src/share/vm/opto/block.cpp

Thu, 28 Aug 2008 10:22:12 -0700

author
rasbold
date
Thu, 28 Aug 2008 10:22:12 -0700
changeset 743
756b58154237
parent 435
a61af66fc99e
child 772
9ee9cf798b59
permissions
-rw-r--r--

6611837: block frequency is zero
Summary: insert_goto_at should set frequency for newly created blocks
Reviewed-by: never

     1 /*
     2  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Optimization - Graph Style
    27 #include "incls/_precompiled.incl"
    28 #include "incls/_block.cpp.incl"
    31 //-----------------------------------------------------------------------------
    32 void Block_Array::grow( uint i ) {
    33   assert(i >= Max(), "must be an overflow");
    34   debug_only(_limit = i+1);
    35   if( i < _size )  return;
    36   if( !_size ) {
    37     _size = 1;
    38     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
    39     _blocks[0] = NULL;
    40   }
    41   uint old = _size;
    42   while( i >= _size ) _size <<= 1;      // Double to fit
    43   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
    44   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
    45 }
    47 //=============================================================================
    48 void Block_List::remove(uint i) {
    49   assert(i < _cnt, "index out of bounds");
    50   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
    51   pop(); // shrink list by one block
    52 }
    54 void Block_List::insert(uint i, Block *b) {
    55   push(b); // grow list by one block
    56   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
    57   _blocks[i] = b;
    58 }
    61 //=============================================================================
    63 uint Block::code_alignment() {
    64   // Check for Root block
    65   if( _pre_order == 0 ) return CodeEntryAlignment;
    66   // Check for Start block
    67   if( _pre_order == 1 ) return InteriorEntryAlignment;
    68   // Check for loop alignment
    69   Node *h = head();
    70   if( h->is_Loop() && h->as_Loop()->is_inner_loop() )  {
    71     // Pre- and post-loops have low trip count so do not bother with
    72     // NOPs for align loop head.  The constants are hidden from tuning
    73     // but only because my "divide by 4" heuristic surely gets nearly
    74     // all possible gain (a "do not align at all" heuristic has a
    75     // chance of getting a really tiny gain).
    76     if( h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
    77                                 h->as_CountedLoop()->is_post_loop()) )
    78       return (OptoLoopAlignment > 4) ? (OptoLoopAlignment>>2) : 1;
    79     // Loops with low backedge frequency should not be aligned.
    80     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
    81     if( n->is_MachIf() && n->as_MachIf()->_prob < 0.01 ) {
    82       return 1;             // Loop does not loop, more often than not!
    83     }
    84     return OptoLoopAlignment; // Otherwise align loop head
    85   }
    86   return 1;                     // no particular alignment
    87 }
    89 //-----------------------------------------------------------------------------
    90 // Compute the size of first 'inst_cnt' instructions in this block.
    91 // Return the number of instructions left to compute if the block has
    92 // less then 'inst_cnt' instructions.
    93 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
    94                                     PhaseRegAlloc* ra) {
    95   uint last_inst = _nodes.size();
    96   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
    97     uint inst_size = _nodes[j]->size(ra);
    98     if( inst_size > 0 ) {
    99       inst_cnt--;
   100       uint sz = sum_size + inst_size;
   101       if( sz <= (uint)OptoLoopAlignment ) {
   102         // Compute size of instructions which fit into fetch buffer only
   103         // since all inst_cnt instructions will not fit even if we align them.
   104         sum_size = sz;
   105       } else {
   106         return 0;
   107       }
   108     }
   109   }
   110   return inst_cnt;
   111 }
   113 //-----------------------------------------------------------------------------
   114 uint Block::find_node( const Node *n ) const {
   115   for( uint i = 0; i < _nodes.size(); i++ ) {
   116     if( _nodes[i] == n )
   117       return i;
   118   }
   119   ShouldNotReachHere();
   120   return 0;
   121 }
   123 // Find and remove n from block list
   124 void Block::find_remove( const Node *n ) {
   125   _nodes.remove(find_node(n));
   126 }
   128 //------------------------------is_Empty---------------------------------------
   129 // Return empty status of a block.  Empty blocks contain only the head, other
   130 // ideal nodes, and an optional trailing goto.
