 (d, tmp, d);
  1510 int MacroAssembler::insts_for_set64(jlong value) {
  1511   v9_dep();
  1513   int hi = (int) (value >> 32);
  1514   int lo = (int) (value & ~0);
  1515   int count = 0;
  1517   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1518   if (Assembler::is_simm13(lo) && value == lo) {
  1519     count++;
  1520   } else if (hi == 0) {
  1521     count++;
  1522     if (low10(lo) != 0)
  1523       count++;
  1525   else if (hi == -1) {
  1526     count += 2;
  1528   else if (lo == 0) {
  1529     if (Assembler::is_simm13(hi)) {
  1530       count++;
  1531     } else {
  1532       count++;
  1533       if (low10(hi) != 0)
  1534         count++;
  1536     count++;
  1538   else {
  1539     count += 2;
  1540     if (low10(hi) != 0)
  1541       count++;
  1542     if (low10(lo) != 0)
  1543       count++;
  1544     count += 2;
  1546   return count;
  1549 // compute size in bytes of sparc frame, given
  1550 // number of extraWords
  1551 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
  1553   int nWords = frame::memory_parameter_word_sp_offset;
  1555   nWords += extraWords;
  1557   if (nWords & 1) ++nWords; // round up to double-word
  1559   return nWords * BytesPerWord;
  1563 // save_frame: given number of "extra" words in frame,
  1564 // issue approp. save instruction (p 200, v8 manual)
  1566 void MacroAssembler::save_frame(int extraWords) {
  1567   int delta = -total_frame_size_in_bytes(extraWords);
  1568   if (is_simm13(delta)) {
  1569     save(SP, delta, SP);
  1570   } else {
  1571     set(delta, G3_scratch);
  1572     save(SP, G3_scratch, SP);
  1577 void MacroAssembler::save_frame_c1(int size_in_bytes) {
  1578   if (is_simm13(-size_in_bytes)) {
  1579     save(SP, -size_in_bytes, SP);
  1580   } else {
  1581     set(-size_in_bytes, G3_scratch);
  1582     save(SP, G3_scratch, SP);
  1587 void MacroAssembler::save_frame_and_mov(int extraWords,
  1588                                         Register s1, Register d1,
  1589                                         Register s2, Register d2) {
  1590   assert_not_delayed();
  1592   // The trick here is to use precisely the same memory word
  1593   // that trap handlers also use to save the register.
  1594   // This word cannot be used for any other purpose, but
  1595   // it works fine to save the register's value, whether or not
  1596   // an interrupt flushes register windows at any given moment!
  1597   Address s1_addr;
  1598   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
  1599     s1_addr = s1->address_in_saved_window();
  1600     st_ptr(s1, s1_addr);
  1603   Address s2_addr;
  1604   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
  1605     s2_addr = s2->address_in_saved_window();
  1606     st_ptr(s2, s2_addr);
  1609   save_frame(extraWords);
  1611   if (s1_addr.base() == SP) {
  1612     ld_ptr(s1_addr.after_save(), d1);
  1613   } else if (s1->is_valid()) {
  1614     mov(s1->after_save(), d1);
  1617   if (s2_addr.base() == SP) {
  1618     ld_ptr(s2_addr.after_save(), d2);
  1619   } else if (s2->is_valid()) {
  1620     mov(s2->after_save(), d2);
  1625 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
  1626   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
  1627   int index = oop_recorder()->allocate_metadata_index(obj);
  1628   RelocationHolder rspec = metadata_Relocation::spec(index);
  1629   return AddressLiteral((address)obj, rspec);
  1632 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
  1633   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
  1634   int index = oop_recorder()->find_index(obj);
  1635   RelocationHolder rspec = metadata_Relocation::spec(index);
  1636   return AddressLiteral((address)obj, rspec);
  1640 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
  1641   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1642   assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
  1643   int oop_index = oop_recorder()->find_index(obj);
  1644   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
  1647 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
  1648   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1649   int oop_index = oop_recorder()->find_index(obj);
  1650   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  1652   assert_not_delayed();
  1653   // Relocation with special format (see relocInfo_sparc.hpp).
  1654   relocate(rspec, 1);
  1655   // Assembler::sethi(0x3fffff, d);
  1656   emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
  1657   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
  1658   add(d, 0x3ff, d);
  1663 void MacroAssembler::align(int modulus) {
  1664   while (offset() % modulus != 0) nop();
  1668 void MacroAssembler::safepoint() {
  1669   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
  1673 void RegistersForDebugging::print(outputStream* s) {
  1674   FlagSetting fs(Debugging, true);
  1675   int j;
  1676   for (j = 0; j < 8; ++j) {
  1677     if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
  1678     else        { s->print( "fp = "   ); os::print_location(s, i[j]); }
  1680   s->cr();
  1682   for (j = 0;  j < 8;  ++j) {
  1683     s->print("l%d = ", j); os::print_location(s, l[j]);
  1685   s->cr();
  1687   for (j = 0; j < 8; ++j) {
  1688     if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
  1689     else        { s->print( "sp = "   ); os::print_location(s, o[j]); }
  1691   s->cr();
  1693   for (j = 0; j < 8; ++j) {
  1694     s->print("g%d = ", j); os::print_location(s, g[j]);
  1696   s->cr();
  1698   // print out floats with compression
  1699   for (j = 0; j < 32; ) {
  1700     jfloat val = f[j];
  1701     int last = j;
  1702     for ( ;  last+1 < 32;  ++last ) {
  1703       char b1[1024], b2[1024];
  1704       sprintf(b1, "%f", val);
  1705       sprintf(b2, "%f", f[last+1]);
  1706       if (strcmp(b1, b2))
  1707         break;
  1709     s->print("f%d", j);
  1710     if ( j != last )  s->print(" - f%d", last);
  1711     s->print(" = %f", val);
  1712     s->fill_to(25);
  1713     s->print_cr(" (0x%x)", val);
  1714     j = last + 1;
  1716   s->cr();
  1718   // and doubles (evens only)
  1719   for (j = 0; j < 32; ) {
  1720     jdouble val = d[j];
  1721     int last = j;
  1722     for ( ;  last+1 < 32;  ++last ) {
  1723       char b1[1024], b2[1024];
  1724       sprintf(b1, "%f", val);
  1725       sprintf(b2, "%f", d[last+1]);
  1726       if (strcmp(b1, b2))
  1727         break;
  1729     s->print("d%d", 2 * j);
  1730     if ( j != last )  s->print(" - d%d", last);
  1731     s->print(" = %f", val);
  1732     s->fill_to(30);
  1733     s->print("(0x%x)", *(int*)&val);
  1734     s->fill_to(42);
  1735     s->print_cr("(0x%x)", *(1 + (int*)&val));
  1736     j = last + 1;
  1738   s->cr();
  1741 void RegistersForDebugging::save_registers(MacroAssembler* a) {
  1742   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
  1743   a->flush_windows();
  1744   int i;
  1745   for (i = 0; i < 8; ++i) {
  1746     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
  1747     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
  1748     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
  1749     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
  1751   for (i = 0;  i < 32; ++i) {
  1752     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
  1754   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
  1755     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
  1759 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
  1760   for (int i = 1; i < 8;  ++i) {
  1761     a->ld_ptr(r, g_offset(i), as_gRegister(i));
  1763   for (int j = 0; j < 32; ++j) {
  1764     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
  1766   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
  1767     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
  1772 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1773 void MacroAssembler::push_fTOS() {
  1774   // %%%%%% need to implement this
  1777 // pops double TOS element from CPU stack and pushes on FPU stack
  1778 void MacroAssembler::pop_fTOS() {
  1779   // %%%%%% need to implement this
  1782 void MacroAssembler::empty_FPU_stack() {
  1783   // %%%%%% need to implement this
  1786 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
  1787   // plausibility check for oops
  1788   if (!VerifyOops) return;
  1790   if (reg == G0)  return;       // always NULL, which is always an oop
  1792   BLOCK_COMMENT("verify_oop {");
  1793   char buffer[64];
  1794 #ifdef COMPILER1
  1795   if (CommentedAssembly) {
  1796     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
  1797     block_comment(buffer);
  1799 #endif
  1801   int len = strlen(file) + strlen(msg) + 1 + 4;
  1802   sprintf(buffer, "%d", line);
  1803   len += strlen(buffer);
  1804   sprintf(buffer, " at offset %d ", offset());
  1805   len += strlen(buffer);
  1806   char * real_msg = new char[len];
  1807   sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
  1809   // Call indirectly to solve generation ordering problem
  1810   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1812   // Make some space on stack above the current register window.
  1813   // Enough to hold 8 64-bit registers.
  1814   add(SP,-8*8,SP);
  1816   // Save some 64-bit registers; a normal 'save' chops the heads off
  1817   // of 64-bit longs in the 32-bit build.
  1818   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1819   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1820   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
  1821   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1823   // Size of set() should stay the same
  1824   patchable_set((intptr_t)real_msg, O1);
  1825   // Load address to call to into O7
  1826   load_ptr_contents(a, O7);
  1827   // Register call to verify_oop_subroutine
  1828   callr(O7, G0);
  1829   delayed()->nop();
  1830   // recover frame size
  1831   add(SP, 8*8,SP);
  1832   BLOCK_COMMENT("} verify_oop");
  1835 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
  1836   // plausibility check for oops
  1837   if (!VerifyOops) return;
  1839   char buffer[64];
  1840   sprintf(buffer, "%d", line);
  1841   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
  1842   sprintf(buffer, " at SP+%d ", addr.disp());
  1843   len += strlen(buffer);
  1844   char * real_msg = new char[len];
  1845   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
  1847   // Call indirectly to solve generation ordering problem
  1848   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1850   // Make some space on stack above the current register window.
  1851   // Enough to hold 8 64-bit registers.
  1852   add(SP,-8*8,SP);
  1854   // Save some 64-bit registers; a normal 'save' chops the heads off
  1855   // of 64-bit longs in the 32-bit build.
  1856   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1857   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1858   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
  1859   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1861   // Size of set() should stay the same
  1862   patchable_set((intptr_t)real_msg, O1);
  1863   // Load address to call to into O7
  1864   load_ptr_contents(a, O7);
  1865   // Register call to verify_oop_subroutine
  1866   callr(O7, G0);
  1867   delayed()->nop();
  1868   // recover frame size
  1869   add(SP, 8*8,SP);
  1872 // side-door communication with signalHandler in os_solaris.cpp
  1873 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
  1875 // This macro is expanded just once; it creates shared code.  Contract:
  1876 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
  1877 // registers, including flags.  May not use a register 'save', as this blows
  1878 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
  1879 // call.
  1880 void MacroAssembler::verify_oop_subroutine() {
  1881   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
  1883   // Leaf call; no frame.
  1884   Label succeed, fail, null_or_fail;
  1886   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
  1887   // O0 is now the oop to be checked.  O7 is the return address.
  1888   Register O0_obj = O0;
  1890   // Save some more registers for temps.
  1891   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
  1892   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
  1893   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
  1894   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
  1896   // Save flags
  1897   Register O5_save_flags = O5;
  1898   rdccr( O5_save_flags );
  1900   { // count number of verifies
  1901     Register O2_adr   = O2;
  1902     Register O3_accum = O3;
  1903     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
  1906   Register O2_mask = O2;
  1907   Register O3_bits = O3;
  1908   Register O4_temp = O4;
  1910   // mark lower end of faulting range
  1911   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
  1912   _verify_oop_implicit_branch[0] = pc();
  1914   // We can't check the mark oop because it could be in the process of
  1915   // locking or unlocking while this is running.
  1916   set(Universe::verify_oop_mask (), O2_mask);
  1917   set(Universe::verify_oop_bits (), O3_bits);
  1919   // assert((obj & oop_mask) == oop_bits);
  1920   and3(O0_obj, O2_mask, O4_temp);
  1921   cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
  1923   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
  1924     // the null_or_fail case is useless; must test for null separately
  1925     br_null_short(O0_obj, pn, succeed);
  1928   // Check the Klass* of this object for being in the right area of memory.
  1929   // Cannot do the load in the delay above slot in case O0 is null
  1930   load_klass(O0_obj, O0_obj);
  1931   // assert((klass != NULL)
  1932   br_null_short(O0_obj, pn, fail);
  1933   // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
  1935   wrccr( O5_save_flags ); // Restore CCR's
  1937   // mark upper end of faulting range
  1938   _verify_oop_implicit_branch[1] = pc();
  1940   //-----------------------
  1941   // all tests pass
  1942   bind(succeed);
  1944   // Restore prior 64-bit registers
  1945   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
  1946   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
  1947   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
  1948   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
  1949   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
  1950   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
  1952   retl();                       // Leaf return; restore prior O7 in delay slot
  1953   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
  1955   //-----------------------
  1956   bind(null_or_fail);           // nulls are less common but OK
  1957   br_null(O0_obj, false, pt, succeed);
  1958   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1960   //-----------------------
  1961   // report failure:
  1962   bind(fail);
  1963   _verify_oop_implicit_branch[2] = pc();
  1965   wrccr( O5_save_flags ); // Restore CCR's
  1967   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1969   // stop_subroutine expects message pointer in I1.
