src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Tue, 04 Feb 2020 18:13:14 +0800

author
aoqi
date
Tue, 04 Feb 2020 18:13:14 +0800
changeset 9806
758c07667682
parent 7994
04ff2f6cd0eb
parent 9796
65749db89e61
child 9931
fd44df5e3bc3
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    28 #include "gc_implementation/g1/collectionSetChooser.hpp"
    29 #include "gc_implementation/g1/g1Allocator.hpp"
    30 #include "gc_implementation/g1/g1MMUTracker.hpp"
    31 #include "memory/collectorPolicy.hpp"
    33 // A G1CollectorPolicy makes policy decisions that determine the
    34 // characteristics of the collector.  Examples include:
    35 //   * choice of collection set.
    36 //   * when to collect.
    38 class HeapRegion;
    39 class CollectionSetChooser;
    40 class G1GCPhaseTimes;
    42 // TraceGen0Time collects data on _both_ young and mixed evacuation pauses
    43 // (the latter may contain non-young regions - i.e. regions that are
    44 // technically in Gen1) while TraceGen1Time collects data about full GCs.
    45 class TraceGen0TimeData : public CHeapObj<mtGC> {
    46  private:
    47   unsigned  _young_pause_num;
    48   unsigned  _mixed_pause_num;
    50   NumberSeq _all_stop_world_times_ms;
    51   NumberSeq _all_yield_times_ms;
    53   NumberSeq _total;
    54   NumberSeq _other;
    55   NumberSeq _root_region_scan_wait;
    56   NumberSeq _parallel;
    57   NumberSeq _ext_root_scan;
    58   NumberSeq _satb_filtering;
    59   NumberSeq _update_rs;
    60   NumberSeq _scan_rs;
    61   NumberSeq _obj_copy;
    62   NumberSeq _termination;
    63   NumberSeq _parallel_other;
    64   NumberSeq _clear_ct;
    66   void print_summary(const char* str, const NumberSeq* seq) const;
    67   void print_summary_sd(const char* str, const NumberSeq* seq) const;
    69 public:
    70    TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
    71   void record_start_collection(double time_to_stop_the_world_ms);
    72   void record_yield_time(double yield_time_ms);
    73   void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
    74   void increment_young_collection_count();
    75   void increment_mixed_collection_count();
    76   void print() const;
    77 };
    79 class TraceGen1TimeData : public CHeapObj<mtGC> {
    80  private:
    81   NumberSeq _all_full_gc_times;
    83  public:
    84   void record_full_collection(double full_gc_time_ms);
    85   void print() const;
    86 };
    88 // There are three command line options related to the young gen size:
    89 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
    90 // just a short form for NewSize==MaxNewSize). G1 will use its internal
    91 // heuristics to calculate the actual young gen size, so these options
    92 // basically only limit the range within which G1 can pick a young gen
    93 // size. Also, these are general options taking byte sizes. G1 will
    94 // internally work with a number of regions instead. So, some rounding
    95 // will occur.
    96 //
    97 // If nothing related to the the young gen size is set on the command
    98 // line we should allow the young gen to be between G1NewSizePercent
    99 // and G1MaxNewSizePercent of the heap size. This means that every time
   100 // the heap size changes, the limits for the young gen size will be
   101 // recalculated.
   102 //
   103 // If only -XX:NewSize is set we should use the specified value as the
   104 // minimum size for young gen. Still using G1MaxNewSizePercent of the
   105 // heap as maximum.
   106 //
   107 // If only -XX:MaxNewSize is set we should use the specified value as the
   108 // maximum size for young gen. Still using G1NewSizePercent of the heap
   109 // as minimum.
   110 //
   111 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
   112 // No updates when the heap size changes. There is a special case when
   113 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
   114 // different heuristic for calculating the collection set when we do mixed
   115 // collection.
   116 //
   117 // If only -XX:NewRatio is set we should use the specified ratio of the heap
   118 // as both min and max. This will be interpreted as "fixed" just like the
   119 // NewSize==MaxNewSize case above. But we will update the min and max
   120 // everytime the heap size changes.
