src/share/vm/opto/memnode.cpp

Thu, 07 Oct 2010 21:40:55 -0700

author
never
date
Thu, 07 Oct 2010 21:40:55 -0700
changeset 2199
75588558f1bf
parent 2181
56601ef83436
child 2314
f95d63e2154a
permissions
-rw-r--r--

6980792: Crash "exception happened outside interpreter, nmethods and vtable stubs (1)"
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_memnode.cpp.incl"
    32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    34 //=============================================================================
    35 uint MemNode::size_of() const { return sizeof(*this); }
    37 const TypePtr *MemNode::adr_type() const {
    38   Node* adr = in(Address);
    39   const TypePtr* cross_check = NULL;
    40   DEBUG_ONLY(cross_check = _adr_type);
    41   return calculate_adr_type(adr->bottom_type(), cross_check);
    42 }
    44 #ifndef PRODUCT
    45 void MemNode::dump_spec(outputStream *st) const {
    46   if (in(Address) == NULL)  return; // node is dead
    47 #ifndef ASSERT
    48   // fake the missing field
    49   const TypePtr* _adr_type = NULL;
    50   if (in(Address) != NULL)
    51     _adr_type = in(Address)->bottom_type()->isa_ptr();
    52 #endif
    53   dump_adr_type(this, _adr_type, st);
    55   Compile* C = Compile::current();
    56   if( C->alias_type(_adr_type)->is_volatile() )
    57     st->print(" Volatile!");
    58 }
    60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    61   st->print(" @");
    62   if (adr_type == NULL) {
    63     st->print("NULL");
    64   } else {
    65     adr_type->dump_on(st);
    66     Compile* C = Compile::current();
    67     Compile::AliasType* atp = NULL;
    68     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    69     if (atp == NULL)
    70       st->print(", idx=?\?;");
    71     else if (atp->index() == Compile::AliasIdxBot)
    72       st->print(", idx=Bot;");
    73     else if (atp->index() == Compile::AliasIdxTop)
    74       st->print(", idx=Top;");
    75     else if (atp->index() == Compile::AliasIdxRaw)
    76       st->print(", idx=Raw;");
    77     else {
    78       ciField* field = atp->field();
    79       if (field) {
    80         st->print(", name=");
    81         field->print_name_on(st);
    82       }
    83       st->print(", idx=%d;", atp->index());
    84     }
    85   }
    86 }
    88 extern void print_alias_types();
    90 #endif
    92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
    93   const TypeOopPtr *tinst = t_adr->isa_oopptr();
    94   if (tinst == NULL || !tinst->is_known_instance_field())
    95     return mchain;  // don't try to optimize non-instance types
    96   uint instance_id = tinst->instance_id();
    97   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
    98   Node *prev = NULL;
    99   Node *result = mchain;
   100   while (prev != result) {
   101     prev = result;
   102     if (result == start_mem)
   103       break;  // hit one of our sentinels
   104     // skip over a call which does not affect this memory slice
   105     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   106       Node *proj_in = result->in(0);
   107       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
   108         break;  // hit one of our sentinels
   109       } else if (proj_in->is_Call()) {
   110         CallNode *call = proj_in->as_Call();
   111         if (!call->may_modify(t_adr, phase)) {
   112           result = call->in(TypeFunc::Memory);
   113         }
   114       } else if (proj_in->is_Initialize()) {
   115         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   116         // Stop if this is the initialization for the object instance which
   117         // which contains this memory slice, otherwise skip over it.
   118         if (alloc != NULL && alloc->_idx != instance_id) {
   119           result = proj_in->in(TypeFunc::Memory);
   120         }
   121       } else if (proj_in->is_MemBar()) {
   122         result = proj_in->in(TypeFunc::Memory);
   123       } else {
   124         assert(false, "unexpected projection");
   125       }
   126     } else if (result->is_ClearArray()) {
   127       if (!ClearArrayNode::step_through(&result, instance_id, phase)) {
   128         // Can not bypass initialization of the instance
   129         // we are looking for.
   130         break;
   131       }
   132       // Otherwise skip it (the call updated 'result' value).
   133     } else if (result->is_MergeMem()) {
   134       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
   135     }
   136   }
   137   return result;
   138 }
   140 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   141   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
   142   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
   143   PhaseIterGVN *igvn = phase->is_IterGVN();
   144   Node *result = mchain;
   145   result = optimize_simple_memory_chain(result, t_adr, phase);
   146   if (is_instance && igvn != NULL  && result->is_Phi()) {
   147     PhiNode *mphi = result->as_Phi();
   148     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   149     const TypePtr *t = mphi->adr_type();
   150     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   151         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
   152         t->is_oopptr()->cast_to_exactness(true)
   153          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
   154          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
   155       // clone the Phi with our address type
   156       result = mphi->split_out_instance(t_adr, igvn);
   157     } else {
   158       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   159     }
   160   }
   161   return result;
   162 }
   164 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   165   uint alias_idx = phase->C->get_alias_index(tp);
   166   Node *mem = mmem;
   167 #ifdef ASSERT
   168   {
   169     // Check that current type is consistent with the alias index used during graph construction
   170     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   171     bool consistent =  adr_check == NULL || adr_check->empty() ||
   172                        phase->C->must_alias(adr_check, alias_idx );
   173     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   174     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   175                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
   176         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   177         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   178           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   179           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   180       // don't assert if it is dead code.
   181       consistent = true;
   182     }
   183     if( !consistent ) {
   184       st->print("alias_idx==%d, adr_check==", alias_idx);
   185       if( adr_check == NULL ) {
   186         st->print("NULL");
   187       } else {
   188         adr_check->dump();
   189       }
   190       st->cr();
   191       print_alias_types();
   192       assert(consistent, "adr_check must match alias idx");
   193     }
   194   }
   195 #endif
   196   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
   197   // means an array I have not precisely typed yet.  Do not do any
   198   // alias stuff with it any time soon.
   199   const TypeOopPtr *toop = tp->isa_oopptr();
   200   if( tp->base() != Type::AnyPtr &&
   201       !(toop &&
   202         toop->klass() != NULL &&
   203         toop->klass()->is_java_lang_Object() &&
   204         toop->offset() == Type::OffsetBot) ) {
   205     // compress paths and change unreachable cycles to TOP
   206     // If not, we can update the input infinitely along a MergeMem cycle
   207     // Equivalent code in PhiNode::Ideal
   208     Node* m  = phase->transform(mmem);
   209     // If transformed to a MergeMem, get the desired slice
   210     // Otherwise the returned node represents memory for every slice
   211     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   212     // Update input if it is progress over what we have now
   213   }
   214   return mem;
   215 }
   217 //--------------------------Ideal_common---------------------------------------
   218 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   219 // Unhook non-raw memories from complete (macro-expanded) initializations.
   220 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   221   // If our control input is a dead region, kill all below the region
   222   Node *ctl = in(MemNode::Control);
   223   if (ctl && remove_dead_region(phase, can_reshape))
   224     return this;
   225   ctl = in(MemNode::Control);
   226   // Don't bother trying to transform a dead node
   227   if( ctl && ctl->is_top() )  return NodeSentinel;
   229   PhaseIterGVN *igvn = phase->is_IterGVN();
   230   // Wait if control on the worklist.
   231   if (ctl && can_reshape && igvn != NULL) {
   232     Node* bol = NULL;
   233     Node* cmp = NULL;
   234     if (ctl->in(0)->is_If()) {
   235       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
   236       bol = ctl->in(0)->in(1);
   237       if (bol->is_Bool())
   238         cmp = ctl->in(0)->in(1)->in(1);
   239     }
   240     if (igvn->_worklist.member(ctl) ||
   241         (bol != NULL && igvn->_worklist.member(bol)) ||
   242         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
   243       // This control path may be dead.
   244       // Delay this memory node transformation until the control is processed.
   245       phase->is_IterGVN()->_worklist.push(this);
   246       return NodeSentinel; // caller will return NULL
   247     }
   248   }
   249   // Ignore if memory is dead, or self-loop
   250   Node *mem = in(MemNode::Memory);
   251   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   252   assert( mem != this, "dead loop in MemNode::Ideal" );
   254   Node *address = in(MemNode::Address);
   255   const Type *t_adr = phase->type( address );
   256   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   258   if( can_reshape && igvn != NULL &&
   259       (igvn->_worklist.member(address) ||
   260        igvn->_worklist.size() > 0 && (phase->type(address) != adr_type())) ) {
   261     // The address's base and type may change when the address is processed.
   262     // Delay this mem node transformation until the address is processed.
   263     phase->is_IterGVN()->_worklist.push(this);
   264     return NodeSentinel; // caller will return NULL
   265   }
   267   // Do NOT remove or optimize the next lines: ensure a new alias index
   268   // is allocated for an oop pointer type before Escape Analysis.
   269   // Note: C++ will not remove it since the call has side effect.
   270   if ( t_adr->isa_oopptr() ) {
   271     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
   272   }
   274 #ifdef ASSERT
   275   Node* base = NULL;
   276   if (address->is_AddP())
   277     base = address->in(AddPNode::Base);
   278   assert(base == NULL || t_adr->isa_rawptr() ||
   279         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
   280 #endif
   282   // Avoid independent memory operations
   283   Node* old_mem = mem;
   285   // The code which unhooks non-raw memories from complete (macro-expanded)
   286   // initializations was removed. After macro-expansion all stores catched
   287   // by Initialize node became raw stores and there is no information
   288   // which memory slices they modify. So it is unsafe to move any memory
   289   // operation above these stores. Also in most cases hooked non-raw memories
   290   // were already unhooked by using information from detect_ptr_independence()
   291   // and find_previous_store().
   293   if (mem->is_MergeMem()) {
   294     MergeMemNode* mmem = mem->as_MergeMem();
   295     const TypePtr *tp = t_adr->is_ptr();
   297     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   298   }
   300   if (mem != old_mem) {
   301     set_req(MemNode::Memory, mem);
   302     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
   303     return this;
   304   }
   306   // let the subclass continue analyzing...
   307   return NULL;
   308 }
   310 // Helper function for proving some simple control dominations.
   311 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   312 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   313 // is not a constant (dominated by the method's StartNode).
   314 // Used by MemNode::find_previous_store to prove that the
   315 // control input of a memory operation predates (dominates)
   316 // an allocation it wants to look past.
   317 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   318   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   319     return false; // Conservative answer for dead code
   321   // Check 'dom'. Skip Proj and CatchProj nodes.
   322   dom = dom->find_exact_control(dom);
   323   if (dom == NULL || dom->is_top())
   324     return false; // Conservative answer for dead code
   326   if (dom == sub) {
   327     // For the case when, for example, 'sub' is Initialize and the original
   328     // 'dom' is Proj node of the 'sub'.
   329     return false;
   330   }
   332   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
   333     return true;
   335   // 'dom' dominates 'sub' if its control edge and control edges
   336   // of all its inputs dominate or equal to sub's control edge.
   338   // Currently 'sub' is either Allocate, Initialize or Start nodes.
   339   // Or Region for the check in LoadNode::Ideal();
   340   // 'sub' should have sub->in(0) != NULL.
   341   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
   342          sub->is_Region(), "expecting only these nodes");
   344   // Get control edge of 'sub'.
   345   Node* orig_sub = sub;
   346   sub = sub->find_exact_control(sub->in(0));
   347   if (sub == NULL || sub->is_top())
   348     return false; // Conservative answer for dead code
   350   assert(sub->is_CFG(), "expecting control");
   352   if (sub == dom)
   353     return true;
   355   if (sub->is_Start() || sub->is_Root())
   356     return false;
   358   {
   359     // Check all control edges of 'dom'.
   361     ResourceMark rm;
   362     Arena* arena = Thread::current()->resource_area();
   363     Node_List nlist(arena);
   364     Unique_Node_List dom_list(arena);
   366     dom_list.push(dom);
   367     bool only_dominating_controls = false;
   369     for (uint next = 0; next < dom_list.size(); next++) {
   370       Node* n = dom_list.at(next);
   371       if (n == orig_sub)
   372         return false; // One of dom's inputs dominated by sub.
   373       if (!n->is_CFG() && n->pinned()) {
   374         // Check only own control edge for pinned non-control nodes.
   375         n = n->find_exact_control(n->in(0));
   376         if (n == NULL || n->is_top())
   377           return false; // Conservative answer for dead code
   378         assert(n->is_CFG(), "expecting control");
   379         dom_list.push(n);
   380       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
   381         only_dominating_controls = true;
   382       } else if (n->is_CFG()) {
   383         if (n->dominates(sub, nlist))
   384           only_dominating_controls = true;
   385         else
   386           return false;
   387       } else {
   388         // First, own control edge.
   389         Node* m = n->find_exact_control(n->in(0));
   390         if (m != NULL) {
   391           if (m->is_top())
   392             return false; // Conservative answer for dead code
   393           dom_list.push(m);
   394         }
   395         // Now, the rest of edges.
   396         uint cnt = n->req();
   397         for (uint i = 1; i < cnt; i++) {
   398           m = n->find_exact_control(n->in(i));
   399           if (m == NULL || m->is_top())
   400             continue;
   401           dom_list.push(m);
   402         }
   403       }
   404     }
   405     return only_dominating_controls;
   406   }
   407 }
   409 //---------------------detect_ptr_independence---------------------------------
   410 // Used by MemNode::find_previous_store to prove that two base
   411 // pointers are never equal.
   412 // The pointers are accompanied by their associated allocations,
   413 // if any, which have been previously discovered by the caller.
   414 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   415                                       Node* p2, AllocateNode* a2,
   416                                       PhaseTransform* phase) {
   417   // Attempt to prove that these two pointers cannot be aliased.
   418   // They may both manifestly be allocations, and they should differ.
   419   // Or, if they are not both allocations, they can be distinct constants.
   420   // Otherwise, one is an allocation and the other a pre-existing value.
   421   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   422     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   423   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   424     return (a1 != a2);
   425   } else if (a1 != NULL) {                  // one allocation a1
   426     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   427     return all_controls_dominate(p2, a1);
   428   } else { //(a2 != NULL)                   // one allocation a2
   429     return all_controls_dominate(p1, a2);
   430   }
   431   return false;
   432 }
   435 // The logic for reordering loads and stores uses four steps:
   436 // (a) Walk carefully past stores and initializations which we
   437 //     can prove are independent of this load.
   438 // (b) Observe that the next memory state makes an exact match
   439 //     with self (load or store), and locate the relevant store.
   440 // (c) Ensure that, if we were to wire self directly to the store,
   441 //     the optimizer would fold it up somehow.
   442 // (d) Do the rewiring, and return, depending on some other part of
   443 //     the optimizer to fold up the load.
   444 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   445 // specific to loads and stores, so they are handled by the callers.
   446 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   447 //
   448 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   449   Node*         ctrl   = in(MemNode::Control);
   450   Node*         adr    = in(MemNode::Address);
   451   intptr_t      offset = 0;
   452   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   453   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   455   if (offset == Type::OffsetBot)
   456     return NULL;            // cannot unalias unless there are precise offsets
   458   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   460   intptr_t size_in_bytes = memory_size();
   462   Node* mem = in(MemNode::Memory);   // start searching here...
   464   int cnt = 50;             // Cycle limiter
   465   for (;;) {                // While we can dance past unrelated stores...
   466     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   468     if (mem->is_Store()) {
   469       Node* st_adr = mem->in(MemNode::Address);
   470       intptr_t st_offset = 0;
   471       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   472       if (st_base == NULL)
   473         break;              // inscrutable pointer
   474       if (st_offset != offset && st_offset != Type::OffsetBot) {
   475         const int MAX_STORE = BytesPerLong;
   476         if (st_offset >= offset + size_in_bytes ||
   477             st_offset <= offset - MAX_STORE ||
   478             st_offset <= offset - mem->as_Store()->memory_size()) {
   479           // Success:  The offsets are provably independent.
   480           // (You may ask, why not just test st_offset != offset and be done?
   481           // The answer is that stores of different sizes can co-exist
   482           // in the same sequence of RawMem effects.  We sometimes initialize
   483           // a whole 'tile' of array elements with a single jint or jlong.)
   484           mem = mem->in(MemNode::Memory);
   485           continue;           // (a) advance through independent store memory
   486         }
   487       }
   488       if (st_base != base &&
   489           detect_ptr_independence(base, alloc,
   490                                   st_base,
   491                                   AllocateNode::Ideal_allocation(st_base, phase),
   492                                   phase)) {
   493         // Success:  The bases are provably independent.
   494         mem = mem->in(MemNode::Memory);
   495         continue;           // (a) advance through independent store memory
   496       }
   498       // (b) At this point, if the bases or offsets do not agree, we lose,
   499       // since we have not managed to prove 'this' and 'mem' independent.
   500       if (st_base == base && st_offset == offset) {
   501         return mem;         // let caller handle steps (c), (d)
   502       }
   504     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   505       InitializeNode* st_init = mem->in(0)->as_Initialize();
   506       AllocateNode*  st_alloc = st_init->allocation();
   507       if (st_alloc == NULL)
   508         break;              // something degenerated
   509       bool known_identical = false;
   510       bool known_independent = false;
   511       if (alloc == st_alloc)
   512         known_identical = true;
   513       else if (alloc != NULL)
   514         known_independent = true;
   515       else if (all_controls_dominate(this, st_alloc))
   516         known_independent = true;
   518       if (known_independent) {
   519         // The bases are provably independent: Either they are
   520         // manifestly distinct allocations, or else the control
   521         // of this load dominates the store's allocation.