  1970   mov(I1, O1);
  1972   // Restore prior 64-bit registers
  1973   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
  1974   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
  1975   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
  1976   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
  1977   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
  1978   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
  1980   // factor long stop-sequence into subroutine to save space
  1981   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1983   // call indirectly to solve generation ordering problem
  1984   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
  1985   load_ptr_contents(al, O5);
  1986   jmpl(O5, 0, O7);
  1987   delayed()->nop();
  1991 void MacroAssembler::stop(const char* msg) {
  1992   // save frame first to get O7 for return address
  1993   // add one word to size in case struct is odd number of words long
  1994   // It must be doubleword-aligned for storing doubles into it.
  1996     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1998     // stop_subroutine expects message pointer in I1.
  1999     // Size of set() should stay the same
  2000     patchable_set((intptr_t)msg, O1);
  2002     // factor long stop-sequence into subroutine to save space
  2003     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  2005     // call indirectly to solve generation ordering problem
  2006     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
  2007     load_ptr_contents(a, O5);
  2008     jmpl(O5, 0, O7);
  2009     delayed()->nop();
  2011     breakpoint_trap();   // make stop actually stop rather than writing
  2012                          // unnoticeable results in the output files.
  2014     // restore(); done in callee to save space!
  2018 void MacroAssembler::warn(const char* msg) {
  2019   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  2020   RegistersForDebugging::save_registers(this);
  2021   mov(O0, L0);
  2022   // Size of set() should stay the same
  2023   patchable_set((intptr_t)msg, O0);
  2024   call( CAST_FROM_FN_PTR(address, warning) );
  2025   delayed()->nop();
  2026 //  ret();
  2027 //  delayed()->restore();
  2028   RegistersForDebugging::restore_registers(this, L0);
  2029   restore();
  2033 void MacroAssembler::untested(const char* what) {
  2034   // We must be able to turn interactive prompting off
  2035   // in order to run automated test scripts on the VM
  2036   // Use the flag ShowMessageBoxOnError
  2038   char* b = new char[1024];
  2039   sprintf(b, "untested: %s", what);
  2041   if (ShowMessageBoxOnError) { STOP(b); }
  2042   else                       { warn(b); }
  2046 void MacroAssembler::stop_subroutine() {
  2047   RegistersForDebugging::save_registers(this);
  2049   // for the sake of the debugger, stick a PC on the current frame
  2050   // (this assumes that the caller has performed an extra "save")
  2051   mov(I7, L7);
  2052   add(O7, -7 * BytesPerInt, I7);
  2054   save_frame(); // one more save to free up another O7 register
  2055   mov(I0, O1); // addr of reg save area
  2057   // We expect pointer to message in I1. Caller must set it up in O1
  2058   mov(I1, O0); // get msg
  2059   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  2060   delayed()->nop();
  2062   restore();
  2064   RegistersForDebugging::restore_registers(this, O0);
  2066   save_frame(0);
  2067   call(CAST_FROM_FN_PTR(address,breakpoint));
  2068   delayed()->nop();
  2069   restore();
  2071   mov(L7, I7);
  2072   retl();
  2073   delayed()->restore(); // see stop above
  2077 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
  2078   if ( ShowMessageBoxOnError ) {
  2079     JavaThread* thread = JavaThread::current();
  2080     JavaThreadState saved_state = thread->thread_state();
  2081     thread->set_thread_state(_thread_in_vm);
  2083         // In order to get locks work, we need to fake a in_VM state
  2084         ttyLocker ttyl;
  2085         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
  2086         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  2087         BytecodeCounter::print();
  2089         if (os::message_box(msg, "Execution stopped, print registers?"))
  2090           regs->print(::tty);
  2092     BREAKPOINT;
  2093       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
  2095   else {
  2096      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  2098   assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  2101 #ifndef PRODUCT
  2102 void MacroAssembler::test() {
  2103   ResourceMark rm;
  2105   CodeBuffer cb("test", 10000, 10000);
  2106   MacroAssembler* a = new MacroAssembler(&cb);
  2107   VM_Version::allow_all();
  2108   a->test_v9();
  2109   a->test_v8_onlys();
  2110   VM_Version::revert();
  2112   StubRoutines::Sparc::test_stop_entry()();
  2114 #endif
  2117 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
  2118   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
  2119   Label no_extras;
  2120   br( negative, true, pt, no_extras ); // if neg, clear reg
  2121   delayed()->set(0, Rresult);          // annuled, so only if taken
  2122   bind( no_extras );
  2126 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
  2127 #ifdef _LP64
  2128   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
  2129 #else
  2130   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
  2131 #endif
  2132   bclr(1, Rresult);
  2133   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
  2137 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
  2138   calc_frame_size(Rextra_words, Rresult);
  2139   neg(Rresult);
  2140   save(SP, Rresult, SP);
  2144 // ---------------------------------------------------------
  2145 Assembler::RCondition cond2rcond(Assembler::Condition c) {
  2146   switch (c) {
  2147     /*case zero: */
  2148     case Assembler::equal:        return Assembler::rc_z;
  2149     case Assembler::lessEqual:    return Assembler::rc_lez;
  2150     case Assembler::less:         return Assembler::rc_lz;
  2151     /*case notZero:*/
  2152     case Assembler::notEqual:     return Assembler::rc_nz;
  2153     case Assembler::greater:      return Assembler::rc_gz;
  2154     case Assembler::greaterEqual: return Assembler::rc_gez;
  2156   ShouldNotReachHere();
  2157   return Assembler::rc_z;
  2160 // compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
  2161 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
  2162   tst(s1);
  2163   br (c, a, p, L);
  2166 // Compares a pointer register with zero and branches on null.
  2167 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  2168 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
  2169   assert_not_delayed();
  2170 #ifdef _LP64
  2171   bpr( rc_z, a, p, s1, L );
  2172 #else
  2173   tst(s1);
  2174   br ( zero, a, p, L );
  2175 #endif
  2178 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
  2179   assert_not_delayed();
  2180 #ifdef _LP64
  2181   bpr( rc_nz, a, p, s1, L );
  2182 #else
  2183   tst(s1);
  2184   br ( notZero, a, p, L );
  2185 #endif
  2188 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
  2190 // Compare integer (32 bit) values (icc only).
  2191 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
  2192                                       Predict p, Label& L) {
  2193   assert_not_delayed();
  2194   if (use_cbcond(L)) {
  2195     Assembler::cbcond(c, icc, s1, s2, L);
  2196   } else {
  2197     cmp(s1, s2);
  2198     br(c, false, p, L);
  2199     delayed()->nop();
  2203 // Compare integer (32 bit) values (icc only).
  2204 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
  2205                                       Predict p, Label& L) {
  2206   assert_not_delayed();
  2207   if (is_simm(simm13a,5) && use_cbcond(L)) {
  2208     Assembler::cbcond(c, icc, s1, simm13a, L);
  2209   } else {
  2210     cmp(s1, simm13a);
  2211     br(c, false, p, L);
  2212     delayed()->nop();
  2216 // Branch that tests xcc in LP64 and icc in !LP64
  2217 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
  2218                                        Predict p, Label& L) {
  2219   assert_not_delayed();
  2220   if (use_cbcond(L)) {
  2221     Assembler::cbcond(c, ptr_cc, s1, s2, L);
  2222   } else {
  2223     cmp(s1, s2);
  2224     brx(c, false, p, L);
  2225     delayed()->nop();
  2229 // Branch that tests xcc in LP64 and icc in !LP64
  2230 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
  2231                                        Predict p, Label& L) {
  2232   assert_not_delayed();
  2233   if (is_simm(simm13a,5) && use_cbcond(L)) {
  2234     Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
  2235   } else {
  2236     cmp(s1, simm13a);
  2237     brx(c, false, p, L);
  2238     delayed()->nop();
  2242 // Short branch version for compares a pointer with zero.
  2244 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
  2245   assert_not_delayed();
  2246   if (use_cbcond(L)) {
  2247     Assembler::cbcond(zero, ptr_cc, s1, 0, L);
  2248     return;
  2250   br_null(s1, false, p, L);
  2251   delayed()->nop();
  2254 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
  2255   assert_not_delayed();
  2256   if (use_cbcond(L)) {
  2257     Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
  2258     return;
  2260   br_notnull(s1, false, p, L);
  2261   delayed()->nop();
  2264 // Unconditional short branch
  2265 void MacroAssembler::ba_short(Label& L) {
  2266   if (use_cbcond(L)) {
  2267     Assembler::cbcond(equal, icc, G0, G0, L);
  2268     return;
  2270   br(always, false, pt, L);
  2271   delayed()->nop();
  2274 // instruction sequences factored across compiler & interpreter
  2277 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
  2278                            Register Rb_hi, Register Rb_low,
  2279                            Register Rresult) {
  2281   Label check_low_parts, done;
  2283   cmp(Ra_hi, Rb_hi );  // compare hi parts
  2284   br(equal, true, pt, check_low_parts);
  2285   delayed()->cmp(Ra_low, Rb_low); // test low parts
  2287   // And, with an unsigned comparison, it does not matter if the numbers
  2288   // are negative or not.
  2289   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
  2290   // The second one is bigger (unsignedly).
  2292   // Other notes:  The first move in each triplet can be unconditional
  2293   // (and therefore probably prefetchable).
  2294   // And the equals case for the high part does not need testing,
  2295   // since that triplet is reached only after finding the high halves differ.
  2297   if (VM_Version::v9_instructions_work()) {
  2298     mov(-1, Rresult);
  2299     ba(done);  delayed()-> movcc(greater, false, icc,  1, Rresult);
  2300   } else {
  2301     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
  2302     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
  2305   bind( check_low_parts );
  2307   if (VM_Version::v9_instructions_work()) {
  2308     mov(                               -1, Rresult);
  2309     movcc(equal,           false, icc,  0, Rresult);
  2310     movcc(greaterUnsigned, false, icc,  1, Rresult);
  2311   } else {
  2312     set(-1, Rresult);
  2313     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
  2314     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
  2316   bind( done );
  2319 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
  2320   subcc(  G0, Rlow, Rlow );
  2321   subc(   G0, Rhi,  Rhi  );
  2324 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
  2325                            Register Rcount,
  2326                            Register Rout_high, Register Rout_low,
  2327                            Register Rtemp ) {
  2330   Register Ralt_count = Rtemp;
  2331   Register Rxfer_bits = Rtemp;
  2333   assert( Ralt_count != Rin_high
  2334       &&  Ralt_count != Rin_low
  2335       &&  Ralt_count != Rcount
  2336       &&  Rxfer_bits != Rin_low
  2337       &&  Rxfer_bits != Rin_high
  2338       &&  Rxfer_bits != Rcount
  2339       &&  Rxfer_bits != Rout_low
  2340       &&  Rout_low   != Rin_high,
  2341         "register alias checks");
  2343   Label big_shift, done;
  2345   // This code can be optimized to use the 64 bit shifts in V9.
  2346   // Here we use the 32 bit shifts.
  2348   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  2349   subcc(Rcount,   31, Ralt_count);
  2350   br(greater, true, pn, big_shift);
  2351   delayed()->dec(Ralt_count);
  2353   // shift < 32 bits, Ralt_count = Rcount-31
  2355   // We get the transfer bits by shifting right by 32-count the low
  2356   // register. This is done by shifting right by 31-count and then by one
  2357   // more to take care of the special (rare) case where count is zero
  2358   // (shifting by 32 would not work).
  2360   neg(Ralt_count);
  2362   // The order of the next two instructions is critical in the case where
  2363   // Rin and Rout are the same and should not be reversed.
  2365   srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
  2366   if (Rcount != Rout_low) {
  2367     sll(Rin_low, Rcount, Rout_low); // low half
  2369   sll(Rin_high, Rcount, Rout_high);
  2370   if (Rcount == Rout_low) {
  2371     sll(Rin_low, Rcount, Rout_low); // low half
  2373   srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
  2374   ba(done);
  2375   delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
  2377   // shift >= 32 bits, Ralt_count = Rcount-32
  2378   bind(big_shift);
  2379   sll(Rin_low, Ralt_count, Rout_high  );
  2380   clr(Rout_low);
  2382   bind(done);
  2386 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
  2387                            Register Rcount,
  2388                            Register Rout_high, Register Rout_low,
  2389                            Register Rtemp ) {
  2391   Register Ralt_count = Rtemp;
  2392   Register Rxfer_bits = Rtemp;
  2394   assert( Ralt_count != Rin_high
  2395       &&  Ralt_count != Rin_low
  2396       &&  Ralt_count != Rcount
  2397       &&  Rxfer_bits != Rin_low
  2398       &&  Rxfer_bits != Rin_high
  2399       &&  Rxfer_bits != Rcount
  2400       &&  Rxfer_bits != Rout_high
  2401       &&  Rout_high  != Rin_low,
  2402         "register alias checks");
  2404   Label big_shift, done;
  2406   // This code can be optimized to use the 64 bit shifts in V9.
  2407   // Here we use the 32 bit shifts.
  2409   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  2410   subcc(Rcount,   31, Ralt_count);
  2411   br(greater, true, pn, big_shift);
  2412   delayed()->dec(Ralt_count);
  2414   // shift < 32 bits, Ralt_count = Rcount-31
  2416   // We get the transfer bits by shifting left by 32-count the high
  2417   // register. This is done by shifting left by 31-count and then by one
  2418   // more to take care of the special (rare) case where count is zero
  2419   // (shifting by 32 would not work).
  2421   neg(Ralt_count);
  2422   if (Rcount != Rout_low) {
  2423     srl(Rin_low, Rcount, Rout_low);
  2426   // The order of the next two instructions is critical in the case where
  2427   // Rin and Rout are the same and should not be reversed.
