src/share/vm/utilities/taskqueue.hpp

Tue, 04 Feb 2020 18:13:14 +0800

author
aoqi
date
Tue, 04 Feb 2020 18:13:14 +0800
changeset 9806
758c07667682
parent 9756
2be326848943
parent 9784
775e2bf92114
child 10015
eb7ce841ccec
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP
    26 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "runtime/mutex.hpp"
    31 #include "runtime/orderAccess.inline.hpp"
    32 #include "utilities/globalDefinitions.hpp"
    33 #include "utilities/stack.hpp"
    35 // Simple TaskQueue stats that are collected by default in debug builds.
    37 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
    38 #define TASKQUEUE_STATS 1
    39 #elif !defined(TASKQUEUE_STATS)
    40 #define TASKQUEUE_STATS 0
    41 #endif
    43 #if TASKQUEUE_STATS
    44 #define TASKQUEUE_STATS_ONLY(code) code
    45 #else
    46 #define TASKQUEUE_STATS_ONLY(code)
    47 #endif // TASKQUEUE_STATS
    49 #if TASKQUEUE_STATS
    50 class TaskQueueStats {
    51 public:
    52   enum StatId {
    53     push,             // number of taskqueue pushes
    54     pop,              // number of taskqueue pops
    55     pop_slow,         // subset of taskqueue pops that were done slow-path
    56     steal_attempt,    // number of taskqueue steal attempts
    57     steal,            // number of taskqueue steals
    58     overflow,         // number of overflow pushes
    59     overflow_max_len, // max length of overflow stack
    60     last_stat_id
    61   };
    63 public:
    64   inline TaskQueueStats()       { reset(); }
    66   inline void record_push()     { ++_stats[push]; }
    67   inline void record_pop()      { ++_stats[pop]; }
    68   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
    69   inline void record_steal(bool success);
    70   inline void record_overflow(size_t new_length);
    72   TaskQueueStats & operator +=(const TaskQueueStats & addend);
    74   inline size_t get(StatId id) const { return _stats[id]; }
    75   inline const size_t* get() const   { return _stats; }
    77   inline void reset();
    79   // Print the specified line of the header (does not include a line separator).
    80   static void print_header(unsigned int line, outputStream* const stream = tty,
    81                            unsigned int width = 10);
    82   // Print the statistics (does not include a line separator).
    83   void print(outputStream* const stream = tty, unsigned int width = 10) const;
    85   DEBUG_ONLY(void verify() const;)
    87 private:
    88   size_t                    _stats[last_stat_id];
    89   static const char * const _names[last_stat_id];
    90 };
    92 void TaskQueueStats::record_steal(bool success) {
    93   ++_stats[steal_attempt];
    94   if (success) ++_stats[steal];
    95 }
    97 void TaskQueueStats::record_overflow(size_t new_len) {
    98   ++_stats[overflow];
    99   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
   100 }
   102 void TaskQueueStats::reset() {
   103   memset(_stats, 0, sizeof(_stats));
   104 }
   105 #endif // TASKQUEUE_STATS
   107 // TaskQueueSuper collects functionality common to all GenericTaskQueue instances.
   109 template <unsigned int N, MEMFLAGS F>
   110 class TaskQueueSuper: public CHeapObj<F> {
   111 protected:
   112   // Internal type for indexing the queue; also used for the tag.
   113   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
   115 #ifdef MIPS
   116 private:
   117 #endif
   118   // The first free element after the last one pushed (mod N).
   119   volatile uint _bottom;
   121 #ifdef MIPS
   122 protected:
   123   inline uint get_bottom() const {
   124     return OrderAccess::load_acquire((volatile juint*)&_bottom);
   125   }
   127   inline void set_bottom(uint new_bottom) {
   128     OrderAccess::release_store(&_bottom, new_bottom);
   129   }
   130 #endif
   132   enum { MOD_N_MASK = N - 1 };
   134   class Age {
   135   public:
   136     Age(size_t data = 0)         { _data = data; }
   137     Age(const Age& age)          { _data = age._data; }
   138     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
   140 #ifndef MIPS
   141     Age   get()        const volatile { return _data; }
   142     void  set(Age age) volatile       { _data = age._data; }
   144     idx_t top()        const volatile { return _fields._top; }
   145     idx_t tag()        const volatile { return _fields._tag; }
   146 #else
   147     Age   get()        const volatile {
   148       size_t res = OrderAccess::load_ptr_acquire((volatile intptr_t*) &_data);
   149       return *(Age*)(&res);
   150     }
   151     void  set(Age age) volatile       { OrderAccess::release_store_ptr((volatile intptr_t*) &_data, *(size_t*)(&age._data)); }
   153     idx_t top()        const volatile { return OrderAccess::load_acquire((volatile idx_t*) &(_fields._top)); }
   154     idx_t tag()        const volatile { return OrderAccess::load_acquire((volatile idx_t*) &(_fields._tag)); }
   155 #endif
   157     // Increment top; if it wraps, increment tag also.
   158     void increment() {
   159       _fields._top = increment_index(_fields._top);
   160       if (_fields._top == 0) ++_fields._tag;
   161     }
   163     Age cmpxchg(const Age new_age, const Age old_age) volatile {
   164       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
   165                                           (volatile intptr_t *)&_data,
   166                                           (intptr_t)old_age._data);
   167     }
   169     bool operator ==(const Age& other) const { return _data == other._data; }
   171   private:
   172     struct fields {
   173       idx_t _top;
   174       idx_t _tag;
   175     };
   176     union {
   177       size_t _data;
   178       fields _fields;
   179     };
   180   };
   182   volatile Age _age;
   184   // These both operate mod N.
   185   static uint increment_index(uint ind) {
   186     return (ind + 1) & MOD_N_MASK;
   187   }
   188   static uint decrement_index(uint ind) {
   189     return (ind - 1) & MOD_N_MASK;
   190   }
   192   // Returns a number in the range [0..N).  If the result is "N-1", it should be
   193   // interpreted as 0.
   194   uint dirty_size(uint bot, uint top) const {
   195     return (bot - top) & MOD_N_MASK;
   196   }
   198   // Returns the size corresponding to the given "bot" and "top".
   199   uint size(uint bot, uint top) const {
   200     uint sz = dirty_size(bot, top);
   201     // Has the queue "wrapped", so that bottom is less than top?  There's a
   202     // complicated special case here.  A pair of threads could perform pop_local
   203     // and pop_global operations concurrently, starting from a state in which
   204     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
   205     // and the pop_global in incrementing _top (in which case the pop_global
   206     // will be awarded the contested queue element.)  The resulting state must
   207     // be interpreted as an empty queue.  (We only need to worry about one such
   208     // event: only the queue owner performs pop_local's, and several concurrent
   209     // threads attempting to perform the pop_global will all perform the same
   210     // CAS, and only one can succeed.)  Any stealing thread that reads after
   211     // either the increment or decrement will see an empty queue, and will not
   212     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
   213     // modified by concurrent queues, so the owner thread can reset the state to
   214     // _bottom == top so subsequent pushes will be performed normally.
   215     return (sz == N - 1) ? 0 : sz;
   216   }
   218 public:
   219   TaskQueueSuper() : _bottom(0), _age() {}
   221   // Return true if the TaskQueue contains/does not contain any tasks.
   222   bool peek()     const {
   223 #ifdef MIPS
   224     return get_bottom() != _age.top();
   225 #else
   226     return _bottom != _age.top();
   227 #endif
   228   }
   229   bool is_empty() const { return size() == 0; }
   231   // Return an estimate of the number of elements in the queue.
   232   // The "careful" version admits the possibility of pop_local/pop_global
   233   // races.
   234   uint size() const {
   235 #ifdef MIPS
   236     return size(get_bottom(), _age.top());
   237 #else
   238     return size(_bottom, _age.top());
   239 #endif
   240   }
   242   uint dirty_size() const {
   243 #ifdef MIPS
   244     return dirty_size(get_bottom(), _age.top());
   245 #else
   246     return dirty_size(_bottom, _age.top());
   247 #endif
   248   }
   250   void set_empty() {
   251 #ifdef MIPS
   252     set_bottom(0);
   253 #else
   254     _bottom = 0;
   255 #endif
   256     _age.set(0);
   257   }
   259   // Maximum number of elements allowed in the queue.  This is two less
   260   // than the actual queue size, for somewhat complicated reasons.
   261   uint max_elems() const { return N - 2; }
   263   // Total size of queue.
   264   static const uint total_size() { return N; }
   266   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
   267 };
   269 //
   270 // GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double-
   271 // ended-queue (deque), intended for use in work stealing. Queue operations
   272 // are non-blocking.
   273 //
   274 // A queue owner thread performs push() and pop_local() operations on one end
   275 // of the queue, while other threads may steal work using the pop_global()
   276 // method.
   277 //
   278 // The main difference to the original algorithm is that this
   279 // implementation allows wrap-around at the end of its allocated
   280 // storage, which is an array.
   281 //
   282 // The original paper is:
   283 //
   284 // Arora, N. S., Blumofe, R. D., and Plaxton, C. G.
   285 // Thread scheduling for multiprogrammed multiprocessors.
   286 // Theory of Computing Systems 34, 2 (2001), 115-144.
   287 //
   288 // The following paper provides an correctness proof and an
   289 // implementation for weakly ordered memory models including (pseudo-)
   290 // code containing memory barriers for a Chase-Lev deque. Chase-Lev is
   291 // similar to ABP, with the main difference that it allows resizing of the
   292 // underlying storage:
   293 //
   294 // Le, N. M., Pop, A., Cohen A., and Nardell, F. Z.
   295 // Correct and efficient work-stealing for weak memory models
   296 // Proceedings of the 18th ACM SIGPLAN symposium on Principles and
   297 // practice of parallel programming (PPoPP 2013), 69-80
   298 //
   300 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
   301 class GenericTaskQueue: public TaskQueueSuper<N, F> {
   302   ArrayAllocator<E, F> _array_allocator;
   303 protected:
   304   typedef typename TaskQueueSuper<N, F>::Age Age;
   305   typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
   307 #ifndef MIPS
   308   using TaskQueueSuper<N, F>::_bottom;
   309 #endif
   310   using TaskQueueSuper<N, F>::_age;
   311   using TaskQueueSuper<N, F>::increment_index;
   312   using TaskQueueSuper<N, F>::decrement_index;
   313   using TaskQueueSuper<N, F>::dirty_size;
   315 public:
   316   using TaskQueueSuper<N, F>::max_elems;
   317   using TaskQueueSuper<N, F>::size;
   319 #if  TASKQUEUE_STATS
   320   using TaskQueueSuper<N, F>::stats;
   321 #endif
   323 private:
   324   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   325   bool push_slow(E t, uint dirty_n_elems);
   326   bool pop_local_slow(uint localBot, Age oldAge);
   328 public:
   329   typedef E element_type;
   331   // Initializes the queue to empty.
   332   GenericTaskQueue();
   334   void initialize();
   336   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
   337   inline bool push(E t);
   339   // Attempts to claim a task from the "local" end of the queue (the most
   340   // recently pushed).  If successful, returns true and sets t to the task;
   341   // otherwise, returns false (the queue is empty).
   342   inline bool pop_local(volatile E& t);
   344   // Like pop_local(), but uses the "global" end of the queue (the least
   345   // recently pushed).
   346   bool pop_global(volatile E& t);
   348   // Delete any resource associated with the queue.
   349   ~GenericTaskQueue();
   351   // apply the closure to all elements in the task queue
   352   void oops_do(OopClosure* f);
   354 private:
   355   // Element array.
   356   volatile E* _elems;
   357 };
   359 template<class E, MEMFLAGS F, unsigned int N>
   360 GenericTaskQueue<E, F, N>::GenericTaskQueue() {
   361   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
   362 }
   364 template<class E, MEMFLAGS F, unsigned int N>
   365 void GenericTaskQueue<E, F, N>::initialize() {
   366   _elems = _array_allocator.allocate(N);
   367 }
   369 template<class E, MEMFLAGS F, unsigned int N>
   370 void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) {
   371   // tty->print_cr("START OopTaskQueue::oops_do");
   372   uint iters = size();
   373 #ifdef MIPS
   374   uint index = this->get_bottom();
   375 #else
   376   uint index = _bottom;
   377 #endif
   378   for (uint i = 0; i < iters; ++i) {
   379     index = decrement_index(index);
   380     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
   381     //            index, &_elems[index], _elems[index]);
   382     E* t = (E*)&_elems[index];      // cast away volatility
   383     oop* p = (oop*)t;
   384     assert((*t)->is_oop_or_null(), "Not an oop or null");
   385     f->do_oop(p);
   386   }
   387   // tty->print_cr("END OopTaskQueue::oops_do");
   388 }
   390 template<class E, MEMFLAGS F, unsigned int N>
   391 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
   392   if (dirty_n_elems == N - 1) {
   393     // Actually means 0, so do the push.
   394 #ifdef MIPS
   395     uint localBot = this->get_bottom();
   396 #else
   397     uint localBot = _bottom;
   398 #endif
   399     // g++ complains if the volatile result of the assignment is
   400     // unused, so we cast the volatile away.  We cannot cast directly
   401     // to void, because gcc treats that as not using the result of the
   402     // assignment.  However, casting to E& means that we trigger an
   403     // unused-value warning.  So, we cast the E& to void.
   404     (void)const_cast<E&>(_elems[localBot] = t);
   405 #ifdef MIPS
   406     this->set_bottom(increment_index(localBot));
   407 #else
   408     OrderAccess::release_store(&_bottom, increment_index(localBot));
   409 #endif
   410     TASKQUEUE_STATS_ONLY(stats.record_push());
   411     return true;
   412   }
   413   return false;
   414 }
   416 // pop_local_slow() is done by the owning thread and is trying to
   417 // get the last task in the queue.  It will compete with pop_global()
   418 // that will be used by other threads.  The tag age is incremented
   419 // whenever the queue goes empty which it will do here if this thread
   420 // gets the last task or in pop_global() if the queue wraps (top == 0
   421 // and pop_global() succeeds, see pop_global()).
   422 template<class E, MEMFLAGS F, unsigned int N>
   423 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
   424   // This queue was observed to contain exactly one element; either this
   425   // thread will claim it, or a competing "pop_global".  In either case,
   426   // the queue will be logically empty afterwards.  Create a new Age value
   427   // that represents the empty queue for the given value of "_bottom".  (We
   428   // must also increment "tag" because of the case where "bottom == 1",
   429   // "top == 0".  A pop_global could read the queue element in that case,
   430   // then have the owner thread do a pop followed by another push.  Without
   431   // the incrementing of "tag", the pop_global's CAS could succeed,
   432   // allowing it to believe it has claimed the stale element.)
   433   Age newAge((idx_t)localBot, oldAge.tag() + 1);
   434   // Perhaps a competing pop_global has already incremented "top", in which
   435   // case it wins the element.
   436   if (localBot == oldAge.top()) {
   437     // No competing pop_global has yet incremented "top"; we'll try to
   438     // install new_age, thus claiming the element.
   439     Age tempAge = _age.cmpxchg(newAge, oldAge);
   440     if (tempAge == oldAge) {
   441       // We win.
   442       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   443       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
   444       return true;
   445     }
   446   }
   447   // We lose; a completing pop_global gets the element.  But the queue is empty
   448   // and top is greater than bottom.  Fix this representation of the empty queue
   449   // to become the canonical one.
   450   _age.set(newAge);
   451   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   452   return false;
   453 }
   455 template<class E, MEMFLAGS F, unsigned int N>
   456 bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) {
   457   Age oldAge = _age.get();
   458   // Architectures with weak memory model require a barrier here
   459   // to guarantee that bottom is not older than age,
   460   // which is crucial for the correctness of the algorithm.
   461 #if !(defined SPARC || defined IA32 || defined AMD64)
   462   OrderAccess::fence();
   463 #endif
   464 #ifdef MIPS
   465   uint localBot = this->get_bottom();
   466 #else
   467   uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
   468 #endif
   469   uint n_elems = size(localBot, oldAge.top());
   470   if (n_elems == 0) {
   471     return false;
   472   }
   474   // g++ complains if the volatile result of the assignment is
   475   // unused, so we cast the volatile away.  We cannot cast directly
   476   // to void, because gcc treats that as not using the result of the
   477   // assignment.  However, casting to E& means that we trigger an
   478   // unused-value warning.  So, we cast the E& to void.
   479   (void) const_cast<E&>(t = _elems[oldAge.top()]);
   480   Age newAge(oldAge);
   481   newAge.increment();
   482   Age resAge = _age.cmpxchg(newAge, oldAge);
   484   // Note that using "_bottom" here might fail, since a pop_local might
   485   // have decremented it.
   486   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
   487   return resAge == oldAge;
   488 }
   490 template<class E, MEMFLAGS F, unsigned int N>
   491 GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
   492   FREE_C_HEAP_ARRAY(E, _elems, F);
   493 }
   495 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
   496 // elements that do not fit in the TaskQueue.
   497 //
   498 // This class hides two methods from super classes:
   499 //
   500 // push() - push onto the task queue or, if that fails, onto the overflow stack
   501 // is_empty() - return true if both the TaskQueue and overflow stack are empty
   502 //
   503 // Note that size() is not hidden--it returns the number of elements in the
   504 // TaskQueue, and does not include the size of the overflow stack.  This
   505 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
   506 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
   507 class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
   508 {
   509 public:
   510   typedef Stack<E, F>               overflow_t;
   511   typedef GenericTaskQueue<E, F, N> taskqueue_t;
   513   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
   515   // Push task t onto the queue or onto the overflow stack.  Return true.
   516   inline bool push(E t);
   518   // Try to push task t onto the queue only. Returns true if successful, false otherwise.
   519   inline bool try_push_to_taskqueue(E t);
   521   // Attempt to pop from the overflow stack; return true if anything was popped.
   522   inline bool pop_overflow(E& t);
   524   inline overflow_t* overflow_stack() { return &_overflow_stack; }
   526   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
   527   inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
   528   inline bool is_empty()        const {
   529     return taskqueue_empty() && overflow_empty();
   530   }
   532 private:
   533   overflow_t _overflow_stack;
   534 };
   536 template <class E, MEMFLAGS F, unsigned int N>
   537 bool OverflowTaskQueue<E, F, N>::push(E t)
   538 {
   539   if (!taskqueue_t::push(t)) {
   540     overflow_stack()->push(t);
   541     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
   542   }
   543   return true;
   544 }
   546 template <class E, MEMFLAGS F, unsigned int N>
   547 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
   548 {
   549   if (overflow_empty()) return false;
   550   t = overflow_stack()->pop();
   551   return true;
   552 }
   554 template <class E, MEMFLAGS F, unsigned int N>
   555 bool OverflowTaskQueue<E, F, N>::try_push_to_taskqueue(E t) {
   556   return taskqueue_t::push(t);
   557 }
   558 class TaskQueueSetSuper {
   559 protected:
   560   static int randomParkAndMiller(int* seed0);
   561 public:
   562   // Returns "true" if some TaskQueue in the set contains a task.
   563   virtual bool peek() = 0;
   564 };
   566 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
   567 };
   569 template<class T, MEMFLAGS F>
   570 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
   571 private:
   572   uint _n;
   573   T** _queues;
   575 public:
   576   typedef typename T::element_type E;
   578   GenericTaskQueueSet(int n) : _n(n) {
   579     typedef T* GenericTaskQueuePtr;
   580     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
   581     for (int i = 0; i < n; i++) {
   582       _queues[i] = NULL;
   583     }
   584   }
   586   bool steal_best_of_2(uint queue_num, int* seed, E& t);
   588   void register_queue(uint i, T* q);
   590   T* queue(uint n);
   592   // The thread with queue number "queue_num" (and whose random number seed is
   593   // at "seed") is trying to steal a task from some other queue.  (It may try
   594   // several queues, according to some configuration parameter.)  If some steal
   595   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
   596   // false.
   597   bool steal(uint queue_num, int* seed, E& t);
   599   bool peek();
   600 };
   602 template<class T, MEMFLAGS F> void
   603 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
   604   assert(i < _n, "index out of range.");
   605   _queues[i] = q;
   606 }
   608 template<class T, MEMFLAGS F> T*
   609 GenericTaskQueueSet<T, F>::queue(uint i) {
   610   return _queues[i];
   611 }
   613 template<class T, MEMFLAGS F> bool
   614 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
   615   for (uint i = 0; i < 2 * _n; i++) {
   616     if (steal_best_of_2(queue_num, seed, t)) {
   617       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
   618       return true;
   619     }
   620   }
   621   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
   622   return false;
   623 }
   625 template<class T, MEMFLAGS F> bool
   626 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
   627   if (_n > 2) {
   628     uint k1 = queue_num;
   629     while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
   630     uint k2 = queue_num;
   631     while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
   632     // Sample both and try the larger.
   633     uint sz1 = _queues[k1]->size();
   634     uint sz2 = _queues[k2]->size();
   635     if (sz2 > sz1) return _queues[k2]->pop_global(t);
   636     else return _queues[k1]->pop_global(t);
   637   } else if (_n == 2) {
   638     // Just try the other one.
   639     uint k = (queue_num + 1) % 2;
   640     return _queues[k]->pop_global(t);
   641   } else {
   642     assert(_n == 1, "can't be zero.");
   643     return false;
   644   }
   645 }
   647 template<class T, MEMFLAGS F>
   648 bool GenericTaskQueueSet<T, F>::peek() {
   649   // Try all the queues.
   650   for (uint j = 0; j < _n; j++) {
   651     if (_queues[j]->peek())
   652       return true;
   653   }
   654   return false;
   655 }
   657 // When to terminate from the termination protocol.
   658 class TerminatorTerminator: public CHeapObj<mtInternal> {
   659 public:
   660   virtual bool should_exit_termination() = 0;
   661 };
   663 // A class to aid in the termination of a set of parallel tasks using
   664 // TaskQueueSet's for work stealing.
   666 #undef TRACESPINNING
   668 class ParallelTaskTerminator: public StackObj {
   669 private:
   670   int _n_threads;
   671   TaskQueueSetSuper* _queue_set;
   672   char _pad_before[DEFAULT_CACHE_LINE_SIZE];
   673   int _offered_termination;
   674   char _pad_after[DEFAULT_CACHE_LINE_SIZE];
   676 #ifdef TRACESPINNING
   677   static uint _total_yields;
   678   static uint _total_spins;
   679   static uint _total_peeks;
   680 #endif
   682   bool peek_in_queue_set();
   683 protected:
   684   virtual void yield();
   685   void sleep(uint millis);
   687 public:
   689   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   690   // queue sets of work queues of other threads.
   691   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   693   // The current thread has no work, and is ready to terminate if everyone
   694   // else is.  If returns "true", all threads are terminated.  If returns
   695   // "false", available work has been observed in one of the task queues,
   696   // so the global task is not complete.
   697   bool offer_termination() {
   698     return offer_termination(NULL);
   699   }
   701   // As above, but it also terminates if the should_exit_termination()
   702   // method of the terminator parameter returns true. If terminator is
   703   // NULL, then it is ignored.
   704   bool offer_termination(TerminatorTerminator* terminator);
   706   // Reset the terminator, so that it may be reused again.
   707   // The caller is responsible for ensuring that this is done
   708   // in an MT-safe manner, once the previous round of use of
   709   // the terminator is finished.
   710   void reset_for_reuse();
   711   // Same as above but the number of parallel threads is set to the
   712   // given number.
   713   void reset_for_reuse(int n_threads);
   715 #ifdef TRACESPINNING
   716   static uint total_yields() { return _total_yields; }
   717   static uint total_spins() { return _total_spins; }
   718   static uint total_peeks() { return _total_peeks; }
   719   static void print_termination_counts();
   720 #endif
   721 };
   723 template<class E, MEMFLAGS F, unsigned int N> inline bool
   724 GenericTaskQueue<E, F, N>::push(E t) {
   725 #ifdef MIPS
   726   uint localBot = this->get_bottom();
   727 #else
   728   uint localBot = _bottom;
   729 #endif
   730   assert(localBot < N, "_bottom out of range.");
   731   idx_t top = _age.top();
   732   uint dirty_n_elems = dirty_size(localBot, top);
   733   assert(dirty_n_elems < N, "n_elems out of range.");
   734   if (dirty_n_elems < max_elems()) {
   735     // g++ complains if the volatile result of the assignment is
   736     // unused, so we cast the volatile away.  We cannot cast directly
   737     // to void, because gcc treats that as not using the result of the
   738     // assignment.  However, casting to E& means that we trigger an
   739     // unused-value warning.  So, we cast the E& to void.
   740     (void) const_cast<E&>(_elems[localBot] = t);
   741 #ifdef MIPS
   742     this->set_bottom(increment_index(localBot));
   743 #else
   744     OrderAccess::release_store(&_bottom, increment_index(localBot));
   745 #endif
   746     TASKQUEUE_STATS_ONLY(stats.record_push());
   747     return true;
   748   } else {
   749     return push_slow(t, dirty_n_elems);
   750   }
   751 }
   753 template<class E, MEMFLAGS F, unsigned int N> inline bool
   754 GenericTaskQueue<E, F, N>::pop_local(volatile E& t) {
   755 #ifdef MIPS
   756   uint localBot = this->get_bottom();
   757 #else
   758   uint localBot = _bottom;
   759 #endif
   760   // This value cannot be N-1.  That can only occur as a result of
   761   // the assignment to bottom in this method.  If it does, this method
   762   // resets the size to 0 before the next call (which is sequential,
   763   // since this is pop_local.)
   764   uint dirty_n_elems = dirty_size(localBot, _age.top());
   765   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
   766   if (dirty_n_elems == 0) return false;
   767   localBot = decrement_index(localBot);
   768 #ifdef MIPS
   769   this->set_bottom(localBot);
   770 #else
   771   _bottom = localBot;
   772 #endif
   773   // This is necessary to prevent any read below from being reordered
   774   // before the store just above.
   775   OrderAccess::fence();
   776   // g++ complains if the volatile result of the assignment is
   777   // unused, so we cast the volatile away.  We cannot cast directly
   778   // to void, because gcc treats that as not using the result of the
   779   // assignment.  However, casting to E& means that we trigger an
   780   // unused-value warning.  So, we cast the E& to void.
   781   (void) const_cast<E&>(t = _elems[localBot]);
   782   // This is a second read of "age"; the "size()" above is the first.
   783   // If there's still at least one element in the queue, based on the
   784   // "_bottom" and "age" we've read, then there can be no interference with
   785   // a "pop_global" operation, and we're done.
   786   idx_t tp = _age.top();    // XXX
   787   if (size(localBot, tp) > 0) {
   788     assert(dirty_size(localBot, tp) != N - 1, "sanity");
   789     TASKQUEUE_STATS_ONLY(stats.record_pop());
   790     return true;
   791   } else {
   792     // Otherwise, the queue contained exactly one element; we take the slow
   793     // path.
   795     // The barrier is required to prevent reordering the two reads of _age:
   796     // one is the _age.get() below, and the other is _age.top() above the if-stmt.
   797     // The algorithm may fail if _age.get() reads an older value than _age.top().
   798     OrderAccess::loadload();
   799     return pop_local_slow(localBot, _age.get());
   800   }
   801 }
   803 typedef GenericTaskQueue<oop, mtGC>             OopTaskQueue;
   804 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
   806 #ifdef _MSC_VER
   807 #pragma warning(push)
   808 // warning C4522: multiple assignment operators specified
   809 #pragma warning(disable:4522)
   810 #endif
   812 // This is a container class for either an oop* or a narrowOop*.
   813 // Both are pushed onto a task queue and the consumer will test is_narrow()
   814 // to determine which should be processed.
   815 class StarTask {
   816   void*  _holder;        // either union oop* or narrowOop*
   818   enum { COMPRESSED_OOP_MASK = 1 };
   820  public:
   821   StarTask(narrowOop* p) {
   822     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   823     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
   824   }
   825   StarTask(oop* p)       {
   826     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   827     _holder = (void*)p;
   828   }
   829   StarTask()             { _holder = NULL; }
   830   operator oop*()        { return (oop*)_holder; }
   831   operator narrowOop*()  {
   832     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   833   }
   835   StarTask& operator=(const StarTask& t) {
   836     _holder = t._holder;
   837     return *this;
   838   }
   839   volatile StarTask& operator=(const volatile StarTask& t) volatile {
   840     _holder = t._holder;
   841     return *this;
   842   }
   844   bool is_narrow() const {
   845     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   846   }
   847 };
   849 class ObjArrayTask
   850 {
   851 public:
   852   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
   853   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
   854     assert(idx <= size_t(max_jint), "too big");
   855   }
   856   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
   858   ObjArrayTask& operator =(const ObjArrayTask& t) {
   859     _obj = t._obj;
   860     _index = t._index;
   861     return *this;
   862   }
   863   volatile ObjArrayTask&
   864   operator =(const volatile ObjArrayTask& t) volatile {
   865     (void)const_cast<oop&>(_obj = t._obj);
   866     _index = t._index;
   867     return *this;
   868   }
   870   inline oop obj()   const { return _obj; }
   871   inline int index() const { return _index; }
   873   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
   875 private:
   876   oop _obj;
   877   int _index;
   878 };
   880 #ifdef _MSC_VER
   881 #pragma warning(pop)
   882 #endif
   884 typedef OverflowTaskQueue<StarTask, mtClass>           OopStarTaskQueue;
   885 typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet;
   887 typedef OverflowTaskQueue<size_t, mtInternal>             RegionTaskQueue;
   888 typedef GenericTaskQueueSet<RegionTaskQueue, mtClass>     RegionTaskQueueSet;
   891 #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP

mercurial