   522         int alias_idx = phase->C->get_alias_index(adr_type());
   523         if (alias_idx == Compile::AliasIdxRaw) {
   524           mem = st_alloc->in(TypeFunc::Memory);
   525         } else {
   526           mem = st_init->memory(alias_idx);
   527         }
   528         continue;           // (a) advance through independent store memory
   529       }
   531       // (b) at this point, if we are not looking at a store initializing
   532       // the same allocation we are loading from, we lose.
   533       if (known_identical) {
   534         // From caller, can_see_stored_value will consult find_captured_store.
   535         return mem;         // let caller handle steps (c), (d)
   536       }
   538     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
   539       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   540       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   541         CallNode *call = mem->in(0)->as_Call();
   542         if (!call->may_modify(addr_t, phase)) {
   543           mem = call->in(TypeFunc::Memory);
   544           continue;         // (a) advance through independent call memory
   545         }
   546       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   547         mem = mem->in(0)->in(TypeFunc::Memory);
   548         continue;           // (a) advance through independent MemBar memory
   549       } else if (mem->is_ClearArray()) {
   550         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
   551           // (the call updated 'mem' value)
   552           continue;         // (a) advance through independent allocation memory
   553         } else {
   554           // Can not bypass initialization of the instance
   555           // we are looking for.
   556           return mem;
   557         }
   558       } else if (mem->is_MergeMem()) {
   559         int alias_idx = phase->C->get_alias_index(adr_type());
   560         mem = mem->as_MergeMem()->memory_at(alias_idx);
   561         continue;           // (a) advance through independent MergeMem memory
   562       }
   563     }
   565     // Unless there is an explicit 'continue', we must bail out here,
   566     // because 'mem' is an inscrutable memory state (e.g., a call).
   567     break;
   568   }
   570   return NULL;              // bail out
   571 }
   573 //----------------------calculate_adr_type-------------------------------------
   574 // Helper function.  Notices when the given type of address hits top or bottom.
   575 // Also, asserts a cross-check of the type against the expected address type.
   576 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   577   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   578   #ifdef PRODUCT
   579   cross_check = NULL;
   580   #else
   581   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   582   #endif
   583   const TypePtr* tp = t->isa_ptr();
   584   if (tp == NULL) {
   585     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   586     return TypePtr::BOTTOM;           // touches lots of memory
   587   } else {
   588     #ifdef ASSERT
   589     // %%%% [phh] We don't check the alias index if cross_check is
   590     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   591     if (cross_check != NULL &&
   592         cross_check != TypePtr::BOTTOM &&
   593         cross_check != TypeRawPtr::BOTTOM) {
   594       // Recheck the alias index, to see if it has changed (due to a bug).
   595       Compile* C = Compile::current();
   596       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   597              "must stay in the original alias category");
   598       // The type of the address must be contained in the adr_type,
   599       // disregarding "null"-ness.
   600       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   601       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   602       assert(cross_check->meet(tp_notnull) == cross_check,
   603              "real address must not escape from expected memory type");
   604     }
   605     #endif
   606     return tp;
   607   }
   608 }
   610 //------------------------adr_phi_is_loop_invariant----------------------------
   611 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   612 // loop is loop invariant. Make a quick traversal of Phi and associated
   613 // CastPP nodes, looking to see if they are a closed group within the loop.
   614 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   615   // The idea is that the phi-nest must boil down to only CastPP nodes
   616   // with the same data. This implies that any path into the loop already
   617   // includes such a CastPP, and so the original cast, whatever its input,
   618   // must be covered by an equivalent cast, with an earlier control input.
   619   ResourceMark rm;
   621   // The loop entry input of the phi should be the unique dominating
   622   // node for every Phi/CastPP in the loop.
   623   Unique_Node_List closure;
   624   closure.push(adr_phi->in(LoopNode::EntryControl));
   626   // Add the phi node and the cast to the worklist.
   627   Unique_Node_List worklist;
   628   worklist.push(adr_phi);
   629   if( cast != NULL ){
   630     if( !cast->is_ConstraintCast() ) return false;
   631     worklist.push(cast);
   632   }
   634   // Begin recursive walk of phi nodes.
   635   while( worklist.size() ){
   636     // Take a node off the worklist
   637     Node *n = worklist.pop();
   638     if( !closure.member(n) ){
   639       // Add it to the closure.
   640       closure.push(n);
   641       // Make a sanity check to ensure we don't waste too much time here.
   642       if( closure.size() > 20) return false;
   643       // This node is OK if:
   644       //  - it is a cast of an identical value
   645       //  - or it is a phi node (then we add its inputs to the worklist)
   646       // Otherwise, the node is not OK, and we presume the cast is not invariant
   647       if( n->is_ConstraintCast() ){
   648         worklist.push(n->in(1));
   649       } else if( n->is_Phi() ) {
   650         for( uint i = 1; i < n->req(); i++ ) {
   651           worklist.push(n->in(i));
   652         }
   653       } else {
   654         return false;
   655       }
   656     }
   657   }
   659   // Quit when the worklist is empty, and we've found no offending nodes.
   660   return true;
   661 }
   663 //------------------------------Ideal_DU_postCCP-------------------------------
   664 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   665 // going away in this pass and we need to make this memory op depend on the
   666 // gating null check.
   667 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   668   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
   669 }
   671 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   672 // some sense; we get to keep around the knowledge that an oop is not-null
   673 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   674 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   675 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   676 // some of the more trivial cases in the optimizer.  Removing more useless
   677 // Phi's started allowing Loads to illegally float above null checks.  I gave
   678 // up on this approach.  CNC 10/20/2000
   679 // This static method may be called not from MemNode (EncodePNode calls it).
   680 // Only the control edge of the node 'n' might be updated.
   681 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
   682   Node *skipped_cast = NULL;
   683   // Need a null check?  Regular static accesses do not because they are
   684   // from constant addresses.  Array ops are gated by the range check (which
   685   // always includes a NULL check).  Just check field ops.
   686   if( n->in(MemNode::Control) == NULL ) {
   687     // Scan upwards for the highest location we can place this memory op.
   688     while( true ) {
   689       switch( adr->Opcode() ) {
   691       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   692         adr = adr->in(AddPNode::Base);
   693         continue;
   695       case Op_DecodeN:         // No change to NULL-ness, so peek thru
   696         adr = adr->in(1);
   697         continue;
   699       case Op_CastPP:
   700         // If the CastPP is useless, just peek on through it.
   701         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   702           // Remember the cast that we've peeked though. If we peek
   703           // through more than one, then we end up remembering the highest
   704           // one, that is, if in a loop, the one closest to the top.
   705           skipped_cast = adr;
   706           adr = adr->in(1);
   707           continue;
   708         }
   709         // CastPP is going away in this pass!  We need this memory op to be
   710         // control-dependent on the test that is guarding the CastPP.
   711         ccp->hash_delete(n);
   712         n->set_req(MemNode::Control, adr->in(0));
   713         ccp->hash_insert(n);
   714         return n;
   716       case Op_Phi:
   717         // Attempt to float above a Phi to some dominating point.
   718         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   719           // If we've already peeked through a Cast (which could have set the
   720           // control), we can't float above a Phi, because the skipped Cast
   721           // may not be loop invariant.
   722           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   723             adr = adr->in(1);
   724             continue;
   725           }
   726         }
   728         // Intentional fallthrough!
   730         // No obvious dominating point.  The mem op is pinned below the Phi
   731         // by the Phi itself.  If the Phi goes away (no true value is merged)
   732         // then the mem op can float, but not indefinitely.  It must be pinned
   733         // behind the controls leading to the Phi.
   734       case Op_CheckCastPP:
   735         // These usually stick around to change address type, however a
   736         // useless one can be elided and we still need to pick up a control edge
   737         if (adr->in(0) == NULL) {
   738           // This CheckCastPP node has NO control and is likely useless. But we
   739           // need check further up the ancestor chain for a control input to keep
   740           // the node in place. 4959717.
   741           skipped_cast = adr;
   742           adr = adr->in(1);
   743           continue;
   744         }
   745         ccp->hash_delete(n);
   746         n->set_req(MemNode::Control, adr->in(0));
   747         ccp->hash_insert(n);
   748         return n;
   750         // List of "safe" opcodes; those that implicitly block the memory
   751         // op below any null check.
   752       case Op_CastX2P:          // no null checks on native pointers
   753       case Op_Parm:             // 'this' pointer is not null
   754       case Op_LoadP:            // Loading from within a klass
   755       case Op_LoadN:            // Loading from within a klass
   756       case Op_LoadKlass:        // Loading from within a klass
   757       case Op_LoadNKlass:       // Loading from within a klass
   758       case Op_ConP:             // Loading from a klass
   759       case Op_ConN:             // Loading from a klass
   760       case Op_CreateEx:         // Sucking up the guts of an exception oop
   761       case Op_Con:              // Reading from TLS
   762       case Op_CMoveP:           // CMoveP is pinned
   763       case Op_CMoveN:           // CMoveN is pinned
   764         break;                  // No progress
   766       case Op_Proj:             // Direct call to an allocation routine
   767       case Op_SCMemProj:        // Memory state from store conditional ops
   768 #ifdef ASSERT
   769         {
   770           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   771           const Node* call = adr->in(0);
   772           if (call->is_CallJava()) {
   773             const CallJavaNode* call_java = call->as_CallJava();
   774             const TypeTuple *r = call_java->tf()->range();
   775             assert(r->cnt() > TypeFunc::Parms, "must return value");
   776             const Type* ret_type = r->field_at(TypeFunc::Parms);
   777             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   778             // We further presume that this is one of
   779             // new_instance_Java, new_array_Java, or
   780             // the like, but do not assert for this.
   781           } else if (call->is_Allocate()) {
   782             // similar case to new_instance_Java, etc.
   783           } else if (!call->is_CallLeaf()) {
   784             // Projections from fetch_oop (OSR) are allowed as well.
   785             ShouldNotReachHere();
   786           }
   787         }
   788 #endif
   789         break;
   790       default:
   791         ShouldNotReachHere();
   792       }
   793       break;
   794     }
   795   }
   797   return  NULL;               // No progress
   798 }
   801 //=============================================================================
   802 uint LoadNode::size_of() const { return sizeof(*this); }
   803 uint LoadNode::cmp( const Node &n ) const
   804 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   805 const Type *LoadNode::bottom_type() const { return _type; }
   806 uint LoadNode::ideal_reg() const {
   807   return Matcher::base2reg[_type->base()];
   808 }
   810 #ifndef PRODUCT
   811 void LoadNode::dump_spec(outputStream *st) const {
   812   MemNode::dump_spec(st);
   813   if( !Verbose && !WizardMode ) {
   814     // standard dump does this in Verbose and WizardMode
   815     st->print(" #"); _type->dump_on(st);
   816   }
   817 }
   818 #endif
   820 #ifdef ASSERT
   821 //----------------------------is_immutable_value-------------------------------
   822 // Helper function to allow a raw load without control edge for some cases
   823 bool LoadNode::is_immutable_value(Node* adr) {
   824   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
   825           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   826           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
   827            in_bytes(JavaThread::osthread_offset())));
   828 }
   829 #endif
   831 //----------------------------LoadNode::make-----------------------------------
   832 // Polymorphic factory method:
   833 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   834   Compile* C = gvn.C;
   836   // sanity check the alias category against the created node type
   837   assert(!(adr_type->isa_oopptr() &&
   838            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   839          "use LoadKlassNode instead");
   840   assert(!(adr_type->isa_aryptr() &&
   841            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   842          "use LoadRangeNode instead");
   843   // Check control edge of raw loads
   844   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
   845           // oop will be recorded in oop map if load crosses safepoint
   846           rt->isa_oopptr() || is_immutable_value(adr),
   847           "raw memory operations should have control edge");
   848   switch (bt) {
   849   case T_BOOLEAN: return new (C, 3) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   850   case T_BYTE:    return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
   851   case T_INT:     return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
   852   case T_CHAR:    return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   853   case T_SHORT:   return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
   854   case T_LONG:    return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
   855   case T_FLOAT:   return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt              );
   856   case T_DOUBLE:  return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt              );
   857   case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
   858   case T_OBJECT:
   859 #ifdef _LP64
   860     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
   861       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
   862       return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
   863     } else
   864 #endif
   865     {
   866       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
   867       return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   868     }
   869   }
   870   ShouldNotReachHere();
   871   return (LoadNode*)NULL;
   872 }
   874 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   875   bool require_atomic = true;
   876   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   877 }
   882 //------------------------------hash-------------------------------------------
   883 uint LoadNode::hash() const {
   884   // unroll addition of interesting fields
   885   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   886 }
   888 //---------------------------can_see_stored_value------------------------------
   889 // This routine exists to make sure this set of tests is done the same
   890 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   891 // will change the graph shape in a way which makes memory alive twice at the
   892 // same time (uses the Oracle model of aliasing), then some
   893 // LoadXNode::Identity will fold things back to the equivalence-class model
   894 // of aliasing.
   895 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   896   Node* ld_adr = in(MemNode::Address);
   898   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   899   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   900   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   901       atp->field() != NULL && !atp->field()->is_volatile()) {
   902     uint alias_idx = atp->index();
   903     bool final = atp->field()->is_final();
   904     Node* result = NULL;
   905     Node* current = st;
   906     // Skip through chains of MemBarNodes checking the MergeMems for
   907     // new states for the slice of this load.  Stop once any other
   908     // kind of node is encountered.  Loads from final memory can skip
   909     // through any kind of MemBar but normal loads shouldn't skip
   910     // through MemBarAcquire since the could allow them to move out of
   911     // a synchronized region.
   912     while (current->is_Proj()) {
   913       int opc = current->in(0)->Opcode();
   914       if ((final && opc == Op_MemBarAcquire) ||
   915           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
   916         Node* mem = current->in(0)->in(TypeFunc::Memory);
   917         if (mem->is_MergeMem()) {
   918           MergeMemNode* merge = mem->as_MergeMem();
   919           Node* new_st = merge->memory_at(alias_idx);
   920           if (new_st == merge->base_memory()) {
   921             // Keep searching
   922             current = merge->base_memory();
   923             continue;
   924           }
   925           // Save the new memory state for the slice and fall through
   926           // to exit.
   927           result = new_st;
   928         }
   929       }
   930       break;
   931     }
   932     if (result != NULL) {
   933       st = result;
   934     }
   935   }
   938   // Loop around twice in the case Load -> Initialize -> Store.
   939   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   940   for (int trip = 0; trip <= 1; trip++) {
   942     if (st->is_Store()) {
   943       Node* st_adr = st->in(MemNode::Address);
   944       if (!phase->eqv(st_adr, ld_adr)) {
   945         // Try harder before giving up...  Match raw and non-raw pointers.
   946         intptr_t st_off = 0;
   947         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   948         if (alloc == NULL)       return NULL;
   949         intptr_t ld_off = 0;
   950         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   951         if (alloc != allo2)      return NULL;
   952         if (ld_off != st_off)    return NULL;
   953         // At this point we have proven something like this setup:
   954         //  A = Allocate(...)
   955         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   956         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   957         // (Actually, we haven't yet proven the Q's are the same.)
   958         // In other words, we are loading from a casted version of
   959         // the same pointer-and-offset that we stored to.
   960         // Thus, we are able to replace L by V.
   961       }
   962       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
   963       if (store_Opcode() != st->Opcode())
   964         return NULL;
   965       return st->in(MemNode::ValueIn);
   966     }
   968     intptr_t offset = 0;  // scratch
   970     // A load from a freshly-created object always returns zero.
   971     // (This can happen after LoadNode::Ideal resets the load's memory input
   972     // to find_captured_store, which returned InitializeNode::zero_memory.)
   973     if (st->is_Proj() && st->in(0)->is_Allocate() &&
   974         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
   975         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
   976       // return a zero value for the load's basic type
   977       // (This is one of the few places where a generic PhaseTransform
   978       // can create new nodes.  Think of it as lazily manifesting
   979       // virtually pre-existing constants.)
   980       return phase->zerocon(memory_type());
   981     }
   983     // A load from an initialization barrier can match a captured store.
   984     if (st->is_Proj() && st->in(0)->is_Initialize()) {
   985       InitializeNode* init = st->in(0)->as_Initialize();
   986       AllocateNode* alloc = init->allocation();
   987       if (alloc != NULL &&
   988           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
   989         // examine a captured store value
   990         st = init->find_captured_store(offset, memory_size(), phase);
   991         if (st != NULL)
   992           continue;             // take one more trip around
   993       }
   994     }
   996     break;
   997   }
   999   return NULL;
  1002 //----------------------is_instance_field_load_with_local_phi------------------
  1003 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
  1004   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
  1005       in(MemNode::Address)->is_AddP() ) {
  1006     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
  1007     // Only instances.
  1008     if( t_oop != NULL && t_oop->is_known_instance_field() &&
  1009         t_oop->offset() != Type::OffsetBot &&
  1010         t_oop->offset() != Type::OffsetTop) {
  1011       return true;
  1014   return false;
  1017 //------------------------------Identity---------------------------------------
  1018 // Loads are identity if previous store is to same address
  1019 Node *LoadNode::Identity( PhaseTransform *phase ) {
  1020   // If the previous store-maker is the right kind of Store, and the store is
  1021   // to the same address, then we are equal to the value stored.
  1022   Node* mem = in(MemNode::Memory);
  1023   Node* value = can_see_stored_value(mem, phase);
  1024   if( value ) {
  1025     // byte, short & char stores truncate naturally.
  1026     // A load has to load the truncated value which requires
  1027     // some sort of masking operation and that requires an
  1028     // Ideal call instead of an Identity call.
  1029     if (memory_size() < BytesPerInt) {
  1030       // If the input to the store does not fit with the load's result type,
  1031       // it must be truncated via an Ideal call.
  1032       if (!phase->type(value)->higher_equal(phase->type(this)))
  1033         return this;
  1035     // (This works even when value is a Con, but LoadNode::Value
  1036     // usually runs first, producing the singleton type of the Con.)