  2429   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
  2430   sra(Rin_high,     Rcount, Rout_high ); // high half
  2431   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
  2432   if (Rcount == Rout_low) {
  2433     srl(Rin_low, Rcount, Rout_low);
  2435   ba(done);
  2436   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
  2438   // shift >= 32 bits, Ralt_count = Rcount-32
  2439   bind(big_shift);
  2441   sra(Rin_high, Ralt_count, Rout_low);
  2442   sra(Rin_high,         31, Rout_high); // sign into hi
  2444   bind( done );
  2449 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
  2450                             Register Rcount,
  2451                             Register Rout_high, Register Rout_low,
  2452                             Register Rtemp ) {
  2454   Register Ralt_count = Rtemp;
  2455   Register Rxfer_bits = Rtemp;
  2457   assert( Ralt_count != Rin_high
  2458       &&  Ralt_count != Rin_low
  2459       &&  Ralt_count != Rcount
  2460       &&  Rxfer_bits != Rin_low
  2461       &&  Rxfer_bits != Rin_high
  2462       &&  Rxfer_bits != Rcount
  2463       &&  Rxfer_bits != Rout_high
  2464       &&  Rout_high  != Rin_low,
  2465         "register alias checks");
  2467   Label big_shift, done;
  2469   // This code can be optimized to use the 64 bit shifts in V9.
  2470   // Here we use the 32 bit shifts.
  2472   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  2473   subcc(Rcount,   31, Ralt_count);
  2474   br(greater, true, pn, big_shift);
  2475   delayed()->dec(Ralt_count);
  2477   // shift < 32 bits, Ralt_count = Rcount-31
  2479   // We get the transfer bits by shifting left by 32-count the high
  2480   // register. This is done by shifting left by 31-count and then by one
  2481   // more to take care of the special (rare) case where count is zero
  2482   // (shifting by 32 would not work).
  2484   neg(Ralt_count);
  2485   if (Rcount != Rout_low) {
  2486     srl(Rin_low, Rcount, Rout_low);
  2489   // The order of the next two instructions is critical in the case where
  2490   // Rin and Rout are the same and should not be reversed.
  2492   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
  2493   srl(Rin_high,     Rcount, Rout_high ); // high half
  2494   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
  2495   if (Rcount == Rout_low) {
  2496     srl(Rin_low, Rcount, Rout_low);
  2498   ba(done);
  2499   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
  2501   // shift >= 32 bits, Ralt_count = Rcount-32
  2502   bind(big_shift);
  2504   srl(Rin_high, Ralt_count, Rout_low);
  2505   clr(Rout_high);
  2507   bind( done );
  2510 #ifdef _LP64
  2511 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
  2512   cmp(Ra, Rb);
  2513   mov(-1, Rresult);
  2514   movcc(equal,   false, xcc,  0, Rresult);
  2515   movcc(greater, false, xcc,  1, Rresult);
  2517 #endif
  2520 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
  2521   switch (size_in_bytes) {
  2522   case  8:  ld_long(src, dst); break;
  2523   case  4:  ld(     src, dst); break;
  2524   case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
  2525   case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
  2526   default:  ShouldNotReachHere();
  2530 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
  2531   switch (size_in_bytes) {
  2532   case  8:  st_long(src, dst); break;
  2533   case  4:  st(     src, dst); break;
  2534   case  2:  sth(    src, dst); break;
  2535   case  1:  stb(    src, dst); break;
  2536   default:  ShouldNotReachHere();
  2541 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
  2542                                 FloatRegister Fa, FloatRegister Fb,
  2543                                 Register Rresult) {
  2545   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
  2547   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
  2548   Condition eq =                          f_equal;
  2549   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
  2551   if (VM_Version::v9_instructions_work()) {
  2553     mov(-1, Rresult);
  2554     movcc(eq, true, fcc0, 0, Rresult);
  2555     movcc(gt, true, fcc0, 1, Rresult);
  2557   } else {
  2558     Label done;
  2560     set( -1, Rresult );
  2561     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
  2562     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
  2563     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
  2565     bind (done);
  2570 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2572   if (VM_Version::v9_instructions_work()) {
  2573     Assembler::fneg(w, s, d);
  2574   } else {
  2575     if (w == FloatRegisterImpl::S) {
  2576       Assembler::fneg(w, s, d);
  2577     } else if (w == FloatRegisterImpl::D) {
  2578       // number() does a sanity check on the alignment.
  2579       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2580         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2582       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2583       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2584     } else {
  2585       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2587       // number() does a sanity check on the alignment.
  2588       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2589         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2591       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2592       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2593       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2594       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2599 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2601   if (VM_Version::v9_instructions_work()) {
  2602     Assembler::fmov(w, s, d);
  2603   } else {
  2604     if (w == FloatRegisterImpl::S) {
  2605       Assembler::fmov(w, s, d);
  2606     } else if (w == FloatRegisterImpl::D) {
  2607       // number() does a sanity check on the alignment.
  2608       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2609         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2611       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2612       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2613     } else {
  2614       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2616       // number() does a sanity check on the alignment.
  2617       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2618         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2620       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2621       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2622       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2623       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2628 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2630   if (VM_Version::v9_instructions_work()) {
  2631     Assembler::fabs(w, s, d);
  2632   } else {
  2633     if (w == FloatRegisterImpl::S) {
  2634       Assembler::fabs(w, s, d);
  2635     } else if (w == FloatRegisterImpl::D) {
  2636       // number() does a sanity check on the alignment.
  2637       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2638         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2640       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2641       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2642     } else {
  2643       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2645       // number() does a sanity check on the alignment.
  2646       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2647        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2649       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2650       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2651       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2652       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2657 void MacroAssembler::save_all_globals_into_locals() {
  2658   mov(G1,L1);
  2659   mov(G2,L2);
  2660   mov(G3,L3);
  2661   mov(G4,L4);
  2662   mov(G5,L5);
  2663   mov(G6,L6);
  2664   mov(G7,L7);
  2667 void MacroAssembler::restore_globals_from_locals() {
  2668   mov(L1,G1);
  2669   mov(L2,G2);
  2670   mov(L3,G3);
  2671   mov(L4,G4);
  2672   mov(L5,G5);
  2673   mov(L6,G6);
  2674   mov(L7,G7);
  2677 // Use for 64 bit operation.
  2678 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2680   // store ptr_reg as the new top value
  2681 #ifdef _LP64
  2682   casx(top_ptr_reg, top_reg, ptr_reg);
  2683 #else
  2684   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
  2685 #endif // _LP64
  2688 // [RGV] This routine does not handle 64 bit operations.
  2689 //       use casx_under_lock() or casx directly!!!
  2690 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2692   // store ptr_reg as the new top value
  2693   if (VM_Version::v9_instructions_work()) {
  2694     cas(top_ptr_reg, top_reg, ptr_reg);
  2695   } else {
  2697     // If the register is not an out nor global, it is not visible
  2698     // after the save.  Allocate a register for it, save its
  2699     // value in the register save area (the save may not flush
  2700     // registers to the save area).
  2702     Register top_ptr_reg_after_save;
  2703     Register top_reg_after_save;
  2704     Register ptr_reg_after_save;
  2706     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
  2707       top_ptr_reg_after_save = top_ptr_reg->after_save();
  2708     } else {
  2709       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
  2710       top_ptr_reg_after_save = L0;
  2711       st(top_ptr_reg, reg_save_addr);
  2714     if (top_reg->is_out() || top_reg->is_global()) {
  2715       top_reg_after_save = top_reg->after_save();
  2716     } else {
  2717       Address reg_save_addr = top_reg->address_in_saved_window();
  2718       top_reg_after_save = L1;
  2719       st(top_reg, reg_save_addr);
  2722     if (ptr_reg->is_out() || ptr_reg->is_global()) {
  2723       ptr_reg_after_save = ptr_reg->after_save();
  2724     } else {
  2725       Address reg_save_addr = ptr_reg->address_in_saved_window();
  2726       ptr_reg_after_save = L2;
  2727       st(ptr_reg, reg_save_addr);
  2730     const Register& lock_reg = L3;
  2731     const Register& lock_ptr_reg = L4;
  2732     const Register& value_reg = L5;
  2733     const Register& yield_reg = L6;
  2734     const Register& yieldall_reg = L7;
  2736     save_frame();
  2738     if (top_ptr_reg_after_save == L0) {
  2739       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
  2742     if (top_reg_after_save == L1) {
  2743       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
  2746     if (ptr_reg_after_save == L2) {
  2747       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
  2750     Label(retry_get_lock);
  2751     Label(not_same);
  2752     Label(dont_yield);
  2754     assert(lock_addr, "lock_address should be non null for v8");
  2755     set((intptr_t)lock_addr, lock_ptr_reg);
  2756     // Initialize yield counter
  2757     mov(G0,yield_reg);
  2758     mov(G0, yieldall_reg);
  2759     set(StubRoutines::Sparc::locked, lock_reg);
  2761     bind(retry_get_lock);
  2762     cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield);
  2764     if(use_call_vm) {
  2765       Untested("Need to verify global reg consistancy");
  2766       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
  2767     } else {
  2768       // Save the regs and make space for a C call
  2769       save(SP, -96, SP);
  2770       save_all_globals_into_locals();
  2771       call(CAST_FROM_FN_PTR(address,os::yield_all));
  2772       delayed()->mov(yieldall_reg, O0);
  2773       restore_globals_from_locals();
  2774       restore();
  2777     // reset the counter
  2778     mov(G0,yield_reg);
  2779     add(yieldall_reg, 1, yieldall_reg);
  2781     bind(dont_yield);
  2782     // try to get lock
  2783     swap(lock_ptr_reg, 0, lock_reg);
  2785     // did we get the lock?
  2786     cmp(lock_reg, StubRoutines::Sparc::unlocked);
  2787     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
  2788     delayed()->add(yield_reg,1,yield_reg);
  2790     // yes, got lock.  do we have the same top?
  2791     ld(top_ptr_reg_after_save, 0, value_reg);
  2792     cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same);
  2794     // yes, same top.
  2795     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
  2796     membar(Assembler::StoreStore);
  2798     bind(not_same);
  2799     mov(value_reg, ptr_reg_after_save);
  2800     st(lock_reg, lock_ptr_reg, 0); // unlock
  2802     restore();
  2806 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  2807                                                       Register tmp,
  2808                                                       int offset) {
  2809   intptr_t value = *delayed_value_addr;
  2810   if (value != 0)
  2811     return RegisterOrConstant(value + offset);
  2813   // load indirectly to solve generation ordering problem
  2814   AddressLiteral a(delayed_value_addr);
  2815   load_ptr_contents(a, tmp);
  2817 #ifdef ASSERT
  2818   tst(tmp);
  2819   breakpoint_trap(zero, xcc);
  2820 #endif
  2822   if (offset != 0)
  2823     add(tmp, offset, tmp);
  2825   return RegisterOrConstant(tmp);
  2829 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2830   assert(d.register_or_noreg() != G0, "lost side effect");
  2831   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2832       (s2.is_register() && s2.as_register() == G0)) {
  2833     // Do nothing, just move value.
  2834     if (s1.is_register()) {
  2835       if (d.is_constant())  d = temp;
  2836       mov(s1.as_register(), d.as_register());
  2837       return d;
  2838     } else {
  2839       return s1;
  2843   if (s1.is_register()) {
  2844     assert_different_registers(s1.as_register(), temp);
  2845     if (d.is_constant())  d = temp;
  2846     andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2847     return d;
  2848   } else {
  2849     if (s2.is_register()) {
  2850       assert_different_registers(s2.as_register(), temp);
  2851       if (d.is_constant())  d = temp;
  2852       set(s1.as_constant(), temp);
  2853       andn(temp, s2.as_register(), d.as_register());
  2854       return d;
  2855     } else {
  2856       intptr_t res = s1.as_constant() & ~s2.as_constant();
  2857       return res;
  2862 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2863   assert(d.register_or_noreg() != G0, "lost side effect");
  2864   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2865       (s2.is_register() && s2.as_register() == G0)) {
  2866     // Do nothing, just move value.
  2867     if (s1.is_register()) {
  2868       if (d.is_constant())  d = temp;
  2869       mov(s1.as_register(), d.as_register());
  2870       return d;
  2871     } else {
  2872       return s1;
  2876   if (s1.is_register()) {
  2877     assert_different_registers(s1.as_register(), temp);
  2878     if (d.is_constant())  d = temp;
  2879     add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2880     return d;
  2881   } else {
  2882     if (s2.is_register()) {
  2883       assert_different_registers(s2.as_register(), temp);
  2884       if (d.is_constant())  d = temp;
  2885       add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
  2886       return d;
  2887     } else {
  2888       intptr_t res = s1.as_constant() + s2.as_constant();
  2889       return res;
  2894 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2895   assert(d.register_or_noreg() != G0, "lost side effect");
  2896   if (!is_simm13(s2.constant_or_zero()))
  2897     s2 = (s2.as_constant() & 0xFF);
  2898   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2899       (s2.is_register() && s2.as_register() == G0)) {
  2900     // Do nothing, just move value.
  2901     if (s1.is_register()) {
  2902       if (d.is_constant())  d = temp;
  2903       mov(s1.as_register(), d.as_register());
  2904       return d;
  2905     } else {
  2906       return s1;
  2910   if (s1.is_register()) {
  2911     assert_different_registers(s1.as_register(), temp);
  2912     if (d.is_constant())  d = temp;
  2913     sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2914     return d;
  2915   } else {
  2916     if (s2.is_register()) {
  2917       assert_different_registers(s2.as_register(), temp);
  2918       if (d.is_constant())  d = temp;
  2919       set(s1.as_constant(), temp);
  2920       sll_ptr(temp, s2.as_register(), d.as_register());
  2921       return d;
  2922     } else {
  2923       intptr_t res = s1.as_constant() << s2.as_constant();
  2924       return res;
  2930 // Look up the method for a megamorphic invokeinterface call.