   121 //
   122 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
   123 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
   124 class G1YoungGenSizer : public CHeapObj<mtGC> {
   125 private:
   126   enum SizerKind {
   127     SizerDefaults,
   128     SizerNewSizeOnly,
   129     SizerMaxNewSizeOnly,
   130     SizerMaxAndNewSize,
   131     SizerNewRatio
   132   };
   133   SizerKind _sizer_kind;
   134   uint _min_desired_young_length;
   135   uint _max_desired_young_length;
   137   // False when using a fixed young generation size due to command-line options,
   138   // true otherwise.
   139   bool _adaptive_size;
   141   uint calculate_default_min_length(uint new_number_of_heap_regions);
   142   uint calculate_default_max_length(uint new_number_of_heap_regions);
   144   // Update the given values for minimum and maximum young gen length in regions
   145   // given the number of heap regions depending on the kind of sizing algorithm.
   146   void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);
   148 public:
   149   G1YoungGenSizer();
   150   // Calculate the maximum length of the young gen given the number of regions
   151   // depending on the sizing algorithm.
   152   uint max_young_length(uint number_of_heap_regions);
   154   void heap_size_changed(uint new_number_of_heap_regions);
   155   uint min_desired_young_length() {
   156     return _min_desired_young_length;
   157   }
   158   uint max_desired_young_length() {
   159     return _max_desired_young_length;
   160   }
   161   bool adaptive_young_list_length() {
   162     return _adaptive_size;
   163   }
   164 };
   166 class G1CollectorPolicy: public CollectorPolicy {
   167 private:
   168   // either equal to the number of parallel threads, if ParallelGCThreads
   169   // has been set, or 1 otherwise
   170   int _parallel_gc_threads;
   172   // The number of GC threads currently active.
   173   uintx _no_of_gc_threads;
   175   enum SomePrivateConstants {
   176     NumPrevPausesForHeuristics = 10
   177   };
   179   G1MMUTracker* _mmu_tracker;
   181   void initialize_alignments();
   182   void initialize_flags();
   184   CollectionSetChooser* _collectionSetChooser;
   186   double _full_collection_start_sec;
   187   uint   _cur_collection_pause_used_regions_at_start;
   189   // These exclude marking times.
   190   TruncatedSeq* _recent_gc_times_ms;
   192   TruncatedSeq* _concurrent_mark_remark_times_ms;
   193   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   195   TraceGen0TimeData _trace_gen0_time_data;
   196   TraceGen1TimeData _trace_gen1_time_data;
   198   double _stop_world_start;
   200   // indicates whether we are in young or mixed GC mode
   201   bool _gcs_are_young;
   203   uint _young_list_target_length;
   204   uint _young_list_fixed_length;
   206   // The max number of regions we can extend the eden by while the GC
   207   // locker is active. This should be >= _young_list_target_length;
   208   uint _young_list_max_length;
   210   bool                  _last_gc_was_young;
   212   bool                  _during_marking;
   213   bool                  _in_marking_window;
   214   bool                  _in_marking_window_im;
   216   SurvRateGroup*        _short_lived_surv_rate_group;
   217   SurvRateGroup*        _survivor_surv_rate_group;
   218   // add here any more surv rate groups
   220   double                _gc_overhead_perc;
   222   double _reserve_factor;
   223   uint _reserve_regions;
   225   bool during_marking() {
   226     return _during_marking;
   227   }
   229   enum PredictionConstants {
   230     TruncatedSeqLength = 10
   231   };
   233   TruncatedSeq* _alloc_rate_ms_seq;
   234   double        _prev_collection_pause_end_ms;
   236   TruncatedSeq* _rs_length_diff_seq;
   237   TruncatedSeq* _cost_per_card_ms_seq;
   238   TruncatedSeq* _young_cards_per_entry_ratio_seq;
   239   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
   240   TruncatedSeq* _cost_per_entry_ms_seq;
   241   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
   242   TruncatedSeq* _cost_per_byte_ms_seq;
   243   TruncatedSeq* _constant_other_time_ms_seq;
   244   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   245   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   247   TruncatedSeq* _pending_cards_seq;
   248   TruncatedSeq* _rs_lengths_seq;
   250   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   252   G1YoungGenSizer* _young_gen_sizer;
