src/cpu/x86/vm/templateTable_x86_64.cpp

Wed, 13 Oct 2010 11:46:46 -0400

author
acorn
date
Wed, 13 Oct 2010 11:46:46 -0400
changeset 2226
75b0735b4d04
parent 2138
d5d065957597
child 2201
d55217dc206f
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateTable_x86_64.cpp.incl"
    28 #ifndef CC_INTERP
    30 #define __ _masm->
    32 // Platform-dependent initialization
    34 void TemplateTable::pd_initialize() {
    35   // No amd64 specific initialization
    36 }
    38 // Address computation: local variables
    40 static inline Address iaddress(int n) {
    41   return Address(r14, Interpreter::local_offset_in_bytes(n));
    42 }
    44 static inline Address laddress(int n) {
    45   return iaddress(n + 1);
    46 }
    48 static inline Address faddress(int n) {
    49   return iaddress(n);
    50 }
    52 static inline Address daddress(int n) {
    53   return laddress(n);
    54 }
    56 static inline Address aaddress(int n) {
    57   return iaddress(n);
    58 }
    60 static inline Address iaddress(Register r) {
    61   return Address(r14, r, Address::times_8);
    62 }
    64 static inline Address laddress(Register r) {
    65   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    66 }
    68 static inline Address faddress(Register r) {
    69   return iaddress(r);
    70 }
    72 static inline Address daddress(Register r) {
    73   return laddress(r);
    74 }
    76 static inline Address aaddress(Register r) {
    77   return iaddress(r);
    78 }
    80 static inline Address at_rsp() {
    81   return Address(rsp, 0);
    82 }
    84 // At top of Java expression stack which may be different than esp().  It
    85 // isn't for category 1 objects.
    86 static inline Address at_tos   () {
    87   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    88 }
    90 static inline Address at_tos_p1() {
    91   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    92 }
    94 static inline Address at_tos_p2() {
    95   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    96 }
    98 static inline Address at_tos_p3() {
    99   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
   100 }
   102 // Condition conversion
   103 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   104   switch (cc) {
   105   case TemplateTable::equal        : return Assembler::notEqual;
   106   case TemplateTable::not_equal    : return Assembler::equal;
   107   case TemplateTable::less         : return Assembler::greaterEqual;
   108   case TemplateTable::less_equal   : return Assembler::greater;
   109   case TemplateTable::greater      : return Assembler::lessEqual;
   110   case TemplateTable::greater_equal: return Assembler::less;
   111   }
   112   ShouldNotReachHere();
   113   return Assembler::zero;
   114 }
   117 // Miscelaneous helper routines
   118 // Store an oop (or NULL) at the address described by obj.
   119 // If val == noreg this means store a NULL
   121 static void do_oop_store(InterpreterMacroAssembler* _masm,
   122                          Address obj,
   123                          Register val,
   124                          BarrierSet::Name barrier,
   125                          bool precise) {
   126   assert(val == noreg || val == rax, "parameter is just for looks");
   127   switch (barrier) {
   128 #ifndef SERIALGC
   129     case BarrierSet::G1SATBCT:
   130     case BarrierSet::G1SATBCTLogging:
   131       {
   132         // flatten object address if needed
   133         if (obj.index() == noreg && obj.disp() == 0) {
   134           if (obj.base() != rdx) {
   135             __ movq(rdx, obj.base());
   136           }
   137         } else {
   138           __ leaq(rdx, obj);
   139         }
   140         __ g1_write_barrier_pre(rdx, r8, rbx, val != noreg);
   141         if (val == noreg) {
   142           __ store_heap_oop_null(Address(rdx, 0));
   143         } else {
   144           __ store_heap_oop(Address(rdx, 0), val);
   145           __ g1_write_barrier_post(rdx, val, r8, rbx);
   146         }
   148       }
   149       break;
   150 #endif // SERIALGC
   151     case BarrierSet::CardTableModRef:
   152     case BarrierSet::CardTableExtension:
   153       {
   154         if (val == noreg) {
   155           __ store_heap_oop_null(obj);
   156         } else {
   157           __ store_heap_oop(obj, val);
   158           // flatten object address if needed
   159           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   160             __ store_check(obj.base());
   161           } else {
   162             __ leaq(rdx, obj);
   163             __ store_check(rdx);
   164           }
   165         }
   166       }
   167       break;
   168     case BarrierSet::ModRef:
   169     case BarrierSet::Other:
   170       if (val == noreg) {
   171         __ store_heap_oop_null(obj);
   172       } else {
   173         __ store_heap_oop(obj, val);
   174       }
   175       break;
   176     default      :
   177       ShouldNotReachHere();
   179   }
   180 }
   182 Address TemplateTable::at_bcp(int offset) {
   183   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   184   return Address(r13, offset);
   185 }
   187 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   188                                    Register scratch,
   189                                    bool load_bc_into_scratch/*=true*/) {
   190   if (!RewriteBytecodes) {
   191     return;
   192   }
   193   // the pair bytecodes have already done the load.
   194   if (load_bc_into_scratch) {
   195     __ movl(bc, bytecode);
   196   }
   197   Label patch_done;
   198   if (JvmtiExport::can_post_breakpoint()) {
   199     Label fast_patch;
   200     // if a breakpoint is present we can't rewrite the stream directly
   201     __ movzbl(scratch, at_bcp(0));
   202     __ cmpl(scratch, Bytecodes::_breakpoint);
   203     __ jcc(Assembler::notEqual, fast_patch);
   204     __ get_method(scratch);
   205     // Let breakpoint table handling rewrite to quicker bytecode
   206     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, r13, bc);
   207 #ifndef ASSERT
   208     __ jmpb(patch_done);
   209 #else
   210     __ jmp(patch_done);
   211 #endif
   212     __ bind(fast_patch);
   213   }
   214 #ifdef ASSERT
   215   Label okay;
   216   __ load_unsigned_byte(scratch, at_bcp(0));
   217   __ cmpl(scratch, (int) Bytecodes::java_code(bytecode));
   218   __ jcc(Assembler::equal, okay);
   219   __ cmpl(scratch, bc);
   220   __ jcc(Assembler::equal, okay);
   221   __ stop("patching the wrong bytecode");
   222   __ bind(okay);
   223 #endif
   224   // patch bytecode
   225   __ movb(at_bcp(0), bc);
   226   __ bind(patch_done);
   227 }
   230 // Individual instructions
   232 void TemplateTable::nop() {
   233   transition(vtos, vtos);
   234   // nothing to do
   235 }
   237 void TemplateTable::shouldnotreachhere() {
   238   transition(vtos, vtos);
   239   __ stop("shouldnotreachhere bytecode");
   240 }
   242 void TemplateTable::aconst_null() {
   243   transition(vtos, atos);
   244   __ xorl(rax, rax);
   245 }
   247 void TemplateTable::iconst(int value) {
   248   transition(vtos, itos);
   249   if (value == 0) {
   250     __ xorl(rax, rax);
   251   } else {
   252     __ movl(rax, value);
   253   }
   254 }
   256 void TemplateTable::lconst(int value) {
   257   transition(vtos, ltos);
   258   if (value == 0) {
   259     __ xorl(rax, rax);
   260   } else {
   261     __ movl(rax, value);
   262   }
   263 }
   265 void TemplateTable::fconst(int value) {
   266   transition(vtos, ftos);
   267   static float one = 1.0f, two = 2.0f;
   268   switch (value) {
   269   case 0:
   270     __ xorps(xmm0, xmm0);
   271     break;
   272   case 1:
   273     __ movflt(xmm0, ExternalAddress((address) &one));
   274     break;
   275   case 2:
   276     __ movflt(xmm0, ExternalAddress((address) &two));
   277     break;
   278   default:
   279     ShouldNotReachHere();
   280     break;
   281   }
   282 }
   284 void TemplateTable::dconst(int value) {
   285   transition(vtos, dtos);
   286   static double one = 1.0;
   287   switch (value) {
   288   case 0:
   289     __ xorpd(xmm0, xmm0);
   290     break;
   291   case 1:
   292     __ movdbl(xmm0, ExternalAddress((address) &one));
   293     break;
   294   default:
   295     ShouldNotReachHere();
   296     break;
   297   }
   298 }
   300 void TemplateTable::bipush() {
   301   transition(vtos, itos);
   302   __ load_signed_byte(rax, at_bcp(1));
   303 }
   305 void TemplateTable::sipush() {
   306   transition(vtos, itos);
   307   __ load_unsigned_short(rax, at_bcp(1));
   308   __ bswapl(rax);
   309   __ sarl(rax, 16);
   310 }
   312 void TemplateTable::ldc(bool wide) {
   313   transition(vtos, vtos);
   314   Label call_ldc, notFloat, notClass, Done;
   316   if (wide) {
   317     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   318   } else {
   319     __ load_unsigned_byte(rbx, at_bcp(1));
   320   }
   322   __ get_cpool_and_tags(rcx, rax);
   323   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   324   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   326   // get type
   327   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   329   // unresolved string - get the resolved string
   330   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   331   __ jccb(Assembler::equal, call_ldc);
   333   // unresolved class - get the resolved class
   334   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   335   __ jccb(Assembler::equal, call_ldc);
   337   // unresolved class in error state - call into runtime to throw the error
   338   // from the first resolution attempt
   339   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   340   __ jccb(Assembler::equal, call_ldc);
   342   // resolved class - need to call vm to get java mirror of the class
   343   __ cmpl(rdx, JVM_CONSTANT_Class);
   344   __ jcc(Assembler::notEqual, notClass);
   346   __ bind(call_ldc);
   347   __ movl(c_rarg1, wide);
   348   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   349   __ push_ptr(rax);
   350   __ verify_oop(rax);
   351   __ jmp(Done);
   353   __ bind(notClass);
   354   __ cmpl(rdx, JVM_CONSTANT_Float);
   355   __ jccb(Assembler::notEqual, notFloat);
   356   // ftos
   357   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   358   __ push_f();
   359   __ jmp(Done);
   361   __ bind(notFloat);
   362 #ifdef ASSERT
   363   {
   364     Label L;
   365     __ cmpl(rdx, JVM_CONSTANT_Integer);
   366     __ jcc(Assembler::equal, L);
   367     __ cmpl(rdx, JVM_CONSTANT_String);
   368     __ jcc(Assembler::equal, L);
   369     __ stop("unexpected tag type in ldc");
   370     __ bind(L);
   371   }
   372 #endif
   373   // atos and itos
   374   Label isOop;
   375   __ cmpl(rdx, JVM_CONSTANT_Integer);
   376   __ jcc(Assembler::notEqual, isOop);
   377   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   378   __ push_i(rax);
   379   __ jmp(Done);
   381   __ bind(isOop);
   382   __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset));
   383   __ push_ptr(rax);
   385   if (VerifyOops) {
   386     __ verify_oop(rax);
   387   }
   389   __ bind(Done);
   390 }
   392 // Fast path for caching oop constants.
   393 // %%% We should use this to handle Class and String constants also.
   394 // %%% It will simplify the ldc/primitive path considerably.
   395 void TemplateTable::fast_aldc(bool wide) {
   396   transition(vtos, atos);
   398   if (!EnableMethodHandles) {
   399     // We should not encounter this bytecode if !EnableMethodHandles.
   400     // The verifier will stop it.  However, if we get past the verifier,
   401     // this will stop the thread in a reasonable way, without crashing the JVM.
   402     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
   403                      InterpreterRuntime::throw_IncompatibleClassChangeError));
   404     // the call_VM checks for exception, so we should never return here.
   405     __ should_not_reach_here();
   406     return;
   407   }
   409   const Register cache = rcx;
   410   const Register index = rdx;
   412   resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
   413   if (VerifyOops) {
   414     __ verify_oop(rax);
   415   }
   416 }
   418 void TemplateTable::ldc2_w() {
   419   transition(vtos, vtos);
   420   Label Long, Done;
   421   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   423   __ get_cpool_and_tags(rcx, rax);
   424   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   425   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   427   // get type
   428   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   429           JVM_CONSTANT_Double);
   430   __ jccb(Assembler::notEqual, Long);
   431   // dtos
   432   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   433   __ push_d();
   434   __ jmpb(Done);
   436   __ bind(Long);
   437   // ltos
   438   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   439   __ push_l();
   441   __ bind(Done);
   442 }
   444 void TemplateTable::locals_index(Register reg, int offset) {
   445   __ load_unsigned_byte(reg, at_bcp(offset));
   446   __ negptr(reg);
   447 }
   449 void TemplateTable::iload() {
   450   transition(vtos, itos);
   451   if (RewriteFrequentPairs) {
   452     Label rewrite, done;
   453     const Register bc = c_rarg3;
   454     assert(rbx != bc, "register damaged");
   456     // get next byte
   457     __ load_unsigned_byte(rbx,
   458                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   459     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   460     // last two iloads in a pair.  Comparing against fast_iload means that
   461     // the next bytecode is neither an iload or a caload, and therefore
   462     // an iload pair.
   463     __ cmpl(rbx, Bytecodes::_iload);
   464     __ jcc(Assembler::equal, done);
   466     __ cmpl(rbx, Bytecodes::_fast_iload);
   467     __ movl(bc, Bytecodes::_fast_iload2);
   468     __ jccb(Assembler::equal, rewrite);
   470     // if _caload, rewrite to fast_icaload
   471     __ cmpl(rbx, Bytecodes::_caload);
   472     __ movl(bc, Bytecodes::_fast_icaload);
   473     __ jccb(Assembler::equal, rewrite);
   475     // rewrite so iload doesn't check again.