  2931 // The target method is determined by <intf_klass, itable_index>.
  2932 // The receiver klass is in recv_klass.
  2933 // On success, the result will be in method_result, and execution falls through.
  2934 // On failure, execution transfers to the given label.
  2935 void MacroAssembler::lookup_interface_method(Register recv_klass,
  2936                                              Register intf_klass,
  2937                                              RegisterOrConstant itable_index,
  2938                                              Register method_result,
  2939                                              Register scan_temp,
  2940                                              Register sethi_temp,
  2941                                              Label& L_no_such_interface) {
  2942   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  2943   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  2944          "caller must use same register for non-constant itable index as for method");
  2946   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  2947   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  2948   int scan_step   = itableOffsetEntry::size() * wordSize;
  2949   int vte_size    = vtableEntry::size() * wordSize;
  2951   lduw(recv_klass, InstanceKlass::vtable_length_offset() * wordSize, scan_temp);
  2952   // %%% We should store the aligned, prescaled offset in the klassoop.
  2953   // Then the next several instructions would fold away.
  2955   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
  2956   int itb_offset = vtable_base;
  2957   if (round_to_unit != 0) {
  2958     // hoist first instruction of round_to(scan_temp, BytesPerLong):
  2959     itb_offset += round_to_unit - wordSize;
  2961   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
  2962   sll(scan_temp, itb_scale,  scan_temp);
  2963   add(scan_temp, itb_offset, scan_temp);
  2964   if (round_to_unit != 0) {
  2965     // Round up to align_object_offset boundary
  2966     // see code for InstanceKlass::start_of_itable!
  2967     // Was: round_to(scan_temp, BytesPerLong);
  2968     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
  2969     and3(scan_temp, -round_to_unit, scan_temp);
  2971   add(recv_klass, scan_temp, scan_temp);
  2973   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  2974   RegisterOrConstant itable_offset = itable_index;
  2975   itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
  2976   itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
  2977   add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
  2979   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  2980   //   if (scan->interface() == intf) {
  2981   //     result = (klass + scan->offset() + itable_index);
  2982   //   }
  2983   // }
  2984   Label search, found_method;
  2986   for (int peel = 1; peel >= 0; peel--) {
  2987     // %%%% Could load both offset and interface in one ldx, if they were
  2988     // in the opposite order.  This would save a load.
  2989     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
  2991     // Check that this entry is non-null.  A null entry means that
  2992     // the receiver class doesn't implement the interface, and wasn't the
  2993     // same as when the caller was compiled.
  2994     bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
  2995     delayed()->cmp(method_result, intf_klass);
  2997     if (peel) {
  2998       brx(Assembler::equal,    false, Assembler::pt, found_method);
  2999     } else {
  3000       brx(Assembler::notEqual, false, Assembler::pn, search);
  3001       // (invert the test to fall through to found_method...)
  3003     delayed()->add(scan_temp, scan_step, scan_temp);
  3005     if (!peel)  break;
  3007     bind(search);
  3010   bind(found_method);
  3012   // Got a hit.
  3013   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
  3014   // scan_temp[-scan_step] points to the vtable offset we need
  3015   ito_offset -= scan_step;
  3016   lduw(scan_temp, ito_offset, scan_temp);
  3017   ld_ptr(recv_klass, scan_temp, method_result);
  3021 // virtual method calling
  3022 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  3023                                            RegisterOrConstant vtable_index,
  3024                                            Register method_result) {
  3025   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
  3026   Register sethi_temp = method_result;
  3027   const int base = (InstanceKlass::vtable_start_offset() * wordSize +
  3028                     // method pointer offset within the vtable entry:
  3029                     vtableEntry::method_offset_in_bytes());
  3030   RegisterOrConstant vtable_offset = vtable_index;
  3031   // Each of the following three lines potentially generates an instruction.
  3032   // But the total number of address formation instructions will always be
  3033   // at most two, and will often be zero.  In any case, it will be optimal.
  3034   // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
  3035   // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
  3036   vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
  3037   vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
  3038   Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
  3039   ld_ptr(vtable_entry_addr, method_result);
  3043 void MacroAssembler::check_klass_subtype(Register sub_klass,
  3044                                          Register super_klass,
  3045                                          Register temp_reg,
  3046                                          Register temp2_reg,
  3047                                          Label& L_success) {
  3048   Register sub_2 = sub_klass;
  3049   Register sup_2 = super_klass;
  3050   if (!sub_2->is_global())  sub_2 = L0;
  3051   if (!sup_2->is_global())  sup_2 = L1;
  3052   bool did_save = false;
  3053   if (temp_reg == noreg || temp2_reg == noreg) {
  3054     temp_reg = L2;
  3055     temp2_reg = L3;
  3056     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
  3057     sub_klass = sub_2;
  3058     super_klass = sup_2;
  3059     did_save = true;
  3061   Label L_failure, L_pop_to_failure, L_pop_to_success;
  3062   check_klass_subtype_fast_path(sub_klass, super_klass,
  3063                                 temp_reg, temp2_reg,
  3064                                 (did_save ? &L_pop_to_success : &L_success),
  3065                                 (did_save ? &L_pop_to_failure : &L_failure), NULL);
  3067   if (!did_save)
  3068     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
  3069   check_klass_subtype_slow_path(sub_2, sup_2,
  3070                                 L2, L3, L4, L5,
  3071                                 NULL, &L_pop_to_failure);
  3073   // on success:
  3074   bind(L_pop_to_success);
  3075   restore();
  3076   ba_short(L_success);
  3078   // on failure:
  3079   bind(L_pop_to_failure);
  3080   restore();
  3081   bind(L_failure);
  3085 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  3086                                                    Register super_klass,
  3087                                                    Register temp_reg,
  3088                                                    Register temp2_reg,
  3089                                                    Label* L_success,
  3090                                                    Label* L_failure,
  3091                                                    Label* L_slow_path,
  3092                                         RegisterOrConstant super_check_offset) {
  3093   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  3094   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  3096   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
  3097   bool need_slow_path = (must_load_sco ||
  3098                          super_check_offset.constant_or_zero() == sco_offset);
  3100   assert_different_registers(sub_klass, super_klass, temp_reg);
  3101   if (super_check_offset.is_register()) {
  3102     assert_different_registers(sub_klass, super_klass, temp_reg,
  3103                                super_check_offset.as_register());
  3104   } else if (must_load_sco) {
  3105     assert(temp2_reg != noreg, "supply either a temp or a register offset");
  3108   Label L_fallthrough;
  3109   int label_nulls = 0;
  3110   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3111   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3112   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  3113   assert(label_nulls <= 1 ||
  3114          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
  3115          "at most one NULL in the batch, usually");
  3117   // If the pointers are equal, we are done (e.g., String[] elements).
  3118   // This self-check enables sharing of secondary supertype arrays among
  3119   // non-primary types such as array-of-interface.  Otherwise, each such
  3120   // type would need its own customized SSA.
  3121   // We move this check to the front of the fast path because many
  3122   // type checks are in fact trivially successful in this manner,
  3123   // so we get a nicely predicted branch right at the start of the check.
  3124   cmp(super_klass, sub_klass);
  3125   brx(Assembler::equal, false, Assembler::pn, *L_success);
  3126   delayed()->nop();
  3128   // Check the supertype display:
  3129   if (must_load_sco) {
  3130     // The super check offset is always positive...
  3131     lduw(super_klass, sco_offset, temp2_reg);
  3132     super_check_offset = RegisterOrConstant(temp2_reg);
  3133     // super_check_offset is register.
  3134     assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
  3136   ld_ptr(sub_klass, super_check_offset, temp_reg);
  3137   cmp(super_klass, temp_reg);
  3139   // This check has worked decisively for primary supers.
  3140   // Secondary supers are sought in the super_cache ('super_cache_addr').
  3141   // (Secondary supers are interfaces and very deeply nested subtypes.)
  3142   // This works in the same check above because of a tricky aliasing
  3143   // between the super_cache and the primary super display elements.
  3144   // (The 'super_check_addr' can address either, as the case requires.)
  3145   // Note that the cache is updated below if it does not help us find
  3146   // what we need immediately.
  3147   // So if it was a primary super, we can just fail immediately.
  3148   // Otherwise, it's the slow path for us (no success at this point).
  3150   // Hacked ba(), which may only be used just before L_fallthrough.
  3151 #define FINAL_JUMP(label)            \
  3152   if (&(label) != &L_fallthrough) {  \
  3153     ba(label);  delayed()->nop();    \
  3156   if (super_check_offset.is_register()) {
  3157     brx(Assembler::equal, false, Assembler::pn, *L_success);
  3158     delayed()->cmp(super_check_offset.as_register(), sc_offset);
  3160     if (L_failure == &L_fallthrough) {
  3161       brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
  3162       delayed()->nop();
  3163     } else {
  3164       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
  3165       delayed()->nop();
  3166       FINAL_JUMP(*L_slow_path);
  3168   } else if (super_check_offset.as_constant() == sc_offset) {
  3169     // Need a slow path; fast failure is impossible.
  3170     if (L_slow_path == &L_fallthrough) {
  3171       brx(Assembler::equal, false, Assembler::pt, *L_success);
  3172       delayed()->nop();
  3173     } else {
  3174       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
  3175       delayed()->nop();
  3176       FINAL_JUMP(*L_success);
  3178   } else {
  3179     // No slow path; it's a fast decision.
  3180     if (L_failure == &L_fallthrough) {
  3181       brx(Assembler::equal, false, Assembler::pt, *L_success);
  3182       delayed()->nop();
  3183     } else {
  3184       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
  3185       delayed()->nop();
  3186       FINAL_JUMP(*L_success);
  3190   bind(L_fallthrough);
  3192 #undef FINAL_JUMP
  3196 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  3197                                                    Register super_klass,
  3198                                                    Register count_temp,
  3199                                                    Register scan_temp,
  3200                                                    Register scratch_reg,
  3201                                                    Register coop_reg,
  3202                                                    Label* L_success,
  3203                                                    Label* L_failure) {
  3204   assert_different_registers(sub_klass, super_klass,
  3205                              count_temp, scan_temp, scratch_reg, coop_reg);
  3207   Label L_fallthrough, L_loop;
  3208   int label_nulls = 0;
  3209   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3210   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3211   assert(label_nulls <= 1, "at most one NULL in the batch");
  3213   // a couple of useful fields in sub_klass:
  3214   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  3215   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  3217   // Do a linear scan of the secondary super-klass chain.
  3218   // This code is rarely used, so simplicity is a virtue here.
  3220 #ifndef PRODUCT
  3221   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  3222   inc_counter((address) pst_counter, count_temp, scan_temp);
  3223 #endif
  3225   // We will consult the secondary-super array.
  3226   ld_ptr(sub_klass, ss_offset, scan_temp);
  3228   Register search_key = super_klass;
  3230   // Load the array length.  (Positive movl does right thing on LP64.)
  3231   lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
  3233   // Check for empty secondary super list
  3234   tst(count_temp);
  3236   // In the array of super classes elements are pointer sized.
  3237   int element_size = wordSize;
  3239   // Top of search loop
  3240   bind(L_loop);
  3241   br(Assembler::equal, false, Assembler::pn, *L_failure);
  3242   delayed()->add(scan_temp, element_size, scan_temp);
  3244   // Skip the array header in all array accesses.
  3245   int elem_offset = Array<Klass*>::base_offset_in_bytes();
  3246   elem_offset -= element_size;   // the scan pointer was pre-incremented also
  3248   // Load next super to check
  3249     ld_ptr( scan_temp, elem_offset, scratch_reg );
  3251   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
  3252   cmp(scratch_reg, search_key);
  3254   // A miss means we are NOT a subtype and need to keep looping
  3255   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
  3256   delayed()->deccc(count_temp); // decrement trip counter in delay slot
  3258   // Success.  Cache the super we found and proceed in triumph.
  3259   st_ptr(super_klass, sub_klass, sc_offset);
  3261   if (L_success != &L_fallthrough) {
  3262     ba(*L_success);
  3263     delayed()->nop();
  3266   bind(L_fallthrough);
  3270 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
  3271                                                    Register temp_reg,
  3272                                                    int extra_slot_offset) {
  3273   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  3274   int stackElementSize = Interpreter::stackElementSize;
  3275   int offset = extra_slot_offset * stackElementSize;
  3276   if (arg_slot.is_constant()) {
  3277     offset += arg_slot.as_constant() * stackElementSize;
  3278     return offset;
  3279   } else {
  3280     assert(temp_reg != noreg, "must specify");
  3281     sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
  3282     if (offset != 0)
  3283       add(temp_reg, offset, temp_reg);
  3284     return temp_reg;
  3289 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  3290                                          Register temp_reg,
  3291                                          int extra_slot_offset) {
  3292   return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
  3296 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
  3297                                           Register temp_reg,
  3298                                           Label& done, Label* slow_case,
  3299                                           BiasedLockingCounters* counters) {
  3300   assert(UseBiasedLocking, "why call this otherwise?");
  3302   if (PrintBiasedLockingStatistics) {
  3303     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
  3304     if (counters == NULL)
  3305       counters = BiasedLocking::counters();
  3308   Label cas_label;
  3310   // Biased locking
  3311   // See whether the lock is currently biased toward our thread and
  3312   // whether the epoch is still valid
  3313   // Note that the runtime guarantees sufficient alignment of JavaThread
  3314   // pointers to allow age to be placed into low bits
  3315   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  3316   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  3317   cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
  3319   load_klass(obj_reg, temp_reg);
  3320   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
  3321   or3(G2_thread, temp_reg, temp_reg);
  3322   xor3(mark_reg, temp_reg, temp_reg);
  3323   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
  3324   if (counters != NULL) {
  3325     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
  3326     // Reload mark_reg as we may need it later
  3327     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
  3329   brx(Assembler::equal, true, Assembler::pt, done);
  3330   delayed()->nop();
  3332   Label try_revoke_bias;
  3333   Label try_rebias;
  3334   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
  3335   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3337   // At this point we know that the header has the bias pattern and
  3338   // that we are not the bias owner in the current epoch. We need to
  3339   // figure out more details about the state of the header in order to
  3340   // know what operations can be legally performed on the object's
  3341   // header.