  1037     return value;
  1040   // Search for an existing data phi which was generated before for the same
  1041   // instance's field to avoid infinite generation of phis in a loop.
  1042   Node *region = mem->in(0);
  1043   if (is_instance_field_load_with_local_phi(region)) {
  1044     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
  1045     int this_index  = phase->C->get_alias_index(addr_t);
  1046     int this_offset = addr_t->offset();
  1047     int this_id    = addr_t->is_oopptr()->instance_id();
  1048     const Type* this_type = bottom_type();
  1049     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  1050       Node* phi = region->fast_out(i);
  1051       if (phi->is_Phi() && phi != mem &&
  1052           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
  1053         return phi;
  1058   return this;
  1062 // Returns true if the AliasType refers to the field that holds the
  1063 // cached box array.  Currently only handles the IntegerCache case.
  1064 static bool is_autobox_cache(Compile::AliasType* atp) {
  1065   if (atp != NULL && atp->field() != NULL) {
  1066     ciField* field = atp->field();
  1067     ciSymbol* klass = field->holder()->name();
  1068     if (field->name() == ciSymbol::cache_field_name() &&
  1069         field->holder()->uses_default_loader() &&
  1070         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1071       return true;
  1074   return false;
  1077 // Fetch the base value in the autobox array
  1078 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
  1079   if (atp != NULL && atp->field() != NULL) {
  1080     ciField* field = atp->field();
  1081     ciSymbol* klass = field->holder()->name();
  1082     if (field->name() == ciSymbol::cache_field_name() &&
  1083         field->holder()->uses_default_loader() &&
  1084         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1085       assert(field->is_constant(), "what?");
  1086       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
  1087       // Fetch the box object at the base of the array and get its value
  1088       ciInstance* box = array->obj_at(0)->as_instance();
  1089       ciInstanceKlass* ik = box->klass()->as_instance_klass();
  1090       if (ik->nof_nonstatic_fields() == 1) {
  1091         // This should be true nonstatic_field_at requires calling
  1092         // nof_nonstatic_fields so check it anyway
  1093         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
  1094         cache_offset = c.as_int();
  1096       return true;
  1099   return false;
  1102 // Returns true if the AliasType refers to the value field of an
  1103 // autobox object.  Currently only handles Integer.
  1104 static bool is_autobox_object(Compile::AliasType* atp) {
  1105   if (atp != NULL && atp->field() != NULL) {
  1106     ciField* field = atp->field();
  1107     ciSymbol* klass = field->holder()->name();
  1108     if (field->name() == ciSymbol::value_name() &&
  1109         field->holder()->uses_default_loader() &&
  1110         klass == ciSymbol::java_lang_Integer()) {
  1111       return true;
  1114   return false;
  1118 // We're loading from an object which has autobox behaviour.
  1119 // If this object is result of a valueOf call we'll have a phi
  1120 // merging a newly allocated object and a load from the cache.
  1121 // We want to replace this load with the original incoming
  1122 // argument to the valueOf call.
  1123 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1124   Node* base = in(Address)->in(AddPNode::Base);
  1125   if (base->is_Phi() && base->req() == 3) {
  1126     AllocateNode* allocation = NULL;
  1127     int allocation_index = -1;
  1128     int load_index = -1;
  1129     for (uint i = 1; i < base->req(); i++) {
  1130       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
  1131       if (allocation != NULL) {
  1132         allocation_index = i;
  1133         load_index = 3 - allocation_index;
  1134         break;
  1137     bool has_load = ( allocation != NULL &&
  1138                       (base->in(load_index)->is_Load() ||
  1139                        base->in(load_index)->is_DecodeN() &&
  1140                        base->in(load_index)->in(1)->is_Load()) );
  1141     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
  1142       // Push the loads from the phi that comes from valueOf up
  1143       // through it to allow elimination of the loads and the recovery
  1144       // of the original value.
  1145       Node* mem_phi = in(Memory);
  1146       Node* offset = in(Address)->in(AddPNode::Offset);
  1147       Node* region = base->in(0);
  1149       Node* in1 = clone();
  1150       Node* in1_addr = in1->in(Address)->clone();
  1151       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
  1152       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
  1153       in1_addr->set_req(AddPNode::Offset, offset);
  1154       in1->set_req(0, region->in(allocation_index));
  1155       in1->set_req(Address, in1_addr);
  1156       in1->set_req(Memory, mem_phi->in(allocation_index));
  1158       Node* in2 = clone();
  1159       Node* in2_addr = in2->in(Address)->clone();
  1160       in2_addr->set_req(AddPNode::Base, base->in(load_index));
  1161       in2_addr->set_req(AddPNode::Address, base->in(load_index));
  1162       in2_addr->set_req(AddPNode::Offset, offset);
  1163       in2->set_req(0, region->in(load_index));
  1164       in2->set_req(Address, in2_addr);
  1165       in2->set_req(Memory, mem_phi->in(load_index));
  1167       in1_addr = phase->transform(in1_addr);
  1168       in1 =      phase->transform(in1);
  1169       in2_addr = phase->transform(in2_addr);
  1170       in2 =      phase->transform(in2);
  1172       PhiNode* result = PhiNode::make_blank(region, this);
  1173       result->set_req(allocation_index, in1);
  1174       result->set_req(load_index, in2);
  1175       return result;
  1177   } else if (base->is_Load() ||
  1178              base->is_DecodeN() && base->in(1)->is_Load()) {
  1179     if (base->is_DecodeN()) {
  1180       // Get LoadN node which loads cached Integer object
  1181       base = base->in(1);
  1183     // Eliminate the load of Integer.value for integers from the cache
  1184     // array by deriving the value from the index into the array.
  1185     // Capture the offset of the load and then reverse the computation.
  1186     Node* load_base = base->in(Address)->in(AddPNode::Base);
  1187     if (load_base->is_DecodeN()) {
  1188       // Get LoadN node which loads IntegerCache.cache field
  1189       load_base = load_base->in(1);
  1191     if (load_base != NULL) {
  1192       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
  1193       intptr_t cache_offset;
  1194       int shift = -1;
  1195       Node* cache = NULL;
  1196       if (is_autobox_cache(atp)) {
  1197         shift  = exact_log2(type2aelembytes(T_OBJECT));
  1198         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
  1200       if (cache != NULL && base->in(Address)->is_AddP()) {
  1201         Node* elements[4];
  1202         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  1203         int cache_low;
  1204         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
  1205           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
  1206           // Add up all the offsets making of the address of the load
  1207           Node* result = elements[0];
  1208           for (int i = 1; i < count; i++) {
  1209             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
  1211           // Remove the constant offset from the address and then
  1212           // remove the scaling of the offset to recover the original index.
  1213           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
  1214           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1215             // Peel the shift off directly but wrap it in a dummy node
  1216             // since Ideal can't return existing nodes
  1217             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
  1218           } else {
  1219             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
  1221 #ifdef _LP64
  1222           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
  1223 #endif
  1224           return result;
  1229   return NULL;
  1232 //------------------------------split_through_phi------------------------------
  1233 // Split instance field load through Phi.
  1234 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
  1235   Node* mem     = in(MemNode::Memory);
  1236   Node* address = in(MemNode::Address);
  1237   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1238   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1240   assert(mem->is_Phi() && (t_oop != NULL) &&
  1241          t_oop->is_known_instance_field(), "invalide conditions");
  1243   Node *region = mem->in(0);
  1244   if (region == NULL) {
  1245     return NULL; // Wait stable graph
  1247   uint cnt = mem->req();
  1248   for( uint i = 1; i < cnt; i++ ) {
  1249     Node *in = mem->in(i);
  1250     if( in == NULL ) {
  1251       return NULL; // Wait stable graph
  1254   // Check for loop invariant.
  1255   if (cnt == 3) {
  1256     for( uint i = 1; i < cnt; i++ ) {
  1257       Node *in = mem->in(i);
  1258       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
  1259       if (m == mem) {
  1260         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
  1261         return this;
  1265   // Split through Phi (see original code in loopopts.cpp).
  1266   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
  1268   // Do nothing here if Identity will find a value
  1269   // (to avoid infinite chain of value phis generation).
  1270   if ( !phase->eqv(this, this->Identity(phase)) )
  1271     return NULL;
  1273   // Skip the split if the region dominates some control edge of the address.
  1274   if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
  1275     return NULL;
  1277   const Type* this_type = this->bottom_type();
  1278   int this_index  = phase->C->get_alias_index(addr_t);
  1279   int this_offset = addr_t->offset();
  1280   int this_iid    = addr_t->is_oopptr()->instance_id();
  1281   int wins = 0;
  1282   PhaseIterGVN *igvn = phase->is_IterGVN();
  1283   Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1284   for( uint i = 1; i < region->req(); i++ ) {
  1285     Node *x;
  1286     Node* the_clone = NULL;
  1287     if( region->in(i) == phase->C->top() ) {
  1288       x = phase->C->top();      // Dead path?  Use a dead data op
  1289     } else {
  1290       x = this->clone();        // Else clone up the data op
  1291       the_clone = x;            // Remember for possible deletion.
  1292       // Alter data node to use pre-phi inputs
  1293       if( this->in(0) == region ) {
  1294         x->set_req( 0, region->in(i) );
  1295       } else {
  1296         x->set_req( 0, NULL );
  1298       for( uint j = 1; j < this->req(); j++ ) {
  1299         Node *in = this->in(j);
  1300         if( in->is_Phi() && in->in(0) == region )
  1301           x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
  1304     // Check for a 'win' on some paths
  1305     const Type *t = x->Value(igvn);
  1307     bool singleton = t->singleton();
  1309     // See comments in PhaseIdealLoop::split_thru_phi().
  1310     if( singleton && t == Type::TOP ) {
  1311       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1314     if( singleton ) {
  1315       wins++;
  1316       x = igvn->makecon(t);
  1317     } else {
  1318       // We now call Identity to try to simplify the cloned node.
  1319       // Note that some Identity methods call phase->type(this).
  1320       // Make sure that the type array is big enough for
  1321       // our new node, even though we may throw the node away.
  1322       // (This tweaking with igvn only works because x is a new node.)
  1323       igvn->set_type(x, t);
  1324       // If x is a TypeNode, capture any more-precise type permanently into Node
  1325       // otherwise it will be not updated during igvn->transform since
  1326       // igvn->type(x) is set to x->Value() already.
  1327       x->raise_bottom_type(t);
  1328       Node *y = x->Identity(igvn);
  1329       if( y != x ) {
  1330         wins++;
  1331         x = y;
  1332       } else {
  1333         y = igvn->hash_find(x);
  1334         if( y ) {
  1335           wins++;
  1336           x = y;
  1337         } else {
  1338           // Else x is a new node we are keeping
  1339           // We do not need register_new_node_with_optimizer
  1340           // because set_type has already been called.
  1341           igvn->_worklist.push(x);
  1345     if (x != the_clone && the_clone != NULL)
  1346       igvn->remove_dead_node(the_clone);
  1347     phi->set_req(i, x);
  1349   if( wins > 0 ) {
  1350     // Record Phi
  1351     igvn->register_new_node_with_optimizer(phi);
  1352     return phi;
  1354   igvn->remove_dead_node(phi);
  1355   return NULL;
  1358 //------------------------------Ideal------------------------------------------
  1359 // If the load is from Field memory and the pointer is non-null, we can
  1360 // zero out the control input.
  1361 // If the offset is constant and the base is an object allocation,
  1362 // try to hook me up to the exact initializing store.
  1363 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1364   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1365   if (p)  return (p == NodeSentinel) ? NULL : p;
  1367   Node* ctrl    = in(MemNode::Control);
  1368   Node* address = in(MemNode::Address);
  1370   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1371   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1372   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1373       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1374     ctrl = ctrl->in(0);
  1375     set_req(MemNode::Control,ctrl);
  1378   intptr_t ignore = 0;
  1379   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1380   if (base != NULL
  1381       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
  1382     // Check for useless control edge in some common special cases
  1383     if (in(MemNode::Control) != NULL
  1384         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1385         && all_controls_dominate(base, phase->C->start())) {
  1386       // A method-invariant, non-null address (constant or 'this' argument).
  1387       set_req(MemNode::Control, NULL);
  1390     if (EliminateAutoBox && can_reshape) {
  1391       assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
  1392       Compile::AliasType* atp = phase->C->alias_type(adr_type());
  1393       if (is_autobox_object(atp)) {
  1394         Node* result = eliminate_autobox(phase);
  1395         if (result != NULL) return result;
  1400   Node* mem = in(MemNode::Memory);
  1401   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1403   if (addr_t != NULL) {
  1404     // try to optimize our memory input
  1405     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
  1406     if (opt_mem != mem) {
  1407       set_req(MemNode::Memory, opt_mem);
  1408       if (phase->type( opt_mem ) == Type::TOP) return NULL;
  1409       return this;
  1411     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1412     if (can_reshape && opt_mem->is_Phi() &&
  1413         (t_oop != NULL) && t_oop->is_known_instance_field()) {
  1414       // Split instance field load through Phi.
  1415       Node* result = split_through_phi(phase);
  1416       if (result != NULL) return result;
  1420   // Check for prior store with a different base or offset; make Load
  1421   // independent.  Skip through any number of them.  Bail out if the stores
  1422   // are in an endless dead cycle and report no progress.  This is a key
  1423   // transform for Reflection.  However, if after skipping through the Stores
  1424   // we can't then fold up against a prior store do NOT do the transform as
  1425   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1426   // array memory alive twice: once for the hoisted Load and again after the
  1427   // bypassed Store.  This situation only works if EVERYBODY who does
  1428   // anti-dependence work knows how to bypass.  I.e. we need all
  1429   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1430   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1431   // fold up, do so.
  1432   Node* prev_mem = find_previous_store(phase);
  1433   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1434   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1435     // (c) See if we can fold up on the spot, but don't fold up here.
  1436     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
  1437     // just return a prior value, which is done by Identity calls.
  1438     if (can_see_stored_value(prev_mem, phase)) {
  1439       // Make ready for step (d):
  1440       set_req(MemNode::Memory, prev_mem);
  1441       return this;
  1445   return NULL;                  // No further progress
  1448 // Helper to recognize certain Klass fields which are invariant across
  1449 // some group of array types (e.g., int[] or all T[] where T < Object).
  1450 const Type*
  1451 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1452                                  ciKlass* klass) const {
  1453   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1454     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1455     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1456     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1457     return TypeInt::make(klass->modifier_flags());
  1459   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1460     // The field is Klass::_access_flags.  Return its (constant) value.
  1461     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1462     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1463     return TypeInt::make(klass->access_flags());
  1465   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1466     // The field is Klass::_layout_helper.  Return its constant value if known.
  1467     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1468     return TypeInt::make(klass->layout_helper());
  1471   // No match.
  1472   return NULL;
  1475 //------------------------------Value-----------------------------------------
  1476 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1477   // Either input is TOP ==> the result is TOP
  1478   Node* mem = in(MemNode::Memory);
  1479   const Type *t1 = phase->type(mem);
  1480   if (t1 == Type::TOP)  return Type::TOP;
  1481   Node* adr = in(MemNode::Address);
  1482   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1483   if (tp == NULL || tp->empty())  return Type::TOP;
  1484   int off = tp->offset();
  1485   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1487   // Try to guess loaded type from pointer type
  1488   if (tp->base() == Type::AryPtr) {
  1489     const Type *t = tp->is_aryptr()->elem();
  1490     // Don't do this for integer types. There is only potential profit if
  1491     // the element type t is lower than _type; that is, for int types, if _type is
  1492     // more restrictive than t.  This only happens here if one is short and the other
  1493     // char (both 16 bits), and in those cases we've made an intentional decision
  1494     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1495     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1496     //
  1497     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1498     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1499     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1500     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1501     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1502     // In fact, that could have been the original type of p1, and p1 could have
  1503     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1504     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1505     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1506         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
  1507       // t might actually be lower than _type, if _type is a unique
  1508       // concrete subclass of abstract class t.
  1509       // Make sure the reference is not into the header, by comparing
  1510       // the offset against the offset of the start of the array's data.
  1511       // Different array types begin at slightly different offsets (12 vs. 16).
  1512       // We choose T_BYTE as an example base type that is least restrictive
  1513       // as to alignment, which will therefore produce the smallest
  1514       // possible base offset.
  1515       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1516       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1517         const Type* jt = t->join(_type);
  1518         // In any case, do not allow the join, per se, to empty out the type.
  1519         if (jt->empty() && !t->empty()) {
  1520           // This can happen if a interface-typed array narrows to a class type.
  1521           jt = _type;
  1524         if (EliminateAutoBox && adr->is_AddP()) {
  1525           // The pointers in the autobox arrays are always non-null
  1526           Node* base = adr->in(AddPNode::Base);
  1527           if (base != NULL &&
  1528               !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
  1529             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
  1530             if (is_autobox_cache(atp)) {
  1531               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1535         return jt;
  1538   } else if (tp->base() == Type::InstPtr) {
  1539     const TypeInstPtr* tinst = tp->is_instptr();
  1540     ciKlass* klass = tinst->klass();
  1541     assert( off != Type::OffsetBot ||
  1542             // arrays can be cast to Objects
  1543             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1544             // unsafe field access may not have a constant offset
  1545             phase->C->has_unsafe_access(),
  1546             "Field accesses must be precise" );
  1547     // For oop loads, we expect the _type to be precise
  1548     if (OptimizeStringConcat && klass == phase->C->env()->String_klass() &&
  1549         adr->is_AddP() && off != Type::OffsetBot) {
  1550       // For constant Strings treat the fields as compile time constants.