   476     __ movl(bc, Bytecodes::_fast_iload);
   478     // rewrite
   479     // bc: fast bytecode
   480     __ bind(rewrite);
   481     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   482     __ bind(done);
   483   }
   485   // Get the local value into tos
   486   locals_index(rbx);
   487   __ movl(rax, iaddress(rbx));
   488 }
   490 void TemplateTable::fast_iload2() {
   491   transition(vtos, itos);
   492   locals_index(rbx);
   493   __ movl(rax, iaddress(rbx));
   494   __ push(itos);
   495   locals_index(rbx, 3);
   496   __ movl(rax, iaddress(rbx));
   497 }
   499 void TemplateTable::fast_iload() {
   500   transition(vtos, itos);
   501   locals_index(rbx);
   502   __ movl(rax, iaddress(rbx));
   503 }
   505 void TemplateTable::lload() {
   506   transition(vtos, ltos);
   507   locals_index(rbx);
   508   __ movq(rax, laddress(rbx));
   509 }
   511 void TemplateTable::fload() {
   512   transition(vtos, ftos);
   513   locals_index(rbx);
   514   __ movflt(xmm0, faddress(rbx));
   515 }
   517 void TemplateTable::dload() {
   518   transition(vtos, dtos);
   519   locals_index(rbx);
   520   __ movdbl(xmm0, daddress(rbx));
   521 }
   523 void TemplateTable::aload() {
   524   transition(vtos, atos);
   525   locals_index(rbx);
   526   __ movptr(rax, aaddress(rbx));
   527 }
   529 void TemplateTable::locals_index_wide(Register reg) {
   530   __ movl(reg, at_bcp(2));
   531   __ bswapl(reg);
   532   __ shrl(reg, 16);
   533   __ negptr(reg);
   534 }
   536 void TemplateTable::wide_iload() {
   537   transition(vtos, itos);
   538   locals_index_wide(rbx);
   539   __ movl(rax, iaddress(rbx));
   540 }
   542 void TemplateTable::wide_lload() {
   543   transition(vtos, ltos);
   544   locals_index_wide(rbx);
   545   __ movq(rax, laddress(rbx));
   546 }
   548 void TemplateTable::wide_fload() {
   549   transition(vtos, ftos);
   550   locals_index_wide(rbx);
   551   __ movflt(xmm0, faddress(rbx));
   552 }
   554 void TemplateTable::wide_dload() {
   555   transition(vtos, dtos);
   556   locals_index_wide(rbx);
   557   __ movdbl(xmm0, daddress(rbx));
   558 }
   560 void TemplateTable::wide_aload() {
   561   transition(vtos, atos);
   562   locals_index_wide(rbx);
   563   __ movptr(rax, aaddress(rbx));
   564 }
   566 void TemplateTable::index_check(Register array, Register index) {
   567   // destroys rbx
   568   // check array
   569   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   570   // sign extend index for use by indexed load
   571   __ movl2ptr(index, index);
   572   // check index
   573   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   574   if (index != rbx) {
   575     // ??? convention: move aberrant index into ebx for exception message
   576     assert(rbx != array, "different registers");
   577     __ movl(rbx, index);
   578   }
   579   __ jump_cc(Assembler::aboveEqual,
   580              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   581 }
   583 void TemplateTable::iaload() {
   584   transition(itos, itos);
   585   __ pop_ptr(rdx);
   586   // eax: index
   587   // rdx: array
   588   index_check(rdx, rax); // kills rbx
   589   __ movl(rax, Address(rdx, rax,
   590                        Address::times_4,
   591                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   592 }
   594 void TemplateTable::laload() {
   595   transition(itos, ltos);
   596   __ pop_ptr(rdx);
   597   // eax: index
   598   // rdx: array
   599   index_check(rdx, rax); // kills rbx
   600   __ movq(rax, Address(rdx, rbx,
   601                        Address::times_8,
   602                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   603 }
   605 void TemplateTable::faload() {
   606   transition(itos, ftos);
   607   __ pop_ptr(rdx);
   608   // eax: index
   609   // rdx: array
   610   index_check(rdx, rax); // kills rbx
   611   __ movflt(xmm0, Address(rdx, rax,
   612                          Address::times_4,
   613                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   614 }
   616 void TemplateTable::daload() {
   617   transition(itos, dtos);
   618   __ pop_ptr(rdx);
   619   // eax: index
   620   // rdx: array
   621   index_check(rdx, rax); // kills rbx
   622   __ movdbl(xmm0, Address(rdx, rax,
   623                           Address::times_8,
   624                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   625 }
   627 void TemplateTable::aaload() {
   628   transition(itos, atos);
   629   __ pop_ptr(rdx);
   630   // eax: index
   631   // rdx: array
   632   index_check(rdx, rax); // kills rbx
   633   __ load_heap_oop(rax, Address(rdx, rax,
   634                                 UseCompressedOops ? Address::times_4 : Address::times_8,
   635                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   636 }
   638 void TemplateTable::baload() {
   639   transition(itos, itos);
   640   __ pop_ptr(rdx);
   641   // eax: index
   642   // rdx: array
   643   index_check(rdx, rax); // kills rbx
   644   __ load_signed_byte(rax,
   645                       Address(rdx, rax,
   646                               Address::times_1,
   647                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   648 }
   650 void TemplateTable::caload() {
   651   transition(itos, itos);
   652   __ pop_ptr(rdx);
   653   // eax: index
   654   // rdx: array
   655   index_check(rdx, rax); // kills rbx
   656   __ load_unsigned_short(rax,
   657                          Address(rdx, rax,
   658                                  Address::times_2,
   659                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   660 }
   662 // iload followed by caload frequent pair
   663 void TemplateTable::fast_icaload() {
   664   transition(vtos, itos);
   665   // load index out of locals
   666   locals_index(rbx);
   667   __ movl(rax, iaddress(rbx));
   669   // eax: index
   670   // rdx: array
   671   __ pop_ptr(rdx);
   672   index_check(rdx, rax); // kills rbx
   673   __ load_unsigned_short(rax,
   674                          Address(rdx, rax,
   675                                  Address::times_2,
   676                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   677 }
   679 void TemplateTable::saload() {
   680   transition(itos, itos);
   681   __ pop_ptr(rdx);
   682   // eax: index
   683   // rdx: array
   684   index_check(rdx, rax); // kills rbx
   685   __ load_signed_short(rax,
   686                        Address(rdx, rax,
   687                                Address::times_2,
   688                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   689 }
   691 void TemplateTable::iload(int n) {
   692   transition(vtos, itos);
   693   __ movl(rax, iaddress(n));
   694 }
   696 void TemplateTable::lload(int n) {
   697   transition(vtos, ltos);
   698   __ movq(rax, laddress(n));
   699 }
   701 void TemplateTable::fload(int n) {
   702   transition(vtos, ftos);
   703   __ movflt(xmm0, faddress(n));
   704 }
   706 void TemplateTable::dload(int n) {
   707   transition(vtos, dtos);
   708   __ movdbl(xmm0, daddress(n));
   709 }
   711 void TemplateTable::aload(int n) {
   712   transition(vtos, atos);
   713   __ movptr(rax, aaddress(n));
   714 }
   716 void TemplateTable::aload_0() {
   717   transition(vtos, atos);
   718   // According to bytecode histograms, the pairs:
   719   //
   720   // _aload_0, _fast_igetfield
   721   // _aload_0, _fast_agetfield
   722   // _aload_0, _fast_fgetfield
   723   //
   724   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   725   // _aload_0 bytecode checks if the next bytecode is either
   726   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   727   // rewrites the current bytecode into a pair bytecode; otherwise it
   728   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   729   // the pair check anymore.
   730   //
   731   // Note: If the next bytecode is _getfield, the rewrite must be
   732   //       delayed, otherwise we may miss an opportunity for a pair.
   733   //
   734   // Also rewrite frequent pairs
   735   //   aload_0, aload_1
   736   //   aload_0, iload_1
   737   // These bytecodes with a small amount of code are most profitable
   738   // to rewrite
   739   if (RewriteFrequentPairs) {
   740     Label rewrite, done;
   741     const Register bc = c_rarg3;
   742     assert(rbx != bc, "register damaged");
   743     // get next byte
   744     __ load_unsigned_byte(rbx,
   745                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   747     // do actual aload_0
   748     aload(0);
   750     // if _getfield then wait with rewrite
   751     __ cmpl(rbx, Bytecodes::_getfield);
   752     __ jcc(Assembler::equal, done);
   754     // if _igetfield then reqrite to _fast_iaccess_0
   755     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   756            Bytecodes::_aload_0,
   757            "fix bytecode definition");
   758     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   759     __ movl(bc, Bytecodes::_fast_iaccess_0);
   760     __ jccb(Assembler::equal, rewrite);
   762     // if _agetfield then reqrite to _fast_aaccess_0
   763     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   764            Bytecodes::_aload_0,
   765            "fix bytecode definition");
   766     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   767     __ movl(bc, Bytecodes::_fast_aaccess_0);
   768     __ jccb(Assembler::equal, rewrite);
   770     // if _fgetfield then reqrite to _fast_faccess_0
   771     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   772            Bytecodes::_aload_0,
   773            "fix bytecode definition");
   774     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   775     __ movl(bc, Bytecodes::_fast_faccess_0);
   776     __ jccb(Assembler::equal, rewrite);
   778     // else rewrite to _fast_aload0
   779     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   780            Bytecodes::_aload_0,
   781            "fix bytecode definition");
   782     __ movl(bc, Bytecodes::_fast_aload_0);
   784     // rewrite
   785     // bc: fast bytecode
   786     __ bind(rewrite);
   787     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   789     __ bind(done);
   790   } else {
   791     aload(0);
   792   }
   793 }
   795 void TemplateTable::istore() {
   796   transition(itos, vtos);
   797   locals_index(rbx);
   798   __ movl(iaddress(rbx), rax);
   799 }
   801 void TemplateTable::lstore() {
   802   transition(ltos, vtos);
   803   locals_index(rbx);
   804   __ movq(laddress(rbx), rax);
   805 }
   807 void TemplateTable::fstore() {
   808   transition(ftos, vtos);
   809   locals_index(rbx);
   810   __ movflt(faddress(rbx), xmm0);
   811 }
   813 void TemplateTable::dstore() {
   814   transition(dtos, vtos);
   815   locals_index(rbx);
   816   __ movdbl(daddress(rbx), xmm0);
   817 }
   819 void TemplateTable::astore() {
   820   transition(vtos, vtos);
   821   __ pop_ptr(rax);
   822   locals_index(rbx);
   823   __ movptr(aaddress(rbx), rax);
   824 }
   826 void TemplateTable::wide_istore() {
   827   transition(vtos, vtos);
   828   __ pop_i();
   829   locals_index_wide(rbx);
   830   __ movl(iaddress(rbx), rax);
   831 }
   833 void TemplateTable::wide_lstore() {
   834   transition(vtos, vtos);
   835   __ pop_l();
   836   locals_index_wide(rbx);
   837   __ movq(laddress(rbx), rax);
   838 }
   840 void TemplateTable::wide_fstore() {
   841   transition(vtos, vtos);
   842   __ pop_f();
   843   locals_index_wide(rbx);
   844   __ movflt(faddress(rbx), xmm0);
   845 }
   847 void TemplateTable::wide_dstore() {
   848   transition(vtos, vtos);
   849   __ pop_d();
   850   locals_index_wide(rbx);
   851   __ movdbl(daddress(rbx), xmm0);
   852 }
   854 void TemplateTable::wide_astore() {
   855   transition(vtos, vtos);
   856   __ pop_ptr(rax);
   857   locals_index_wide(rbx);
   858   __ movptr(aaddress(rbx), rax);
   859 }
   861 void TemplateTable::iastore() {
   862   transition(itos, vtos);
   863   __ pop_i(rbx);
   864   __ pop_ptr(rdx);
   865   // eax: value
   866   // ebx: index
   867   // rdx: array
   868   index_check(rdx, rbx); // prefer index in ebx
   869   __ movl(Address(rdx, rbx,
   870                   Address::times_4,
   871                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   872           rax);
   873 }
   875 void TemplateTable::lastore() {
   876   transition(ltos, vtos);
   877   __ pop_i(rbx);
   878   __ pop_ptr(rdx);
   879   // rax: value
   880   // ebx: index
   881   // rdx: array
   882   index_check(rdx, rbx); // prefer index in ebx
   883   __ movq(Address(rdx, rbx,
   884                   Address::times_8,
   885                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   886           rax);
   887 }
   889 void TemplateTable::fastore() {
   890   transition(ftos, vtos);
   891   __ pop_i(rbx);
   892   __ pop_ptr(rdx);
   893   // xmm0: value
   894   // ebx:  index
   895   // rdx:  array
   896   index_check(rdx, rbx); // prefer index in ebx
   897   __ movflt(Address(rdx, rbx,
   898                    Address::times_4,
   899                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   900            xmm0);
   901 }
   903 void TemplateTable::dastore() {
   904   transition(dtos, vtos);
   905   __ pop_i(rbx);
   906   __ pop_ptr(rdx);
   907   // xmm0: value
   908   // ebx:  index
   909   // rdx:  array
   910   index_check(rdx, rbx); // prefer index in ebx
   911   __ movdbl(Address(rdx, rbx,
   912                    Address::times_8,
   913                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   914            xmm0);
   915 }
   917 void TemplateTable::aastore() {
   918   Label is_null, ok_is_subtype, done;
   919   transition(vtos, vtos);
   920   // stack: ..., array, index, value
   921   __ movptr(rax, at_tos());    // value
   922   __ movl(rcx, at_tos_p1()); // index
   923   __ movptr(rdx, at_tos_p2()); // array
   925   Address element_address(rdx, rcx,
   926                           UseCompressedOops? Address::times_4 : Address::times_8,
   927                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   929   index_check(rdx, rcx);     // kills rbx
   930   // do array store check - check for NULL value first
   931   __ testptr(rax, rax);
   932   __ jcc(Assembler::zero, is_null);
   934   // Move subklass into rbx
   935   __ load_klass(rbx, rax);
   936   // Move superklass into rax
   937   __ load_klass(rax, rdx);
   938   __ movptr(rax, Address(rax,
   939                          sizeof(oopDesc) +
   940                          objArrayKlass::element_klass_offset_in_bytes()));
   941   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
   942   __ lea(rdx, element_address);
   944   // Generate subtype check.  Blows rcx, rdi
   945   // Superklass in rax.  Subklass in rbx.