  3343   // If the low three bits in the xor result aren't clear, that means
  3344   // the prototype header is no longer biased and we have to revoke
  3345   // the bias on this object.
  3346   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
  3347   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
  3349   // Biasing is still enabled for this data type. See whether the
  3350   // epoch of the current bias is still valid, meaning that the epoch
  3351   // bits of the mark word are equal to the epoch bits of the
  3352   // prototype header. (Note that the prototype header's epoch bits
  3353   // only change at a safepoint.) If not, attempt to rebias the object
  3354   // toward the current thread. Note that we must be absolutely sure
  3355   // that the current epoch is invalid in order to do this because
  3356   // otherwise the manipulations it performs on the mark word are
  3357   // illegal.
  3358   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
  3359   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
  3361   // The epoch of the current bias is still valid but we know nothing
  3362   // about the owner; it might be set or it might be clear. Try to
  3363   // acquire the bias of the object using an atomic operation. If this
  3364   // fails we will go in to the runtime to revoke the object's bias.
  3365   // Note that we first construct the presumed unbiased header so we
  3366   // don't accidentally blow away another thread's valid bias.
  3367   delayed()->and3(mark_reg,
  3368                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
  3369                   mark_reg);
  3370   or3(G2_thread, mark_reg, temp_reg);
  3371   casn(mark_addr.base(), mark_reg, temp_reg);
  3372   // If the biasing toward our thread failed, this means that
  3373   // another thread succeeded in biasing it toward itself and we
  3374   // need to revoke that bias. The revocation will occur in the
  3375   // interpreter runtime in the slow case.
  3376   cmp(mark_reg, temp_reg);
  3377   if (counters != NULL) {
  3378     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
  3380   if (slow_case != NULL) {
  3381     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  3382     delayed()->nop();
  3384   ba_short(done);
  3386   bind(try_rebias);
  3387   // At this point we know the epoch has expired, meaning that the
  3388   // current "bias owner", if any, is actually invalid. Under these
  3389   // circumstances _only_, we are allowed to use the current header's
  3390   // value as the comparison value when doing the cas to acquire the
  3391   // bias in the current epoch. In other words, we allow transfer of
  3392   // the bias from one thread to another directly in this situation.
  3393   //
  3394   // FIXME: due to a lack of registers we currently blow away the age
  3395   // bits in this situation. Should attempt to preserve them.
  3396   load_klass(obj_reg, temp_reg);
  3397   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
  3398   or3(G2_thread, temp_reg, temp_reg);
  3399   casn(mark_addr.base(), mark_reg, temp_reg);
  3400   // If the biasing toward our thread failed, this means that
  3401   // another thread succeeded in biasing it toward itself and we
  3402   // need to revoke that bias. The revocation will occur in the
  3403   // interpreter runtime in the slow case.
  3404   cmp(mark_reg, temp_reg);
  3405   if (counters != NULL) {
  3406     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
  3408   if (slow_case != NULL) {
  3409     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  3410     delayed()->nop();
  3412   ba_short(done);
  3414   bind(try_revoke_bias);
  3415   // The prototype mark in the klass doesn't have the bias bit set any
  3416   // more, indicating that objects of this data type are not supposed
  3417   // to be biased any more. We are going to try to reset the mark of
  3418   // this object to the prototype value and fall through to the
  3419   // CAS-based locking scheme. Note that if our CAS fails, it means
  3420   // that another thread raced us for the privilege of revoking the
  3421   // bias of this particular object, so it's okay to continue in the
  3422   // normal locking code.
  3423   //
  3424   // FIXME: due to a lack of registers we currently blow away the age
  3425   // bits in this situation. Should attempt to preserve them.
  3426   load_klass(obj_reg, temp_reg);
  3427   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
  3428   casn(mark_addr.base(), mark_reg, temp_reg);
  3429   // Fall through to the normal CAS-based lock, because no matter what
  3430   // the result of the above CAS, some thread must have succeeded in
  3431   // removing the bias bit from the object's header.
  3432   if (counters != NULL) {
  3433     cmp(mark_reg, temp_reg);
  3434     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
  3437   bind(cas_label);
  3440 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
  3441                                           bool allow_delay_slot_filling) {
  3442   // Check for biased locking unlock case, which is a no-op
  3443   // Note: we do not have to check the thread ID for two reasons.
  3444   // First, the interpreter checks for IllegalMonitorStateException at
  3445   // a higher level. Second, if the bias was revoked while we held the
  3446   // lock, the object could not be rebiased toward another thread, so
  3447   // the bias bit would be clear.
  3448   ld_ptr(mark_addr, temp_reg);
  3449   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  3450   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  3451   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
  3452   delayed();
  3453   if (!allow_delay_slot_filling) {
  3454     nop();
  3459 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
  3460 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
  3462 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
  3463   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3468 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
  3469 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
  3470 // The code could be tightened up considerably.
  3471 //
  3472 // box->dhw disposition - post-conditions at DONE_LABEL.
  3473 // -   Successful inflated lock:  box->dhw != 0.
  3474 //     Any non-zero value suffices.
  3475 //     Consider G2_thread, rsp, boxReg, or unused_mark()
  3476 // -   Successful Stack-lock: box->dhw == mark.
  3477 //     box->dhw must contain the displaced mark word value
  3478 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
  3479 //     The slow-path fast_enter() and slow_enter() operators
  3480 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
  3481 // -   Biased: box->dhw is undefined
  3482 //
  3483 // SPARC refworkload performance - specifically jetstream and scimark - are
  3484 // extremely sensitive to the size of the code emitted by compiler_lock_object
  3485 // and compiler_unlock_object.  Critically, the key factor is code size, not path
  3486 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
  3487 // effect).
  3490 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
  3491                                           Register Rbox, Register Rscratch,
  3492                                           BiasedLockingCounters* counters,
  3493                                           bool try_bias) {
  3494    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  3496    verify_oop(Roop);
  3497    Label done ;
  3499    if (counters != NULL) {
  3500      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
  3503    if (EmitSync & 1) {
  3504      mov(3, Rscratch);
  3505      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3506      cmp(SP, G0);
  3507      return ;
  3510    if (EmitSync & 2) {
  3512      // Fetch object's markword
  3513      ld_ptr(mark_addr, Rmark);
  3515      if (try_bias) {
  3516         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3519      // Save Rbox in Rscratch to be used for the cas operation
  3520      mov(Rbox, Rscratch);
  3522      // set Rmark to markOop | markOopDesc::unlocked_value
  3523      or3(Rmark, markOopDesc::unlocked_value, Rmark);
  3525      // Initialize the box.  (Must happen before we update the object mark!)
  3526      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3528      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
  3529      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3530      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
  3531         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3533      // if compare/exchange succeeded we found an unlocked object and we now have locked it
  3534      // hence we are done
  3535      cmp(Rmark, Rscratch);
  3536 #ifdef _LP64
  3537      sub(Rscratch, STACK_BIAS, Rscratch);
  3538 #endif
  3539      brx(Assembler::equal, false, Assembler::pt, done);
  3540      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
  3542      // we did not find an unlocked object so see if this is a recursive case
  3543      // sub(Rscratch, SP, Rscratch);
  3544      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3545      andcc(Rscratch, 0xfffff003, Rscratch);
  3546      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3547      bind (done);
  3548      return ;
  3551    Label Egress ;
  3553    if (EmitSync & 256) {
  3554       Label IsInflated ;
  3556       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
  3557       // Triage: biased, stack-locked, neutral, inflated
  3558       if (try_bias) {
  3559         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3560         // Invariant: if control reaches this point in the emitted stream
  3561         // then Rmark has not been modified.
  3564       // Store mark into displaced mark field in the on-stack basic-lock "box"
  3565       // Critically, this must happen before the CAS
  3566       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
  3567       st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3568       andcc(Rmark, 2, G0);
  3569       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
  3570       delayed()->
  3572       // Try stack-lock acquisition.
  3573       // Beware: the 1st instruction is in a delay slot
  3574       mov(Rbox,  Rscratch);
  3575       or3(Rmark, markOopDesc::unlocked_value, Rmark);
  3576       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3577       casn(mark_addr.base(), Rmark, Rscratch);
  3578       cmp(Rmark, Rscratch);
  3579       brx(Assembler::equal, false, Assembler::pt, done);
  3580       delayed()->sub(Rscratch, SP, Rscratch);
  3582       // Stack-lock attempt failed - check for recursive stack-lock.
  3583       // See the comments below about how we might remove this case.
  3584 #ifdef _LP64
  3585       sub(Rscratch, STACK_BIAS, Rscratch);
  3586 #endif
  3587       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3588       andcc(Rscratch, 0xfffff003, Rscratch);
  3589       br(Assembler::always, false, Assembler::pt, done);
  3590       delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3592       bind(IsInflated);
  3593       if (EmitSync & 64) {
  3594          // If m->owner != null goto IsLocked
  3595          // Pessimistic form: Test-and-CAS vs CAS
  3596          // The optimistic form avoids RTS->RTO cache line upgrades.
  3597          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3598          andcc(Rscratch, Rscratch, G0);
  3599          brx(Assembler::notZero, false, Assembler::pn, done);
  3600          delayed()->nop();
  3601          // m->owner == null : it's unlocked.
  3604       // Try to CAS m->owner from null to Self
  3605       // Invariant: if we acquire the lock then _recursions should be 0.
  3606       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
  3607       mov(G2_thread, Rscratch);
  3608       casn(Rmark, G0, Rscratch);
  3609       cmp(Rscratch, G0);
  3610       // Intentional fall-through into done
  3611    } else {
  3612       // Aggressively avoid the Store-before-CAS penalty
  3613       // Defer the store into box->dhw until after the CAS
  3614       Label IsInflated, Recursive ;
  3616 // Anticipate CAS -- Avoid RTS->RTO upgrade
  3617 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
  3619       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
  3620       // Triage: biased, stack-locked, neutral, inflated
  3622       if (try_bias) {
  3623         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3624         // Invariant: if control reaches this point in the emitted stream
  3625         // then Rmark has not been modified.
  3627       andcc(Rmark, 2, G0);
  3628       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
  3629       delayed()->                         // Beware - dangling delay-slot
  3631       // Try stack-lock acquisition.
  3632       // Transiently install BUSY (0) encoding in the mark word.
  3633       // if the CAS of 0 into the mark was successful then we execute:
  3634       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
  3635       //   ST obj->mark = box    -- overwrite transient 0 value
  3636       // This presumes TSO, of course.
  3638       mov(0, Rscratch);
  3639       or3(Rmark, markOopDesc::unlocked_value, Rmark);
  3640       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3641       casn(mark_addr.base(), Rmark, Rscratch);
  3642 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
  3643       cmp(Rscratch, Rmark);
  3644       brx(Assembler::notZero, false, Assembler::pn, Recursive);
  3645       delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3646       if (counters != NULL) {
  3647         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3649       ba(done);
  3650       delayed()->st_ptr(Rbox, mark_addr);
  3652       bind(Recursive);
  3653       // Stack-lock attempt failed - check for recursive stack-lock.
  3654       // Tests show that we can remove the recursive case with no impact
  3655       // on refworkload 0.83.  If we need to reduce the size of the code
  3656       // emitted by compiler_lock_object() the recursive case is perfect
  3657       // candidate.
  3658       //
  3659       // A more extreme idea is to always inflate on stack-lock recursion.
  3660       // This lets us eliminate the recursive checks in compiler_lock_object
  3661       // and compiler_unlock_object and the (box->dhw == 0) encoding.
  3662       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
  3663       // and showed a performance *increase*.  In the same experiment I eliminated
  3664       // the fast-path stack-lock code from the interpreter and always passed
  3665       // control to the "slow" operators in synchronizer.cpp.
  3667       // RScratch contains the fetched obj->mark value from the failed CASN.
  3668 #ifdef _LP64
  3669       sub(Rscratch, STACK_BIAS, Rscratch);
  3670 #endif
  3671       sub(Rscratch, SP, Rscratch);
  3672       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3673       andcc(Rscratch, 0xfffff003, Rscratch);
  3674       if (counters != NULL) {
  3675         // Accounting needs the Rscratch register
  3676         st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3677         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3678         ba_short(done);
  3679       } else {
  3680         ba(done);
  3681         delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3684       bind   (IsInflated);
  3685       if (EmitSync & 64) {
  3686          // If m->owner != null goto IsLocked
  3687          // Test-and-CAS vs CAS
  3688          // Pessimistic form avoids futile (doomed) CAS attempts
  3689          // The optimistic form avoids RTS->RTO cache line upgrades.