   254   uint _eden_cset_region_length;
   255   uint _survivor_cset_region_length;
   256   uint _old_cset_region_length;
   258   void init_cset_region_lengths(uint eden_cset_region_length,
   259                                 uint survivor_cset_region_length);
   261   uint eden_cset_region_length()     { return _eden_cset_region_length;     }
   262   uint survivor_cset_region_length() { return _survivor_cset_region_length; }
   263   uint old_cset_region_length()      { return _old_cset_region_length;      }
   265   uint _free_regions_at_end_of_collection;
   267   size_t _recorded_rs_lengths;
   268   size_t _max_rs_lengths;
   269   double _sigma;
   271   size_t _rs_lengths_prediction;
   273   double sigma() { return _sigma; }
   275   // A function that prevents us putting too much stock in small sample
   276   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   277   // of samples.  5 or more samples yields one; fewer scales linearly from
   278   // 2.0 at 1 sample to 1.0 at 5.
   279   double confidence_factor(int samples) {
   280     if (samples > 4) return 1.0;
   281     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   282   }
   284   double get_new_neg_prediction(TruncatedSeq* seq) {
   285     return seq->davg() - sigma() * seq->dsd();
   286   }
   288 #ifndef PRODUCT
   289   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   290 #endif // PRODUCT
   292   void adjust_concurrent_refinement(double update_rs_time,
   293                                     double update_rs_processed_buffers,
   294                                     double goal_ms);
   296   uintx no_of_gc_threads() { return _no_of_gc_threads; }
   297   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
   299   double _pause_time_target_ms;
   301   size_t _pending_cards;
   303 public:
   304   // Accessors
   306   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
   307     hr->set_eden();
   308     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   309     hr->set_young_index_in_cset(young_index_in_cset);
   310   }
   312   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
   313     assert(hr->is_survivor(), "pre-condition");
   314     hr->install_surv_rate_group(_survivor_surv_rate_group);
   315     hr->set_young_index_in_cset(young_index_in_cset);
   316   }
   318 #ifndef PRODUCT
   319   bool verify_young_ages();
   320 #endif // PRODUCT
   322   double get_new_prediction(TruncatedSeq* seq) {
   323     return MAX2(seq->davg() + sigma() * seq->dsd(),
   324                 seq->davg() * confidence_factor(seq->num()));
   325   }
   327   void record_max_rs_lengths(size_t rs_lengths) {
   328     _max_rs_lengths = rs_lengths;
   329   }
   331   size_t predict_rs_length_diff() {
   332     return (size_t) get_new_prediction(_rs_length_diff_seq);
   333   }
   335   double predict_alloc_rate_ms() {
   336     return get_new_prediction(_alloc_rate_ms_seq);
   337   }
   339   double predict_cost_per_card_ms() {
   340     return get_new_prediction(_cost_per_card_ms_seq);
   341   }
   343   double predict_rs_update_time_ms(size_t pending_cards) {
   344     return (double) pending_cards * predict_cost_per_card_ms();
   345   }
   347   double predict_young_cards_per_entry_ratio() {
   348     return get_new_prediction(_young_cards_per_entry_ratio_seq);
   349   }
   351   double predict_mixed_cards_per_entry_ratio() {
   352     if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
   353       return predict_young_cards_per_entry_ratio();
   354     } else {
   355       return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
   356     }
   357   }
   359   size_t predict_young_card_num(size_t rs_length) {
   360     return (size_t) ((double) rs_length *
   361                      predict_young_cards_per_entry_ratio());
   362   }
   364   size_t predict_non_young_card_num(size_t rs_length) {
   365     return (size_t) ((double) rs_length *
   366                      predict_mixed_cards_per_entry_ratio());
   367   }
   369   double predict_rs_scan_time_ms(size_t card_num) {
   370     if (gcs_are_young()) {
   371       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   372     } else {
   373       return predict_mixed_rs_scan_time_ms(card_num);
   374     }
   375   }
   377   double predict_mixed_rs_scan_time_ms(size_t card_num) {
   378     if (_mixed_cost_per_entry_ms_seq->num() < 3) {
   379       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   380     } else {