   946   __ gen_subtype_check(rbx, ok_is_subtype);
   948   // Come here on failure
   949   // object is at TOS
   950   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   952   // Come here on success
   953   __ bind(ok_is_subtype);
   955   // Get the value we will store
   956   __ movptr(rax, at_tos());
   957   // Now store using the appropriate barrier
   958   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   959   __ jmp(done);
   961   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
   962   __ bind(is_null);
   963   __ profile_null_seen(rbx);
   965   // Store a NULL
   966   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   968   // Pop stack arguments
   969   __ bind(done);
   970   __ addptr(rsp, 3 * Interpreter::stackElementSize);
   971 }
   973 void TemplateTable::bastore() {
   974   transition(itos, vtos);
   975   __ pop_i(rbx);
   976   __ pop_ptr(rdx);
   977   // eax: value
   978   // ebx: index
   979   // rdx: array
   980   index_check(rdx, rbx); // prefer index in ebx
   981   __ movb(Address(rdx, rbx,
   982                   Address::times_1,
   983                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
   984           rax);
   985 }
   987 void TemplateTable::castore() {
   988   transition(itos, vtos);
   989   __ pop_i(rbx);
   990   __ pop_ptr(rdx);
   991   // eax: value
   992   // ebx: index
   993   // rdx: array
   994   index_check(rdx, rbx);  // prefer index in ebx
   995   __ movw(Address(rdx, rbx,
   996                   Address::times_2,
   997                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
   998           rax);
   999 }
  1001 void TemplateTable::sastore() {
  1002   castore();
  1005 void TemplateTable::istore(int n) {
  1006   transition(itos, vtos);
  1007   __ movl(iaddress(n), rax);
  1010 void TemplateTable::lstore(int n) {
  1011   transition(ltos, vtos);
  1012   __ movq(laddress(n), rax);
  1015 void TemplateTable::fstore(int n) {
  1016   transition(ftos, vtos);
  1017   __ movflt(faddress(n), xmm0);
  1020 void TemplateTable::dstore(int n) {
  1021   transition(dtos, vtos);
  1022   __ movdbl(daddress(n), xmm0);
  1025 void TemplateTable::astore(int n) {
  1026   transition(vtos, vtos);
  1027   __ pop_ptr(rax);
  1028   __ movptr(aaddress(n), rax);
  1031 void TemplateTable::pop() {
  1032   transition(vtos, vtos);
  1033   __ addptr(rsp, Interpreter::stackElementSize);
  1036 void TemplateTable::pop2() {
  1037   transition(vtos, vtos);
  1038   __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1041 void TemplateTable::dup() {
  1042   transition(vtos, vtos);
  1043   __ load_ptr(0, rax);
  1044   __ push_ptr(rax);
  1045   // stack: ..., a, a
  1048 void TemplateTable::dup_x1() {
  1049   transition(vtos, vtos);
  1050   // stack: ..., a, b
  1051   __ load_ptr( 0, rax);  // load b
  1052   __ load_ptr( 1, rcx);  // load a
  1053   __ store_ptr(1, rax);  // store b
  1054   __ store_ptr(0, rcx);  // store a
  1055   __ push_ptr(rax);      // push b
  1056   // stack: ..., b, a, b
  1059 void TemplateTable::dup_x2() {
  1060   transition(vtos, vtos);
  1061   // stack: ..., a, b, c
  1062   __ load_ptr( 0, rax);  // load c
  1063   __ load_ptr( 2, rcx);  // load a
  1064   __ store_ptr(2, rax);  // store c in a
  1065   __ push_ptr(rax);      // push c
  1066   // stack: ..., c, b, c, c
  1067   __ load_ptr( 2, rax);  // load b
  1068   __ store_ptr(2, rcx);  // store a in b
  1069   // stack: ..., c, a, c, c
  1070   __ store_ptr(1, rax);  // store b in c
  1071   // stack: ..., c, a, b, c
  1074 void TemplateTable::dup2() {
  1075   transition(vtos, vtos);
  1076   // stack: ..., a, b
  1077   __ load_ptr(1, rax);  // load a
  1078   __ push_ptr(rax);     // push a
  1079   __ load_ptr(1, rax);  // load b
  1080   __ push_ptr(rax);     // push b
  1081   // stack: ..., a, b, a, b
  1084 void TemplateTable::dup2_x1() {
  1085   transition(vtos, vtos);
  1086   // stack: ..., a, b, c
  1087   __ load_ptr( 0, rcx);  // load c
  1088   __ load_ptr( 1, rax);  // load b
  1089   __ push_ptr(rax);      // push b
  1090   __ push_ptr(rcx);      // push c
  1091   // stack: ..., a, b, c, b, c
  1092   __ store_ptr(3, rcx);  // store c in b
  1093   // stack: ..., a, c, c, b, c
  1094   __ load_ptr( 4, rcx);  // load a
  1095   __ store_ptr(2, rcx);  // store a in 2nd c
  1096   // stack: ..., a, c, a, b, c
  1097   __ store_ptr(4, rax);  // store b in a
  1098   // stack: ..., b, c, a, b, c
  1101 void TemplateTable::dup2_x2() {
  1102   transition(vtos, vtos);
  1103   // stack: ..., a, b, c, d
  1104   __ load_ptr( 0, rcx);  // load d
  1105   __ load_ptr( 1, rax);  // load c
  1106   __ push_ptr(rax);      // push c
  1107   __ push_ptr(rcx);      // push d
  1108   // stack: ..., a, b, c, d, c, d
  1109   __ load_ptr( 4, rax);  // load b
  1110   __ store_ptr(2, rax);  // store b in d
  1111   __ store_ptr(4, rcx);  // store d in b
  1112   // stack: ..., a, d, c, b, c, d
  1113   __ load_ptr( 5, rcx);  // load a
  1114   __ load_ptr( 3, rax);  // load c
  1115   __ store_ptr(3, rcx);  // store a in c
  1116   __ store_ptr(5, rax);  // store c in a
  1117   // stack: ..., c, d, a, b, c, d
  1120 void TemplateTable::swap() {
  1121   transition(vtos, vtos);
  1122   // stack: ..., a, b
  1123   __ load_ptr( 1, rcx);  // load a
  1124   __ load_ptr( 0, rax);  // load b
  1125   __ store_ptr(0, rcx);  // store a in b
  1126   __ store_ptr(1, rax);  // store b in a
  1127   // stack: ..., b, a
  1130 void TemplateTable::iop2(Operation op) {
  1131   transition(itos, itos);
  1132   switch (op) {
  1133   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1134   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1135   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1136   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1137   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1138   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1139   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1140   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1141   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1142   default   : ShouldNotReachHere();
  1146 void TemplateTable::lop2(Operation op) {
  1147   transition(ltos, ltos);
  1148   switch (op) {
  1149   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
  1150   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
  1151   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
  1152   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
  1153   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
  1154   default   : ShouldNotReachHere();
  1158 void TemplateTable::idiv() {
  1159   transition(itos, itos);
  1160   __ movl(rcx, rax);
  1161   __ pop_i(rax);
  1162   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1163   //       they are not equal, one could do a normal division (no correction
  1164   //       needed), which may speed up this implementation for the common case.
  1165   //       (see also JVM spec., p.243 & p.271)
  1166   __ corrected_idivl(rcx);
  1169 void TemplateTable::irem() {
  1170   transition(itos, itos);
  1171   __ movl(rcx, rax);
  1172   __ pop_i(rax);
  1173   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1174   //       they are not equal, one could do a normal division (no correction
  1175   //       needed), which may speed up this implementation for the common case.
  1176   //       (see also JVM spec., p.243 & p.271)
  1177   __ corrected_idivl(rcx);
  1178   __ movl(rax, rdx);
  1181 void TemplateTable::lmul() {
  1182   transition(ltos, ltos);
  1183   __ pop_l(rdx);
  1184   __ imulq(rax, rdx);
  1187 void TemplateTable::ldiv() {
  1188   transition(ltos, ltos);
  1189   __ mov(rcx, rax);
  1190   __ pop_l(rax);
  1191   // generate explicit div0 check
  1192   __ testq(rcx, rcx);
  1193   __ jump_cc(Assembler::zero,
  1194              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1195   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1196   //       they are not equal, one could do a normal division (no correction
  1197   //       needed), which may speed up this implementation for the common case.
  1198   //       (see also JVM spec., p.243 & p.271)
  1199   __ corrected_idivq(rcx); // kills rbx
  1202 void TemplateTable::lrem() {
  1203   transition(ltos, ltos);
  1204   __ mov(rcx, rax);
  1205   __ pop_l(rax);
  1206   __ testq(rcx, rcx);
  1207   __ jump_cc(Assembler::zero,
  1208              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1209   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1210   //       they are not equal, one could do a normal division (no correction
  1211   //       needed), which may speed up this implementation for the common case.
  1212   //       (see also JVM spec., p.243 & p.271)
  1213   __ corrected_idivq(rcx); // kills rbx
  1214   __ mov(rax, rdx);
  1217 void TemplateTable::lshl() {
  1218   transition(itos, ltos);
  1219   __ movl(rcx, rax);                             // get shift count
  1220   __ pop_l(rax);                                 // get shift value
  1221   __ shlq(rax);
  1224 void TemplateTable::lshr() {
  1225   transition(itos, ltos);
  1226   __ movl(rcx, rax);                             // get shift count
  1227   __ pop_l(rax);                                 // get shift value
  1228   __ sarq(rax);
  1231 void TemplateTable::lushr() {
  1232   transition(itos, ltos);
  1233   __ movl(rcx, rax);                             // get shift count
  1234   __ pop_l(rax);                                 // get shift value
  1235   __ shrq(rax);
  1238 void TemplateTable::fop2(Operation op) {
  1239   transition(ftos, ftos);
  1240   switch (op) {
  1241   case add:
  1242     __ addss(xmm0, at_rsp());
  1243     __ addptr(rsp, Interpreter::stackElementSize);
  1244     break;
  1245   case sub:
  1246     __ movflt(xmm1, xmm0);
  1247     __ pop_f(xmm0);
  1248     __ subss(xmm0, xmm1);
  1249     break;
  1250   case mul:
  1251     __ mulss(xmm0, at_rsp());
  1252     __ addptr(rsp, Interpreter::stackElementSize);
  1253     break;
  1254   case div:
  1255     __ movflt(xmm1, xmm0);
  1256     __ pop_f(xmm0);
  1257     __ divss(xmm0, xmm1);
  1258     break;
  1259   case rem:
  1260     __ movflt(xmm1, xmm0);
  1261     __ pop_f(xmm0);
  1262     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1263     break;
  1264   default:
  1265     ShouldNotReachHere();
  1266     break;
  1270 void TemplateTable::dop2(Operation op) {
  1271   transition(dtos, dtos);
  1272   switch (op) {
  1273   case add:
  1274     __ addsd(xmm0, at_rsp());
  1275     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1276     break;
  1277   case sub:
  1278     __ movdbl(xmm1, xmm0);
  1279     __ pop_d(xmm0);
  1280     __ subsd(xmm0, xmm1);
  1281     break;
  1282   case mul:
  1283     __ mulsd(xmm0, at_rsp());
  1284     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1285     break;
  1286   case div:
  1287     __ movdbl(xmm1, xmm0);
  1288     __ pop_d(xmm0);
  1289     __ divsd(xmm0, xmm1);
  1290     break;
  1291   case rem:
  1292     __ movdbl(xmm1, xmm0);
  1293     __ pop_d(xmm0);
  1294     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1295     break;
  1296   default:
  1297     ShouldNotReachHere();
  1298     break;
  1302 void TemplateTable::ineg() {
  1303   transition(itos, itos);
  1304   __ negl(rax);
  1307 void TemplateTable::lneg() {
  1308   transition(ltos, ltos);
  1309   __ negq(rax);
  1312 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1313 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1314   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1315   // of 128-bits operands for SSE instructions.
  1316   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1317   // Store the value to a 128-bits operand.
  1318   operand[0] = lo;
  1319   operand[1] = hi;
  1320   return operand;
  1323 // Buffer for 128-bits masks used by SSE instructions.
  1324 static jlong float_signflip_pool[2*2];
  1325 static jlong double_signflip_pool[2*2];
  1327 void TemplateTable::fneg() {
  1328   transition(ftos, ftos);
  1329   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1330   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1333 void TemplateTable::dneg() {
  1334   transition(dtos, dtos);
  1335   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1336   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1339 void TemplateTable::iinc() {
  1340   transition(vtos, vtos);
  1341   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1342   locals_index(rbx);
  1343   __ addl(iaddress(rbx), rdx);
  1346 void TemplateTable::wide_iinc() {
  1347   transition(vtos, vtos);
  1348   __ movl(rdx, at_bcp(4)); // get constant
  1349   locals_index_wide(rbx);
  1350   __ bswapl(rdx); // swap bytes & sign-extend constant
  1351   __ sarl(rdx, 16);
  1352   __ addl(iaddress(rbx), rdx);
  1353   // Note: should probably use only one movl to get both
  1354   //       the index and the constant -> fix this
  1357 void TemplateTable::convert() {
  1358   // Checking
  1359 #ifdef ASSERT
  1361     TosState tos_in  = ilgl;
  1362     TosState tos_out = ilgl;
  1363     switch (bytecode()) {
  1364     case Bytecodes::_i2l: // fall through
  1365     case Bytecodes::_i2f: // fall through
  1366     case Bytecodes::_i2d: // fall through
  1367     case Bytecodes::_i2b: // fall through
  1368     case Bytecodes::_i2c: // fall through
  1369     case Bytecodes::_i2s: tos_in = itos; break;
  1370     case Bytecodes::_l2i: // fall through
  1371     case Bytecodes::_l2f: // fall through
  1372     case Bytecodes::_l2d: tos_in = ltos; break;
  1373     case Bytecodes::_f2i: // fall through
  1374     case Bytecodes::_f2l: // fall through
  1375     case Bytecodes::_f2d: tos_in = ftos; break;
  1376     case Bytecodes::_d2i: // fall through
  1377     case Bytecodes::_d2l: // fall through
  1378     case Bytecodes::_d2f: tos_in = dtos; break;
  1379     default             : ShouldNotReachHere();
  1381     switch (bytecode()) {
  1382     case Bytecodes::_l2i: // fall through
  1383     case Bytecodes::_f2i: // fall through
  1384     case Bytecodes::_d2i: // fall through
  1385     case Bytecodes::_i2b: // fall through
  1386     case Bytecodes::_i2c: // fall through
  1387     case Bytecodes::_i2s: tos_out = itos; break;
  1388     case Bytecodes::_i2l: // fall through
  1389     case Bytecodes::_f2l: // fall through
  1390     case Bytecodes::_d2l: tos_out = ltos; break;
  1391     case Bytecodes::_i2f: // fall through
  1392     case Bytecodes::_l2f: // fall through
  1393     case Bytecodes::_d2f: tos_out = ftos; break;
  1394     case Bytecodes::_i2d: // fall through
  1395     case Bytecodes::_l2d: // fall through
  1396     case Bytecodes::_f2d: tos_out = dtos; break;
  1397     default             : ShouldNotReachHere();
  1399     transition(tos_in, tos_out);
  1401 #endif // ASSERT
  1403   static const int64_t is_nan = 0x8000000000000000L;
  1405   // Conversion
  1406   switch (bytecode()) {
  1407   case Bytecodes::_i2l:
  1408     __ movslq(rax, rax);
  1409     break;
  1410   case Bytecodes::_i2f:
  1411     __ cvtsi2ssl(xmm0, rax);
  1412     break;
  1413   case Bytecodes::_i2d:
  1414     __ cvtsi2sdl(xmm0, rax);
  1415     break;
  1416   case Bytecodes::_i2b:
  1417     __ movsbl(rax, rax);
  1418     break;
  1419   case Bytecodes::_i2c:
  1420     __ movzwl(rax, rax);
  1421     break;
  1422   case Bytecodes::_i2s:
  1423     __ movswl(rax, rax);
  1424     break;
  1425   case Bytecodes::_l2i:
  1426     __ movl(rax, rax);
  1427     break;
  1428   case Bytecodes::_l2f:
  1429     __ cvtsi2ssq(xmm0, rax);
  1430     break;
  1431   case Bytecodes::_l2d:
  1432     __ cvtsi2sdq(xmm0, rax);
  1433     break;
  1434   case Bytecodes::_f2i:
  1436     Label L;
  1437     __ cvttss2sil(rax, xmm0);
  1438     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1439     __ jcc(Assembler::notEqual, L);
  1440     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1441     __ bind(L);
  1443     break;
  1444   case Bytecodes::_f2l:
  1446     Label L;
  1447     __ cvttss2siq(rax, xmm0);
  1448     // NaN or overflow/underflow?