  3690          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3691          andcc(Rscratch, Rscratch, G0);
  3692          brx(Assembler::notZero, false, Assembler::pn, done);
  3693          delayed()->nop();
  3694          // m->owner == null : it's unlocked.
  3697       // Try to CAS m->owner from null to Self
  3698       // Invariant: if we acquire the lock then _recursions should be 0.
  3699       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
  3700       mov(G2_thread, Rscratch);
  3701       casn(Rmark, G0, Rscratch);
  3702       cmp(Rscratch, G0);
  3703       // ST box->displaced_header = NonZero.
  3704       // Any non-zero value suffices:
  3705       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
  3706       st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3707       // Intentional fall-through into done
  3710    bind   (done);
  3713 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
  3714                                             Register Rbox, Register Rscratch,
  3715                                             bool try_bias) {
  3716    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  3718    Label done ;
  3720    if (EmitSync & 4) {
  3721      cmp(SP, G0);
  3722      return ;
  3725    if (EmitSync & 8) {
  3726      if (try_bias) {
  3727         biased_locking_exit(mark_addr, Rscratch, done);
  3730      // Test first if it is a fast recursive unlock
  3731      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
  3732      br_null_short(Rmark, Assembler::pt, done);
  3734      // Check if it is still a light weight lock, this is is true if we see
  3735      // the stack address of the basicLock in the markOop of the object
  3736      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3737      casx_under_lock(mark_addr.base(), Rbox, Rmark,
  3738        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3739      ba(done);
  3740      delayed()->cmp(Rbox, Rmark);
  3741      bind(done);
  3742      return ;
  3745    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
  3746    // is too large performance rolls abruptly off a cliff.
  3747    // This could be related to inlining policies, code cache management, or
  3748    // I$ effects.
  3749    Label LStacked ;
  3751    if (try_bias) {
  3752       // TODO: eliminate redundant LDs of obj->mark
  3753       biased_locking_exit(mark_addr, Rscratch, done);
  3756    ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
  3757    ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
  3758    andcc(Rscratch, Rscratch, G0);
  3759    brx(Assembler::zero, false, Assembler::pn, done);
  3760    delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
  3761    andcc(Rmark, 2, G0);
  3762    brx(Assembler::zero, false, Assembler::pt, LStacked);
  3763    delayed()->nop();
  3765    // It's inflated
  3766    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
  3767    // the ST of 0 into _owner which releases the lock.  This prevents loads
  3768    // and stores within the critical section from reordering (floating)
  3769    // past the store that releases the lock.  But TSO is a strong memory model
  3770    // and that particular flavor of barrier is a noop, so we can safely elide it.
  3771    // Note that we use 1-0 locking by default for the inflated case.  We
  3772    // close the resultant (and rare) race by having contented threads in
  3773    // monitorenter periodically poll _owner.
  3774    ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3775    ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
  3776    xor3(Rscratch, G2_thread, Rscratch);
  3777    orcc(Rbox, Rscratch, Rbox);
  3778    brx(Assembler::notZero, false, Assembler::pn, done);
  3779    delayed()->
  3780    ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
  3781    ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
  3782    orcc(Rbox, Rscratch, G0);
  3783    if (EmitSync & 65536) {
  3784       Label LSucc ;
  3785       brx(Assembler::notZero, false, Assembler::pn, LSucc);
  3786       delayed()->nop();
  3787       ba(done);
  3788       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3790       bind(LSucc);
  3791       st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3792       if (os::is_MP()) { membar (StoreLoad); }
  3793       ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
  3794       andcc(Rscratch, Rscratch, G0);
  3795       brx(Assembler::notZero, false, Assembler::pt, done);
  3796       delayed()->andcc(G0, G0, G0);
  3797       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
  3798       mov(G2_thread, Rscratch);
  3799       casn(Rmark, G0, Rscratch);
  3800       // invert icc.zf and goto done
  3801       br_notnull(Rscratch, false, Assembler::pt, done);
  3802       delayed()->cmp(G0, G0);
  3803       ba(done);
  3804       delayed()->cmp(G0, 1);
  3805    } else {
  3806       brx(Assembler::notZero, false, Assembler::pn, done);
  3807       delayed()->nop();
  3808       ba(done);
  3809       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3812    bind   (LStacked);
  3813    // Consider: we could replace the expensive CAS in the exit
  3814    // path with a simple ST of the displaced mark value fetched from
  3815    // the on-stack basiclock box.  That admits a race where a thread T2
  3816    // in the slow lock path -- inflating with monitor M -- could race a
  3817    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
  3818    // More precisely T1 in the stack-lock unlock path could "stomp" the
  3819    // inflated mark value M installed by T2, resulting in an orphan
  3820    // object monitor M and T2 becoming stranded.  We can remedy that situation
  3821    // by having T2 periodically poll the object's mark word using timed wait
  3822    // operations.  If T2 discovers that a stomp has occurred it vacates
  3823    // the monitor M and wakes any other threads stranded on the now-orphan M.
  3824    // In addition the monitor scavenger, which performs deflation,
  3825    // would also need to check for orpan monitors and stranded threads.
  3826    //
  3827    // Finally, inflation is also used when T2 needs to assign a hashCode
  3828    // to O and O is stack-locked by T1.  The "stomp" race could cause
  3829    // an assigned hashCode value to be lost.  We can avoid that condition
  3830    // and provide the necessary hashCode stability invariants by ensuring
  3831    // that hashCode generation is idempotent between copying GCs.
  3832    // For example we could compute the hashCode of an object O as
  3833    // O's heap address XOR some high quality RNG value that is refreshed
  3834    // at GC-time.  The monitor scavenger would install the hashCode
  3835    // found in any orphan monitors.  Again, the mechanism admits a
  3836    // lost-update "stomp" WAW race but detects and recovers as needed.
  3837    //
  3838    // A prototype implementation showed excellent results, although
  3839    // the scavenger and timeout code was rather involved.
  3841    casn(mark_addr.base(), Rbox, Rscratch);
  3842    cmp(Rbox, Rscratch);
  3843    // Intentional fall through into done ...
  3845    bind(done);
  3850 void MacroAssembler::print_CPU_state() {
  3851   // %%%%% need to implement this
  3854 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  3855   // %%%%% need to implement this
  3858 void MacroAssembler::push_IU_state() {
  3859   // %%%%% need to implement this
  3863 void MacroAssembler::pop_IU_state() {
  3864   // %%%%% need to implement this
  3868 void MacroAssembler::push_FPU_state() {
  3869   // %%%%% need to implement this
  3873 void MacroAssembler::pop_FPU_state() {
  3874   // %%%%% need to implement this
  3878 void MacroAssembler::push_CPU_state() {
  3879   // %%%%% need to implement this
  3883 void MacroAssembler::pop_CPU_state() {
  3884   // %%%%% need to implement this
  3889 void MacroAssembler::verify_tlab() {
  3890 #ifdef ASSERT
  3891   if (UseTLAB && VerifyOops) {
  3892     Label next, next2, ok;
  3893     Register t1 = L0;
  3894     Register t2 = L1;
  3895     Register t3 = L2;
  3897     save_frame(0);
  3898     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3899     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
  3900     or3(t1, t2, t3);
  3901     cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
  3902     STOP("assert(top >= start)");
  3903     should_not_reach_here();
  3905     bind(next);
  3906     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3907     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
  3908     or3(t3, t2, t3);
  3909     cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
  3910     STOP("assert(top <= end)");
  3911     should_not_reach_here();
  3913     bind(next2);
  3914     and3(t3, MinObjAlignmentInBytesMask, t3);
  3915     cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
  3916     STOP("assert(aligned)");
  3917     should_not_reach_here();
  3919     bind(ok);
  3920     restore();
  3922 #endif
  3926 void MacroAssembler::eden_allocate(
  3927   Register obj,                        // result: pointer to object after successful allocation
  3928   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3929   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3930   Register t1,                         // temp register
  3931   Register t2,                         // temp register
  3932   Label&   slow_case                   // continuation point if fast allocation fails
  3933 ){
  3934   // make sure arguments make sense
  3935   assert_different_registers(obj, var_size_in_bytes, t1, t2);
  3936   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
  3937   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3939   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3940     // No allocation in the shared eden.
  3941     ba_short(slow_case);
  3942   } else {
  3943     // get eden boundaries
  3944     // note: we need both top & top_addr!
  3945     const Register top_addr = t1;
  3946     const Register end      = t2;
  3948     CollectedHeap* ch = Universe::heap();
  3949     set((intx)ch->top_addr(), top_addr);
  3950     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
  3951     ld_ptr(top_addr, delta, end);
  3952     ld_ptr(top_addr, 0, obj);
  3954     // try to allocate
  3955     Label retry;
  3956     bind(retry);
  3957 #ifdef ASSERT
  3958     // make sure eden top is properly aligned
  3960       Label L;
  3961       btst(MinObjAlignmentInBytesMask, obj);
  3962       br(Assembler::zero, false, Assembler::pt, L);
  3963       delayed()->nop();
  3964       STOP("eden top is not properly aligned");
  3965       bind(L);
  3967 #endif // ASSERT
  3968     const Register free = end;
  3969     sub(end, obj, free);                                   // compute amount of free space
  3970     if (var_size_in_bytes->is_valid()) {
  3971       // size is unknown at compile time
  3972       cmp(free, var_size_in_bytes);
  3973       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3974       delayed()->add(obj, var_size_in_bytes, end);
  3975     } else {
  3976       // size is known at compile time
  3977       cmp(free, con_size_in_bytes);
  3978       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3979       delayed()->add(obj, con_size_in_bytes, end);
  3981     // Compare obj with the value at top_addr; if still equal, swap the value of
  3982     // end with the value at top_addr. If not equal, read the value at top_addr
  3983     // into end.
  3984     casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3985     // if someone beat us on the allocation, try again, otherwise continue
  3986     cmp(obj, end);
  3987     brx(Assembler::notEqual, false, Assembler::pn, retry);
  3988     delayed()->mov(end, obj);                              // nop if successfull since obj == end
  3990 #ifdef ASSERT
  3991     // make sure eden top is properly aligned
  3993       Label L;
  3994       const Register top_addr = t1;
  3996       set((intx)ch->top_addr(), top_addr);
  3997       ld_ptr(top_addr, 0, top_addr);
  3998       btst(MinObjAlignmentInBytesMask, top_addr);
  3999       br(Assembler::zero, false, Assembler::pt, L);
  4000       delayed()->nop();
  4001       STOP("eden top is not properly aligned");
  4002       bind(L);
  4004 #endif // ASSERT
  4009 void MacroAssembler::tlab_allocate(
  4010   Register obj,                        // result: pointer to object after successful allocation
  4011   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  4012   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  4013   Register t1,                         // temp register
  4014   Label&   slow_case                   // continuation point if fast allocation fails
  4015 ){
  4016   // make sure arguments make sense
  4017   assert_different_registers(obj, var_size_in_bytes, t1);
  4018   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
  4019   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  4021   const Register free  = t1;
  4023   verify_tlab();
  4025   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
  4027   // calculate amount of free space
  4028   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
  4029   sub(free, obj, free);
  4031   Label done;
  4032   if (var_size_in_bytes == noreg) {
  4033     cmp(free, con_size_in_bytes);
  4034   } else {
  4035     cmp(free, var_size_in_bytes);
  4037   br(Assembler::less, false, Assembler::pn, slow_case);
  4038   // calculate the new top pointer
  4039   if (var_size_in_bytes == noreg) {
  4040     delayed()->add(obj, con_size_in_bytes, free);
  4041   } else {
  4042     delayed()->add(obj, var_size_in_bytes, free);
  4045   bind(done);
  4047 #ifdef ASSERT
  4048   // make sure new free pointer is properly aligned
  4050     Label L;
  4051     btst(MinObjAlignmentInBytesMask, free);
  4052     br(Assembler::zero, false, Assembler::pt, L);
  4053     delayed()->nop();
  4054     STOP("updated TLAB free is not properly aligned");
  4055     bind(L);
  4057 #endif // ASSERT
  4059   // update the tlab top pointer
  4060   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  4061   verify_tlab();
  4065 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  4066   Register top = O0;
  4067   Register t1 = G1;
  4068   Register t2 = G3;
  4069   Register t3 = O1;
  4070   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
  4071   Label do_refill, discard_tlab;
  4073   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  4074     // No allocation in the shared eden.
  4075     ba_short(slow_case);
  4078   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
  4079   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
  4080   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
  4082   // calculate amount of free space
  4083   sub(t1, top, t1);
  4084   srl_ptr(t1, LogHeapWordSize, t1);
  4086   // Retain tlab and allocate object in shared space if
  4087   // the amount free in the tlab is too large to discard.
  4088   cmp(t1, t2);
  4089   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
  4091   // increment waste limit to prevent getting stuck on this slow path
  4092   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
  4093   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  4094   if (TLABStats) {
  4095     // increment number of slow_allocations
  4096     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
  4097     add(t2, 1, t2);
  4098     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  4100   ba_short(try_eden);
  4102   bind(discard_tlab);
  4103   if (TLABStats) {
  4104     // increment number of refills
  4105     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
  4106     add(t2, 1, t2);
  4107     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  4108     // accumulate wastage
  4109     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
  4110     add(t2, t1, t2);
  4111     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  4114   // if tlab is currently allocated (top or end != null) then
  4115   // fill [top, end + alignment_reserve) with array object
  4116   br_null_short(top, Assembler::pn, do_refill);
  4118   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
  4119   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
  4120   // set klass to intArrayKlass
  4121   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
  4122   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
  4123   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
  4124   st(t1, top, arrayOopDesc::length_offset_in_bytes());
  4125   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
  4126   ld_ptr(t2, 0, t2);
  4127   // store klass last.  concurrent gcs assumes klass length is valid if
  4128   // klass field is not null.