   131 int Block::is_Empty() const {
   133   // Root or start block is not considered empty
   134   if (head()->is_Root() || head()->is_Start()) {
   135     return not_empty;
   136   }
   138   int success_result = completely_empty;
   139   int end_idx = _nodes.size()-1;
   141   // Check for ending goto
   142   if ((end_idx > 0) && (_nodes[end_idx]->is_Goto())) {
   143     success_result = empty_with_goto;
   144     end_idx--;
   145   }
   147   // Unreachable blocks are considered empty
   148   if (num_preds() <= 1) {
   149     return success_result;
   150   }
   152   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
   153   // turn directly into code, because only MachNodes have non-trivial
   154   // emit() functions.
   155   while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
   156     end_idx--;
   157   }
   159   // No room for any interesting instructions?
   160   if (end_idx == 0) {
   161     return success_result;
   162   }
   164   return not_empty;
   165 }
   167 //------------------------------has_uncommon_code------------------------------
   168 // Return true if the block's code implies that it is not likely to be
   169 // executed infrequently.  Check to see if the block ends in a Halt or
   170 // a low probability call.
   171 bool Block::has_uncommon_code() const {
   172   Node* en = end();
   174   if (en->is_Goto())
   175     en = en->in(0);
   176   if (en->is_Catch())
   177     en = en->in(0);
   178   if (en->is_Proj() && en->in(0)->is_MachCall()) {
   179     MachCallNode* call = en->in(0)->as_MachCall();
   180     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
   181       // This is true for slow-path stubs like new_{instance,array},
   182       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
   183       // The magic number corresponds to the probability of an uncommon_trap,
   184       // even though it is a count not a probability.
   185       return true;
   186     }
   187   }
   189   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
   190   return op == Op_Halt;
   191 }
   193 //------------------------------is_uncommon------------------------------------
   194 // True if block is low enough frequency or guarded by a test which
   195 // mostly does not go here.
   196 bool Block::is_uncommon( Block_Array &bbs ) const {
   197   // Initial blocks must never be moved, so are never uncommon.
   198   if (head()->is_Root() || head()->is_Start())  return false;
   200   // Check for way-low freq
   201   if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
   203   // Look for code shape indicating uncommon_trap or slow path
   204   if (has_uncommon_code()) return true;
   206   const float epsilon = 0.05f;
   207   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
   208   uint uncommon_preds = 0;
   209   uint freq_preds = 0;
   210   uint uncommon_for_freq_preds = 0;
   212   for( uint i=1; i<num_preds(); i++ ) {
   213     Block* guard = bbs[pred(i)->_idx];
   214     // Check to see if this block follows its guard 1 time out of 10000
   215     // or less.
   216     //
   217     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
   218     // we intend to be "uncommon", such as slow-path TLE allocation,
   219     // predicted call failure, and uncommon trap triggers.
   220     //
   221     // Use an epsilon value of 5% to allow for variability in frequency
   222     // predictions and floating point calculations. The net effect is
   223     // that guard_factor is set to 9500.
   224     //
   225     // Ignore low-frequency blocks.
   226     // The next check is (guard->_freq < 1.e-5 * 9500.).
   227     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
   228       uncommon_preds++;
   229     } else {
   230       freq_preds++;
   231       if( _freq < guard->_freq * guard_factor ) {
   232         uncommon_for_freq_preds++;
   233       }
   234     }
   235   }
   236   if( num_preds() > 1 &&
   237       // The block is uncommon if all preds are uncommon or
   238       (uncommon_preds == (num_preds()-1) ||
   239       // it is uncommon for all frequent preds.
   240        uncommon_for_freq_preds == freq_preds) ) {
   241     return true;
   242   }
   243   return false;
   244 }
   246 //------------------------------dump-------------------------------------------
   247 #ifndef PRODUCT
   248 void Block::dump_bidx(const Block* orig) const {
   249   if (_pre_order) tty->print("B%d",_pre_order);
   250   else tty->print("N%d", head()->_idx);
   252   if (Verbose && orig != this) {
   253     // Dump the original block's idx
   254     tty->print(" (");
   255     orig->dump_bidx(orig);
   256     tty->print(")");
   257   }
   258 }
   260 void Block::dump_pred(const Block_Array *bbs, Block* orig) const {
   261   if (is_connector()) {
   262     for (uint i=1; i<num_preds(); i++) {
   263       Block *p = ((*bbs)[pred(i)->_idx]);
   264       p->dump_pred(bbs, orig);
   265     }
   266   } else {
   267     dump_bidx(orig);
   268     tty->print(" ");
   269   }
   270 }
   272 void Block::dump_head( const Block_Array *bbs ) const {
   273   // Print the basic block
   274   dump_bidx(this);
   275   tty->print(": #\t");
   277   // Print the incoming CFG edges and the outgoing CFG edges
   278   for( uint i=0; i<_num_succs; i++ ) {
   279     non_connector_successor(i)->dump_bidx(_succs[i]);
   280     tty->print(" ");
   281   }
   282   tty->print("<- ");
   283   if( head()->is_block_start() ) {
   284     for (uint i=1; i<num_preds(); i++) {
   285       Node *s = pred(i);
   286       if (bbs) {
   287         Block *p = (*bbs)[s->_idx];
   288         p->dump_pred(bbs, p);
   289       } else {
   290         while (!s->is_block_start())
   291           s = s->in(0);
   292         tty->print("N%d ", s->_idx );
   293       }
   294     }
   295   } else
   296     tty->print("BLOCK HEAD IS JUNK  ");
   298   // Print loop, if any
   299   const Block *bhead = this;    // Head of self-loop
   300   Node *bh = bhead->head();
   301   if( bbs && bh->is_Loop() && !head()->is_Root() ) {
   302     LoopNode *loop = bh->as_Loop();
   303     const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
   304     while (bx->is_connector()) {
   305       bx = (*bbs)[bx->pred(1)->_idx];
   306     }
   307     tty->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
   308     // Dump any loop-specific bits, especially for CountedLoops.
   309     loop->dump_spec(tty);
   310   }
   311   tty->print(" Freq: %g",_freq);
   312   if( Verbose || WizardMode ) {
   313     tty->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
   314     tty->print(" RegPressure: %d",_reg_pressure);
   315     tty->print(" IHRP Index: %d",_ihrp_index);
   316     tty->print(" FRegPressure: %d",_freg_pressure);
   317     tty->print(" FHRP Index: %d",_fhrp_index);
   318   }
   319   tty->print_cr("");
   320 }
   322 void Block::dump() const { dump(0); }
   324 void Block::dump( const Block_Array *bbs ) const {
   325   dump_head(bbs);
   326   uint cnt = _nodes.size();
   327   for( uint i=0; i<cnt; i++ )
   328     _nodes[i]->dump();
   329   tty->print("\n");
   330 }
   331 #endif
   333 //=============================================================================
   334 //------------------------------PhaseCFG---------------------------------------
   335 PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
   336   Phase(CFG),
   337   _bbs(a),
   338   _root(r)
   339 #ifndef PRODUCT
   340   , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
   341 #endif
   342 {
   343   ResourceMark rm;
   344   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
   345   // then Match it into a machine-specific Node.  Then clone the machine
   346   // Node on demand.
   347   Node *x = new (C, 1) GotoNode(NULL);
   348   x->init_req(0, x);
   349   _goto = m.match_tree(x);
   350   assert(_goto != NULL, "");
   351   _goto->set_req(0,_goto);
   353   // Build the CFG in Reverse Post Order
   354   _num_blocks = build_cfg();
   355   _broot = _bbs[_root->_idx];
   356 }
   358 //------------------------------build_cfg--------------------------------------
   359 // Build a proper looking CFG.  Make every block begin with either a StartNode
   360 // or a RegionNode.  Make every block end with either a Goto, If or Return.
   361 // The RootNode both starts and ends it's own block.  Do this with a recursive
   362 // backwards walk over the control edges.
   363 uint PhaseCFG::build_cfg() {
   364   Arena *a = Thread::current()->resource_area();
   365   VectorSet visited(a);
   367   // Allocate stack with enough space to avoid frequent realloc
   368   Node_Stack nstack(a, C->unique() >> 1);
   369   nstack.push(_root, 0);
   370   uint sum = 0;                 // Counter for blocks
   372   while (nstack.is_nonempty()) {
   373     // node and in's index from stack's top
   374     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
   375     // only nodes which point to the start of basic block (see below).
   376     Node *np = nstack.node();
   377     // idx > 0, except for the first node (_root) pushed on stack
   378     // at the beginning when idx == 0.
   379     // We will use the condition (idx == 0) later to end the build.
   380     uint idx = nstack.index();
   381     Node *proj = np->in(idx);
   382     const Node *x = proj->is_block_proj();
   383     // Does the block end with a proper block-ending Node?  One of Return,
   384     // If or Goto? (This check should be done for visited nodes also).
   385     if (x == NULL) {                    // Does not end right...
   386       Node *g = _goto->clone(); // Force it to end in a Goto
   387       g->set_req(0, proj);
   388       np->set_req(idx, g);
   389       x = proj = g;
   390     }
   391     if (!visited.test_set(x->_idx)) { // Visit this block once
   392       // Skip any control-pinned middle'in stuff
   393       Node *p = proj;
   394       do {
   395         proj = p;                   // Update pointer to last Control
   396         p = p->in(0);               // Move control forward
   397       } while( !p->is_block_proj() &&
   398                !p->is_block_start() );
   399       // Make the block begin with one of Region or StartNode.
   400       if( !p->is_block_start() ) {
   401         RegionNode *r = new (C, 2) RegionNode( 2 );
   402         r->init_req(1, p);         // Insert RegionNode in the way
   403         proj->set_req(0, r);        // Insert RegionNode in the way
   404         p = r;
   405       }
   406       // 'p' now points to the start of this basic block
   408       // Put self in array of basic blocks
   409       Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
   410       _bbs.map(p->_idx,bb);
   411       _bbs.map(x->_idx,bb);
   412       if( x != p )                  // Only for root is x == p
   413         bb->_nodes.push((Node*)x);
   415       // Now handle predecessors
   416       ++sum;                        // Count 1 for self block
   417       uint cnt = bb->num_preds();
   418       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
   419         Node *prevproj = p->in(i);  // Get prior input
   420         assert( !prevproj->is_Con(), "dead input not removed" );
   421         // Check to see if p->in(i) is a "control-dependent" CFG edge -
   422         // i.e., it splits at the source (via an IF or SWITCH) and merges
   423         // at the destination (via a many-input Region).
   424         // This breaks critical edges.  The RegionNode to start the block
   425         // will be added when <p,i> is pulled off the node stack
   426         if ( cnt > 2 ) {             // Merging many things?
   427           assert( prevproj== bb->pred(i),"");
   428           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
   429             // Force a block on the control-dependent edge
   430             Node *g = _goto->clone();       // Force it to end in a Goto
   431             g->set_req(0,prevproj);
   432             p->set_req(i,g);
   433           }
   434         }
   435         nstack.push(p, i);  // 'p' is RegionNode or StartNode
   436       }
   437     } else { // Post-processing visited nodes
   438       nstack.pop();                 // remove node from stack
   439       // Check if it the fist node pushed on stack at the beginning.
   440       if (idx == 0) break;          // end of the build
   441       // Find predecessor basic block
   442       Block *pb = _bbs[x->_idx];
   443       // Insert into nodes array, if not already there
   444       if( !_bbs.lookup(proj->_idx) ) {
   445         assert( x != proj, "" );
   446         // Map basic block of projection
   447         _bbs.map(proj->_idx,pb);
   448         pb->_nodes.push(proj);
   449       }
   450       // Insert self as a child of my predecessor block
   451       pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
   452       assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
   453               "too many control users, not a CFG?" );
   454     }
   455   }
   456   // Return number of basic blocks for all children and self
   457   return sum;
   458 }
   460 //------------------------------insert_goto_at---------------------------------
   461 // Inserts a goto & corresponding basic block between
   462 // block[block_no] and its succ_no'th successor block
   463 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
   464   // get block with block_no
   465   assert(block_no < _num_blocks, "illegal block number");
   466   Block* in  = _blocks[block_no];
   467   // get successor block succ_no
   468   assert(succ_no < in->_num_succs, "illegal successor number");
   469   Block* out = in->_succs[succ_no];
   470   // Compute frequency of the new block. Do this before inserting
   471   // new block in case succ_prob() needs to infer the probability from
   472   // surrounding blocks.
   473   float freq = in->_freq * in->succ_prob(succ_no);
   474   // get ProjNode corresponding to the succ_no'th successor of the in block
   475   ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
   476   // create region for basic block
   477   RegionNode* region = new (C, 2) RegionNode(2);
   478   region->init_req(1, proj);
   479   // setup corresponding basic block
   480   Block* block = new (_bbs._arena) Block(_bbs._arena, region);
   481   _bbs.map(region->_idx, block);
   482   C->regalloc()->set_bad(region->_idx);
   483   // add a goto node
   484   Node* gto = _goto->clone(); // get a new goto node
   485   gto->set_req(0, region);
   486   // add it to the basic block
   487   block->_nodes.push(gto);
   488   _bbs.map(gto->_idx, block);
   489   C->regalloc()->set_bad(gto->_idx);
   490   // hook up successor block
   491   block->_succs.map(block->_num_succs++, out);
   492   // remap successor's predecessors if necessary
   493   for (uint i = 1; i < out->num_preds(); i++) {
   494     if (out->pred(i) == proj) out->head()->set_req(i, gto);
   495   }
   496   // remap predecessor's successor to new block
   497   in->_succs.map(succ_no, block);
   498   // Set the frequency of the new block
   499   block->_freq = freq;
   500   // add new basic block to basic block list
   501   _blocks.insert(block_no + 1, block);
   502   _num_blocks++;
   503 }
   505 //------------------------------no_flip_branch---------------------------------
   506 // Does this block end in a multiway branch that cannot have the default case
   507 // flipped for another case?
   508 static bool no_flip_branch( Block *b ) {
   509   int branch_idx = b->_nodes.size() - b->_num_succs-1;
   510   if( branch_idx < 1 ) return false;
   511   Node *bra = b->_nodes[branch_idx];
   512   if( bra->is_Catch() ) return true;
   513   if( bra->is_Mach() ) {
   514     if( bra->is_MachNullCheck() ) return true;
   515     int iop = bra->as_Mach()->ideal_Opcode();
   516     if( iop == Op_FastLock || iop == Op_FastUnlock )
   517       return true;
   518   }
   519   return false;
   520 }
   522 //------------------------------convert_NeverBranch_to_Goto--------------------
   523 // Check for NeverBranch at block end.  This needs to become a GOTO to the
   524 // true target.  NeverBranch are treated as a conditional branch that always
   525 // goes the same direction for most of the optimizer and are used to give a
   526 // fake exit path to infinite loops.  At this late stage they need to turn
   527 // into Goto's so that when you enter the infinite loop you indeed hang.
   528 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
   529   // Find true target
   530   int end_idx = b->end_idx();
   531   int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
   532   Block *succ = b->_succs[idx];
   533   Node* gto = _goto->clone(); // get a new goto node
   534   gto->set_req(0, b->head());
   535   Node *bp = b->_nodes[end_idx];
   536   b->_nodes.map(end_idx,gto); // Slam over NeverBranch
   537   _bbs.map(gto->_idx, b);
   538   C->regalloc()->set_bad(gto->_idx);
   539   b->_nodes.pop();              // Yank projections
   540   b->_nodes.pop();              // Yank projections
   541   b->_succs.map(0,succ);        // Map only successor
   542   b->_num_succs = 1;
   543   // remap successor's predecessors if necessary
   544   uint j;
   545   for( j = 1; j < succ->num_preds(); j++)
   546     if( succ->pred(j)->in(0) == bp )
   547       succ->head()->set_req(j, gto);
   548   // Kill alternate exit path
   549   Block *dead = b->_succs[1-idx];
   550   for( j = 1; j < dead->num_preds(); j++)
   551     if( dead->pred(j)->in(0) == bp )
   552       break;
   553   // Scan through block, yanking dead path from
   554   // all regions and phis.
   555   dead->head()->del_req(j);
   556   for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
   557     dead->_nodes[k]->del_req(j);
   558 }
   560 //------------------------------MoveToNext-------------------------------------
   561 // Helper function to move block bx to the slot following b_index. Return
   562 // true if the move is successful, otherwise false
   563 bool PhaseCFG::MoveToNext(Block* bx, uint b_index) {
   564   if (bx == NULL) return false;
   566   // Return false if bx is already scheduled.
   567   uint bx_index = bx->_pre_order;
   568   if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
   569     return false;
   570   }
   572   // Find the current index of block bx on the block list
   573   bx_index = b_index + 1;
   574   while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
   575   assert(_blocks[bx_index] == bx, "block not found");
   577   // If the previous block conditionally falls into bx, return false,
   578   // because moving bx will create an extra jump.
   579   for(uint k = 1; k < bx->num_preds(); k++ ) {
   580     Block* pred = _bbs[bx->pred(k)->_idx];
   581     if (pred == _blocks[bx_index-1]) {
   582       if (pred->_num_succs != 1) {
   583         return false;
   584       }
   585     }
   586   }
   588   // Reinsert bx just past block 'b'
   589   _blocks.remove(bx_index);
   590   _blocks.insert(b_index + 1, bx);
   591   return true;
   592 }
   594 //------------------------------MoveToEnd--------------------------------------
   595 // Move empty and uncommon blocks to the end.
   596 void PhaseCFG::MoveToEnd(Block *b, uint i) {
   597   int e = b->is_Empty();
   598   if (e != Block::not_empty) {
   599     if (e == Block::empty_with_goto) {
   600       // Remove the goto, but leave the block.
   601       b->_nodes.pop();
   602     }
   603     // Mark this block as a connector block, which will cause it to be
   604     // ignored in certain functions such as non_connector_successor().
   605     b->set_connector();
   606   }
   607   // Move the empty block to the end, and don't recheck.
   608   _blocks.remove(i);
   609   _blocks.push(b);
   610 }
   612 //------------------------------RemoveEmpty------------------------------------
   613 // Remove empty basic blocks and useless branches.
   614 void PhaseCFG::RemoveEmpty() {
   615   // Move uncommon blocks to the end
   616   uint last = _num_blocks;
   617   uint i;
   618   assert( _blocks[0] == _broot, "" );
   619   for( i = 1; i < last; i++ ) {
   620     Block *b = _blocks[i];
   622     // Check for NeverBranch at block end.  This needs to become a GOTO to the
   623     // true target.  NeverBranch are treated as a conditional branch that
   624     // always goes the same direction for most of the optimizer and are used
   625     // to give a fake exit path to infinite loops.  At this late stage they
   626     // need to turn into Goto's so that when you enter the infinite loop you
   627     // indeed hang.
   628     if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
   629       convert_NeverBranch_to_Goto(b);
   631     // Look for uncommon blocks and move to end.
   632     if( b->is_uncommon(_bbs) ) {
   633       MoveToEnd(b, i);
   634       last--;                   // No longer check for being uncommon!
   635       if( no_flip_branch(b) ) { // Fall-thru case must follow?
   636         b = _blocks[i];         // Find the fall-thru block
   637         MoveToEnd(b, i);
   638         last--;
   639       }
   640       i--;                      // backup block counter post-increment
   641     }
   642   }
   644   // Remove empty blocks
   645   uint j1;
   646   last = _num_blocks;
   647   for( i=0; i < last; i++ ) {
   648     Block *b = _blocks[i];
   649     if (i > 0) {
   650       if (b->is_Empty() != Block::not_empty) {
   651         MoveToEnd(b, i);
   652         last--;
   653         i--;
   654       }
   655     }
   656   } // End of for all blocks
   658   // Fixup final control flow for the blocks.  Remove jump-to-next
   659   // block.  If neither arm of a IF follows the conditional branch, we
   660   // have to add a second jump after the conditional.  We place the
   661   // TRUE branch target in succs[0] for both GOTOs and IFs.
   662   for( i=0; i < _num_blocks; i++ ) {
   663     Block *b = _blocks[i];
   664     b->_pre_order = i;          // turn pre-order into block-index
   666     // Connector blocks need no further processing.
   667     if (b->is_connector()) {
   668       assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(),
   669              "All connector blocks should sink to the end");
   670       continue;
   671     }
   672     assert(b->is_Empty() != Block::completely_empty,
   673            "Empty blocks should be connectors");
   675     Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
   676     Block *bs0 = b->non_connector_successor(0);
   678     // Check for multi-way branches where I cannot negate the test to
   679     // exchange the true and false targets.
   680     if( no_flip_branch( b ) ) {
   681       // Find fall through case - if must fall into its target
   682       int branch_idx = b->_nodes.size() - b->_num_succs;
   683       for (uint j2 = 0; j2 < b->_num_succs; j2++) {
   684         const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
   685         if (p->_con == 0) {
   686           // successor j2 is fall through case
   687           if (b->non_connector_successor(j2) != bnext) {
   688             // but it is not the next block => insert a goto
   689             insert_goto_at(i, j2);
   690           }
   691           // Put taken branch in slot 0
   692           if( j2 == 0 && b->_num_succs == 2) {
   693             // Flip targets in succs map
   694             Block *tbs0 = b->_succs[0];
   695             Block *tbs1 = b->_succs[1];
   696             b->_succs.map( 0, tbs1 );
   697             b->_succs.map( 1, tbs0 );
   698           }
   699           break;
   700         }
   701       }
   702       // Remove all CatchProjs
   703       for (j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
   705     } else if (b->_num_succs == 1) {
   706       // Block ends in a Goto?
   707       if (bnext == bs0) {
   708         // We fall into next block; remove the Goto
   709         b->_nodes.pop();
   710       }
   712     } else if( b->_num_succs == 2 ) { // Block ends in a If?
   713       // Get opcode of 1st projection (matches _succs[0])
   714       // Note: Since this basic block has 2 exits, the last 2 nodes must
   715       //       be projections (in any order), the 3rd last node must be
   716       //       the IfNode (we have excluded other 2-way exits such as
   717       //       CatchNodes already).
   718       MachNode *iff   = b->_nodes[b->_nodes.size()-3]->as_Mach();
   719       ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
   720       ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
   722       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
   723       assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
   724       assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
   726       Block *bs1 = b->non_connector_successor(1);
   728       // Check for neither successor block following the current
   729       // block ending in a conditional. If so, move one of the
   730       // successors after the current one, provided that the
   731       // successor was previously unscheduled, but moveable
   732       // (i.e., all paths to it involve a branch).
   733       if( bnext != bs0 && bnext != bs1 ) {
   735         // Choose the more common successor based on the probability
   736         // of the conditional branch.
   737         Block *bx = bs0;
   738         Block *by = bs1;
   740         // _prob is the probability of taking the true path. Make
   741         // p the probability of taking successor #1.
   742         float p = iff->as_MachIf()->_prob;
   743         if( proj0->Opcode() == Op_IfTrue ) {
   744           p = 1.0 - p;
   745         }
   747         // Prefer successor #1 if p > 0.5
   748         if (p > PROB_FAIR) {
   749           bx = bs1;
   750           by = bs0;
   751         }
   753         // Attempt the more common successor first
   754         if (MoveToNext(bx, i)) {
   755           bnext = bx;
   756         } else if (MoveToNext(by, i)) {
   757           bnext = by;
   758         }
   759       }
   761       // Check for conditional branching the wrong way.  Negate
   762       // conditional, if needed, so it falls into the following block
   763       // and branches to the not-following block.
   765       // Check for the next block being in succs[0].  We are going to branch
   766       // to succs[0], so we want the fall-thru case as the next block in
   767       // succs[1].
   768       if (bnext == bs0) {
   769         // Fall-thru case in succs[0], so flip targets in succs map
   770         Block *tbs0 = b->_succs[0];
   771         Block *tbs1 = b->_succs[1];
   772         b->_succs.map( 0, tbs1 );
   773         b->_succs.map( 1, tbs0 );
   774         // Flip projection for each target
   775         { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
   777       } else if( bnext == bs1 ) { // Fall-thru is already in succs[1]
   779       } else {                  // Else need a double-branch
   781         // The existing conditional branch need not change.
   782         // Add a unconditional branch to the false target.
   783         // Alas, it must appear in its own block and adding a
   784         // block this late in the game is complicated.  Sigh.
   785         insert_goto_at(i, 1);
   786       }
   788       // Make sure we TRUE branch to the target
   789       if( proj0->Opcode() == Op_IfFalse )
   790         iff->negate();
   792       b->_nodes.pop();          // Remove IfFalse & IfTrue projections
   793       b->_nodes.pop();
   795     } else {
   796       // Multi-exit block, e.g. a switch statement
   797       // But we don't need to do anything here
   798     }
   800   } // End of for all blocks
   802 }
   805 //------------------------------dump-------------------------------------------
   806 #ifndef PRODUCT
   807 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
   808   const Node *x = end->is_block_proj();
   809   assert( x, "not a CFG" );
   811   // Do not visit this block again
   812   if( visited.test_set(x->_idx) ) return;
   814   // Skip through this block
   815   const Node *p = x;
   816   do {
   817     p = p->in(0);               // Move control forward
   818     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
   819   } while( !p->is_block_start() );
   821   // Recursively visit
   822   for( uint i=1; i<p->req(); i++ )
   823     _dump_cfg(p->in(i),visited);
   825   // Dump the block
   826   _bbs[p->_idx]->dump(&_bbs);
   827 }
   829 void PhaseCFG::dump( ) const {
   830   tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
   831   if( _blocks.size() ) {        // Did we do basic-block layout?
   832     for( uint i=0; i<_num_blocks; i++ )
   833       _blocks[i]->dump(&_bbs);
   834   } else {                      // Else do it with a DFS
   835     VectorSet visited(_bbs._arena);
   836     _dump_cfg(_root,visited);
   837   }
   838 }
   840 void PhaseCFG::dump_headers() {
   841   for( uint i = 0; i < _num_blocks; i++ ) {
   842     if( _blocks[i] == NULL ) continue;
   843     _blocks[i]->dump_head(&_bbs);
   844   }
   845 }
   847 void PhaseCFG::verify( ) const {
   848   // Verify sane CFG
   849   for( uint i = 0; i < _num_blocks; i++ ) {
   850     Block *b = _blocks[i];
   851     uint cnt = b->_nodes.size();
   852     uint j;
   853     for( j = 0; j < cnt; j++ ) {
   854       Node *n = b->_nodes[j];
   855       assert( _bbs[n->_idx] == b, "" );
   856       if( j >= 1 && n->is_Mach() &&
   857           n->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
   858         assert( j == 1 || b->_nodes[j-1]->is_Phi(),
   859                 "CreateEx must be first instruction in block" );
   860       }
   861       for( uint k = 0; k < n->req(); k++ ) {
   862         Node *use = n->in(k);
   863         if( use && use != n ) {
   864           assert( _bbs[use->_idx] || use->is_Con(),
   865                   "must have block; constants for debug info ok" );
   866         }
   867       }
   868     }
   870     j = b->end_idx();
   871     Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
   872     assert( bp, "last instruction must be a block proj" );
   873     assert( bp == b->_nodes[j], "wrong number of successors for this block" );
   874     if( bp->is_Catch() ) {
   875       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
   876       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
   877     }
   878     else if( bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If ) {
   879       assert( b->_num_succs == 2, "Conditional branch must have two targets");
   880     }
   881   }
   882 }
   883 #endif
   885 //=============================================================================
   886 //------------------------------UnionFind--------------------------------------
   887 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
   888   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
   889 }
   891 void UnionFind::extend( uint from_idx, uint to_idx ) {
   892   _nesting.check();
   893   if( from_idx >= _max ) {
   894     uint size = 16;
   895     while( size <= from_idx ) size <<=1;
   896     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
   897     _max = size;
   898   }
   899   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
   900   _indices[from_idx] = to_idx;
   901 }
   903 void UnionFind::reset( uint max ) {
   904   assert( max <= max_uint, "Must fit within uint" );
   905   // Force the Union-Find mapping to be at least this large
   906   extend(max,0);
   907   // Initialize to be the ID mapping.
   908   for( uint i=0; i<_max; i++ ) map(i,i);
   909 }
   911 //------------------------------Find_compress----------------------------------
   912 // Straight out of Tarjan's union-find algorithm
   913 uint UnionFind::Find_compress( uint idx ) {
   914   uint cur  = idx;
   915   uint next = lookup(cur);
   916   while( next != cur ) {        // Scan chain of equivalences
   917     assert( next < cur, "always union smaller" );
   918     cur = next;                 // until find a fixed-point
   919     next = lookup(cur);
   920   }
   921   // Core of union-find algorithm: update chain of
   922   // equivalences to be equal to the root.
   923   while( idx != next ) {
   924     uint tmp = lookup(idx);
   925     map(idx, next);
   926     idx = tmp;
   927   }
   928   return idx;
   929 }
   931 //------------------------------Find_const-------------------------------------
   932 // Like Find above, but no path compress, so bad asymptotic behavior
   933 uint UnionFind::Find_const( uint idx ) const {
   934   if( idx == 0 ) return idx;    // Ignore the zero idx
   935   // Off the end?  This can happen during debugging dumps
   936   // when data structures have not finished being updated.
   937   if( idx >= _max ) return idx;
   938   uint next = lookup(idx);
   939   while( next != idx ) {        // Scan chain of equivalences
   940     assert( next < idx, "always union smaller" );
   941     idx = next;                 // until find a fixed-point
   942     next = lookup(idx);
   943   }
   944   return next;
   945 }
   947 //------------------------------Union------------------------------------------
   948 // union 2 sets together.
   949 void UnionFind::Union( uint idx1, uint idx2 ) {
   950   uint src = Find(idx1);
   951   uint dst = Find(idx2);
   952   assert( src, "" );
   953   assert( dst, "" );
   954   assert( src < _max, "oob" );
   955   assert( dst < _max, "oob" );
   956   assert( src < dst, "always union smaller" );
   957   map(dst,src);
   958 }

mercurial