  1449     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1450     __ jcc(Assembler::notEqual, L);
  1451     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1452     __ bind(L);
  1454     break;
  1455   case Bytecodes::_f2d:
  1456     __ cvtss2sd(xmm0, xmm0);
  1457     break;
  1458   case Bytecodes::_d2i:
  1460     Label L;
  1461     __ cvttsd2sil(rax, xmm0);
  1462     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1463     __ jcc(Assembler::notEqual, L);
  1464     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1465     __ bind(L);
  1467     break;
  1468   case Bytecodes::_d2l:
  1470     Label L;
  1471     __ cvttsd2siq(rax, xmm0);
  1472     // NaN or overflow/underflow?
  1473     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1474     __ jcc(Assembler::notEqual, L);
  1475     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1476     __ bind(L);
  1478     break;
  1479   case Bytecodes::_d2f:
  1480     __ cvtsd2ss(xmm0, xmm0);
  1481     break;
  1482   default:
  1483     ShouldNotReachHere();
  1487 void TemplateTable::lcmp() {
  1488   transition(ltos, itos);
  1489   Label done;
  1490   __ pop_l(rdx);
  1491   __ cmpq(rdx, rax);
  1492   __ movl(rax, -1);
  1493   __ jccb(Assembler::less, done);
  1494   __ setb(Assembler::notEqual, rax);
  1495   __ movzbl(rax, rax);
  1496   __ bind(done);
  1499 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1500   Label done;
  1501   if (is_float) {
  1502     // XXX get rid of pop here, use ... reg, mem32
  1503     __ pop_f(xmm1);
  1504     __ ucomiss(xmm1, xmm0);
  1505   } else {
  1506     // XXX get rid of pop here, use ... reg, mem64
  1507     __ pop_d(xmm1);
  1508     __ ucomisd(xmm1, xmm0);
  1510   if (unordered_result < 0) {
  1511     __ movl(rax, -1);
  1512     __ jccb(Assembler::parity, done);
  1513     __ jccb(Assembler::below, done);
  1514     __ setb(Assembler::notEqual, rdx);
  1515     __ movzbl(rax, rdx);
  1516   } else {
  1517     __ movl(rax, 1);
  1518     __ jccb(Assembler::parity, done);
  1519     __ jccb(Assembler::above, done);
  1520     __ movl(rax, 0);
  1521     __ jccb(Assembler::equal, done);
  1522     __ decrementl(rax);
  1524   __ bind(done);
  1527 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1528   __ get_method(rcx); // rcx holds method
  1529   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1530                                      // holds bumped taken count
  1532   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
  1533                              InvocationCounter::counter_offset();
  1534   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
  1535                               InvocationCounter::counter_offset();
  1536   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1538   // Load up edx with the branch displacement
  1539   __ movl(rdx, at_bcp(1));
  1540   __ bswapl(rdx);
  1542   if (!is_wide) {
  1543     __ sarl(rdx, 16);
  1545   __ movl2ptr(rdx, rdx);
  1547   // Handle all the JSR stuff here, then exit.
  1548   // It's much shorter and cleaner than intermingling with the non-JSR
  1549   // normal-branch stuff occurring below.
  1550   if (is_jsr) {
  1551     // Pre-load the next target bytecode into rbx
  1552     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1554     // compute return address as bci in rax
  1555     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
  1556                         in_bytes(constMethodOopDesc::codes_offset())));
  1557     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1558     // Adjust the bcp in r13 by the displacement in rdx
  1559     __ addptr(r13, rdx);
  1560     // jsr returns atos that is not an oop
  1561     __ push_i(rax);
  1562     __ dispatch_only(vtos);
  1563     return;
  1566   // Normal (non-jsr) branch handling
  1568   // Adjust the bcp in r13 by the displacement in rdx
  1569   __ addptr(r13, rdx);
  1571   assert(UseLoopCounter || !UseOnStackReplacement,
  1572          "on-stack-replacement requires loop counters");
  1573   Label backedge_counter_overflow;
  1574   Label profile_method;
  1575   Label dispatch;
  1576   if (UseLoopCounter) {
  1577     // increment backedge counter for backward branches
  1578     // rax: MDO
  1579     // ebx: MDO bumped taken-count
  1580     // rcx: method
  1581     // rdx: target offset
  1582     // r13: target bcp
  1583     // r14: locals pointer
  1584     __ testl(rdx, rdx);             // check if forward or backward branch
  1585     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1586     if (TieredCompilation) {
  1587       Label no_mdo;
  1588       int increment = InvocationCounter::count_increment;
  1589       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1590       if (ProfileInterpreter) {
  1591         // Are we profiling?
  1592         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
  1593         __ testptr(rbx, rbx);
  1594         __ jccb(Assembler::zero, no_mdo);
  1595         // Increment the MDO backedge counter
  1596         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
  1597                                            in_bytes(InvocationCounter::counter_offset()));
  1598         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1599                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1600         __ jmp(dispatch);
  1602       __ bind(no_mdo);
  1603       // Increment backedge counter in methodOop
  1604       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1605                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1606     } else {
  1607       // increment counter
  1608       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1609       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1610       __ movl(Address(rcx, be_offset), rax);        // store counter
  1612       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1613       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1614       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1616       if (ProfileInterpreter) {
  1617         // Test to see if we should create a method data oop
  1618         __ cmp32(rax,
  1619                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1620         __ jcc(Assembler::less, dispatch);
  1622         // if no method data exists, go to profile method
  1623         __ test_method_data_pointer(rax, profile_method);
  1625         if (UseOnStackReplacement) {
  1626           // check for overflow against ebx which is the MDO taken count
  1627           __ cmp32(rbx,
  1628                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1629           __ jcc(Assembler::below, dispatch);
  1631           // When ProfileInterpreter is on, the backedge_count comes
  1632           // from the methodDataOop, which value does not get reset on
  1633           // the call to frequency_counter_overflow().  To avoid
  1634           // excessive calls to the overflow routine while the method is
  1635           // being compiled, add a second test to make sure the overflow
  1636           // function is called only once every overflow_frequency.
  1637           const int overflow_frequency = 1024;
  1638           __ andl(rbx, overflow_frequency - 1);
  1639           __ jcc(Assembler::zero, backedge_counter_overflow);
  1642       } else {
  1643         if (UseOnStackReplacement) {
  1644           // check for overflow against eax, which is the sum of the
  1645           // counters
  1646           __ cmp32(rax,
  1647                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1648           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1653     __ bind(dispatch);
  1656   // Pre-load the next target bytecode into rbx
  1657   __ load_unsigned_byte(rbx, Address(r13, 0));
  1659   // continue with the bytecode @ target
  1660   // eax: return bci for jsr's, unused otherwise
  1661   // ebx: target bytecode
  1662   // r13: target bcp
  1663   __ dispatch_only(vtos);
  1665   if (UseLoopCounter) {
  1666     if (ProfileInterpreter) {
  1667       // Out-of-line code to allocate method data oop.
  1668       __ bind(profile_method);
  1669       __ call_VM(noreg,
  1670                  CAST_FROM_FN_PTR(address,
  1671                                   InterpreterRuntime::profile_method), r13);
  1672       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1673       __ movptr(rcx, Address(rbp, method_offset));
  1674       __ movptr(rcx, Address(rcx,
  1675                              in_bytes(methodOopDesc::method_data_offset())));
  1676       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
  1677                 rcx);
  1678       __ test_method_data_pointer(rcx, dispatch);
  1679       // offset non-null mdp by MDO::data_offset() + IR::profile_method()
  1680       __ addptr(rcx, in_bytes(methodDataOopDesc::data_offset()));
  1681       __ addptr(rcx, rax);
  1682       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
  1683                 rcx);
  1684       __ jmp(dispatch);
  1687     if (UseOnStackReplacement) {
  1688       // invocation counter overflow
  1689       __ bind(backedge_counter_overflow);
  1690       __ negptr(rdx);
  1691       __ addptr(rdx, r13); // branch bcp
  1692       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1693       __ call_VM(noreg,
  1694                  CAST_FROM_FN_PTR(address,
  1695                                   InterpreterRuntime::frequency_counter_overflow),
  1696                  rdx);
  1697       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1699       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1700       // ebx: target bytecode
  1701       // rdx: scratch
  1702       // r14: locals pointer
  1703       // r13: bcp
  1704       __ testptr(rax, rax);                        // test result
  1705       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1706       // nmethod may have been invalidated (VM may block upon call_VM return)
  1707       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1708       __ cmpl(rcx, InvalidOSREntryBci);
  1709       __ jcc(Assembler::equal, dispatch);
  1711       // We have the address of an on stack replacement routine in eax
  1712       // We need to prepare to execute the OSR method. First we must
  1713       // migrate the locals and monitors off of the stack.
  1715       __ mov(r13, rax);                             // save the nmethod
  1717       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1719       // eax is OSR buffer, move it to expected parameter location
  1720       __ mov(j_rarg0, rax);
  1722       // We use j_rarg definitions here so that registers don't conflict as parameter
  1723       // registers change across platforms as we are in the midst of a calling
  1724       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1726       const Register retaddr = j_rarg2;
  1727       const Register sender_sp = j_rarg1;
  1729       // pop the interpreter frame
  1730       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1731       __ leave();                                // remove frame anchor
  1732       __ pop(retaddr);                           // get return address
  1733       __ mov(rsp, sender_sp);                   // set sp to sender sp
  1734       // Ensure compiled code always sees stack at proper alignment
  1735       __ andptr(rsp, -(StackAlignmentInBytes));
  1737       // unlike x86 we need no specialized return from compiled code
  1738       // to the interpreter or the call stub.
  1740       // push the return address
  1741       __ push(retaddr);
  1743       // and begin the OSR nmethod
  1744       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1750 void TemplateTable::if_0cmp(Condition cc) {
  1751   transition(itos, vtos);
  1752   // assume branch is more often taken than not (loops use backward branches)
  1753   Label not_taken;
  1754   __ testl(rax, rax);
  1755   __ jcc(j_not(cc), not_taken);
  1756   branch(false, false);
  1757   __ bind(not_taken);
  1758   __ profile_not_taken_branch(rax);
  1761 void TemplateTable::if_icmp(Condition cc) {
  1762   transition(itos, vtos);
  1763   // assume branch is more often taken than not (loops use backward branches)
  1764   Label not_taken;
  1765   __ pop_i(rdx);
  1766   __ cmpl(rdx, rax);
  1767   __ jcc(j_not(cc), not_taken);
  1768   branch(false, false);
  1769   __ bind(not_taken);
  1770   __ profile_not_taken_branch(rax);
  1773 void TemplateTable::if_nullcmp(Condition cc) {
  1774   transition(atos, vtos);
  1775   // assume branch is more often taken than not (loops use backward branches)
  1776   Label not_taken;
  1777   __ testptr(rax, rax);
  1778   __ jcc(j_not(cc), not_taken);
  1779   branch(false, false);
  1780   __ bind(not_taken);
  1781   __ profile_not_taken_branch(rax);
  1784 void TemplateTable::if_acmp(Condition cc) {
  1785   transition(atos, vtos);
  1786   // assume branch is more often taken than not (loops use backward branches)
  1787   Label not_taken;
  1788   __ pop_ptr(rdx);
  1789   __ cmpptr(rdx, rax);
  1790   __ jcc(j_not(cc), not_taken);
  1791   branch(false, false);
  1792   __ bind(not_taken);
  1793   __ profile_not_taken_branch(rax);
  1796 void TemplateTable::ret() {
  1797   transition(vtos, vtos);
  1798   locals_index(rbx);
  1799   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
  1800   __ profile_ret(rbx, rcx);
  1801   __ get_method(rax);
  1802   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1803   __ lea(r13, Address(r13, rbx, Address::times_1,
  1804                       constMethodOopDesc::codes_offset()));
  1805   __ dispatch_next(vtos);
  1808 void TemplateTable::wide_ret() {
  1809   transition(vtos, vtos);
  1810   locals_index_wide(rbx);
  1811   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1812   __ profile_ret(rbx, rcx);
  1813   __ get_method(rax);
  1814   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1815   __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1816   __ dispatch_next(vtos);
  1819 void TemplateTable::tableswitch() {
  1820   Label default_case, continue_execution;
  1821   transition(itos, vtos);
  1822   // align r13
  1823   __ lea(rbx, at_bcp(BytesPerInt));
  1824   __ andptr(rbx, -BytesPerInt);
  1825   // load lo & hi
  1826   __ movl(rcx, Address(rbx, BytesPerInt));
  1827   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1828   __ bswapl(rcx);
  1829   __ bswapl(rdx);
  1830   // check against lo & hi
  1831   __ cmpl(rax, rcx);
  1832   __ jcc(Assembler::less, default_case);
  1833   __ cmpl(rax, rdx);
  1834   __ jcc(Assembler::greater, default_case);
  1835   // lookup dispatch offset
  1836   __ subl(rax, rcx);
  1837   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1838   __ profile_switch_case(rax, rbx, rcx);
  1839   // continue execution
  1840   __ bind(continue_execution);
  1841   __ bswapl(rdx);
  1842   __ movl2ptr(rdx, rdx);
  1843   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1844   __ addptr(r13, rdx);
  1845   __ dispatch_only(vtos);
  1846   // handle default
  1847   __ bind(default_case);
  1848   __ profile_switch_default(rax);
  1849   __ movl(rdx, Address(rbx, 0));
  1850   __ jmp(continue_execution);
  1853 void TemplateTable::lookupswitch() {
  1854   transition(itos, itos);
  1855   __ stop("lookupswitch bytecode should have been rewritten");
  1858 void TemplateTable::fast_linearswitch() {
  1859   transition(itos, vtos);
  1860   Label loop_entry, loop, found, continue_execution;
  1861   // bswap rax so we can avoid bswapping the table entries
  1862   __ bswapl(rax);
  1863   // align r13
  1864   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1865                                     // this instruction (change offsets
  1866                                     // below)
  1867   __ andptr(rbx, -BytesPerInt);
  1868   // set counter
  1869   __ movl(rcx, Address(rbx, BytesPerInt));
  1870   __ bswapl(rcx);
  1871   __ jmpb(loop_entry);
  1872   // table search
  1873   __ bind(loop);
  1874   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1875   __ jcc(Assembler::equal, found);
  1876   __ bind(loop_entry);
  1877   __ decrementl(rcx);
  1878   __ jcc(Assembler::greaterEqual, loop);
  1879   // default case
  1880   __ profile_switch_default(rax);
  1881   __ movl(rdx, Address(rbx, 0));
  1882   __ jmp(continue_execution);
  1883   // entry found -> get offset
  1884   __ bind(found);
  1885   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1886   __ profile_switch_case(rcx, rax, rbx);
  1887   // continue execution
  1888   __ bind(continue_execution);
  1889   __ bswapl(rdx);
  1890   __ movl2ptr(rdx, rdx);
  1891   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1892   __ addptr(r13, rdx);
  1893   __ dispatch_only(vtos);
  1896 void TemplateTable::fast_binaryswitch() {
  1897   transition(itos, vtos);
  1898   // Implementation using the following core algorithm:
  1899   //
  1900   // int binary_search(int key, LookupswitchPair* array, int n) {
  1901   //   // Binary search according to "Methodik des Programmierens" by
  1902   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1903   //   int i = 0;
  1904   //   int j = n;
  1905   //   while (i+1 < j) {
  1906   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1907   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1908   //     // where a stands for the array and assuming that the (inexisting)
  1909   //     // element a[n] is infinitely big.