  4129   store_klass(t2, top);
  4130   verify_oop(top);
  4132   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
  4133   sub(top, t1, t1); // size of tlab's allocated portion
  4134   incr_allocated_bytes(t1, t2, t3);
  4136   // refill the tlab with an eden allocation
  4137   bind(do_refill);
  4138   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
  4139   sll_ptr(t1, LogHeapWordSize, t1);
  4140   // allocate new tlab, address returned in top
  4141   eden_allocate(top, t1, 0, t2, t3, slow_case);
  4143   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
  4144   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  4145 #ifdef ASSERT
  4146   // check that tlab_size (t1) is still valid
  4148     Label ok;
  4149     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
  4150     sll_ptr(t2, LogHeapWordSize, t2);
  4151     cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
  4152     STOP("assert(t1 == tlab_size)");
  4153     should_not_reach_here();
  4155     bind(ok);
  4157 #endif // ASSERT
  4158   add(top, t1, top); // t1 is tlab_size
  4159   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
  4160   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
  4161   verify_tlab();
  4162   ba_short(retry);
  4165 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
  4166                                           Register t1, Register t2) {
  4167   // Bump total bytes allocated by this thread
  4168   assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
  4169   assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
  4170   // v8 support has gone the way of the dodo
  4171   ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
  4172   add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
  4173   stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
  4176 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  4177   switch (cond) {
  4178     // Note some conditions are synonyms for others
  4179     case Assembler::never:                return Assembler::always;
  4180     case Assembler::zero:                 return Assembler::notZero;
  4181     case Assembler::lessEqual:            return Assembler::greater;
  4182     case Assembler::less:                 return Assembler::greaterEqual;
  4183     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
  4184     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
  4185     case Assembler::negative:             return Assembler::positive;
  4186     case Assembler::overflowSet:          return Assembler::overflowClear;
  4187     case Assembler::always:               return Assembler::never;
  4188     case Assembler::notZero:              return Assembler::zero;
  4189     case Assembler::greater:              return Assembler::lessEqual;
  4190     case Assembler::greaterEqual:         return Assembler::less;
  4191     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
  4192     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
  4193     case Assembler::positive:             return Assembler::negative;
  4194     case Assembler::overflowClear:        return Assembler::overflowSet;
  4197   ShouldNotReachHere(); return Assembler::overflowClear;
  4200 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
  4201                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
  4202   Condition negated_cond = negate_condition(cond);
  4203   Label L;
  4204   brx(negated_cond, false, Assembler::pt, L);
  4205   delayed()->nop();
  4206   inc_counter(counter_ptr, Rtmp1, Rtmp2);
  4207   bind(L);
  4210 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
  4211   AddressLiteral addrlit(counter_addr);
  4212   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
  4213   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
  4214   ld(addr, Rtmp2);
  4215   inc(Rtmp2);
  4216   st(Rtmp2, addr);
  4219 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
  4220   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
  4223 SkipIfEqual::SkipIfEqual(
  4224     MacroAssembler* masm, Register temp, const bool* flag_addr,
  4225     Assembler::Condition condition) {
  4226   _masm = masm;
  4227   AddressLiteral flag(flag_addr);
  4228   _masm->sethi(flag, temp);
  4229   _masm->ldub(temp, flag.low10(), temp);
  4230   _masm->tst(temp);
  4231   _masm->br(condition, false, Assembler::pt, _label);
  4232   _masm->delayed()->nop();
  4235 SkipIfEqual::~SkipIfEqual() {
  4236   _masm->bind(_label);
  4240 // Writes to stack successive pages until offset reached to check for
  4241 // stack overflow + shadow pages.  This clobbers tsp and scratch.
  4242 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
  4243                                      Register Rscratch) {
  4244   // Use stack pointer in temp stack pointer
  4245   mov(SP, Rtsp);
  4247   // Bang stack for total size given plus stack shadow page size.
  4248   // Bang one page at a time because a large size can overflow yellow and
  4249   // red zones (the bang will fail but stack overflow handling can't tell that
  4250   // it was a stack overflow bang vs a regular segv).
  4251   int offset = os::vm_page_size();
  4252   Register Roffset = Rscratch;
  4254   Label loop;
  4255   bind(loop);
  4256   set((-offset)+STACK_BIAS, Rscratch);
  4257   st(G0, Rtsp, Rscratch);
  4258   set(offset, Roffset);
  4259   sub(Rsize, Roffset, Rsize);
  4260   cmp(Rsize, G0);
  4261   br(Assembler::greater, false, Assembler::pn, loop);
  4262   delayed()->sub(Rtsp, Roffset, Rtsp);
  4264   // Bang down shadow pages too.
  4265   // The -1 because we already subtracted 1 page.
  4266   for (int i = 0; i< StackShadowPages-1; i++) {
  4267     set((-i*offset)+STACK_BIAS, Rscratch);
  4268     st(G0, Rtsp, Rscratch);
  4272 ///////////////////////////////////////////////////////////////////////////////////
  4273 #ifndef SERIALGC
  4275 static address satb_log_enqueue_with_frame = NULL;
  4276 static u_char* satb_log_enqueue_with_frame_end = NULL;
  4278 static address satb_log_enqueue_frameless = NULL;
  4279 static u_char* satb_log_enqueue_frameless_end = NULL;
  4281 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
  4283 static void generate_satb_log_enqueue(bool with_frame) {
  4284   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
  4285   CodeBuffer buf(bb);
  4286   MacroAssembler masm(&buf);
  4288 #define __ masm.
  4290   address start = __ pc();
  4291   Register pre_val;
  4293   Label refill, restart;
  4294   if (with_frame) {
  4295     __ save_frame(0);
  4296     pre_val = I0;  // Was O0 before the save.
  4297   } else {
  4298     pre_val = O0;
  4301   int satb_q_index_byte_offset =
  4302     in_bytes(JavaThread::satb_mark_queue_offset() +
  4303              PtrQueue::byte_offset_of_index());
  4305   int satb_q_buf_byte_offset =
  4306     in_bytes(JavaThread::satb_mark_queue_offset() +
  4307              PtrQueue::byte_offset_of_buf());
  4309   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
  4310          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
  4311          "check sizes in assembly below");
  4313   __ bind(restart);
  4315   // Load the index into the SATB buffer. PtrQueue::_index is a size_t
  4316   // so ld_ptr is appropriate.
  4317   __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
  4319   // index == 0?
  4320   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
  4322   __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
  4323   __ sub(L0, oopSize, L0);
  4325   __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
  4326   if (!with_frame) {
  4327     // Use return-from-leaf
  4328     __ retl();
  4329     __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  4330   } else {
  4331     // Not delayed.
  4332     __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  4334   if (with_frame) {
  4335     __ ret();
  4336     __ delayed()->restore();
  4338   __ bind(refill);
  4340   address handle_zero =
  4341     CAST_FROM_FN_PTR(address,
  4342                      &SATBMarkQueueSet::handle_zero_index_for_thread);
  4343   // This should be rare enough that we can afford to save all the
  4344   // scratch registers that the calling context might be using.
  4345   __ mov(G1_scratch, L0);
  4346   __ mov(G3_scratch, L1);
  4347   __ mov(G4, L2);
  4348   // We need the value of O0 above (for the write into the buffer), so we
  4349   // save and restore it.
  4350   __ mov(O0, L3);
  4351   // Since the call will overwrite O7, we save and restore that, as well.
  4352   __ mov(O7, L4);
  4353   __ call_VM_leaf(L5, handle_zero, G2_thread);
  4354   __ mov(L0, G1_scratch);
  4355   __ mov(L1, G3_scratch);
  4356   __ mov(L2, G4);
  4357   __ mov(L3, O0);
  4358   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  4359   __ delayed()->mov(L4, O7);
  4361   if (with_frame) {
  4362     satb_log_enqueue_with_frame = start;
  4363     satb_log_enqueue_with_frame_end = __ pc();
  4364   } else {
  4365     satb_log_enqueue_frameless = start;
  4366     satb_log_enqueue_frameless_end = __ pc();
  4369 #undef __
  4372 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
  4373   if (with_frame) {
  4374     if (satb_log_enqueue_with_frame == 0) {
  4375       generate_satb_log_enqueue(with_frame);
  4376       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
  4377       if (G1SATBPrintStubs) {
  4378         tty->print_cr("Generated with-frame satb enqueue:");
  4379         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
  4380                              satb_log_enqueue_with_frame_end,
  4381                              tty);
  4384   } else {
  4385     if (satb_log_enqueue_frameless == 0) {
  4386       generate_satb_log_enqueue(with_frame);
  4387       assert(satb_log_enqueue_frameless != 0, "postcondition.");
  4388       if (G1SATBPrintStubs) {
  4389         tty->print_cr("Generated frameless satb enqueue:");
  4390         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
  4391                              satb_log_enqueue_frameless_end,
  4392                              tty);
  4398 void MacroAssembler::g1_write_barrier_pre(Register obj,
  4399                                           Register index,
  4400                                           int offset,
  4401                                           Register pre_val,
  4402                                           Register tmp,
  4403                                           bool preserve_o_regs) {
  4404   Label filtered;
  4406   if (obj == noreg) {
  4407     // We are not loading the previous value so make
  4408     // sure that we don't trash the value in pre_val
  4409     // with the code below.
  4410     assert_different_registers(pre_val, tmp);
  4411   } else {
  4412     // We will be loading the previous value
  4413     // in this code so...
  4414     assert(offset == 0 || index == noreg, "choose one");
  4415     assert(pre_val == noreg, "check this code");
  4418   // Is marking active?
  4419   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  4420     ld(G2,
  4421        in_bytes(JavaThread::satb_mark_queue_offset() +
  4422                 PtrQueue::byte_offset_of_active()),
  4423        tmp);
  4424   } else {
  4425     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  4426               "Assumption");
  4427     ldsb(G2,
  4428          in_bytes(JavaThread::satb_mark_queue_offset() +
  4429                   PtrQueue::byte_offset_of_active()),
  4430          tmp);
  4433   // Is marking active?
  4434   cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
  4436   // Do we need to load the previous value?
  4437   if (obj != noreg) {
  4438     // Load the previous value...
  4439     if (index == noreg) {
  4440       if (Assembler::is_simm13(offset)) {
  4441         load_heap_oop(obj, offset, tmp);
  4442       } else {
  4443         set(offset, tmp);
  4444         load_heap_oop(obj, tmp, tmp);
  4446     } else {
  4447       load_heap_oop(obj, index, tmp);
  4449     // Previous value has been loaded into tmp
  4450     pre_val = tmp;
  4453   assert(pre_val != noreg, "must have a real register");
  4455   // Is the previous value null?
  4456   cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
  4458   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
  4459   // case, pre_val will be a scratch G-reg, but there are some cases in
  4460   // which it's an O-reg.  In the first case, do a normal call.  In the
  4461   // latter, do a save here and call the frameless version.
  4463   guarantee(pre_val->is_global() || pre_val->is_out(),
  4464             "Or we need to think harder.");
  4466   if (pre_val->is_global() && !preserve_o_regs) {
  4467     generate_satb_log_enqueue_if_necessary(true); // with frame
  4469     call(satb_log_enqueue_with_frame);
  4470     delayed()->mov(pre_val, O0);
  4471   } else {
  4472     generate_satb_log_enqueue_if_necessary(false); // frameless
  4474     save_frame(0);
  4475     call(satb_log_enqueue_frameless);
  4476     delayed()->mov(pre_val->after_save(), O0);
  4477     restore();
  4480   bind(filtered);
  4483 static address dirty_card_log_enqueue = 0;
  4484 static u_char* dirty_card_log_enqueue_end = 0;
  4486 // This gets to assume that o0 contains the object address.
  4487 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
  4488   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
  4489   CodeBuffer buf(bb);
  4490   MacroAssembler masm(&buf);
  4491 #define __ masm.
  4492   address start = __ pc();
  4494   Label not_already_dirty, restart, refill;
  4496 #ifdef _LP64
  4497   __ srlx(O0, CardTableModRefBS::card_shift, O0);
  4498 #else
  4499   __ srl(O0, CardTableModRefBS::card_shift, O0);
  4500 #endif
  4501   AddressLiteral addrlit(byte_map_base);
  4502   __ set(addrlit, O1); // O1 := <card table base>
  4503   __ ldub(O0, O1, O2); // O2 := [O0 + O1]
  4505   assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
  4506   __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
  4508   // We didn't take the branch, so we're already dirty: return.
  4509   // Use return-from-leaf
  4510   __ retl();
  4511   __ delayed()->nop();
  4513   // Not dirty.
  4514   __ bind(not_already_dirty);
  4516   // Get O0 + O1 into a reg by itself
  4517   __ add(O0, O1, O3);
  4519   // First, dirty it.