   381       return (double) (card_num *
   382                        get_new_prediction(_mixed_cost_per_entry_ms_seq));
   383     }
   384   }
   386   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   387     if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
   388       return (1.1 * (double) bytes_to_copy) *
   389               get_new_prediction(_cost_per_byte_ms_seq);
   390     } else {
   391       return (double) bytes_to_copy *
   392              get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   393     }
   394   }
   396   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   397     if (_in_marking_window && !_in_marking_window_im) {
   398       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   399     } else {
   400       return (double) bytes_to_copy *
   401               get_new_prediction(_cost_per_byte_ms_seq);
   402     }
   403   }
   405   double predict_constant_other_time_ms() {
   406     return get_new_prediction(_constant_other_time_ms_seq);
   407   }
   409   double predict_young_other_time_ms(size_t young_num) {
   410     return (double) young_num *
   411            get_new_prediction(_young_other_cost_per_region_ms_seq);
   412   }
   414   double predict_non_young_other_time_ms(size_t non_young_num) {
   415     return (double) non_young_num *
   416            get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   417   }
   419   double predict_base_elapsed_time_ms(size_t pending_cards);
   420   double predict_base_elapsed_time_ms(size_t pending_cards,
   421                                       size_t scanned_cards);
   422   size_t predict_bytes_to_copy(HeapRegion* hr);
   423   double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);
   425   void set_recorded_rs_lengths(size_t rs_lengths);
   427   uint cset_region_length()       { return young_cset_region_length() +
   428                                            old_cset_region_length(); }
   429   uint young_cset_region_length() { return eden_cset_region_length() +
   430                                            survivor_cset_region_length(); }
   432   double predict_survivor_regions_evac_time();
   434   void cset_regions_freed() {
   435     bool propagate = _last_gc_was_young && !_in_marking_window;
   436     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   437     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   438     // also call it on any more surv rate groups
   439   }
   441   G1MMUTracker* mmu_tracker() {
   442     return _mmu_tracker;
   443   }
   445   double max_pause_time_ms() {
   446     return _mmu_tracker->max_gc_time() * 1000.0;
   447   }
   449   double predict_remark_time_ms() {
   450     return get_new_prediction(_concurrent_mark_remark_times_ms);
   451   }
   453   double predict_cleanup_time_ms() {
   454     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   455   }
   457   // Returns an estimate of the survival rate of the region at yg-age
   458   // "yg_age".
   459   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   460     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   461     if (seq->num() == 0)
   462       gclog_or_tty->print("BARF! age is %d", age);
   463     guarantee( seq->num() > 0, "invariant" );
   464     double pred = get_new_prediction(seq);
   465     if (pred > 1.0)
   466       pred = 1.0;
   467     return pred;
   468   }
   470   double predict_yg_surv_rate(int age) {
   471     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   472   }
   474   double accum_yg_surv_rate_pred(int age) {
   475     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   476   }
   478 private:
   479   // Statistics kept per GC stoppage, pause or full.
   480   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   482   // Add a new GC of the given duration and end time to the record.
   483   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   485   // The head of the list (via "next_in_collection_set()") representing the
   486   // current collection set. Set from the incrementally built collection
   487   // set at the start of the pause.
   488   HeapRegion* _collection_set;
   490   // The number of bytes in the collection set before the pause. Set from
   491   // the incrementally built collection set at the start of an evacuation
   492   // pause, and incremented in finalize_cset() when adding old regions
   493   // (if any) to the collection set.