  1910   //     int h = (i + j) >> 1;
  1911   //     // i < h < j
  1912   //     if (key < array[h].fast_match()) {
  1913   //       j = h;
  1914   //     } else {
  1915   //       i = h;
  1916   //     }
  1917   //   }
  1918   //   // R: a[i] <= key < a[i+1] or Q
  1919   //   // (i.e., if key is within array, i is the correct index)
  1920   //   return i;
  1921   // }
  1923   // Register allocation
  1924   const Register key   = rax; // already set (tosca)
  1925   const Register array = rbx;
  1926   const Register i     = rcx;
  1927   const Register j     = rdx;
  1928   const Register h     = rdi;
  1929   const Register temp  = rsi;
  1931   // Find array start
  1932   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1933                                           // get rid of this
  1934                                           // instruction (change
  1935                                           // offsets below)
  1936   __ andptr(array, -BytesPerInt);
  1938   // Initialize i & j
  1939   __ xorl(i, i);                            // i = 0;
  1940   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  1942   // Convert j into native byteordering
  1943   __ bswapl(j);
  1945   // And start
  1946   Label entry;
  1947   __ jmp(entry);
  1949   // binary search loop
  1951     Label loop;
  1952     __ bind(loop);
  1953     // int h = (i + j) >> 1;
  1954     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1955     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1956     // if (key < array[h].fast_match()) {
  1957     //   j = h;
  1958     // } else {
  1959     //   i = h;
  1960     // }
  1961     // Convert array[h].match to native byte-ordering before compare
  1962     __ movl(temp, Address(array, h, Address::times_8));
  1963     __ bswapl(temp);
  1964     __ cmpl(key, temp);
  1965     // j = h if (key <  array[h].fast_match())
  1966     __ cmovl(Assembler::less, j, h);
  1967     // i = h if (key >= array[h].fast_match())
  1968     __ cmovl(Assembler::greaterEqual, i, h);
  1969     // while (i+1 < j)
  1970     __ bind(entry);
  1971     __ leal(h, Address(i, 1)); // i+1
  1972     __ cmpl(h, j);             // i+1 < j
  1973     __ jcc(Assembler::less, loop);
  1976   // end of binary search, result index is i (must check again!)
  1977   Label default_case;
  1978   // Convert array[i].match to native byte-ordering before compare
  1979   __ movl(temp, Address(array, i, Address::times_8));
  1980   __ bswapl(temp);
  1981   __ cmpl(key, temp);
  1982   __ jcc(Assembler::notEqual, default_case);
  1984   // entry found -> j = offset
  1985   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  1986   __ profile_switch_case(i, key, array);
  1987   __ bswapl(j);
  1988   __ movl2ptr(j, j);
  1989   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  1990   __ addptr(r13, j);
  1991   __ dispatch_only(vtos);
  1993   // default case -> j = default offset
  1994   __ bind(default_case);
  1995   __ profile_switch_default(i);
  1996   __ movl(j, Address(array, -2 * BytesPerInt));
  1997   __ bswapl(j);
  1998   __ movl2ptr(j, j);
  1999   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2000   __ addptr(r13, j);
  2001   __ dispatch_only(vtos);
  2005 void TemplateTable::_return(TosState state) {
  2006   transition(state, state);
  2007   assert(_desc->calls_vm(),
  2008          "inconsistent calls_vm information"); // call in remove_activation
  2010   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2011     assert(state == vtos, "only valid state");
  2012     __ movptr(c_rarg1, aaddress(0));
  2013     __ load_klass(rdi, c_rarg1);
  2014     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  2015     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2016     Label skip_register_finalizer;
  2017     __ jcc(Assembler::zero, skip_register_finalizer);
  2019     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  2021     __ bind(skip_register_finalizer);
  2024   __ remove_activation(state, r13);
  2025   __ jmp(r13);
  2028 // ----------------------------------------------------------------------------
  2029 // Volatile variables demand their effects be made known to all CPU's
  2030 // in order.  Store buffers on most chips allow reads & writes to
  2031 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  2032 // without some kind of memory barrier (i.e., it's not sufficient that
  2033 // the interpreter does not reorder volatile references, the hardware
  2034 // also must not reorder them).
  2035 //
  2036 // According to the new Java Memory Model (JMM):
  2037 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  2038 //     writes act as aquire & release, so:
  2039 // (2) A read cannot let unrelated NON-volatile memory refs that
  2040 //     happen after the read float up to before the read.  It's OK for
  2041 //     non-volatile memory refs that happen before the volatile read to
  2042 //     float down below it.
  2043 // (3) Similar a volatile write cannot let unrelated NON-volatile
  2044 //     memory refs that happen BEFORE the write float down to after the
  2045 //     write.  It's OK for non-volatile memory refs that happen after the
  2046 //     volatile write to float up before it.
  2047 //
  2048 // We only put in barriers around volatile refs (they are expensive),
  2049 // not _between_ memory refs (that would require us to track the
  2050 // flavor of the previous memory refs).  Requirements (2) and (3)
  2051 // require some barriers before volatile stores and after volatile
  2052 // loads.  These nearly cover requirement (1) but miss the
  2053 // volatile-store-volatile-load case.  This final case is placed after
  2054 // volatile-stores although it could just as well go before
  2055 // volatile-loads.
  2056 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  2057                                      order_constraint) {
  2058   // Helper function to insert a is-volatile test and memory barrier
  2059   if (os::is_MP()) { // Not needed on single CPU
  2060     __ membar(order_constraint);
  2064 void TemplateTable::resolve_cache_and_index(int byte_no,
  2065                                             Register result,
  2066                                             Register Rcache,
  2067                                             Register index,
  2068                                             size_t index_size) {
  2069   const Register temp = rbx;
  2070   assert_different_registers(result, Rcache, index, temp);
  2072   Label resolved;
  2073   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2074   if (byte_no == f1_oop) {
  2075     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2076     // This kind of CP cache entry does not need to match the flags byte, because
  2077     // there is a 1-1 relation between bytecode type and CP entry type.
  2078     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
  2079     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2080     __ testptr(result, result);
  2081     __ jcc(Assembler::notEqual, resolved);
  2082   } else {
  2083     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2084     assert(result == noreg, "");  //else change code for setting result
  2085     const int shift_count = (1 + byte_no) * BitsPerByte;
  2086     __ movl(temp, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
  2087     __ shrl(temp, shift_count);
  2088     // have we resolved this bytecode?
  2089     __ andl(temp, 0xFF);
  2090     __ cmpl(temp, (int) bytecode());
  2091     __ jcc(Assembler::equal, resolved);
  2094   // resolve first time through
  2095   address entry;
  2096   switch (bytecode()) {
  2097   case Bytecodes::_getstatic:
  2098   case Bytecodes::_putstatic:
  2099   case Bytecodes::_getfield:
  2100   case Bytecodes::_putfield:
  2101     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2102     break;
  2103   case Bytecodes::_invokevirtual:
  2104   case Bytecodes::_invokespecial:
  2105   case Bytecodes::_invokestatic:
  2106   case Bytecodes::_invokeinterface:
  2107     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2108     break;
  2109   case Bytecodes::_invokedynamic:
  2110     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
  2111     break;
  2112   case Bytecodes::_fast_aldc:
  2113     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
  2114     break;
  2115   case Bytecodes::_fast_aldc_w:
  2116     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
  2117     break;
  2118   default:
  2119     ShouldNotReachHere();
  2120     break;
  2122   __ movl(temp, (int) bytecode());
  2123   __ call_VM(noreg, entry, temp);
  2125   // Update registers with resolved info
  2126   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2127   if (result != noreg)
  2128     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2129   __ bind(resolved);
  2132 // The Rcache and index registers must be set before call
  2133 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2134                                               Register cache,
  2135                                               Register index,
  2136                                               Register off,
  2137                                               Register flags,
  2138                                               bool is_static = false) {
  2139   assert_different_registers(cache, index, flags, off);
  2141   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2142   // Field offset
  2143   __ movptr(off, Address(cache, index, Address::times_8,
  2144                          in_bytes(cp_base_offset +
  2145                                   ConstantPoolCacheEntry::f2_offset())));
  2146   // Flags
  2147   __ movl(flags, Address(cache, index, Address::times_8,
  2148                          in_bytes(cp_base_offset +
  2149                                   ConstantPoolCacheEntry::flags_offset())));
  2151   // klass overwrite register
  2152   if (is_static) {
  2153     __ movptr(obj, Address(cache, index, Address::times_8,
  2154                            in_bytes(cp_base_offset +
  2155                                     ConstantPoolCacheEntry::f1_offset())));
  2159 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2160                                                Register method,
  2161                                                Register itable_index,
  2162                                                Register flags,
  2163                                                bool is_invokevirtual,
  2164                                                bool is_invokevfinal, /*unused*/
  2165                                                bool is_invokedynamic) {
  2166   // setup registers
  2167   const Register cache = rcx;
  2168   const Register index = rdx;
  2169   assert_different_registers(method, flags);
  2170   assert_different_registers(method, cache, index);
  2171   assert_different_registers(itable_index, flags);
  2172   assert_different_registers(itable_index, cache, index);
  2173   // determine constant pool cache field offsets
  2174   const int method_offset = in_bytes(
  2175     constantPoolCacheOopDesc::base_offset() +
  2176       (is_invokevirtual
  2177        ? ConstantPoolCacheEntry::f2_offset()
  2178        : ConstantPoolCacheEntry::f1_offset()));
  2179   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2180                                     ConstantPoolCacheEntry::flags_offset());
  2181   // access constant pool cache fields
  2182   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2183                                     ConstantPoolCacheEntry::f2_offset());
  2185   if (byte_no == f1_oop) {
  2186     // Resolved f1_oop goes directly into 'method' register.
  2187     assert(is_invokedynamic, "");
  2188     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
  2189   } else {
  2190     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2191     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2193   if (itable_index != noreg) {
  2194     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2196   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2200 // The registers cache and index expected to be set before call.
  2201 // Correct values of the cache and index registers are preserved.
  2202 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2203                                             bool is_static, bool has_tos) {
  2204   // do the JVMTI work here to avoid disturbing the register state below
  2205   // We use c_rarg registers here because we want to use the register used in
  2206   // the call to the VM
  2207   if (JvmtiExport::can_post_field_access()) {
  2208     // Check to see if a field access watch has been set before we
  2209     // take the time to call into the VM.
  2210     Label L1;
  2211     assert_different_registers(cache, index, rax);
  2212     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2213     __ testl(rax, rax);
  2214     __ jcc(Assembler::zero, L1);
  2216     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2218     // cache entry pointer
  2219     __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2220     __ shll(c_rarg3, LogBytesPerWord);
  2221     __ addptr(c_rarg2, c_rarg3);
  2222     if (is_static) {
  2223       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2224     } else {
  2225       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
  2226       __ verify_oop(c_rarg1);
  2228     // c_rarg1: object pointer or NULL
  2229     // c_rarg2: cache entry pointer
  2230     // c_rarg3: jvalue object on the stack
  2231     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2232                                        InterpreterRuntime::post_field_access),
  2233                c_rarg1, c_rarg2, c_rarg3);
  2234     __ get_cache_and_index_at_bcp(cache, index, 1);
  2235     __ bind(L1);
  2239 void TemplateTable::pop_and_check_object(Register r) {
  2240   __ pop_ptr(r);
  2241   __ null_check(r);  // for field access must check obj.