  4520   __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
  4522   int dirty_card_q_index_byte_offset =
  4523     in_bytes(JavaThread::dirty_card_queue_offset() +
  4524              PtrQueue::byte_offset_of_index());
  4525   int dirty_card_q_buf_byte_offset =
  4526     in_bytes(JavaThread::dirty_card_queue_offset() +
  4527              PtrQueue::byte_offset_of_buf());
  4528   __ bind(restart);
  4530   // Load the index into the update buffer. PtrQueue::_index is
  4531   // a size_t so ld_ptr is appropriate here.
  4532   __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
  4534   // index == 0?
  4535   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
  4537   __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
  4538   __ sub(L0, oopSize, L0);
  4540   __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
  4541   // Use return-from-leaf
  4542   __ retl();
  4543   __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
  4545   __ bind(refill);
  4546   address handle_zero =
  4547     CAST_FROM_FN_PTR(address,
  4548                      &DirtyCardQueueSet::handle_zero_index_for_thread);
  4549   // This should be rare enough that we can afford to save all the
  4550   // scratch registers that the calling context might be using.
  4551   __ mov(G1_scratch, L3);
  4552   __ mov(G3_scratch, L5);
  4553   // We need the value of O3 above (for the write into the buffer), so we
  4554   // save and restore it.
  4555   __ mov(O3, L6);
  4556   // Since the call will overwrite O7, we save and restore that, as well.
  4557   __ mov(O7, L4);
  4559   __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
  4560   __ mov(L3, G1_scratch);
  4561   __ mov(L5, G3_scratch);
  4562   __ mov(L6, O3);
  4563   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  4564   __ delayed()->mov(L4, O7);
  4566   dirty_card_log_enqueue = start;
  4567   dirty_card_log_enqueue_end = __ pc();
  4568   // XXX Should have a guarantee here about not going off the end!
  4569   // Does it already do so?  Do an experiment...
  4571 #undef __
  4575 static inline void
  4576 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
  4577   if (dirty_card_log_enqueue == 0) {
  4578     generate_dirty_card_log_enqueue(byte_map_base);
  4579     assert(dirty_card_log_enqueue != 0, "postcondition.");
  4580     if (G1SATBPrintStubs) {
  4581       tty->print_cr("Generated dirty_card enqueue:");
  4582       Disassembler::decode((u_char*)dirty_card_log_enqueue,
  4583                            dirty_card_log_enqueue_end,
  4584                            tty);
  4590 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4592   Label filtered;
  4593   MacroAssembler* post_filter_masm = this;
  4595   if (new_val == G0) return;
  4597   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
  4598   assert(bs->kind() == BarrierSet::G1SATBCT ||
  4599          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
  4601   if (G1RSBarrierRegionFilter) {
  4602     xor3(store_addr, new_val, tmp);
  4603 #ifdef _LP64
  4604     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  4605 #else
  4606     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  4607 #endif
  4609     // XXX Should I predict this taken or not?  Does it matter?
  4610     cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
  4613   // If the "store_addr" register is an "in" or "local" register, move it to
  4614   // a scratch reg so we can pass it as an argument.
  4615   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
  4616   // Pick a scratch register different from "tmp".
  4617   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
  4618   // Make sure we use up the delay slot!
  4619   if (use_scr) {
  4620     post_filter_masm->mov(store_addr, scr);
  4621   } else {
  4622     post_filter_masm->nop();
  4624   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
  4625   save_frame(0);
  4626   call(dirty_card_log_enqueue);
  4627   if (use_scr) {
  4628     delayed()->mov(scr, O0);
  4629   } else {
  4630     delayed()->mov(store_addr->after_save(), O0);
  4632   restore();
  4634   bind(filtered);
  4637 #endif  // SERIALGC
  4638 ///////////////////////////////////////////////////////////////////////////////////
  4640 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4641   // If we're writing constant NULL, we can skip the write barrier.
  4642   if (new_val == G0) return;
  4643   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
  4644   assert(bs->kind() == BarrierSet::CardTableModRef ||
  4645          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
  4646   card_table_write(bs->byte_map_base, tmp, store_addr);
  4649 void MacroAssembler::load_klass(Register src_oop, Register klass) {
  4650   // The number of bytes in this code is used by
  4651   // MachCallDynamicJavaNode::ret_addr_offset()
  4652   // if this changes, change that.
  4653   if (UseCompressedKlassPointers) {
  4654     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4655     decode_heap_oop_not_null(klass);
  4656   } else {
  4657     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4661 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
  4662   if (UseCompressedKlassPointers) {
  4663     assert(dst_oop != klass, "not enough registers");
  4664     encode_heap_oop_not_null(klass);
  4665     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4666   } else {
  4667     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4671 void MacroAssembler::store_klass_gap(Register s, Register d) {
  4672   if (UseCompressedKlassPointers) {
  4673     assert(s != d, "not enough registers");
  4674     st(s, d, oopDesc::klass_gap_offset_in_bytes());
  4678 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
  4679   if (UseCompressedOops) {
  4680     lduw(s, d);
  4681     decode_heap_oop(d);
  4682   } else {
  4683     ld_ptr(s, d);
  4687 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
  4688    if (UseCompressedOops) {
  4689     lduw(s1, s2, d);
  4690     decode_heap_oop(d, d);
  4691   } else {
  4692     ld_ptr(s1, s2, d);
  4696 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
  4697    if (UseCompressedOops) {
  4698     lduw(s1, simm13a, d);
  4699     decode_heap_oop(d, d);
  4700   } else {
  4701     ld_ptr(s1, simm13a, d);
  4705 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
  4706   if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
  4707   else                   load_heap_oop(s1, s2.as_register(), d);
  4710 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
  4711   if (UseCompressedOops) {
  4712     assert(s1 != d && s2 != d, "not enough registers");
  4713     encode_heap_oop(d);
  4714     st(d, s1, s2);
  4715   } else {
  4716     st_ptr(d, s1, s2);
  4720 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
  4721   if (UseCompressedOops) {
  4722     assert(s1 != d, "not enough registers");
  4723     encode_heap_oop(d);
  4724     st(d, s1, simm13a);
  4725   } else {
  4726     st_ptr(d, s1, simm13a);
  4730 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
  4731   if (UseCompressedOops) {
  4732     assert(a.base() != d, "not enough registers");
  4733     encode_heap_oop(d);
  4734     st(d, a, offset);
  4735   } else {
  4736     st_ptr(d, a, offset);
  4741 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
  4742   assert (UseCompressedOops, "must be compressed");
  4743   assert (Universe::heap() != NULL, "java heap should be initialized");
  4744   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4745   verify_oop(src);
  4746   if (Universe::narrow_oop_base() == NULL) {
  4747     srlx(src, LogMinObjAlignmentInBytes, dst);
  4748     return;
  4750   Label done;
  4751   if (src == dst) {
  4752     // optimize for frequent case src == dst
  4753     bpr(rc_nz, true, Assembler::pt, src, done);
  4754     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
  4755     bind(done);
  4756     srlx(src, LogMinObjAlignmentInBytes, dst);
  4757   } else {
  4758     bpr(rc_z, false, Assembler::pn, src, done);
  4759     delayed() -> mov(G0, dst);
  4760     // could be moved before branch, and annulate delay,
  4761     // but may add some unneeded work decoding null
  4762     sub(src, G6_heapbase, dst);
  4763     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4764     bind(done);
  4769 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  4770   assert (UseCompressedOops, "must be compressed");
  4771   assert (Universe::heap() != NULL, "java heap should be initialized");
  4772   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4773   verify_oop(r);
  4774   if (Universe::narrow_oop_base() != NULL)
  4775     sub(r, G6_heapbase, r);
  4776   srlx(r, LogMinObjAlignmentInBytes, r);
  4779 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
  4780   assert (UseCompressedOops, "must be compressed");
  4781   assert (Universe::heap() != NULL, "java heap should be initialized");
  4782   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4783   verify_oop(src);
  4784   if (Universe::narrow_oop_base() == NULL) {
  4785     srlx(src, LogMinObjAlignmentInBytes, dst);
  4786   } else {
  4787     sub(src, G6_heapbase, dst);
  4788     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4792 // Same algorithm as oops.inline.hpp decode_heap_oop.
  4793 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
  4794   assert (UseCompressedOops, "must be compressed");
  4795   assert (Universe::heap() != NULL, "java heap should be initialized");
  4796   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4797   sllx(src, LogMinObjAlignmentInBytes, dst);
  4798   if (Universe::narrow_oop_base() != NULL) {
  4799     Label done;
  4800     bpr(rc_nz, true, Assembler::pt, dst, done);
  4801     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
  4802     bind(done);
  4804   verify_oop(dst);
  4807 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  4808   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4809   // pd_code_size_limit.
  4810   // Also do not verify_oop as this is called by verify_oop.
  4811   assert (UseCompressedOops, "must be compressed");
  4812   assert (Universe::heap() != NULL, "java heap should be initialized");
  4813   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4814   sllx(r, LogMinObjAlignmentInBytes, r);
  4815   if (Universe::narrow_oop_base() != NULL)
  4816     add(r, G6_heapbase, r);
  4819 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
  4820   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4821   // pd_code_size_limit.
  4822   // Also do not verify_oop as this is called by verify_oop.
  4823   assert (UseCompressedOops, "must be compressed");
  4824   assert (Universe::heap() != NULL, "java heap should be initialized");
  4825   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4826   sllx(src, LogMinObjAlignmentInBytes, dst);
  4827   if (Universe::narrow_oop_base() != NULL)
  4828     add(dst, G6_heapbase, dst);
  4831 void MacroAssembler::reinit_heapbase() {
  4832   if (UseCompressedOops) {
  4833     // call indirectly to solve generation ordering problem
  4834     AddressLiteral base(Universe::narrow_oop_base_addr());
  4835     load_ptr_contents(base, G6_heapbase);
  4839 // Compare char[] arrays aligned to 4 bytes.
  4840 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
  4841                                         Register limit, Register result,
  4842                                         Register chr1, Register chr2, Label& Ldone) {
  4843   Label Lvector, Lloop;
  4844   assert(chr1 == result, "should be the same");
  4846   // Note: limit contains number of bytes (2*char_elements) != 0.
  4847   andcc(limit, 0x2, chr1); // trailing character ?
  4848   br(Assembler::zero, false, Assembler::pt, Lvector);
  4849   delayed()->nop();
  4851   // compare the trailing char
  4852   sub(limit, sizeof(jchar), limit);
  4853   lduh(ary1, limit, chr1);
  4854   lduh(ary2, limit, chr2);
  4855   cmp(chr1, chr2);
  4856   br(Assembler::notEqual, true, Assembler::pt, Ldone);
  4857   delayed()->mov(G0, result);     // not equal
  4859   // only one char ?
  4860   cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
  4861   delayed()->add(G0, 1, result); // zero-length arrays are equal
  4863   // word by word compare, dont't need alignment check
  4864   bind(Lvector);
  4865   // Shift ary1 and ary2 to the end of the arrays, negate limit
  4866   add(ary1, limit, ary1);
  4867   add(ary2, limit, ary2);
  4868   neg(limit, limit);
  4870   lduw(ary1, limit, chr1);
  4871   bind(Lloop);
  4872   lduw(ary2, limit, chr2);
  4873   cmp(chr1, chr2);
  4874   br(Assembler::notEqual, true, Assembler::pt, Ldone);
  4875   delayed()->mov(G0, result);     // not equal
  4876   inccc(limit, 2*sizeof(jchar));
  4877   // annul LDUW if branch is not taken to prevent access past end of array
  4878   br(Assembler::notZero, true, Assembler::pt, Lloop);
  4879   delayed()->lduw(ary1, limit, chr1); // hoisted
  4881   // Caller should set it:
  4882   // add(G0, 1, result); // equals
  4885 // Use BIS for zeroing (count is in bytes).
  4886 void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
  4887   assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
  4888   Register end = count;
  4889   int cache_line_size = VM_Version::prefetch_data_size();
  4890   // Minimum count when BIS zeroing can be used since
  4891   // it needs membar which is expensive.
  4892   int block_zero_size  = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
  4894   Label small_loop;
  4895   // Check if count is negative (dead code) or zero.
  4896   // Note, count uses 64bit in 64 bit VM.
  4897   cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
  4899   // Use BIS zeroing only for big arrays since it requires membar.
  4900   if (Assembler::is_simm13(block_zero_size)) { // < 4096
  4901     cmp(count, block_zero_size);
  4902   } else {
  4903     set(block_zero_size, temp);
  4904     cmp(count, temp);
  4906   br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
  4907   delayed()->add(to, count, end);
  4909   // Note: size is >= three (32 bytes) cache lines.
  4911   // Clean the beginning of space up to next cache line.
  4912   for (int offs = 0; offs < cache_line_size; offs += 8) {
  4913     stx(G0, to, offs);
  4916   // align to next cache line
  4917   add(to, cache_line_size, to);
  4918   and3(to, -cache_line_size, to);
  4920   // Note: size left >= two (32 bytes) cache lines.
  4922   // BIS should not be used to zero tail (64 bytes)
  4923   // to avoid zeroing a header of the following object.
  4924   sub(end, (cache_line_size*2)-8, end);
  4926   Label bis_loop;
  4927   bind(bis_loop);
  4928   stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  4929   add(to, cache_line_size, to);
  4930   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
  4932   // BIS needs membar.
  4933   membar(Assembler::StoreLoad);
  4935   add(end, (cache_line_size*2)-8, end); // restore end
  4936   cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
  4938   // Clean the tail.
  4939   bind(small_loop);
  4940   stx(G0, to, 0);
  4941   add(to, 8, to);
  4942   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
  4943   nop(); // Separate short branches

mercurial