   494   size_t _collection_set_bytes_used_before;
   496   // The number of bytes copied during the GC.
   497   size_t _bytes_copied_during_gc;
   499   // The associated information that is maintained while the incremental
   500   // collection set is being built with young regions. Used to populate
   501   // the recorded info for the evacuation pause.
   503   enum CSetBuildType {
   504     Active,             // We are actively building the collection set
   505     Inactive            // We are not actively building the collection set
   506   };
   508   CSetBuildType _inc_cset_build_state;
   510   // The head of the incrementally built collection set.
   511   HeapRegion* _inc_cset_head;
   513   // The tail of the incrementally built collection set.
   514   HeapRegion* _inc_cset_tail;
   516   // The number of bytes in the incrementally built collection set.
   517   // Used to set _collection_set_bytes_used_before at the start of
   518   // an evacuation pause.
   519   size_t _inc_cset_bytes_used_before;
   521   // Used to record the highest end of heap region in collection set
   522   HeapWord* _inc_cset_max_finger;
   524   // The RSet lengths recorded for regions in the CSet. It is updated
   525   // by the thread that adds a new region to the CSet. We assume that
   526   // only one thread can be allocating a new CSet region (currently,
   527   // it does so after taking the Heap_lock) hence no need to
   528   // synchronize updates to this field.
   529   size_t _inc_cset_recorded_rs_lengths;
   531   // A concurrent refinement thread periodcially samples the young
   532   // region RSets and needs to update _inc_cset_recorded_rs_lengths as
   533   // the RSets grow. Instead of having to syncronize updates to that
   534   // field we accumulate them in this field and add it to
   535   // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
   536   ssize_t _inc_cset_recorded_rs_lengths_diffs;
   538   // The predicted elapsed time it will take to collect the regions in
   539   // the CSet. This is updated by the thread that adds a new region to
   540   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
   541   // MT-safety assumptions.
   542   double _inc_cset_predicted_elapsed_time_ms;
   544   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
   545   double _inc_cset_predicted_elapsed_time_ms_diffs;
   547   // Stash a pointer to the g1 heap.
   548   G1CollectedHeap* _g1;
   550   G1GCPhaseTimes* _phase_times;
   552   // The ratio of gc time to elapsed time, computed over recent pauses.
   553   double _recent_avg_pause_time_ratio;
   555   double recent_avg_pause_time_ratio() {
   556     return _recent_avg_pause_time_ratio;
   557   }
   559   // At the end of a pause we check the heap occupancy and we decide
   560   // whether we will start a marking cycle during the next pause. If
   561   // we decide that we want to do that, we will set this parameter to
   562   // true. So, this parameter will stay true between the end of a
   563   // pause and the beginning of a subsequent pause (not necessarily
   564   // the next one, see the comments on the next field) when we decide
   565   // that we will indeed start a marking cycle and do the initial-mark
   566   // work.
   567   volatile bool _initiate_conc_mark_if_possible;
   569   // If initiate_conc_mark_if_possible() is set at the beginning of a
   570   // pause, it is a suggestion that the pause should start a marking
   571   // cycle by doing the initial-mark work. However, it is possible
   572   // that the concurrent marking thread is still finishing up the
   573   // previous marking cycle (e.g., clearing the next marking
   574   // bitmap). If that is the case we cannot start a new cycle and
   575   // we'll have to wait for the concurrent marking thread to finish
   576   // what it is doing. In this case we will postpone the marking cycle
   577   // initiation decision for the next pause. When we eventually decide
   578   // to start a cycle, we will set _during_initial_mark_pause which
   579   // will stay true until the end of the initial-mark pause and it's
   580   // the condition that indicates that a pause is doing the
   581   // initial-mark work.
   582   volatile bool _during_initial_mark_pause;
   584   bool _last_young_gc;
   586   // This set of variables tracks the collector efficiency, in order to
   587   // determine whether we should initiate a new marking.