  2242   __ verify_oop(r);
  2245 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2246   transition(vtos, vtos);
  2248   const Register cache = rcx;
  2249   const Register index = rdx;
  2250   const Register obj   = c_rarg3;
  2251   const Register off   = rbx;
  2252   const Register flags = rax;
  2253   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2255   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2256   jvmti_post_field_access(cache, index, is_static, false);
  2257   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2259   if (!is_static) {
  2260     // obj is on the stack
  2261     pop_and_check_object(obj);
  2264   const Address field(obj, off, Address::times_1);
  2266   Label Done, notByte, notInt, notShort, notChar,
  2267               notLong, notFloat, notObj, notDouble;
  2269   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2270   assert(btos == 0, "change code, btos != 0");
  2272   __ andl(flags, 0x0F);
  2273   __ jcc(Assembler::notZero, notByte);
  2274   // btos
  2275   __ load_signed_byte(rax, field);
  2276   __ push(btos);
  2277   // Rewrite bytecode to be faster
  2278   if (!is_static) {
  2279     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2281   __ jmp(Done);
  2283   __ bind(notByte);
  2284   __ cmpl(flags, atos);
  2285   __ jcc(Assembler::notEqual, notObj);
  2286   // atos
  2287   __ load_heap_oop(rax, field);
  2288   __ push(atos);
  2289   if (!is_static) {
  2290     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2292   __ jmp(Done);
  2294   __ bind(notObj);
  2295   __ cmpl(flags, itos);
  2296   __ jcc(Assembler::notEqual, notInt);
  2297   // itos
  2298   __ movl(rax, field);
  2299   __ push(itos);
  2300   // Rewrite bytecode to be faster
  2301   if (!is_static) {
  2302     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2304   __ jmp(Done);
  2306   __ bind(notInt);
  2307   __ cmpl(flags, ctos);
  2308   __ jcc(Assembler::notEqual, notChar);
  2309   // ctos
  2310   __ load_unsigned_short(rax, field);
  2311   __ push(ctos);
  2312   // Rewrite bytecode to be faster
  2313   if (!is_static) {
  2314     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2316   __ jmp(Done);
  2318   __ bind(notChar);
  2319   __ cmpl(flags, stos);
  2320   __ jcc(Assembler::notEqual, notShort);
  2321   // stos
  2322   __ load_signed_short(rax, field);
  2323   __ push(stos);
  2324   // Rewrite bytecode to be faster
  2325   if (!is_static) {
  2326     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2328   __ jmp(Done);
  2330   __ bind(notShort);
  2331   __ cmpl(flags, ltos);
  2332   __ jcc(Assembler::notEqual, notLong);
  2333   // ltos
  2334   __ movq(rax, field);
  2335   __ push(ltos);
  2336   // Rewrite bytecode to be faster
  2337   if (!is_static) {
  2338     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2340   __ jmp(Done);
  2342   __ bind(notLong);
  2343   __ cmpl(flags, ftos);
  2344   __ jcc(Assembler::notEqual, notFloat);
  2345   // ftos
  2346   __ movflt(xmm0, field);
  2347   __ push(ftos);
  2348   // Rewrite bytecode to be faster
  2349   if (!is_static) {
  2350     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2352   __ jmp(Done);
  2354   __ bind(notFloat);
  2355 #ifdef ASSERT
  2356   __ cmpl(flags, dtos);
  2357   __ jcc(Assembler::notEqual, notDouble);
  2358 #endif
  2359   // dtos
  2360   __ movdbl(xmm0, field);
  2361   __ push(dtos);
  2362   // Rewrite bytecode to be faster
  2363   if (!is_static) {
  2364     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2366 #ifdef ASSERT
  2367   __ jmp(Done);
  2369   __ bind(notDouble);
  2370   __ stop("Bad state");
  2371 #endif
  2373   __ bind(Done);
  2374   // [jk] not needed currently
  2375   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2376   //                                              Assembler::LoadStore));
  2380 void TemplateTable::getfield(int byte_no) {
  2381   getfield_or_static(byte_no, false);
  2384 void TemplateTable::getstatic(int byte_no) {
  2385   getfield_or_static(byte_no, true);
  2388 // The registers cache and index expected to be set before call.
  2389 // The function may destroy various registers, just not the cache and index registers.
  2390 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2391   transition(vtos, vtos);
  2393   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2395   if (JvmtiExport::can_post_field_modification()) {
  2396     // Check to see if a field modification watch has been set before
  2397     // we take the time to call into the VM.
  2398     Label L1;
  2399     assert_different_registers(cache, index, rax);
  2400     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2401     __ testl(rax, rax);
  2402     __ jcc(Assembler::zero, L1);
  2404     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2406     if (is_static) {
  2407       // Life is simple.  Null out the object pointer.
  2408       __ xorl(c_rarg1, c_rarg1);
  2409     } else {
  2410       // Life is harder. The stack holds the value on top, followed by
  2411       // the object.  We don't know the size of the value, though; it
  2412       // could be one or two words depending on its type. As a result,
  2413       // we must find the type to determine where the object is.
  2414       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2415                            Address::times_8,
  2416                            in_bytes(cp_base_offset +
  2417                                      ConstantPoolCacheEntry::flags_offset())));
  2418       __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
  2419       // Make sure we don't need to mask rcx for tosBits after the
  2420       // above shift
  2421       ConstantPoolCacheEntry::verify_tosBits();
  2422       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2423       __ cmpl(c_rarg3, ltos);
  2424       __ cmovptr(Assembler::equal,
  2425                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2426       __ cmpl(c_rarg3, dtos);
  2427       __ cmovptr(Assembler::equal,
  2428                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2430     // cache entry pointer
  2431     __ addptr(c_rarg2, in_bytes(cp_base_offset));
  2432     __ shll(rscratch1, LogBytesPerWord);
  2433     __ addptr(c_rarg2, rscratch1);
  2434     // object (tos)
  2435     __ mov(c_rarg3, rsp);
  2436     // c_rarg1: object pointer set up above (NULL if static)
  2437     // c_rarg2: cache entry pointer
  2438     // c_rarg3: jvalue object on the stack
  2439     __ call_VM(noreg,
  2440                CAST_FROM_FN_PTR(address,
  2441                                 InterpreterRuntime::post_field_modification),
  2442                c_rarg1, c_rarg2, c_rarg3);
  2443     __ get_cache_and_index_at_bcp(cache, index, 1);
  2444     __ bind(L1);
  2448 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2449   transition(vtos, vtos);
  2451   const Register cache = rcx;
  2452   const Register index = rdx;
  2453   const Register obj   = rcx;
  2454   const Register off   = rbx;
  2455   const Register flags = rax;
  2456   const Register bc    = c_rarg3;
  2458   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2459   jvmti_post_field_mod(cache, index, is_static);
  2460   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2462   // [jk] not needed currently
  2463   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2464   //                                              Assembler::StoreStore));
  2466   Label notVolatile, Done;
  2467   __ movl(rdx, flags);
  2468   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2469   __ andl(rdx, 0x1);
  2471   // field address
  2472   const Address field(obj, off, Address::times_1);
  2474   Label notByte, notInt, notShort, notChar,
  2475         notLong, notFloat, notObj, notDouble;
  2477   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2479   assert(btos == 0, "change code, btos != 0");
  2480   __ andl(flags, 0x0f);
  2481   __ jcc(Assembler::notZero, notByte);
  2482   // btos
  2483   __ pop(btos);
  2484   if (!is_static) pop_and_check_object(obj);
  2485   __ movb(field, rax);
  2486   if (!is_static) {
  2487     patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx);
  2489   __ jmp(Done);
  2491   __ bind(notByte);
  2492   __ cmpl(flags, atos);
  2493   __ jcc(Assembler::notEqual, notObj);
  2494   // atos
  2495   __ pop(atos);
  2496   if (!is_static) pop_and_check_object(obj);
  2498   // Store into the field
  2499   do_oop_store(_masm, field, rax, _bs->kind(), false);
  2501   if (!is_static) {
  2502     patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx);
  2504   __ jmp(Done);
  2506   __ bind(notObj);
  2507   __ cmpl(flags, itos);
  2508   __ jcc(Assembler::notEqual, notInt);
  2509   // itos
  2510   __ pop(itos);
  2511   if (!is_static) pop_and_check_object(obj);
  2512   __ movl(field, rax);
  2513   if (!is_static) {
  2514     patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx);
  2516   __ jmp(Done);
  2518   __ bind(notInt);
  2519   __ cmpl(flags, ctos);
  2520   __ jcc(Assembler::notEqual, notChar);
  2521   // ctos
  2522   __ pop(ctos);
  2523   if (!is_static) pop_and_check_object(obj);
  2524   __ movw(field, rax);
  2525   if (!is_static) {
  2526     patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx);
  2528   __ jmp(Done);
  2530   __ bind(notChar);
  2531   __ cmpl(flags, stos);
  2532   __ jcc(Assembler::notEqual, notShort);
  2533   // stos
  2534   __ pop(stos);
  2535   if (!is_static) pop_and_check_object(obj);
  2536   __ movw(field, rax);
  2537   if (!is_static) {
  2538     patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx);
  2540   __ jmp(Done);
  2542   __ bind(notShort);
  2543   __ cmpl(flags, ltos);
  2544   __ jcc(Assembler::notEqual, notLong);
  2545   // ltos
  2546   __ pop(ltos);
  2547   if (!is_static) pop_and_check_object(obj);
  2548   __ movq(field, rax);
  2549   if (!is_static) {
  2550     patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx);
  2552   __ jmp(Done);
  2554   __ bind(notLong);
  2555   __ cmpl(flags, ftos);
  2556   __ jcc(Assembler::notEqual, notFloat);
  2557   // ftos
  2558   __ pop(ftos);
  2559   if (!is_static) pop_and_check_object(obj);
  2560   __ movflt(field, xmm0);
  2561   if (!is_static) {
  2562     patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx);
  2564   __ jmp(Done);
  2566   __ bind(notFloat);
  2567 #ifdef ASSERT
  2568   __ cmpl(flags, dtos);
  2569   __ jcc(Assembler::notEqual, notDouble);
  2570 #endif
  2571   // dtos
  2572   __ pop(dtos);
  2573   if (!is_static) pop_and_check_object(obj);
  2574   __ movdbl(field, xmm0);
  2575   if (!is_static) {
  2576     patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx);
  2579 #ifdef ASSERT
  2580   __ jmp(Done);
  2582   __ bind(notDouble);
  2583   __ stop("Bad state");
  2584 #endif
  2586   __ bind(Done);
  2587   // Check for volatile store
  2588   __ testl(rdx, rdx);
  2589   __ jcc(Assembler::zero, notVolatile);
  2590   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2591                                                Assembler::StoreStore));
  2593   __ bind(notVolatile);
  2596 void TemplateTable::putfield(int byte_no) {
  2597   putfield_or_static(byte_no, false);
  2600 void TemplateTable::putstatic(int byte_no) {
  2601   putfield_or_static(byte_no, true);
  2604 void TemplateTable::jvmti_post_fast_field_mod() {
  2605   if (JvmtiExport::can_post_field_modification()) {
  2606     // Check to see if a field modification watch has been set before
  2607     // we take the time to call into the VM.
  2608     Label L2;
  2609     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2610     __ testl(c_rarg3, c_rarg3);
  2611     __ jcc(Assembler::zero, L2);
  2612     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2613     __ verify_oop(rbx);
  2614     __ push_ptr(rbx);                 // put the object pointer back on tos
  2615     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
  2616     __ mov(c_rarg3, rsp);
  2617     const Address field(c_rarg3, 0);
  2619     switch (bytecode()) {          // load values into the jvalue object
  2620     case Bytecodes::_fast_aputfield: __ movq(field, rax); break;
  2621     case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
  2622     case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
  2623     case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
  2624     case Bytecodes::_fast_sputfield: // fall through
  2625     case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
  2626     case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
  2627     case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
  2628     default:
  2629       ShouldNotReachHere();
  2632     // Save rax because call_VM() will clobber it, then use it for
  2633     // JVMTI purposes
  2634     __ push(rax);
  2635     // access constant pool cache entry
  2636     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2637     __ verify_oop(rbx);
  2638     // rbx: object pointer copied above
  2639     // c_rarg2: cache entry pointer
  2640     // c_rarg3: jvalue object on the stack
  2641     __ call_VM(noreg,
  2642                CAST_FROM_FN_PTR(address,
  2643                                 InterpreterRuntime::post_field_modification),
  2644                rbx, c_rarg2, c_rarg3);
  2645     __ pop(rax);     // restore lower value
  2646     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
  2647     __ bind(L2);
  2651 void TemplateTable::fast_storefield(TosState state) {
  2652   transition(state, vtos);
  2654   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2656   jvmti_post_fast_field_mod();
  2658   // access constant pool cache
  2659   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2661   // test for volatile with rdx
  2662   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2663                        in_bytes(base +
  2664                                 ConstantPoolCacheEntry::flags_offset())));
  2666   // replace index with field offset from cache entry
  2667   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2668                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2670   // [jk] not needed currently
  2671   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2672   //                                              Assembler::StoreStore));
  2674   Label notVolatile;
  2675   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2676   __ andl(rdx, 0x1);
  2678   // Get object from stack
  2679   pop_and_check_object(rcx);
  2681   // field address
  2682   const Address field(rcx, rbx, Address::times_1);
  2684   // access field
  2685   switch (bytecode()) {
  2686   case Bytecodes::_fast_aputfield:
  2687     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2688     break;
  2689   case Bytecodes::_fast_lputfield:
  2690     __ movq(field, rax);
  2691     break;
  2692   case Bytecodes::_fast_iputfield:
  2693     __ movl(field, rax);
  2694     break;
  2695   case Bytecodes::_fast_bputfield:
  2696     __ movb(field, rax);
  2697     break;
  2698   case Bytecodes::_fast_sputfield:
  2699     // fall through
  2700   case Bytecodes::_fast_cputfield:
  2701     __ movw(field, rax);
  2702     break;
  2703   case Bytecodes::_fast_fputfield:
  2704     __ movflt(field, xmm0);
  2705     break;
  2706   case Bytecodes::_fast_dputfield:
  2707     __ movdbl(field, xmm0);
  2708     break;
  2709   default:
  2710     ShouldNotReachHere();
  2713   // Check for volatile store
  2714   __ testl(rdx, rdx);
  2715   __ jcc(Assembler::zero, notVolatile);
  2716   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2717                                                Assembler::StoreStore));
  2718   __ bind(notVolatile);
  2722 void TemplateTable::fast_accessfield(TosState state) {
  2723   transition(atos, state);
  2725   // Do the JVMTI work here to avoid disturbing the register state below
  2726   if (JvmtiExport::can_post_field_access()) {
  2727     // Check to see if a field access watch has been set before we
  2728     // take the time to call into the VM.