  1551       Node* base = adr->in(AddPNode::Base);
  1552       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
  1553       if (t != NULL && t->singleton()) {
  1554         ciObject* string = t->const_oop();
  1555         ciConstant constant = string->as_instance()->field_value_by_offset(off);
  1556         if (constant.basic_type() == T_INT) {
  1557           return TypeInt::make(constant.as_int());
  1558         } else if (constant.basic_type() == T_ARRAY) {
  1559           if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1560             return TypeNarrowOop::make_from_constant(constant.as_object());
  1561           } else {
  1562             return TypeOopPtr::make_from_constant(constant.as_object());
  1567   } else if (tp->base() == Type::KlassPtr) {
  1568     assert( off != Type::OffsetBot ||
  1569             // arrays can be cast to Objects
  1570             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1571             // also allow array-loading from the primary supertype
  1572             // array during subtype checks
  1573             Opcode() == Op_LoadKlass,
  1574             "Field accesses must be precise" );
  1575     // For klass/static loads, we expect the _type to be precise
  1578   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1579   if (tkls != NULL && !StressReflectiveCode) {
  1580     ciKlass* klass = tkls->klass();
  1581     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1582       // We are loading a field from a Klass metaobject whose identity
  1583       // is known at compile time (the type is "exact" or "precise").
  1584       // Check for fields we know are maintained as constants by the VM.
  1585       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1586         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1587         // (Folds up type checking code.)
  1588         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1589         return TypeInt::make(klass->super_check_offset());
  1591       // Compute index into primary_supers array
  1592       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1593       // Check for overflowing; use unsigned compare to handle the negative case.
  1594       if( depth < ciKlass::primary_super_limit() ) {
  1595         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1596         // (Folds up type checking code.)
  1597         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1598         ciKlass *ss = klass->super_of_depth(depth);
  1599         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1601       const Type* aift = load_array_final_field(tkls, klass);
  1602       if (aift != NULL)  return aift;
  1603       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
  1604           && klass->is_array_klass()) {
  1605         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
  1606         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1607         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1608         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1610       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1611         // The field is Klass::_java_mirror.  Return its (constant) value.
  1612         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1613         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1614         return TypeInstPtr::make(klass->java_mirror());
  1618     // We can still check if we are loading from the primary_supers array at a
  1619     // shallow enough depth.  Even though the klass is not exact, entries less
  1620     // than or equal to its super depth are correct.
  1621     if (klass->is_loaded() ) {
  1622       ciType *inner = klass->klass();
  1623       while( inner->is_obj_array_klass() )
  1624         inner = inner->as_obj_array_klass()->base_element_type();
  1625       if( inner->is_instance_klass() &&
  1626           !inner->as_instance_klass()->flags().is_interface() ) {
  1627         // Compute index into primary_supers array
  1628         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1629         // Check for overflowing; use unsigned compare to handle the negative case.
  1630         if( depth < ciKlass::primary_super_limit() &&
  1631             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1632           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1633           // (Folds up type checking code.)
  1634           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1635           ciKlass *ss = klass->super_of_depth(depth);
  1636           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1641     // If the type is enough to determine that the thing is not an array,
  1642     // we can give the layout_helper a positive interval type.
  1643     // This will help short-circuit some reflective code.
  1644     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
  1645         && !klass->is_array_klass() // not directly typed as an array
  1646         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1647         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1648         ) {
  1649       // Note:  When interfaces are reliable, we can narrow the interface
  1650       // test to (klass != Serializable && klass != Cloneable).
  1651       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1652       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1653       // The key property of this type is that it folds up tests
  1654       // for array-ness, since it proves that the layout_helper is positive.
  1655       // Thus, a generic value like the basic object layout helper works fine.
  1656       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1660   // If we are loading from a freshly-allocated object, produce a zero,
  1661   // if the load is provably beyond the header of the object.
  1662   // (Also allow a variable load from a fresh array to produce zero.)
  1663   if (ReduceFieldZeroing) {
  1664     Node* value = can_see_stored_value(mem,phase);
  1665     if (value != NULL && value->is_Con())
  1666       return value->bottom_type();
  1669   const TypeOopPtr *tinst = tp->isa_oopptr();
  1670   if (tinst != NULL && tinst->is_known_instance_field()) {
  1671     // If we have an instance type and our memory input is the
  1672     // programs's initial memory state, there is no matching store,
  1673     // so just return a zero of the appropriate type
  1674     Node *mem = in(MemNode::Memory);
  1675     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1676       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1677       return Type::get_zero_type(_type->basic_type());
  1680   return _type;
  1683 //------------------------------match_edge-------------------------------------
  1684 // Do we Match on this edge index or not?  Match only the address.
  1685 uint LoadNode::match_edge(uint idx) const {
  1686   return idx == MemNode::Address;
  1689 //--------------------------LoadBNode::Ideal--------------------------------------
  1690 //
  1691 //  If the previous store is to the same address as this load,
  1692 //  and the value stored was larger than a byte, replace this load
  1693 //  with the value stored truncated to a byte.  If no truncation is
  1694 //  needed, the replacement is done in LoadNode::Identity().
  1695 //
  1696 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1697   Node* mem = in(MemNode::Memory);
  1698   Node* value = can_see_stored_value(mem,phase);
  1699   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1700     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
  1701     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
  1703   // Identity call will handle the case where truncation is not needed.
  1704   return LoadNode::Ideal(phase, can_reshape);
  1707 //--------------------------LoadUBNode::Ideal-------------------------------------
  1708 //
  1709 //  If the previous store is to the same address as this load,
  1710 //  and the value stored was larger than a byte, replace this load
  1711 //  with the value stored truncated to a byte.  If no truncation is
  1712 //  needed, the replacement is done in LoadNode::Identity().
  1713 //
  1714 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
  1715   Node* mem = in(MemNode::Memory);
  1716   Node* value = can_see_stored_value(mem, phase);
  1717   if (value && !phase->type(value)->higher_equal(_type))
  1718     return new (phase->C, 3) AndINode(value, phase->intcon(0xFF));
  1719   // Identity call will handle the case where truncation is not needed.
  1720   return LoadNode::Ideal(phase, can_reshape);
  1723 //--------------------------LoadUSNode::Ideal-------------------------------------
  1724 //
  1725 //  If the previous store is to the same address as this load,
  1726 //  and the value stored was larger than a char, replace this load
  1727 //  with the value stored truncated to a char.  If no truncation is
  1728 //  needed, the replacement is done in LoadNode::Identity().
  1729 //
  1730 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1731   Node* mem = in(MemNode::Memory);
  1732   Node* value = can_see_stored_value(mem,phase);
  1733   if( value && !phase->type(value)->higher_equal( _type ) )
  1734     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1735   // Identity call will handle the case where truncation is not needed.
  1736   return LoadNode::Ideal(phase, can_reshape);
  1739 //--------------------------LoadSNode::Ideal--------------------------------------
  1740 //
  1741 //  If the previous store is to the same address as this load,
  1742 //  and the value stored was larger than a short, replace this load
  1743 //  with the value stored truncated to a short.  If no truncation is
  1744 //  needed, the replacement is done in LoadNode::Identity().
  1745 //
  1746 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1747   Node* mem = in(MemNode::Memory);
  1748   Node* value = can_see_stored_value(mem,phase);
  1749   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1750     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1751     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1753   // Identity call will handle the case where truncation is not needed.
  1754   return LoadNode::Ideal(phase, can_reshape);
  1757 //=============================================================================
  1758 //----------------------------LoadKlassNode::make------------------------------
  1759 // Polymorphic factory method:
  1760 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
  1761   Compile* C = gvn.C;
  1762   Node *ctl = NULL;
  1763   // sanity check the alias category against the created node type
  1764   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
  1765   assert(adr_type != NULL, "expecting TypeOopPtr");
  1766 #ifdef _LP64
  1767   if (adr_type->is_ptr_to_narrowoop()) {
  1768     Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
  1769     return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
  1771 #endif
  1772   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
  1773   return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
  1776 //------------------------------Value------------------------------------------
  1777 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1778   return klass_value_common(phase);
  1781 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
  1782   // Either input is TOP ==> the result is TOP
  1783   const Type *t1 = phase->type( in(MemNode::Memory) );
  1784   if (t1 == Type::TOP)  return Type::TOP;
  1785   Node *adr = in(MemNode::Address);
  1786   const Type *t2 = phase->type( adr );
  1787   if (t2 == Type::TOP)  return Type::TOP;
  1788   const TypePtr *tp = t2->is_ptr();
  1789   if (TypePtr::above_centerline(tp->ptr()) ||
  1790       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1792   // Return a more precise klass, if possible
  1793   const TypeInstPtr *tinst = tp->isa_instptr();
  1794   if (tinst != NULL) {
  1795     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1796     int offset = tinst->offset();
  1797     if (ik == phase->C->env()->Class_klass()
  1798         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1799             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1800       // We are loading a special hidden field from a Class mirror object,
  1801       // the field which points to the VM's Klass metaobject.
  1802       ciType* t = tinst->java_mirror_type();
  1803       // java_mirror_type returns non-null for compile-time Class constants.
  1804       if (t != NULL) {
  1805         // constant oop => constant klass
  1806         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1807           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1809         if (!t->is_klass()) {
  1810           // a primitive Class (e.g., int.class) has NULL for a klass field
  1811           return TypePtr::NULL_PTR;
  1813         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1814         return TypeKlassPtr::make(t->as_klass());
  1816       // non-constant mirror, so we can't tell what's going on
  1818     if( !ik->is_loaded() )
  1819       return _type;             // Bail out if not loaded
  1820     if (offset == oopDesc::klass_offset_in_bytes()) {
  1821       if (tinst->klass_is_exact()) {
  1822         return TypeKlassPtr::make(ik);
  1824       // See if we can become precise: no subklasses and no interface
  1825       // (Note:  We need to support verified interfaces.)
  1826       if (!ik->is_interface() && !ik->has_subklass()) {
  1827         //assert(!UseExactTypes, "this code should be useless with exact types");
  1828         // Add a dependence; if any subclass added we need to recompile
  1829         if (!ik->is_final()) {
  1830           // %%% should use stronger assert_unique_concrete_subtype instead
  1831           phase->C->dependencies()->assert_leaf_type(ik);
  1833         // Return precise klass
  1834         return TypeKlassPtr::make(ik);
  1837       // Return root of possible klass
  1838       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1842   // Check for loading klass from an array
  1843   const TypeAryPtr *tary = tp->isa_aryptr();
  1844   if( tary != NULL ) {
  1845     ciKlass *tary_klass = tary->klass();
  1846     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1847         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1848       if (tary->klass_is_exact()) {
  1849         return TypeKlassPtr::make(tary_klass);
  1851       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1852       // If the klass is an object array, we defer the question to the
  1853       // array component klass.
  1854       if( ak->is_obj_array_klass() ) {
  1855         assert( ak->is_loaded(), "" );
  1856         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1857         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1858           ciInstanceKlass* ik = base_k->as_instance_klass();
  1859           // See if we can become precise: no subklasses and no interface
  1860           if (!ik->is_interface() && !ik->has_subklass()) {
  1861             //assert(!UseExactTypes, "this code should be useless with exact types");
  1862             // Add a dependence; if any subclass added we need to recompile
  1863             if (!ik->is_final()) {
  1864               phase->C->dependencies()->assert_leaf_type(ik);
  1866             // Return precise array klass
  1867             return TypeKlassPtr::make(ak);
  1870         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1871       } else {                  // Found a type-array?
  1872         //assert(!UseExactTypes, "this code should be useless with exact types");
  1873         assert( ak->is_type_array_klass(), "" );
  1874         return TypeKlassPtr::make(ak); // These are always precise
  1879   // Check for loading klass from an array klass
  1880   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1881   if (tkls != NULL && !StressReflectiveCode) {
  1882     ciKlass* klass = tkls->klass();
  1883     if( !klass->is_loaded() )
  1884       return _type;             // Bail out if not loaded
  1885     if( klass->is_obj_array_klass() &&
  1886         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
  1887       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  1888       // // Always returning precise element type is incorrect,
  1889       // // e.g., element type could be object and array may contain strings
  1890       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  1892       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  1893       // according to the element type's subclassing.
  1894       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  1896     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  1897         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
  1898       ciKlass* sup = klass->as_instance_klass()->super();
  1899       // The field is Klass::_super.  Return its (constant) value.
  1900       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  1901       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  1905   // Bailout case
  1906   return LoadNode::Value(phase);
  1909 //------------------------------Identity---------------------------------------
  1910 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  1911 // Also feed through the klass in Allocate(...klass...)._klass.
  1912 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  1913   return klass_identity_common(phase);
  1916 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
  1917   Node* x = LoadNode::Identity(phase);
  1918   if (x != this)  return x;
  1920   // Take apart the address into an oop and and offset.
  1921   // Return 'this' if we cannot.
  1922   Node*    adr    = in(MemNode::Address);
  1923   intptr_t offset = 0;
  1924   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1925   if (base == NULL)     return this;
  1926   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  1927   if (toop == NULL)     return this;
  1929   // We can fetch the klass directly through an AllocateNode.
  1930   // This works even if the klass is not constant (clone or newArray).
  1931   if (offset == oopDesc::klass_offset_in_bytes()) {
  1932     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  1933     if (allocated_klass != NULL) {
  1934       return allocated_klass;
  1938   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  1939   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  1940   // See inline_native_Class_query for occurrences of these patterns.
  1941   // Java Example:  x.getClass().isAssignableFrom(y)
  1942   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  1943   //
  1944   // This improves reflective code, often making the Class
  1945   // mirror go completely dead.  (Current exception:  Class
  1946   // mirrors may appear in debug info, but we could clean them out by
  1947   // introducing a new debug info operator for klassOop.java_mirror).
  1948   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  1949       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1950           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1951     // We are loading a special hidden field from a Class mirror,
  1952     // the field which points to its Klass or arrayKlass metaobject.
  1953     if (base->is_Load()) {
  1954       Node* adr2 = base->in(MemNode::Address);
  1955       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  1956       if (tkls != NULL && !tkls->empty()
  1957           && (tkls->klass()->is_instance_klass() ||
  1958               tkls->klass()->is_array_klass())
  1959           && adr2->is_AddP()
  1960           ) {
  1961         int mirror_field = Klass::java_mirror_offset_in_bytes();
  1962         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1963           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  1965         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
  1966           return adr2->in(AddPNode::Base);
  1972   return this;
  1976 //------------------------------Value------------------------------------------
  1977 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
  1978   const Type *t = klass_value_common(phase);
  1979   if (t == Type::TOP)
  1980     return t;
  1982   return t->make_narrowoop();
  1985 //------------------------------Identity---------------------------------------
  1986 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
  1987 // Also feed through the klass in Allocate(...klass...)._klass.
  1988 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
  1989   Node *x = klass_identity_common(phase);
  1991   const Type *t = phase->type( x );
  1992   if( t == Type::TOP ) return x;
  1993   if( t->isa_narrowoop()) return x;
  1995   return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
  1998 //------------------------------Value-----------------------------------------
  1999 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  2000   // Either input is TOP ==> the result is TOP
  2001   const Type *t1 = phase->type( in(MemNode::Memory) );
  2002   if( t1 == Type::TOP ) return Type::TOP;
  2003   Node *adr = in(MemNode::Address);
  2004   const Type *t2 = phase->type( adr );
  2005   if( t2 == Type::TOP ) return Type::TOP;
  2006   const TypePtr *tp = t2->is_ptr();
  2007   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  2008   const TypeAryPtr *tap = tp->isa_aryptr();
  2009   if( !tap ) return _type;
  2010   return tap->size();
  2013 //-------------------------------Ideal---------------------------------------
  2014 // Feed through the length in AllocateArray(...length...)._length.
  2015 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2016   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2017   if (p)  return (p == NodeSentinel) ? NULL : p;
  2019   // Take apart the address into an oop and and offset.
  2020   // Return 'this' if we cannot.
  2021   Node*    adr    = in(MemNode::Address);
  2022   intptr_t offset = 0;
  2023   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
  2024   if (base == NULL)     return NULL;
  2025   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2026   if (tary == NULL)     return NULL;
  2028   // We can fetch the length directly through an AllocateArrayNode.
  2029   // This works even if the length is not constant (clone or newArray).
  2030   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2031     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2032     if (alloc != NULL) {
  2033       Node* allocated_length = alloc->Ideal_length();
  2034       Node* len = alloc->make_ideal_length(tary, phase);
  2035       if (allocated_length != len) {
  2036         // New CastII improves on this.
  2037         return len;
  2042   return NULL;
  2045 //------------------------------Identity---------------------------------------
  2046 // Feed through the length in AllocateArray(...length...)._length.
  2047 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  2048   Node* x = LoadINode::Identity(phase);
  2049   if (x != this)  return x;
  2051   // Take apart the address into an oop and and offset.
  2052   // Return 'this' if we cannot.
  2053   Node*    adr    = in(MemNode::Address);
  2054   intptr_t offset = 0;
  2055   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  2056   if (base == NULL)     return this;
  2057   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2058   if (tary == NULL)     return this;
  2060   // We can fetch the length directly through an AllocateArrayNode.
  2061   // This works even if the length is not constant (clone or newArray).
  2062   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2063     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2064     if (alloc != NULL) {
  2065       Node* allocated_length = alloc->Ideal_length();
  2066       // Do not allow make_ideal_length to allocate a CastII node.
  2067       Node* len = alloc->make_ideal_length(tary, phase, false);
  2068       if (allocated_length == len) {
  2069         // Return allocated_length only if it would not be improved by a CastII.
  2070         return allocated_length;
  2075   return this;
  2079 //=============================================================================
  2080 //---------------------------StoreNode::make-----------------------------------
  2081 // Polymorphic factory method:
  2082 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  2083   Compile* C = gvn.C;
  2084   assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
  2085           ctl != NULL, "raw memory operations should have control edge");
  2087   switch (bt) {
  2088   case T_BOOLEAN:
  2089   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  2090   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  2091   case T_CHAR:
  2092   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  2093   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  2094   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  2095   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  2096   case T_ADDRESS:
  2097   case T_OBJECT:
  2098 #ifdef _LP64
  2099     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
  2100         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
  2101          adr->bottom_type()->isa_rawptr())) {
  2102       val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
  2103       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
  2104     } else
  2105 #endif
  2107       return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  2110   ShouldNotReachHere();
  2111   return (StoreNode*)NULL;
  2114 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  2115   bool require_atomic = true;
  2116   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  2120 //--------------------------bottom_type----------------------------------------
  2121 const Type *StoreNode::bottom_type() const {
  2122   return Type::MEMORY;
  2125 //------------------------------hash-------------------------------------------
  2126 uint StoreNode::hash() const {
  2127   // unroll addition of interesting fields
  2128   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  2130   // Since they are not commoned, do not hash them:
  2131   return NO_HASH;
  2134 //------------------------------Ideal------------------------------------------
  2135 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  2136 // When a store immediately follows a relevant allocation/initialization,
  2137 // try to capture it into the initialization, or hoist it above.
  2138 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2139   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2140   if (p)  return (p == NodeSentinel) ? NULL : p;
  2142   Node* mem     = in(MemNode::Memory);
  2143   Node* address = in(MemNode::Address);
  2145   // Back-to-back stores to same address?  Fold em up.
  2146   // Generally unsafe if I have intervening uses...
  2147   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
  2148     // Looking at a dead closed cycle of memory?
  2149     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  2151     assert(Opcode() == mem->Opcode() ||
  2152            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  2153            "no mismatched stores, except on raw memory");
  2155     if (mem->outcnt() == 1 &&           // check for intervening uses
  2156         mem->as_Store()->memory_size() <= this->memory_size()) {
  2157       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  2158       // For example, 'mem' might be the final state at a conditional return.
  2159       // Or, 'mem' might be used by some node which is live at the same time
  2160       // 'this' is live, which might be unschedulable.  So, require exactly
  2161       // ONE user, the 'this' store, until such time as we clone 'mem' for
  2162       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  2163       if (can_reshape) {  // (%%% is this an anachronism?)
  2164         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  2165                   phase->is_IterGVN());
  2166       } else {
  2167         // It's OK to do this in the parser, since DU info is always accurate,
  2168         // and the parser always refers to nodes via SafePointNode maps.
  2169         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2171       return this;
  2175   // Capture an unaliased, unconditional, simple store into an initializer.
  2176   // Or, if it is independent of the allocation, hoist it above the allocation.
  2177   if (ReduceFieldZeroing && /*can_reshape &&*/
  2178       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  2179     InitializeNode* init = mem->in(0)->as_Initialize();
  2180     intptr_t offset = init->can_capture_store(this, phase);
  2181     if (offset > 0) {
  2182       Node* moved = init->capture_store(this, offset, phase);
  2183       // If the InitializeNode captured me, it made a raw copy of me,
  2184       // and I need to disappear.
  2185       if (moved != NULL) {
  2186         // %%% hack to ensure that Ideal returns a new node:
  2187         mem = MergeMemNode::make(phase->C, mem);
  2188         return mem;             // fold me away
  2193   return NULL;                  // No further progress
  2196 //------------------------------Value-----------------------------------------
  2197 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  2198   // Either input is TOP ==> the result is TOP
  2199   const Type *t1 = phase->type( in(MemNode::Memory) );
  2200   if( t1 == Type::TOP ) return Type::TOP;
  2201   const Type *t2 = phase->type( in(MemNode::Address) );
  2202   if( t2 == Type::TOP ) return Type::TOP;
  2203   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  2204   if( t3 == Type::TOP ) return Type::TOP;
  2205   return Type::MEMORY;
  2208 //------------------------------Identity---------------------------------------
  2209 // Remove redundant stores:
  2210 //   Store(m, p, Load(m, p)) changes to m.
  2211 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  2212 Node *StoreNode::Identity( PhaseTransform *phase ) {
  2213   Node* mem = in(MemNode::Memory);
  2214   Node* adr = in(MemNode::Address);
  2215   Node* val = in(MemNode::ValueIn);
  2217   // Load then Store?  Then the Store is useless
  2218   if (val->is_Load() &&
  2219       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
  2220       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
  2221       val->as_Load()->store_Opcode() == Opcode()) {
  2222     return mem;
  2225   // Two stores in a row of the same value?
  2226   if (mem->is_Store() &&
  2227       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
  2228       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
  2229       mem->Opcode() == Opcode()) {
  2230     return mem;
  2233   // Store of zero anywhere into a freshly-allocated object?
  2234   // Then the store is useless.
  2235   // (It must already have been captured by the InitializeNode.)
  2236   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  2237     // a newly allocated object is already all-zeroes everywhere
  2238     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  2239       return mem;
  2242     // the store may also apply to zero-bits in an earlier object
  2243     Node* prev_mem = find_previous_store(phase);
  2244     // Steps (a), (b):  Walk past independent stores to find an exact match.
  2245     if (prev_mem != NULL) {
  2246       Node* prev_val = can_see_stored_value(prev_mem, phase);
  2247       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  2248         // prev_val and val might differ by a cast; it would be good
  2249         // to keep the more informative of the two.
  2250         return mem;
  2255   return this;
  2258 //------------------------------match_edge-------------------------------------
  2259 // Do we Match on this edge index or not?  Match only memory & value
  2260 uint StoreNode::match_edge(uint idx) const {
  2261   return idx == MemNode::Address || idx == MemNode::ValueIn;
  2264 //------------------------------cmp--------------------------------------------
  2265 // Do not common stores up together.  They generally have to be split
  2266 // back up anyways, so do not bother.
  2267 uint StoreNode::cmp( const Node &n ) const {
  2268   return (&n == this);          // Always fail except on self
  2271 //------------------------------Ideal_masked_input-----------------------------
  2272 // Check for a useless mask before a partial-word store
  2273 // (StoreB ... (AndI valIn conIa) )
  2274 // If (conIa & mask == mask) this simplifies to
  2275 // (StoreB ... (valIn) )
  2276 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  2277   Node *val = in(MemNode::ValueIn);
  2278   if( val->Opcode() == Op_AndI ) {
  2279     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2280     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  2281       set_req(MemNode::ValueIn, val->in(1));
  2282       return this;
  2285   return NULL;
  2289 //------------------------------Ideal_sign_extended_input----------------------
  2290 // Check for useless sign-extension before a partial-word store
  2291 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  2292 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  2293 // (StoreB ... (valIn) )
  2294 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  2295   Node *val = in(MemNode::ValueIn);
  2296   if( val->Opcode() == Op_RShiftI ) {
  2297     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2298     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  2299       Node *shl = val->in(1);
  2300       if( shl->Opcode() == Op_LShiftI ) {
  2301         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  2302         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  2303           set_req(MemNode::ValueIn, shl->in(1));
  2304           return this;
  2309   return NULL;
  2312 //------------------------------value_never_loaded-----------------------------------
  2313 // Determine whether there are any possible loads of the value stored.
  2314 // For simplicity, we actually check if there are any loads from the
  2315 // address stored to, not just for loads of the value stored by this node.
  2316 //
  2317 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  2318   Node *adr = in(Address);
  2319   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  2320   if (adr_oop == NULL)
  2321     return false;
  2322   if (!adr_oop->is_known_instance_field())
  2323     return false; // if not a distinct instance, there may be aliases of the address
  2324   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  2325     Node *use = adr->fast_out(i);
  2326     int opc = use->Opcode();
  2327     if (use->is_Load() || use->is_LoadStore()) {
  2328       return false;
  2331   return true;
  2334 //=============================================================================
  2335 //------------------------------Ideal------------------------------------------
  2336 // If the store is from an AND mask that leaves the low bits untouched, then
  2337 // we can skip the AND operation.  If the store is from a sign-extension
  2338 // (a left shift, then right shift) we can skip both.
  2339 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2340   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  2341   if( progress != NULL ) return progress;
  2343   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  2344   if( progress != NULL ) return progress;
  2346   // Finally check the default case
  2347   return StoreNode::Ideal(phase, can_reshape);
  2350 //=============================================================================
  2351 //------------------------------Ideal------------------------------------------
  2352 // If the store is from an AND mask that leaves the low bits untouched, then
  2353 // we can skip the AND operation
  2354 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2355   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2356   if( progress != NULL ) return progress;
  2358   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2359   if( progress != NULL ) return progress;
  2361   // Finally check the default case
  2362   return StoreNode::Ideal(phase, can_reshape);
  2365 //=============================================================================
  2366 //------------------------------Identity---------------------------------------
  2367 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2368   // No need to card mark when storing a null ptr
  2369   Node* my_store = in(MemNode::OopStore);
  2370   if (my_store->is_Store()) {
  2371     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2372     if( t1 == TypePtr::NULL_PTR ) {
  2373       return in(MemNode::Memory);
  2376   return this;
  2379 //=============================================================================
  2380 //------------------------------Ideal---------------------------------------
  2381 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2382   Node* progress = StoreNode::Ideal(phase, can_reshape);
  2383   if (progress != NULL) return progress;
  2385   Node* my_store = in(MemNode::OopStore);
  2386   if (my_store->is_MergeMem()) {
  2387     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
  2388     set_req(MemNode::OopStore, mem);
  2389     return this;
  2392   return NULL;
  2395 //------------------------------Value-----------------------------------------
  2396 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2397   // Either input is TOP ==> the result is TOP
  2398   const Type *t = phase->type( in(MemNode::Memory) );
  2399   if( t == Type::TOP ) return Type::TOP;
  2400   t = phase->type( in(MemNode::Address) );
  2401   if( t == Type::TOP ) return Type::TOP;
  2402   t = phase->type( in(MemNode::ValueIn) );
  2403   if( t == Type::TOP ) return Type::TOP;
  2404   // If extra input is TOP ==> the result is TOP
  2405   t = phase->type( in(MemNode::OopStore) );
  2406   if( t == Type::TOP ) return Type::TOP;
  2408   return StoreNode::Value( phase );
  2412 //=============================================================================
  2413 //----------------------------------SCMemProjNode------------------------------
  2414 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2416   return bottom_type();
  2419 //=============================================================================
  2420 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  2421   init_req(MemNode::Control, c  );
  2422   init_req(MemNode::Memory , mem);
  2423   init_req(MemNode::Address, adr);
  2424   init_req(MemNode::ValueIn, val);
  2425   init_req(         ExpectedIn, ex );
  2426   init_class_id(Class_LoadStore);
  2430 //=============================================================================
  2431 //-------------------------------adr_type--------------------------------------
  2432 // Do we Match on this edge index or not?  Do not match memory
  2433 const TypePtr* ClearArrayNode::adr_type() const {
  2434   Node *adr = in(3);
  2435   return MemNode::calculate_adr_type(adr->bottom_type());
  2438 //------------------------------match_edge-------------------------------------
  2439 // Do we Match on this edge index or not?  Do not match memory
  2440 uint ClearArrayNode::match_edge(uint idx) const {
  2441   return idx > 1;
  2444 //------------------------------Identity---------------------------------------
  2445 // Clearing a zero length array does nothing
  2446 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2447   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2450 //------------------------------Idealize---------------------------------------
  2451 // Clearing a short array is faster with stores
  2452 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2453   const int unit = BytesPerLong;
  2454   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2455   if (!t)  return NULL;
  2456   if (!t->is_con())  return NULL;
  2457   intptr_t raw_count = t->get_con();
  2458   intptr_t size = raw_count;
  2459   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2460   // Clearing nothing uses the Identity call.
  2461   // Negative clears are possible on dead ClearArrays
  2462   // (see jck test stmt114.stmt11402.val).
  2463   if (size <= 0 || size % unit != 0)  return NULL;
  2464   intptr_t count = size / unit;
  2465   // Length too long; use fast hardware clear
  2466   if (size > Matcher::init_array_short_size)  return NULL;
  2467   Node *mem = in(1);
  2468   if( phase->type(mem)==Type::TOP ) return NULL;
  2469   Node *adr = in(3);
  2470   const Type* at = phase->type(adr);
  2471   if( at==Type::TOP ) return NULL;
  2472   const TypePtr* atp = at->isa_ptr();
  2473   // adjust atp to be the correct array element address type
  2474   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2475   else              atp = atp->add_offset(Type::OffsetBot);
  2476   // Get base for derived pointer purposes
  2477   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2478   Node *base = adr->in(1);
  2480   Node *zero = phase->makecon(TypeLong::ZERO);
  2481   Node *off  = phase->MakeConX(BytesPerLong);
  2482   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2483   count--;
  2484   while( count-- ) {
  2485     mem = phase->transform(mem);
  2486     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  2487     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2489   return mem;
  2492 //----------------------------step_through----------------------------------
  2493 // Return allocation input memory edge if it is different instance
  2494 // or itself if it is the one we are looking for.
  2495 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
  2496   Node* n = *np;
  2497   assert(n->is_ClearArray(), "sanity");
  2498   intptr_t offset;
  2499   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
  2500   // This method is called only before Allocate nodes are expanded during
  2501   // macro nodes expansion. Before that ClearArray nodes are only generated
  2502   // in LibraryCallKit::generate_arraycopy() which follows allocations.
  2503   assert(alloc != NULL, "should have allocation");
  2504   if (alloc->_idx == instance_id) {
  2505     // Can not bypass initialization of the instance we are looking for.
  2506     return false;
  2508   // Otherwise skip it.
  2509   InitializeNode* init = alloc->initialization();
  2510   if (init != NULL)
  2511     *np = init->in(TypeFunc::Memory);
  2512   else
  2513     *np = alloc->in(TypeFunc::Memory);
  2514   return true;
  2517 //----------------------------clear_memory-------------------------------------
  2518 // Generate code to initialize object storage to zero.
  2519 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2520                                    intptr_t start_offset,
  2521                                    Node* end_offset,
  2522                                    PhaseGVN* phase) {
  2523   Compile* C = phase->C;
  2524   intptr_t offset = start_offset;
  2526   int unit = BytesPerLong;
  2527   if ((offset % unit) != 0) {
  2528     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  2529     adr = phase->transform(adr);
  2530     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2531     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2532     mem = phase->transform(mem);
  2533     offset += BytesPerInt;
  2535   assert((offset % unit) == 0, "");
  2537   // Initialize the remaining stuff, if any, with a ClearArray.
  2538   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2541 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2542                                    Node* start_offset,
  2543                                    Node* end_offset,
  2544                                    PhaseGVN* phase) {
  2545   if (start_offset == end_offset) {
  2546     // nothing to do
  2547     return mem;
  2550   Compile* C = phase->C;
  2551   int unit = BytesPerLong;
  2552   Node* zbase = start_offset;
  2553   Node* zend  = end_offset;
  2555   // Scale to the unit required by the CPU:
  2556   if (!Matcher::init_array_count_is_in_bytes) {
  2557     Node* shift = phase->intcon(exact_log2(unit));
  2558     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  2559     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  2562   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  2563   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  2565   // Bulk clear double-words
  2566   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  2567   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  2568   return phase->transform(mem);
  2571 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2572                                    intptr_t start_offset,
  2573                                    intptr_t end_offset,
  2574                                    PhaseGVN* phase) {
  2575   if (start_offset == end_offset) {
  2576     // nothing to do
  2577     return mem;
  2580   Compile* C = phase->C;
  2581   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2582   intptr_t done_offset = end_offset;
  2583   if ((done_offset % BytesPerLong) != 0) {
  2584     done_offset -= BytesPerInt;
  2586   if (done_offset > start_offset) {
  2587     mem = clear_memory(ctl, mem, dest,
  2588                        start_offset, phase->MakeConX(done_offset), phase);
  2590   if (done_offset < end_offset) { // emit the final 32-bit store
  2591     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2592     adr = phase->transform(adr);
  2593     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2594     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2595     mem = phase->transform(mem);
  2596     done_offset += BytesPerInt;
  2598   assert(done_offset == end_offset, "");
  2599   return mem;
  2602 //=============================================================================
  2603 // Do we match on this edge? No memory edges
  2604 uint StrCompNode::match_edge(uint idx) const {
  2605   return idx == 2 || idx == 3; // StrComp (Binary str1 cnt1) (Binary str2 cnt2)
  2608 //------------------------------Ideal------------------------------------------
  2609 // Return a node which is more "ideal" than the current node.  Strip out
  2610 // control copies
  2611 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2612   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2615 //=============================================================================
  2616 // Do we match on this edge? No memory edges
  2617 uint StrEqualsNode::match_edge(uint idx) const {
  2618   return idx == 2 || idx == 3; // StrEquals (Binary str1 str2) cnt
  2621 //------------------------------Ideal------------------------------------------
  2622 // Return a node which is more "ideal" than the current node.  Strip out
  2623 // control copies
  2624 Node *StrEqualsNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2625   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2628 //=============================================================================
  2629 // Do we match on this edge? No memory edges
  2630 uint StrIndexOfNode::match_edge(uint idx) const {
  2631   return idx == 2 || idx == 3; // StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)
  2634 //------------------------------Ideal------------------------------------------
  2635 // Return a node which is more "ideal" than the current node.  Strip out
  2636 // control copies
  2637 Node *StrIndexOfNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2638   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2641 //=============================================================================
  2642 // Do we match on this edge? No memory edges
  2643 uint AryEqNode::match_edge(uint idx) const {
  2644   return idx == 2 || idx == 3; // StrEquals ary1 ary2
  2646 //------------------------------Ideal------------------------------------------
  2647 // Return a node which is more "ideal" than the current node.  Strip out
  2648 // control copies
  2649 Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2650   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2653 //=============================================================================
  2654 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2655   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2656     _adr_type(C->get_adr_type(alias_idx))
  2658   init_class_id(Class_MemBar);
  2659   Node* top = C->top();
  2660   init_req(TypeFunc::I_O,top);
  2661   init_req(TypeFunc::FramePtr,top);
  2662   init_req(TypeFunc::ReturnAdr,top);
  2663   if (precedent != NULL)
  2664     init_req(TypeFunc::Parms, precedent);
  2667 //------------------------------cmp--------------------------------------------
  2668 uint MemBarNode::hash() const { return NO_HASH; }
  2669 uint MemBarNode::cmp( const Node &n ) const {
  2670   return (&n == this);          // Always fail except on self
  2673 //------------------------------make-------------------------------------------
  2674 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2675   int len = Precedent + (pn == NULL? 0: 1);
  2676   switch (opcode) {
  2677   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  2678   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  2679   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  2680   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  2681   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  2682   default:                 ShouldNotReachHere(); return NULL;
  2686 //------------------------------Ideal------------------------------------------
  2687 // Return a node which is more "ideal" than the current node.  Strip out
  2688 // control copies
  2689 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2690   if (remove_dead_region(phase, can_reshape)) return this;
  2692   // Eliminate volatile MemBars for scalar replaced objects.
  2693   if (can_reshape && req() == (Precedent+1) &&
  2694       (Opcode() == Op_MemBarAcquire || Opcode() == Op_MemBarVolatile)) {
  2695     // Volatile field loads and stores.
  2696     Node* my_mem = in(MemBarNode::Precedent);
  2697     if (my_mem != NULL && my_mem->is_Mem()) {
  2698       const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
  2699       // Check for scalar replaced object reference.
  2700       if( t_oop != NULL && t_oop->is_known_instance_field() &&
  2701           t_oop->offset() != Type::OffsetBot &&
  2702           t_oop->offset() != Type::OffsetTop) {
  2703         // Replace MemBar projections by its inputs.
  2704         PhaseIterGVN* igvn = phase->is_IterGVN();
  2705         igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
  2706         igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
  2707         // Must return either the original node (now dead) or a new node
  2708         // (Do not return a top here, since that would break the uniqueness of top.)
  2709         return new (phase->C, 1) ConINode(TypeInt::ZERO);
  2713   return NULL;
  2716 //------------------------------Value------------------------------------------
  2717 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2718   if( !in(0) ) return Type::TOP;
  2719   if( phase->type(in(0)) == Type::TOP )
  2720     return Type::TOP;
  2721   return TypeTuple::MEMBAR;
  2724 //------------------------------match------------------------------------------
  2725 // Construct projections for memory.
  2726 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2727   switch (proj->_con) {
  2728   case TypeFunc::Control:
  2729   case TypeFunc::Memory:
  2730     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2732   ShouldNotReachHere();
  2733   return NULL;
  2736 //===========================InitializeNode====================================
  2737 // SUMMARY:
  2738 // This node acts as a memory barrier on raw memory, after some raw stores.
  2739 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2740 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2741 // It can coalesce related raw stores into larger units (called 'tiles').
  2742 // It can avoid zeroing new storage for memory units which have raw inits.
  2743 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2744 //
  2745 // EXAMPLE:
  2746 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2747 //   ctl = incoming control; mem* = incoming memory
  2748 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2749 // First allocate uninitialized memory and fill in the header:
  2750 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2751 //   ctl := alloc.Control; mem* := alloc.Memory*
  2752 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2753 // Then initialize to zero the non-header parts of the raw memory block:
  2754 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2755 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2756 // After the initialize node executes, the object is ready for service:
  2757 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2758 // Suppose its body is immediately initialized as {1,2}:
  2759 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2760 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2761 //   mem.SLICE(#short[*]) := store2
  2762 //
  2763 // DETAILS:
  2764 // An InitializeNode collects and isolates object initialization after
  2765 // an AllocateNode and before the next possible safepoint.  As a
  2766 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2767 // down past any safepoint or any publication of the allocation.
  2768 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2769 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2770 //
  2771 // The semantics of the InitializeNode include an implicit zeroing of
  2772 // the new object from object header to the end of the object.
  2773 // (The object header and end are determined by the AllocateNode.)
  2774 //
  2775 // Certain stores may be added as direct inputs to the InitializeNode.
  2776 // These stores must update raw memory, and they must be to addresses
  2777 // derived from the raw address produced by AllocateNode, and with
  2778 // a constant offset.  They must be ordered by increasing offset.
  2779 // The first one is at in(RawStores), the last at in(req()-1).
  2780 // Unlike most memory operations, they are not linked in a chain,
  2781 // but are displayed in parallel as users of the rawmem output of
  2782 // the allocation.
  2783 //
  2784 // (See comments in InitializeNode::capture_store, which continue
  2785 // the example given above.)
  2786 //
  2787 // When the associated Allocate is macro-expanded, the InitializeNode
  2788 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2789 // may also be created at that point to represent any required zeroing.
  2790 // The InitializeNode is then marked 'complete', prohibiting further
  2791 // capturing of nearby memory operations.
  2792 //
  2793 // During macro-expansion, all captured initializations which store
  2794 // constant values of 32 bits or smaller are coalesced (if advantageous)
  2795 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2796 // initialized in fewer memory operations.  Memory words which are
  2797 // covered by neither tiles nor non-constant stores are pre-zeroed
  2798 // by explicit stores of zero.  (The code shape happens to do all
  2799 // zeroing first, then all other stores, with both sequences occurring
  2800 // in order of ascending offsets.)
  2801 //
  2802 // Alternatively, code may be inserted between an AllocateNode and its
  2803 // InitializeNode, to perform arbitrary initialization of the new object.
  2804 // E.g., the object copying intrinsics insert complex data transfers here.
  2805 // The initialization must then be marked as 'complete' disable the
  2806 // built-in zeroing semantics and the collection of initializing stores.
  2807 //
  2808 // While an InitializeNode is incomplete, reads from the memory state
  2809 // produced by it are optimizable if they match the control edge and
  2810 // new oop address associated with the allocation/initialization.
  2811 // They return a stored value (if the offset matches) or else zero.
  2812 // A write to the memory state, if it matches control and address,
  2813 // and if it is to a constant offset, may be 'captured' by the
  2814 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2815 // inside the initialization, to the raw oop produced by the allocation.
  2816 // Operations on addresses which are provably distinct (e.g., to
  2817 // other AllocateNodes) are allowed to bypass the initialization.
  2818 //
  2819 // The effect of all this is to consolidate object initialization
  2820 // (both arrays and non-arrays, both piecewise and bulk) into a
  2821 // single location, where it can be optimized as a unit.
  2822 //
  2823 // Only stores with an offset less than TrackedInitializationLimit words
  2824 // will be considered for capture by an InitializeNode.  This puts a
  2825 // reasonable limit on the complexity of optimized initializations.
  2827 //---------------------------InitializeNode------------------------------------
  2828 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  2829   : _is_complete(false),
  2830     MemBarNode(C, adr_type, rawoop)
  2832   init_class_id(Class_Initialize);
  2834   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  2835   assert(in(RawAddress) == rawoop, "proper init");
  2836   // Note:  allocation() can be NULL, for secondary initialization barriers
  2839 // Since this node is not matched, it will be processed by the
  2840 // register allocator.  Declare that there are no constraints
  2841 // on the allocation of the RawAddress edge.
  2842 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  2843   // This edge should be set to top, by the set_complete.  But be conservative.
  2844   if (idx == InitializeNode::RawAddress)
  2845     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  2846   return RegMask::Empty;
  2849 Node* InitializeNode::memory(uint alias_idx) {
  2850   Node* mem = in(Memory);
  2851   if (mem->is_MergeMem()) {
  2852     return mem->as_MergeMem()->memory_at(alias_idx);
  2853   } else {
  2854     // incoming raw memory is not split
  2855     return mem;
  2859 bool InitializeNode::is_non_zero() {
  2860   if (is_complete())  return false;
  2861   remove_extra_zeroes();
  2862   return (req() > RawStores);
  2865 void InitializeNode::set_complete(PhaseGVN* phase) {
  2866   assert(!is_complete(), "caller responsibility");
  2867   _is_complete = true;
  2869   // After this node is complete, it contains a bunch of
  2870   // raw-memory initializations.  There is no need for
  2871   // it to have anything to do with non-raw memory effects.
  2872   // Therefore, tell all non-raw users to re-optimize themselves,
  2873   // after skipping the memory effects of this initialization.
  2874   PhaseIterGVN* igvn = phase->is_IterGVN();
  2875   if (igvn)  igvn->add_users_to_worklist(this);
  2878 // convenience function
  2879 // return false if the init contains any stores already
  2880 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  2881   InitializeNode* init = initialization();
  2882   if (init == NULL || init->is_complete())  return false;
  2883   init->remove_extra_zeroes();
  2884   // for now, if this allocation has already collected any inits, bail:
  2885   if (init->is_non_zero())  return false;
  2886   init->set_complete(phase);
  2887   return true;
  2890 void InitializeNode::remove_extra_zeroes() {
  2891   if (req() == RawStores)  return;
  2892   Node* zmem = zero_memory();
  2893   uint fill = RawStores;
  2894   for (uint i = fill; i < req(); i++) {
  2895     Node* n = in(i);
  2896     if (n->is_top() || n == zmem)  continue;  // skip
  2897     if (fill < i)  set_req(fill, n);          // compact
  2898     ++fill;
  2900   // delete any empty spaces created:
  2901   while (fill < req()) {
  2902     del_req(fill);
  2906 // Helper for remembering which stores go with which offsets.
  2907 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  2908   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  2909   intptr_t offset = -1;
  2910   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  2911                                                phase, offset);
  2912   if (base == NULL)     return -1;  // something is dead,
  2913   if (offset < 0)       return -1;  //        dead, dead
  2914   return offset;
  2917 // Helper for proving that an initialization expression is
  2918 // "simple enough" to be folded into an object initialization.
  2919 // Attempts to prove that a store's initial value 'n' can be captured
  2920 // within the initialization without creating a vicious cycle, such as:
  2921 //     { Foo p = new Foo(); p.next = p; }
  2922 // True for constants and parameters and small combinations thereof.
  2923 bool InitializeNode::detect_init_independence(Node* n,
  2924                                               bool st_is_pinned,
  2925                                               int& count) {
  2926   if (n == NULL)      return true;   // (can this really happen?)
  2927   if (n->is_Proj())   n = n->in(0);
  2928   if (n == this)      return false;  // found a cycle
  2929   if (n->is_Con())    return true;
  2930   if (n->is_Start())  return true;   // params, etc., are OK
  2931   if (n->is_Root())   return true;   // even better
  2933   Node* ctl = n->in(0);
  2934   if (ctl != NULL && !ctl->is_top()) {
  2935     if (ctl->is_Proj())  ctl = ctl->in(0);
  2936     if (ctl == this)  return false;
  2938     // If we already know that the enclosing memory op is pinned right after
  2939     // the init, then any control flow that the store has picked up
  2940     // must have preceded the init, or else be equal to the init.
  2941     // Even after loop optimizations (which might change control edges)
  2942     // a store is never pinned *before* the availability of its inputs.
  2943     if (!MemNode::all_controls_dominate(n, this))
  2944       return false;                  // failed to prove a good control
  2948   // Check data edges for possible dependencies on 'this'.
  2949   if ((count += 1) > 20)  return false;  // complexity limit
  2950   for (uint i = 1; i < n->req(); i++) {
  2951     Node* m = n->in(i);
  2952     if (m == NULL || m == n || m->is_top())  continue;
  2953     uint first_i = n->find_edge(m);
  2954     if (i != first_i)  continue;  // process duplicate edge just once
  2955     if (!detect_init_independence(m, st_is_pinned, count)) {
  2956       return false;
  2960   return true;
  2963 // Here are all the checks a Store must pass before it can be moved into
  2964 // an initialization.  Returns zero if a check fails.
  2965 // On success, returns the (constant) offset to which the store applies,
  2966 // within the initialized memory.
  2967 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  2968   const int FAIL = 0;
  2969   if (st->req() != MemNode::ValueIn + 1)
  2970     return FAIL;                // an inscrutable StoreNode (card mark?)
  2971   Node* ctl = st->in(MemNode::Control);
  2972   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  2973     return FAIL;                // must be unconditional after the initialization
  2974   Node* mem = st->in(MemNode::Memory);
  2975   if (!(mem->is_Proj() && mem->in(0) == this))
  2976     return FAIL;                // must not be preceded by other stores
  2977   Node* adr = st->in(MemNode::Address);
  2978   intptr_t offset;
  2979   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  2980   if (alloc == NULL)
  2981     return FAIL;                // inscrutable address
  2982   if (alloc != allocation())
  2983     return FAIL;                // wrong allocation!  (store needs to float up)
  2984   Node* val = st->in(MemNode::ValueIn);
  2985   int complexity_count = 0;
  2986   if (!detect_init_independence(val, true, complexity_count))
  2987     return FAIL;                // stored value must be 'simple enough'
  2989   return offset;                // success
  2992 // Find the captured store in(i) which corresponds to the range
  2993 // [start..start+size) in the initialized object.
  2994 // If there is one, return its index i.  If there isn't, return the
  2995 // negative of the index where it should be inserted.
  2996 // Return 0 if the queried range overlaps an initialization boundary
  2997 // or if dead code is encountered.
  2998 // If size_in_bytes is zero, do not bother with overlap checks.
  2999 int InitializeNode::captured_store_insertion_point(intptr_t start,
  3000                                                    int size_in_bytes,
  3001                                                    PhaseTransform* phase) {
  3002   const int FAIL = 0, MAX_STORE = BytesPerLong;
  3004   if (is_complete())
  3005     return FAIL;                // arraycopy got here first; punt
  3007   assert(allocation() != NULL, "must be present");
  3009   // no negatives, no header fields:
  3010   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  3012   // after a certain size, we bail out on tracking all the stores:
  3013   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3014   if (start >= ti_limit)  return FAIL;
  3016   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  3017     if (i >= limit)  return -(int)i; // not found; here is where to put it
  3019     Node*    st     = in(i);
  3020     intptr_t st_off = get_store_offset(st, phase);
  3021     if (st_off < 0) {
  3022       if (st != zero_memory()) {
  3023         return FAIL;            // bail out if there is dead garbage
  3025     } else if (st_off > start) {
  3026       // ...we are done, since stores are ordered
  3027       if (st_off < start + size_in_bytes) {
  3028         return FAIL;            // the next store overlaps
  3030       return -(int)i;           // not found; here is where to put it
  3031     } else if (st_off < start) {
  3032       if (size_in_bytes != 0 &&
  3033           start < st_off + MAX_STORE &&
  3034           start < st_off + st->as_Store()->memory_size()) {
  3035         return FAIL;            // the previous store overlaps
  3037     } else {
  3038       if (size_in_bytes != 0 &&
  3039           st->as_Store()->memory_size() != size_in_bytes) {
  3040         return FAIL;            // mismatched store size
  3042       return i;
  3045     ++i;
  3049 // Look for a captured store which initializes at the offset 'start'
  3050 // with the given size.  If there is no such store, and no other
  3051 // initialization interferes, then return zero_memory (the memory
  3052 // projection of the AllocateNode).
  3053 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  3054                                           PhaseTransform* phase) {
  3055   assert(stores_are_sane(phase), "");
  3056   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3057   if (i == 0) {
  3058     return NULL;                // something is dead
  3059   } else if (i < 0) {
  3060     return zero_memory();       // just primordial zero bits here
  3061   } else {
  3062     Node* st = in(i);           // here is the store at this position
  3063     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  3064     return st;
  3068 // Create, as a raw pointer, an address within my new object at 'offset'.
  3069 Node* InitializeNode::make_raw_address(intptr_t offset,
  3070                                        PhaseTransform* phase) {
  3071   Node* addr = in(RawAddress);
  3072   if (offset != 0) {
  3073     Compile* C = phase->C;
  3074     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  3075                                                  phase->MakeConX(offset)) );
  3077   return addr;
  3080 // Clone the given store, converting it into a raw store
  3081 // initializing a field or element of my new object.
  3082 // Caller is responsible for retiring the original store,
  3083 // with subsume_node or the like.
  3084 //
  3085 // From the example above InitializeNode::InitializeNode,
  3086 // here are the old stores to be captured:
  3087 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  3088 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  3089 //
  3090 // Here is the changed code; note the extra edges on init:
  3091 //   alloc = (Allocate ...)
  3092 //   rawoop = alloc.RawAddress
  3093 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  3094 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  3095 //   init = (Initialize alloc.Control alloc.Memory rawoop
  3096 //                      rawstore1 rawstore2)
  3097 //
  3098 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  3099                                     PhaseTransform* phase) {
  3100   assert(stores_are_sane(phase), "");
  3102   if (start < 0)  return NULL;
  3103   assert(can_capture_store(st, phase) == start, "sanity");
  3105   Compile* C = phase->C;
  3106   int size_in_bytes = st->memory_size();
  3107   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3108   if (i == 0)  return NULL;     // bail out
  3109   Node* prev_mem = NULL;        // raw memory for the captured store
  3110   if (i > 0) {
  3111     prev_mem = in(i);           // there is a pre-existing store under this one
  3112     set_req(i, C->top());       // temporarily disconnect it
  3113     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  3114   } else {
  3115     i = -i;                     // no pre-existing store
  3116     prev_mem = zero_memory();   // a slice of the newly allocated object
  3117     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  3118       set_req(--i, C->top());   // reuse this edge; it has been folded away
  3119     else
  3120       ins_req(i, C->top());     // build a new edge
  3122   Node* new_st = st->clone();
  3123   new_st->set_req(MemNode::Control, in(Control));
  3124   new_st->set_req(MemNode::Memory,  prev_mem);
  3125   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  3126   new_st = phase->transform(new_st);
  3128   // At this point, new_st might have swallowed a pre-existing store
  3129   // at the same offset, or perhaps new_st might have disappeared,
  3130   // if it redundantly stored the same value (or zero to fresh memory).
  3132   // In any case, wire it in:
  3133   set_req(i, new_st);
  3135   // The caller may now kill the old guy.
  3136   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  3137   assert(check_st == new_st || check_st == NULL, "must be findable");
  3138   assert(!is_complete(), "");
  3139   return new_st;
  3142 static bool store_constant(jlong* tiles, int num_tiles,
  3143                            intptr_t st_off, int st_size,
  3144                            jlong con) {
  3145   if ((st_off & (st_size-1)) != 0)
  3146     return false;               // strange store offset (assume size==2**N)
  3147   address addr = (address)tiles + st_off;
  3148   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  3149   switch (st_size) {
  3150   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  3151   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  3152   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  3153   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  3154   default: return false;        // strange store size (detect size!=2**N here)
  3156   return true;                  // return success to caller
  3159 // Coalesce subword constants into int constants and possibly
  3160 // into long constants.  The goal, if the CPU permits,
  3161 // is to initialize the object with a small number of 64-bit tiles.
  3162 // Also, convert floating-point constants to bit patterns.
  3163 // Non-constants are not relevant to this pass.
  3164 //
  3165 // In terms of the running example on InitializeNode::InitializeNode
  3166 // and InitializeNode::capture_store, here is the transformation
  3167 // of rawstore1 and rawstore2 into rawstore12:
  3168 //   alloc = (Allocate ...)
  3169 //   rawoop = alloc.RawAddress
  3170 //   tile12 = 0x00010002
  3171 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  3172 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  3173 //
  3174 void
  3175 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  3176                                         Node* size_in_bytes,
  3177                                         PhaseGVN* phase) {
  3178   Compile* C = phase->C;
  3180   assert(stores_are_sane(phase), "");
  3181   // Note:  After this pass, they are not completely sane,
  3182   // since there may be some overlaps.
  3184   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  3186   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3187   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  3188   size_limit = MIN2(size_limit, ti_limit);
  3189   size_limit = align_size_up(size_limit, BytesPerLong);
  3190   int num_tiles = size_limit / BytesPerLong;
  3192   // allocate space for the tile map:
  3193   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  3194   jlong  tiles_buf[small_len];
  3195   Node*  nodes_buf[small_len];
  3196   jlong  inits_buf[small_len];
  3197   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  3198                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3199   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  3200                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  3201   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  3202                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3203   // tiles: exact bitwise model of all primitive constants
  3204   // nodes: last constant-storing node subsumed into the tiles model
  3205   // inits: which bytes (in each tile) are touched by any initializations
  3207   //// Pass A: Fill in the tile model with any relevant stores.
  3209   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  3210   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  3211   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  3212   Node* zmem = zero_memory(); // initially zero memory state
  3213   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3214     Node* st = in(i);
  3215     intptr_t st_off = get_store_offset(st, phase);
  3217     // Figure out the store's offset and constant value:
  3218     if (st_off < header_size)             continue; //skip (ignore header)
  3219     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  3220     int st_size = st->as_Store()->memory_size();
  3221     if (st_off + st_size > size_limit)    break;
  3223     // Record which bytes are touched, whether by constant or not.
  3224     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  3225       continue;                 // skip (strange store size)
  3227     const Type* val = phase->type(st->in(MemNode::ValueIn));
  3228     if (!val->singleton())                continue; //skip (non-con store)
  3229     BasicType type = val->basic_type();
  3231     jlong con = 0;
  3232     switch (type) {
  3233     case T_INT:    con = val->is_int()->get_con();  break;
  3234     case T_LONG:   con = val->is_long()->get_con(); break;
  3235     case T_FLOAT:  con = jint_cast(val->getf());    break;
  3236     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  3237     default:                              continue; //skip (odd store type)
  3240     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  3241         st->Opcode() == Op_StoreL) {
  3242       continue;                 // This StoreL is already optimal.
  3245     // Store down the constant.
  3246     store_constant(tiles, num_tiles, st_off, st_size, con);
  3248     intptr_t j = st_off >> LogBytesPerLong;
  3250     if (type == T_INT && st_size == BytesPerInt
  3251         && (st_off & BytesPerInt) == BytesPerInt) {
  3252       jlong lcon = tiles[j];
  3253       if (!Matcher::isSimpleConstant64(lcon) &&
  3254           st->Opcode() == Op_StoreI) {
  3255         // This StoreI is already optimal by itself.
  3256         jint* intcon = (jint*) &tiles[j];
  3257         intcon[1] = 0;  // undo the store_constant()
  3259         // If the previous store is also optimal by itself, back up and
  3260         // undo the action of the previous loop iteration... if we can.
  3261         // But if we can't, just let the previous half take care of itself.
  3262         st = nodes[j];
  3263         st_off -= BytesPerInt;
  3264         con = intcon[0];
  3265         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  3266           assert(st_off >= header_size, "still ignoring header");
  3267           assert(get_store_offset(st, phase) == st_off, "must be");
  3268           assert(in(i-1) == zmem, "must be");
  3269           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  3270           assert(con == tcon->is_int()->get_con(), "must be");
  3271           // Undo the effects of the previous loop trip, which swallowed st:
  3272           intcon[0] = 0;        // undo store_constant()
  3273           set_req(i-1, st);     // undo set_req(i, zmem)
  3274           nodes[j] = NULL;      // undo nodes[j] = st
  3275           --old_subword;        // undo ++old_subword
  3277         continue;               // This StoreI is already optimal.
  3281     // This store is not needed.
  3282     set_req(i, zmem);
  3283     nodes[j] = st;              // record for the moment
  3284     if (st_size < BytesPerLong) // something has changed
  3285           ++old_subword;        // includes int/float, but who's counting...
  3286     else  ++old_long;
  3289   if ((old_subword + old_long) == 0)
  3290     return;                     // nothing more to do
  3292   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  3293   // Be sure to insert them before overlapping non-constant stores.
  3294   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  3295   for (int j = 0; j < num_tiles; j++) {
  3296     jlong con  = tiles[j];
  3297     jlong init = inits[j];
  3298     if (con == 0)  continue;
  3299     jint con0,  con1;           // split the constant, address-wise
  3300     jint init0, init1;          // split the init map, address-wise
  3301     { union { jlong con; jint intcon[2]; } u;
  3302       u.con = con;
  3303       con0  = u.intcon[0];
  3304       con1  = u.intcon[1];
  3305       u.con = init;
  3306       init0 = u.intcon[0];
  3307       init1 = u.intcon[1];
  3310     Node* old = nodes[j];
  3311     assert(old != NULL, "need the prior store");
  3312     intptr_t offset = (j * BytesPerLong);
  3314     bool split = !Matcher::isSimpleConstant64(con);
  3316     if (offset < header_size) {
  3317       assert(offset + BytesPerInt >= header_size, "second int counts");
  3318       assert(*(jint*)&tiles[j] == 0, "junk in header");
  3319       split = true;             // only the second word counts
  3320       // Example:  int a[] = { 42 ... }
  3321     } else if (con0 == 0 && init0 == -1) {
  3322       split = true;             // first word is covered by full inits
  3323       // Example:  int a[] = { ... foo(), 42 ... }
  3324     } else if (con1 == 0 && init1 == -1) {
  3325       split = true;             // second word is covered by full inits
  3326       // Example:  int a[] = { ... 42, foo() ... }
  3329     // Here's a case where init0 is neither 0 nor -1:
  3330     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  3331     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  3332     // In this case the tile is not split; it is (jlong)42.
  3333     // The big tile is stored down, and then the foo() value is inserted.
  3334     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  3336     Node* ctl = old->in(MemNode::Control);
  3337     Node* adr = make_raw_address(offset, phase);
  3338     const TypePtr* atp = TypeRawPtr::BOTTOM;
  3340     // One or two coalesced stores to plop down.
  3341     Node*    st[2];
  3342     intptr_t off[2];
  3343     int  nst = 0;
  3344     if (!split) {
  3345       ++new_long;
  3346       off[nst] = offset;
  3347       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3348                                   phase->longcon(con), T_LONG);
  3349     } else {
  3350       // Omit either if it is a zero.
  3351       if (con0 != 0) {
  3352         ++new_int;
  3353         off[nst]  = offset;
  3354         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3355                                     phase->intcon(con0), T_INT);
  3357       if (con1 != 0) {
  3358         ++new_int;
  3359         offset += BytesPerInt;
  3360         adr = make_raw_address(offset, phase);
  3361         off[nst]  = offset;
  3362         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3363                                     phase->intcon(con1), T_INT);
  3367     // Insert second store first, then the first before the second.
  3368     // Insert each one just before any overlapping non-constant stores.
  3369     while (nst > 0) {
  3370       Node* st1 = st[--nst];
  3371       C->copy_node_notes_to(st1, old);
  3372       st1 = phase->transform(st1);
  3373       offset = off[nst];
  3374       assert(offset >= header_size, "do not smash header");
  3375       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  3376       guarantee(ins_idx != 0, "must re-insert constant store");
  3377       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  3378       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  3379         set_req(--ins_idx, st1);
  3380       else
  3381         ins_req(ins_idx, st1);
  3385   if (PrintCompilation && WizardMode)
  3386     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  3387                   old_subword, old_long, new_int, new_long);
  3388   if (C->log() != NULL)
  3389     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  3390                    old_subword, old_long, new_int, new_long);
  3392   // Clean up any remaining occurrences of zmem:
  3393   remove_extra_zeroes();
  3396 // Explore forward from in(start) to find the first fully initialized
  3397 // word, and return its offset.  Skip groups of subword stores which
  3398 // together initialize full words.  If in(start) is itself part of a
  3399 // fully initialized word, return the offset of in(start).  If there
  3400 // are no following full-word stores, or if something is fishy, return
  3401 // a negative value.
  3402 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  3403   int       int_map = 0;
  3404   intptr_t  int_map_off = 0;
  3405   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  3407   for (uint i = start, limit = req(); i < limit; i++) {
  3408     Node* st = in(i);
  3410     intptr_t st_off = get_store_offset(st, phase);
  3411     if (st_off < 0)  break;  // return conservative answer
  3413     int st_size = st->as_Store()->memory_size();
  3414     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  3415       return st_off;            // we found a complete word init
  3418     // update the map:
  3420     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  3421     if (this_int_off != int_map_off) {
  3422       // reset the map:
  3423       int_map = 0;
  3424       int_map_off = this_int_off;
  3427     int subword_off = st_off - this_int_off;
  3428     int_map |= right_n_bits(st_size) << subword_off;
  3429     if ((int_map & FULL_MAP) == FULL_MAP) {
  3430       return this_int_off;      // we found a complete word init
  3433     // Did this store hit or cross the word boundary?
  3434     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  3435     if (next_int_off == this_int_off + BytesPerInt) {
  3436       // We passed the current int, without fully initializing it.
  3437       int_map_off = next_int_off;
  3438       int_map >>= BytesPerInt;
  3439     } else if (next_int_off > this_int_off + BytesPerInt) {
  3440       // We passed the current and next int.
  3441       return this_int_off + BytesPerInt;
  3445   return -1;
  3449 // Called when the associated AllocateNode is expanded into CFG.
  3450 // At this point, we may perform additional optimizations.
  3451 // Linearize the stores by ascending offset, to make memory
  3452 // activity as coherent as possible.
  3453 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3454                                       intptr_t header_size,
  3455                                       Node* size_in_bytes,
  3456                                       PhaseGVN* phase) {
  3457   assert(!is_complete(), "not already complete");
  3458   assert(stores_are_sane(phase), "");
  3459   assert(allocation() != NULL, "must be present");
  3461   remove_extra_zeroes();
  3463   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3464     // reduce instruction count for common initialization patterns
  3465     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3467   Node* zmem = zero_memory();   // initially zero memory state
  3468   Node* inits = zmem;           // accumulating a linearized chain of inits
  3469   #ifdef ASSERT
  3470   intptr_t first_offset = allocation()->minimum_header_size();
  3471   intptr_t last_init_off = first_offset;  // previous init offset
  3472   intptr_t last_init_end = first_offset;  // previous init offset+size
  3473   intptr_t last_tile_end = first_offset;  // previous tile offset+size
  3474   #endif
  3475   intptr_t zeroes_done = header_size;
  3477   bool do_zeroing = true;       // we might give up if inits are very sparse
  3478   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3480   if (ZeroTLAB)  do_zeroing = false;
  3481   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3483   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3484     Node* st = in(i);
  3485     intptr_t st_off = get_store_offset(st, phase);
  3486     if (st_off < 0)
  3487       break;                    // unknown junk in the inits
  3488     if (st->in(MemNode::Memory) != zmem)
  3489       break;                    // complicated store chains somehow in list
  3491     int st_size = st->as_Store()->memory_size();
  3492     intptr_t next_init_off = st_off + st_size;
  3494     if (do_zeroing && zeroes_done < next_init_off) {
  3495       // See if this store needs a zero before it or under it.
  3496       intptr_t zeroes_needed = st_off;
  3498       if (st_size < BytesPerInt) {
  3499         // Look for subword stores which only partially initialize words.
  3500         // If we find some, we must lay down some word-level zeroes first,
  3501         // underneath the subword stores.
  3502         //
  3503         // Examples:
  3504         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3505         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3506         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3507         //
  3508         // Note:  coalesce_subword_stores may have already done this,
  3509         // if it was prompted by constant non-zero subword initializers.
  3510         // But this case can still arise with non-constant stores.
  3512         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3514         // In the examples above:
  3515         //   in(i)          p   q   r   s     x   y     z
  3516         //   st_off        12  13  14  15    12  13    14
  3517         //   st_size        1   1   1   1     1   1     1
  3518         //   next_full_s.  12  16  16  16    16  16    16
  3519         //   z's_done      12  16  16  16    12  16    12
  3520         //   z's_needed    12  16  16  16    16  16    16
  3521         //   zsize          0   0   0   0     4   0     4
  3522         if (next_full_store < 0) {
  3523           // Conservative tack:  Zero to end of current word.
  3524           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3525         } else {
  3526           // Zero to beginning of next fully initialized word.
  3527           // Or, don't zero at all, if we are already in that word.
  3528           assert(next_full_store >= zeroes_needed, "must go forward");
  3529           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3530           zeroes_needed = next_full_store;
  3534       if (zeroes_needed > zeroes_done) {
  3535         intptr_t zsize = zeroes_needed - zeroes_done;
  3536         // Do some incremental zeroing on rawmem, in parallel with inits.
  3537         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3538         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3539                                               zeroes_done, zeroes_needed,
  3540                                               phase);
  3541         zeroes_done = zeroes_needed;
  3542         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3543           do_zeroing = false;   // leave the hole, next time
  3547     // Collect the store and move on:
  3548     st->set_req(MemNode::Memory, inits);
  3549     inits = st;                 // put it on the linearized chain
  3550     set_req(i, zmem);           // unhook from previous position
  3552     if (zeroes_done == st_off)
  3553       zeroes_done = next_init_off;
  3555     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3557     #ifdef ASSERT
  3558     // Various order invariants.  Weaker than stores_are_sane because
  3559     // a large constant tile can be filled in by smaller non-constant stores.
  3560     assert(st_off >= last_init_off, "inits do not reverse");
  3561     last_init_off = st_off;
  3562     const Type* val = NULL;
  3563     if (st_size >= BytesPerInt &&
  3564         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3565         (int)val->basic_type() < (int)T_OBJECT) {
  3566       assert(st_off >= last_tile_end, "tiles do not overlap");
  3567       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3568       last_tile_end = MAX2(last_tile_end, next_init_off);
  3569     } else {
  3570       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  3571       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  3572       assert(st_off      >= last_init_end, "inits do not overlap");
  3573       last_init_end = next_init_off;  // it's a non-tile
  3575     #endif //ASSERT
  3578   remove_extra_zeroes();        // clear out all the zmems left over
  3579   add_req(inits);
  3581   if (!ZeroTLAB) {
  3582     // If anything remains to be zeroed, zero it all now.
  3583     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3584     // if it is the last unused 4 bytes of an instance, forget about it
  3585     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  3586     if (zeroes_done + BytesPerLong >= size_limit) {
  3587       assert(allocation() != NULL, "");
  3588       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  3589       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  3590       if (zeroes_done == k->layout_helper())
  3591         zeroes_done = size_limit;
  3593     if (zeroes_done < size_limit) {
  3594       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3595                                             zeroes_done, size_in_bytes, phase);
  3599   set_complete(phase);
  3600   return rawmem;
  3604 #ifdef ASSERT
  3605 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  3606   if (is_complete())
  3607     return true;                // stores could be anything at this point
  3608   assert(allocation() != NULL, "must be present");
  3609   intptr_t last_off = allocation()->minimum_header_size();
  3610   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  3611     Node* st = in(i);
  3612     intptr_t st_off = get_store_offset(st, phase);
  3613     if (st_off < 0)  continue;  // ignore dead garbage
  3614     if (last_off > st_off) {
  3615       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  3616       this->dump(2);
  3617       assert(false, "ascending store offsets");
  3618       return false;
  3620     last_off = st_off + st->as_Store()->memory_size();
  3622   return true;
  3624 #endif //ASSERT
  3629 //============================MergeMemNode=====================================
  3630 //
  3631 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  3632 // contributing store or call operations.  Each contributor provides the memory
  3633 // state for a particular "alias type" (see Compile::alias_type).  For example,
  3634 // if a MergeMem has an input X for alias category #6, then any memory reference
  3635 // to alias category #6 may use X as its memory state input, as an exact equivalent
  3636 // to using the MergeMem as a whole.
  3637 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  3638 //
  3639 // (Here, the <N> notation gives the index of the relevant adr_type.)
  3640 //
  3641 // In one special case (and more cases in the future), alias categories overlap.
  3642 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  3643 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  3644 // it is exactly equivalent to that state W:
  3645 //   MergeMem(<Bot>: W) <==> W
  3646 //
  3647 // Usually, the merge has more than one input.  In that case, where inputs
  3648 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  3649 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  3650 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  3651 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  3652 //
  3653 // A merge can take a "wide" memory state as one of its narrow inputs.
  3654 // This simply means that the merge observes out only the relevant parts of
  3655 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  3656 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  3657 //
  3658 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  3659 // and that memory slices "leak through":
  3660 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  3661 //
  3662 // But, in such a cascade, repeated memory slices can "block the leak":
  3663 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  3664 //
  3665 // In the last example, Y is not part of the combined memory state of the
  3666 // outermost MergeMem.  The system must, of course, prevent unschedulable
  3667 // memory states from arising, so you can be sure that the state Y is somehow
  3668 // a precursor to state Y'.
  3669 //
  3670 //
  3671 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  3672 // of each MergeMemNode array are exactly the numerical alias indexes, including
  3673 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  3674 // Compile::alias_type (and kin) produce and manage these indexes.
  3675 //
  3676 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  3677 // (Note that this provides quick access to the top node inside MergeMem methods,
  3678 // without the need to reach out via TLS to Compile::current.)
  3679 //
  3680 // As a consequence of what was just described, a MergeMem that represents a full
  3681 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  3682 // containing all alias categories.
  3683 //
  3684 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  3685 //
  3686 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  3687 // a memory state for the alias type <N>, or else the top node, meaning that
  3688 // there is no particular input for that alias type.  Note that the length of
  3689 // a MergeMem is variable, and may be extended at any time to accommodate new
  3690 // memory states at larger alias indexes.  When merges grow, they are of course
  3691 // filled with "top" in the unused in() positions.
  3692 //
  3693 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  3694 // (Top was chosen because it works smoothly with passes like GCM.)
  3695 //
  3696 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  3697 // the type of random VM bits like TLS references.)  Since it is always the
  3698 // first non-Bot memory slice, some low-level loops use it to initialize an
  3699 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  3700 //
  3701 //
  3702 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  3703 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  3704 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  3705 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  3706 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  3707 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  3708 //
  3709 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  3710 // really that different from the other memory inputs.  An abbreviation called
  3711 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  3712 //
  3713 //
  3714 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  3715 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  3716 // that "emerges though" the base memory will be marked as excluding the alias types
  3717 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3718 //
  3719 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  3720 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  3721 //
  3722 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  3723 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3724 // actually a disjoint union of memory states, rather than an overlay.
  3725 //
  3727 //------------------------------MergeMemNode-----------------------------------
  3728 Node* MergeMemNode::make_empty_memory() {
  3729   Node* empty_memory = (Node*) Compile::current()->top();
  3730   assert(empty_memory->is_top(), "correct sentinel identity");
  3731   return empty_memory;
  3734 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3735   init_class_id(Class_MergeMem);
  3736   // all inputs are nullified in Node::Node(int)
  3737   // set_input(0, NULL);  // no control input
  3739   // Initialize the edges uniformly to top, for starters.
  3740   Node* empty_mem = make_empty_memory();
  3741   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  3742     init_req(i,empty_mem);
  3744   assert(empty_memory() == empty_mem, "");
  3746   if( new_base != NULL && new_base->is_MergeMem() ) {
  3747     MergeMemNode* mdef = new_base->as_MergeMem();
  3748     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  3749     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  3750       mms.set_memory(mms.memory2());
  3752     assert(base_memory() == mdef->base_memory(), "");
  3753   } else {
  3754     set_base_memory(new_base);
  3758 // Make a new, untransformed MergeMem with the same base as 'mem'.
  3759 // If mem is itself a MergeMem, populate the result with the same edges.
  3760 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  3761   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  3764 //------------------------------cmp--------------------------------------------
  3765 uint MergeMemNode::hash() const { return NO_HASH; }
  3766 uint MergeMemNode::cmp( const Node &n ) const {
  3767   return (&n == this);          // Always fail except on self
  3770 //------------------------------Identity---------------------------------------
  3771 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  3772   // Identity if this merge point does not record any interesting memory
  3773   // disambiguations.
  3774   Node* base_mem = base_memory();
  3775   Node* empty_mem = empty_memory();
  3776   if (base_mem != empty_mem) {  // Memory path is not dead?
  3777     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3778       Node* mem = in(i);
  3779       if (mem != empty_mem && mem != base_mem) {
  3780         return this;            // Many memory splits; no change
  3784   return base_mem;              // No memory splits; ID on the one true input
  3787 //------------------------------Ideal------------------------------------------
  3788 // This method is invoked recursively on chains of MergeMem nodes
  3789 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3790   // Remove chain'd MergeMems
  3791   //
  3792   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  3793   // relative to the "in(Bot)".  Since we are patching both at the same time,
  3794   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  3795   // but rewrite each "in(i)" relative to the new "in(Bot)".
  3796   Node *progress = NULL;
  3799   Node* old_base = base_memory();
  3800   Node* empty_mem = empty_memory();
  3801   if (old_base == empty_mem)
  3802     return NULL; // Dead memory path.
  3804   MergeMemNode* old_mbase;
  3805   if (old_base != NULL && old_base->is_MergeMem())
  3806     old_mbase = old_base->as_MergeMem();
  3807   else
  3808     old_mbase = NULL;
  3809   Node* new_base = old_base;
  3811   // simplify stacked MergeMems in base memory
  3812   if (old_mbase)  new_base = old_mbase->base_memory();
  3814   // the base memory might contribute new slices beyond my req()
  3815   if (old_mbase)  grow_to_match(old_mbase);
  3817   // Look carefully at the base node if it is a phi.
  3818   PhiNode* phi_base;
  3819   if (new_base != NULL && new_base->is_Phi())
  3820     phi_base = new_base->as_Phi();
  3821   else
  3822     phi_base = NULL;
  3824   Node*    phi_reg = NULL;
  3825   uint     phi_len = (uint)-1;
  3826   if (phi_base != NULL && !phi_base->is_copy()) {
  3827     // do not examine phi if degraded to a copy
  3828     phi_reg = phi_base->region();
  3829     phi_len = phi_base->req();
  3830     // see if the phi is unfinished
  3831     for (uint i = 1; i < phi_len; i++) {
  3832       if (phi_base->in(i) == NULL) {
  3833         // incomplete phi; do not look at it yet!
  3834         phi_reg = NULL;
  3835         phi_len = (uint)-1;
  3836         break;
  3841   // Note:  We do not call verify_sparse on entry, because inputs
  3842   // can normalize to the base_memory via subsume_node or similar
  3843   // mechanisms.  This method repairs that damage.
  3845   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  3847   // Look at each slice.
  3848   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3849     Node* old_in = in(i);
  3850     // calculate the old memory value
  3851     Node* old_mem = old_in;
  3852     if (old_mem == empty_mem)  old_mem = old_base;
  3853     assert(old_mem == memory_at(i), "");
  3855     // maybe update (reslice) the old memory value
  3857     // simplify stacked MergeMems
  3858     Node* new_mem = old_mem;
  3859     MergeMemNode* old_mmem;
  3860     if (old_mem != NULL && old_mem->is_MergeMem())
  3861       old_mmem = old_mem->as_MergeMem();
  3862     else
  3863       old_mmem = NULL;
  3864     if (old_mmem == this) {
  3865       // This can happen if loops break up and safepoints disappear.
  3866       // A merge of BotPtr (default) with a RawPtr memory derived from a
  3867       // safepoint can be rewritten to a merge of the same BotPtr with
  3868       // the BotPtr phi coming into the loop.  If that phi disappears
  3869       // also, we can end up with a self-loop of the mergemem.
  3870       // In general, if loops degenerate and memory effects disappear,
  3871       // a mergemem can be left looking at itself.  This simply means
  3872       // that the mergemem's default should be used, since there is
  3873       // no longer any apparent effect on this slice.
  3874       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  3875       //       from start.  Update the input to TOP.
  3876       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  3878     else if (old_mmem != NULL) {
  3879       new_mem = old_mmem->memory_at(i);
  3881     // else preceding memory was not a MergeMem
  3883     // replace equivalent phis (unfortunately, they do not GVN together)
  3884     if (new_mem != NULL && new_mem != new_base &&
  3885         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  3886       if (new_mem->is_Phi()) {
  3887         PhiNode* phi_mem = new_mem->as_Phi();
  3888         for (uint i = 1; i < phi_len; i++) {
  3889           if (phi_base->in(i) != phi_mem->in(i)) {
  3890             phi_mem = NULL;
  3891             break;
  3894         if (phi_mem != NULL) {
  3895           // equivalent phi nodes; revert to the def
  3896           new_mem = new_base;
  3901     // maybe store down a new value
  3902     Node* new_in = new_mem;
  3903     if (new_in == new_base)  new_in = empty_mem;
  3905     if (new_in != old_in) {
  3906       // Warning:  Do not combine this "if" with the previous "if"
  3907       // A memory slice might have be be rewritten even if it is semantically
  3908       // unchanged, if the base_memory value has changed.
  3909       set_req(i, new_in);
  3910       progress = this;          // Report progress
  3914   if (new_base != old_base) {
  3915     set_req(Compile::AliasIdxBot, new_base);
  3916     // Don't use set_base_memory(new_base), because we need to update du.
  3917     assert(base_memory() == new_base, "");
  3918     progress = this;
  3921   if( base_memory() == this ) {
  3922     // a self cycle indicates this memory path is dead
  3923     set_req(Compile::AliasIdxBot, empty_mem);
  3926   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  3927   // Recursion must occur after the self cycle check above
  3928   if( base_memory()->is_MergeMem() ) {
  3929     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  3930     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  3931     if( m != NULL && (m->is_top() ||
  3932         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  3933       // propagate rollup of dead cycle to self
  3934       set_req(Compile::AliasIdxBot, empty_mem);
  3938   if( base_memory() == empty_mem ) {
  3939     progress = this;
  3940     // Cut inputs during Parse phase only.
  3941     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  3942     if( !can_reshape ) {
  3943       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3944         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  3949   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  3950     // Check if PhiNode::Ideal's "Split phis through memory merges"
  3951     // transform should be attempted. Look for this->phi->this cycle.
  3952     uint merge_width = req();
  3953     if (merge_width > Compile::AliasIdxRaw) {
  3954       PhiNode* phi = base_memory()->as_Phi();
  3955       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  3956         if (phi->in(i) == this) {
  3957           phase->is_IterGVN()->_worklist.push(phi);
  3958           break;
  3964   assert(progress || verify_sparse(), "please, no dups of base");
  3965   return progress;
  3968 //-------------------------set_base_memory-------------------------------------
  3969 void MergeMemNode::set_base_memory(Node *new_base) {
  3970   Node* empty_mem = empty_memory();
  3971   set_req(Compile::AliasIdxBot, new_base);
  3972   assert(memory_at(req()) == new_base, "must set default memory");
  3973   // Clear out other occurrences of new_base:
  3974   if (new_base != empty_mem) {
  3975     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3976       if (in(i) == new_base)  set_req(i, empty_mem);
  3981 //------------------------------out_RegMask------------------------------------
  3982 const RegMask &MergeMemNode::out_RegMask() const {
  3983   return RegMask::Empty;
  3986 //------------------------------dump_spec--------------------------------------
  3987 #ifndef PRODUCT
  3988 void MergeMemNode::dump_spec(outputStream *st) const {
  3989   st->print(" {");
  3990   Node* base_mem = base_memory();
  3991   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  3992     Node* mem = memory_at(i);
  3993     if (mem == base_mem) { st->print(" -"); continue; }
  3994     st->print( " N%d:", mem->_idx );
  3995     Compile::current()->get_adr_type(i)->dump_on(st);
  3997   st->print(" }");
  3999 #endif // !PRODUCT
  4002 #ifdef ASSERT
  4003 static bool might_be_same(Node* a, Node* b) {
  4004   if (a == b)  return true;
  4005   if (!(a->is_Phi() || b->is_Phi()))  return false;
  4006   // phis shift around during optimization
  4007   return true;  // pretty stupid...
  4010 // verify a narrow slice (either incoming or outgoing)
  4011 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  4012   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  4013   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  4014   if (Node::in_dump())      return;  // muzzle asserts when printing
  4015   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  4016   assert(n != NULL, "");
  4017   // Elide intervening MergeMem's
  4018   while (n->is_MergeMem()) {
  4019     n = n->as_MergeMem()->memory_at(alias_idx);
  4021   Compile* C = Compile::current();
  4022   const TypePtr* n_adr_type = n->adr_type();
  4023   if (n == m->empty_memory()) {
  4024     // Implicit copy of base_memory()
  4025   } else if (n_adr_type != TypePtr::BOTTOM) {
  4026     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  4027     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  4028   } else {
  4029     // A few places like make_runtime_call "know" that VM calls are narrow,
  4030     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  4031     bool expected_wide_mem = false;
  4032     if (n == m->base_memory()) {
  4033       expected_wide_mem = true;
  4034     } else if (alias_idx == Compile::AliasIdxRaw ||
  4035                n == m->memory_at(Compile::AliasIdxRaw)) {
  4036       expected_wide_mem = true;
  4037     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  4038       // memory can "leak through" calls on channels that
  4039       // are write-once.  Allow this also.
  4040       expected_wide_mem = true;
  4042     assert(expected_wide_mem, "expected narrow slice replacement");
  4045 #else // !ASSERT
  4046 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  4047 #endif
  4050 //-----------------------------memory_at---------------------------------------
  4051 Node* MergeMemNode::memory_at(uint alias_idx) const {
  4052   assert(alias_idx >= Compile::AliasIdxRaw ||
  4053          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  4054          "must avoid base_memory and AliasIdxTop");
  4056   // Otherwise, it is a narrow slice.
  4057   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  4058   Compile *C = Compile::current();
  4059   if (is_empty_memory(n)) {
  4060     // the array is sparse; empty slots are the "top" node
  4061     n = base_memory();
  4062     assert(Node::in_dump()
  4063            || n == NULL || n->bottom_type() == Type::TOP
  4064            || n->adr_type() == TypePtr::BOTTOM
  4065            || n->adr_type() == TypeRawPtr::BOTTOM
  4066            || Compile::current()->AliasLevel() == 0,
  4067            "must be a wide memory");
  4068     // AliasLevel == 0 if we are organizing the memory states manually.
  4069     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  4070   } else {
  4071     // make sure the stored slice is sane
  4072     #ifdef ASSERT
  4073     if (is_error_reported() || Node::in_dump()) {
  4074     } else if (might_be_same(n, base_memory())) {
  4075       // Give it a pass:  It is a mostly harmless repetition of the base.
  4076       // This can arise normally from node subsumption during optimization.
  4077     } else {
  4078       verify_memory_slice(this, alias_idx, n);
  4080     #endif
  4082   return n;
  4085 //---------------------------set_memory_at-------------------------------------
  4086 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  4087   verify_memory_slice(this, alias_idx, n);
  4088   Node* empty_mem = empty_memory();
  4089   if (n == base_memory())  n = empty_mem;  // collapse default
  4090   uint need_req = alias_idx+1;
  4091   if (req() < need_req) {
  4092     if (n == empty_mem)  return;  // already the default, so do not grow me
  4093     // grow the sparse array
  4094     do {
  4095       add_req(empty_mem);
  4096     } while (req() < need_req);
  4098   set_req( alias_idx, n );
  4103 //--------------------------iteration_setup------------------------------------
  4104 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  4105   if (other != NULL) {
  4106     grow_to_match(other);
  4107     // invariant:  the finite support of mm2 is within mm->req()
  4108     #ifdef ASSERT
  4109     for (uint i = req(); i < other->req(); i++) {
  4110       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  4112     #endif
  4114   // Replace spurious copies of base_memory by top.
  4115   Node* base_mem = base_memory();
  4116   if (base_mem != NULL && !base_mem->is_top()) {
  4117     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  4118       if (in(i) == base_mem)
  4119         set_req(i, empty_memory());
  4124 //---------------------------grow_to_match-------------------------------------
  4125 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  4126   Node* empty_mem = empty_memory();
  4127   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  4128   // look for the finite support of the other memory
  4129   for (uint i = other->req(); --i >= req(); ) {
  4130     if (other->in(i) != empty_mem) {
  4131       uint new_len = i+1;
  4132       while (req() < new_len)  add_req(empty_mem);
  4133       break;
  4138 //---------------------------verify_sparse-------------------------------------
  4139 #ifndef PRODUCT
  4140 bool MergeMemNode::verify_sparse() const {
  4141   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  4142   Node* base_mem = base_memory();
  4143   // The following can happen in degenerate cases, since empty==top.
  4144   if (is_empty_memory(base_mem))  return true;
  4145   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4146     assert(in(i) != NULL, "sane slice");
  4147     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  4149   return true;
  4152 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  4153   Node* n;
  4154   n = mm->in(idx);
  4155   if (mem == n)  return true;  // might be empty_memory()
  4156   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  4157   if (mem == n)  return true;
  4158   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  4159     if (mem == n)  return true;
  4160     if (n == NULL)  break;
  4162   return false;
  4164 #endif // !PRODUCT

mercurial