   588   double _cur_mark_stop_world_time_ms;
   589   double _mark_remark_start_sec;
   590   double _mark_cleanup_start_sec;
   592   // Update the young list target length either by setting it to the
   593   // desired fixed value or by calculating it using G1's pause
   594   // prediction model. If no rs_lengths parameter is passed, predict
   595   // the RS lengths using the prediction model, otherwise use the
   596   // given rs_lengths as the prediction.
   597   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
   599   // Calculate and return the minimum desired young list target
   600   // length. This is the minimum desired young list length according
   601   // to the user's inputs.
   602   uint calculate_young_list_desired_min_length(uint base_min_length);
   604   // Calculate and return the maximum desired young list target
   605   // length. This is the maximum desired young list length according
   606   // to the user's inputs.
   607   uint calculate_young_list_desired_max_length();
   609   // Calculate and return the maximum young list target length that
   610   // can fit into the pause time goal. The parameters are: rs_lengths
   611   // represent the prediction of how large the young RSet lengths will
   612   // be, base_min_length is the alreay existing number of regions in
   613   // the young list, min_length and max_length are the desired min and
   614   // max young list length according to the user's inputs.
   615   uint calculate_young_list_target_length(size_t rs_lengths,
   616                                           uint base_min_length,
   617                                           uint desired_min_length,
   618                                           uint desired_max_length);
   620   // Check whether a given young length (young_length) fits into the
   621   // given target pause time and whether the prediction for the amount
   622   // of objects to be copied for the given length will fit into the
   623   // given free space (expressed by base_free_regions).  It is used by
   624   // calculate_young_list_target_length().
   625   bool predict_will_fit(uint young_length, double base_time_ms,
   626                         uint base_free_regions, double target_pause_time_ms);
   628   // Calculate the minimum number of old regions we'll add to the CSet
   629   // during a mixed GC.
   630   uint calc_min_old_cset_length();
   632   // Calculate the maximum number of old regions we'll add to the CSet
   633   // during a mixed GC.
   634   uint calc_max_old_cset_length();
   636   // Returns the given amount of uncollected reclaimable space
   637   // as a percentage of the current heap capacity.
   638   double reclaimable_bytes_perc(size_t reclaimable_bytes);
   640 public:
   642   G1CollectorPolicy();
   644   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   646   virtual CollectorPolicy::Name kind() {
   647     return CollectorPolicy::G1CollectorPolicyKind;
   648   }
   650   G1GCPhaseTimes* phase_times() const { return _phase_times; }
   652   // Check the current value of the young list RSet lengths and
   653   // compare it against the last prediction. If the current value is
   654   // higher, recalculate the young list target length prediction.
   655   void revise_young_list_target_length_if_necessary();
   657   // This should be called after the heap is resized.
   658   void record_new_heap_size(uint new_number_of_regions);
   660   void init();
   662   // Create jstat counters for the policy.
   663   virtual void initialize_gc_policy_counters();
   665   virtual HeapWord* mem_allocate_work(size_t size,
   666                                       bool is_tlab,
   667                                       bool* gc_overhead_limit_was_exceeded);
   669   // This method controls how a collector handles one or more
   670   // of its generations being fully allocated.
   671   virtual HeapWord* satisfy_failed_allocation(size_t size,
   672                                               bool is_tlab);
   674   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   676   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
   678   // Record the start and end of an evacuation pause.
   679   void record_collection_pause_start(double start_time_sec);
   680   void record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info);
   682   // Record the start and end of a full collection.
   683   void record_full_collection_start();
   684   void record_full_collection_end();
   686   // Must currently be called while the world is stopped.
   687   void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
   689   // Record start and end of remark.
   690   void record_concurrent_mark_remark_start();
   691   void record_concurrent_mark_remark_end();
   693   // Record start, end, and completion of cleanup.