  2729     Label L1;
  2730     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2731     __ testl(rcx, rcx);
  2732     __ jcc(Assembler::zero, L1);
  2733     // access constant pool cache entry
  2734     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2735     __ verify_oop(rax);
  2736     __ mov(r12, rax);  // save object pointer before call_VM() clobbers it
  2737     __ mov(c_rarg1, rax);
  2738     // c_rarg1: object pointer copied above
  2739     // c_rarg2: cache entry pointer
  2740     __ call_VM(noreg,
  2741                CAST_FROM_FN_PTR(address,
  2742                                 InterpreterRuntime::post_field_access),
  2743                c_rarg1, c_rarg2);
  2744     __ mov(rax, r12); // restore object pointer
  2745     __ reinit_heapbase();
  2746     __ bind(L1);
  2749   // access constant pool cache
  2750   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2751   // replace index with field offset from cache entry
  2752   // [jk] not needed currently
  2753   // if (os::is_MP()) {
  2754   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2755   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2756   //                                 ConstantPoolCacheEntry::flags_offset())));
  2757   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2758   //   __ andl(rdx, 0x1);
  2759   // }
  2760   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2761                          in_bytes(constantPoolCacheOopDesc::base_offset() +
  2762                                   ConstantPoolCacheEntry::f2_offset())));
  2764   // rax: object
  2765   __ verify_oop(rax);
  2766   __ null_check(rax);
  2767   Address field(rax, rbx, Address::times_1);
  2769   // access field
  2770   switch (bytecode()) {
  2771   case Bytecodes::_fast_agetfield:
  2772     __ load_heap_oop(rax, field);
  2773     __ verify_oop(rax);
  2774     break;
  2775   case Bytecodes::_fast_lgetfield:
  2776     __ movq(rax, field);
  2777     break;
  2778   case Bytecodes::_fast_igetfield:
  2779     __ movl(rax, field);
  2780     break;
  2781   case Bytecodes::_fast_bgetfield:
  2782     __ movsbl(rax, field);
  2783     break;
  2784   case Bytecodes::_fast_sgetfield:
  2785     __ load_signed_short(rax, field);
  2786     break;
  2787   case Bytecodes::_fast_cgetfield:
  2788     __ load_unsigned_short(rax, field);
  2789     break;
  2790   case Bytecodes::_fast_fgetfield:
  2791     __ movflt(xmm0, field);
  2792     break;
  2793   case Bytecodes::_fast_dgetfield:
  2794     __ movdbl(xmm0, field);
  2795     break;
  2796   default:
  2797     ShouldNotReachHere();
  2799   // [jk] not needed currently
  2800   // if (os::is_MP()) {
  2801   //   Label notVolatile;
  2802   //   __ testl(rdx, rdx);
  2803   //   __ jcc(Assembler::zero, notVolatile);
  2804   //   __ membar(Assembler::LoadLoad);
  2805   //   __ bind(notVolatile);
  2806   //};
  2809 void TemplateTable::fast_xaccess(TosState state) {
  2810   transition(vtos, state);
  2812   // get receiver
  2813   __ movptr(rax, aaddress(0));
  2814   // access constant pool cache
  2815   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2816   __ movptr(rbx,
  2817             Address(rcx, rdx, Address::times_8,
  2818                     in_bytes(constantPoolCacheOopDesc::base_offset() +
  2819                              ConstantPoolCacheEntry::f2_offset())));
  2820   // make sure exception is reported in correct bcp range (getfield is
  2821   // next instruction)
  2822   __ increment(r13);
  2823   __ null_check(rax);
  2824   switch (state) {
  2825   case itos:
  2826     __ movl(rax, Address(rax, rbx, Address::times_1));
  2827     break;
  2828   case atos:
  2829     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
  2830     __ verify_oop(rax);
  2831     break;
  2832   case ftos:
  2833     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2834     break;
  2835   default:
  2836     ShouldNotReachHere();
  2839   // [jk] not needed currently
  2840   // if (os::is_MP()) {
  2841   //   Label notVolatile;
  2842   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2843   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2844   //                                 ConstantPoolCacheEntry::flags_offset())));
  2845   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2846   //   __ testl(rdx, 0x1);
  2847   //   __ jcc(Assembler::zero, notVolatile);
  2848   //   __ membar(Assembler::LoadLoad);
  2849   //   __ bind(notVolatile);
  2850   // }
  2852   __ decrement(r13);
  2857 //-----------------------------------------------------------------------------
  2858 // Calls
  2860 void TemplateTable::count_calls(Register method, Register temp) {
  2861   // implemented elsewhere
  2862   ShouldNotReachHere();
  2865 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
  2866   // determine flags
  2867   Bytecodes::Code code = bytecode();
  2868   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2869   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2870   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2871   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2872   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
  2873   const bool receiver_null_check = is_invokespecial;
  2874   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2875   // setup registers & access constant pool cache
  2876   const Register recv   = rcx;
  2877   const Register flags  = rdx;
  2878   assert_different_registers(method, index, recv, flags);
  2880   // save 'interpreter return address'
  2881   __ save_bcp();
  2883   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2885   // load receiver if needed (note: no return address pushed yet)
  2886   if (load_receiver) {
  2887     assert(!is_invokedynamic, "");
  2888     __ movl(recv, flags);
  2889     __ andl(recv, 0xFF);
  2890     Address recv_addr(rsp, recv, Address::times_8, -Interpreter::expr_offset_in_bytes(1));
  2891     __ movptr(recv, recv_addr);
  2892     __ verify_oop(recv);
  2895   // do null check if needed
  2896   if (receiver_null_check) {
  2897     __ null_check(recv);
  2900   if (save_flags) {
  2901     __ movl(r13, flags);
  2904   // compute return type
  2905   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2906   // Make sure we don't need to mask flags for tosBits after the above shift
  2907   ConstantPoolCacheEntry::verify_tosBits();
  2908   // load return address
  2910     address table_addr;
  2911     if (is_invokeinterface || is_invokedynamic)
  2912       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
  2913     else
  2914       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
  2915     ExternalAddress table(table_addr);
  2916     __ lea(rscratch1, table);
  2917     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
  2920   // push return address
  2921   __ push(flags);
  2923   // Restore flag field from the constant pool cache, and restore esi
  2924   // for later null checks.  r13 is the bytecode pointer
  2925   if (save_flags) {
  2926     __ movl(flags, r13);
  2927     __ restore_bcp();
  2932 void TemplateTable::invokevirtual_helper(Register index,
  2933                                          Register recv,
  2934                                          Register flags) {
  2935   // Uses temporary registers rax, rdx
  2936   assert_different_registers(index, recv, rax, rdx);
  2938   // Test for an invoke of a final method
  2939   Label notFinal;
  2940   __ movl(rax, flags);
  2941   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2942   __ jcc(Assembler::zero, notFinal);
  2944   const Register method = index;  // method must be rbx
  2945   assert(method == rbx,
  2946          "methodOop must be rbx for interpreter calling convention");
  2948   // do the call - the index is actually the method to call
  2949   __ verify_oop(method);
  2951   // It's final, need a null check here!
  2952   __ null_check(recv);
  2954   // profile this call
  2955   __ profile_final_call(rax);
  2957   __ jump_from_interpreted(method, rax);
  2959   __ bind(notFinal);
  2961   // get receiver klass
  2962   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2963   __ load_klass(rax, recv);
  2965   __ verify_oop(rax);
  2967   // profile this call
  2968   __ profile_virtual_call(rax, r14, rdx);
  2970   // get target methodOop & entry point
  2971   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2972   assert(vtableEntry::size() * wordSize == 8,
  2973          "adjust the scaling in the code below");
  2974   __ movptr(method, Address(rax, index,
  2975                                  Address::times_8,
  2976                                  base + vtableEntry::method_offset_in_bytes()));
  2977   __ movptr(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
  2978   __ jump_from_interpreted(method, rdx);
  2982 void TemplateTable::invokevirtual(int byte_no) {
  2983   transition(vtos, vtos);
  2984   assert(byte_no == f2_byte, "use this argument");
  2985   prepare_invoke(rbx, noreg, byte_no);
  2987   // rbx: index
  2988   // rcx: receiver
  2989   // rdx: flags
  2991   invokevirtual_helper(rbx, rcx, rdx);
  2995 void TemplateTable::invokespecial(int byte_no) {
  2996   transition(vtos, vtos);
  2997   assert(byte_no == f1_byte, "use this argument");
  2998   prepare_invoke(rbx, noreg, byte_no);
  2999   // do the call
  3000   __ verify_oop(rbx);
  3001   __ profile_call(rax);
  3002   __ jump_from_interpreted(rbx, rax);
  3006 void TemplateTable::invokestatic(int byte_no) {
  3007   transition(vtos, vtos);
  3008   assert(byte_no == f1_byte, "use this argument");
  3009   prepare_invoke(rbx, noreg, byte_no);
  3010   // do the call
  3011   __ verify_oop(rbx);
  3012   __ profile_call(rax);
  3013   __ jump_from_interpreted(rbx, rax);
  3016 void TemplateTable::fast_invokevfinal(int byte_no) {
  3017   transition(vtos, vtos);
  3018   assert(byte_no == f2_byte, "use this argument");
  3019   __ stop("fast_invokevfinal not used on amd64");
  3022 void TemplateTable::invokeinterface(int byte_no) {
  3023   transition(vtos, vtos);
  3024   assert(byte_no == f1_byte, "use this argument");
  3025   prepare_invoke(rax, rbx, byte_no);
  3027   // rax: Interface
  3028   // rbx: index
  3029   // rcx: receiver
  3030   // rdx: flags
  3032   // Special case of invokeinterface called for virtual method of
  3033   // java.lang.Object.  See cpCacheOop.cpp for details.
  3034   // This code isn't produced by javac, but could be produced by
  3035   // another compliant java compiler.
  3036   Label notMethod;
  3037   __ movl(r14, rdx);
  3038   __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
  3039   __ jcc(Assembler::zero, notMethod);
  3041   invokevirtual_helper(rbx, rcx, rdx);
  3042   __ bind(notMethod);
  3044   // Get receiver klass into rdx - also a null check
  3045   __ restore_locals(); // restore r14
  3046   __ load_klass(rdx, rcx);
  3047   __ verify_oop(rdx);
  3049   // profile this call
  3050   __ profile_virtual_call(rdx, r13, r14);
  3052   Label no_such_interface, no_such_method;
  3054   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3055                              rdx, rax, rbx,
  3056                              // outputs: method, scan temp. reg
  3057                              rbx, r13,
  3058                              no_such_interface);
  3060   // rbx,: methodOop to call
  3061   // rcx: receiver
  3062   // Check for abstract method error
  3063   // Note: This should be done more efficiently via a throw_abstract_method_error
  3064   //       interpreter entry point and a conditional jump to it in case of a null
  3065   //       method.
  3066   __ testptr(rbx, rbx);
  3067   __ jcc(Assembler::zero, no_such_method);
  3069   // do the call
  3070   // rcx: receiver
  3071   // rbx,: methodOop
  3072   __ jump_from_interpreted(rbx, rdx);
  3073   __ should_not_reach_here();
  3075   // exception handling code follows...
  3076   // note: must restore interpreter registers to canonical
  3077   //       state for exception handling to work correctly!
  3079   __ bind(no_such_method);
  3080   // throw exception
  3081   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3082   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3083   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3084   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3085   // the call_VM checks for exception, so we should never return here.
  3086   __ should_not_reach_here();
  3088   __ bind(no_such_interface);
  3089   // throw exception
  3090   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3091   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3092   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3093   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3094                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3095   // the call_VM checks for exception, so we should never return here.
  3096   __ should_not_reach_here();
  3097   return;
  3100 void TemplateTable::invokedynamic(int byte_no) {
  3101   transition(vtos, vtos);
  3102   assert(byte_no == f1_oop, "use this argument");
  3104   if (!EnableInvokeDynamic) {
  3105     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3106     // The verifier will stop it.  However, if we get past the verifier,
  3107     // this will stop the thread in a reasonable way, without crashing the JVM.
  3108     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3109                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3110     // the call_VM checks for exception, so we should never return here.
  3111     __ should_not_reach_here();
  3112     return;
  3115   assert(byte_no == f1_oop, "use this argument");
  3116   prepare_invoke(rax, rbx, byte_no);
  3118   // rax: CallSite object (f1)
  3119   // rbx: unused (f2)
  3120   // rcx: receiver address
  3121   // rdx: flags (unused)
  3123   if (ProfileInterpreter) {
  3124     Label L;
  3125     // %%% should make a type profile for any invokedynamic that takes a ref argument
  3126     // profile this call
  3127     __ profile_call(r13);
  3130   __ movptr(rcx, Address(rax, __ delayed_value(java_dyn_CallSite::target_offset_in_bytes, rcx)));
  3131   __ null_check(rcx);
  3132   __ prepare_to_jump_from_interpreted();
  3133   __ jump_to_method_handle_entry(rcx, rdx);
  3137 //-----------------------------------------------------------------------------
  3138 // Allocation
  3140 void TemplateTable::_new() {
  3141   transition(vtos, atos);
  3142   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3143   Label slow_case;
  3144   Label done;
  3145   Label initialize_header;
  3146   Label initialize_object; // including clearing the fields
  3147   Label allocate_shared;
  3149   __ get_cpool_and_tags(rsi, rax);
  3150   // Make sure the class we're about to instantiate has been resolved.
  3151   // This is done before loading instanceKlass to be consistent with the order
  3152   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
  3153   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3154   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3155           JVM_CONSTANT_Class);
  3156   __ jcc(Assembler::notEqual, slow_case);
  3158   // get instanceKlass
  3159   __ movptr(rsi, Address(rsi, rdx,
  3160             Address::times_8, sizeof(constantPoolOopDesc)));
  3162   // make sure klass is initialized & doesn't have finalizer
  3163   // make sure klass is fully initialized
  3164   __ cmpl(Address(rsi,
  3165                   instanceKlass::init_state_offset_in_bytes() +
  3166                   sizeof(oopDesc)),
  3167           instanceKlass::fully_initialized);
  3168   __ jcc(Assembler::notEqual, slow_case);
  3170   // get instance_size in instanceKlass (scaled to a count of bytes)
  3171   __ movl(rdx,
  3172           Address(rsi,
  3173                   Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3174   // test to see if it has a finalizer or is malformed in some way
  3175   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3176   __ jcc(Assembler::notZero, slow_case);
  3178   // Allocate the instance
  3179   // 1) Try to allocate in the TLAB
  3180   // 2) if fail and the object is large allocate in the shared Eden
  3181   // 3) if the above fails (or is not applicable), go to a slow case
  3182   // (creates a new TLAB, etc.)
  3184   const bool allow_shared_alloc =
  3185     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3187   if (UseTLAB) {
  3188     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3189     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3190     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3191     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3192     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3193     if (ZeroTLAB) {
  3194       // the fields have been already cleared
  3195       __ jmp(initialize_header);
  3196     } else {
  3197       // initialize both the header and fields
  3198       __ jmp(initialize_object);
  3202   // Allocation in the shared Eden, if allowed.
  3203   //
  3204   // rdx: instance size in bytes
  3205   if (allow_shared_alloc) {
  3206     __ bind(allocate_shared);
  3208     ExternalAddress top((address)Universe::heap()->top_addr());
  3209     ExternalAddress end((address)Universe::heap()->end_addr());
  3211     const Register RtopAddr = rscratch1;
  3212     const Register RendAddr = rscratch2;
  3214     __ lea(RtopAddr, top);
  3215     __ lea(RendAddr, end);
  3216     __ movptr(rax, Address(RtopAddr, 0));
  3218     // For retries rax gets set by cmpxchgq
  3219     Label retry;
  3220     __ bind(retry);
  3221     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3222     __ cmpptr(rbx, Address(RendAddr, 0));
  3223     __ jcc(Assembler::above, slow_case);
  3225     // Compare rax with the top addr, and if still equal, store the new
  3226     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3227     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3228     //
  3229     // rax: object begin
  3230     // rbx: object end
  3231     // rdx: instance size in bytes
  3232     if (os::is_MP()) {
  3233       __ lock();
  3235     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
  3237     // if someone beat us on the allocation, try again, otherwise continue
  3238     __ jcc(Assembler::notEqual, retry);
  3241   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3242     // The object is initialized before the header.  If the object size is
  3243     // zero, go directly to the header initialization.
  3244     __ bind(initialize_object);
  3245     __ decrementl(rdx, sizeof(oopDesc));
  3246     __ jcc(Assembler::zero, initialize_header);
  3248     // Initialize object fields
  3249     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3250     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3252       Label loop;
  3253       __ bind(loop);
  3254       __ movq(Address(rax, rdx, Address::times_8,
  3255                       sizeof(oopDesc) - oopSize),
  3256               rcx);
  3257       __ decrementl(rdx);
  3258       __ jcc(Assembler::notZero, loop);
  3261     // initialize object header only.
  3262     __ bind(initialize_header);
  3263     if (UseBiasedLocking) {
  3264       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3265       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3266     } else {
  3267       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3268                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3270     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3271     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
  3272     __ store_klass(rax, rsi);      // store klass last
  3275       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3276       // Trigger dtrace event for fastpath
  3277       __ push(atos); // save the return value
  3278       __ call_VM_leaf(
  3279            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3280       __ pop(atos); // restore the return value
  3283     __ jmp(done);
  3287   // slow case
  3288   __ bind(slow_case);
  3289   __ get_constant_pool(c_rarg1);
  3290   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3291   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3292   __ verify_oop(rax);
  3294   // continue
  3295   __ bind(done);
  3298 void TemplateTable::newarray() {
  3299   transition(itos, atos);
  3300   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3301   __ movl(c_rarg2, rax);
  3302   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3303           c_rarg1, c_rarg2);
  3306 void TemplateTable::anewarray() {
  3307   transition(itos, atos);
  3308   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3309   __ get_constant_pool(c_rarg1);
  3310   __ movl(c_rarg3, rax);
  3311   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3312           c_rarg1, c_rarg2, c_rarg3);
  3315 void TemplateTable::arraylength() {
  3316   transition(atos, itos);
  3317   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3318   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3321 void TemplateTable::checkcast() {
  3322   transition(atos, atos);
  3323   Label done, is_null, ok_is_subtype, quicked, resolved;
  3324   __ testptr(rax, rax); // object is in rax
  3325   __ jcc(Assembler::zero, is_null);
  3327   // Get cpool & tags index
  3328   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3329   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3330   // See if bytecode has already been quicked
  3331   __ cmpb(Address(rdx, rbx,
  3332                   Address::times_1,
  3333                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3334           JVM_CONSTANT_Class);
  3335   __ jcc(Assembler::equal, quicked);
  3336   __ push(atos); // save receiver for result, and for GC
  3337   __ mov(r12, rcx); // save rcx XXX
  3338   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3339   __ movq(rcx, r12); // restore rcx XXX
  3340   __ reinit_heapbase();
  3341   __ pop_ptr(rdx); // restore receiver
  3342   __ jmpb(resolved);
  3344   // Get superklass in rax and subklass in rbx
  3345   __ bind(quicked);
  3346   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
  3347   __ movptr(rax, Address(rcx, rbx,
  3348                        Address::times_8, sizeof(constantPoolOopDesc)));
  3350   __ bind(resolved);
  3351   __ load_klass(rbx, rdx);
  3353   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3354   // Superklass in rax.  Subklass in rbx.
  3355   __ gen_subtype_check(rbx, ok_is_subtype);
  3357   // Come here on failure
  3358   __ push_ptr(rdx);
  3359   // object is at TOS
  3360   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3362   // Come here on success
  3363   __ bind(ok_is_subtype);
  3364   __ mov(rax, rdx); // Restore object in rdx
  3366   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3367   if (ProfileInterpreter) {
  3368     __ jmp(done);
  3369     __ bind(is_null);
  3370     __ profile_null_seen(rcx);
  3371   } else {
  3372     __ bind(is_null);   // same as 'done'
  3374   __ bind(done);
  3377 void TemplateTable::instanceof() {
  3378   transition(atos, itos);
  3379   Label done, is_null, ok_is_subtype, quicked, resolved;
  3380   __ testptr(rax, rax);
  3381   __ jcc(Assembler::zero, is_null);
  3383   // Get cpool & tags index
  3384   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3385   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3386   // See if bytecode has already been quicked
  3387   __ cmpb(Address(rdx, rbx,
  3388                   Address::times_1,
  3389                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3390           JVM_CONSTANT_Class);
  3391   __ jcc(Assembler::equal, quicked);
  3393   __ push(atos); // save receiver for result, and for GC
  3394   __ mov(r12, rcx); // save rcx
  3395   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3396   __ movq(rcx, r12); // restore rcx
  3397   __ reinit_heapbase();
  3398   __ pop_ptr(rdx); // restore receiver
  3399   __ load_klass(rdx, rdx);
  3400   __ jmpb(resolved);
  3402   // Get superklass in rax and subklass in rdx
  3403   __ bind(quicked);
  3404   __ load_klass(rdx, rax);
  3405   __ movptr(rax, Address(rcx, rbx,
  3406                          Address::times_8, sizeof(constantPoolOopDesc)));
  3408   __ bind(resolved);
  3410   // Generate subtype check.  Blows rcx, rdi
  3411   // Superklass in rax.  Subklass in rdx.
  3412   __ gen_subtype_check(rdx, ok_is_subtype);
  3414   // Come here on failure
  3415   __ xorl(rax, rax);
  3416   __ jmpb(done);
  3417   // Come here on success
  3418   __ bind(ok_is_subtype);
  3419   __ movl(rax, 1);
  3421   // Collect counts on whether this test sees NULLs a lot or not.
  3422   if (ProfileInterpreter) {
  3423     __ jmp(done);
  3424     __ bind(is_null);
  3425     __ profile_null_seen(rcx);
  3426   } else {
  3427     __ bind(is_null);   // same as 'done'
  3429   __ bind(done);
  3430   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3431   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3434 //-----------------------------------------------------------------------------
  3435 // Breakpoints
  3436 void TemplateTable::_breakpoint() {
  3437   // Note: We get here even if we are single stepping..
  3438   // jbug inists on setting breakpoints at every bytecode
  3439   // even if we are in single step mode.
  3441   transition(vtos, vtos);
  3443   // get the unpatched byte code
  3444   __ get_method(c_rarg1);
  3445   __ call_VM(noreg,
  3446              CAST_FROM_FN_PTR(address,
  3447                               InterpreterRuntime::get_original_bytecode_at),
  3448              c_rarg1, r13);
  3449   __ mov(rbx, rax);
  3451   // post the breakpoint event
  3452   __ get_method(c_rarg1);
  3453   __ call_VM(noreg,
  3454              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3455              c_rarg1, r13);
  3457   // complete the execution of original bytecode
  3458   __ dispatch_only_normal(vtos);
  3461 //-----------------------------------------------------------------------------
  3462 // Exceptions
  3464 void TemplateTable::athrow() {
  3465   transition(atos, vtos);
  3466   __ null_check(rax);
  3467   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3470 //-----------------------------------------------------------------------------
  3471 // Synchronization
  3472 //
  3473 // Note: monitorenter & exit are symmetric routines; which is reflected
  3474 //       in the assembly code structure as well
  3475 //
  3476 // Stack layout:
  3477 //
  3478 // [expressions  ] <--- rsp               = expression stack top
  3479 // ..
  3480 // [expressions  ]
  3481 // [monitor entry] <--- monitor block top = expression stack bot
  3482 // ..
  3483 // [monitor entry]
  3484 // [frame data   ] <--- monitor block bot
  3485 // ...
  3486 // [saved rbp    ] <--- rbp
  3487 void TemplateTable::monitorenter() {
  3488   transition(atos, vtos);
  3490   // check for NULL object
  3491   __ null_check(rax);
  3493   const Address monitor_block_top(
  3494         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3495   const Address monitor_block_bot(
  3496         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3497   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3499   Label allocated;
  3501   // initialize entry pointer
  3502   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3504   // find a free slot in the monitor block (result in c_rarg1)
  3506     Label entry, loop, exit;
  3507     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
  3508                                      // starting with top-most entry
  3509     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3510                                      // of monitor block
  3511     __ jmpb(entry);
  3513     __ bind(loop);
  3514     // check if current entry is used
  3515     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  3516     // if not used then remember entry in c_rarg1
  3517     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
  3518     // check if current entry is for same object
  3519     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3520     // if same object then stop searching
  3521     __ jccb(Assembler::equal, exit);
  3522     // otherwise advance to next entry
  3523     __ addptr(c_rarg3, entry_size);
  3524     __ bind(entry);
  3525     // check if bottom reached
  3526     __ cmpptr(c_rarg3, c_rarg2);
  3527     // if not at bottom then check this entry
  3528     __ jcc(Assembler::notEqual, loop);
  3529     __ bind(exit);
  3532   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
  3533   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3535   // allocate one if there's no free slot
  3537     Label entry, loop;
  3538     // 1. compute new pointers             // rsp: old expression stack top
  3539     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3540     __ subptr(rsp, entry_size);            // move expression stack top
  3541     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
  3542     __ mov(c_rarg3, rsp);                  // set start value for copy loop
  3543     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3544     __ jmp(entry);
  3545     // 2. move expression stack contents
  3546     __ bind(loop);
  3547     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3548                                                       // word from old location
  3549     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
  3550     __ addptr(c_rarg3, wordSize);                     // advance to next word
  3551     __ bind(entry);
  3552     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
  3553     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3554                                             // copy next word
  3557   // call run-time routine
  3558   // c_rarg1: points to monitor entry
  3559   __ bind(allocated);
  3561   // Increment bcp to point to the next bytecode, so exception
  3562   // handling for async. exceptions work correctly.
  3563   // The object has already been poped from the stack, so the
  3564   // expression stack looks correct.
  3565   __ increment(r13);
  3567   // store object
  3568   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3569   __ lock_object(c_rarg1);
  3571   // check to make sure this monitor doesn't cause stack overflow after locking
  3572   __ save_bcp();  // in case of exception
  3573   __ generate_stack_overflow_check(0);
  3575   // The bcp has already been incremented. Just need to dispatch to
  3576   // next instruction.
  3577   __ dispatch_next(vtos);
  3581 void TemplateTable::monitorexit() {
  3582   transition(atos, vtos);
  3584   // check for NULL object
  3585   __ null_check(rax);
  3587   const Address monitor_block_top(
  3588         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3589   const Address monitor_block_bot(
  3590         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3591   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3593   Label found;
  3595   // find matching slot
  3597     Label entry, loop;
  3598     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
  3599                                      // starting with top-most entry
  3600     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3601                                      // of monitor block
  3602     __ jmpb(entry);
  3604     __ bind(loop);
  3605     // check if current entry is for same object
  3606     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3607     // if same object then stop searching
  3608     __ jcc(Assembler::equal, found);
  3609     // otherwise advance to next entry
  3610     __ addptr(c_rarg1, entry_size);
  3611     __ bind(entry);
  3612     // check if bottom reached
  3613     __ cmpptr(c_rarg1, c_rarg2);
  3614     // if not at bottom then check this entry
  3615     __ jcc(Assembler::notEqual, loop);
  3618   // error handling. Unlocking was not block-structured
  3619   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3620                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3621   __ should_not_reach_here();
  3623   // call run-time routine
  3624   // rsi: points to monitor entry
  3625   __ bind(found);
  3626   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3627   __ unlock_object(c_rarg1);
  3628   __ pop_ptr(rax); // discard object
  3632 // Wide instructions
  3633 void TemplateTable::wide() {
  3634   transition(vtos, vtos);
  3635   __ load_unsigned_byte(rbx, at_bcp(1));
  3636   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3637   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3638   // Note: the r13 increment step is part of the individual wide
  3639   // bytecode implementations
  3643 // Multi arrays
  3644 void TemplateTable::multianewarray() {
  3645   transition(vtos, atos);
  3646   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3647   // last dim is on top of stack; we want address of first one:
  3648   // first_addr = last_addr + (ndims - 1) * wordSize
  3649   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3650   call_VM(rax,
  3651           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3652           c_rarg1);
  3653   __ load_unsigned_byte(rbx, at_bcp(3));
  3654   __ lea(rsp, Address(rsp, rbx, Address::times_8));
  3656 #endif // !CC_INTERP

mercurial