src/cpu/x86/vm/methodHandles_x86.cpp

Wed, 13 Oct 2010 11:46:46 -0400

author
acorn
date
Wed, 13 Oct 2010 11:46:46 -0400
changeset 2226
75b0735b4d04
parent 2222
b6aedd1acdc0
parent 2173
c93c652551b5
child 2227
beba40b26a79
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_methodHandles_x86.cpp.incl"
    28 #define __ _masm->
    30 #ifdef PRODUCT
    31 #define BLOCK_COMMENT(str) /* nothing */
    32 #else
    33 #define BLOCK_COMMENT(str) __ block_comment(str)
    34 #endif
    36 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    38 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
    39                                                 address interpreted_entry) {
    40   // Just before the actual machine code entry point, allocate space
    41   // for a MethodHandleEntry::Data record, so that we can manage everything
    42   // from one base pointer.
    43   __ align(wordSize);
    44   address target = __ pc() + sizeof(Data);
    45   while (__ pc() < target) {
    46     __ nop();
    47     __ align(wordSize);
    48   }
    50   MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
    51   me->set_end_address(__ pc());         // set a temporary end_address
    52   me->set_from_interpreted_entry(interpreted_entry);
    53   me->set_type_checking_entry(NULL);
    55   return (address) me;
    56 }
    58 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
    59                                                 address start_addr) {
    60   MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
    61   assert(me->end_address() == start_addr, "valid ME");
    63   // Fill in the real end_address:
    64   __ align(wordSize);
    65   me->set_end_address(__ pc());
    67   return me;
    68 }
    70 #ifdef ASSERT
    71 static void verify_argslot(MacroAssembler* _masm, Register argslot_reg,
    72                            const char* error_message) {
    73   // Verify that argslot lies within (rsp, rbp].
    74   Label L_ok, L_bad;
    75   BLOCK_COMMENT("{ verify_argslot");
    76   __ cmpptr(argslot_reg, rbp);
    77   __ jccb(Assembler::above, L_bad);
    78   __ cmpptr(rsp, argslot_reg);
    79   __ jccb(Assembler::below, L_ok);
    80   __ bind(L_bad);
    81   __ stop(error_message);
    82   __ bind(L_ok);
    83   BLOCK_COMMENT("} verify_argslot");
    84 }
    85 #endif
    88 // Code generation
    89 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
    90   // rbx: methodOop
    91   // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
    92   // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
    93   // rdx, rdi: garbage temp, blown away
    95   Register rbx_method = rbx;
    96   Register rcx_recv   = rcx;
    97   Register rax_mtype  = rax;
    98   Register rdx_temp   = rdx;
    99   Register rdi_temp   = rdi;
   101   // emit WrongMethodType path first, to enable jccb back-branch from main path
   102   Label wrong_method_type;
   103   __ bind(wrong_method_type);
   104   Label invoke_generic_slow_path;
   105   assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
   106   __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeExact);
   107   __ jcc(Assembler::notEqual, invoke_generic_slow_path);
   108   __ push(rax_mtype);       // required mtype
   109   __ push(rcx_recv);        // bad mh (1st stacked argument)
   110   __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
   112   // here's where control starts out:
   113   __ align(CodeEntryAlignment);
   114   address entry_point = __ pc();
   116   // fetch the MethodType from the method handle into rax (the 'check' register)
   117   {
   118     Register tem = rbx_method;
   119     for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
   120       __ movptr(rax_mtype, Address(tem, *pchase));
   121       tem = rax_mtype;          // in case there is another indirection
   122     }
   123   }
   125   // given the MethodType, find out where the MH argument is buried
   126   __ movptr(rdx_temp, Address(rax_mtype,
   127                               __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, rdi_temp)));
   128   Register rdx_vmslots = rdx_temp;
   129   __ movl(rdx_vmslots, Address(rdx_temp,
   130                                __ delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, rdi_temp)));
   131   __ movptr(rcx_recv, __ argument_address(rdx_vmslots));
   133   trace_method_handle(_masm, "invokeExact");
   135   __ check_method_handle_type(rax_mtype, rcx_recv, rdi_temp, wrong_method_type);
   136   __ jump_to_method_handle_entry(rcx_recv, rdi_temp);
   138   // for invokeGeneric (only), apply argument and result conversions on the fly
   139   __ bind(invoke_generic_slow_path);
   140 #ifdef ASSERT
   141   { Label L;
   142     __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeGeneric);
   143     __ jcc(Assembler::equal, L);
   144     __ stop("bad methodOop::intrinsic_id");
   145     __ bind(L);
   146   }
   147 #endif //ASSERT
   148   Register rbx_temp = rbx_method;  // don't need it now
   150   // make room on the stack for another pointer:
   151   Register rcx_argslot = rcx_recv;
   152   __ lea(rcx_argslot, __ argument_address(rdx_vmslots, 1));
   153   insert_arg_slots(_masm, 2 * stack_move_unit(), _INSERT_REF_MASK,
   154                    rcx_argslot, rbx_temp, rdx_temp);
   156   // load up an adapter from the calling type (Java weaves this)
   157   __ movptr(rdx_temp, Address(rax_mtype,
   158                               __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, rdi_temp)));
   159   Register rdx_adapter = rdx_temp;
   160   // movptr(rdx_adapter, Address(rdx_temp, java_dyn_MethodTypeForm::genericInvoker_offset_in_bytes()));
   161   // deal with old JDK versions:
   162   __ lea(rdi_temp, Address(rdx_temp,
   163                            __ delayed_value(java_dyn_MethodTypeForm::genericInvoker_offset_in_bytes, rdi_temp)));
   164   __ cmpptr(rdi_temp, rdx_temp);
   165   Label sorry_no_invoke_generic;
   166   __ jccb(Assembler::below, sorry_no_invoke_generic);
   168   __ movptr(rdx_adapter, Address(rdi_temp, 0));
   169   __ testptr(rdx_adapter, rdx_adapter);
   170   __ jccb(Assembler::zero, sorry_no_invoke_generic);
   171   __ movptr(Address(rcx_argslot, 1 * Interpreter::stackElementSize), rdx_adapter);
   172   // As a trusted first argument, pass the type being called, so the adapter knows
   173   // the actual types of the arguments and return values.
   174   // (Generic invokers are shared among form-families of method-type.)
   175   __ movptr(Address(rcx_argslot, 0 * Interpreter::stackElementSize), rax_mtype);
   176   // FIXME: assert that rdx_adapter is of the right method-type.
   177   __ mov(rcx, rdx_adapter);
   178   trace_method_handle(_masm, "invokeGeneric");
   179   __ jump_to_method_handle_entry(rcx, rdi_temp);
   181   __ bind(sorry_no_invoke_generic); // no invokeGeneric implementation available!
   182   __ movptr(rcx_recv, Address(rcx_argslot, -1 * Interpreter::stackElementSize));  // recover original MH
   183   __ push(rax_mtype);       // required mtype
   184   __ push(rcx_recv);        // bad mh (1st stacked argument)
   185   __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
   187   return entry_point;
   188 }
   190 // Helper to insert argument slots into the stack.
   191 // arg_slots must be a multiple of stack_move_unit() and <= 0
   192 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
   193                                      RegisterOrConstant arg_slots,
   194                                      int arg_mask,
   195                                      Register rax_argslot,
   196                                      Register rbx_temp, Register rdx_temp, Register temp3_reg) {
   197   assert(temp3_reg == noreg, "temp3 not required");
   198   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   199                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   201 #ifdef ASSERT
   202   verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
   203   if (arg_slots.is_register()) {
   204     Label L_ok, L_bad;
   205     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
   206     __ jccb(Assembler::greater, L_bad);
   207     __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
   208     __ jccb(Assembler::zero, L_ok);
   209     __ bind(L_bad);
   210     __ stop("assert arg_slots <= 0 and clear low bits");
   211     __ bind(L_ok);
   212   } else {
   213     assert(arg_slots.as_constant() <= 0, "");
   214     assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
   215   }
   216 #endif //ASSERT
   218 #ifdef _LP64
   219   if (arg_slots.is_register()) {
   220     // clean high bits of stack motion register (was loaded as an int)
   221     __ movslq(arg_slots.as_register(), arg_slots.as_register());
   222   }
   223 #endif
   225   // Make space on the stack for the inserted argument(s).
   226   // Then pull down everything shallower than rax_argslot.
   227   // The stacked return address gets pulled down with everything else.
   228   // That is, copy [rsp, argslot) downward by -size words.  In pseudo-code:
   229   //   rsp -= size;
   230   //   for (rdx = rsp + size; rdx < argslot; rdx++)
   231   //     rdx[-size] = rdx[0]
   232   //   argslot -= size;
   233   BLOCK_COMMENT("insert_arg_slots {");
   234   __ mov(rdx_temp, rsp);                        // source pointer for copy
   235   __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
   236   {
   237     Label loop;
   238     __ BIND(loop);
   239     // pull one word down each time through the loop
   240     __ movptr(rbx_temp, Address(rdx_temp, 0));
   241     __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
   242     __ addptr(rdx_temp, wordSize);
   243     __ cmpptr(rdx_temp, rax_argslot);
   244     __ jccb(Assembler::less, loop);
   245   }
   247   // Now move the argslot down, to point to the opened-up space.
   248   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
   249   BLOCK_COMMENT("} insert_arg_slots");
   250 }
   252 // Helper to remove argument slots from the stack.
   253 // arg_slots must be a multiple of stack_move_unit() and >= 0
   254 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
   255                                     RegisterOrConstant arg_slots,
   256                                     Register rax_argslot,
   257                                      Register rbx_temp, Register rdx_temp, Register temp3_reg) {
   258   assert(temp3_reg == noreg, "temp3 not required");
   259   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   260                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   262 #ifdef ASSERT
   263   // Verify that [argslot..argslot+size) lies within (rsp, rbp).
   264   __ lea(rbx_temp, Address(rax_argslot, arg_slots, Address::times_ptr));
   265   verify_argslot(_masm, rbx_temp, "deleted argument(s) must fall within current frame");
   266   if (arg_slots.is_register()) {
   267     Label L_ok, L_bad;
   268     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
   269     __ jccb(Assembler::less, L_bad);
   270     __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
   271     __ jccb(Assembler::zero, L_ok);
   272     __ bind(L_bad);
   273     __ stop("assert arg_slots >= 0 and clear low bits");
   274     __ bind(L_ok);
   275   } else {
   276     assert(arg_slots.as_constant() >= 0, "");
   277     assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
   278   }
   279 #endif //ASSERT
   281 #ifdef _LP64
   282   if (false) {                  // not needed, since register is positive
   283     // clean high bits of stack motion register (was loaded as an int)
   284     if (arg_slots.is_register())
   285       __ movslq(arg_slots.as_register(), arg_slots.as_register());
   286   }
   287 #endif
   289   BLOCK_COMMENT("remove_arg_slots {");
   290   // Pull up everything shallower than rax_argslot.
   291   // Then remove the excess space on the stack.
   292   // The stacked return address gets pulled up with everything else.
   293   // That is, copy [rsp, argslot) upward by size words.  In pseudo-code:
   294   //   for (rdx = argslot-1; rdx >= rsp; --rdx)
   295   //     rdx[size] = rdx[0]
   296   //   argslot += size;
   297   //   rsp += size;
   298   __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
   299   {
   300     Label loop;
   301     __ BIND(loop);
   302     // pull one word up each time through the loop
   303     __ movptr(rbx_temp, Address(rdx_temp, 0));
   304     __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
   305     __ addptr(rdx_temp, -wordSize);
   306     __ cmpptr(rdx_temp, rsp);
   307     __ jccb(Assembler::greaterEqual, loop);
   308   }
   310   // Now move the argslot up, to point to the just-copied block.
   311   __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
   312   // And adjust the argslot address to point at the deletion point.
   313   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
   314   BLOCK_COMMENT("} remove_arg_slots");
   315 }
   317 #ifndef PRODUCT
   318 extern "C" void print_method_handle(oop mh);
   319 void trace_method_handle_stub(const char* adaptername,
   320                               oop mh,
   321                               intptr_t* saved_regs,
   322                               intptr_t* entry_sp,
   323                               intptr_t* saved_sp,
   324                               intptr_t* saved_bp) {
   325   // called as a leaf from native code: do not block the JVM!
   326   intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset];
   327   intptr_t* base_sp = (intptr_t*) saved_bp[frame::interpreter_frame_monitor_block_top_offset];
   328   printf("MH %s mh="INTPTR_FORMAT" sp=("INTPTR_FORMAT"+"INTX_FORMAT") stack_size="INTX_FORMAT" bp="INTPTR_FORMAT"\n",
   329          adaptername, (intptr_t)mh, (intptr_t)entry_sp, (intptr_t)(saved_sp - entry_sp), (intptr_t)(base_sp - last_sp), (intptr_t)saved_bp);
   330   if (last_sp != saved_sp && last_sp != NULL)
   331     printf("*** last_sp="INTPTR_FORMAT"\n", (intptr_t)last_sp);
   332   if (Verbose) {
   333     printf(" reg dump: ");
   334     int saved_regs_count = (entry_sp-1) - saved_regs;
   335     // 32 bit: rdi rsi rbp rsp; rbx rdx rcx (*) rax
   336     int i;
   337     for (i = 0; i <= saved_regs_count; i++) {
   338       if (i > 0 && i % 4 == 0 && i != saved_regs_count)
   339         printf("\n   + dump: ");
   340       printf(" %d: "INTPTR_FORMAT, i, saved_regs[i]);
   341     }
   342     printf("\n");
   343     int stack_dump_count = 16;
   344     if (stack_dump_count < (int)(saved_bp + 2 - saved_sp))
   345       stack_dump_count = (int)(saved_bp + 2 - saved_sp);
   346     if (stack_dump_count > 64)  stack_dump_count = 48;
   347     for (i = 0; i < stack_dump_count; i += 4) {
   348       printf(" dump at SP[%d] "INTPTR_FORMAT": "INTPTR_FORMAT" "INTPTR_FORMAT" "INTPTR_FORMAT" "INTPTR_FORMAT"\n",
   349              i, (intptr_t) &entry_sp[i+0], entry_sp[i+0], entry_sp[i+1], entry_sp[i+2], entry_sp[i+3]);
   350     }
   351     print_method_handle(mh);
   352   }
   353 }
   354 void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
   355   if (!TraceMethodHandles)  return;
   356   BLOCK_COMMENT("trace_method_handle {");
   357   __ push(rax);
   358   __ lea(rax, Address(rsp, wordSize*6)); // entry_sp
   359   __ pusha();
   360   // arguments:
   361   __ push(rbp);               // interpreter frame pointer
   362   __ push(rsi);               // saved_sp
   363   __ push(rax);               // entry_sp
   364   __ push(rcx);               // mh
   365   __ push(rcx);
   366   __ movptr(Address(rsp, 0), (intptr_t) adaptername);
   367   __ call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub), 5);
   368   __ popa();
   369   __ pop(rax);
   370   BLOCK_COMMENT("} trace_method_handle");
   371 }
   372 #endif //PRODUCT
   374 // which conversion op types are implemented here?
   375 int MethodHandles::adapter_conversion_ops_supported_mask() {
   376   return ((1<<sun_dyn_AdapterMethodHandle::OP_RETYPE_ONLY)
   377          |(1<<sun_dyn_AdapterMethodHandle::OP_RETYPE_RAW)
   378          |(1<<sun_dyn_AdapterMethodHandle::OP_CHECK_CAST)
   379          |(1<<sun_dyn_AdapterMethodHandle::OP_PRIM_TO_PRIM)
   380          |(1<<sun_dyn_AdapterMethodHandle::OP_REF_TO_PRIM)
   381          |(1<<sun_dyn_AdapterMethodHandle::OP_SWAP_ARGS)
   382          |(1<<sun_dyn_AdapterMethodHandle::OP_ROT_ARGS)
   383          |(1<<sun_dyn_AdapterMethodHandle::OP_DUP_ARGS)
   384          |(1<<sun_dyn_AdapterMethodHandle::OP_DROP_ARGS)
   385          //|(1<<sun_dyn_AdapterMethodHandle::OP_SPREAD_ARGS) //BUG!
   386          );
   387   // FIXME: MethodHandlesTest gets a crash if we enable OP_SPREAD_ARGS.
   388 }
   390 // Generate an "entry" field for a method handle.
   391 // This determines how the method handle will respond to calls.
   392 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
   393   // Here is the register state during an interpreted call,
   394   // as set up by generate_method_handle_interpreter_entry():
   395   // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
   396   // - rcx: receiver method handle
   397   // - rax: method handle type (only used by the check_mtype entry point)
   398   // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
   399   // - rdx: garbage temp, can blow away
   401   Register rcx_recv    = rcx;
   402   Register rax_argslot = rax;
   403   Register rbx_temp    = rbx;
   404   Register rdx_temp    = rdx;
   406   // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
   407   // and gen_c2i_adapter (from compiled calls):
   408   Register saved_last_sp = LP64_ONLY(r13) NOT_LP64(rsi);
   410   guarantee(java_dyn_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
   412   // some handy addresses
   413   Address rbx_method_fie(     rbx,      methodOopDesc::from_interpreted_offset() );
   415   Address rcx_mh_vmtarget(    rcx_recv, java_dyn_MethodHandle::vmtarget_offset_in_bytes() );
   416   Address rcx_dmh_vmindex(    rcx_recv, sun_dyn_DirectMethodHandle::vmindex_offset_in_bytes() );
   418   Address rcx_bmh_vmargslot(  rcx_recv, sun_dyn_BoundMethodHandle::vmargslot_offset_in_bytes() );
   419   Address rcx_bmh_argument(   rcx_recv, sun_dyn_BoundMethodHandle::argument_offset_in_bytes() );
   421   Address rcx_amh_vmargslot(  rcx_recv, sun_dyn_AdapterMethodHandle::vmargslot_offset_in_bytes() );
   422   Address rcx_amh_argument(   rcx_recv, sun_dyn_AdapterMethodHandle::argument_offset_in_bytes() );
   423   Address rcx_amh_conversion( rcx_recv, sun_dyn_AdapterMethodHandle::conversion_offset_in_bytes() );
   424   Address vmarg;                // __ argument_address(vmargslot)
   426   const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   428   if (have_entry(ek)) {
   429     __ nop();                   // empty stubs make SG sick
   430     return;
   431   }
   433   address interp_entry = __ pc();
   434   if (UseCompressedOops)  __ unimplemented("UseCompressedOops");
   436   trace_method_handle(_masm, entry_name(ek));
   438   BLOCK_COMMENT(entry_name(ek));
   440   switch ((int) ek) {
   441   case _raise_exception:
   442     {
   443       // Not a real MH entry, but rather shared code for raising an exception.
   444       // Extra local arguments are pushed on stack, as required type at TOS+8,
   445       // failing object (or NULL) at TOS+4, failing bytecode type at TOS.
   446       // Beyond those local arguments are the PC, of course.
   447       Register rdx_code = rdx_temp;
   448       Register rcx_fail = rcx_recv;
   449       Register rax_want = rax_argslot;
   450       Register rdi_pc   = rdi;
   451       __ pop(rdx_code);  // TOS+0
   452       __ pop(rcx_fail);  // TOS+4
   453       __ pop(rax_want);  // TOS+8
   454       __ pop(rdi_pc);    // caller PC
   456       __ mov(rsp, rsi);   // cut the stack back to where the caller started
   458       // Repush the arguments as if coming from the interpreter.
   459       __ push(rdx_code);
   460       __ push(rcx_fail);
   461       __ push(rax_want);
   463       Register rbx_method = rbx_temp;
   464       Label no_method;
   465       // FIXME: fill in _raise_exception_method with a suitable sun.dyn method
   466       __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
   467       __ testptr(rbx_method, rbx_method);
   468       __ jccb(Assembler::zero, no_method);
   469       int jobject_oop_offset = 0;
   470       __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset));  // dereference the jobject
   471       __ testptr(rbx_method, rbx_method);
   472       __ jccb(Assembler::zero, no_method);
   473       __ verify_oop(rbx_method);
   474       __ push(rdi_pc);          // and restore caller PC
   475       __ jmp(rbx_method_fie);
   477       // If we get here, the Java runtime did not do its job of creating the exception.
   478       // Do something that is at least causes a valid throw from the interpreter.
   479       __ bind(no_method);
   480       __ pop(rax_want);
   481       __ pop(rcx_fail);
   482       __ push(rax_want);
   483       __ push(rcx_fail);
   484       __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
   485     }
   486     break;
   488   case _invokestatic_mh:
   489   case _invokespecial_mh:
   490     {
   491       Register rbx_method = rbx_temp;
   492       __ movptr(rbx_method, rcx_mh_vmtarget); // target is a methodOop
   493       __ verify_oop(rbx_method);
   494       // same as TemplateTable::invokestatic or invokespecial,
   495       // minus the CP setup and profiling:
   496       if (ek == _invokespecial_mh) {
   497         // Must load & check the first argument before entering the target method.
   498         __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
   499         __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
   500         __ null_check(rcx_recv);
   501         __ verify_oop(rcx_recv);
   502       }
   503       __ jmp(rbx_method_fie);
   504     }
   505     break;
   507   case _invokevirtual_mh:
   508     {
   509       // same as TemplateTable::invokevirtual,
   510       // minus the CP setup and profiling:
   512       // pick out the vtable index and receiver offset from the MH,
   513       // and then we can discard it:
   514       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
   515       Register rbx_index = rbx_temp;
   516       __ movl(rbx_index, rcx_dmh_vmindex);
   517       // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
   518       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
   519       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
   521       // get receiver klass
   522       Register rax_klass = rax_argslot;
   523       __ load_klass(rax_klass, rcx_recv);
   524       __ verify_oop(rax_klass);
   526       // get target methodOop & entry point
   527       const int base = instanceKlass::vtable_start_offset() * wordSize;
   528       assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
   529       Address vtable_entry_addr(rax_klass,
   530                                 rbx_index, Address::times_ptr,
   531                                 base + vtableEntry::method_offset_in_bytes());
   532       Register rbx_method = rbx_temp;
   533       __ movptr(rbx_method, vtable_entry_addr);
   535       __ verify_oop(rbx_method);
   536       __ jmp(rbx_method_fie);
   537     }
   538     break;
   540   case _invokeinterface_mh:
   541     {
   542       // same as TemplateTable::invokeinterface,
   543       // minus the CP setup and profiling:
   545       // pick out the interface and itable index from the MH.
   546       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
   547       Register rdx_intf  = rdx_temp;
   548       Register rbx_index = rbx_temp;
   549       __ movptr(rdx_intf,  rcx_mh_vmtarget);
   550       __ movl(rbx_index,   rcx_dmh_vmindex);
   551       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
   552       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
   554       // get receiver klass
   555       Register rax_klass = rax_argslot;
   556       __ load_klass(rax_klass, rcx_recv);
   557       __ verify_oop(rax_klass);
   559       Register rdi_temp   = rdi;
   560       Register rbx_method = rbx_index;
   562       // get interface klass
   563       Label no_such_interface;
   564       __ verify_oop(rdx_intf);
   565       __ lookup_interface_method(rax_klass, rdx_intf,
   566                                  // note: next two args must be the same:
   567                                  rbx_index, rbx_method,
   568                                  rdi_temp,
   569                                  no_such_interface);
   571       __ verify_oop(rbx_method);
   572       __ jmp(rbx_method_fie);
   573       __ hlt();
   575       __ bind(no_such_interface);
   576       // Throw an exception.
   577       // For historical reasons, it will be IncompatibleClassChangeError.
   578       __ pushptr(Address(rdx_intf, java_mirror_offset));  // required interface
   579       __ push(rcx_recv);        // bad receiver
   580       __ push((int)Bytecodes::_invokeinterface);  // who is complaining?
   581       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
   582     }
   583     break;
   585   case _bound_ref_mh:
   586   case _bound_int_mh:
   587   case _bound_long_mh:
   588   case _bound_ref_direct_mh:
   589   case _bound_int_direct_mh:
   590   case _bound_long_direct_mh:
   591     {
   592       bool direct_to_method = (ek >= _bound_ref_direct_mh);
   593       BasicType arg_type  = T_ILLEGAL;
   594       int       arg_mask  = _INSERT_NO_MASK;
   595       int       arg_slots = -1;
   596       get_ek_bound_mh_info(ek, arg_type, arg_mask, arg_slots);
   598       // make room for the new argument:
   599       __ movl(rax_argslot, rcx_bmh_vmargslot);
   600       __ lea(rax_argslot, __ argument_address(rax_argslot));
   601       insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask,
   602                        rax_argslot, rbx_temp, rdx_temp);
   604       // store bound argument into the new stack slot:
   605       __ movptr(rbx_temp, rcx_bmh_argument);
   606       Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
   607       if (arg_type == T_OBJECT) {
   608         __ movptr(Address(rax_argslot, 0), rbx_temp);
   609       } else {
   610         __ load_sized_value(rdx_temp, prim_value_addr,
   611                             type2aelembytes(arg_type), is_signed_subword_type(arg_type));
   612         __ movptr(Address(rax_argslot, 0), rdx_temp);
   613 #ifndef _LP64
   614         if (arg_slots == 2) {
   615           __ movl(rdx_temp, prim_value_addr.plus_disp(wordSize));
   616           __ movl(Address(rax_argslot, Interpreter::stackElementSize), rdx_temp);
   617         }
   618 #endif //_LP64
   619       }
   621       if (direct_to_method) {
   622         Register rbx_method = rbx_temp;
   623         __ movptr(rbx_method, rcx_mh_vmtarget);
   624         __ verify_oop(rbx_method);
   625         __ jmp(rbx_method_fie);
   626       } else {
   627         __ movptr(rcx_recv, rcx_mh_vmtarget);
   628         __ verify_oop(rcx_recv);
   629         __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   630       }
   631     }
   632     break;
   634   case _adapter_retype_only:
   635   case _adapter_retype_raw:
   636     // immediately jump to the next MH layer:
   637     __ movptr(rcx_recv, rcx_mh_vmtarget);
   638     __ verify_oop(rcx_recv);
   639     __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   640     // This is OK when all parameter types widen.
   641     // It is also OK when a return type narrows.
   642     break;
   644   case _adapter_check_cast:
   645     {
   646       // temps:
   647       Register rbx_klass = rbx_temp; // interesting AMH data
   649       // check a reference argument before jumping to the next layer of MH:
   650       __ movl(rax_argslot, rcx_amh_vmargslot);
   651       vmarg = __ argument_address(rax_argslot);
   653       // What class are we casting to?
   654       __ movptr(rbx_klass, rcx_amh_argument); // this is a Class object!
   655       __ movptr(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
   657       Label done;
   658       __ movptr(rdx_temp, vmarg);
   659       __ testptr(rdx_temp, rdx_temp);
   660       __ jccb(Assembler::zero, done);         // no cast if null
   661       __ load_klass(rdx_temp, rdx_temp);
   663       // live at this point:
   664       // - rbx_klass:  klass required by the target method
   665       // - rdx_temp:   argument klass to test
   666       // - rcx_recv:   adapter method handle
   667       __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);
   669       // If we get here, the type check failed!
   670       // Call the wrong_method_type stub, passing the failing argument type in rax.
   671       Register rax_mtype = rax_argslot;
   672       __ movl(rax_argslot, rcx_amh_vmargslot);  // reload argslot field
   673       __ movptr(rdx_temp, vmarg);
   675       __ pushptr(rcx_amh_argument); // required class
   676       __ push(rdx_temp);            // bad object
   677       __ push((int)Bytecodes::_checkcast);  // who is complaining?
   678       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
   680       __ bind(done);
   681       // get the new MH:
   682       __ movptr(rcx_recv, rcx_mh_vmtarget);
   683       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   684     }
   685     break;
   687   case _adapter_prim_to_prim:
   688   case _adapter_ref_to_prim:
   689     // handled completely by optimized cases
   690     __ stop("init_AdapterMethodHandle should not issue this");
   691     break;
   693   case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
   694 //case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
   695   case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
   696   case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
   697     {
   698       // perform an in-place conversion to int or an int subword
   699       __ movl(rax_argslot, rcx_amh_vmargslot);
   700       vmarg = __ argument_address(rax_argslot);
   702       switch (ek) {
   703       case _adapter_opt_i2i:
   704         __ movl(rdx_temp, vmarg);
   705         break;
   706       case _adapter_opt_l2i:
   707         {
   708           // just delete the extra slot; on a little-endian machine we keep the first
   709           __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
   710           remove_arg_slots(_masm, -stack_move_unit(),
   711                            rax_argslot, rbx_temp, rdx_temp);
   712           vmarg = Address(rax_argslot, -Interpreter::stackElementSize);
   713           __ movl(rdx_temp, vmarg);
   714         }
   715         break;
   716       case _adapter_opt_unboxi:
   717         {
   718           // Load the value up from the heap.
   719           __ movptr(rdx_temp, vmarg);
   720           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
   721 #ifdef ASSERT
   722           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
   723             if (is_subword_type(BasicType(bt)))
   724               assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
   725           }
   726 #endif
   727           __ null_check(rdx_temp, value_offset);
   728           __ movl(rdx_temp, Address(rdx_temp, value_offset));
   729           // We load this as a word.  Because we are little-endian,
   730           // the low bits will be correct, but the high bits may need cleaning.
   731           // The vminfo will guide us to clean those bits.
   732         }
   733         break;
   734       default:
   735         ShouldNotReachHere();
   736       }
   738       // Do the requested conversion and store the value.
   739       Register rbx_vminfo = rbx_temp;
   740       __ movl(rbx_vminfo, rcx_amh_conversion);
   741       assert(CONV_VMINFO_SHIFT == 0, "preshifted");
   743       // get the new MH:
   744       __ movptr(rcx_recv, rcx_mh_vmtarget);
   745       // (now we are done with the old MH)
   747       // original 32-bit vmdata word must be of this form:
   748       //    | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
   749       __ xchgptr(rcx, rbx_vminfo);                // free rcx for shifts
   750       __ shll(rdx_temp /*, rcx*/);
   751       Label zero_extend, done;
   752       __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
   753       __ jccb(Assembler::zero, zero_extend);
   755       // this path is taken for int->byte, int->short
   756       __ sarl(rdx_temp /*, rcx*/);
   757       __ jmpb(done);
   759       __ bind(zero_extend);
   760       // this is taken for int->char
   761       __ shrl(rdx_temp /*, rcx*/);
   763       __ bind(done);
   764       __ movl(vmarg, rdx_temp);  // Store the value.
   765       __ xchgptr(rcx, rbx_vminfo);                // restore rcx_recv
   767       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   768     }
   769     break;
   771   case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
   772   case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
   773     {
   774       // perform an in-place int-to-long or ref-to-long conversion
   775       __ movl(rax_argslot, rcx_amh_vmargslot);
   777       // on a little-endian machine we keep the first slot and add another after
   778       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
   779       insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
   780                        rax_argslot, rbx_temp, rdx_temp);
   781       Address vmarg1(rax_argslot, -Interpreter::stackElementSize);
   782       Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize);
   784       switch (ek) {
   785       case _adapter_opt_i2l:
   786         {
   787 #ifdef _LP64
   788           __ movslq(rdx_temp, vmarg1);  // Load sign-extended
   789           __ movq(vmarg1, rdx_temp);    // Store into first slot
   790 #else
   791           __ movl(rdx_temp, vmarg1);
   792           __ sarl(rdx_temp, BitsPerInt - 1);  // __ extend_sign()
   793           __ movl(vmarg2, rdx_temp); // store second word
   794 #endif
   795         }
   796         break;
   797       case _adapter_opt_unboxl:
   798         {
   799           // Load the value up from the heap.
   800           __ movptr(rdx_temp, vmarg1);
   801           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
   802           assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
   803           __ null_check(rdx_temp, value_offset);
   804 #ifdef _LP64
   805           __ movq(rbx_temp, Address(rdx_temp, value_offset));
   806           __ movq(vmarg1, rbx_temp);
   807 #else
   808           __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
   809           __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
   810           __ movl(vmarg1, rbx_temp);
   811           __ movl(vmarg2, rdx_temp);
   812 #endif
   813         }
   814         break;
   815       default:
   816         ShouldNotReachHere();
   817       }
   819       __ movptr(rcx_recv, rcx_mh_vmtarget);
   820       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   821     }
   822     break;
   824   case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
   825   case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
   826     {
   827       // perform an in-place floating primitive conversion
   828       __ movl(rax_argslot, rcx_amh_vmargslot);
   829       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
   830       if (ek == _adapter_opt_f2d) {
   831         insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
   832                          rax_argslot, rbx_temp, rdx_temp);
   833       }
   834       Address vmarg(rax_argslot, -Interpreter::stackElementSize);
   836 #ifdef _LP64
   837       if (ek == _adapter_opt_f2d) {
   838         __ movflt(xmm0, vmarg);
   839         __ cvtss2sd(xmm0, xmm0);
   840         __ movdbl(vmarg, xmm0);
   841       } else {
   842         __ movdbl(xmm0, vmarg);
   843         __ cvtsd2ss(xmm0, xmm0);
   844         __ movflt(vmarg, xmm0);
   845       }
   846 #else //_LP64
   847       if (ek == _adapter_opt_f2d) {
   848         __ fld_s(vmarg);        // load float to ST0
   849         __ fstp_s(vmarg);       // store single
   850       } else {
   851         __ fld_d(vmarg);        // load double to ST0
   852         __ fstp_s(vmarg);       // store single
   853       }
   854 #endif //_LP64
   856       if (ek == _adapter_opt_d2f) {
   857         remove_arg_slots(_masm, -stack_move_unit(),
   858                          rax_argslot, rbx_temp, rdx_temp);
   859       }
   861       __ movptr(rcx_recv, rcx_mh_vmtarget);
   862       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   863     }
   864     break;
   866   case _adapter_prim_to_ref:
   867     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
   868     break;
   870   case _adapter_swap_args:
   871   case _adapter_rot_args:
   872     // handled completely by optimized cases
   873     __ stop("init_AdapterMethodHandle should not issue this");
   874     break;
   876   case _adapter_opt_swap_1:
   877   case _adapter_opt_swap_2:
   878   case _adapter_opt_rot_1_up:
   879   case _adapter_opt_rot_1_down:
   880   case _adapter_opt_rot_2_up:
   881   case _adapter_opt_rot_2_down:
   882     {
   883       int swap_bytes = 0, rotate = 0;
   884       get_ek_adapter_opt_swap_rot_info(ek, swap_bytes, rotate);
   886       // 'argslot' is the position of the first argument to swap
   887       __ movl(rax_argslot, rcx_amh_vmargslot);
   888       __ lea(rax_argslot, __ argument_address(rax_argslot));
   890       // 'vminfo' is the second
   891       Register rbx_destslot = rbx_temp;
   892       __ movl(rbx_destslot, rcx_amh_conversion);
   893       assert(CONV_VMINFO_SHIFT == 0, "preshifted");
   894       __ andl(rbx_destslot, CONV_VMINFO_MASK);
   895       __ lea(rbx_destslot, __ argument_address(rbx_destslot));
   896       DEBUG_ONLY(verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame"));
   898       if (!rotate) {
   899         for (int i = 0; i < swap_bytes; i += wordSize) {
   900           __ movptr(rdx_temp, Address(rax_argslot , i));
   901           __ push(rdx_temp);
   902           __ movptr(rdx_temp, Address(rbx_destslot, i));
   903           __ movptr(Address(rax_argslot, i), rdx_temp);
   904           __ pop(rdx_temp);
   905           __ movptr(Address(rbx_destslot, i), rdx_temp);
   906         }
   907       } else {
   908         // push the first chunk, which is going to get overwritten
   909         for (int i = swap_bytes; (i -= wordSize) >= 0; ) {
   910           __ movptr(rdx_temp, Address(rax_argslot, i));
   911           __ push(rdx_temp);
   912         }
   914         if (rotate > 0) {
   915           // rotate upward
   916           __ subptr(rax_argslot, swap_bytes);
   917 #ifdef ASSERT
   918           {
   919             // Verify that argslot > destslot, by at least swap_bytes.
   920             Label L_ok;
   921             __ cmpptr(rax_argslot, rbx_destslot);
   922             __ jccb(Assembler::aboveEqual, L_ok);
   923             __ stop("source must be above destination (upward rotation)");
   924             __ bind(L_ok);
   925           }
   926 #endif
   927           // work argslot down to destslot, copying contiguous data upwards
   928           // pseudo-code:
   929           //   rax = src_addr - swap_bytes
   930           //   rbx = dest_addr
   931           //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
   932           Label loop;
   933           __ bind(loop);
   934           __ movptr(rdx_temp, Address(rax_argslot, 0));
   935           __ movptr(Address(rax_argslot, swap_bytes), rdx_temp);
   936           __ addptr(rax_argslot, -wordSize);
   937           __ cmpptr(rax_argslot, rbx_destslot);
   938           __ jccb(Assembler::aboveEqual, loop);
   939         } else {
   940           __ addptr(rax_argslot, swap_bytes);
   941 #ifdef ASSERT
   942           {
   943             // Verify that argslot < destslot, by at least swap_bytes.
   944             Label L_ok;
   945             __ cmpptr(rax_argslot, rbx_destslot);
   946             __ jccb(Assembler::belowEqual, L_ok);
   947             __ stop("source must be below destination (downward rotation)");
   948             __ bind(L_ok);
   949           }
   950 #endif
   951           // work argslot up to destslot, copying contiguous data downwards
   952           // pseudo-code:
   953           //   rax = src_addr + swap_bytes
   954           //   rbx = dest_addr
   955           //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
   956           Label loop;
   957           __ bind(loop);
   958           __ movptr(rdx_temp, Address(rax_argslot, 0));
   959           __ movptr(Address(rax_argslot, -swap_bytes), rdx_temp);
   960           __ addptr(rax_argslot, wordSize);
   961           __ cmpptr(rax_argslot, rbx_destslot);
   962           __ jccb(Assembler::belowEqual, loop);
   963         }
   965         // pop the original first chunk into the destination slot, now free
   966         for (int i = 0; i < swap_bytes; i += wordSize) {
   967           __ pop(rdx_temp);
   968           __ movptr(Address(rbx_destslot, i), rdx_temp);
   969         }
   970       }
   972       __ movptr(rcx_recv, rcx_mh_vmtarget);
   973       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
   974     }
   975     break;
   977   case _adapter_dup_args:
   978     {
   979       // 'argslot' is the position of the first argument to duplicate
   980       __ movl(rax_argslot, rcx_amh_vmargslot);
   981       __ lea(rax_argslot, __ argument_address(rax_argslot));
   983       // 'stack_move' is negative number of words to duplicate
   984       Register rdx_stack_move = rdx_temp;
   985       __ movl2ptr(rdx_stack_move, rcx_amh_conversion);
   986       __ sarptr(rdx_stack_move, CONV_STACK_MOVE_SHIFT);
   988       int argslot0_num = 0;
   989       Address argslot0 = __ argument_address(RegisterOrConstant(argslot0_num));
   990       assert(argslot0.base() == rsp, "");
   991       int pre_arg_size = argslot0.disp();
   992       assert(pre_arg_size % wordSize == 0, "");
   993       assert(pre_arg_size > 0, "must include PC");
   995       // remember the old rsp+1 (argslot[0])
   996       Register rbx_oldarg = rbx_temp;
   997       __ lea(rbx_oldarg, argslot0);
   999       // move rsp down to make room for dups
  1000       __ lea(rsp, Address(rsp, rdx_stack_move, Address::times_ptr));
  1002       // compute the new rsp+1 (argslot[0])
  1003       Register rdx_newarg = rdx_temp;
  1004       __ lea(rdx_newarg, argslot0);
  1006       __ push(rdi);             // need a temp
  1007       // (preceding push must be done after arg addresses are taken!)
  1009       // pull down the pre_arg_size data (PC)
  1010       for (int i = -pre_arg_size; i < 0; i += wordSize) {
  1011         __ movptr(rdi, Address(rbx_oldarg, i));
  1012         __ movptr(Address(rdx_newarg, i), rdi);
  1015       // copy from rax_argslot[0...] down to new_rsp[1...]
  1016       // pseudo-code:
  1017       //   rbx = old_rsp+1
  1018       //   rdx = new_rsp+1
  1019       //   rax = argslot
  1020       //   while (rdx < rbx) *rdx++ = *rax++
  1021       Label loop;
  1022       __ bind(loop);
  1023       __ movptr(rdi, Address(rax_argslot, 0));
  1024       __ movptr(Address(rdx_newarg, 0), rdi);
  1025       __ addptr(rax_argslot, wordSize);
  1026       __ addptr(rdx_newarg, wordSize);
  1027       __ cmpptr(rdx_newarg, rbx_oldarg);
  1028       __ jccb(Assembler::less, loop);
  1030       __ pop(rdi);              // restore temp
  1032       __ movptr(rcx_recv, rcx_mh_vmtarget);
  1033       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1035     break;
  1037   case _adapter_drop_args:
  1039       // 'argslot' is the position of the first argument to nuke
  1040       __ movl(rax_argslot, rcx_amh_vmargslot);
  1041       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1043       __ push(rdi);             // need a temp
  1044       // (must do previous push after argslot address is taken)
  1046       // 'stack_move' is number of words to drop
  1047       Register rdi_stack_move = rdi;
  1048       __ movl2ptr(rdi_stack_move, rcx_amh_conversion);
  1049       __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
  1050       remove_arg_slots(_masm, rdi_stack_move,
  1051                        rax_argslot, rbx_temp, rdx_temp);
  1053       __ pop(rdi);              // restore temp
  1055       __ movptr(rcx_recv, rcx_mh_vmtarget);
  1056       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1058     break;
  1060   case _adapter_collect_args:
  1061     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  1062     break;
  1064   case _adapter_spread_args:
  1065     // handled completely by optimized cases
  1066     __ stop("init_AdapterMethodHandle should not issue this");
  1067     break;
  1069   case _adapter_opt_spread_0:
  1070   case _adapter_opt_spread_1:
  1071   case _adapter_opt_spread_more:
  1073       // spread an array out into a group of arguments
  1074       int length_constant = get_ek_adapter_opt_spread_info(ek);
  1076       // find the address of the array argument
  1077       __ movl(rax_argslot, rcx_amh_vmargslot);
  1078       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1080       // grab some temps
  1081       { __ push(rsi); __ push(rdi); }
  1082       // (preceding pushes must be done after argslot address is taken!)
  1083 #define UNPUSH_RSI_RDI \
  1084       { __ pop(rdi); __ pop(rsi); }
  1086       // arx_argslot points both to the array and to the first output arg
  1087       vmarg = Address(rax_argslot, 0);
  1089       // Get the array value.
  1090       Register  rsi_array       = rsi;
  1091       Register  rdx_array_klass = rdx_temp;
  1092       BasicType elem_type       = T_OBJECT;
  1093       int       length_offset   = arrayOopDesc::length_offset_in_bytes();
  1094       int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
  1095       __ movptr(rsi_array, vmarg);
  1096       Label skip_array_check;
  1097       if (length_constant == 0) {
  1098         __ testptr(rsi_array, rsi_array);
  1099         __ jcc(Assembler::zero, skip_array_check);
  1101       __ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
  1102       __ load_klass(rdx_array_klass, rsi_array);
  1104       // Check the array type.
  1105       Register rbx_klass = rbx_temp;
  1106       __ movptr(rbx_klass, rcx_amh_argument); // this is a Class object!
  1107       __ movptr(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
  1109       Label ok_array_klass, bad_array_klass, bad_array_length;
  1110       __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi, ok_array_klass);
  1111       // If we get here, the type check failed!
  1112       __ jmp(bad_array_klass);
  1113       __ bind(ok_array_klass);
  1115       // Check length.
  1116       if (length_constant >= 0) {
  1117         __ cmpl(Address(rsi_array, length_offset), length_constant);
  1118       } else {
  1119         Register rbx_vminfo = rbx_temp;
  1120         __ movl(rbx_vminfo, rcx_amh_conversion);
  1121         assert(CONV_VMINFO_SHIFT == 0, "preshifted");
  1122         __ andl(rbx_vminfo, CONV_VMINFO_MASK);
  1123         __ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
  1125       __ jcc(Assembler::notEqual, bad_array_length);
  1127       Register rdx_argslot_limit = rdx_temp;
  1129       // Array length checks out.  Now insert any required stack slots.
  1130       if (length_constant == -1) {
  1131         // Form a pointer to the end of the affected region.
  1132         __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize));
  1133         // 'stack_move' is negative number of words to insert
  1134         Register rdi_stack_move = rdi;
  1135         __ movl2ptr(rdi_stack_move, rcx_amh_conversion);
  1136         __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
  1137         Register rsi_temp = rsi_array;  // spill this
  1138         insert_arg_slots(_masm, rdi_stack_move, -1,
  1139                          rax_argslot, rbx_temp, rsi_temp);
  1140         // reload the array (since rsi was killed)
  1141         __ movptr(rsi_array, vmarg);
  1142       } else if (length_constant > 1) {
  1143         int arg_mask = 0;
  1144         int new_slots = (length_constant - 1);
  1145         for (int i = 0; i < new_slots; i++) {
  1146           arg_mask <<= 1;
  1147           arg_mask |= _INSERT_REF_MASK;
  1149         insert_arg_slots(_masm, new_slots * stack_move_unit(), arg_mask,
  1150                          rax_argslot, rbx_temp, rdx_temp);
  1151       } else if (length_constant == 1) {
  1152         // no stack resizing required
  1153       } else if (length_constant == 0) {
  1154         remove_arg_slots(_masm, -stack_move_unit(),
  1155                          rax_argslot, rbx_temp, rdx_temp);
  1158       // Copy from the array to the new slots.
  1159       // Note: Stack change code preserves integrity of rax_argslot pointer.
  1160       // So even after slot insertions, rax_argslot still points to first argument.
  1161       if (length_constant == -1) {
  1162         // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
  1163         Register rsi_source = rsi_array;
  1164         __ lea(rsi_source, Address(rsi_array, elem0_offset));
  1165         Label loop;
  1166         __ bind(loop);
  1167         __ movptr(rbx_temp, Address(rsi_source, 0));
  1168         __ movptr(Address(rax_argslot, 0), rbx_temp);
  1169         __ addptr(rsi_source, type2aelembytes(elem_type));
  1170         __ addptr(rax_argslot, Interpreter::stackElementSize);
  1171         __ cmpptr(rax_argslot, rdx_argslot_limit);
  1172         __ jccb(Assembler::less, loop);
  1173       } else if (length_constant == 0) {
  1174         __ bind(skip_array_check);
  1175         // nothing to copy
  1176       } else {
  1177         int elem_offset = elem0_offset;
  1178         int slot_offset = 0;
  1179         for (int index = 0; index < length_constant; index++) {
  1180           __ movptr(rbx_temp, Address(rsi_array, elem_offset));
  1181           __ movptr(Address(rax_argslot, slot_offset), rbx_temp);
  1182           elem_offset += type2aelembytes(elem_type);
  1183            slot_offset += Interpreter::stackElementSize;
  1187       // Arguments are spread.  Move to next method handle.
  1188       UNPUSH_RSI_RDI;
  1189       __ movptr(rcx_recv, rcx_mh_vmtarget);
  1190       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1192       __ bind(bad_array_klass);
  1193       UNPUSH_RSI_RDI;
  1194       __ pushptr(Address(rdx_array_klass, java_mirror_offset)); // required type
  1195       __ pushptr(vmarg);                // bad array
  1196       __ push((int)Bytecodes::_aaload); // who is complaining?
  1197       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  1199       __ bind(bad_array_length);
  1200       UNPUSH_RSI_RDI;
  1201       __ push(rcx_recv);        // AMH requiring a certain length
  1202       __ pushptr(vmarg);        // bad array
  1203       __ push((int)Bytecodes::_arraylength); // who is complaining?
  1204       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  1206 #undef UNPUSH_RSI_RDI
  1208     break;
  1210   case _adapter_flyby:
  1211   case _adapter_ricochet:
  1212     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  1213     break;
  1215   default:  ShouldNotReachHere();
  1217   __ hlt();
  1219   address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  1220   __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  1222   init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));

mercurial