   694   void record_concurrent_mark_cleanup_start();
   695   void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
   696   void record_concurrent_mark_cleanup_completed();
   698   // Records the information about the heap size for reporting in
   699   // print_detailed_heap_transition
   700   void record_heap_size_info_at_start(bool full);
   702   // Print heap sizing transition (with less and more detail).
   703   void print_heap_transition();
   704   void print_detailed_heap_transition(bool full = false);
   706   void record_stop_world_start();
   707   void record_concurrent_pause();
   709   // Record how much space we copied during a GC. This is typically
   710   // called when a GC alloc region is being retired.
   711   void record_bytes_copied_during_gc(size_t bytes) {
   712     _bytes_copied_during_gc += bytes;
   713   }
   715   // The amount of space we copied during a GC.
   716   size_t bytes_copied_during_gc() {
   717     return _bytes_copied_during_gc;
   718   }
   720   // Determine whether there are candidate regions so that the
   721   // next GC should be mixed. The two action strings are used
   722   // in the ergo output when the method returns true or false.
   723   bool next_gc_should_be_mixed(const char* true_action_str,
   724                                const char* false_action_str);
   726   // Choose a new collection set.  Marks the chosen regions as being
   727   // "in_collection_set", and links them together.  The head and number of
   728   // the collection set are available via access methods.
   729   void finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info);
   731   // The head of the list (via "next_in_collection_set()") representing the
   732   // current collection set.
   733   HeapRegion* collection_set() { return _collection_set; }
   735   void clear_collection_set() { _collection_set = NULL; }
   737   // Add old region "hr" to the CSet.
   738   void add_old_region_to_cset(HeapRegion* hr);
   740   // Incremental CSet Support
   742   // The head of the incrementally built collection set.
   743   HeapRegion* inc_cset_head() { return _inc_cset_head; }
   745   // The tail of the incrementally built collection set.
   746   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
   748   // Initialize incremental collection set info.
   749   void start_incremental_cset_building();
   751   // Perform any final calculations on the incremental CSet fields
   752   // before we can use them.
   753   void finalize_incremental_cset_building();
   755   void clear_incremental_cset() {
   756     _inc_cset_head = NULL;
   757     _inc_cset_tail = NULL;
   758   }
   760   // Stop adding regions to the incremental collection set
   761   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
   763   // Add information about hr to the aggregated information for the
   764   // incrementally built collection set.
   765   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
   767   // Update information about hr in the aggregated information for
   768   // the incrementally built collection set.
   769   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
   771 private:
   772   // Update the incremental cset information when adding a region
   773   // (should not be called directly).
   774   void add_region_to_incremental_cset_common(HeapRegion* hr);
   776 public:
   777   // Add hr to the LHS of the incremental collection set.
   778   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
   780   // Add hr to the RHS of the incremental collection set.
   781   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
   783 #ifndef PRODUCT
   784   void print_collection_set(HeapRegion* list_head, outputStream* st);
   785 #endif // !PRODUCT
   787   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
   788   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
   789   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
   791   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
   792   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
   793   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
   795   // This sets the initiate_conc_mark_if_possible() flag to start a
   796   // new cycle, as long as we are not already in one. It's best if it
   797   // is called during a safepoint when the test whether a cycle is in
   798   // progress or not is stable.
   799   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
   801   // This is called at the very beginning of an evacuation pause (it
   802   // has to be the first thing that the pause does). If
   803   // initiate_conc_mark_if_possible() is true, and the concurrent
   804   // marking thread has completed its work during the previous cycle,
   805   // it will set during_initial_mark_pause() to so that the pause does
   806   // the initial-mark work and start a marking cycle.
   807   void decide_on_conc_mark_initiation();
   809   // If an expansion would be appropriate, because recent GC overhead had
   810   // exceeded the desired limit, return an amount to expand by.
   811   virtual size_t expansion_amount();
   813   // Print tracing information.
   814   void print_tracing_info() const;
   816   // Print stats on young survival ratio
   817   void print_yg_surv_rate_info() const;
   819   void finished_recalculating_age_indexes(bool is_survivors) {
   820     if (is_survivors) {
   821       _survivor_surv_rate_group->finished_recalculating_age_indexes();
   822     } else {
   823       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
   824     }
   825     // do that for any other surv rate groups
   826   }
   828   size_t young_list_target_length() const { return _young_list_target_length; }
   830   bool is_young_list_full();
   832   bool can_expand_young_list();
   834   uint young_list_max_length() {
   835     return _young_list_max_length;
   836   }
   838   bool gcs_are_young() {
   839     return _gcs_are_young;
   840   }
   841   void set_gcs_are_young(bool gcs_are_young) {
   842     _gcs_are_young = gcs_are_young;
   843   }
   845   bool adaptive_young_list_length() {
   846     return _young_gen_sizer->adaptive_young_list_length();
   847   }
   849 private:
   850   //
   851   // Survivor regions policy.
   852   //
   854   // Current tenuring threshold, set to 0 if the collector reaches the
   855   // maximum amount of survivors regions.
   856   uint _tenuring_threshold;
   858   // The limit on the number of regions allocated for survivors.
   859   uint _max_survivor_regions;
   861   // For reporting purposes.
   862   // The value of _heap_bytes_before_gc is also used to calculate
   863   // the cost of copying.
   865   size_t _eden_used_bytes_before_gc;         // Eden occupancy before GC
   866   size_t _survivor_used_bytes_before_gc;     // Survivor occupancy before GC
   867   size_t _heap_used_bytes_before_gc;         // Heap occupancy before GC
   868   size_t _metaspace_used_bytes_before_gc;    // Metaspace occupancy before GC
   870   size_t _eden_capacity_bytes_before_gc;     // Eden capacity before GC
   871   size_t _heap_capacity_bytes_before_gc;     // Heap capacity before GC
   873   // The amount of survivor regions after a collection.
   874   uint _recorded_survivor_regions;
   875   // List of survivor regions.
   876   HeapRegion* _recorded_survivor_head;
   877   HeapRegion* _recorded_survivor_tail;
   879   ageTable _survivors_age_table;
   881 public:
   882   uint tenuring_threshold() const { return _tenuring_threshold; }
   884   static const uint REGIONS_UNLIMITED = (uint) -1;
   886   uint max_regions(InCSetState dest) {
   887     switch (dest.value()) {
   888       case InCSetState::Young:
   889         return _max_survivor_regions;
   890       case InCSetState::Old:
   891         return REGIONS_UNLIMITED;
   892       default:
   893         assert(false, err_msg("Unknown dest state: " CSETSTATE_FORMAT, dest.value()));
   894         break;
   895     }
   896     // keep some compilers happy
   897     return 0;
   898   }
   900   void note_start_adding_survivor_regions() {
   901     _survivor_surv_rate_group->start_adding_regions();
   902   }
   904   void note_stop_adding_survivor_regions() {
   905     _survivor_surv_rate_group->stop_adding_regions();
   906   }
   908   void record_survivor_regions(uint regions,
   909                                HeapRegion* head,
   910                                HeapRegion* tail) {
   911     _recorded_survivor_regions = regions;
   912     _recorded_survivor_head    = head;
   913     _recorded_survivor_tail    = tail;
   914   }
   916   uint recorded_survivor_regions() {
   917     return _recorded_survivor_regions;
   918   }
   920   void record_thread_age_table(ageTable* age_table) {
   921     _survivors_age_table.merge_par(age_table);
   922   }
   924   void update_max_gc_locker_expansion();
   926   // Calculates survivor space parameters.
   927   void update_survivors_policy();
   929   virtual void post_heap_initialize();
   930 };
   932 // This should move to some place more general...
   934 // If we have "n" measurements, and we've kept track of their "sum" and the
   935 // "sum_of_squares" of the measurements, this returns the variance of the
   936 // sequence.
   937 inline double variance(int n, double sum_of_squares, double sum) {
   938   double n_d = (double)n;
   939   double avg = sum/n_d;
   940   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
   941 }
   943 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial