src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp

Wed, 23 Sep 2009 23:57:44 -0700

author
jrose
date
Wed, 23 Sep 2009 23:57:44 -0700
changeset 1429
753cf9794df9
parent 1428
54b3b351d6f9
child 1520
0e2d7ae2bc67
permissions
-rw-r--r--

6885169: merge of 4957990 and 6863023 causes conflict on do_nmethods
Summary: After mechanically merging changes, some by-hand adjustments are needed.
Reviewed-by: ysr

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_concurrentMarkSweepGeneration.cpp.incl"
    28 // statics
    29 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
    30 bool          CMSCollector::_full_gc_requested          = false;
    32 //////////////////////////////////////////////////////////////////
    33 // In support of CMS/VM thread synchronization
    34 //////////////////////////////////////////////////////////////////
    35 // We split use of the CGC_lock into 2 "levels".
    36 // The low-level locking is of the usual CGC_lock monitor. We introduce
    37 // a higher level "token" (hereafter "CMS token") built on top of the
    38 // low level monitor (hereafter "CGC lock").
    39 // The token-passing protocol gives priority to the VM thread. The
    40 // CMS-lock doesn't provide any fairness guarantees, but clients
    41 // should ensure that it is only held for very short, bounded
    42 // durations.
    43 //
    44 // When either of the CMS thread or the VM thread is involved in
    45 // collection operations during which it does not want the other
    46 // thread to interfere, it obtains the CMS token.
    47 //
    48 // If either thread tries to get the token while the other has
    49 // it, that thread waits. However, if the VM thread and CMS thread
    50 // both want the token, then the VM thread gets priority while the
    51 // CMS thread waits. This ensures, for instance, that the "concurrent"
    52 // phases of the CMS thread's work do not block out the VM thread
    53 // for long periods of time as the CMS thread continues to hog
    54 // the token. (See bug 4616232).
    55 //
    56 // The baton-passing functions are, however, controlled by the
    57 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
    58 // and here the low-level CMS lock, not the high level token,
    59 // ensures mutual exclusion.
    60 //
    61 // Two important conditions that we have to satisfy:
    62 // 1. if a thread does a low-level wait on the CMS lock, then it
    63 //    relinquishes the CMS token if it were holding that token
    64 //    when it acquired the low-level CMS lock.
    65 // 2. any low-level notifications on the low-level lock
    66 //    should only be sent when a thread has relinquished the token.
    67 //
    68 // In the absence of either property, we'd have potential deadlock.
    69 //
    70 // We protect each of the CMS (concurrent and sequential) phases
    71 // with the CMS _token_, not the CMS _lock_.
    72 //
    73 // The only code protected by CMS lock is the token acquisition code
    74 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
    75 // baton-passing code.
    76 //
    77 // Unfortunately, i couldn't come up with a good abstraction to factor and
    78 // hide the naked CGC_lock manipulation in the baton-passing code
    79 // further below. That's something we should try to do. Also, the proof
    80 // of correctness of this 2-level locking scheme is far from obvious,
    81 // and potentially quite slippery. We have an uneasy supsicion, for instance,
    82 // that there may be a theoretical possibility of delay/starvation in the
    83 // low-level lock/wait/notify scheme used for the baton-passing because of
    84 // potential intereference with the priority scheme embodied in the
    85 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
    86 // invocation further below and marked with "XXX 20011219YSR".
    87 // Indeed, as we note elsewhere, this may become yet more slippery
    88 // in the presence of multiple CMS and/or multiple VM threads. XXX
    90 class CMSTokenSync: public StackObj {
    91  private:
    92   bool _is_cms_thread;
    93  public:
    94   CMSTokenSync(bool is_cms_thread):
    95     _is_cms_thread(is_cms_thread) {
    96     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
    97            "Incorrect argument to constructor");
    98     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
    99   }
   101   ~CMSTokenSync() {
   102     assert(_is_cms_thread ?
   103              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
   104              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
   105           "Incorrect state");
   106     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
   107   }
   108 };
   110 // Convenience class that does a CMSTokenSync, and then acquires
   111 // upto three locks.
   112 class CMSTokenSyncWithLocks: public CMSTokenSync {
   113  private:
   114   // Note: locks are acquired in textual declaration order
   115   // and released in the opposite order
   116   MutexLockerEx _locker1, _locker2, _locker3;
   117  public:
   118   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
   119                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
   120     CMSTokenSync(is_cms_thread),
   121     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
   122     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
   123     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
   124   { }
   125 };
   128 // Wrapper class to temporarily disable icms during a foreground cms collection.
   129 class ICMSDisabler: public StackObj {
   130  public:
   131   // The ctor disables icms and wakes up the thread so it notices the change;
   132   // the dtor re-enables icms.  Note that the CMSCollector methods will check
   133   // CMSIncrementalMode.
   134   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
   135   ~ICMSDisabler() { CMSCollector::enable_icms(); }
   136 };
   138 //////////////////////////////////////////////////////////////////
   139 //  Concurrent Mark-Sweep Generation /////////////////////////////
   140 //////////////////////////////////////////////////////////////////
   142 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
   144 // This struct contains per-thread things necessary to support parallel
   145 // young-gen collection.
   146 class CMSParGCThreadState: public CHeapObj {
   147  public:
   148   CFLS_LAB lab;
   149   PromotionInfo promo;
   151   // Constructor.
   152   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
   153     promo.setSpace(cfls);
   154   }
   155 };
   157 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
   158      ReservedSpace rs, size_t initial_byte_size, int level,
   159      CardTableRS* ct, bool use_adaptive_freelists,
   160      FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
   161   CardGeneration(rs, initial_byte_size, level, ct),
   162   _dilatation_factor(((double)MinChunkSize)/((double)(oopDesc::header_size()))),
   163   _debug_collection_type(Concurrent_collection_type)
   164 {
   165   HeapWord* bottom = (HeapWord*) _virtual_space.low();
   166   HeapWord* end    = (HeapWord*) _virtual_space.high();
   168   _direct_allocated_words = 0;
   169   NOT_PRODUCT(
   170     _numObjectsPromoted = 0;
   171     _numWordsPromoted = 0;
   172     _numObjectsAllocated = 0;
   173     _numWordsAllocated = 0;
   174   )
   176   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
   177                                            use_adaptive_freelists,
   178                                            dictionaryChoice);
   179   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
   180   if (_cmsSpace == NULL) {
   181     vm_exit_during_initialization(
   182       "CompactibleFreeListSpace allocation failure");
   183   }
   184   _cmsSpace->_gen = this;
   186   _gc_stats = new CMSGCStats();
   188   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
   189   // offsets match. The ability to tell free chunks from objects
   190   // depends on this property.
   191   debug_only(
   192     FreeChunk* junk = NULL;
   193     assert(UseCompressedOops ||
   194            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
   195            "Offset of FreeChunk::_prev within FreeChunk must match"
   196            "  that of OopDesc::_klass within OopDesc");
   197   )
   198   if (ParallelGCThreads > 0) {
   199     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
   200     _par_gc_thread_states =
   201       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads);
   202     if (_par_gc_thread_states == NULL) {
   203       vm_exit_during_initialization("Could not allocate par gc structs");
   204     }
   205     for (uint i = 0; i < ParallelGCThreads; i++) {
   206       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
   207       if (_par_gc_thread_states[i] == NULL) {
   208         vm_exit_during_initialization("Could not allocate par gc structs");
   209       }
   210     }
   211   } else {
   212     _par_gc_thread_states = NULL;
   213   }
   214   _incremental_collection_failed = false;
   215   // The "dilatation_factor" is the expansion that can occur on
   216   // account of the fact that the minimum object size in the CMS
   217   // generation may be larger than that in, say, a contiguous young
   218   //  generation.
   219   // Ideally, in the calculation below, we'd compute the dilatation
   220   // factor as: MinChunkSize/(promoting_gen's min object size)
   221   // Since we do not have such a general query interface for the
   222   // promoting generation, we'll instead just use the mimimum
   223   // object size (which today is a header's worth of space);
   224   // note that all arithmetic is in units of HeapWords.
   225   assert(MinChunkSize >= oopDesc::header_size(), "just checking");
   226   assert(_dilatation_factor >= 1.0, "from previous assert");
   227 }
   230 // The field "_initiating_occupancy" represents the occupancy percentage
   231 // at which we trigger a new collection cycle.  Unless explicitly specified
   232 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it
   233 // is calculated by:
   234 //
   235 //   Let "f" be MinHeapFreeRatio in
   236 //
   237 //    _intiating_occupancy = 100-f +
   238 //                           f * (CMSTrigger[Perm]Ratio/100)
   239 //   where CMSTrigger[Perm]Ratio is the argument "tr" below.
   240 //
   241 // That is, if we assume the heap is at its desired maximum occupancy at the
   242 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free
   243 // space be allocated before initiating a new collection cycle.
   244 //
   245 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
   246   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
   247   if (io >= 0) {
   248     _initiating_occupancy = (double)io / 100.0;
   249   } else {
   250     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
   251                              (double)(tr * MinHeapFreeRatio) / 100.0)
   252                             / 100.0;
   253   }
   254 }
   257 void ConcurrentMarkSweepGeneration::ref_processor_init() {
   258   assert(collector() != NULL, "no collector");
   259   collector()->ref_processor_init();
   260 }
   262 void CMSCollector::ref_processor_init() {
   263   if (_ref_processor == NULL) {
   264     // Allocate and initialize a reference processor
   265     _ref_processor = ReferenceProcessor::create_ref_processor(
   266         _span,                               // span
   267         _cmsGen->refs_discovery_is_atomic(), // atomic_discovery
   268         _cmsGen->refs_discovery_is_mt(),     // mt_discovery
   269         &_is_alive_closure,
   270         ParallelGCThreads,
   271         ParallelRefProcEnabled);
   272     // Initialize the _ref_processor field of CMSGen
   273     _cmsGen->set_ref_processor(_ref_processor);
   275     // Allocate a dummy ref processor for perm gen.
   276     ReferenceProcessor* rp2 = new ReferenceProcessor();
   277     if (rp2 == NULL) {
   278       vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
   279     }
   280     _permGen->set_ref_processor(rp2);
   281   }
   282 }
   284 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
   285   GenCollectedHeap* gch = GenCollectedHeap::heap();
   286   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   287     "Wrong type of heap");
   288   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
   289     gch->gen_policy()->size_policy();
   290   assert(sp->is_gc_cms_adaptive_size_policy(),
   291     "Wrong type of size policy");
   292   return sp;
   293 }
   295 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
   296   CMSGCAdaptivePolicyCounters* results =
   297     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
   298   assert(
   299     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
   300     "Wrong gc policy counter kind");
   301   return results;
   302 }
   305 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
   307   const char* gen_name = "old";
   309   // Generation Counters - generation 1, 1 subspace
   310   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
   312   _space_counters = new GSpaceCounters(gen_name, 0,
   313                                        _virtual_space.reserved_size(),
   314                                        this, _gen_counters);
   315 }
   317 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
   318   _cms_gen(cms_gen)
   319 {
   320   assert(alpha <= 100, "bad value");
   321   _saved_alpha = alpha;
   323   // Initialize the alphas to the bootstrap value of 100.
   324   _gc0_alpha = _cms_alpha = 100;
   326   _cms_begin_time.update();
   327   _cms_end_time.update();
   329   _gc0_duration = 0.0;
   330   _gc0_period = 0.0;
   331   _gc0_promoted = 0;
   333   _cms_duration = 0.0;
   334   _cms_period = 0.0;
   335   _cms_allocated = 0;
   337   _cms_used_at_gc0_begin = 0;
   338   _cms_used_at_gc0_end = 0;
   339   _allow_duty_cycle_reduction = false;
   340   _valid_bits = 0;
   341   _icms_duty_cycle = CMSIncrementalDutyCycle;
   342 }
   344 // If promotion failure handling is on use
   345 // the padded average size of the promotion for each
   346 // young generation collection.
   347 double CMSStats::time_until_cms_gen_full() const {
   348   size_t cms_free = _cms_gen->cmsSpace()->free();
   349   GenCollectedHeap* gch = GenCollectedHeap::heap();
   350   size_t expected_promotion = gch->get_gen(0)->capacity();
   351   if (HandlePromotionFailure) {
   352     expected_promotion = MIN2(
   353         (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average(),
   354         expected_promotion);
   355   }
   356   if (cms_free > expected_promotion) {
   357     // Start a cms collection if there isn't enough space to promote
   358     // for the next minor collection.  Use the padded average as
   359     // a safety factor.
   360     cms_free -= expected_promotion;
   362     // Adjust by the safety factor.
   363     double cms_free_dbl = (double)cms_free;
   364     cms_free_dbl = cms_free_dbl * (100.0 - CMSIncrementalSafetyFactor) / 100.0;
   366     if (PrintGCDetails && Verbose) {
   367       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
   368         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
   369         cms_free, expected_promotion);
   370       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
   371         cms_free_dbl, cms_consumption_rate() + 1.0);
   372     }
   373     // Add 1 in case the consumption rate goes to zero.
   374     return cms_free_dbl / (cms_consumption_rate() + 1.0);
   375   }
   376   return 0.0;
   377 }
   379 // Compare the duration of the cms collection to the
   380 // time remaining before the cms generation is empty.
   381 // Note that the time from the start of the cms collection
   382 // to the start of the cms sweep (less than the total
   383 // duration of the cms collection) can be used.  This
   384 // has been tried and some applications experienced
   385 // promotion failures early in execution.  This was
   386 // possibly because the averages were not accurate
   387 // enough at the beginning.
   388 double CMSStats::time_until_cms_start() const {
   389   // We add "gc0_period" to the "work" calculation
   390   // below because this query is done (mostly) at the
   391   // end of a scavenge, so we need to conservatively
   392   // account for that much possible delay
   393   // in the query so as to avoid concurrent mode failures
   394   // due to starting the collection just a wee bit too
   395   // late.
   396   double work = cms_duration() + gc0_period();
   397   double deadline = time_until_cms_gen_full();
   398   if (work > deadline) {
   399     if (Verbose && PrintGCDetails) {
   400       gclog_or_tty->print(
   401         " CMSCollector: collect because of anticipated promotion "
   402         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
   403         gc0_period(), time_until_cms_gen_full());
   404     }
   405     return 0.0;
   406   }
   407   return work - deadline;
   408 }
   410 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
   411 // amount of change to prevent wild oscillation.
   412 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
   413                                               unsigned int new_duty_cycle) {
   414   assert(old_duty_cycle <= 100, "bad input value");
   415   assert(new_duty_cycle <= 100, "bad input value");
   417   // Note:  use subtraction with caution since it may underflow (values are
   418   // unsigned).  Addition is safe since we're in the range 0-100.
   419   unsigned int damped_duty_cycle = new_duty_cycle;
   420   if (new_duty_cycle < old_duty_cycle) {
   421     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
   422     if (new_duty_cycle + largest_delta < old_duty_cycle) {
   423       damped_duty_cycle = old_duty_cycle - largest_delta;
   424     }
   425   } else if (new_duty_cycle > old_duty_cycle) {
   426     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
   427     if (new_duty_cycle > old_duty_cycle + largest_delta) {
   428       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
   429     }
   430   }
   431   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
   433   if (CMSTraceIncrementalPacing) {
   434     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
   435                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
   436   }
   437   return damped_duty_cycle;
   438 }
   440 unsigned int CMSStats::icms_update_duty_cycle_impl() {
   441   assert(CMSIncrementalPacing && valid(),
   442          "should be handled in icms_update_duty_cycle()");
   444   double cms_time_so_far = cms_timer().seconds();
   445   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
   446   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
   448   // Avoid division by 0.
   449   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
   450   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
   452   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
   453   if (new_duty_cycle > _icms_duty_cycle) {
   454     // Avoid very small duty cycles (1 or 2); 0 is allowed.
   455     if (new_duty_cycle > 2) {
   456       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
   457                                                 new_duty_cycle);
   458     }
   459   } else if (_allow_duty_cycle_reduction) {
   460     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
   461     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
   462     // Respect the minimum duty cycle.
   463     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
   464     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
   465   }
   467   if (PrintGCDetails || CMSTraceIncrementalPacing) {
   468     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
   469   }
   471   _allow_duty_cycle_reduction = false;
   472   return _icms_duty_cycle;
   473 }
   475 #ifndef PRODUCT
   476 void CMSStats::print_on(outputStream *st) const {
   477   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
   478   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
   479                gc0_duration(), gc0_period(), gc0_promoted());
   480   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
   481             cms_duration(), cms_duration_per_mb(),
   482             cms_period(), cms_allocated());
   483   st->print(",cms_since_beg=%g,cms_since_end=%g",
   484             cms_time_since_begin(), cms_time_since_end());
   485   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
   486             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
   487   if (CMSIncrementalMode) {
   488     st->print(",dc=%d", icms_duty_cycle());
   489   }
   491   if (valid()) {
   492     st->print(",promo_rate=%g,cms_alloc_rate=%g",
   493               promotion_rate(), cms_allocation_rate());
   494     st->print(",cms_consumption_rate=%g,time_until_full=%g",
   495               cms_consumption_rate(), time_until_cms_gen_full());
   496   }
   497   st->print(" ");
   498 }
   499 #endif // #ifndef PRODUCT
   501 CMSCollector::CollectorState CMSCollector::_collectorState =
   502                              CMSCollector::Idling;
   503 bool CMSCollector::_foregroundGCIsActive = false;
   504 bool CMSCollector::_foregroundGCShouldWait = false;
   506 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   507                            ConcurrentMarkSweepGeneration* permGen,
   508                            CardTableRS*                   ct,
   509                            ConcurrentMarkSweepPolicy*     cp):
   510   _cmsGen(cmsGen),
   511   _permGen(permGen),
   512   _ct(ct),
   513   _ref_processor(NULL),    // will be set later
   514   _conc_workers(NULL),     // may be set later
   515   _abort_preclean(false),
   516   _start_sampling(false),
   517   _between_prologue_and_epilogue(false),
   518   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
   519   _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
   520   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
   521                  -1 /* lock-free */, "No_lock" /* dummy */),
   522   _modUnionClosure(&_modUnionTable),
   523   _modUnionClosurePar(&_modUnionTable),
   524   // Adjust my span to cover old (cms) gen and perm gen
   525   _span(cmsGen->reserved()._union(permGen->reserved())),
   526   // Construct the is_alive_closure with _span & markBitMap
   527   _is_alive_closure(_span, &_markBitMap),
   528   _restart_addr(NULL),
   529   _overflow_list(NULL),
   530   _preserved_oop_stack(NULL),
   531   _preserved_mark_stack(NULL),
   532   _stats(cmsGen),
   533   _eden_chunk_array(NULL),     // may be set in ctor body
   534   _eden_chunk_capacity(0),     // -- ditto --
   535   _eden_chunk_index(0),        // -- ditto --
   536   _survivor_plab_array(NULL),  // -- ditto --
   537   _survivor_chunk_array(NULL), // -- ditto --
   538   _survivor_chunk_capacity(0), // -- ditto --
   539   _survivor_chunk_index(0),    // -- ditto --
   540   _ser_pmc_preclean_ovflw(0),
   541   _ser_kac_preclean_ovflw(0),
   542   _ser_pmc_remark_ovflw(0),
   543   _par_pmc_remark_ovflw(0),
   544   _ser_kac_ovflw(0),
   545   _par_kac_ovflw(0),
   546 #ifndef PRODUCT
   547   _num_par_pushes(0),
   548 #endif
   549   _collection_count_start(0),
   550   _verifying(false),
   551   _icms_start_limit(NULL),
   552   _icms_stop_limit(NULL),
   553   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
   554   _completed_initialization(false),
   555   _collector_policy(cp),
   556   _should_unload_classes(false),
   557   _concurrent_cycles_since_last_unload(0),
   558   _roots_scanning_options(0),
   559   _sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
   560 {
   561   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
   562     ExplicitGCInvokesConcurrent = true;
   563   }
   564   // Now expand the span and allocate the collection support structures
   565   // (MUT, marking bit map etc.) to cover both generations subject to
   566   // collection.
   568   // First check that _permGen is adjacent to _cmsGen and above it.
   569   assert(   _cmsGen->reserved().word_size()  > 0
   570          && _permGen->reserved().word_size() > 0,
   571          "generations should not be of zero size");
   572   assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
   573          "_cmsGen and _permGen should not overlap");
   574   assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
   575          "_cmsGen->end() different from _permGen->start()");
   577   // For use by dirty card to oop closures.
   578   _cmsGen->cmsSpace()->set_collector(this);
   579   _permGen->cmsSpace()->set_collector(this);
   581   // Allocate MUT and marking bit map
   582   {
   583     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
   584     if (!_markBitMap.allocate(_span)) {
   585       warning("Failed to allocate CMS Bit Map");
   586       return;
   587     }
   588     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
   589   }
   590   {
   591     _modUnionTable.allocate(_span);
   592     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
   593   }
   595   if (!_markStack.allocate(CMSMarkStackSize)) {
   596     warning("Failed to allocate CMS Marking Stack");
   597     return;
   598   }
   599   if (!_revisitStack.allocate(CMSRevisitStackSize)) {
   600     warning("Failed to allocate CMS Revisit Stack");
   601     return;
   602   }
   604   // Support for multi-threaded concurrent phases
   605   if (ParallelGCThreads > 0 && CMSConcurrentMTEnabled) {
   606     if (FLAG_IS_DEFAULT(ParallelCMSThreads)) {
   607       // just for now
   608       FLAG_SET_DEFAULT(ParallelCMSThreads, (ParallelGCThreads + 3)/4);
   609     }
   610     if (ParallelCMSThreads > 1) {
   611       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
   612                                  ParallelCMSThreads, true);
   613       if (_conc_workers == NULL) {
   614         warning("GC/CMS: _conc_workers allocation failure: "
   615               "forcing -CMSConcurrentMTEnabled");
   616         CMSConcurrentMTEnabled = false;
   617       }
   618     } else {
   619       CMSConcurrentMTEnabled = false;
   620     }
   621   }
   622   if (!CMSConcurrentMTEnabled) {
   623     ParallelCMSThreads = 0;
   624   } else {
   625     // Turn off CMSCleanOnEnter optimization temporarily for
   626     // the MT case where it's not fixed yet; see 6178663.
   627     CMSCleanOnEnter = false;
   628   }
   629   assert((_conc_workers != NULL) == (ParallelCMSThreads > 1),
   630          "Inconsistency");
   632   // Parallel task queues; these are shared for the
   633   // concurrent and stop-world phases of CMS, but
   634   // are not shared with parallel scavenge (ParNew).
   635   {
   636     uint i;
   637     uint num_queues = (uint) MAX2(ParallelGCThreads, ParallelCMSThreads);
   639     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
   640          || ParallelRefProcEnabled)
   641         && num_queues > 0) {
   642       _task_queues = new OopTaskQueueSet(num_queues);
   643       if (_task_queues == NULL) {
   644         warning("task_queues allocation failure.");
   645         return;
   646       }
   647       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues);
   648       if (_hash_seed == NULL) {
   649         warning("_hash_seed array allocation failure");
   650         return;
   651       }
   653       // XXX use a global constant instead of 64!
   654       typedef struct OopTaskQueuePadded {
   655         OopTaskQueue work_queue;
   656         char pad[64 - sizeof(OopTaskQueue)];  // prevent false sharing
   657       } OopTaskQueuePadded;
   659       for (i = 0; i < num_queues; i++) {
   660         OopTaskQueuePadded *q_padded = new OopTaskQueuePadded();
   661         if (q_padded == NULL) {
   662           warning("work_queue allocation failure.");
   663           return;
   664         }
   665         _task_queues->register_queue(i, &q_padded->work_queue);
   666       }
   667       for (i = 0; i < num_queues; i++) {
   668         _task_queues->queue(i)->initialize();
   669         _hash_seed[i] = 17;  // copied from ParNew
   670       }
   671     }
   672   }
   674   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
   675   _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio);
   677   // Clip CMSBootstrapOccupancy between 0 and 100.
   678   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
   679                          /(double)100;
   681   _full_gcs_since_conc_gc = 0;
   683   // Now tell CMS generations the identity of their collector
   684   ConcurrentMarkSweepGeneration::set_collector(this);
   686   // Create & start a CMS thread for this CMS collector
   687   _cmsThread = ConcurrentMarkSweepThread::start(this);
   688   assert(cmsThread() != NULL, "CMS Thread should have been created");
   689   assert(cmsThread()->collector() == this,
   690          "CMS Thread should refer to this gen");
   691   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   693   // Support for parallelizing young gen rescan
   694   GenCollectedHeap* gch = GenCollectedHeap::heap();
   695   _young_gen = gch->prev_gen(_cmsGen);
   696   if (gch->supports_inline_contig_alloc()) {
   697     _top_addr = gch->top_addr();
   698     _end_addr = gch->end_addr();
   699     assert(_young_gen != NULL, "no _young_gen");
   700     _eden_chunk_index = 0;
   701     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
   702     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity);
   703     if (_eden_chunk_array == NULL) {
   704       _eden_chunk_capacity = 0;
   705       warning("GC/CMS: _eden_chunk_array allocation failure");
   706     }
   707   }
   708   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
   710   // Support for parallelizing survivor space rescan
   711   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
   712     size_t max_plab_samples = MaxNewSize/((SurvivorRatio+2)*MinTLABSize);
   713     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads);
   714     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples);
   715     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads);
   716     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
   717         || _cursor == NULL) {
   718       warning("Failed to allocate survivor plab/chunk array");
   719       if (_survivor_plab_array  != NULL) {
   720         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   721         _survivor_plab_array = NULL;
   722       }
   723       if (_survivor_chunk_array != NULL) {
   724         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   725         _survivor_chunk_array = NULL;
   726       }
   727       if (_cursor != NULL) {
   728         FREE_C_HEAP_ARRAY(size_t, _cursor);
   729         _cursor = NULL;
   730       }
   731     } else {
   732       _survivor_chunk_capacity = 2*max_plab_samples;
   733       for (uint i = 0; i < ParallelGCThreads; i++) {
   734         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples);
   735         if (vec == NULL) {
   736           warning("Failed to allocate survivor plab array");
   737           for (int j = i; j > 0; j--) {
   738             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array());
   739           }
   740           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   741           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   742           _survivor_plab_array = NULL;
   743           _survivor_chunk_array = NULL;
   744           _survivor_chunk_capacity = 0;
   745           break;
   746         } else {
   747           ChunkArray* cur =
   748             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
   749                                                         max_plab_samples);
   750           assert(cur->end() == 0, "Should be 0");
   751           assert(cur->array() == vec, "Should be vec");
   752           assert(cur->capacity() == max_plab_samples, "Error");
   753         }
   754       }
   755     }
   756   }
   757   assert(   (   _survivor_plab_array  != NULL
   758              && _survivor_chunk_array != NULL)
   759          || (   _survivor_chunk_capacity == 0
   760              && _survivor_chunk_index == 0),
   761          "Error");
   763   // Choose what strong roots should be scanned depending on verification options
   764   // and perm gen collection mode.
   765   if (!CMSClassUnloadingEnabled) {
   766     // If class unloading is disabled we want to include all classes into the root set.
   767     add_root_scanning_option(SharedHeap::SO_AllClasses);
   768   } else {
   769     add_root_scanning_option(SharedHeap::SO_SystemClasses);
   770   }
   772   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
   773   _gc_counters = new CollectorCounters("CMS", 1);
   774   _completed_initialization = true;
   775   _sweep_timer.start();  // start of time
   776 }
   778 const char* ConcurrentMarkSweepGeneration::name() const {
   779   return "concurrent mark-sweep generation";
   780 }
   781 void ConcurrentMarkSweepGeneration::update_counters() {
   782   if (UsePerfData) {
   783     _space_counters->update_all();
   784     _gen_counters->update_all();
   785   }
   786 }
   788 // this is an optimized version of update_counters(). it takes the
   789 // used value as a parameter rather than computing it.
   790 //
   791 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
   792   if (UsePerfData) {
   793     _space_counters->update_used(used);
   794     _space_counters->update_capacity();
   795     _gen_counters->update_all();
   796   }
   797 }
   799 void ConcurrentMarkSweepGeneration::print() const {
   800   Generation::print();
   801   cmsSpace()->print();
   802 }
   804 #ifndef PRODUCT
   805 void ConcurrentMarkSweepGeneration::print_statistics() {
   806   cmsSpace()->printFLCensus(0);
   807 }
   808 #endif
   810 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
   811   GenCollectedHeap* gch = GenCollectedHeap::heap();
   812   if (PrintGCDetails) {
   813     if (Verbose) {
   814       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
   815         level(), short_name(), s, used(), capacity());
   816     } else {
   817       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
   818         level(), short_name(), s, used() / K, capacity() / K);
   819     }
   820   }
   821   if (Verbose) {
   822     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
   823               gch->used(), gch->capacity());
   824   } else {
   825     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
   826               gch->used() / K, gch->capacity() / K);
   827   }
   828 }
   830 size_t
   831 ConcurrentMarkSweepGeneration::contiguous_available() const {
   832   // dld proposes an improvement in precision here. If the committed
   833   // part of the space ends in a free block we should add that to
   834   // uncommitted size in the calculation below. Will make this
   835   // change later, staying with the approximation below for the
   836   // time being. -- ysr.
   837   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
   838 }
   840 size_t
   841 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
   842   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
   843 }
   845 size_t ConcurrentMarkSweepGeneration::max_available() const {
   846   return free() + _virtual_space.uncommitted_size();
   847 }
   849 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(
   850     size_t max_promotion_in_bytes,
   851     bool younger_handles_promotion_failure) const {
   853   // This is the most conservative test.  Full promotion is
   854   // guaranteed if this is used. The multiplicative factor is to
   855   // account for the worst case "dilatation".
   856   double adjusted_max_promo_bytes = _dilatation_factor * max_promotion_in_bytes;
   857   if (adjusted_max_promo_bytes > (double)max_uintx) { // larger than size_t
   858     adjusted_max_promo_bytes = (double)max_uintx;
   859   }
   860   bool result = (max_contiguous_available() >= (size_t)adjusted_max_promo_bytes);
   862   if (younger_handles_promotion_failure && !result) {
   863     // Full promotion is not guaranteed because fragmentation
   864     // of the cms generation can prevent the full promotion.
   865     result = (max_available() >= (size_t)adjusted_max_promo_bytes);
   867     if (!result) {
   868       // With promotion failure handling the test for the ability
   869       // to support the promotion does not have to be guaranteed.
   870       // Use an average of the amount promoted.
   871       result = max_available() >= (size_t)
   872         gc_stats()->avg_promoted()->padded_average();
   873       if (PrintGC && Verbose && result) {
   874         gclog_or_tty->print_cr(
   875           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   876           " max_available: " SIZE_FORMAT
   877           " avg_promoted: " SIZE_FORMAT,
   878           max_available(), (size_t)
   879           gc_stats()->avg_promoted()->padded_average());
   880       }
   881     } else {
   882       if (PrintGC && Verbose) {
   883         gclog_or_tty->print_cr(
   884           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   885           " max_available: " SIZE_FORMAT
   886           " adj_max_promo_bytes: " SIZE_FORMAT,
   887           max_available(), (size_t)adjusted_max_promo_bytes);
   888       }
   889     }
   890   } else {
   891     if (PrintGC && Verbose) {
   892       gclog_or_tty->print_cr(
   893         "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   894         " contiguous_available: " SIZE_FORMAT
   895         " adj_max_promo_bytes: " SIZE_FORMAT,
   896         max_contiguous_available(), (size_t)adjusted_max_promo_bytes);
   897     }
   898   }
   899   return result;
   900 }
   902 CompactibleSpace*
   903 ConcurrentMarkSweepGeneration::first_compaction_space() const {
   904   return _cmsSpace;
   905 }
   907 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
   908   // Clear the promotion information.  These pointers can be adjusted
   909   // along with all the other pointers into the heap but
   910   // compaction is expected to be a rare event with
   911   // a heap using cms so don't do it without seeing the need.
   912   if (ParallelGCThreads > 0) {
   913     for (uint i = 0; i < ParallelGCThreads; i++) {
   914       _par_gc_thread_states[i]->promo.reset();
   915     }
   916   }
   917 }
   919 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
   920   blk->do_space(_cmsSpace);
   921 }
   923 void ConcurrentMarkSweepGeneration::compute_new_size() {
   924   assert_locked_or_safepoint(Heap_lock);
   926   // If incremental collection failed, we just want to expand
   927   // to the limit.
   928   if (incremental_collection_failed()) {
   929     clear_incremental_collection_failed();
   930     grow_to_reserved();
   931     return;
   932   }
   934   size_t expand_bytes = 0;
   935   double free_percentage = ((double) free()) / capacity();
   936   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
   937   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
   939   // compute expansion delta needed for reaching desired free percentage
   940   if (free_percentage < desired_free_percentage) {
   941     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   942     assert(desired_capacity >= capacity(), "invalid expansion size");
   943     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
   944   }
   945   if (expand_bytes > 0) {
   946     if (PrintGCDetails && Verbose) {
   947       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   948       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
   949       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
   950       gclog_or_tty->print_cr("  Desired free fraction %f",
   951         desired_free_percentage);
   952       gclog_or_tty->print_cr("  Maximum free fraction %f",
   953         maximum_free_percentage);
   954       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
   955       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
   956         desired_capacity/1000);
   957       int prev_level = level() - 1;
   958       if (prev_level >= 0) {
   959         size_t prev_size = 0;
   960         GenCollectedHeap* gch = GenCollectedHeap::heap();
   961         Generation* prev_gen = gch->_gens[prev_level];
   962         prev_size = prev_gen->capacity();
   963           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
   964                                  prev_size/1000);
   965       }
   966       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
   967         unsafe_max_alloc_nogc()/1000);
   968       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
   969         contiguous_available()/1000);
   970       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
   971         expand_bytes);
   972     }
   973     // safe if expansion fails
   974     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
   975     if (PrintGCDetails && Verbose) {
   976       gclog_or_tty->print_cr("  Expanded free fraction %f",
   977         ((double) free()) / capacity());
   978     }
   979   }
   980 }
   982 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
   983   return cmsSpace()->freelistLock();
   984 }
   986 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
   987                                                   bool   tlab) {
   988   CMSSynchronousYieldRequest yr;
   989   MutexLockerEx x(freelistLock(),
   990                   Mutex::_no_safepoint_check_flag);
   991   return have_lock_and_allocate(size, tlab);
   992 }
   994 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
   995                                                   bool   tlab) {
   996   assert_lock_strong(freelistLock());
   997   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
   998   HeapWord* res = cmsSpace()->allocate(adjustedSize);
   999   // Allocate the object live (grey) if the background collector has
  1000   // started marking. This is necessary because the marker may
  1001   // have passed this address and consequently this object will
  1002   // not otherwise be greyed and would be incorrectly swept up.
  1003   // Note that if this object contains references, the writing
  1004   // of those references will dirty the card containing this object
  1005   // allowing the object to be blackened (and its references scanned)
  1006   // either during a preclean phase or at the final checkpoint.
  1007   if (res != NULL) {
  1008     collector()->direct_allocated(res, adjustedSize);
  1009     _direct_allocated_words += adjustedSize;
  1010     // allocation counters
  1011     NOT_PRODUCT(
  1012       _numObjectsAllocated++;
  1013       _numWordsAllocated += (int)adjustedSize;
  1016   return res;
  1019 // In the case of direct allocation by mutators in a generation that
  1020 // is being concurrently collected, the object must be allocated
  1021 // live (grey) if the background collector has started marking.
  1022 // This is necessary because the marker may
  1023 // have passed this address and consequently this object will
  1024 // not otherwise be greyed and would be incorrectly swept up.
  1025 // Note that if this object contains references, the writing
  1026 // of those references will dirty the card containing this object
  1027 // allowing the object to be blackened (and its references scanned)
  1028 // either during a preclean phase or at the final checkpoint.
  1029 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
  1030   assert(_markBitMap.covers(start, size), "Out of bounds");
  1031   if (_collectorState >= Marking) {
  1032     MutexLockerEx y(_markBitMap.lock(),
  1033                     Mutex::_no_safepoint_check_flag);
  1034     // [see comments preceding SweepClosure::do_blk() below for details]
  1035     // 1. need to mark the object as live so it isn't collected
  1036     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
  1037     // 3. need to mark the end of the object so sweeper can skip over it
  1038     //    if it's uninitialized when the sweeper reaches it.
  1039     _markBitMap.mark(start);          // object is live
  1040     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
  1041     _markBitMap.mark(start + size - 1);
  1042                                       // mark end of object
  1044   // check that oop looks uninitialized
  1045   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
  1048 void CMSCollector::promoted(bool par, HeapWord* start,
  1049                             bool is_obj_array, size_t obj_size) {
  1050   assert(_markBitMap.covers(start), "Out of bounds");
  1051   // See comment in direct_allocated() about when objects should
  1052   // be allocated live.
  1053   if (_collectorState >= Marking) {
  1054     // we already hold the marking bit map lock, taken in
  1055     // the prologue
  1056     if (par) {
  1057       _markBitMap.par_mark(start);
  1058     } else {
  1059       _markBitMap.mark(start);
  1061     // We don't need to mark the object as uninitialized (as
  1062     // in direct_allocated above) because this is being done with the
  1063     // world stopped and the object will be initialized by the
  1064     // time the sweeper gets to look at it.
  1065     assert(SafepointSynchronize::is_at_safepoint(),
  1066            "expect promotion only at safepoints");
  1068     if (_collectorState < Sweeping) {
  1069       // Mark the appropriate cards in the modUnionTable, so that
  1070       // this object gets scanned before the sweep. If this is
  1071       // not done, CMS generation references in the object might
  1072       // not get marked.
  1073       // For the case of arrays, which are otherwise precisely
  1074       // marked, we need to dirty the entire array, not just its head.
  1075       if (is_obj_array) {
  1076         // The [par_]mark_range() method expects mr.end() below to
  1077         // be aligned to the granularity of a bit's representation
  1078         // in the heap. In the case of the MUT below, that's a
  1079         // card size.
  1080         MemRegion mr(start,
  1081                      (HeapWord*)round_to((intptr_t)(start + obj_size),
  1082                         CardTableModRefBS::card_size /* bytes */));
  1083         if (par) {
  1084           _modUnionTable.par_mark_range(mr);
  1085         } else {
  1086           _modUnionTable.mark_range(mr);
  1088       } else {  // not an obj array; we can just mark the head
  1089         if (par) {
  1090           _modUnionTable.par_mark(start);
  1091         } else {
  1092           _modUnionTable.mark(start);
  1099 static inline size_t percent_of_space(Space* space, HeapWord* addr)
  1101   size_t delta = pointer_delta(addr, space->bottom());
  1102   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
  1105 void CMSCollector::icms_update_allocation_limits()
  1107   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
  1108   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
  1110   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
  1111   if (CMSTraceIncrementalPacing) {
  1112     stats().print();
  1115   assert(duty_cycle <= 100, "invalid duty cycle");
  1116   if (duty_cycle != 0) {
  1117     // The duty_cycle is a percentage between 0 and 100; convert to words and
  1118     // then compute the offset from the endpoints of the space.
  1119     size_t free_words = eden->free() / HeapWordSize;
  1120     double free_words_dbl = (double)free_words;
  1121     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
  1122     size_t offset_words = (free_words - duty_cycle_words) / 2;
  1124     _icms_start_limit = eden->top() + offset_words;
  1125     _icms_stop_limit = eden->end() - offset_words;
  1127     // The limits may be adjusted (shifted to the right) by
  1128     // CMSIncrementalOffset, to allow the application more mutator time after a
  1129     // young gen gc (when all mutators were stopped) and before CMS starts and
  1130     // takes away one or more cpus.
  1131     if (CMSIncrementalOffset != 0) {
  1132       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
  1133       size_t adjustment = (size_t)adjustment_dbl;
  1134       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
  1135       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
  1136         _icms_start_limit += adjustment;
  1137         _icms_stop_limit = tmp_stop;
  1141   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
  1142     _icms_start_limit = _icms_stop_limit = eden->end();
  1145   // Install the new start limit.
  1146   eden->set_soft_end(_icms_start_limit);
  1148   if (CMSTraceIncrementalMode) {
  1149     gclog_or_tty->print(" icms alloc limits:  "
  1150                            PTR_FORMAT "," PTR_FORMAT
  1151                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
  1152                            _icms_start_limit, _icms_stop_limit,
  1153                            percent_of_space(eden, _icms_start_limit),
  1154                            percent_of_space(eden, _icms_stop_limit));
  1155     if (Verbose) {
  1156       gclog_or_tty->print("eden:  ");
  1157       eden->print_on(gclog_or_tty);
  1162 // Any changes here should try to maintain the invariant
  1163 // that if this method is called with _icms_start_limit
  1164 // and _icms_stop_limit both NULL, then it should return NULL
  1165 // and not notify the icms thread.
  1166 HeapWord*
  1167 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
  1168                                        size_t word_size)
  1170   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
  1171   // nop.
  1172   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
  1173     if (top <= _icms_start_limit) {
  1174       if (CMSTraceIncrementalMode) {
  1175         space->print_on(gclog_or_tty);
  1176         gclog_or_tty->stamp();
  1177         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
  1178                                ", new limit=" PTR_FORMAT
  1179                                " (" SIZE_FORMAT "%%)",
  1180                                top, _icms_stop_limit,
  1181                                percent_of_space(space, _icms_stop_limit));
  1183       ConcurrentMarkSweepThread::start_icms();
  1184       assert(top < _icms_stop_limit, "Tautology");
  1185       if (word_size < pointer_delta(_icms_stop_limit, top)) {
  1186         return _icms_stop_limit;
  1189       // The allocation will cross both the _start and _stop limits, so do the
  1190       // stop notification also and return end().
  1191       if (CMSTraceIncrementalMode) {
  1192         space->print_on(gclog_or_tty);
  1193         gclog_or_tty->stamp();
  1194         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
  1195                                ", new limit=" PTR_FORMAT
  1196                                " (" SIZE_FORMAT "%%)",
  1197                                top, space->end(),
  1198                                percent_of_space(space, space->end()));
  1200       ConcurrentMarkSweepThread::stop_icms();
  1201       return space->end();
  1204     if (top <= _icms_stop_limit) {
  1205       if (CMSTraceIncrementalMode) {
  1206         space->print_on(gclog_or_tty);
  1207         gclog_or_tty->stamp();
  1208         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
  1209                                ", new limit=" PTR_FORMAT
  1210                                " (" SIZE_FORMAT "%%)",
  1211                                top, space->end(),
  1212                                percent_of_space(space, space->end()));
  1214       ConcurrentMarkSweepThread::stop_icms();
  1215       return space->end();
  1218     if (CMSTraceIncrementalMode) {
  1219       space->print_on(gclog_or_tty);
  1220       gclog_or_tty->stamp();
  1221       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
  1222                              ", new limit=" PTR_FORMAT,
  1223                              top, NULL);
  1227   return NULL;
  1230 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
  1231   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1232   // allocate, copy and if necessary update promoinfo --
  1233   // delegate to underlying space.
  1234   assert_lock_strong(freelistLock());
  1236 #ifndef PRODUCT
  1237   if (Universe::heap()->promotion_should_fail()) {
  1238     return NULL;
  1240 #endif  // #ifndef PRODUCT
  1242   oop res = _cmsSpace->promote(obj, obj_size);
  1243   if (res == NULL) {
  1244     // expand and retry
  1245     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
  1246     expand(s*HeapWordSize, MinHeapDeltaBytes,
  1247       CMSExpansionCause::_satisfy_promotion);
  1248     // Since there's currently no next generation, we don't try to promote
  1249     // into a more senior generation.
  1250     assert(next_gen() == NULL, "assumption, based upon which no attempt "
  1251                                "is made to pass on a possibly failing "
  1252                                "promotion to next generation");
  1253     res = _cmsSpace->promote(obj, obj_size);
  1255   if (res != NULL) {
  1256     // See comment in allocate() about when objects should
  1257     // be allocated live.
  1258     assert(obj->is_oop(), "Will dereference klass pointer below");
  1259     collector()->promoted(false,           // Not parallel
  1260                           (HeapWord*)res, obj->is_objArray(), obj_size);
  1261     // promotion counters
  1262     NOT_PRODUCT(
  1263       _numObjectsPromoted++;
  1264       _numWordsPromoted +=
  1265         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
  1268   return res;
  1272 HeapWord*
  1273 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
  1274                                              HeapWord* top,
  1275                                              size_t word_sz)
  1277   return collector()->allocation_limit_reached(space, top, word_sz);
  1280 // Things to support parallel young-gen collection.
  1281 oop
  1282 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
  1283                                            oop old, markOop m,
  1284                                            size_t word_sz) {
  1285 #ifndef PRODUCT
  1286   if (Universe::heap()->promotion_should_fail()) {
  1287     return NULL;
  1289 #endif  // #ifndef PRODUCT
  1291   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1292   PromotionInfo* promoInfo = &ps->promo;
  1293   // if we are tracking promotions, then first ensure space for
  1294   // promotion (including spooling space for saving header if necessary).
  1295   // then allocate and copy, then track promoted info if needed.
  1296   // When tracking (see PromotionInfo::track()), the mark word may
  1297   // be displaced and in this case restoration of the mark word
  1298   // occurs in the (oop_since_save_marks_)iterate phase.
  1299   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
  1300     // Out of space for allocating spooling buffers;
  1301     // try expanding and allocating spooling buffers.
  1302     if (!expand_and_ensure_spooling_space(promoInfo)) {
  1303       return NULL;
  1306   assert(promoInfo->has_spooling_space(), "Control point invariant");
  1307   HeapWord* obj_ptr = ps->lab.alloc(word_sz);
  1308   if (obj_ptr == NULL) {
  1309      obj_ptr = expand_and_par_lab_allocate(ps, word_sz);
  1310      if (obj_ptr == NULL) {
  1311        return NULL;
  1314   oop obj = oop(obj_ptr);
  1315   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1316   // Otherwise, copy the object.  Here we must be careful to insert the
  1317   // klass pointer last, since this marks the block as an allocated object.
  1318   // Except with compressed oops it's the mark word.
  1319   HeapWord* old_ptr = (HeapWord*)old;
  1320   if (word_sz > (size_t)oopDesc::header_size()) {
  1321     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
  1322                                  obj_ptr + oopDesc::header_size(),
  1323                                  word_sz - oopDesc::header_size());
  1326   if (UseCompressedOops) {
  1327     // Copy gap missed by (aligned) header size calculation above
  1328     obj->set_klass_gap(old->klass_gap());
  1331   // Restore the mark word copied above.
  1332   obj->set_mark(m);
  1334   // Now we can track the promoted object, if necessary.  We take care
  1335   // To delay the transition from uninitialized to full object
  1336   // (i.e., insertion of klass pointer) until after, so that it
  1337   // atomically becomes a promoted object.
  1338   if (promoInfo->tracking()) {
  1339     promoInfo->track((PromotedObject*)obj, old->klass());
  1342   // Finally, install the klass pointer (this should be volatile).
  1343   obj->set_klass(old->klass());
  1345   assert(old->is_oop(), "Will dereference klass ptr below");
  1346   collector()->promoted(true,          // parallel
  1347                         obj_ptr, old->is_objArray(), word_sz);
  1349   NOT_PRODUCT(
  1350     Atomic::inc(&_numObjectsPromoted);
  1351     Atomic::add((jint)CompactibleFreeListSpace::adjustObjectSize(obj->size()),
  1352                 &_numWordsPromoted);
  1355   return obj;
  1358 void
  1359 ConcurrentMarkSweepGeneration::
  1360 par_promote_alloc_undo(int thread_num,
  1361                        HeapWord* obj, size_t word_sz) {
  1362   // CMS does not support promotion undo.
  1363   ShouldNotReachHere();
  1366 void
  1367 ConcurrentMarkSweepGeneration::
  1368 par_promote_alloc_done(int thread_num) {
  1369   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1370   ps->lab.retire();
  1371 #if CFLS_LAB_REFILL_STATS
  1372   if (thread_num == 0) {
  1373     _cmsSpace->print_par_alloc_stats();
  1375 #endif
  1378 void
  1379 ConcurrentMarkSweepGeneration::
  1380 par_oop_since_save_marks_iterate_done(int thread_num) {
  1381   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1382   ParScanWithoutBarrierClosure* dummy_cl = NULL;
  1383   ps->promo.promoted_oops_iterate_nv(dummy_cl);
  1386 // XXXPERM
  1387 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
  1388                                                    size_t size,
  1389                                                    bool   tlab)
  1391   // We allow a STW collection only if a full
  1392   // collection was requested.
  1393   return full || should_allocate(size, tlab); // FIX ME !!!
  1394   // This and promotion failure handling are connected at the
  1395   // hip and should be fixed by untying them.
  1398 bool CMSCollector::shouldConcurrentCollect() {
  1399   if (_full_gc_requested) {
  1400     assert(ExplicitGCInvokesConcurrent, "Unexpected state");
  1401     if (Verbose && PrintGCDetails) {
  1402       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
  1403                              " gc request");
  1405     return true;
  1408   // For debugging purposes, change the type of collection.
  1409   // If the rotation is not on the concurrent collection
  1410   // type, don't start a concurrent collection.
  1411   NOT_PRODUCT(
  1412     if (RotateCMSCollectionTypes &&
  1413         (_cmsGen->debug_collection_type() !=
  1414           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
  1415       assert(_cmsGen->debug_collection_type() !=
  1416         ConcurrentMarkSweepGeneration::Unknown_collection_type,
  1417         "Bad cms collection type");
  1418       return false;
  1422   FreelistLocker x(this);
  1423   // ------------------------------------------------------------------
  1424   // Print out lots of information which affects the initiation of
  1425   // a collection.
  1426   if (PrintCMSInitiationStatistics && stats().valid()) {
  1427     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
  1428     gclog_or_tty->stamp();
  1429     gclog_or_tty->print_cr("");
  1430     stats().print_on(gclog_or_tty);
  1431     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
  1432       stats().time_until_cms_gen_full());
  1433     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
  1434     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
  1435                            _cmsGen->contiguous_available());
  1436     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
  1437     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
  1438     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
  1439     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
  1440     gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy());
  1442   // ------------------------------------------------------------------
  1444   // If the estimated time to complete a cms collection (cms_duration())
  1445   // is less than the estimated time remaining until the cms generation
  1446   // is full, start a collection.
  1447   if (!UseCMSInitiatingOccupancyOnly) {
  1448     if (stats().valid()) {
  1449       if (stats().time_until_cms_start() == 0.0) {
  1450         return true;
  1452     } else {
  1453       // We want to conservatively collect somewhat early in order
  1454       // to try and "bootstrap" our CMS/promotion statistics;
  1455       // this branch will not fire after the first successful CMS
  1456       // collection because the stats should then be valid.
  1457       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
  1458         if (Verbose && PrintGCDetails) {
  1459           gclog_or_tty->print_cr(
  1460             " CMSCollector: collect for bootstrapping statistics:"
  1461             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
  1462             _bootstrap_occupancy);
  1464         return true;
  1469   // Otherwise, we start a collection cycle if either the perm gen or
  1470   // old gen want a collection cycle started. Each may use
  1471   // an appropriate criterion for making this decision.
  1472   // XXX We need to make sure that the gen expansion
  1473   // criterion dovetails well with this. XXX NEED TO FIX THIS
  1474   if (_cmsGen->should_concurrent_collect()) {
  1475     if (Verbose && PrintGCDetails) {
  1476       gclog_or_tty->print_cr("CMS old gen initiated");
  1478     return true;
  1481   // We start a collection if we believe an incremental collection may fail;
  1482   // this is not likely to be productive in practice because it's probably too
  1483   // late anyway.
  1484   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1485   assert(gch->collector_policy()->is_two_generation_policy(),
  1486          "You may want to check the correctness of the following");
  1487   if (gch->incremental_collection_will_fail()) {
  1488     if (PrintGCDetails && Verbose) {
  1489       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
  1491     return true;
  1494   if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) {
  1495     bool res = update_should_unload_classes();
  1496     if (res) {
  1497       if (Verbose && PrintGCDetails) {
  1498         gclog_or_tty->print_cr("CMS perm gen initiated");
  1500       return true;
  1503   return false;
  1506 // Clear _expansion_cause fields of constituent generations
  1507 void CMSCollector::clear_expansion_cause() {
  1508   _cmsGen->clear_expansion_cause();
  1509   _permGen->clear_expansion_cause();
  1512 // We should be conservative in starting a collection cycle.  To
  1513 // start too eagerly runs the risk of collecting too often in the
  1514 // extreme.  To collect too rarely falls back on full collections,
  1515 // which works, even if not optimum in terms of concurrent work.
  1516 // As a work around for too eagerly collecting, use the flag
  1517 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
  1518 // giving the user an easily understandable way of controlling the
  1519 // collections.
  1520 // We want to start a new collection cycle if any of the following
  1521 // conditions hold:
  1522 // . our current occupancy exceeds the configured initiating occupancy
  1523 //   for this generation, or
  1524 // . we recently needed to expand this space and have not, since that
  1525 //   expansion, done a collection of this generation, or
  1526 // . the underlying space believes that it may be a good idea to initiate
  1527 //   a concurrent collection (this may be based on criteria such as the
  1528 //   following: the space uses linear allocation and linear allocation is
  1529 //   going to fail, or there is believed to be excessive fragmentation in
  1530 //   the generation, etc... or ...
  1531 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
  1532 //   the case of the old generation, not the perm generation; see CR 6543076):
  1533 //   we may be approaching a point at which allocation requests may fail because
  1534 //   we will be out of sufficient free space given allocation rate estimates.]
  1535 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
  1537   assert_lock_strong(freelistLock());
  1538   if (occupancy() > initiating_occupancy()) {
  1539     if (PrintGCDetails && Verbose) {
  1540       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
  1541         short_name(), occupancy(), initiating_occupancy());
  1543     return true;
  1545   if (UseCMSInitiatingOccupancyOnly) {
  1546     return false;
  1548   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
  1549     if (PrintGCDetails && Verbose) {
  1550       gclog_or_tty->print(" %s: collect because expanded for allocation ",
  1551         short_name());
  1553     return true;
  1555   if (_cmsSpace->should_concurrent_collect()) {
  1556     if (PrintGCDetails && Verbose) {
  1557       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
  1558         short_name());
  1560     return true;
  1562   return false;
  1565 void ConcurrentMarkSweepGeneration::collect(bool   full,
  1566                                             bool   clear_all_soft_refs,
  1567                                             size_t size,
  1568                                             bool   tlab)
  1570   collector()->collect(full, clear_all_soft_refs, size, tlab);
  1573 void CMSCollector::collect(bool   full,
  1574                            bool   clear_all_soft_refs,
  1575                            size_t size,
  1576                            bool   tlab)
  1578   if (!UseCMSCollectionPassing && _collectorState > Idling) {
  1579     // For debugging purposes skip the collection if the state
  1580     // is not currently idle
  1581     if (TraceCMSState) {
  1582       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
  1583         Thread::current(), full, _collectorState);
  1585     return;
  1588   // The following "if" branch is present for defensive reasons.
  1589   // In the current uses of this interface, it can be replaced with:
  1590   // assert(!GC_locker.is_active(), "Can't be called otherwise");
  1591   // But I am not placing that assert here to allow future
  1592   // generality in invoking this interface.
  1593   if (GC_locker::is_active()) {
  1594     // A consistency test for GC_locker
  1595     assert(GC_locker::needs_gc(), "Should have been set already");
  1596     // Skip this foreground collection, instead
  1597     // expanding the heap if necessary.
  1598     // Need the free list locks for the call to free() in compute_new_size()
  1599     compute_new_size();
  1600     return;
  1602   acquire_control_and_collect(full, clear_all_soft_refs);
  1603   _full_gcs_since_conc_gc++;
  1607 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
  1608   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1609   unsigned int gc_count = gch->total_full_collections();
  1610   if (gc_count == full_gc_count) {
  1611     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
  1612     _full_gc_requested = true;
  1613     CGC_lock->notify();   // nudge CMS thread
  1618 // The foreground and background collectors need to coordinate in order
  1619 // to make sure that they do not mutually interfere with CMS collections.
  1620 // When a background collection is active,
  1621 // the foreground collector may need to take over (preempt) and
  1622 // synchronously complete an ongoing collection. Depending on the
  1623 // frequency of the background collections and the heap usage
  1624 // of the application, this preemption can be seldom or frequent.
  1625 // There are only certain
  1626 // points in the background collection that the "collection-baton"
  1627 // can be passed to the foreground collector.
  1628 //
  1629 // The foreground collector will wait for the baton before
  1630 // starting any part of the collection.  The foreground collector
  1631 // will only wait at one location.
  1632 //
  1633 // The background collector will yield the baton before starting a new
  1634 // phase of the collection (e.g., before initial marking, marking from roots,
  1635 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
  1636 // of the loop which switches the phases. The background collector does some
  1637 // of the phases (initial mark, final re-mark) with the world stopped.
  1638 // Because of locking involved in stopping the world,
  1639 // the foreground collector should not block waiting for the background
  1640 // collector when it is doing a stop-the-world phase.  The background
  1641 // collector will yield the baton at an additional point just before
  1642 // it enters a stop-the-world phase.  Once the world is stopped, the
  1643 // background collector checks the phase of the collection.  If the
  1644 // phase has not changed, it proceeds with the collection.  If the
  1645 // phase has changed, it skips that phase of the collection.  See
  1646 // the comments on the use of the Heap_lock in collect_in_background().
  1647 //
  1648 // Variable used in baton passing.
  1649 //   _foregroundGCIsActive - Set to true by the foreground collector when
  1650 //      it wants the baton.  The foreground clears it when it has finished
  1651 //      the collection.
  1652 //   _foregroundGCShouldWait - Set to true by the background collector
  1653 //        when it is running.  The foreground collector waits while
  1654 //      _foregroundGCShouldWait is true.
  1655 //  CGC_lock - monitor used to protect access to the above variables
  1656 //      and to notify the foreground and background collectors.
  1657 //  _collectorState - current state of the CMS collection.
  1658 //
  1659 // The foreground collector
  1660 //   acquires the CGC_lock
  1661 //   sets _foregroundGCIsActive
  1662 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
  1663 //     various locks acquired in preparation for the collection
  1664 //     are released so as not to block the background collector
  1665 //     that is in the midst of a collection
  1666 //   proceeds with the collection
  1667 //   clears _foregroundGCIsActive
  1668 //   returns
  1669 //
  1670 // The background collector in a loop iterating on the phases of the
  1671 //      collection
  1672 //   acquires the CGC_lock
  1673 //   sets _foregroundGCShouldWait
  1674 //   if _foregroundGCIsActive is set
  1675 //     clears _foregroundGCShouldWait, notifies _CGC_lock
  1676 //     waits on _CGC_lock for _foregroundGCIsActive to become false
  1677 //     and exits the loop.
  1678 //   otherwise
  1679 //     proceed with that phase of the collection
  1680 //     if the phase is a stop-the-world phase,
  1681 //       yield the baton once more just before enqueueing
  1682 //       the stop-world CMS operation (executed by the VM thread).
  1683 //   returns after all phases of the collection are done
  1684 //
  1686 void CMSCollector::acquire_control_and_collect(bool full,
  1687         bool clear_all_soft_refs) {
  1688   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1689   assert(!Thread::current()->is_ConcurrentGC_thread(),
  1690          "shouldn't try to acquire control from self!");
  1692   // Start the protocol for acquiring control of the
  1693   // collection from the background collector (aka CMS thread).
  1694   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1695          "VM thread should have CMS token");
  1696   // Remember the possibly interrupted state of an ongoing
  1697   // concurrent collection
  1698   CollectorState first_state = _collectorState;
  1700   // Signal to a possibly ongoing concurrent collection that
  1701   // we want to do a foreground collection.
  1702   _foregroundGCIsActive = true;
  1704   // Disable incremental mode during a foreground collection.
  1705   ICMSDisabler icms_disabler;
  1707   // release locks and wait for a notify from the background collector
  1708   // releasing the locks in only necessary for phases which
  1709   // do yields to improve the granularity of the collection.
  1710   assert_lock_strong(bitMapLock());
  1711   // We need to lock the Free list lock for the space that we are
  1712   // currently collecting.
  1713   assert(haveFreelistLocks(), "Must be holding free list locks");
  1714   bitMapLock()->unlock();
  1715   releaseFreelistLocks();
  1717     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1718     if (_foregroundGCShouldWait) {
  1719       // We are going to be waiting for action for the CMS thread;
  1720       // it had better not be gone (for instance at shutdown)!
  1721       assert(ConcurrentMarkSweepThread::cmst() != NULL,
  1722              "CMS thread must be running");
  1723       // Wait here until the background collector gives us the go-ahead
  1724       ConcurrentMarkSweepThread::clear_CMS_flag(
  1725         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
  1726       // Get a possibly blocked CMS thread going:
  1727       //   Note that we set _foregroundGCIsActive true above,
  1728       //   without protection of the CGC_lock.
  1729       CGC_lock->notify();
  1730       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
  1731              "Possible deadlock");
  1732       while (_foregroundGCShouldWait) {
  1733         // wait for notification
  1734         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  1735         // Possibility of delay/starvation here, since CMS token does
  1736         // not know to give priority to VM thread? Actually, i think
  1737         // there wouldn't be any delay/starvation, but the proof of
  1738         // that "fact" (?) appears non-trivial. XXX 20011219YSR
  1740       ConcurrentMarkSweepThread::set_CMS_flag(
  1741         ConcurrentMarkSweepThread::CMS_vm_has_token);
  1744   // The CMS_token is already held.  Get back the other locks.
  1745   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1746          "VM thread should have CMS token");
  1747   getFreelistLocks();
  1748   bitMapLock()->lock_without_safepoint_check();
  1749   if (TraceCMSState) {
  1750     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
  1751       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
  1752     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
  1755   // Check if we need to do a compaction, or if not, whether
  1756   // we need to start the mark-sweep from scratch.
  1757   bool should_compact    = false;
  1758   bool should_start_over = false;
  1759   decide_foreground_collection_type(clear_all_soft_refs,
  1760     &should_compact, &should_start_over);
  1762 NOT_PRODUCT(
  1763   if (RotateCMSCollectionTypes) {
  1764     if (_cmsGen->debug_collection_type() ==
  1765         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
  1766       should_compact = true;
  1767     } else if (_cmsGen->debug_collection_type() ==
  1768                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
  1769       should_compact = false;
  1774   if (PrintGCDetails && first_state > Idling) {
  1775     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
  1776     if (GCCause::is_user_requested_gc(cause) ||
  1777         GCCause::is_serviceability_requested_gc(cause)) {
  1778       gclog_or_tty->print(" (concurrent mode interrupted)");
  1779     } else {
  1780       gclog_or_tty->print(" (concurrent mode failure)");
  1784   if (should_compact) {
  1785     // If the collection is being acquired from the background
  1786     // collector, there may be references on the discovered
  1787     // references lists that have NULL referents (being those
  1788     // that were concurrently cleared by a mutator) or
  1789     // that are no longer active (having been enqueued concurrently
  1790     // by the mutator).
  1791     // Scrub the list of those references because Mark-Sweep-Compact
  1792     // code assumes referents are not NULL and that all discovered
  1793     // Reference objects are active.
  1794     ref_processor()->clean_up_discovered_references();
  1796     do_compaction_work(clear_all_soft_refs);
  1798     // Has the GC time limit been exceeded?
  1799     check_gc_time_limit();
  1801   } else {
  1802     do_mark_sweep_work(clear_all_soft_refs, first_state,
  1803       should_start_over);
  1805   // Reset the expansion cause, now that we just completed
  1806   // a collection cycle.
  1807   clear_expansion_cause();
  1808   _foregroundGCIsActive = false;
  1809   return;
  1812 void CMSCollector::check_gc_time_limit() {
  1814   // Ignore explicit GC's.  Exiting here does not set the flag and
  1815   // does not reset the count.  Updating of the averages for system
  1816   // GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
  1817   GCCause::Cause gc_cause = GenCollectedHeap::heap()->gc_cause();
  1818   if (GCCause::is_user_requested_gc(gc_cause) ||
  1819       GCCause::is_serviceability_requested_gc(gc_cause)) {
  1820     return;
  1823   // Calculate the fraction of the CMS generation was freed during
  1824   // the last collection.
  1825   // Only consider the STW compacting cost for now.
  1826   //
  1827   // Note that the gc time limit test only works for the collections
  1828   // of the young gen + tenured gen and not for collections of the
  1829   // permanent gen.  That is because the calculation of the space
  1830   // freed by the collection is the free space in the young gen +
  1831   // tenured gen.
  1833   double fraction_free =
  1834     ((double)_cmsGen->free())/((double)_cmsGen->max_capacity());
  1835   if ((100.0 * size_policy()->compacting_gc_cost()) >
  1836          ((double) GCTimeLimit) &&
  1837         ((fraction_free * 100) < GCHeapFreeLimit)) {
  1838     size_policy()->inc_gc_time_limit_count();
  1839     if (UseGCOverheadLimit &&
  1840         (size_policy()->gc_time_limit_count() >
  1841          AdaptiveSizePolicyGCTimeLimitThreshold)) {
  1842       size_policy()->set_gc_time_limit_exceeded(true);
  1843       // Avoid consecutive OOM due to the gc time limit by resetting
  1844       // the counter.
  1845       size_policy()->reset_gc_time_limit_count();
  1846       if (PrintGCDetails) {
  1847         gclog_or_tty->print_cr("      GC is exceeding overhead limit "
  1848           "of %d%%", GCTimeLimit);
  1850     } else {
  1851       if (PrintGCDetails) {
  1852         gclog_or_tty->print_cr("      GC would exceed overhead limit "
  1853           "of %d%%", GCTimeLimit);
  1856   } else {
  1857     size_policy()->reset_gc_time_limit_count();
  1861 // Resize the perm generation and the tenured generation
  1862 // after obtaining the free list locks for the
  1863 // two generations.
  1864 void CMSCollector::compute_new_size() {
  1865   assert_locked_or_safepoint(Heap_lock);
  1866   FreelistLocker z(this);
  1867   _permGen->compute_new_size();
  1868   _cmsGen->compute_new_size();
  1871 // A work method used by foreground collection to determine
  1872 // what type of collection (compacting or not, continuing or fresh)
  1873 // it should do.
  1874 // NOTE: the intent is to make UseCMSCompactAtFullCollection
  1875 // and CMSCompactWhenClearAllSoftRefs the default in the future
  1876 // and do away with the flags after a suitable period.
  1877 void CMSCollector::decide_foreground_collection_type(
  1878   bool clear_all_soft_refs, bool* should_compact,
  1879   bool* should_start_over) {
  1880   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
  1881   // flag is set, and we have either requested a System.gc() or
  1882   // the number of full gc's since the last concurrent cycle
  1883   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
  1884   // or if an incremental collection has failed
  1885   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1886   assert(gch->collector_policy()->is_two_generation_policy(),
  1887          "You may want to check the correctness of the following");
  1888   // Inform cms gen if this was due to partial collection failing.
  1889   // The CMS gen may use this fact to determine its expansion policy.
  1890   if (gch->incremental_collection_will_fail()) {
  1891     assert(!_cmsGen->incremental_collection_failed(),
  1892            "Should have been noticed, reacted to and cleared");
  1893     _cmsGen->set_incremental_collection_failed();
  1895   *should_compact =
  1896     UseCMSCompactAtFullCollection &&
  1897     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
  1898      GCCause::is_user_requested_gc(gch->gc_cause()) ||
  1899      gch->incremental_collection_will_fail());
  1900   *should_start_over = false;
  1901   if (clear_all_soft_refs && !*should_compact) {
  1902     // We are about to do a last ditch collection attempt
  1903     // so it would normally make sense to do a compaction
  1904     // to reclaim as much space as possible.
  1905     if (CMSCompactWhenClearAllSoftRefs) {
  1906       // Default: The rationale is that in this case either
  1907       // we are past the final marking phase, in which case
  1908       // we'd have to start over, or so little has been done
  1909       // that there's little point in saving that work. Compaction
  1910       // appears to be the sensible choice in either case.
  1911       *should_compact = true;
  1912     } else {
  1913       // We have been asked to clear all soft refs, but not to
  1914       // compact. Make sure that we aren't past the final checkpoint
  1915       // phase, for that is where we process soft refs. If we are already
  1916       // past that phase, we'll need to redo the refs discovery phase and
  1917       // if necessary clear soft refs that weren't previously
  1918       // cleared. We do so by remembering the phase in which
  1919       // we came in, and if we are past the refs processing
  1920       // phase, we'll choose to just redo the mark-sweep
  1921       // collection from scratch.
  1922       if (_collectorState > FinalMarking) {
  1923         // We are past the refs processing phase;
  1924         // start over and do a fresh synchronous CMS cycle
  1925         _collectorState = Resetting; // skip to reset to start new cycle
  1926         reset(false /* == !asynch */);
  1927         *should_start_over = true;
  1928       } // else we can continue a possibly ongoing current cycle
  1933 // A work method used by the foreground collector to do
  1934 // a mark-sweep-compact.
  1935 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
  1936   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1937   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
  1938   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
  1939     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
  1940       "collections passed to foreground collector", _full_gcs_since_conc_gc);
  1943   // Sample collection interval time and reset for collection pause.
  1944   if (UseAdaptiveSizePolicy) {
  1945     size_policy()->msc_collection_begin();
  1948   // Temporarily widen the span of the weak reference processing to
  1949   // the entire heap.
  1950   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
  1951   ReferenceProcessorSpanMutator x(ref_processor(), new_span);
  1953   // Temporarily, clear the "is_alive_non_header" field of the
  1954   // reference processor.
  1955   ReferenceProcessorIsAliveMutator y(ref_processor(), NULL);
  1957   // Temporarily make reference _processing_ single threaded (non-MT).
  1958   ReferenceProcessorMTProcMutator z(ref_processor(), false);
  1960   // Temporarily make refs discovery atomic
  1961   ReferenceProcessorAtomicMutator w(ref_processor(), true);
  1963   ref_processor()->set_enqueuing_is_done(false);
  1964   ref_processor()->enable_discovery();
  1965   ref_processor()->setup_policy(clear_all_soft_refs);
  1966   // If an asynchronous collection finishes, the _modUnionTable is
  1967   // all clear.  If we are assuming the collection from an asynchronous
  1968   // collection, clear the _modUnionTable.
  1969   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
  1970     "_modUnionTable should be clear if the baton was not passed");
  1971   _modUnionTable.clear_all();
  1973   // We must adjust the allocation statistics being maintained
  1974   // in the free list space. We do so by reading and clearing
  1975   // the sweep timer and updating the block flux rate estimates below.
  1976   assert(_sweep_timer.is_active(), "We should never see the timer inactive");
  1977   _sweep_timer.stop();
  1978   // Note that we do not use this sample to update the _sweep_estimate.
  1979   _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_sweep_timer.seconds()),
  1980                                           _sweep_estimate.padded_average());
  1982   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
  1983     ref_processor(), clear_all_soft_refs);
  1984   #ifdef ASSERT
  1985     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
  1986     size_t free_size = cms_space->free();
  1987     assert(free_size ==
  1988            pointer_delta(cms_space->end(), cms_space->compaction_top())
  1989            * HeapWordSize,
  1990       "All the free space should be compacted into one chunk at top");
  1991     assert(cms_space->dictionary()->totalChunkSize(
  1992                                       debug_only(cms_space->freelistLock())) == 0 ||
  1993            cms_space->totalSizeInIndexedFreeLists() == 0,
  1994       "All the free space should be in a single chunk");
  1995     size_t num = cms_space->totalCount();
  1996     assert((free_size == 0 && num == 0) ||
  1997            (free_size > 0  && (num == 1 || num == 2)),
  1998          "There should be at most 2 free chunks after compaction");
  1999   #endif // ASSERT
  2000   _collectorState = Resetting;
  2001   assert(_restart_addr == NULL,
  2002          "Should have been NULL'd before baton was passed");
  2003   reset(false /* == !asynch */);
  2004   _cmsGen->reset_after_compaction();
  2005   _concurrent_cycles_since_last_unload = 0;
  2007   if (verifying() && !should_unload_classes()) {
  2008     perm_gen_verify_bit_map()->clear_all();
  2011   // Clear any data recorded in the PLAB chunk arrays.
  2012   if (_survivor_plab_array != NULL) {
  2013     reset_survivor_plab_arrays();
  2016   // Adjust the per-size allocation stats for the next epoch.
  2017   _cmsGen->cmsSpace()->endSweepFLCensus(sweepCount() /* fake */);
  2018   // Restart the "sweep timer" for next epoch.
  2019   _sweep_timer.reset();
  2020   _sweep_timer.start();
  2022   // Sample collection pause time and reset for collection interval.
  2023   if (UseAdaptiveSizePolicy) {
  2024     size_policy()->msc_collection_end(gch->gc_cause());
  2027   // For a mark-sweep-compact, compute_new_size() will be called
  2028   // in the heap's do_collection() method.
  2031 // A work method used by the foreground collector to do
  2032 // a mark-sweep, after taking over from a possibly on-going
  2033 // concurrent mark-sweep collection.
  2034 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
  2035   CollectorState first_state, bool should_start_over) {
  2036   if (PrintGC && Verbose) {
  2037     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
  2038       "collector with count %d",
  2039       _full_gcs_since_conc_gc);
  2041   switch (_collectorState) {
  2042     case Idling:
  2043       if (first_state == Idling || should_start_over) {
  2044         // The background GC was not active, or should
  2045         // restarted from scratch;  start the cycle.
  2046         _collectorState = InitialMarking;
  2048       // If first_state was not Idling, then a background GC
  2049       // was in progress and has now finished.  No need to do it
  2050       // again.  Leave the state as Idling.
  2051       break;
  2052     case Precleaning:
  2053       // In the foreground case don't do the precleaning since
  2054       // it is not done concurrently and there is extra work
  2055       // required.
  2056       _collectorState = FinalMarking;
  2058   if (PrintGCDetails &&
  2059       (_collectorState > Idling ||
  2060        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
  2061     gclog_or_tty->print(" (concurrent mode failure)");
  2063   collect_in_foreground(clear_all_soft_refs);
  2065   // For a mark-sweep, compute_new_size() will be called
  2066   // in the heap's do_collection() method.
  2070 void CMSCollector::getFreelistLocks() const {
  2071   // Get locks for all free lists in all generations that this
  2072   // collector is responsible for
  2073   _cmsGen->freelistLock()->lock_without_safepoint_check();
  2074   _permGen->freelistLock()->lock_without_safepoint_check();
  2077 void CMSCollector::releaseFreelistLocks() const {
  2078   // Release locks for all free lists in all generations that this
  2079   // collector is responsible for
  2080   _cmsGen->freelistLock()->unlock();
  2081   _permGen->freelistLock()->unlock();
  2084 bool CMSCollector::haveFreelistLocks() const {
  2085   // Check locks for all free lists in all generations that this
  2086   // collector is responsible for
  2087   assert_lock_strong(_cmsGen->freelistLock());
  2088   assert_lock_strong(_permGen->freelistLock());
  2089   PRODUCT_ONLY(ShouldNotReachHere());
  2090   return true;
  2093 // A utility class that is used by the CMS collector to
  2094 // temporarily "release" the foreground collector from its
  2095 // usual obligation to wait for the background collector to
  2096 // complete an ongoing phase before proceeding.
  2097 class ReleaseForegroundGC: public StackObj {
  2098  private:
  2099   CMSCollector* _c;
  2100  public:
  2101   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
  2102     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
  2103     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2104     // allow a potentially blocked foreground collector to proceed
  2105     _c->_foregroundGCShouldWait = false;
  2106     if (_c->_foregroundGCIsActive) {
  2107       CGC_lock->notify();
  2109     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2110            "Possible deadlock");
  2113   ~ReleaseForegroundGC() {
  2114     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
  2115     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2116     _c->_foregroundGCShouldWait = true;
  2118 };
  2120 // There are separate collect_in_background and collect_in_foreground because of
  2121 // the different locking requirements of the background collector and the
  2122 // foreground collector.  There was originally an attempt to share
  2123 // one "collect" method between the background collector and the foreground
  2124 // collector but the if-then-else required made it cleaner to have
  2125 // separate methods.
  2126 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
  2127   assert(Thread::current()->is_ConcurrentGC_thread(),
  2128     "A CMS asynchronous collection is only allowed on a CMS thread.");
  2130   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2132     bool safepoint_check = Mutex::_no_safepoint_check_flag;
  2133     MutexLockerEx hl(Heap_lock, safepoint_check);
  2134     FreelistLocker fll(this);
  2135     MutexLockerEx x(CGC_lock, safepoint_check);
  2136     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
  2137       // The foreground collector is active or we're
  2138       // not using asynchronous collections.  Skip this
  2139       // background collection.
  2140       assert(!_foregroundGCShouldWait, "Should be clear");
  2141       return;
  2142     } else {
  2143       assert(_collectorState == Idling, "Should be idling before start.");
  2144       _collectorState = InitialMarking;
  2145       // Reset the expansion cause, now that we are about to begin
  2146       // a new cycle.
  2147       clear_expansion_cause();
  2149     // Decide if we want to enable class unloading as part of the
  2150     // ensuing concurrent GC cycle.
  2151     update_should_unload_classes();
  2152     _full_gc_requested = false;           // acks all outstanding full gc requests
  2153     // Signal that we are about to start a collection
  2154     gch->increment_total_full_collections();  // ... starting a collection cycle
  2155     _collection_count_start = gch->total_full_collections();
  2158   // Used for PrintGC
  2159   size_t prev_used;
  2160   if (PrintGC && Verbose) {
  2161     prev_used = _cmsGen->used(); // XXXPERM
  2164   // The change of the collection state is normally done at this level;
  2165   // the exceptions are phases that are executed while the world is
  2166   // stopped.  For those phases the change of state is done while the
  2167   // world is stopped.  For baton passing purposes this allows the
  2168   // background collector to finish the phase and change state atomically.
  2169   // The foreground collector cannot wait on a phase that is done
  2170   // while the world is stopped because the foreground collector already
  2171   // has the world stopped and would deadlock.
  2172   while (_collectorState != Idling) {
  2173     if (TraceCMSState) {
  2174       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2175         Thread::current(), _collectorState);
  2177     // The foreground collector
  2178     //   holds the Heap_lock throughout its collection.
  2179     //   holds the CMS token (but not the lock)
  2180     //     except while it is waiting for the background collector to yield.
  2181     //
  2182     // The foreground collector should be blocked (not for long)
  2183     //   if the background collector is about to start a phase
  2184     //   executed with world stopped.  If the background
  2185     //   collector has already started such a phase, the
  2186     //   foreground collector is blocked waiting for the
  2187     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
  2188     //   are executed in the VM thread.
  2189     //
  2190     // The locking order is
  2191     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
  2192     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
  2193     //   CMS token  (claimed in
  2194     //                stop_world_and_do() -->
  2195     //                  safepoint_synchronize() -->
  2196     //                    CMSThread::synchronize())
  2199       // Check if the FG collector wants us to yield.
  2200       CMSTokenSync x(true); // is cms thread
  2201       if (waitForForegroundGC()) {
  2202         // We yielded to a foreground GC, nothing more to be
  2203         // done this round.
  2204         assert(_foregroundGCShouldWait == false, "We set it to false in "
  2205                "waitForForegroundGC()");
  2206         if (TraceCMSState) {
  2207           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2208             " exiting collection CMS state %d",
  2209             Thread::current(), _collectorState);
  2211         return;
  2212       } else {
  2213         // The background collector can run but check to see if the
  2214         // foreground collector has done a collection while the
  2215         // background collector was waiting to get the CGC_lock
  2216         // above.  If yes, break so that _foregroundGCShouldWait
  2217         // is cleared before returning.
  2218         if (_collectorState == Idling) {
  2219           break;
  2224     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
  2225       "should be waiting");
  2227     switch (_collectorState) {
  2228       case InitialMarking:
  2230           ReleaseForegroundGC x(this);
  2231           stats().record_cms_begin();
  2233           VM_CMS_Initial_Mark initial_mark_op(this);
  2234           VMThread::execute(&initial_mark_op);
  2236         // The collector state may be any legal state at this point
  2237         // since the background collector may have yielded to the
  2238         // foreground collector.
  2239         break;
  2240       case Marking:
  2241         // initial marking in checkpointRootsInitialWork has been completed
  2242         if (markFromRoots(true)) { // we were successful
  2243           assert(_collectorState == Precleaning, "Collector state should "
  2244             "have changed");
  2245         } else {
  2246           assert(_foregroundGCIsActive, "Internal state inconsistency");
  2248         break;
  2249       case Precleaning:
  2250         if (UseAdaptiveSizePolicy) {
  2251           size_policy()->concurrent_precleaning_begin();
  2253         // marking from roots in markFromRoots has been completed
  2254         preclean();
  2255         if (UseAdaptiveSizePolicy) {
  2256           size_policy()->concurrent_precleaning_end();
  2258         assert(_collectorState == AbortablePreclean ||
  2259                _collectorState == FinalMarking,
  2260                "Collector state should have changed");
  2261         break;
  2262       case AbortablePreclean:
  2263         if (UseAdaptiveSizePolicy) {
  2264         size_policy()->concurrent_phases_resume();
  2266         abortable_preclean();
  2267         if (UseAdaptiveSizePolicy) {
  2268           size_policy()->concurrent_precleaning_end();
  2270         assert(_collectorState == FinalMarking, "Collector state should "
  2271           "have changed");
  2272         break;
  2273       case FinalMarking:
  2275           ReleaseForegroundGC x(this);
  2277           VM_CMS_Final_Remark final_remark_op(this);
  2278           VMThread::execute(&final_remark_op);
  2280         assert(_foregroundGCShouldWait, "block post-condition");
  2281         break;
  2282       case Sweeping:
  2283         if (UseAdaptiveSizePolicy) {
  2284           size_policy()->concurrent_sweeping_begin();
  2286         // final marking in checkpointRootsFinal has been completed
  2287         sweep(true);
  2288         assert(_collectorState == Resizing, "Collector state change "
  2289           "to Resizing must be done under the free_list_lock");
  2290         _full_gcs_since_conc_gc = 0;
  2292         // Stop the timers for adaptive size policy for the concurrent phases
  2293         if (UseAdaptiveSizePolicy) {
  2294           size_policy()->concurrent_sweeping_end();
  2295           size_policy()->concurrent_phases_end(gch->gc_cause(),
  2296                                              gch->prev_gen(_cmsGen)->capacity(),
  2297                                              _cmsGen->free());
  2300       case Resizing: {
  2301         // Sweeping has been completed...
  2302         // At this point the background collection has completed.
  2303         // Don't move the call to compute_new_size() down
  2304         // into code that might be executed if the background
  2305         // collection was preempted.
  2307           ReleaseForegroundGC x(this);   // unblock FG collection
  2308           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
  2309           CMSTokenSync        z(true);   // not strictly needed.
  2310           if (_collectorState == Resizing) {
  2311             compute_new_size();
  2312             _collectorState = Resetting;
  2313           } else {
  2314             assert(_collectorState == Idling, "The state should only change"
  2315                    " because the foreground collector has finished the collection");
  2318         break;
  2320       case Resetting:
  2321         // CMS heap resizing has been completed
  2322         reset(true);
  2323         assert(_collectorState == Idling, "Collector state should "
  2324           "have changed");
  2325         stats().record_cms_end();
  2326         // Don't move the concurrent_phases_end() and compute_new_size()
  2327         // calls to here because a preempted background collection
  2328         // has it's state set to "Resetting".
  2329         break;
  2330       case Idling:
  2331       default:
  2332         ShouldNotReachHere();
  2333         break;
  2335     if (TraceCMSState) {
  2336       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2337         Thread::current(), _collectorState);
  2339     assert(_foregroundGCShouldWait, "block post-condition");
  2342   // Should this be in gc_epilogue?
  2343   collector_policy()->counters()->update_counters();
  2346     // Clear _foregroundGCShouldWait and, in the event that the
  2347     // foreground collector is waiting, notify it, before
  2348     // returning.
  2349     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2350     _foregroundGCShouldWait = false;
  2351     if (_foregroundGCIsActive) {
  2352       CGC_lock->notify();
  2354     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2355            "Possible deadlock");
  2357   if (TraceCMSState) {
  2358     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2359       " exiting collection CMS state %d",
  2360       Thread::current(), _collectorState);
  2362   if (PrintGC && Verbose) {
  2363     _cmsGen->print_heap_change(prev_used);
  2367 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
  2368   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
  2369          "Foreground collector should be waiting, not executing");
  2370   assert(Thread::current()->is_VM_thread(), "A foreground collection"
  2371     "may only be done by the VM Thread with the world stopped");
  2372   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  2373          "VM thread should have CMS token");
  2375   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
  2376     true, gclog_or_tty);)
  2377   if (UseAdaptiveSizePolicy) {
  2378     size_policy()->ms_collection_begin();
  2380   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
  2382   HandleMark hm;  // Discard invalid handles created during verification
  2384   if (VerifyBeforeGC &&
  2385       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2386     Universe::verify(true);
  2389   // Snapshot the soft reference policy to be used in this collection cycle.
  2390   ref_processor()->setup_policy(clear_all_soft_refs);
  2392   bool init_mark_was_synchronous = false; // until proven otherwise
  2393   while (_collectorState != Idling) {
  2394     if (TraceCMSState) {
  2395       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2396         Thread::current(), _collectorState);
  2398     switch (_collectorState) {
  2399       case InitialMarking:
  2400         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
  2401         checkpointRootsInitial(false);
  2402         assert(_collectorState == Marking, "Collector state should have changed"
  2403           " within checkpointRootsInitial()");
  2404         break;
  2405       case Marking:
  2406         // initial marking in checkpointRootsInitialWork has been completed
  2407         if (VerifyDuringGC &&
  2408             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2409           gclog_or_tty->print("Verify before initial mark: ");
  2410           Universe::verify(true);
  2413           bool res = markFromRoots(false);
  2414           assert(res && _collectorState == FinalMarking, "Collector state should "
  2415             "have changed");
  2416           break;
  2418       case FinalMarking:
  2419         if (VerifyDuringGC &&
  2420             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2421           gclog_or_tty->print("Verify before re-mark: ");
  2422           Universe::verify(true);
  2424         checkpointRootsFinal(false, clear_all_soft_refs,
  2425                              init_mark_was_synchronous);
  2426         assert(_collectorState == Sweeping, "Collector state should not "
  2427           "have changed within checkpointRootsFinal()");
  2428         break;
  2429       case Sweeping:
  2430         // final marking in checkpointRootsFinal has been completed
  2431         if (VerifyDuringGC &&
  2432             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2433           gclog_or_tty->print("Verify before sweep: ");
  2434           Universe::verify(true);
  2436         sweep(false);
  2437         assert(_collectorState == Resizing, "Incorrect state");
  2438         break;
  2439       case Resizing: {
  2440         // Sweeping has been completed; the actual resize in this case
  2441         // is done separately; nothing to be done in this state.
  2442         _collectorState = Resetting;
  2443         break;
  2445       case Resetting:
  2446         // The heap has been resized.
  2447         if (VerifyDuringGC &&
  2448             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2449           gclog_or_tty->print("Verify before reset: ");
  2450           Universe::verify(true);
  2452         reset(false);
  2453         assert(_collectorState == Idling, "Collector state should "
  2454           "have changed");
  2455         break;
  2456       case Precleaning:
  2457       case AbortablePreclean:
  2458         // Elide the preclean phase
  2459         _collectorState = FinalMarking;
  2460         break;
  2461       default:
  2462         ShouldNotReachHere();
  2464     if (TraceCMSState) {
  2465       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2466         Thread::current(), _collectorState);
  2470   if (UseAdaptiveSizePolicy) {
  2471     GenCollectedHeap* gch = GenCollectedHeap::heap();
  2472     size_policy()->ms_collection_end(gch->gc_cause());
  2475   if (VerifyAfterGC &&
  2476       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2477     Universe::verify(true);
  2479   if (TraceCMSState) {
  2480     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2481       " exiting collection CMS state %d",
  2482       Thread::current(), _collectorState);
  2486 bool CMSCollector::waitForForegroundGC() {
  2487   bool res = false;
  2488   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2489          "CMS thread should have CMS token");
  2490   // Block the foreground collector until the
  2491   // background collectors decides whether to
  2492   // yield.
  2493   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2494   _foregroundGCShouldWait = true;
  2495   if (_foregroundGCIsActive) {
  2496     // The background collector yields to the
  2497     // foreground collector and returns a value
  2498     // indicating that it has yielded.  The foreground
  2499     // collector can proceed.
  2500     res = true;
  2501     _foregroundGCShouldWait = false;
  2502     ConcurrentMarkSweepThread::clear_CMS_flag(
  2503       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2504     ConcurrentMarkSweepThread::set_CMS_flag(
  2505       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2506     // Get a possibly blocked foreground thread going
  2507     CGC_lock->notify();
  2508     if (TraceCMSState) {
  2509       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
  2510         Thread::current(), _collectorState);
  2512     while (_foregroundGCIsActive) {
  2513       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  2515     ConcurrentMarkSweepThread::set_CMS_flag(
  2516       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2517     ConcurrentMarkSweepThread::clear_CMS_flag(
  2518       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2520   if (TraceCMSState) {
  2521     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
  2522       Thread::current(), _collectorState);
  2524   return res;
  2527 // Because of the need to lock the free lists and other structures in
  2528 // the collector, common to all the generations that the collector is
  2529 // collecting, we need the gc_prologues of individual CMS generations
  2530 // delegate to their collector. It may have been simpler had the
  2531 // current infrastructure allowed one to call a prologue on a
  2532 // collector. In the absence of that we have the generation's
  2533 // prologue delegate to the collector, which delegates back
  2534 // some "local" work to a worker method in the individual generations
  2535 // that it's responsible for collecting, while itself doing any
  2536 // work common to all generations it's responsible for. A similar
  2537 // comment applies to the  gc_epilogue()'s.
  2538 // The role of the varaible _between_prologue_and_epilogue is to
  2539 // enforce the invocation protocol.
  2540 void CMSCollector::gc_prologue(bool full) {
  2541   // Call gc_prologue_work() for each CMSGen and PermGen that
  2542   // we are responsible for.
  2544   // The following locking discipline assumes that we are only called
  2545   // when the world is stopped.
  2546   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
  2548   // The CMSCollector prologue must call the gc_prologues for the
  2549   // "generations" (including PermGen if any) that it's responsible
  2550   // for.
  2552   assert(   Thread::current()->is_VM_thread()
  2553          || (   CMSScavengeBeforeRemark
  2554              && Thread::current()->is_ConcurrentGC_thread()),
  2555          "Incorrect thread type for prologue execution");
  2557   if (_between_prologue_and_epilogue) {
  2558     // We have already been invoked; this is a gc_prologue delegation
  2559     // from yet another CMS generation that we are responsible for, just
  2560     // ignore it since all relevant work has already been done.
  2561     return;
  2564   // set a bit saying prologue has been called; cleared in epilogue
  2565   _between_prologue_and_epilogue = true;
  2566   // Claim locks for common data structures, then call gc_prologue_work()
  2567   // for each CMSGen and PermGen that we are responsible for.
  2569   getFreelistLocks();   // gets free list locks on constituent spaces
  2570   bitMapLock()->lock_without_safepoint_check();
  2572   // Should call gc_prologue_work() for all cms gens we are responsible for
  2573   bool registerClosure =    _collectorState >= Marking
  2574                          && _collectorState < Sweeping;
  2575   ModUnionClosure* muc = ParallelGCThreads > 0 ? &_modUnionClosurePar
  2576                                                : &_modUnionClosure;
  2577   _cmsGen->gc_prologue_work(full, registerClosure, muc);
  2578   _permGen->gc_prologue_work(full, registerClosure, muc);
  2580   if (!full) {
  2581     stats().record_gc0_begin();
  2585 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
  2586   // Delegate to CMScollector which knows how to coordinate between
  2587   // this and any other CMS generations that it is responsible for
  2588   // collecting.
  2589   collector()->gc_prologue(full);
  2592 // This is a "private" interface for use by this generation's CMSCollector.
  2593 // Not to be called directly by any other entity (for instance,
  2594 // GenCollectedHeap, which calls the "public" gc_prologue method above).
  2595 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
  2596   bool registerClosure, ModUnionClosure* modUnionClosure) {
  2597   assert(!incremental_collection_failed(), "Shouldn't be set yet");
  2598   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
  2599     "Should be NULL");
  2600   if (registerClosure) {
  2601     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
  2603   cmsSpace()->gc_prologue();
  2604   // Clear stat counters
  2605   NOT_PRODUCT(
  2606     assert(_numObjectsPromoted == 0, "check");
  2607     assert(_numWordsPromoted   == 0, "check");
  2608     if (Verbose && PrintGC) {
  2609       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
  2610                           SIZE_FORMAT" bytes concurrently",
  2611       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
  2613     _numObjectsAllocated = 0;
  2614     _numWordsAllocated   = 0;
  2618 void CMSCollector::gc_epilogue(bool full) {
  2619   // The following locking discipline assumes that we are only called
  2620   // when the world is stopped.
  2621   assert(SafepointSynchronize::is_at_safepoint(),
  2622          "world is stopped assumption");
  2624   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
  2625   // if linear allocation blocks need to be appropriately marked to allow the
  2626   // the blocks to be parsable. We also check here whether we need to nudge the
  2627   // CMS collector thread to start a new cycle (if it's not already active).
  2628   assert(   Thread::current()->is_VM_thread()
  2629          || (   CMSScavengeBeforeRemark
  2630              && Thread::current()->is_ConcurrentGC_thread()),
  2631          "Incorrect thread type for epilogue execution");
  2633   if (!_between_prologue_and_epilogue) {
  2634     // We have already been invoked; this is a gc_epilogue delegation
  2635     // from yet another CMS generation that we are responsible for, just
  2636     // ignore it since all relevant work has already been done.
  2637     return;
  2639   assert(haveFreelistLocks(), "must have freelist locks");
  2640   assert_lock_strong(bitMapLock());
  2642   _cmsGen->gc_epilogue_work(full);
  2643   _permGen->gc_epilogue_work(full);
  2645   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
  2646     // in case sampling was not already enabled, enable it
  2647     _start_sampling = true;
  2649   // reset _eden_chunk_array so sampling starts afresh
  2650   _eden_chunk_index = 0;
  2652   size_t cms_used   = _cmsGen->cmsSpace()->used();
  2653   size_t perm_used  = _permGen->cmsSpace()->used();
  2655   // update performance counters - this uses a special version of
  2656   // update_counters() that allows the utilization to be passed as a
  2657   // parameter, avoiding multiple calls to used().
  2658   //
  2659   _cmsGen->update_counters(cms_used);
  2660   _permGen->update_counters(perm_used);
  2662   if (CMSIncrementalMode) {
  2663     icms_update_allocation_limits();
  2666   bitMapLock()->unlock();
  2667   releaseFreelistLocks();
  2669   _between_prologue_and_epilogue = false;  // ready for next cycle
  2672 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
  2673   collector()->gc_epilogue(full);
  2675   // Also reset promotion tracking in par gc thread states.
  2676   if (ParallelGCThreads > 0) {
  2677     for (uint i = 0; i < ParallelGCThreads; i++) {
  2678       _par_gc_thread_states[i]->promo.stopTrackingPromotions();
  2683 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
  2684   assert(!incremental_collection_failed(), "Should have been cleared");
  2685   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
  2686   cmsSpace()->gc_epilogue();
  2687     // Print stat counters
  2688   NOT_PRODUCT(
  2689     assert(_numObjectsAllocated == 0, "check");
  2690     assert(_numWordsAllocated == 0, "check");
  2691     if (Verbose && PrintGC) {
  2692       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
  2693                           SIZE_FORMAT" bytes",
  2694                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
  2696     _numObjectsPromoted = 0;
  2697     _numWordsPromoted   = 0;
  2700   if (PrintGC && Verbose) {
  2701     // Call down the chain in contiguous_available needs the freelistLock
  2702     // so print this out before releasing the freeListLock.
  2703     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
  2704                         contiguous_available());
  2708 #ifndef PRODUCT
  2709 bool CMSCollector::have_cms_token() {
  2710   Thread* thr = Thread::current();
  2711   if (thr->is_VM_thread()) {
  2712     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
  2713   } else if (thr->is_ConcurrentGC_thread()) {
  2714     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
  2715   } else if (thr->is_GC_task_thread()) {
  2716     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
  2717            ParGCRareEvent_lock->owned_by_self();
  2719   return false;
  2721 #endif
  2723 // Check reachability of the given heap address in CMS generation,
  2724 // treating all other generations as roots.
  2725 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
  2726   // We could "guarantee" below, rather than assert, but i'll
  2727   // leave these as "asserts" so that an adventurous debugger
  2728   // could try this in the product build provided some subset of
  2729   // the conditions were met, provided they were intersted in the
  2730   // results and knew that the computation below wouldn't interfere
  2731   // with other concurrent computations mutating the structures
  2732   // being read or written.
  2733   assert(SafepointSynchronize::is_at_safepoint(),
  2734          "Else mutations in object graph will make answer suspect");
  2735   assert(have_cms_token(), "Should hold cms token");
  2736   assert(haveFreelistLocks(), "must hold free list locks");
  2737   assert_lock_strong(bitMapLock());
  2739   // Clear the marking bit map array before starting, but, just
  2740   // for kicks, first report if the given address is already marked
  2741   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
  2742                 _markBitMap.isMarked(addr) ? "" : " not");
  2744   if (verify_after_remark()) {
  2745     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2746     bool result = verification_mark_bm()->isMarked(addr);
  2747     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
  2748                            result ? "IS" : "is NOT");
  2749     return result;
  2750   } else {
  2751     gclog_or_tty->print_cr("Could not compute result");
  2752     return false;
  2756 ////////////////////////////////////////////////////////
  2757 // CMS Verification Support
  2758 ////////////////////////////////////////////////////////
  2759 // Following the remark phase, the following invariant
  2760 // should hold -- each object in the CMS heap which is
  2761 // marked in markBitMap() should be marked in the verification_mark_bm().
  2763 class VerifyMarkedClosure: public BitMapClosure {
  2764   CMSBitMap* _marks;
  2765   bool       _failed;
  2767  public:
  2768   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
  2770   bool do_bit(size_t offset) {
  2771     HeapWord* addr = _marks->offsetToHeapWord(offset);
  2772     if (!_marks->isMarked(addr)) {
  2773       oop(addr)->print();
  2774       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  2775       _failed = true;
  2777     return true;
  2780   bool failed() { return _failed; }
  2781 };
  2783 bool CMSCollector::verify_after_remark() {
  2784   gclog_or_tty->print(" [Verifying CMS Marking... ");
  2785   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2786   static bool init = false;
  2788   assert(SafepointSynchronize::is_at_safepoint(),
  2789          "Else mutations in object graph will make answer suspect");
  2790   assert(have_cms_token(),
  2791          "Else there may be mutual interference in use of "
  2792          " verification data structures");
  2793   assert(_collectorState > Marking && _collectorState <= Sweeping,
  2794          "Else marking info checked here may be obsolete");
  2795   assert(haveFreelistLocks(), "must hold free list locks");
  2796   assert_lock_strong(bitMapLock());
  2799   // Allocate marking bit map if not already allocated
  2800   if (!init) { // first time
  2801     if (!verification_mark_bm()->allocate(_span)) {
  2802       return false;
  2804     init = true;
  2807   assert(verification_mark_stack()->isEmpty(), "Should be empty");
  2809   // Turn off refs discovery -- so we will be tracing through refs.
  2810   // This is as intended, because by this time
  2811   // GC must already have cleared any refs that need to be cleared,
  2812   // and traced those that need to be marked; moreover,
  2813   // the marking done here is not going to intefere in any
  2814   // way with the marking information used by GC.
  2815   NoRefDiscovery no_discovery(ref_processor());
  2817   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  2819   // Clear any marks from a previous round
  2820   verification_mark_bm()->clear_all();
  2821   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
  2822   assert(overflow_list_is_empty(), "overflow list should be empty");
  2824   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2825   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  2826   // Update the saved marks which may affect the root scans.
  2827   gch->save_marks();
  2829   if (CMSRemarkVerifyVariant == 1) {
  2830     // In this first variant of verification, we complete
  2831     // all marking, then check if the new marks-verctor is
  2832     // a subset of the CMS marks-vector.
  2833     verify_after_remark_work_1();
  2834   } else if (CMSRemarkVerifyVariant == 2) {
  2835     // In this second variant of verification, we flag an error
  2836     // (i.e. an object reachable in the new marks-vector not reachable
  2837     // in the CMS marks-vector) immediately, also indicating the
  2838     // identify of an object (A) that references the unmarked object (B) --
  2839     // presumably, a mutation to A failed to be picked up by preclean/remark?
  2840     verify_after_remark_work_2();
  2841   } else {
  2842     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
  2843             CMSRemarkVerifyVariant);
  2845   gclog_or_tty->print(" done] ");
  2846   return true;
  2849 void CMSCollector::verify_after_remark_work_1() {
  2850   ResourceMark rm;
  2851   HandleMark  hm;
  2852   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2854   // Mark from roots one level into CMS
  2855   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
  2856   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2858   gch->gen_process_strong_roots(_cmsGen->level(),
  2859                                 true,   // younger gens are roots
  2860                                 true,   // activate StrongRootsScope
  2861                                 true,   // collecting perm gen
  2862                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2863                                 &notOlder,
  2864                                 true,   // walk code active on stacks
  2865                                 NULL);
  2867   // Now mark from the roots
  2868   assert(_revisitStack.isEmpty(), "Should be empty");
  2869   MarkFromRootsClosure markFromRootsClosure(this, _span,
  2870     verification_mark_bm(), verification_mark_stack(), &_revisitStack,
  2871     false /* don't yield */, true /* verifying */);
  2872   assert(_restart_addr == NULL, "Expected pre-condition");
  2873   verification_mark_bm()->iterate(&markFromRootsClosure);
  2874   while (_restart_addr != NULL) {
  2875     // Deal with stack overflow: by restarting at the indicated
  2876     // address.
  2877     HeapWord* ra = _restart_addr;
  2878     markFromRootsClosure.reset(ra);
  2879     _restart_addr = NULL;
  2880     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2882   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2883   verify_work_stacks_empty();
  2884   // Should reset the revisit stack above, since no class tree
  2885   // surgery is forthcoming.
  2886   _revisitStack.reset(); // throwing away all contents
  2888   // Marking completed -- now verify that each bit marked in
  2889   // verification_mark_bm() is also marked in markBitMap(); flag all
  2890   // errors by printing corresponding objects.
  2891   VerifyMarkedClosure vcl(markBitMap());
  2892   verification_mark_bm()->iterate(&vcl);
  2893   if (vcl.failed()) {
  2894     gclog_or_tty->print("Verification failed");
  2895     Universe::heap()->print();
  2896     fatal(" ... aborting");
  2900 void CMSCollector::verify_after_remark_work_2() {
  2901   ResourceMark rm;
  2902   HandleMark  hm;
  2903   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2905   // Mark from roots one level into CMS
  2906   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
  2907                                      markBitMap());
  2908   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2909   gch->gen_process_strong_roots(_cmsGen->level(),
  2910                                 true,   // younger gens are roots
  2911                                 true,   // activate StrongRootsScope
  2912                                 true,   // collecting perm gen
  2913                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2914                                 &notOlder,
  2915                                 true,   // walk code active on stacks
  2916                                 NULL);
  2918   // Now mark from the roots
  2919   assert(_revisitStack.isEmpty(), "Should be empty");
  2920   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
  2921     verification_mark_bm(), markBitMap(), verification_mark_stack());
  2922   assert(_restart_addr == NULL, "Expected pre-condition");
  2923   verification_mark_bm()->iterate(&markFromRootsClosure);
  2924   while (_restart_addr != NULL) {
  2925     // Deal with stack overflow: by restarting at the indicated
  2926     // address.
  2927     HeapWord* ra = _restart_addr;
  2928     markFromRootsClosure.reset(ra);
  2929     _restart_addr = NULL;
  2930     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2932   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2933   verify_work_stacks_empty();
  2934   // Should reset the revisit stack above, since no class tree
  2935   // surgery is forthcoming.
  2936   _revisitStack.reset(); // throwing away all contents
  2938   // Marking completed -- now verify that each bit marked in
  2939   // verification_mark_bm() is also marked in markBitMap(); flag all
  2940   // errors by printing corresponding objects.
  2941   VerifyMarkedClosure vcl(markBitMap());
  2942   verification_mark_bm()->iterate(&vcl);
  2943   assert(!vcl.failed(), "Else verification above should not have succeeded");
  2946 void ConcurrentMarkSweepGeneration::save_marks() {
  2947   // delegate to CMS space
  2948   cmsSpace()->save_marks();
  2949   for (uint i = 0; i < ParallelGCThreads; i++) {
  2950     _par_gc_thread_states[i]->promo.startTrackingPromotions();
  2954 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
  2955   return cmsSpace()->no_allocs_since_save_marks();
  2958 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
  2960 void ConcurrentMarkSweepGeneration::                            \
  2961 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
  2962   cl->set_generation(this);                                     \
  2963   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
  2964   cl->reset_generation();                                       \
  2965   save_marks();                                                 \
  2968 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
  2970 void
  2971 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
  2973   // Not currently implemented; need to do the following. -- ysr.
  2974   // dld -- I think that is used for some sort of allocation profiler.  So it
  2975   // really means the objects allocated by the mutator since the last
  2976   // GC.  We could potentially implement this cheaply by recording only
  2977   // the direct allocations in a side data structure.
  2978   //
  2979   // I think we probably ought not to be required to support these
  2980   // iterations at any arbitrary point; I think there ought to be some
  2981   // call to enable/disable allocation profiling in a generation/space,
  2982   // and the iterator ought to return the objects allocated in the
  2983   // gen/space since the enable call, or the last iterator call (which
  2984   // will probably be at a GC.)  That way, for gens like CM&S that would
  2985   // require some extra data structure to support this, we only pay the
  2986   // cost when it's in use...
  2987   cmsSpace()->object_iterate_since_last_GC(blk);
  2990 void
  2991 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
  2992   cl->set_generation(this);
  2993   younger_refs_in_space_iterate(_cmsSpace, cl);
  2994   cl->reset_generation();
  2997 void
  2998 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
  2999   if (freelistLock()->owned_by_self()) {
  3000     Generation::oop_iterate(mr, cl);
  3001   } else {
  3002     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3003     Generation::oop_iterate(mr, cl);
  3007 void
  3008 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
  3009   if (freelistLock()->owned_by_self()) {
  3010     Generation::oop_iterate(cl);
  3011   } else {
  3012     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3013     Generation::oop_iterate(cl);
  3017 void
  3018 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
  3019   if (freelistLock()->owned_by_self()) {
  3020     Generation::object_iterate(cl);
  3021   } else {
  3022     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3023     Generation::object_iterate(cl);
  3027 void
  3028 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
  3029   if (freelistLock()->owned_by_self()) {
  3030     Generation::safe_object_iterate(cl);
  3031   } else {
  3032     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3033     Generation::safe_object_iterate(cl);
  3037 void
  3038 ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
  3041 void
  3042 ConcurrentMarkSweepGeneration::post_compact() {
  3045 void
  3046 ConcurrentMarkSweepGeneration::prepare_for_verify() {
  3047   // Fix the linear allocation blocks to look like free blocks.
  3049   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3050   // are not called when the heap is verified during universe initialization and
  3051   // at vm shutdown.
  3052   if (freelistLock()->owned_by_self()) {
  3053     cmsSpace()->prepare_for_verify();
  3054   } else {
  3055     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3056     cmsSpace()->prepare_for_verify();
  3060 void
  3061 ConcurrentMarkSweepGeneration::verify(bool allow_dirty /* ignored */) {
  3062   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3063   // are not called when the heap is verified during universe initialization and
  3064   // at vm shutdown.
  3065   if (freelistLock()->owned_by_self()) {
  3066     cmsSpace()->verify(false /* ignored */);
  3067   } else {
  3068     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3069     cmsSpace()->verify(false /* ignored */);
  3073 void CMSCollector::verify(bool allow_dirty /* ignored */) {
  3074   _cmsGen->verify(allow_dirty);
  3075   _permGen->verify(allow_dirty);
  3078 #ifndef PRODUCT
  3079 bool CMSCollector::overflow_list_is_empty() const {
  3080   assert(_num_par_pushes >= 0, "Inconsistency");
  3081   if (_overflow_list == NULL) {
  3082     assert(_num_par_pushes == 0, "Inconsistency");
  3084   return _overflow_list == NULL;
  3087 // The methods verify_work_stacks_empty() and verify_overflow_empty()
  3088 // merely consolidate assertion checks that appear to occur together frequently.
  3089 void CMSCollector::verify_work_stacks_empty() const {
  3090   assert(_markStack.isEmpty(), "Marking stack should be empty");
  3091   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3094 void CMSCollector::verify_overflow_empty() const {
  3095   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3096   assert(no_preserved_marks(), "No preserved marks");
  3098 #endif // PRODUCT
  3100 // Decide if we want to enable class unloading as part of the
  3101 // ensuing concurrent GC cycle. We will collect the perm gen and
  3102 // unload classes if it's the case that:
  3103 // (1) an explicit gc request has been made and the flag
  3104 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
  3105 // (2) (a) class unloading is enabled at the command line, and
  3106 //     (b) (i)   perm gen threshold has been crossed, or
  3107 //         (ii)  old gen is getting really full, or
  3108 //         (iii) the previous N CMS collections did not collect the
  3109 //               perm gen
  3110 // NOTE: Provided there is no change in the state of the heap between
  3111 // calls to this method, it should have idempotent results. Moreover,
  3112 // its results should be monotonically increasing (i.e. going from 0 to 1,
  3113 // but not 1 to 0) between successive calls between which the heap was
  3114 // not collected. For the implementation below, it must thus rely on
  3115 // the property that concurrent_cycles_since_last_unload()
  3116 // will not decrease unless a collection cycle happened and that
  3117 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are
  3118 // themselves also monotonic in that sense. See check_monotonicity()
  3119 // below.
  3120 bool CMSCollector::update_should_unload_classes() {
  3121   _should_unload_classes = false;
  3122   // Condition 1 above
  3123   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
  3124     _should_unload_classes = true;
  3125   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
  3126     // Disjuncts 2.b.(i,ii,iii) above
  3127     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
  3128                               CMSClassUnloadingMaxInterval)
  3129                            || _permGen->should_concurrent_collect()
  3130                            || _cmsGen->is_too_full();
  3132   return _should_unload_classes;
  3135 bool ConcurrentMarkSweepGeneration::is_too_full() const {
  3136   bool res = should_concurrent_collect();
  3137   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
  3138   return res;
  3141 void CMSCollector::setup_cms_unloading_and_verification_state() {
  3142   const  bool should_verify =    VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
  3143                              || VerifyBeforeExit;
  3144   const  int  rso           =    SharedHeap::SO_Symbols | SharedHeap::SO_Strings
  3145                              |   SharedHeap::SO_CodeCache;
  3147   if (should_unload_classes()) {   // Should unload classes this cycle
  3148     remove_root_scanning_option(rso);  // Shrink the root set appropriately
  3149     set_verifying(should_verify);    // Set verification state for this cycle
  3150     return;                            // Nothing else needs to be done at this time
  3153   // Not unloading classes this cycle
  3154   assert(!should_unload_classes(), "Inconsitency!");
  3155   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
  3156     // We were not verifying, or we _were_ unloading classes in the last cycle,
  3157     // AND some verification options are enabled this cycle; in this case,
  3158     // we must make sure that the deadness map is allocated if not already so,
  3159     // and cleared (if already allocated previously --
  3160     // CMSBitMap::sizeInBits() is used to determine if it's allocated).
  3161     if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
  3162       if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
  3163         warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
  3164                 "permanent generation verification disabled");
  3165         return;  // Note that we leave verification disabled, so we'll retry this
  3166                  // allocation next cycle. We _could_ remember this failure
  3167                  // and skip further attempts and permanently disable verification
  3168                  // attempts if that is considered more desirable.
  3170       assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
  3171               "_perm_gen_ver_bit_map inconsistency?");
  3172     } else {
  3173       perm_gen_verify_bit_map()->clear_all();
  3175     // Include symbols, strings and code cache elements to prevent their resurrection.
  3176     add_root_scanning_option(rso);
  3177     set_verifying(true);
  3178   } else if (verifying() && !should_verify) {
  3179     // We were verifying, but some verification flags got disabled.
  3180     set_verifying(false);
  3181     // Exclude symbols, strings and code cache elements from root scanning to
  3182     // reduce IM and RM pauses.
  3183     remove_root_scanning_option(rso);
  3188 #ifndef PRODUCT
  3189 HeapWord* CMSCollector::block_start(const void* p) const {
  3190   const HeapWord* addr = (HeapWord*)p;
  3191   if (_span.contains(p)) {
  3192     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
  3193       return _cmsGen->cmsSpace()->block_start(p);
  3194     } else {
  3195       assert(_permGen->cmsSpace()->is_in_reserved(addr),
  3196              "Inconsistent _span?");
  3197       return _permGen->cmsSpace()->block_start(p);
  3200   return NULL;
  3202 #endif
  3204 HeapWord*
  3205 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
  3206                                                    bool   tlab,
  3207                                                    bool   parallel) {
  3208   assert(!tlab, "Can't deal with TLAB allocation");
  3209   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3210   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
  3211     CMSExpansionCause::_satisfy_allocation);
  3212   if (GCExpandToAllocateDelayMillis > 0) {
  3213     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3215   return have_lock_and_allocate(word_size, tlab);
  3218 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
  3219 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
  3220 // to CardGeneration and share it...
  3221 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
  3222   return CardGeneration::expand(bytes, expand_bytes);
  3225 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
  3226   CMSExpansionCause::Cause cause)
  3229   bool success = expand(bytes, expand_bytes);
  3231   // remember why we expanded; this information is used
  3232   // by shouldConcurrentCollect() when making decisions on whether to start
  3233   // a new CMS cycle.
  3234   if (success) {
  3235     set_expansion_cause(cause);
  3236     if (PrintGCDetails && Verbose) {
  3237       gclog_or_tty->print_cr("Expanded CMS gen for %s",
  3238         CMSExpansionCause::to_string(cause));
  3243 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
  3244   HeapWord* res = NULL;
  3245   MutexLocker x(ParGCRareEvent_lock);
  3246   while (true) {
  3247     // Expansion by some other thread might make alloc OK now:
  3248     res = ps->lab.alloc(word_sz);
  3249     if (res != NULL) return res;
  3250     // If there's not enough expansion space available, give up.
  3251     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
  3252       return NULL;
  3254     // Otherwise, we try expansion.
  3255     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
  3256       CMSExpansionCause::_allocate_par_lab);
  3257     // Now go around the loop and try alloc again;
  3258     // A competing par_promote might beat us to the expansion space,
  3259     // so we may go around the loop again if promotion fails agaion.
  3260     if (GCExpandToAllocateDelayMillis > 0) {
  3261       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3267 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
  3268   PromotionInfo* promo) {
  3269   MutexLocker x(ParGCRareEvent_lock);
  3270   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
  3271   while (true) {
  3272     // Expansion by some other thread might make alloc OK now:
  3273     if (promo->ensure_spooling_space()) {
  3274       assert(promo->has_spooling_space(),
  3275              "Post-condition of successful ensure_spooling_space()");
  3276       return true;
  3278     // If there's not enough expansion space available, give up.
  3279     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
  3280       return false;
  3282     // Otherwise, we try expansion.
  3283     expand(refill_size_bytes, MinHeapDeltaBytes,
  3284       CMSExpansionCause::_allocate_par_spooling_space);
  3285     // Now go around the loop and try alloc again;
  3286     // A competing allocation might beat us to the expansion space,
  3287     // so we may go around the loop again if allocation fails again.
  3288     if (GCExpandToAllocateDelayMillis > 0) {
  3289       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3296 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
  3297   assert_locked_or_safepoint(Heap_lock);
  3298   size_t size = ReservedSpace::page_align_size_down(bytes);
  3299   if (size > 0) {
  3300     shrink_by(size);
  3304 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
  3305   assert_locked_or_safepoint(Heap_lock);
  3306   bool result = _virtual_space.expand_by(bytes);
  3307   if (result) {
  3308     HeapWord* old_end = _cmsSpace->end();
  3309     size_t new_word_size =
  3310       heap_word_size(_virtual_space.committed_size());
  3311     MemRegion mr(_cmsSpace->bottom(), new_word_size);
  3312     _bts->resize(new_word_size);  // resize the block offset shared array
  3313     Universe::heap()->barrier_set()->resize_covered_region(mr);
  3314     // Hmmmm... why doesn't CFLS::set_end verify locking?
  3315     // This is quite ugly; FIX ME XXX
  3316     _cmsSpace->assert_locked();
  3317     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  3319     // update the space and generation capacity counters
  3320     if (UsePerfData) {
  3321       _space_counters->update_capacity();
  3322       _gen_counters->update_all();
  3325     if (Verbose && PrintGC) {
  3326       size_t new_mem_size = _virtual_space.committed_size();
  3327       size_t old_mem_size = new_mem_size - bytes;
  3328       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
  3329                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
  3332   return result;
  3335 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
  3336   assert_locked_or_safepoint(Heap_lock);
  3337   bool success = true;
  3338   const size_t remaining_bytes = _virtual_space.uncommitted_size();
  3339   if (remaining_bytes > 0) {
  3340     success = grow_by(remaining_bytes);
  3341     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
  3343   return success;
  3346 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
  3347   assert_locked_or_safepoint(Heap_lock);
  3348   assert_lock_strong(freelistLock());
  3349   // XXX Fix when compaction is implemented.
  3350   warning("Shrinking of CMS not yet implemented");
  3351   return;
  3355 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
  3356 // phases.
  3357 class CMSPhaseAccounting: public StackObj {
  3358  public:
  3359   CMSPhaseAccounting(CMSCollector *collector,
  3360                      const char *phase,
  3361                      bool print_cr = true);
  3362   ~CMSPhaseAccounting();
  3364  private:
  3365   CMSCollector *_collector;
  3366   const char *_phase;
  3367   elapsedTimer _wallclock;
  3368   bool _print_cr;
  3370  public:
  3371   // Not MT-safe; so do not pass around these StackObj's
  3372   // where they may be accessed by other threads.
  3373   jlong wallclock_millis() {
  3374     assert(_wallclock.is_active(), "Wall clock should not stop");
  3375     _wallclock.stop();  // to record time
  3376     jlong ret = _wallclock.milliseconds();
  3377     _wallclock.start(); // restart
  3378     return ret;
  3380 };
  3382 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
  3383                                        const char *phase,
  3384                                        bool print_cr) :
  3385   _collector(collector), _phase(phase), _print_cr(print_cr) {
  3387   if (PrintCMSStatistics != 0) {
  3388     _collector->resetYields();
  3390   if (PrintGCDetails && PrintGCTimeStamps) {
  3391     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3392     gclog_or_tty->stamp();
  3393     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
  3394       _collector->cmsGen()->short_name(), _phase);
  3396   _collector->resetTimer();
  3397   _wallclock.start();
  3398   _collector->startTimer();
  3401 CMSPhaseAccounting::~CMSPhaseAccounting() {
  3402   assert(_wallclock.is_active(), "Wall clock should not have stopped");
  3403   _collector->stopTimer();
  3404   _wallclock.stop();
  3405   if (PrintGCDetails) {
  3406     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3407     if (PrintGCTimeStamps) {
  3408       gclog_or_tty->stamp();
  3409       gclog_or_tty->print(": ");
  3411     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
  3412                  _collector->cmsGen()->short_name(),
  3413                  _phase, _collector->timerValue(), _wallclock.seconds());
  3414     if (_print_cr) {
  3415       gclog_or_tty->print_cr("");
  3417     if (PrintCMSStatistics != 0) {
  3418       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
  3419                     _collector->yields());
  3424 // CMS work
  3426 // Checkpoint the roots into this generation from outside
  3427 // this generation. [Note this initial checkpoint need only
  3428 // be approximate -- we'll do a catch up phase subsequently.]
  3429 void CMSCollector::checkpointRootsInitial(bool asynch) {
  3430   assert(_collectorState == InitialMarking, "Wrong collector state");
  3431   check_correct_thread_executing();
  3432   ReferenceProcessor* rp = ref_processor();
  3433   SpecializationStats::clear();
  3434   assert(_restart_addr == NULL, "Control point invariant");
  3435   if (asynch) {
  3436     // acquire locks for subsequent manipulations
  3437     MutexLockerEx x(bitMapLock(),
  3438                     Mutex::_no_safepoint_check_flag);
  3439     checkpointRootsInitialWork(asynch);
  3440     rp->verify_no_references_recorded();
  3441     rp->enable_discovery(); // enable ("weak") refs discovery
  3442     _collectorState = Marking;
  3443   } else {
  3444     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
  3445     // which recognizes if we are a CMS generation, and doesn't try to turn on
  3446     // discovery; verify that they aren't meddling.
  3447     assert(!rp->discovery_is_atomic(),
  3448            "incorrect setting of discovery predicate");
  3449     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
  3450            "ref discovery for this generation kind");
  3451     // already have locks
  3452     checkpointRootsInitialWork(asynch);
  3453     rp->enable_discovery(); // now enable ("weak") refs discovery
  3454     _collectorState = Marking;
  3456   SpecializationStats::print();
  3459 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
  3460   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
  3461   assert(_collectorState == InitialMarking, "just checking");
  3463   // If there has not been a GC[n-1] since last GC[n] cycle completed,
  3464   // precede our marking with a collection of all
  3465   // younger generations to keep floating garbage to a minimum.
  3466   // XXX: we won't do this for now -- it's an optimization to be done later.
  3468   // already have locks
  3469   assert_lock_strong(bitMapLock());
  3470   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
  3472   // Setup the verification and class unloading state for this
  3473   // CMS collection cycle.
  3474   setup_cms_unloading_and_verification_state();
  3476   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
  3477     PrintGCDetails && Verbose, true, gclog_or_tty);)
  3478   if (UseAdaptiveSizePolicy) {
  3479     size_policy()->checkpoint_roots_initial_begin();
  3482   // Reset all the PLAB chunk arrays if necessary.
  3483   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
  3484     reset_survivor_plab_arrays();
  3487   ResourceMark rm;
  3488   HandleMark  hm;
  3490   FalseClosure falseClosure;
  3491   // In the case of a synchronous collection, we will elide the
  3492   // remark step, so it's important to catch all the nmethod oops
  3493   // in this step.
  3494   // The final 'true' flag to gen_process_strong_roots will ensure this.
  3495   // If 'async' is true, we can relax the nmethod tracing.
  3496   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
  3497   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3499   verify_work_stacks_empty();
  3500   verify_overflow_empty();
  3502   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  3503   // Update the saved marks which may affect the root scans.
  3504   gch->save_marks();
  3506   // weak reference processing has not started yet.
  3507   ref_processor()->set_enqueuing_is_done(false);
  3510     // This is not needed. DEBUG_ONLY(RememberKlassesChecker imx(true);)
  3511     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  3512     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  3513     gch->gen_process_strong_roots(_cmsGen->level(),
  3514                                   true,   // younger gens are roots
  3515                                   true,   // activate StrongRootsScope
  3516                                   true,   // collecting perm gen
  3517                                   SharedHeap::ScanningOption(roots_scanning_options()),
  3518                                   &notOlder,
  3519                                   true,   // walk all of code cache if (so & SO_CodeCache)
  3520                                   NULL);
  3523   // Clear mod-union table; it will be dirtied in the prologue of
  3524   // CMS generation per each younger generation collection.
  3526   assert(_modUnionTable.isAllClear(),
  3527        "Was cleared in most recent final checkpoint phase"
  3528        " or no bits are set in the gc_prologue before the start of the next "
  3529        "subsequent marking phase.");
  3531   // Temporarily disabled, since pre/post-consumption closures don't
  3532   // care about precleaned cards
  3533   #if 0
  3535     MemRegion mr = MemRegion((HeapWord*)_virtual_space.low(),
  3536                              (HeapWord*)_virtual_space.high());
  3537     _ct->ct_bs()->preclean_dirty_cards(mr);
  3539   #endif
  3541   // Save the end of the used_region of the constituent generations
  3542   // to be used to limit the extent of sweep in each generation.
  3543   save_sweep_limits();
  3544   if (UseAdaptiveSizePolicy) {
  3545     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
  3547   verify_overflow_empty();
  3550 bool CMSCollector::markFromRoots(bool asynch) {
  3551   // we might be tempted to assert that:
  3552   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  3553   //        "inconsistent argument?");
  3554   // However that wouldn't be right, because it's possible that
  3555   // a safepoint is indeed in progress as a younger generation
  3556   // stop-the-world GC happens even as we mark in this generation.
  3557   assert(_collectorState == Marking, "inconsistent state?");
  3558   check_correct_thread_executing();
  3559   verify_overflow_empty();
  3561   bool res;
  3562   if (asynch) {
  3564     // Start the timers for adaptive size policy for the concurrent phases
  3565     // Do it here so that the foreground MS can use the concurrent
  3566     // timer since a foreground MS might has the sweep done concurrently
  3567     // or STW.
  3568     if (UseAdaptiveSizePolicy) {
  3569       size_policy()->concurrent_marking_begin();
  3572     // Weak ref discovery note: We may be discovering weak
  3573     // refs in this generation concurrent (but interleaved) with
  3574     // weak ref discovery by a younger generation collector.
  3576     CMSTokenSyncWithLocks ts(true, bitMapLock());
  3577     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3578     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
  3579     res = markFromRootsWork(asynch);
  3580     if (res) {
  3581       _collectorState = Precleaning;
  3582     } else { // We failed and a foreground collection wants to take over
  3583       assert(_foregroundGCIsActive, "internal state inconsistency");
  3584       assert(_restart_addr == NULL,  "foreground will restart from scratch");
  3585       if (PrintGCDetails) {
  3586         gclog_or_tty->print_cr("bailing out to foreground collection");
  3589     if (UseAdaptiveSizePolicy) {
  3590       size_policy()->concurrent_marking_end();
  3592   } else {
  3593     assert(SafepointSynchronize::is_at_safepoint(),
  3594            "inconsistent with asynch == false");
  3595     if (UseAdaptiveSizePolicy) {
  3596       size_policy()->ms_collection_marking_begin();
  3598     // already have locks
  3599     res = markFromRootsWork(asynch);
  3600     _collectorState = FinalMarking;
  3601     if (UseAdaptiveSizePolicy) {
  3602       GenCollectedHeap* gch = GenCollectedHeap::heap();
  3603       size_policy()->ms_collection_marking_end(gch->gc_cause());
  3606   verify_overflow_empty();
  3607   return res;
  3610 bool CMSCollector::markFromRootsWork(bool asynch) {
  3611   // iterate over marked bits in bit map, doing a full scan and mark
  3612   // from these roots using the following algorithm:
  3613   // . if oop is to the right of the current scan pointer,
  3614   //   mark corresponding bit (we'll process it later)
  3615   // . else (oop is to left of current scan pointer)
  3616   //   push oop on marking stack
  3617   // . drain the marking stack
  3619   // Note that when we do a marking step we need to hold the
  3620   // bit map lock -- recall that direct allocation (by mutators)
  3621   // and promotion (by younger generation collectors) is also
  3622   // marking the bit map. [the so-called allocate live policy.]
  3623   // Because the implementation of bit map marking is not
  3624   // robust wrt simultaneous marking of bits in the same word,
  3625   // we need to make sure that there is no such interference
  3626   // between concurrent such updates.
  3628   // already have locks
  3629   assert_lock_strong(bitMapLock());
  3631   // Clear the revisit stack, just in case there are any
  3632   // obsolete contents from a short-circuited previous CMS cycle.
  3633   _revisitStack.reset();
  3634   verify_work_stacks_empty();
  3635   verify_overflow_empty();
  3636   assert(_revisitStack.isEmpty(), "tabula rasa");
  3638   DEBUG_ONLY(RememberKlassesChecker cmx(CMSClassUnloadingEnabled);)
  3640   bool result = false;
  3641   if (CMSConcurrentMTEnabled && ParallelCMSThreads > 0) {
  3642     result = do_marking_mt(asynch);
  3643   } else {
  3644     result = do_marking_st(asynch);
  3646   return result;
  3649 // Forward decl
  3650 class CMSConcMarkingTask;
  3652 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
  3653   CMSCollector*       _collector;
  3654   CMSConcMarkingTask* _task;
  3655   bool _yield;
  3656  protected:
  3657   virtual void yield();
  3658  public:
  3659   // "n_threads" is the number of threads to be terminated.
  3660   // "queue_set" is a set of work queues of other threads.
  3661   // "collector" is the CMS collector associated with this task terminator.
  3662   // "yield" indicates whether we need the gang as a whole to yield.
  3663   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set,
  3664                            CMSCollector* collector, bool yield) :
  3665     ParallelTaskTerminator(n_threads, queue_set),
  3666     _collector(collector),
  3667     _yield(yield) { }
  3669   void set_task(CMSConcMarkingTask* task) {
  3670     _task = task;
  3672 };
  3674 // MT Concurrent Marking Task
  3675 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
  3676   CMSCollector* _collector;
  3677   YieldingFlexibleWorkGang* _workers;        // the whole gang
  3678   int           _n_workers;                  // requested/desired # workers
  3679   bool          _asynch;
  3680   bool          _result;
  3681   CompactibleFreeListSpace*  _cms_space;
  3682   CompactibleFreeListSpace* _perm_space;
  3683   HeapWord*     _global_finger;
  3684   HeapWord*     _restart_addr;
  3686   //  Exposed here for yielding support
  3687   Mutex* const _bit_map_lock;
  3689   // The per thread work queues, available here for stealing
  3690   OopTaskQueueSet*  _task_queues;
  3691   CMSConcMarkingTerminator _term;
  3693  public:
  3694   CMSConcMarkingTask(CMSCollector* collector,
  3695                  CompactibleFreeListSpace* cms_space,
  3696                  CompactibleFreeListSpace* perm_space,
  3697                  bool asynch, int n_workers,
  3698                  YieldingFlexibleWorkGang* workers,
  3699                  OopTaskQueueSet* task_queues):
  3700     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
  3701     _collector(collector),
  3702     _cms_space(cms_space),
  3703     _perm_space(perm_space),
  3704     _asynch(asynch), _n_workers(n_workers), _result(true),
  3705     _workers(workers), _task_queues(task_queues),
  3706     _term(n_workers, task_queues, _collector, asynch),
  3707     _bit_map_lock(collector->bitMapLock())
  3709     assert(n_workers <= workers->total_workers(),
  3710            "Else termination won't work correctly today"); // XXX FIX ME!
  3711     _requested_size = n_workers;
  3712     _term.set_task(this);
  3713     assert(_cms_space->bottom() < _perm_space->bottom(),
  3714            "Finger incorrectly initialized below");
  3715     _restart_addr = _global_finger = _cms_space->bottom();
  3719   OopTaskQueueSet* task_queues()  { return _task_queues; }
  3721   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  3723   HeapWord** global_finger_addr() { return &_global_finger; }
  3725   CMSConcMarkingTerminator* terminator() { return &_term; }
  3727   void work(int i);
  3729   virtual void coordinator_yield();  // stuff done by coordinator
  3730   bool result() { return _result; }
  3732   void reset(HeapWord* ra) {
  3733     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
  3734     assert(_global_finger >= _perm_space->end(), "Postcondition of ::work(i)");
  3735     assert(ra             <  _perm_space->end(), "ra too large");
  3736     _restart_addr = _global_finger = ra;
  3737     _term.reset_for_reuse();
  3740   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3741                                            OopTaskQueue* work_q);
  3743  private:
  3744   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
  3745   void do_work_steal(int i);
  3746   void bump_global_finger(HeapWord* f);
  3747 };
  3749 void CMSConcMarkingTerminator::yield() {
  3750   if (ConcurrentMarkSweepThread::should_yield() &&
  3751       !_collector->foregroundGCIsActive() &&
  3752       _yield) {
  3753     _task->yield();
  3754   } else {
  3755     ParallelTaskTerminator::yield();
  3759 ////////////////////////////////////////////////////////////////
  3760 // Concurrent Marking Algorithm Sketch
  3761 ////////////////////////////////////////////////////////////////
  3762 // Until all tasks exhausted (both spaces):
  3763 // -- claim next available chunk
  3764 // -- bump global finger via CAS
  3765 // -- find first object that starts in this chunk
  3766 //    and start scanning bitmap from that position
  3767 // -- scan marked objects for oops
  3768 // -- CAS-mark target, and if successful:
  3769 //    . if target oop is above global finger (volatile read)
  3770 //      nothing to do
  3771 //    . if target oop is in chunk and above local finger
  3772 //        then nothing to do
  3773 //    . else push on work-queue
  3774 // -- Deal with possible overflow issues:
  3775 //    . local work-queue overflow causes stuff to be pushed on
  3776 //      global (common) overflow queue
  3777 //    . always first empty local work queue
  3778 //    . then get a batch of oops from global work queue if any
  3779 //    . then do work stealing
  3780 // -- When all tasks claimed (both spaces)
  3781 //    and local work queue empty,
  3782 //    then in a loop do:
  3783 //    . check global overflow stack; steal a batch of oops and trace
  3784 //    . try to steal from other threads oif GOS is empty
  3785 //    . if neither is available, offer termination
  3786 // -- Terminate and return result
  3787 //
  3788 void CMSConcMarkingTask::work(int i) {
  3789   elapsedTimer _timer;
  3790   ResourceMark rm;
  3791   HandleMark hm;
  3793   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3795   // Before we begin work, our work queue should be empty
  3796   assert(work_queue(i)->size() == 0, "Expected to be empty");
  3797   // Scan the bitmap covering _cms_space, tracing through grey objects.
  3798   _timer.start();
  3799   do_scan_and_mark(i, _cms_space);
  3800   _timer.stop();
  3801   if (PrintCMSStatistics != 0) {
  3802     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
  3803       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3806   // ... do the same for the _perm_space
  3807   _timer.reset();
  3808   _timer.start();
  3809   do_scan_and_mark(i, _perm_space);
  3810   _timer.stop();
  3811   if (PrintCMSStatistics != 0) {
  3812     gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
  3813       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3816   // ... do work stealing
  3817   _timer.reset();
  3818   _timer.start();
  3819   do_work_steal(i);
  3820   _timer.stop();
  3821   if (PrintCMSStatistics != 0) {
  3822     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
  3823       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3825   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
  3826   assert(work_queue(i)->size() == 0, "Should have been emptied");
  3827   // Note that under the current task protocol, the
  3828   // following assertion is true even of the spaces
  3829   // expanded since the completion of the concurrent
  3830   // marking. XXX This will likely change under a strict
  3831   // ABORT semantics.
  3832   assert(_global_finger >  _cms_space->end() &&
  3833          _global_finger >= _perm_space->end(),
  3834          "All tasks have been completed");
  3835   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3838 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
  3839   HeapWord* read = _global_finger;
  3840   HeapWord* cur  = read;
  3841   while (f > read) {
  3842     cur = read;
  3843     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
  3844     if (cur == read) {
  3845       // our cas succeeded
  3846       assert(_global_finger >= f, "protocol consistency");
  3847       break;
  3852 // This is really inefficient, and should be redone by
  3853 // using (not yet available) block-read and -write interfaces to the
  3854 // stack and the work_queue. XXX FIX ME !!!
  3855 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3856                                                       OopTaskQueue* work_q) {
  3857   // Fast lock-free check
  3858   if (ovflw_stk->length() == 0) {
  3859     return false;
  3861   assert(work_q->size() == 0, "Shouldn't steal");
  3862   MutexLockerEx ml(ovflw_stk->par_lock(),
  3863                    Mutex::_no_safepoint_check_flag);
  3864   // Grab up to 1/4 the size of the work queue
  3865   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  3866                     (size_t)ParGCDesiredObjsFromOverflowList);
  3867   num = MIN2(num, ovflw_stk->length());
  3868   for (int i = (int) num; i > 0; i--) {
  3869     oop cur = ovflw_stk->pop();
  3870     assert(cur != NULL, "Counted wrong?");
  3871     work_q->push(cur);
  3873   return num > 0;
  3876 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
  3877   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  3878   int n_tasks = pst->n_tasks();
  3879   // We allow that there may be no tasks to do here because
  3880   // we are restarting after a stack overflow.
  3881   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
  3882   int nth_task = 0;
  3884   HeapWord* aligned_start = sp->bottom();
  3885   if (sp->used_region().contains(_restart_addr)) {
  3886     // Align down to a card boundary for the start of 0th task
  3887     // for this space.
  3888     aligned_start =
  3889       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
  3890                                  CardTableModRefBS::card_size);
  3893   size_t chunk_size = sp->marking_task_size();
  3894   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  3895     // Having claimed the nth task in this space,
  3896     // compute the chunk that it corresponds to:
  3897     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
  3898                                aligned_start + (nth_task+1)*chunk_size);
  3899     // Try and bump the global finger via a CAS;
  3900     // note that we need to do the global finger bump
  3901     // _before_ taking the intersection below, because
  3902     // the task corresponding to that region will be
  3903     // deemed done even if the used_region() expands
  3904     // because of allocation -- as it almost certainly will
  3905     // during start-up while the threads yield in the
  3906     // closure below.
  3907     HeapWord* finger = span.end();
  3908     bump_global_finger(finger);   // atomically
  3909     // There are null tasks here corresponding to chunks
  3910     // beyond the "top" address of the space.
  3911     span = span.intersection(sp->used_region());
  3912     if (!span.is_empty()) {  // Non-null task
  3913       HeapWord* prev_obj;
  3914       assert(!span.contains(_restart_addr) || nth_task == 0,
  3915              "Inconsistency");
  3916       if (nth_task == 0) {
  3917         // For the 0th task, we'll not need to compute a block_start.
  3918         if (span.contains(_restart_addr)) {
  3919           // In the case of a restart because of stack overflow,
  3920           // we might additionally skip a chunk prefix.
  3921           prev_obj = _restart_addr;
  3922         } else {
  3923           prev_obj = span.start();
  3925       } else {
  3926         // We want to skip the first object because
  3927         // the protocol is to scan any object in its entirety
  3928         // that _starts_ in this span; a fortiori, any
  3929         // object starting in an earlier span is scanned
  3930         // as part of an earlier claimed task.
  3931         // Below we use the "careful" version of block_start
  3932         // so we do not try to navigate uninitialized objects.
  3933         prev_obj = sp->block_start_careful(span.start());
  3934         // Below we use a variant of block_size that uses the
  3935         // Printezis bits to avoid waiting for allocated
  3936         // objects to become initialized/parsable.
  3937         while (prev_obj < span.start()) {
  3938           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
  3939           if (sz > 0) {
  3940             prev_obj += sz;
  3941           } else {
  3942             // In this case we may end up doing a bit of redundant
  3943             // scanning, but that appears unavoidable, short of
  3944             // locking the free list locks; see bug 6324141.
  3945             break;
  3949       if (prev_obj < span.end()) {
  3950         MemRegion my_span = MemRegion(prev_obj, span.end());
  3951         // Do the marking work within a non-empty span --
  3952         // the last argument to the constructor indicates whether the
  3953         // iteration should be incremental with periodic yields.
  3954         Par_MarkFromRootsClosure cl(this, _collector, my_span,
  3955                                     &_collector->_markBitMap,
  3956                                     work_queue(i),
  3957                                     &_collector->_markStack,
  3958                                     &_collector->_revisitStack,
  3959                                     _asynch);
  3960         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
  3961       } // else nothing to do for this task
  3962     }   // else nothing to do for this task
  3964   // We'd be tempted to assert here that since there are no
  3965   // more tasks left to claim in this space, the global_finger
  3966   // must exceed space->top() and a fortiori space->end(). However,
  3967   // that would not quite be correct because the bumping of
  3968   // global_finger occurs strictly after the claiming of a task,
  3969   // so by the time we reach here the global finger may not yet
  3970   // have been bumped up by the thread that claimed the last
  3971   // task.
  3972   pst->all_tasks_completed();
  3975 class Par_ConcMarkingClosure: public Par_KlassRememberingOopClosure {
  3976  private:
  3977   MemRegion     _span;
  3978   CMSBitMap*    _bit_map;
  3979   CMSMarkStack* _overflow_stack;
  3980   OopTaskQueue* _work_queue;
  3981  protected:
  3982   DO_OOP_WORK_DEFN
  3983  public:
  3984   Par_ConcMarkingClosure(CMSCollector* collector, OopTaskQueue* work_queue,
  3985                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack,
  3986                          CMSMarkStack* revisit_stack):
  3987     Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
  3988     _span(_collector->_span),
  3989     _work_queue(work_queue),
  3990     _bit_map(bit_map),
  3991     _overflow_stack(overflow_stack)
  3992   { }
  3993   virtual void do_oop(oop* p);
  3994   virtual void do_oop(narrowOop* p);
  3995   void trim_queue(size_t max);
  3996   void handle_stack_overflow(HeapWord* lost);
  3997 };
  3999 // Grey object scanning during work stealing phase --
  4000 // the salient assumption here is that any references
  4001 // that are in these stolen objects being scanned must
  4002 // already have been initialized (else they would not have
  4003 // been published), so we do not need to check for
  4004 // uninitialized objects before pushing here.
  4005 void Par_ConcMarkingClosure::do_oop(oop obj) {
  4006   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  4007   HeapWord* addr = (HeapWord*)obj;
  4008   // Check if oop points into the CMS generation
  4009   // and is not marked
  4010   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  4011     // a white object ...
  4012     // If we manage to "claim" the object, by being the
  4013     // first thread to mark it, then we push it on our
  4014     // marking stack
  4015     if (_bit_map->par_mark(addr)) {     // ... now grey
  4016       // push on work queue (grey set)
  4017       bool simulate_overflow = false;
  4018       NOT_PRODUCT(
  4019         if (CMSMarkStackOverflowALot &&
  4020             _collector->simulate_overflow()) {
  4021           // simulate a stack overflow
  4022           simulate_overflow = true;
  4025       if (simulate_overflow ||
  4026           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  4027         // stack overflow
  4028         if (PrintCMSStatistics != 0) {
  4029           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  4030                                  SIZE_FORMAT, _overflow_stack->capacity());
  4032         // We cannot assert that the overflow stack is full because
  4033         // it may have been emptied since.
  4034         assert(simulate_overflow ||
  4035                _work_queue->size() == _work_queue->max_elems(),
  4036               "Else push should have succeeded");
  4037         handle_stack_overflow(addr);
  4039     } // Else, some other thread got there first
  4043 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
  4044 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
  4046 void Par_ConcMarkingClosure::trim_queue(size_t max) {
  4047   while (_work_queue->size() > max) {
  4048     oop new_oop;
  4049     if (_work_queue->pop_local(new_oop)) {
  4050       assert(new_oop->is_oop(), "Should be an oop");
  4051       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
  4052       assert(_span.contains((HeapWord*)new_oop), "Not in span");
  4053       assert(new_oop->is_parsable(), "Should be parsable");
  4054       new_oop->oop_iterate(this);  // do_oop() above
  4059 // Upon stack overflow, we discard (part of) the stack,
  4060 // remembering the least address amongst those discarded
  4061 // in CMSCollector's _restart_address.
  4062 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
  4063   // We need to do this under a mutex to prevent other
  4064   // workers from interfering with the work done below.
  4065   MutexLockerEx ml(_overflow_stack->par_lock(),
  4066                    Mutex::_no_safepoint_check_flag);
  4067   // Remember the least grey address discarded
  4068   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  4069   _collector->lower_restart_addr(ra);
  4070   _overflow_stack->reset();  // discard stack contents
  4071   _overflow_stack->expand(); // expand the stack if possible
  4075 void CMSConcMarkingTask::do_work_steal(int i) {
  4076   OopTaskQueue* work_q = work_queue(i);
  4077   oop obj_to_scan;
  4078   CMSBitMap* bm = &(_collector->_markBitMap);
  4079   CMSMarkStack* ovflw = &(_collector->_markStack);
  4080   CMSMarkStack* revisit = &(_collector->_revisitStack);
  4081   int* seed = _collector->hash_seed(i);
  4082   Par_ConcMarkingClosure cl(_collector, work_q, bm, ovflw, revisit);
  4083   while (true) {
  4084     cl.trim_queue(0);
  4085     assert(work_q->size() == 0, "Should have been emptied above");
  4086     if (get_work_from_overflow_stack(ovflw, work_q)) {
  4087       // Can't assert below because the work obtained from the
  4088       // overflow stack may already have been stolen from us.
  4089       // assert(work_q->size() > 0, "Work from overflow stack");
  4090       continue;
  4091     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  4092       assert(obj_to_scan->is_oop(), "Should be an oop");
  4093       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
  4094       obj_to_scan->oop_iterate(&cl);
  4095     } else if (terminator()->offer_termination()) {
  4096       assert(work_q->size() == 0, "Impossible!");
  4097       break;
  4102 // This is run by the CMS (coordinator) thread.
  4103 void CMSConcMarkingTask::coordinator_yield() {
  4104   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4105          "CMS thread should hold CMS token");
  4107   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  4108   // First give up the locks, then yield, then re-lock
  4109   // We should probably use a constructor/destructor idiom to
  4110   // do this unlock/lock or modify the MutexUnlocker class to
  4111   // serve our purpose. XXX
  4112   assert_lock_strong(_bit_map_lock);
  4113   _bit_map_lock->unlock();
  4114   ConcurrentMarkSweepThread::desynchronize(true);
  4115   ConcurrentMarkSweepThread::acknowledge_yield_request();
  4116   _collector->stopTimer();
  4117   if (PrintCMSStatistics != 0) {
  4118     _collector->incrementYields();
  4120   _collector->icms_wait();
  4122   // It is possible for whichever thread initiated the yield request
  4123   // not to get a chance to wake up and take the bitmap lock between
  4124   // this thread releasing it and reacquiring it. So, while the
  4125   // should_yield() flag is on, let's sleep for a bit to give the
  4126   // other thread a chance to wake up. The limit imposed on the number
  4127   // of iterations is defensive, to avoid any unforseen circumstances
  4128   // putting us into an infinite loop. Since it's always been this
  4129   // (coordinator_yield()) method that was observed to cause the
  4130   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
  4131   // which is by default non-zero. For the other seven methods that
  4132   // also perform the yield operation, as are using a different
  4133   // parameter (CMSYieldSleepCount) which is by default zero. This way we
  4134   // can enable the sleeping for those methods too, if necessary.
  4135   // See 6442774.
  4136   //
  4137   // We really need to reconsider the synchronization between the GC
  4138   // thread and the yield-requesting threads in the future and we
  4139   // should really use wait/notify, which is the recommended
  4140   // way of doing this type of interaction. Additionally, we should
  4141   // consolidate the eight methods that do the yield operation and they
  4142   // are almost identical into one for better maintenability and
  4143   // readability. See 6445193.
  4144   //
  4145   // Tony 2006.06.29
  4146   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
  4147                    ConcurrentMarkSweepThread::should_yield() &&
  4148                    !CMSCollector::foregroundGCIsActive(); ++i) {
  4149     os::sleep(Thread::current(), 1, false);
  4150     ConcurrentMarkSweepThread::acknowledge_yield_request();
  4153   ConcurrentMarkSweepThread::synchronize(true);
  4154   _bit_map_lock->lock_without_safepoint_check();
  4155   _collector->startTimer();
  4158 bool CMSCollector::do_marking_mt(bool asynch) {
  4159   assert(ParallelCMSThreads > 0 && conc_workers() != NULL, "precondition");
  4160   // In the future this would be determined ergonomically, based
  4161   // on #cpu's, # active mutator threads (and load), and mutation rate.
  4162   int num_workers = ParallelCMSThreads;
  4164   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  4165   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  4167   CMSConcMarkingTask tsk(this, cms_space, perm_space,
  4168                          asynch, num_workers /* number requested XXX */,
  4169                          conc_workers(), task_queues());
  4171   // Since the actual number of workers we get may be different
  4172   // from the number we requested above, do we need to do anything different
  4173   // below? In particular, may be we need to subclass the SequantialSubTasksDone
  4174   // class?? XXX
  4175   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
  4176   perm_space->initialize_sequential_subtasks_for_marking(num_workers);
  4178   // Refs discovery is already non-atomic.
  4179   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
  4180   // Mutate the Refs discovery so it is MT during the
  4181   // multi-threaded marking phase.
  4182   ReferenceProcessorMTMutator mt(ref_processor(), num_workers > 1);
  4184   DEBUG_ONLY(RememberKlassesChecker cmx(CMSClassUnloadingEnabled);)
  4186   conc_workers()->start_task(&tsk);
  4187   while (tsk.yielded()) {
  4188     tsk.coordinator_yield();
  4189     conc_workers()->continue_task(&tsk);
  4191   // If the task was aborted, _restart_addr will be non-NULL
  4192   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
  4193   while (_restart_addr != NULL) {
  4194     // XXX For now we do not make use of ABORTED state and have not
  4195     // yet implemented the right abort semantics (even in the original
  4196     // single-threaded CMS case). That needs some more investigation
  4197     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
  4198     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
  4199     // If _restart_addr is non-NULL, a marking stack overflow
  4200     // occurred; we need to do a fresh marking iteration from the
  4201     // indicated restart address.
  4202     if (_foregroundGCIsActive && asynch) {
  4203       // We may be running into repeated stack overflows, having
  4204       // reached the limit of the stack size, while making very
  4205       // slow forward progress. It may be best to bail out and
  4206       // let the foreground collector do its job.
  4207       // Clear _restart_addr, so that foreground GC
  4208       // works from scratch. This avoids the headache of
  4209       // a "rescan" which would otherwise be needed because
  4210       // of the dirty mod union table & card table.
  4211       _restart_addr = NULL;
  4212       return false;
  4214     // Adjust the task to restart from _restart_addr
  4215     tsk.reset(_restart_addr);
  4216     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
  4217                   _restart_addr);
  4218     perm_space->initialize_sequential_subtasks_for_marking(num_workers,
  4219                   _restart_addr);
  4220     _restart_addr = NULL;
  4221     // Get the workers going again
  4222     conc_workers()->start_task(&tsk);
  4223     while (tsk.yielded()) {
  4224       tsk.coordinator_yield();
  4225       conc_workers()->continue_task(&tsk);
  4228   assert(tsk.completed(), "Inconsistency");
  4229   assert(tsk.result() == true, "Inconsistency");
  4230   return true;
  4233 bool CMSCollector::do_marking_st(bool asynch) {
  4234   ResourceMark rm;
  4235   HandleMark   hm;
  4237   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
  4238     &_markStack, &_revisitStack, CMSYield && asynch);
  4239   // the last argument to iterate indicates whether the iteration
  4240   // should be incremental with periodic yields.
  4241   _markBitMap.iterate(&markFromRootsClosure);
  4242   // If _restart_addr is non-NULL, a marking stack overflow
  4243   // occurred; we need to do a fresh iteration from the
  4244   // indicated restart address.
  4245   while (_restart_addr != NULL) {
  4246     if (_foregroundGCIsActive && asynch) {
  4247       // We may be running into repeated stack overflows, having
  4248       // reached the limit of the stack size, while making very
  4249       // slow forward progress. It may be best to bail out and
  4250       // let the foreground collector do its job.
  4251       // Clear _restart_addr, so that foreground GC
  4252       // works from scratch. This avoids the headache of
  4253       // a "rescan" which would otherwise be needed because
  4254       // of the dirty mod union table & card table.
  4255       _restart_addr = NULL;
  4256       return false;  // indicating failure to complete marking
  4258     // Deal with stack overflow:
  4259     // we restart marking from _restart_addr
  4260     HeapWord* ra = _restart_addr;
  4261     markFromRootsClosure.reset(ra);
  4262     _restart_addr = NULL;
  4263     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
  4265   return true;
  4268 void CMSCollector::preclean() {
  4269   check_correct_thread_executing();
  4270   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
  4271   verify_work_stacks_empty();
  4272   verify_overflow_empty();
  4273   _abort_preclean = false;
  4274   if (CMSPrecleaningEnabled) {
  4275     _eden_chunk_index = 0;
  4276     size_t used = get_eden_used();
  4277     size_t capacity = get_eden_capacity();
  4278     // Don't start sampling unless we will get sufficiently
  4279     // many samples.
  4280     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
  4281                 * CMSScheduleRemarkEdenPenetration)) {
  4282       _start_sampling = true;
  4283     } else {
  4284       _start_sampling = false;
  4286     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4287     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
  4288     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
  4290   CMSTokenSync x(true); // is cms thread
  4291   if (CMSPrecleaningEnabled) {
  4292     sample_eden();
  4293     _collectorState = AbortablePreclean;
  4294   } else {
  4295     _collectorState = FinalMarking;
  4297   verify_work_stacks_empty();
  4298   verify_overflow_empty();
  4301 // Try and schedule the remark such that young gen
  4302 // occupancy is CMSScheduleRemarkEdenPenetration %.
  4303 void CMSCollector::abortable_preclean() {
  4304   check_correct_thread_executing();
  4305   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
  4306   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
  4308   // If Eden's current occupancy is below this threshold,
  4309   // immediately schedule the remark; else preclean
  4310   // past the next scavenge in an effort to
  4311   // schedule the pause as described avove. By choosing
  4312   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
  4313   // we will never do an actual abortable preclean cycle.
  4314   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
  4315     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4316     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
  4317     // We need more smarts in the abortable preclean
  4318     // loop below to deal with cases where allocation
  4319     // in young gen is very very slow, and our precleaning
  4320     // is running a losing race against a horde of
  4321     // mutators intent on flooding us with CMS updates
  4322     // (dirty cards).
  4323     // One, admittedly dumb, strategy is to give up
  4324     // after a certain number of abortable precleaning loops
  4325     // or after a certain maximum time. We want to make
  4326     // this smarter in the next iteration.
  4327     // XXX FIX ME!!! YSR
  4328     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
  4329     while (!(should_abort_preclean() ||
  4330              ConcurrentMarkSweepThread::should_terminate())) {
  4331       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
  4332       cumworkdone += workdone;
  4333       loops++;
  4334       // Voluntarily terminate abortable preclean phase if we have
  4335       // been at it for too long.
  4336       if ((CMSMaxAbortablePrecleanLoops != 0) &&
  4337           loops >= CMSMaxAbortablePrecleanLoops) {
  4338         if (PrintGCDetails) {
  4339           gclog_or_tty->print(" CMS: abort preclean due to loops ");
  4341         break;
  4343       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
  4344         if (PrintGCDetails) {
  4345           gclog_or_tty->print(" CMS: abort preclean due to time ");
  4347         break;
  4349       // If we are doing little work each iteration, we should
  4350       // take a short break.
  4351       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
  4352         // Sleep for some time, waiting for work to accumulate
  4353         stopTimer();
  4354         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
  4355         startTimer();
  4356         waited++;
  4359     if (PrintCMSStatistics > 0) {
  4360       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
  4361                           loops, waited, cumworkdone);
  4364   CMSTokenSync x(true); // is cms thread
  4365   if (_collectorState != Idling) {
  4366     assert(_collectorState == AbortablePreclean,
  4367            "Spontaneous state transition?");
  4368     _collectorState = FinalMarking;
  4369   } // Else, a foreground collection completed this CMS cycle.
  4370   return;
  4373 // Respond to an Eden sampling opportunity
  4374 void CMSCollector::sample_eden() {
  4375   // Make sure a young gc cannot sneak in between our
  4376   // reading and recording of a sample.
  4377   assert(Thread::current()->is_ConcurrentGC_thread(),
  4378          "Only the cms thread may collect Eden samples");
  4379   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4380          "Should collect samples while holding CMS token");
  4381   if (!_start_sampling) {
  4382     return;
  4384   if (_eden_chunk_array) {
  4385     if (_eden_chunk_index < _eden_chunk_capacity) {
  4386       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
  4387       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
  4388              "Unexpected state of Eden");
  4389       // We'd like to check that what we just sampled is an oop-start address;
  4390       // however, we cannot do that here since the object may not yet have been
  4391       // initialized. So we'll instead do the check when we _use_ this sample
  4392       // later.
  4393       if (_eden_chunk_index == 0 ||
  4394           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
  4395                          _eden_chunk_array[_eden_chunk_index-1])
  4396            >= CMSSamplingGrain)) {
  4397         _eden_chunk_index++;  // commit sample
  4401   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
  4402     size_t used = get_eden_used();
  4403     size_t capacity = get_eden_capacity();
  4404     assert(used <= capacity, "Unexpected state of Eden");
  4405     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
  4406       _abort_preclean = true;
  4412 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
  4413   assert(_collectorState == Precleaning ||
  4414          _collectorState == AbortablePreclean, "incorrect state");
  4415   ResourceMark rm;
  4416   HandleMark   hm;
  4417   // Do one pass of scrubbing the discovered reference lists
  4418   // to remove any reference objects with strongly-reachable
  4419   // referents.
  4420   if (clean_refs) {
  4421     ReferenceProcessor* rp = ref_processor();
  4422     CMSPrecleanRefsYieldClosure yield_cl(this);
  4423     assert(rp->span().equals(_span), "Spans should be equal");
  4424     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
  4425                                    &_markStack, &_revisitStack,
  4426                                    true /* preclean */);
  4427     CMSDrainMarkingStackClosure complete_trace(this,
  4428                                    _span, &_markBitMap, &_markStack,
  4429                                    &keep_alive, true /* preclean */);
  4431     // We don't want this step to interfere with a young
  4432     // collection because we don't want to take CPU
  4433     // or memory bandwidth away from the young GC threads
  4434     // (which may be as many as there are CPUs).
  4435     // Note that we don't need to protect ourselves from
  4436     // interference with mutators because they can't
  4437     // manipulate the discovered reference lists nor affect
  4438     // the computed reachability of the referents, the
  4439     // only properties manipulated by the precleaning
  4440     // of these reference lists.
  4441     stopTimer();
  4442     CMSTokenSyncWithLocks x(true /* is cms thread */,
  4443                             bitMapLock());
  4444     startTimer();
  4445     sample_eden();
  4447     // The following will yield to allow foreground
  4448     // collection to proceed promptly. XXX YSR:
  4449     // The code in this method may need further
  4450     // tweaking for better performance and some restructuring
  4451     // for cleaner interfaces.
  4452     rp->preclean_discovered_references(
  4453           rp->is_alive_non_header(), &keep_alive, &complete_trace,
  4454           &yield_cl);
  4457   if (clean_survivor) {  // preclean the active survivor space(s)
  4458     assert(_young_gen->kind() == Generation::DefNew ||
  4459            _young_gen->kind() == Generation::ParNew ||
  4460            _young_gen->kind() == Generation::ASParNew,
  4461          "incorrect type for cast");
  4462     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  4463     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
  4464                              &_markBitMap, &_modUnionTable,
  4465                              &_markStack, &_revisitStack,
  4466                              true /* precleaning phase */);
  4467     stopTimer();
  4468     CMSTokenSyncWithLocks ts(true /* is cms thread */,
  4469                              bitMapLock());
  4470     startTimer();
  4471     unsigned int before_count =
  4472       GenCollectedHeap::heap()->total_collections();
  4473     SurvivorSpacePrecleanClosure
  4474       sss_cl(this, _span, &_markBitMap, &_markStack,
  4475              &pam_cl, before_count, CMSYield);
  4476     DEBUG_ONLY(RememberKlassesChecker mx(CMSClassUnloadingEnabled);)
  4477     dng->from()->object_iterate_careful(&sss_cl);
  4478     dng->to()->object_iterate_careful(&sss_cl);
  4480   MarkRefsIntoAndScanClosure
  4481     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  4482              &_markStack, &_revisitStack, this, CMSYield,
  4483              true /* precleaning phase */);
  4484   // CAUTION: The following closure has persistent state that may need to
  4485   // be reset upon a decrease in the sequence of addresses it
  4486   // processes.
  4487   ScanMarkedObjectsAgainCarefullyClosure
  4488     smoac_cl(this, _span,
  4489       &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
  4491   // Preclean dirty cards in ModUnionTable and CardTable using
  4492   // appropriate convergence criterion;
  4493   // repeat CMSPrecleanIter times unless we find that
  4494   // we are losing.
  4495   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
  4496   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
  4497          "Bad convergence multiplier");
  4498   assert(CMSPrecleanThreshold >= 100,
  4499          "Unreasonably low CMSPrecleanThreshold");
  4501   size_t numIter, cumNumCards, lastNumCards, curNumCards;
  4502   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
  4503        numIter < CMSPrecleanIter;
  4504        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
  4505     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
  4506     if (CMSPermGenPrecleaningEnabled) {
  4507       curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
  4509     if (Verbose && PrintGCDetails) {
  4510       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
  4512     // Either there are very few dirty cards, so re-mark
  4513     // pause will be small anyway, or our pre-cleaning isn't
  4514     // that much faster than the rate at which cards are being
  4515     // dirtied, so we might as well stop and re-mark since
  4516     // precleaning won't improve our re-mark time by much.
  4517     if (curNumCards <= CMSPrecleanThreshold ||
  4518         (numIter > 0 &&
  4519          (curNumCards * CMSPrecleanDenominator >
  4520          lastNumCards * CMSPrecleanNumerator))) {
  4521       numIter++;
  4522       cumNumCards += curNumCards;
  4523       break;
  4526   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
  4527   if (CMSPermGenPrecleaningEnabled) {
  4528     curNumCards += preclean_card_table(_permGen, &smoac_cl);
  4530   cumNumCards += curNumCards;
  4531   if (PrintGCDetails && PrintCMSStatistics != 0) {
  4532     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
  4533                   curNumCards, cumNumCards, numIter);
  4535   return cumNumCards;   // as a measure of useful work done
  4538 // PRECLEANING NOTES:
  4539 // Precleaning involves:
  4540 // . reading the bits of the modUnionTable and clearing the set bits.
  4541 // . For the cards corresponding to the set bits, we scan the
  4542 //   objects on those cards. This means we need the free_list_lock
  4543 //   so that we can safely iterate over the CMS space when scanning
  4544 //   for oops.
  4545 // . When we scan the objects, we'll be both reading and setting
  4546 //   marks in the marking bit map, so we'll need the marking bit map.
  4547 // . For protecting _collector_state transitions, we take the CGC_lock.
  4548 //   Note that any races in the reading of of card table entries by the
  4549 //   CMS thread on the one hand and the clearing of those entries by the
  4550 //   VM thread or the setting of those entries by the mutator threads on the
  4551 //   other are quite benign. However, for efficiency it makes sense to keep
  4552 //   the VM thread from racing with the CMS thread while the latter is
  4553 //   dirty card info to the modUnionTable. We therefore also use the
  4554 //   CGC_lock to protect the reading of the card table and the mod union
  4555 //   table by the CM thread.
  4556 // . We run concurrently with mutator updates, so scanning
  4557 //   needs to be done carefully  -- we should not try to scan
  4558 //   potentially uninitialized objects.
  4559 //
  4560 // Locking strategy: While holding the CGC_lock, we scan over and
  4561 // reset a maximal dirty range of the mod union / card tables, then lock
  4562 // the free_list_lock and bitmap lock to do a full marking, then
  4563 // release these locks; and repeat the cycle. This allows for a
  4564 // certain amount of fairness in the sharing of these locks between
  4565 // the CMS collector on the one hand, and the VM thread and the
  4566 // mutators on the other.
  4568 // NOTE: preclean_mod_union_table() and preclean_card_table()
  4569 // further below are largely identical; if you need to modify
  4570 // one of these methods, please check the other method too.
  4572 size_t CMSCollector::preclean_mod_union_table(
  4573   ConcurrentMarkSweepGeneration* gen,
  4574   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4575   verify_work_stacks_empty();
  4576   verify_overflow_empty();
  4578   // Turn off checking for this method but turn it back on
  4579   // selectively.  There are yield points in this method
  4580   // but it is difficult to turn the checking off just around
  4581   // the yield points.  It is simpler to selectively turn
  4582   // it on.
  4583   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  4585   // strategy: starting with the first card, accumulate contiguous
  4586   // ranges of dirty cards; clear these cards, then scan the region
  4587   // covered by these cards.
  4589   // Since all of the MUT is committed ahead, we can just use
  4590   // that, in case the generations expand while we are precleaning.
  4591   // It might also be fine to just use the committed part of the
  4592   // generation, but we might potentially miss cards when the
  4593   // generation is rapidly expanding while we are in the midst
  4594   // of precleaning.
  4595   HeapWord* startAddr = gen->reserved().start();
  4596   HeapWord* endAddr   = gen->reserved().end();
  4598   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4600   size_t numDirtyCards, cumNumDirtyCards;
  4601   HeapWord *nextAddr, *lastAddr;
  4602   for (cumNumDirtyCards = numDirtyCards = 0,
  4603        nextAddr = lastAddr = startAddr;
  4604        nextAddr < endAddr;
  4605        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4607     ResourceMark rm;
  4608     HandleMark   hm;
  4610     MemRegion dirtyRegion;
  4612       stopTimer();
  4613       // Potential yield point
  4614       CMSTokenSync ts(true);
  4615       startTimer();
  4616       sample_eden();
  4617       // Get dirty region starting at nextOffset (inclusive),
  4618       // simultaneously clearing it.
  4619       dirtyRegion =
  4620         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
  4621       assert(dirtyRegion.start() >= nextAddr,
  4622              "returned region inconsistent?");
  4624     // Remember where the next search should begin.
  4625     // The returned region (if non-empty) is a right open interval,
  4626     // so lastOffset is obtained from the right end of that
  4627     // interval.
  4628     lastAddr = dirtyRegion.end();
  4629     // Should do something more transparent and less hacky XXX
  4630     numDirtyCards =
  4631       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
  4633     // We'll scan the cards in the dirty region (with periodic
  4634     // yields for foreground GC as needed).
  4635     if (!dirtyRegion.is_empty()) {
  4636       assert(numDirtyCards > 0, "consistency check");
  4637       HeapWord* stop_point = NULL;
  4638       stopTimer();
  4639       // Potential yield point
  4640       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
  4641                                bitMapLock());
  4642       startTimer();
  4644         verify_work_stacks_empty();
  4645         verify_overflow_empty();
  4646         sample_eden();
  4647         DEBUG_ONLY(RememberKlassesChecker mx(CMSClassUnloadingEnabled);)
  4648         stop_point =
  4649           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4651       if (stop_point != NULL) {
  4652         // The careful iteration stopped early either because it found an
  4653         // uninitialized object, or because we were in the midst of an
  4654         // "abortable preclean", which should now be aborted. Redirty
  4655         // the bits corresponding to the partially-scanned or unscanned
  4656         // cards. We'll either restart at the next block boundary or
  4657         // abort the preclean.
  4658         assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
  4659                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4660                "Unparsable objects should only be in perm gen.");
  4661         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
  4662         if (should_abort_preclean()) {
  4663           break; // out of preclean loop
  4664         } else {
  4665           // Compute the next address at which preclean should pick up;
  4666           // might need bitMapLock in order to read P-bits.
  4667           lastAddr = next_card_start_after_block(stop_point);
  4670     } else {
  4671       assert(lastAddr == endAddr, "consistency check");
  4672       assert(numDirtyCards == 0, "consistency check");
  4673       break;
  4676   verify_work_stacks_empty();
  4677   verify_overflow_empty();
  4678   return cumNumDirtyCards;
  4681 // NOTE: preclean_mod_union_table() above and preclean_card_table()
  4682 // below are largely identical; if you need to modify
  4683 // one of these methods, please check the other method too.
  4685 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
  4686   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4687   // strategy: it's similar to precleamModUnionTable above, in that
  4688   // we accumulate contiguous ranges of dirty cards, mark these cards
  4689   // precleaned, then scan the region covered by these cards.
  4690   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
  4691   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
  4693   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4695   size_t numDirtyCards, cumNumDirtyCards;
  4696   HeapWord *lastAddr, *nextAddr;
  4698   for (cumNumDirtyCards = numDirtyCards = 0,
  4699        nextAddr = lastAddr = startAddr;
  4700        nextAddr < endAddr;
  4701        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4703     ResourceMark rm;
  4704     HandleMark   hm;
  4706     MemRegion dirtyRegion;
  4708       // See comments in "Precleaning notes" above on why we
  4709       // do this locking. XXX Could the locking overheads be
  4710       // too high when dirty cards are sparse? [I don't think so.]
  4711       stopTimer();
  4712       CMSTokenSync x(true); // is cms thread
  4713       startTimer();
  4714       sample_eden();
  4715       // Get and clear dirty region from card table
  4716       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
  4717                                     MemRegion(nextAddr, endAddr),
  4718                                     true,
  4719                                     CardTableModRefBS::precleaned_card_val());
  4721       assert(dirtyRegion.start() >= nextAddr,
  4722              "returned region inconsistent?");
  4724     lastAddr = dirtyRegion.end();
  4725     numDirtyCards =
  4726       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
  4728     if (!dirtyRegion.is_empty()) {
  4729       stopTimer();
  4730       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
  4731       startTimer();
  4732       sample_eden();
  4733       verify_work_stacks_empty();
  4734       verify_overflow_empty();
  4735       DEBUG_ONLY(RememberKlassesChecker mx(CMSClassUnloadingEnabled);)
  4736       HeapWord* stop_point =
  4737         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4738       if (stop_point != NULL) {
  4739         // The careful iteration stopped early because it found an
  4740         // uninitialized object.  Redirty the bits corresponding to the
  4741         // partially-scanned or unscanned cards, and start again at the
  4742         // next block boundary.
  4743         assert(CMSPermGenPrecleaningEnabled ||
  4744                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4745                "Unparsable objects should only be in perm gen.");
  4746         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
  4747         if (should_abort_preclean()) {
  4748           break; // out of preclean loop
  4749         } else {
  4750           // Compute the next address at which preclean should pick up.
  4751           lastAddr = next_card_start_after_block(stop_point);
  4754     } else {
  4755       break;
  4758   verify_work_stacks_empty();
  4759   verify_overflow_empty();
  4760   return cumNumDirtyCards;
  4763 void CMSCollector::checkpointRootsFinal(bool asynch,
  4764   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4765   assert(_collectorState == FinalMarking, "incorrect state transition?");
  4766   check_correct_thread_executing();
  4767   // world is stopped at this checkpoint
  4768   assert(SafepointSynchronize::is_at_safepoint(),
  4769          "world should be stopped");
  4770   verify_work_stacks_empty();
  4771   verify_overflow_empty();
  4773   SpecializationStats::clear();
  4774   if (PrintGCDetails) {
  4775     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
  4776                         _young_gen->used() / K,
  4777                         _young_gen->capacity() / K);
  4779   if (asynch) {
  4780     if (CMSScavengeBeforeRemark) {
  4781       GenCollectedHeap* gch = GenCollectedHeap::heap();
  4782       // Temporarily set flag to false, GCH->do_collection will
  4783       // expect it to be false and set to true
  4784       FlagSetting fl(gch->_is_gc_active, false);
  4785       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
  4786         PrintGCDetails && Verbose, true, gclog_or_tty);)
  4787       int level = _cmsGen->level() - 1;
  4788       if (level >= 0) {
  4789         gch->do_collection(true,        // full (i.e. force, see below)
  4790                            false,       // !clear_all_soft_refs
  4791                            0,           // size
  4792                            false,       // is_tlab
  4793                            level        // max_level
  4794                           );
  4797     FreelistLocker x(this);
  4798     MutexLockerEx y(bitMapLock(),
  4799                     Mutex::_no_safepoint_check_flag);
  4800     assert(!init_mark_was_synchronous, "but that's impossible!");
  4801     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
  4802   } else {
  4803     // already have all the locks
  4804     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
  4805                              init_mark_was_synchronous);
  4807   verify_work_stacks_empty();
  4808   verify_overflow_empty();
  4809   SpecializationStats::print();
  4812 void CMSCollector::checkpointRootsFinalWork(bool asynch,
  4813   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4815   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
  4817   assert(haveFreelistLocks(), "must have free list locks");
  4818   assert_lock_strong(bitMapLock());
  4820   if (UseAdaptiveSizePolicy) {
  4821     size_policy()->checkpoint_roots_final_begin();
  4824   ResourceMark rm;
  4825   HandleMark   hm;
  4827   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4829   if (should_unload_classes()) {
  4830     CodeCache::gc_prologue();
  4832   assert(haveFreelistLocks(), "must have free list locks");
  4833   assert_lock_strong(bitMapLock());
  4835   DEBUG_ONLY(RememberKlassesChecker fmx(CMSClassUnloadingEnabled);)
  4836   if (!init_mark_was_synchronous) {
  4837     // We might assume that we need not fill TLAB's when
  4838     // CMSScavengeBeforeRemark is set, because we may have just done
  4839     // a scavenge which would have filled all TLAB's -- and besides
  4840     // Eden would be empty. This however may not always be the case --
  4841     // for instance although we asked for a scavenge, it may not have
  4842     // happened because of a JNI critical section. We probably need
  4843     // a policy for deciding whether we can in that case wait until
  4844     // the critical section releases and then do the remark following
  4845     // the scavenge, and skip it here. In the absence of that policy,
  4846     // or of an indication of whether the scavenge did indeed occur,
  4847     // we cannot rely on TLAB's having been filled and must do
  4848     // so here just in case a scavenge did not happen.
  4849     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
  4850     // Update the saved marks which may affect the root scans.
  4851     gch->save_marks();
  4854       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  4856       // Note on the role of the mod union table:
  4857       // Since the marker in "markFromRoots" marks concurrently with
  4858       // mutators, it is possible for some reachable objects not to have been
  4859       // scanned. For instance, an only reference to an object A was
  4860       // placed in object B after the marker scanned B. Unless B is rescanned,
  4861       // A would be collected. Such updates to references in marked objects
  4862       // are detected via the mod union table which is the set of all cards
  4863       // dirtied since the first checkpoint in this GC cycle and prior to
  4864       // the most recent young generation GC, minus those cleaned up by the
  4865       // concurrent precleaning.
  4866       if (CMSParallelRemarkEnabled && ParallelGCThreads > 0) {
  4867         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
  4868         do_remark_parallel();
  4869       } else {
  4870         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
  4871                     gclog_or_tty);
  4872         do_remark_non_parallel();
  4875   } else {
  4876     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
  4877     // The initial mark was stop-world, so there's no rescanning to
  4878     // do; go straight on to the next step below.
  4880   verify_work_stacks_empty();
  4881   verify_overflow_empty();
  4884     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
  4885     refProcessingWork(asynch, clear_all_soft_refs);
  4887   verify_work_stacks_empty();
  4888   verify_overflow_empty();
  4890   if (should_unload_classes()) {
  4891     CodeCache::gc_epilogue();
  4894   // If we encountered any (marking stack / work queue) overflow
  4895   // events during the current CMS cycle, take appropriate
  4896   // remedial measures, where possible, so as to try and avoid
  4897   // recurrence of that condition.
  4898   assert(_markStack.isEmpty(), "No grey objects");
  4899   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
  4900                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
  4901   if (ser_ovflw > 0) {
  4902     if (PrintCMSStatistics != 0) {
  4903       gclog_or_tty->print_cr("Marking stack overflow (benign) "
  4904         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
  4905         ", kac_preclean="SIZE_FORMAT")",
  4906         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
  4907         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
  4909     _markStack.expand();
  4910     _ser_pmc_remark_ovflw = 0;
  4911     _ser_pmc_preclean_ovflw = 0;
  4912     _ser_kac_preclean_ovflw = 0;
  4913     _ser_kac_ovflw = 0;
  4915   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
  4916     if (PrintCMSStatistics != 0) {
  4917       gclog_or_tty->print_cr("Work queue overflow (benign) "
  4918         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  4919         _par_pmc_remark_ovflw, _par_kac_ovflw);
  4921     _par_pmc_remark_ovflw = 0;
  4922     _par_kac_ovflw = 0;
  4924   if (PrintCMSStatistics != 0) {
  4925      if (_markStack._hit_limit > 0) {
  4926        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
  4927                               _markStack._hit_limit);
  4929      if (_markStack._failed_double > 0) {
  4930        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
  4931                               " current capacity "SIZE_FORMAT,
  4932                               _markStack._failed_double,
  4933                               _markStack.capacity());
  4936   _markStack._hit_limit = 0;
  4937   _markStack._failed_double = 0;
  4939   // Check that all the klasses have been checked
  4940   assert(_revisitStack.isEmpty(), "Not all klasses revisited");
  4942   if ((VerifyAfterGC || VerifyDuringGC) &&
  4943       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  4944     verify_after_remark();
  4947   // Change under the freelistLocks.
  4948   _collectorState = Sweeping;
  4949   // Call isAllClear() under bitMapLock
  4950   assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
  4951     " final marking");
  4952   if (UseAdaptiveSizePolicy) {
  4953     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
  4957 // Parallel remark task
  4958 class CMSParRemarkTask: public AbstractGangTask {
  4959   CMSCollector* _collector;
  4960   WorkGang*     _workers;
  4961   int           _n_workers;
  4962   CompactibleFreeListSpace* _cms_space;
  4963   CompactibleFreeListSpace* _perm_space;
  4965   // The per-thread work queues, available here for stealing.
  4966   OopTaskQueueSet*       _task_queues;
  4967   ParallelTaskTerminator _term;
  4969  public:
  4970   CMSParRemarkTask(CMSCollector* collector,
  4971                    CompactibleFreeListSpace* cms_space,
  4972                    CompactibleFreeListSpace* perm_space,
  4973                    int n_workers, WorkGang* workers,
  4974                    OopTaskQueueSet* task_queues):
  4975     AbstractGangTask("Rescan roots and grey objects in parallel"),
  4976     _collector(collector),
  4977     _cms_space(cms_space), _perm_space(perm_space),
  4978     _n_workers(n_workers),
  4979     _workers(workers),
  4980     _task_queues(task_queues),
  4981     _term(workers->total_workers(), task_queues) { }
  4983   OopTaskQueueSet* task_queues() { return _task_queues; }
  4985   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  4987   ParallelTaskTerminator* terminator() { return &_term; }
  4989   void work(int i);
  4991  private:
  4992   // Work method in support of parallel rescan ... of young gen spaces
  4993   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
  4994                              ContiguousSpace* space,
  4995                              HeapWord** chunk_array, size_t chunk_top);
  4997   // ... of  dirty cards in old space
  4998   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
  4999                                   Par_MarkRefsIntoAndScanClosure* cl);
  5001   // ... work stealing for the above
  5002   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
  5003 };
  5005 void CMSParRemarkTask::work(int i) {
  5006   elapsedTimer _timer;
  5007   ResourceMark rm;
  5008   HandleMark   hm;
  5010   // ---------- rescan from roots --------------
  5011   _timer.start();
  5012   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5013   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
  5014     _collector->_span, _collector->ref_processor(),
  5015     &(_collector->_markBitMap),
  5016     work_queue(i), &(_collector->_revisitStack));
  5018   // Rescan young gen roots first since these are likely
  5019   // coarsely partitioned and may, on that account, constitute
  5020   // the critical path; thus, it's best to start off that
  5021   // work first.
  5022   // ---------- young gen roots --------------
  5024     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
  5025     EdenSpace* eden_space = dng->eden();
  5026     ContiguousSpace* from_space = dng->from();
  5027     ContiguousSpace* to_space   = dng->to();
  5029     HeapWord** eca = _collector->_eden_chunk_array;
  5030     size_t     ect = _collector->_eden_chunk_index;
  5031     HeapWord** sca = _collector->_survivor_chunk_array;
  5032     size_t     sct = _collector->_survivor_chunk_index;
  5034     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
  5035     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
  5037     do_young_space_rescan(i, &par_mrias_cl, to_space, NULL, 0);
  5038     do_young_space_rescan(i, &par_mrias_cl, from_space, sca, sct);
  5039     do_young_space_rescan(i, &par_mrias_cl, eden_space, eca, ect);
  5041     _timer.stop();
  5042     if (PrintCMSStatistics != 0) {
  5043       gclog_or_tty->print_cr(
  5044         "Finished young gen rescan work in %dth thread: %3.3f sec",
  5045         i, _timer.seconds());
  5049   // ---------- remaining roots --------------
  5050   _timer.reset();
  5051   _timer.start();
  5052   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
  5053                                 false,     // yg was scanned above
  5054                                 false,     // this is parallel code
  5055                                 true,      // collecting perm gen
  5056                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
  5057                                 &par_mrias_cl,
  5058                                 true,   // walk all of code cache if (so & SO_CodeCache)
  5059                                 NULL);
  5060   assert(_collector->should_unload_classes()
  5061          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
  5062          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
  5063   _timer.stop();
  5064   if (PrintCMSStatistics != 0) {
  5065     gclog_or_tty->print_cr(
  5066       "Finished remaining root rescan work in %dth thread: %3.3f sec",
  5067       i, _timer.seconds());
  5070   // ---------- rescan dirty cards ------------
  5071   _timer.reset();
  5072   _timer.start();
  5074   // Do the rescan tasks for each of the two spaces
  5075   // (cms_space and perm_space) in turn.
  5076   do_dirty_card_rescan_tasks(_cms_space, i, &par_mrias_cl);
  5077   do_dirty_card_rescan_tasks(_perm_space, i, &par_mrias_cl);
  5078   _timer.stop();
  5079   if (PrintCMSStatistics != 0) {
  5080     gclog_or_tty->print_cr(
  5081       "Finished dirty card rescan work in %dth thread: %3.3f sec",
  5082       i, _timer.seconds());
  5085   // ---------- steal work from other threads ...
  5086   // ---------- ... and drain overflow list.
  5087   _timer.reset();
  5088   _timer.start();
  5089   do_work_steal(i, &par_mrias_cl, _collector->hash_seed(i));
  5090   _timer.stop();
  5091   if (PrintCMSStatistics != 0) {
  5092     gclog_or_tty->print_cr(
  5093       "Finished work stealing in %dth thread: %3.3f sec",
  5094       i, _timer.seconds());
  5098 void
  5099 CMSParRemarkTask::do_young_space_rescan(int i,
  5100   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
  5101   HeapWord** chunk_array, size_t chunk_top) {
  5102   // Until all tasks completed:
  5103   // . claim an unclaimed task
  5104   // . compute region boundaries corresponding to task claimed
  5105   //   using chunk_array
  5106   // . par_oop_iterate(cl) over that region
  5108   ResourceMark rm;
  5109   HandleMark   hm;
  5111   SequentialSubTasksDone* pst = space->par_seq_tasks();
  5112   assert(pst->valid(), "Uninitialized use?");
  5114   int nth_task = 0;
  5115   int n_tasks  = pst->n_tasks();
  5117   HeapWord *start, *end;
  5118   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5119     // We claimed task # nth_task; compute its boundaries.
  5120     if (chunk_top == 0) {  // no samples were taken
  5121       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
  5122       start = space->bottom();
  5123       end   = space->top();
  5124     } else if (nth_task == 0) {
  5125       start = space->bottom();
  5126       end   = chunk_array[nth_task];
  5127     } else if (nth_task < (jint)chunk_top) {
  5128       assert(nth_task >= 1, "Control point invariant");
  5129       start = chunk_array[nth_task - 1];
  5130       end   = chunk_array[nth_task];
  5131     } else {
  5132       assert(nth_task == (jint)chunk_top, "Control point invariant");
  5133       start = chunk_array[chunk_top - 1];
  5134       end   = space->top();
  5136     MemRegion mr(start, end);
  5137     // Verify that mr is in space
  5138     assert(mr.is_empty() || space->used_region().contains(mr),
  5139            "Should be in space");
  5140     // Verify that "start" is an object boundary
  5141     assert(mr.is_empty() || oop(mr.start())->is_oop(),
  5142            "Should be an oop");
  5143     space->par_oop_iterate(mr, cl);
  5145   pst->all_tasks_completed();
  5148 void
  5149 CMSParRemarkTask::do_dirty_card_rescan_tasks(
  5150   CompactibleFreeListSpace* sp, int i,
  5151   Par_MarkRefsIntoAndScanClosure* cl) {
  5152   // Until all tasks completed:
  5153   // . claim an unclaimed task
  5154   // . compute region boundaries corresponding to task claimed
  5155   // . transfer dirty bits ct->mut for that region
  5156   // . apply rescanclosure to dirty mut bits for that region
  5158   ResourceMark rm;
  5159   HandleMark   hm;
  5161   OopTaskQueue* work_q = work_queue(i);
  5162   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
  5163   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
  5164   // CAUTION: This closure has state that persists across calls to
  5165   // the work method dirty_range_iterate_clear() in that it has
  5166   // imbedded in it a (subtype of) UpwardsObjectClosure. The
  5167   // use of that state in the imbedded UpwardsObjectClosure instance
  5168   // assumes that the cards are always iterated (even if in parallel
  5169   // by several threads) in monotonically increasing order per each
  5170   // thread. This is true of the implementation below which picks
  5171   // card ranges (chunks) in monotonically increasing order globally
  5172   // and, a-fortiori, in monotonically increasing order per thread
  5173   // (the latter order being a subsequence of the former).
  5174   // If the work code below is ever reorganized into a more chaotic
  5175   // work-partitioning form than the current "sequential tasks"
  5176   // paradigm, the use of that persistent state will have to be
  5177   // revisited and modified appropriately. See also related
  5178   // bug 4756801 work on which should examine this code to make
  5179   // sure that the changes there do not run counter to the
  5180   // assumptions made here and necessary for correctness and
  5181   // efficiency. Note also that this code might yield inefficient
  5182   // behaviour in the case of very large objects that span one or
  5183   // more work chunks. Such objects would potentially be scanned
  5184   // several times redundantly. Work on 4756801 should try and
  5185   // address that performance anomaly if at all possible. XXX
  5186   MemRegion  full_span  = _collector->_span;
  5187   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
  5188   CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
  5189   MarkFromDirtyCardsClosure
  5190     greyRescanClosure(_collector, full_span, // entire span of interest
  5191                       sp, bm, work_q, rs, cl);
  5193   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  5194   assert(pst->valid(), "Uninitialized use?");
  5195   int nth_task = 0;
  5196   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
  5197   MemRegion span = sp->used_region();
  5198   HeapWord* start_addr = span.start();
  5199   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
  5200                                            alignment);
  5201   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
  5202   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
  5203          start_addr, "Check alignment");
  5204   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
  5205          chunk_size, "Check alignment");
  5207   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5208     // Having claimed the nth_task, compute corresponding mem-region,
  5209     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
  5210     // The alignment restriction ensures that we do not need any
  5211     // synchronization with other gang-workers while setting or
  5212     // clearing bits in thus chunk of the MUT.
  5213     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
  5214                                     start_addr + (nth_task+1)*chunk_size);
  5215     // The last chunk's end might be way beyond end of the
  5216     // used region. In that case pull back appropriately.
  5217     if (this_span.end() > end_addr) {
  5218       this_span.set_end(end_addr);
  5219       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
  5221     // Iterate over the dirty cards covering this chunk, marking them
  5222     // precleaned, and setting the corresponding bits in the mod union
  5223     // table. Since we have been careful to partition at Card and MUT-word
  5224     // boundaries no synchronization is needed between parallel threads.
  5225     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
  5226                                                  &modUnionClosure);
  5228     // Having transferred these marks into the modUnionTable,
  5229     // rescan the marked objects on the dirty cards in the modUnionTable.
  5230     // Even if this is at a synchronous collection, the initial marking
  5231     // may have been done during an asynchronous collection so there
  5232     // may be dirty bits in the mod-union table.
  5233     _collector->_modUnionTable.dirty_range_iterate_clear(
  5234                   this_span, &greyRescanClosure);
  5235     _collector->_modUnionTable.verifyNoOneBitsInRange(
  5236                                  this_span.start(),
  5237                                  this_span.end());
  5239   pst->all_tasks_completed();  // declare that i am done
  5242 // . see if we can share work_queues with ParNew? XXX
  5243 void
  5244 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
  5245                                 int* seed) {
  5246   OopTaskQueue* work_q = work_queue(i);
  5247   NOT_PRODUCT(int num_steals = 0;)
  5248   oop obj_to_scan;
  5249   CMSBitMap* bm = &(_collector->_markBitMap);
  5251   while (true) {
  5252     // Completely finish any left over work from (an) earlier round(s)
  5253     cl->trim_queue(0);
  5254     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  5255                                          (size_t)ParGCDesiredObjsFromOverflowList);
  5256     // Now check if there's any work in the overflow list
  5257     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5258                                                 work_q)) {
  5259       // found something in global overflow list;
  5260       // not yet ready to go stealing work from others.
  5261       // We'd like to assert(work_q->size() != 0, ...)
  5262       // because we just took work from the overflow list,
  5263       // but of course we can't since all of that could have
  5264       // been already stolen from us.
  5265       // "He giveth and He taketh away."
  5266       continue;
  5268     // Verify that we have no work before we resort to stealing
  5269     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5270     // Try to steal from other queues that have work
  5271     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5272       NOT_PRODUCT(num_steals++;)
  5273       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5274       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5275       // Do scanning work
  5276       obj_to_scan->oop_iterate(cl);
  5277       // Loop around, finish this work, and try to steal some more
  5278     } else if (terminator()->offer_termination()) {
  5279         break;  // nirvana from the infinite cycle
  5282   NOT_PRODUCT(
  5283     if (PrintCMSStatistics != 0) {
  5284       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5287   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
  5288          "Else our work is not yet done");
  5291 // Return a thread-local PLAB recording array, as appropriate.
  5292 void* CMSCollector::get_data_recorder(int thr_num) {
  5293   if (_survivor_plab_array != NULL &&
  5294       (CMSPLABRecordAlways ||
  5295        (_collectorState > Marking && _collectorState < FinalMarking))) {
  5296     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
  5297     ChunkArray* ca = &_survivor_plab_array[thr_num];
  5298     ca->reset();   // clear it so that fresh data is recorded
  5299     return (void*) ca;
  5300   } else {
  5301     return NULL;
  5305 // Reset all the thread-local PLAB recording arrays
  5306 void CMSCollector::reset_survivor_plab_arrays() {
  5307   for (uint i = 0; i < ParallelGCThreads; i++) {
  5308     _survivor_plab_array[i].reset();
  5312 // Merge the per-thread plab arrays into the global survivor chunk
  5313 // array which will provide the partitioning of the survivor space
  5314 // for CMS rescan.
  5315 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv) {
  5316   assert(_survivor_plab_array  != NULL, "Error");
  5317   assert(_survivor_chunk_array != NULL, "Error");
  5318   assert(_collectorState == FinalMarking, "Error");
  5319   for (uint j = 0; j < ParallelGCThreads; j++) {
  5320     _cursor[j] = 0;
  5322   HeapWord* top = surv->top();
  5323   size_t i;
  5324   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
  5325     HeapWord* min_val = top;          // Higher than any PLAB address
  5326     uint      min_tid = 0;            // position of min_val this round
  5327     for (uint j = 0; j < ParallelGCThreads; j++) {
  5328       ChunkArray* cur_sca = &_survivor_plab_array[j];
  5329       if (_cursor[j] == cur_sca->end()) {
  5330         continue;
  5332       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
  5333       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
  5334       assert(surv->used_region().contains(cur_val), "Out of bounds value");
  5335       if (cur_val < min_val) {
  5336         min_tid = j;
  5337         min_val = cur_val;
  5338       } else {
  5339         assert(cur_val < top, "All recorded addresses should be less");
  5342     // At this point min_val and min_tid are respectively
  5343     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
  5344     // and the thread (j) that witnesses that address.
  5345     // We record this address in the _survivor_chunk_array[i]
  5346     // and increment _cursor[min_tid] prior to the next round i.
  5347     if (min_val == top) {
  5348       break;
  5350     _survivor_chunk_array[i] = min_val;
  5351     _cursor[min_tid]++;
  5353   // We are all done; record the size of the _survivor_chunk_array
  5354   _survivor_chunk_index = i; // exclusive: [0, i)
  5355   if (PrintCMSStatistics > 0) {
  5356     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
  5358   // Verify that we used up all the recorded entries
  5359   #ifdef ASSERT
  5360     size_t total = 0;
  5361     for (uint j = 0; j < ParallelGCThreads; j++) {
  5362       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
  5363       total += _cursor[j];
  5365     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
  5366     // Check that the merged array is in sorted order
  5367     if (total > 0) {
  5368       for (size_t i = 0; i < total - 1; i++) {
  5369         if (PrintCMSStatistics > 0) {
  5370           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
  5371                               i, _survivor_chunk_array[i]);
  5373         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
  5374                "Not sorted");
  5377   #endif // ASSERT
  5380 // Set up the space's par_seq_tasks structure for work claiming
  5381 // for parallel rescan of young gen.
  5382 // See ParRescanTask where this is currently used.
  5383 void
  5384 CMSCollector::
  5385 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
  5386   assert(n_threads > 0, "Unexpected n_threads argument");
  5387   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  5389   // Eden space
  5391     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
  5392     assert(!pst->valid(), "Clobbering existing data?");
  5393     // Each valid entry in [0, _eden_chunk_index) represents a task.
  5394     size_t n_tasks = _eden_chunk_index + 1;
  5395     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
  5396     pst->set_par_threads(n_threads);
  5397     pst->set_n_tasks((int)n_tasks);
  5400   // Merge the survivor plab arrays into _survivor_chunk_array
  5401   if (_survivor_plab_array != NULL) {
  5402     merge_survivor_plab_arrays(dng->from());
  5403   } else {
  5404     assert(_survivor_chunk_index == 0, "Error");
  5407   // To space
  5409     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
  5410     assert(!pst->valid(), "Clobbering existing data?");
  5411     pst->set_par_threads(n_threads);
  5412     pst->set_n_tasks(1);
  5413     assert(pst->valid(), "Error");
  5416   // From space
  5418     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
  5419     assert(!pst->valid(), "Clobbering existing data?");
  5420     size_t n_tasks = _survivor_chunk_index + 1;
  5421     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
  5422     pst->set_par_threads(n_threads);
  5423     pst->set_n_tasks((int)n_tasks);
  5424     assert(pst->valid(), "Error");
  5428 // Parallel version of remark
  5429 void CMSCollector::do_remark_parallel() {
  5430   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5431   WorkGang* workers = gch->workers();
  5432   assert(workers != NULL, "Need parallel worker threads.");
  5433   int n_workers = workers->total_workers();
  5434   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  5435   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  5437   CMSParRemarkTask tsk(this,
  5438     cms_space, perm_space,
  5439     n_workers, workers, task_queues());
  5441   // Set up for parallel process_strong_roots work.
  5442   gch->set_par_threads(n_workers);
  5443   // We won't be iterating over the cards in the card table updating
  5444   // the younger_gen cards, so we shouldn't call the following else
  5445   // the verification code as well as subsequent younger_refs_iterate
  5446   // code would get confused. XXX
  5447   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
  5449   // The young gen rescan work will not be done as part of
  5450   // process_strong_roots (which currently doesn't knw how to
  5451   // parallelize such a scan), but rather will be broken up into
  5452   // a set of parallel tasks (via the sampling that the [abortable]
  5453   // preclean phase did of EdenSpace, plus the [two] tasks of
  5454   // scanning the [two] survivor spaces. Further fine-grain
  5455   // parallelization of the scanning of the survivor spaces
  5456   // themselves, and of precleaning of the younger gen itself
  5457   // is deferred to the future.
  5458   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
  5460   // The dirty card rescan work is broken up into a "sequence"
  5461   // of parallel tasks (per constituent space) that are dynamically
  5462   // claimed by the parallel threads.
  5463   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5464   perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5466   // It turns out that even when we're using 1 thread, doing the work in a
  5467   // separate thread causes wide variance in run times.  We can't help this
  5468   // in the multi-threaded case, but we special-case n=1 here to get
  5469   // repeatable measurements of the 1-thread overhead of the parallel code.
  5470   if (n_workers > 1) {
  5471     // Make refs discovery MT-safe
  5472     ReferenceProcessorMTMutator mt(ref_processor(), true);
  5473     GenCollectedHeap::StrongRootsScope srs(gch);
  5474     workers->run_task(&tsk);
  5475   } else {
  5476     GenCollectedHeap::StrongRootsScope srs(gch);
  5477     tsk.work(0);
  5479   gch->set_par_threads(0);  // 0 ==> non-parallel.
  5480   // restore, single-threaded for now, any preserved marks
  5481   // as a result of work_q overflow
  5482   restore_preserved_marks_if_any();
  5485 // Non-parallel version of remark
  5486 void CMSCollector::do_remark_non_parallel() {
  5487   ResourceMark rm;
  5488   HandleMark   hm;
  5489   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5490   MarkRefsIntoAndScanClosure
  5491     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  5492              &_markStack, &_revisitStack, this,
  5493              false /* should_yield */, false /* not precleaning */);
  5494   MarkFromDirtyCardsClosure
  5495     markFromDirtyCardsClosure(this, _span,
  5496                               NULL,  // space is set further below
  5497                               &_markBitMap, &_markStack, &_revisitStack,
  5498                               &mrias_cl);
  5500     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
  5501     // Iterate over the dirty cards, setting the corresponding bits in the
  5502     // mod union table.
  5504       ModUnionClosure modUnionClosure(&_modUnionTable);
  5505       _ct->ct_bs()->dirty_card_iterate(
  5506                       _cmsGen->used_region(),
  5507                       &modUnionClosure);
  5508       _ct->ct_bs()->dirty_card_iterate(
  5509                       _permGen->used_region(),
  5510                       &modUnionClosure);
  5512     // Having transferred these marks into the modUnionTable, we just need
  5513     // to rescan the marked objects on the dirty cards in the modUnionTable.
  5514     // The initial marking may have been done during an asynchronous
  5515     // collection so there may be dirty bits in the mod-union table.
  5516     const int alignment =
  5517       CardTableModRefBS::card_size * BitsPerWord;
  5519       // ... First handle dirty cards in CMS gen
  5520       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
  5521       MemRegion ur = _cmsGen->used_region();
  5522       HeapWord* lb = ur.start();
  5523       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5524       MemRegion cms_span(lb, ub);
  5525       _modUnionTable.dirty_range_iterate_clear(cms_span,
  5526                                                &markFromDirtyCardsClosure);
  5527       verify_work_stacks_empty();
  5528       if (PrintCMSStatistics != 0) {
  5529         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
  5530           markFromDirtyCardsClosure.num_dirty_cards());
  5534       // .. and then repeat for dirty cards in perm gen
  5535       markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
  5536       MemRegion ur = _permGen->used_region();
  5537       HeapWord* lb = ur.start();
  5538       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5539       MemRegion perm_span(lb, ub);
  5540       _modUnionTable.dirty_range_iterate_clear(perm_span,
  5541                                                &markFromDirtyCardsClosure);
  5542       verify_work_stacks_empty();
  5543       if (PrintCMSStatistics != 0) {
  5544         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
  5545           markFromDirtyCardsClosure.num_dirty_cards());
  5549   if (VerifyDuringGC &&
  5550       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  5551     HandleMark hm;  // Discard invalid handles created during verification
  5552     Universe::verify(true);
  5555     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
  5557     verify_work_stacks_empty();
  5559     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  5560     GenCollectedHeap::StrongRootsScope srs(gch);
  5561     gch->gen_process_strong_roots(_cmsGen->level(),
  5562                                   true,  // younger gens as roots
  5563                                   false, // use the local StrongRootsScope
  5564                                   true,  // collecting perm gen
  5565                                   SharedHeap::ScanningOption(roots_scanning_options()),
  5566                                   &mrias_cl,
  5567                                   true,   // walk code active on stacks
  5568                                   NULL);
  5569     assert(should_unload_classes()
  5570            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
  5571            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
  5573   verify_work_stacks_empty();
  5574   // Restore evacuated mark words, if any, used for overflow list links
  5575   if (!CMSOverflowEarlyRestoration) {
  5576     restore_preserved_marks_if_any();
  5578   verify_overflow_empty();
  5581 ////////////////////////////////////////////////////////
  5582 // Parallel Reference Processing Task Proxy Class
  5583 ////////////////////////////////////////////////////////
  5584 class CMSRefProcTaskProxy: public AbstractGangTask {
  5585   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5586   CMSCollector*          _collector;
  5587   CMSBitMap*             _mark_bit_map;
  5588   const MemRegion        _span;
  5589   OopTaskQueueSet*       _task_queues;
  5590   ParallelTaskTerminator _term;
  5591   ProcessTask&           _task;
  5593 public:
  5594   CMSRefProcTaskProxy(ProcessTask&     task,
  5595                       CMSCollector*    collector,
  5596                       const MemRegion& span,
  5597                       CMSBitMap*       mark_bit_map,
  5598                       int              total_workers,
  5599                       OopTaskQueueSet* task_queues):
  5600     AbstractGangTask("Process referents by policy in parallel"),
  5601     _task(task),
  5602     _collector(collector), _span(span), _mark_bit_map(mark_bit_map),
  5603     _task_queues(task_queues),
  5604     _term(total_workers, task_queues)
  5606       assert(_collector->_span.equals(_span) && !_span.is_empty(),
  5607              "Inconsistency in _span");
  5610   OopTaskQueueSet* task_queues() { return _task_queues; }
  5612   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  5614   ParallelTaskTerminator* terminator() { return &_term; }
  5616   void do_work_steal(int i,
  5617                      CMSParDrainMarkingStackClosure* drain,
  5618                      CMSParKeepAliveClosure* keep_alive,
  5619                      int* seed);
  5621   virtual void work(int i);
  5622 };
  5624 void CMSRefProcTaskProxy::work(int i) {
  5625   assert(_collector->_span.equals(_span), "Inconsistency in _span");
  5626   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
  5627                                         _mark_bit_map,
  5628                                         &_collector->_revisitStack,
  5629                                         work_queue(i));
  5630   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
  5631                                                  _mark_bit_map,
  5632                                                  &_collector->_revisitStack,
  5633                                                  work_queue(i));
  5634   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
  5635   _task.work(i, is_alive_closure, par_keep_alive, par_drain_stack);
  5636   if (_task.marks_oops_alive()) {
  5637     do_work_steal(i, &par_drain_stack, &par_keep_alive,
  5638                   _collector->hash_seed(i));
  5640   assert(work_queue(i)->size() == 0, "work_queue should be empty");
  5641   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
  5644 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
  5645   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5646   EnqueueTask& _task;
  5648 public:
  5649   CMSRefEnqueueTaskProxy(EnqueueTask& task)
  5650     : AbstractGangTask("Enqueue reference objects in parallel"),
  5651       _task(task)
  5652   { }
  5654   virtual void work(int i)
  5656     _task.work(i);
  5658 };
  5660 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
  5661   MemRegion span, CMSBitMap* bit_map, CMSMarkStack* revisit_stack,
  5662   OopTaskQueue* work_queue):
  5663    Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
  5664    _span(span),
  5665    _bit_map(bit_map),
  5666    _work_queue(work_queue),
  5667    _mark_and_push(collector, span, bit_map, revisit_stack, work_queue),
  5668    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  5669                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
  5670 { }
  5672 // . see if we can share work_queues with ParNew? XXX
  5673 void CMSRefProcTaskProxy::do_work_steal(int i,
  5674   CMSParDrainMarkingStackClosure* drain,
  5675   CMSParKeepAliveClosure* keep_alive,
  5676   int* seed) {
  5677   OopTaskQueue* work_q = work_queue(i);
  5678   NOT_PRODUCT(int num_steals = 0;)
  5679   oop obj_to_scan;
  5681   while (true) {
  5682     // Completely finish any left over work from (an) earlier round(s)
  5683     drain->trim_queue(0);
  5684     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  5685                                          (size_t)ParGCDesiredObjsFromOverflowList);
  5686     // Now check if there's any work in the overflow list
  5687     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5688                                                 work_q)) {
  5689       // Found something in global overflow list;
  5690       // not yet ready to go stealing work from others.
  5691       // We'd like to assert(work_q->size() != 0, ...)
  5692       // because we just took work from the overflow list,
  5693       // but of course we can't, since all of that might have
  5694       // been already stolen from us.
  5695       continue;
  5697     // Verify that we have no work before we resort to stealing
  5698     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5699     // Try to steal from other queues that have work
  5700     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5701       NOT_PRODUCT(num_steals++;)
  5702       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5703       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5704       // Do scanning work
  5705       obj_to_scan->oop_iterate(keep_alive);
  5706       // Loop around, finish this work, and try to steal some more
  5707     } else if (terminator()->offer_termination()) {
  5708       break;  // nirvana from the infinite cycle
  5711   NOT_PRODUCT(
  5712     if (PrintCMSStatistics != 0) {
  5713       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5718 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
  5720   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5721   WorkGang* workers = gch->workers();
  5722   assert(workers != NULL, "Need parallel worker threads.");
  5723   int n_workers = workers->total_workers();
  5724   CMSRefProcTaskProxy rp_task(task, &_collector,
  5725                               _collector.ref_processor()->span(),
  5726                               _collector.markBitMap(),
  5727                               n_workers, _collector.task_queues());
  5728   workers->run_task(&rp_task);
  5731 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
  5734   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5735   WorkGang* workers = gch->workers();
  5736   assert(workers != NULL, "Need parallel worker threads.");
  5737   CMSRefEnqueueTaskProxy enq_task(task);
  5738   workers->run_task(&enq_task);
  5741 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
  5743   ResourceMark rm;
  5744   HandleMark   hm;
  5746   ReferenceProcessor* rp = ref_processor();
  5747   assert(rp->span().equals(_span), "Spans should be equal");
  5748   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
  5749   // Process weak references.
  5750   rp->setup_policy(clear_all_soft_refs);
  5751   verify_work_stacks_empty();
  5753   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
  5754                                           &_markStack, &_revisitStack,
  5755                                           false /* !preclean */);
  5756   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
  5757                                 _span, &_markBitMap, &_markStack,
  5758                                 &cmsKeepAliveClosure, false /* !preclean */);
  5760     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
  5761     if (rp->processing_is_mt()) {
  5762       CMSRefProcTaskExecutor task_executor(*this);
  5763       rp->process_discovered_references(&_is_alive_closure,
  5764                                         &cmsKeepAliveClosure,
  5765                                         &cmsDrainMarkingStackClosure,
  5766                                         &task_executor);
  5767     } else {
  5768       rp->process_discovered_references(&_is_alive_closure,
  5769                                         &cmsKeepAliveClosure,
  5770                                         &cmsDrainMarkingStackClosure,
  5771                                         NULL);
  5773     verify_work_stacks_empty();
  5776   if (should_unload_classes()) {
  5778       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
  5780       // Follow SystemDictionary roots and unload classes
  5781       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
  5783       // Follow CodeCache roots and unload any methods marked for unloading
  5784       CodeCache::do_unloading(&_is_alive_closure,
  5785                               &cmsKeepAliveClosure,
  5786                               purged_class);
  5788       cmsDrainMarkingStackClosure.do_void();
  5789       verify_work_stacks_empty();
  5791       // Update subklass/sibling/implementor links in KlassKlass descendants
  5792       assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
  5793       oop k;
  5794       while ((k = _revisitStack.pop()) != NULL) {
  5795         ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
  5796                        &_is_alive_closure,
  5797                        &cmsKeepAliveClosure);
  5799       assert(!ClassUnloading ||
  5800              (_markStack.isEmpty() && overflow_list_is_empty()),
  5801              "Should not have found new reachable objects");
  5802       assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
  5803       cmsDrainMarkingStackClosure.do_void();
  5804       verify_work_stacks_empty();
  5808       TraceTime t("scrub symbol & string tables", PrintGCDetails, false, gclog_or_tty);
  5809       // Now clean up stale oops in SymbolTable and StringTable
  5810       SymbolTable::unlink(&_is_alive_closure);
  5811       StringTable::unlink(&_is_alive_closure);
  5815   verify_work_stacks_empty();
  5816   // Restore any preserved marks as a result of mark stack or
  5817   // work queue overflow
  5818   restore_preserved_marks_if_any();  // done single-threaded for now
  5820   rp->set_enqueuing_is_done(true);
  5821   if (rp->processing_is_mt()) {
  5822     CMSRefProcTaskExecutor task_executor(*this);
  5823     rp->enqueue_discovered_references(&task_executor);
  5824   } else {
  5825     rp->enqueue_discovered_references(NULL);
  5827   rp->verify_no_references_recorded();
  5828   assert(!rp->discovery_enabled(), "should have been disabled");
  5830   // JVMTI object tagging is based on JNI weak refs. If any of these
  5831   // refs were cleared then JVMTI needs to update its maps and
  5832   // maybe post ObjectFrees to agents.
  5833   JvmtiExport::cms_ref_processing_epilogue();
  5836 #ifndef PRODUCT
  5837 void CMSCollector::check_correct_thread_executing() {
  5838   Thread* t = Thread::current();
  5839   // Only the VM thread or the CMS thread should be here.
  5840   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
  5841          "Unexpected thread type");
  5842   // If this is the vm thread, the foreground process
  5843   // should not be waiting.  Note that _foregroundGCIsActive is
  5844   // true while the foreground collector is waiting.
  5845   if (_foregroundGCShouldWait) {
  5846     // We cannot be the VM thread
  5847     assert(t->is_ConcurrentGC_thread(),
  5848            "Should be CMS thread");
  5849   } else {
  5850     // We can be the CMS thread only if we are in a stop-world
  5851     // phase of CMS collection.
  5852     if (t->is_ConcurrentGC_thread()) {
  5853       assert(_collectorState == InitialMarking ||
  5854              _collectorState == FinalMarking,
  5855              "Should be a stop-world phase");
  5856       // The CMS thread should be holding the CMS_token.
  5857       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  5858              "Potential interference with concurrently "
  5859              "executing VM thread");
  5863 #endif
  5865 void CMSCollector::sweep(bool asynch) {
  5866   assert(_collectorState == Sweeping, "just checking");
  5867   check_correct_thread_executing();
  5868   verify_work_stacks_empty();
  5869   verify_overflow_empty();
  5870   incrementSweepCount();
  5871   _sweep_timer.stop();
  5872   _sweep_estimate.sample(_sweep_timer.seconds());
  5873   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
  5875   // PermGen verification support: If perm gen sweeping is disabled in
  5876   // this cycle, we preserve the perm gen object "deadness" information
  5877   // in the perm_gen_verify_bit_map. In order to do that we traverse
  5878   // all blocks in perm gen and mark all dead objects.
  5879   if (verifying() && !should_unload_classes()) {
  5880     assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
  5881            "Should have already been allocated");
  5882     MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
  5883                                markBitMap(), perm_gen_verify_bit_map());
  5884     if (asynch) {
  5885       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  5886                                bitMapLock());
  5887       _permGen->cmsSpace()->blk_iterate(&mdo);
  5888     } else {
  5889       // In the case of synchronous sweep, we already have
  5890       // the requisite locks/tokens.
  5891       _permGen->cmsSpace()->blk_iterate(&mdo);
  5895   if (asynch) {
  5896     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  5897     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
  5898     // First sweep the old gen then the perm gen
  5900       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  5901                                bitMapLock());
  5902       sweepWork(_cmsGen, asynch);
  5905     // Now repeat for perm gen
  5906     if (should_unload_classes()) {
  5907       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  5908                              bitMapLock());
  5909       sweepWork(_permGen, asynch);
  5912     // Update Universe::_heap_*_at_gc figures.
  5913     // We need all the free list locks to make the abstract state
  5914     // transition from Sweeping to Resetting. See detailed note
  5915     // further below.
  5917       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  5918                                _permGen->freelistLock());
  5919       // Update heap occupancy information which is used as
  5920       // input to soft ref clearing policy at the next gc.
  5921       Universe::update_heap_info_at_gc();
  5922       _collectorState = Resizing;
  5924   } else {
  5925     // already have needed locks
  5926     sweepWork(_cmsGen,  asynch);
  5928     if (should_unload_classes()) {
  5929       sweepWork(_permGen, asynch);
  5931     // Update heap occupancy information which is used as
  5932     // input to soft ref clearing policy at the next gc.
  5933     Universe::update_heap_info_at_gc();
  5934     _collectorState = Resizing;
  5936   verify_work_stacks_empty();
  5937   verify_overflow_empty();
  5939   _sweep_timer.reset();
  5940   _sweep_timer.start();
  5942   update_time_of_last_gc(os::javaTimeMillis());
  5944   // NOTE on abstract state transitions:
  5945   // Mutators allocate-live and/or mark the mod-union table dirty
  5946   // based on the state of the collection.  The former is done in
  5947   // the interval [Marking, Sweeping] and the latter in the interval
  5948   // [Marking, Sweeping).  Thus the transitions into the Marking state
  5949   // and out of the Sweeping state must be synchronously visible
  5950   // globally to the mutators.
  5951   // The transition into the Marking state happens with the world
  5952   // stopped so the mutators will globally see it.  Sweeping is
  5953   // done asynchronously by the background collector so the transition
  5954   // from the Sweeping state to the Resizing state must be done
  5955   // under the freelistLock (as is the check for whether to
  5956   // allocate-live and whether to dirty the mod-union table).
  5957   assert(_collectorState == Resizing, "Change of collector state to"
  5958     " Resizing must be done under the freelistLocks (plural)");
  5960   // Now that sweeping has been completed, if the GCH's
  5961   // incremental_collection_will_fail flag is set, clear it,
  5962   // thus inviting a younger gen collection to promote into
  5963   // this generation. If such a promotion may still fail,
  5964   // the flag will be set again when a young collection is
  5965   // attempted.
  5966   // I think the incremental_collection_will_fail flag's use
  5967   // is specific to a 2 generation collection policy, so i'll
  5968   // assert that that's the configuration we are operating within.
  5969   // The use of the flag can and should be generalized appropriately
  5970   // in the future to deal with a general n-generation system.
  5972   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5973   assert(gch->collector_policy()->is_two_generation_policy(),
  5974          "Resetting of incremental_collection_will_fail flag"
  5975          " may be incorrect otherwise");
  5976   gch->clear_incremental_collection_will_fail();
  5977   gch->update_full_collections_completed(_collection_count_start);
  5980 // FIX ME!!! Looks like this belongs in CFLSpace, with
  5981 // CMSGen merely delegating to it.
  5982 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
  5983   double nearLargestPercent = 0.999;
  5984   HeapWord*  minAddr        = _cmsSpace->bottom();
  5985   HeapWord*  largestAddr    =
  5986     (HeapWord*) _cmsSpace->dictionary()->findLargestDict();
  5987   if (largestAddr == 0) {
  5988     // The dictionary appears to be empty.  In this case
  5989     // try to coalesce at the end of the heap.
  5990     largestAddr = _cmsSpace->end();
  5992   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
  5993   size_t nearLargestOffset =
  5994     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
  5995   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
  5998 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
  5999   return addr >= _cmsSpace->nearLargestChunk();
  6002 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
  6003   return _cmsSpace->find_chunk_at_end();
  6006 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
  6007                                                     bool full) {
  6008   // The next lower level has been collected.  Gather any statistics
  6009   // that are of interest at this point.
  6010   if (!full && (current_level + 1) == level()) {
  6011     // Gather statistics on the young generation collection.
  6012     collector()->stats().record_gc0_end(used());
  6016 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
  6017   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6018   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  6019     "Wrong type of heap");
  6020   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
  6021     gch->gen_policy()->size_policy();
  6022   assert(sp->is_gc_cms_adaptive_size_policy(),
  6023     "Wrong type of size policy");
  6024   return sp;
  6027 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
  6028   if (PrintGCDetails && Verbose) {
  6029     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
  6031   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
  6032   _debug_collection_type =
  6033     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
  6034   if (PrintGCDetails && Verbose) {
  6035     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
  6039 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
  6040   bool asynch) {
  6041   // We iterate over the space(s) underlying this generation,
  6042   // checking the mark bit map to see if the bits corresponding
  6043   // to specific blocks are marked or not. Blocks that are
  6044   // marked are live and are not swept up. All remaining blocks
  6045   // are swept up, with coalescing on-the-fly as we sweep up
  6046   // contiguous free and/or garbage blocks:
  6047   // We need to ensure that the sweeper synchronizes with allocators
  6048   // and stop-the-world collectors. In particular, the following
  6049   // locks are used:
  6050   // . CMS token: if this is held, a stop the world collection cannot occur
  6051   // . freelistLock: if this is held no allocation can occur from this
  6052   //                 generation by another thread
  6053   // . bitMapLock: if this is held, no other thread can access or update
  6054   //
  6056   // Note that we need to hold the freelistLock if we use
  6057   // block iterate below; else the iterator might go awry if
  6058   // a mutator (or promotion) causes block contents to change
  6059   // (for instance if the allocator divvies up a block).
  6060   // If we hold the free list lock, for all practical purposes
  6061   // young generation GC's can't occur (they'll usually need to
  6062   // promote), so we might as well prevent all young generation
  6063   // GC's while we do a sweeping step. For the same reason, we might
  6064   // as well take the bit map lock for the entire duration
  6066   // check that we hold the requisite locks
  6067   assert(have_cms_token(), "Should hold cms token");
  6068   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
  6069          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
  6070         "Should possess CMS token to sweep");
  6071   assert_lock_strong(gen->freelistLock());
  6072   assert_lock_strong(bitMapLock());
  6074   assert(!_sweep_timer.is_active(), "Was switched off in an outer context");
  6075   gen->cmsSpace()->beginSweepFLCensus((float)(_sweep_timer.seconds()),
  6076                                       _sweep_estimate.padded_average());
  6077   gen->setNearLargestChunk();
  6080     SweepClosure sweepClosure(this, gen, &_markBitMap,
  6081                             CMSYield && asynch);
  6082     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
  6083     // We need to free-up/coalesce garbage/blocks from a
  6084     // co-terminal free run. This is done in the SweepClosure
  6085     // destructor; so, do not remove this scope, else the
  6086     // end-of-sweep-census below will be off by a little bit.
  6088   gen->cmsSpace()->sweep_completed();
  6089   gen->cmsSpace()->endSweepFLCensus(sweepCount());
  6090   if (should_unload_classes()) {                // unloaded classes this cycle,
  6091     _concurrent_cycles_since_last_unload = 0;   // ... reset count
  6092   } else {                                      // did not unload classes,
  6093     _concurrent_cycles_since_last_unload++;     // ... increment count
  6097 // Reset CMS data structures (for now just the marking bit map)
  6098 // preparatory for the next cycle.
  6099 void CMSCollector::reset(bool asynch) {
  6100   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6101   CMSAdaptiveSizePolicy* sp = size_policy();
  6102   AdaptiveSizePolicyOutput(sp, gch->total_collections());
  6103   if (asynch) {
  6104     CMSTokenSyncWithLocks ts(true, bitMapLock());
  6106     // If the state is not "Resetting", the foreground  thread
  6107     // has done a collection and the resetting.
  6108     if (_collectorState != Resetting) {
  6109       assert(_collectorState == Idling, "The state should only change"
  6110         " because the foreground collector has finished the collection");
  6111       return;
  6114     // Clear the mark bitmap (no grey objects to start with)
  6115     // for the next cycle.
  6116     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6117     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
  6119     HeapWord* curAddr = _markBitMap.startWord();
  6120     while (curAddr < _markBitMap.endWord()) {
  6121       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
  6122       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
  6123       _markBitMap.clear_large_range(chunk);
  6124       if (ConcurrentMarkSweepThread::should_yield() &&
  6125           !foregroundGCIsActive() &&
  6126           CMSYield) {
  6127         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6128                "CMS thread should hold CMS token");
  6129         assert_lock_strong(bitMapLock());
  6130         bitMapLock()->unlock();
  6131         ConcurrentMarkSweepThread::desynchronize(true);
  6132         ConcurrentMarkSweepThread::acknowledge_yield_request();
  6133         stopTimer();
  6134         if (PrintCMSStatistics != 0) {
  6135           incrementYields();
  6137         icms_wait();
  6139         // See the comment in coordinator_yield()
  6140         for (unsigned i = 0; i < CMSYieldSleepCount &&
  6141                          ConcurrentMarkSweepThread::should_yield() &&
  6142                          !CMSCollector::foregroundGCIsActive(); ++i) {
  6143           os::sleep(Thread::current(), 1, false);
  6144           ConcurrentMarkSweepThread::acknowledge_yield_request();
  6147         ConcurrentMarkSweepThread::synchronize(true);
  6148         bitMapLock()->lock_without_safepoint_check();
  6149         startTimer();
  6151       curAddr = chunk.end();
  6153     _collectorState = Idling;
  6154   } else {
  6155     // already have the lock
  6156     assert(_collectorState == Resetting, "just checking");
  6157     assert_lock_strong(bitMapLock());
  6158     _markBitMap.clear_all();
  6159     _collectorState = Idling;
  6162   // Stop incremental mode after a cycle completes, so that any future cycles
  6163   // are triggered by allocation.
  6164   stop_icms();
  6166   NOT_PRODUCT(
  6167     if (RotateCMSCollectionTypes) {
  6168       _cmsGen->rotate_debug_collection_type();
  6173 void CMSCollector::do_CMS_operation(CMS_op_type op) {
  6174   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  6175   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6176   TraceTime t("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
  6177   TraceCollectorStats tcs(counters());
  6179   switch (op) {
  6180     case CMS_op_checkpointRootsInitial: {
  6181       checkpointRootsInitial(true);       // asynch
  6182       if (PrintGC) {
  6183         _cmsGen->printOccupancy("initial-mark");
  6185       break;
  6187     case CMS_op_checkpointRootsFinal: {
  6188       checkpointRootsFinal(true,    // asynch
  6189                            false,   // !clear_all_soft_refs
  6190                            false);  // !init_mark_was_synchronous
  6191       if (PrintGC) {
  6192         _cmsGen->printOccupancy("remark");
  6194       break;
  6196     default:
  6197       fatal("No such CMS_op");
  6201 #ifndef PRODUCT
  6202 size_t const CMSCollector::skip_header_HeapWords() {
  6203   return FreeChunk::header_size();
  6206 // Try and collect here conditions that should hold when
  6207 // CMS thread is exiting. The idea is that the foreground GC
  6208 // thread should not be blocked if it wants to terminate
  6209 // the CMS thread and yet continue to run the VM for a while
  6210 // after that.
  6211 void CMSCollector::verify_ok_to_terminate() const {
  6212   assert(Thread::current()->is_ConcurrentGC_thread(),
  6213          "should be called by CMS thread");
  6214   assert(!_foregroundGCShouldWait, "should be false");
  6215   // We could check here that all the various low-level locks
  6216   // are not held by the CMS thread, but that is overkill; see
  6217   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
  6218   // is checked.
  6220 #endif
  6222 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
  6223    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
  6224           "missing Printezis mark?");
  6225   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6226   size_t size = pointer_delta(nextOneAddr + 1, addr);
  6227   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6228          "alignment problem");
  6229   assert(size >= 3, "Necessary for Printezis marks to work");
  6230   return size;
  6233 // A variant of the above (block_size_using_printezis_bits()) except
  6234 // that we return 0 if the P-bits are not yet set.
  6235 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
  6236   if (_markBitMap.isMarked(addr)) {
  6237     assert(_markBitMap.isMarked(addr + 1), "Missing Printezis bit?");
  6238     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6239     size_t size = pointer_delta(nextOneAddr + 1, addr);
  6240     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6241            "alignment problem");
  6242     assert(size >= 3, "Necessary for Printezis marks to work");
  6243     return size;
  6244   } else {
  6245     assert(!_markBitMap.isMarked(addr + 1), "Bit map inconsistency?");
  6246     return 0;
  6250 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
  6251   size_t sz = 0;
  6252   oop p = (oop)addr;
  6253   if (p->klass_or_null() != NULL && p->is_parsable()) {
  6254     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6255   } else {
  6256     sz = block_size_using_printezis_bits(addr);
  6258   assert(sz > 0, "size must be nonzero");
  6259   HeapWord* next_block = addr + sz;
  6260   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
  6261                                              CardTableModRefBS::card_size);
  6262   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
  6263          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
  6264          "must be different cards");
  6265   return next_card;
  6269 // CMS Bit Map Wrapper /////////////////////////////////////////
  6271 // Construct a CMS bit map infrastructure, but don't create the
  6272 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
  6273 // further below.
  6274 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
  6275   _bm(),
  6276   _shifter(shifter),
  6277   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
  6279   _bmStartWord = 0;
  6280   _bmWordSize  = 0;
  6283 bool CMSBitMap::allocate(MemRegion mr) {
  6284   _bmStartWord = mr.start();
  6285   _bmWordSize  = mr.word_size();
  6286   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
  6287                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  6288   if (!brs.is_reserved()) {
  6289     warning("CMS bit map allocation failure");
  6290     return false;
  6292   // For now we'll just commit all of the bit map up fromt.
  6293   // Later on we'll try to be more parsimonious with swap.
  6294   if (!_virtual_space.initialize(brs, brs.size())) {
  6295     warning("CMS bit map backing store failure");
  6296     return false;
  6298   assert(_virtual_space.committed_size() == brs.size(),
  6299          "didn't reserve backing store for all of CMS bit map?");
  6300   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
  6301   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
  6302          _bmWordSize, "inconsistency in bit map sizing");
  6303   _bm.set_size(_bmWordSize >> _shifter);
  6305   // bm.clear(); // can we rely on getting zero'd memory? verify below
  6306   assert(isAllClear(),
  6307          "Expected zero'd memory from ReservedSpace constructor");
  6308   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
  6309          "consistency check");
  6310   return true;
  6313 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
  6314   HeapWord *next_addr, *end_addr, *last_addr;
  6315   assert_locked();
  6316   assert(covers(mr), "out-of-range error");
  6317   // XXX assert that start and end are appropriately aligned
  6318   for (next_addr = mr.start(), end_addr = mr.end();
  6319        next_addr < end_addr; next_addr = last_addr) {
  6320     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
  6321     last_addr = dirty_region.end();
  6322     if (!dirty_region.is_empty()) {
  6323       cl->do_MemRegion(dirty_region);
  6324     } else {
  6325       assert(last_addr == end_addr, "program logic");
  6326       return;
  6331 #ifndef PRODUCT
  6332 void CMSBitMap::assert_locked() const {
  6333   CMSLockVerifier::assert_locked(lock());
  6336 bool CMSBitMap::covers(MemRegion mr) const {
  6337   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  6338   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
  6339          "size inconsistency");
  6340   return (mr.start() >= _bmStartWord) &&
  6341          (mr.end()   <= endWord());
  6344 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
  6345     return (start >= _bmStartWord && (start + size) <= endWord());
  6348 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
  6349   // verify that there are no 1 bits in the interval [left, right)
  6350   FalseBitMapClosure falseBitMapClosure;
  6351   iterate(&falseBitMapClosure, left, right);
  6354 void CMSBitMap::region_invariant(MemRegion mr)
  6356   assert_locked();
  6357   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  6358   assert(!mr.is_empty(), "unexpected empty region");
  6359   assert(covers(mr), "mr should be covered by bit map");
  6360   // convert address range into offset range
  6361   size_t start_ofs = heapWordToOffset(mr.start());
  6362   // Make sure that end() is appropriately aligned
  6363   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
  6364                         (1 << (_shifter+LogHeapWordSize))),
  6365          "Misaligned mr.end()");
  6366   size_t end_ofs   = heapWordToOffset(mr.end());
  6367   assert(end_ofs > start_ofs, "Should mark at least one bit");
  6370 #endif
  6372 bool CMSMarkStack::allocate(size_t size) {
  6373   // allocate a stack of the requisite depth
  6374   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6375                    size * sizeof(oop)));
  6376   if (!rs.is_reserved()) {
  6377     warning("CMSMarkStack allocation failure");
  6378     return false;
  6380   if (!_virtual_space.initialize(rs, rs.size())) {
  6381     warning("CMSMarkStack backing store failure");
  6382     return false;
  6384   assert(_virtual_space.committed_size() == rs.size(),
  6385          "didn't reserve backing store for all of CMS stack?");
  6386   _base = (oop*)(_virtual_space.low());
  6387   _index = 0;
  6388   _capacity = size;
  6389   NOT_PRODUCT(_max_depth = 0);
  6390   return true;
  6393 // XXX FIX ME !!! In the MT case we come in here holding a
  6394 // leaf lock. For printing we need to take a further lock
  6395 // which has lower rank. We need to recallibrate the two
  6396 // lock-ranks involved in order to be able to rpint the
  6397 // messages below. (Or defer the printing to the caller.
  6398 // For now we take the expedient path of just disabling the
  6399 // messages for the problematic case.)
  6400 void CMSMarkStack::expand() {
  6401   assert(_capacity <= CMSMarkStackSizeMax, "stack bigger than permitted");
  6402   if (_capacity == CMSMarkStackSizeMax) {
  6403     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6404       // We print a warning message only once per CMS cycle.
  6405       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
  6407     return;
  6409   // Double capacity if possible
  6410   size_t new_capacity = MIN2(_capacity*2, CMSMarkStackSizeMax);
  6411   // Do not give up existing stack until we have managed to
  6412   // get the double capacity that we desired.
  6413   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6414                    new_capacity * sizeof(oop)));
  6415   if (rs.is_reserved()) {
  6416     // Release the backing store associated with old stack
  6417     _virtual_space.release();
  6418     // Reinitialize virtual space for new stack
  6419     if (!_virtual_space.initialize(rs, rs.size())) {
  6420       fatal("Not enough swap for expanded marking stack");
  6422     _base = (oop*)(_virtual_space.low());
  6423     _index = 0;
  6424     _capacity = new_capacity;
  6425   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6426     // Failed to double capacity, continue;
  6427     // we print a detail message only once per CMS cycle.
  6428     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
  6429             SIZE_FORMAT"K",
  6430             _capacity / K, new_capacity / K);
  6435 // Closures
  6436 // XXX: there seems to be a lot of code  duplication here;
  6437 // should refactor and consolidate common code.
  6439 // This closure is used to mark refs into the CMS generation in
  6440 // the CMS bit map. Called at the first checkpoint. This closure
  6441 // assumes that we do not need to re-mark dirty cards; if the CMS
  6442 // generation on which this is used is not an oldest (modulo perm gen)
  6443 // generation then this will lose younger_gen cards!
  6445 MarkRefsIntoClosure::MarkRefsIntoClosure(
  6446   MemRegion span, CMSBitMap* bitMap):
  6447     _span(span),
  6448     _bitMap(bitMap)
  6450     assert(_ref_processor == NULL, "deliberately left NULL");
  6451     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
  6454 void MarkRefsIntoClosure::do_oop(oop obj) {
  6455   // if p points into _span, then mark corresponding bit in _markBitMap
  6456   assert(obj->is_oop(), "expected an oop");
  6457   HeapWord* addr = (HeapWord*)obj;
  6458   if (_span.contains(addr)) {
  6459     // this should be made more efficient
  6460     _bitMap->mark(addr);
  6464 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
  6465 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
  6467 // A variant of the above, used for CMS marking verification.
  6468 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
  6469   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
  6470     _span(span),
  6471     _verification_bm(verification_bm),
  6472     _cms_bm(cms_bm)
  6474     assert(_ref_processor == NULL, "deliberately left NULL");
  6475     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
  6478 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
  6479   // if p points into _span, then mark corresponding bit in _markBitMap
  6480   assert(obj->is_oop(), "expected an oop");
  6481   HeapWord* addr = (HeapWord*)obj;
  6482   if (_span.contains(addr)) {
  6483     _verification_bm->mark(addr);
  6484     if (!_cms_bm->isMarked(addr)) {
  6485       oop(addr)->print();
  6486       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
  6487       fatal("... aborting");
  6492 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6493 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6495 //////////////////////////////////////////////////
  6496 // MarkRefsIntoAndScanClosure
  6497 //////////////////////////////////////////////////
  6499 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
  6500                                                        ReferenceProcessor* rp,
  6501                                                        CMSBitMap* bit_map,
  6502                                                        CMSBitMap* mod_union_table,
  6503                                                        CMSMarkStack*  mark_stack,
  6504                                                        CMSMarkStack*  revisit_stack,
  6505                                                        CMSCollector* collector,
  6506                                                        bool should_yield,
  6507                                                        bool concurrent_precleaning):
  6508   _collector(collector),
  6509   _span(span),
  6510   _bit_map(bit_map),
  6511   _mark_stack(mark_stack),
  6512   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
  6513                       mark_stack, revisit_stack, concurrent_precleaning),
  6514   _yield(should_yield),
  6515   _concurrent_precleaning(concurrent_precleaning),
  6516   _freelistLock(NULL)
  6518   _ref_processor = rp;
  6519   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6522 // This closure is used to mark refs into the CMS generation at the
  6523 // second (final) checkpoint, and to scan and transitively follow
  6524 // the unmarked oops. It is also used during the concurrent precleaning
  6525 // phase while scanning objects on dirty cards in the CMS generation.
  6526 // The marks are made in the marking bit map and the marking stack is
  6527 // used for keeping the (newly) grey objects during the scan.
  6528 // The parallel version (Par_...) appears further below.
  6529 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6530   if (obj != NULL) {
  6531     assert(obj->is_oop(), "expected an oop");
  6532     HeapWord* addr = (HeapWord*)obj;
  6533     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6534     assert(_collector->overflow_list_is_empty(),
  6535            "overflow list should be empty");
  6536     if (_span.contains(addr) &&
  6537         !_bit_map->isMarked(addr)) {
  6538       // mark bit map (object is now grey)
  6539       _bit_map->mark(addr);
  6540       // push on marking stack (stack should be empty), and drain the
  6541       // stack by applying this closure to the oops in the oops popped
  6542       // from the stack (i.e. blacken the grey objects)
  6543       bool res = _mark_stack->push(obj);
  6544       assert(res, "Should have space to push on empty stack");
  6545       do {
  6546         oop new_oop = _mark_stack->pop();
  6547         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6548         assert(new_oop->is_parsable(), "Found unparsable oop");
  6549         assert(_bit_map->isMarked((HeapWord*)new_oop),
  6550                "only grey objects on this stack");
  6551         // iterate over the oops in this oop, marking and pushing
  6552         // the ones in CMS heap (i.e. in _span).
  6553         new_oop->oop_iterate(&_pushAndMarkClosure);
  6554         // check if it's time to yield
  6555         do_yield_check();
  6556       } while (!_mark_stack->isEmpty() ||
  6557                (!_concurrent_precleaning && take_from_overflow_list()));
  6558         // if marking stack is empty, and we are not doing this
  6559         // during precleaning, then check the overflow list
  6561     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6562     assert(_collector->overflow_list_is_empty(),
  6563            "overflow list was drained above");
  6564     // We could restore evacuated mark words, if any, used for
  6565     // overflow list links here because the overflow list is
  6566     // provably empty here. That would reduce the maximum
  6567     // size requirements for preserved_{oop,mark}_stack.
  6568     // But we'll just postpone it until we are all done
  6569     // so we can just stream through.
  6570     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
  6571       _collector->restore_preserved_marks_if_any();
  6572       assert(_collector->no_preserved_marks(), "No preserved marks");
  6574     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
  6575            "All preserved marks should have been restored above");
  6579 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6580 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6582 void MarkRefsIntoAndScanClosure::do_yield_work() {
  6583   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6584          "CMS thread should hold CMS token");
  6585   assert_lock_strong(_freelistLock);
  6586   assert_lock_strong(_bit_map->lock());
  6587   // relinquish the free_list_lock and bitMaplock()
  6588   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  6589   _bit_map->lock()->unlock();
  6590   _freelistLock->unlock();
  6591   ConcurrentMarkSweepThread::desynchronize(true);
  6592   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6593   _collector->stopTimer();
  6594   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6595   if (PrintCMSStatistics != 0) {
  6596     _collector->incrementYields();
  6598   _collector->icms_wait();
  6600   // See the comment in coordinator_yield()
  6601   for (unsigned i = 0;
  6602        i < CMSYieldSleepCount &&
  6603        ConcurrentMarkSweepThread::should_yield() &&
  6604        !CMSCollector::foregroundGCIsActive();
  6605        ++i) {
  6606     os::sleep(Thread::current(), 1, false);
  6607     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6610   ConcurrentMarkSweepThread::synchronize(true);
  6611   _freelistLock->lock_without_safepoint_check();
  6612   _bit_map->lock()->lock_without_safepoint_check();
  6613   _collector->startTimer();
  6616 ///////////////////////////////////////////////////////////
  6617 // Par_MarkRefsIntoAndScanClosure: a parallel version of
  6618 //                                 MarkRefsIntoAndScanClosure
  6619 ///////////////////////////////////////////////////////////
  6620 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
  6621   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
  6622   CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
  6623   _span(span),
  6624   _bit_map(bit_map),
  6625   _work_queue(work_queue),
  6626   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  6627                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
  6628   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
  6629                           revisit_stack)
  6631   _ref_processor = rp;
  6632   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6635 // This closure is used to mark refs into the CMS generation at the
  6636 // second (final) checkpoint, and to scan and transitively follow
  6637 // the unmarked oops. The marks are made in the marking bit map and
  6638 // the work_queue is used for keeping the (newly) grey objects during
  6639 // the scan phase whence they are also available for stealing by parallel
  6640 // threads. Since the marking bit map is shared, updates are
  6641 // synchronized (via CAS).
  6642 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6643   if (obj != NULL) {
  6644     // Ignore mark word because this could be an already marked oop
  6645     // that may be chained at the end of the overflow list.
  6646     assert(obj->is_oop(true), "expected an oop");
  6647     HeapWord* addr = (HeapWord*)obj;
  6648     if (_span.contains(addr) &&
  6649         !_bit_map->isMarked(addr)) {
  6650       // mark bit map (object will become grey):
  6651       // It is possible for several threads to be
  6652       // trying to "claim" this object concurrently;
  6653       // the unique thread that succeeds in marking the
  6654       // object first will do the subsequent push on
  6655       // to the work queue (or overflow list).
  6656       if (_bit_map->par_mark(addr)) {
  6657         // push on work_queue (which may not be empty), and trim the
  6658         // queue to an appropriate length by applying this closure to
  6659         // the oops in the oops popped from the stack (i.e. blacken the
  6660         // grey objects)
  6661         bool res = _work_queue->push(obj);
  6662         assert(res, "Low water mark should be less than capacity?");
  6663         trim_queue(_low_water_mark);
  6664       } // Else, another thread claimed the object
  6669 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6670 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6672 // This closure is used to rescan the marked objects on the dirty cards
  6673 // in the mod union table and the card table proper.
  6674 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
  6675   oop p, MemRegion mr) {
  6677   size_t size = 0;
  6678   HeapWord* addr = (HeapWord*)p;
  6679   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6680   assert(_span.contains(addr), "we are scanning the CMS generation");
  6681   // check if it's time to yield
  6682   if (do_yield_check()) {
  6683     // We yielded for some foreground stop-world work,
  6684     // and we have been asked to abort this ongoing preclean cycle.
  6685     return 0;
  6687   if (_bitMap->isMarked(addr)) {
  6688     // it's marked; is it potentially uninitialized?
  6689     if (p->klass_or_null() != NULL) {
  6690       // If is_conc_safe is false, the object may be undergoing
  6691       // change by the VM outside a safepoint.  Don't try to
  6692       // scan it, but rather leave it for the remark phase.
  6693       if (CMSPermGenPrecleaningEnabled &&
  6694           (!p->is_conc_safe() || !p->is_parsable())) {
  6695         // Signal precleaning to redirty the card since
  6696         // the klass pointer is already installed.
  6697         assert(size == 0, "Initial value");
  6698       } else {
  6699         assert(p->is_parsable(), "must be parsable.");
  6700         // an initialized object; ignore mark word in verification below
  6701         // since we are running concurrent with mutators
  6702         assert(p->is_oop(true), "should be an oop");
  6703         if (p->is_objArray()) {
  6704           // objArrays are precisely marked; restrict scanning
  6705           // to dirty cards only.
  6706           size = CompactibleFreeListSpace::adjustObjectSize(
  6707                    p->oop_iterate(_scanningClosure, mr));
  6708         } else {
  6709           // A non-array may have been imprecisely marked; we need
  6710           // to scan object in its entirety.
  6711           size = CompactibleFreeListSpace::adjustObjectSize(
  6712                    p->oop_iterate(_scanningClosure));
  6714         #ifdef DEBUG
  6715           size_t direct_size =
  6716             CompactibleFreeListSpace::adjustObjectSize(p->size());
  6717           assert(size == direct_size, "Inconsistency in size");
  6718           assert(size >= 3, "Necessary for Printezis marks to work");
  6719           if (!_bitMap->isMarked(addr+1)) {
  6720             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
  6721           } else {
  6722             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
  6723             assert(_bitMap->isMarked(addr+size-1),
  6724                    "inconsistent Printezis mark");
  6726         #endif // DEBUG
  6728     } else {
  6729       // an unitialized object
  6730       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
  6731       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  6732       size = pointer_delta(nextOneAddr + 1, addr);
  6733       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6734              "alignment problem");
  6735       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
  6736       // will dirty the card when the klass pointer is installed in the
  6737       // object (signalling the completion of initialization).
  6739   } else {
  6740     // Either a not yet marked object or an uninitialized object
  6741     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  6742       // An uninitialized object, skip to the next card, since
  6743       // we may not be able to read its P-bits yet.
  6744       assert(size == 0, "Initial value");
  6745     } else {
  6746       // An object not (yet) reached by marking: we merely need to
  6747       // compute its size so as to go look at the next block.
  6748       assert(p->is_oop(true), "should be an oop");
  6749       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6752   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6753   return size;
  6756 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
  6757   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6758          "CMS thread should hold CMS token");
  6759   assert_lock_strong(_freelistLock);
  6760   assert_lock_strong(_bitMap->lock());
  6761   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  6762   // relinquish the free_list_lock and bitMaplock()
  6763   _bitMap->lock()->unlock();
  6764   _freelistLock->unlock();
  6765   ConcurrentMarkSweepThread::desynchronize(true);
  6766   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6767   _collector->stopTimer();
  6768   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6769   if (PrintCMSStatistics != 0) {
  6770     _collector->incrementYields();
  6772   _collector->icms_wait();
  6774   // See the comment in coordinator_yield()
  6775   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6776                    ConcurrentMarkSweepThread::should_yield() &&
  6777                    !CMSCollector::foregroundGCIsActive(); ++i) {
  6778     os::sleep(Thread::current(), 1, false);
  6779     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6782   ConcurrentMarkSweepThread::synchronize(true);
  6783   _freelistLock->lock_without_safepoint_check();
  6784   _bitMap->lock()->lock_without_safepoint_check();
  6785   _collector->startTimer();
  6789 //////////////////////////////////////////////////////////////////
  6790 // SurvivorSpacePrecleanClosure
  6791 //////////////////////////////////////////////////////////////////
  6792 // This (single-threaded) closure is used to preclean the oops in
  6793 // the survivor spaces.
  6794 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
  6796   HeapWord* addr = (HeapWord*)p;
  6797   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6798   assert(!_span.contains(addr), "we are scanning the survivor spaces");
  6799   assert(p->klass_or_null() != NULL, "object should be initializd");
  6800   assert(p->is_parsable(), "must be parsable.");
  6801   // an initialized object; ignore mark word in verification below
  6802   // since we are running concurrent with mutators
  6803   assert(p->is_oop(true), "should be an oop");
  6804   // Note that we do not yield while we iterate over
  6805   // the interior oops of p, pushing the relevant ones
  6806   // on our marking stack.
  6807   size_t size = p->oop_iterate(_scanning_closure);
  6808   do_yield_check();
  6809   // Observe that below, we do not abandon the preclean
  6810   // phase as soon as we should; rather we empty the
  6811   // marking stack before returning. This is to satisfy
  6812   // some existing assertions. In general, it may be a
  6813   // good idea to abort immediately and complete the marking
  6814   // from the grey objects at a later time.
  6815   while (!_mark_stack->isEmpty()) {
  6816     oop new_oop = _mark_stack->pop();
  6817     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6818     assert(new_oop->is_parsable(), "Found unparsable oop");
  6819     assert(_bit_map->isMarked((HeapWord*)new_oop),
  6820            "only grey objects on this stack");
  6821     // iterate over the oops in this oop, marking and pushing
  6822     // the ones in CMS heap (i.e. in _span).
  6823     new_oop->oop_iterate(_scanning_closure);
  6824     // check if it's time to yield
  6825     do_yield_check();
  6827   unsigned int after_count =
  6828     GenCollectedHeap::heap()->total_collections();
  6829   bool abort = (_before_count != after_count) ||
  6830                _collector->should_abort_preclean();
  6831   return abort ? 0 : size;
  6834 void SurvivorSpacePrecleanClosure::do_yield_work() {
  6835   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6836          "CMS thread should hold CMS token");
  6837   assert_lock_strong(_bit_map->lock());
  6838   DEBUG_ONLY(RememberKlassesChecker smx(false);)
  6839   // Relinquish the bit map lock
  6840   _bit_map->lock()->unlock();
  6841   ConcurrentMarkSweepThread::desynchronize(true);
  6842   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6843   _collector->stopTimer();
  6844   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6845   if (PrintCMSStatistics != 0) {
  6846     _collector->incrementYields();
  6848   _collector->icms_wait();
  6850   // See the comment in coordinator_yield()
  6851   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6852                        ConcurrentMarkSweepThread::should_yield() &&
  6853                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6854     os::sleep(Thread::current(), 1, false);
  6855     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6858   ConcurrentMarkSweepThread::synchronize(true);
  6859   _bit_map->lock()->lock_without_safepoint_check();
  6860   _collector->startTimer();
  6863 // This closure is used to rescan the marked objects on the dirty cards
  6864 // in the mod union table and the card table proper. In the parallel
  6865 // case, although the bitMap is shared, we do a single read so the
  6866 // isMarked() query is "safe".
  6867 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
  6868   // Ignore mark word because we are running concurrent with mutators
  6869   assert(p->is_oop_or_null(true), "expected an oop or null");
  6870   HeapWord* addr = (HeapWord*)p;
  6871   assert(_span.contains(addr), "we are scanning the CMS generation");
  6872   bool is_obj_array = false;
  6873   #ifdef DEBUG
  6874     if (!_parallel) {
  6875       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6876       assert(_collector->overflow_list_is_empty(),
  6877              "overflow list should be empty");
  6880   #endif // DEBUG
  6881   if (_bit_map->isMarked(addr)) {
  6882     // Obj arrays are precisely marked, non-arrays are not;
  6883     // so we scan objArrays precisely and non-arrays in their
  6884     // entirety.
  6885     if (p->is_objArray()) {
  6886       is_obj_array = true;
  6887       if (_parallel) {
  6888         p->oop_iterate(_par_scan_closure, mr);
  6889       } else {
  6890         p->oop_iterate(_scan_closure, mr);
  6892     } else {
  6893       if (_parallel) {
  6894         p->oop_iterate(_par_scan_closure);
  6895       } else {
  6896         p->oop_iterate(_scan_closure);
  6900   #ifdef DEBUG
  6901     if (!_parallel) {
  6902       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6903       assert(_collector->overflow_list_is_empty(),
  6904              "overflow list should be empty");
  6907   #endif // DEBUG
  6908   return is_obj_array;
  6911 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
  6912                         MemRegion span,
  6913                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
  6914                         CMSMarkStack*  revisitStack,
  6915                         bool should_yield, bool verifying):
  6916   _collector(collector),
  6917   _span(span),
  6918   _bitMap(bitMap),
  6919   _mut(&collector->_modUnionTable),
  6920   _markStack(markStack),
  6921   _revisitStack(revisitStack),
  6922   _yield(should_yield),
  6923   _skipBits(0)
  6925   assert(_markStack->isEmpty(), "stack should be empty");
  6926   _finger = _bitMap->startWord();
  6927   _threshold = _finger;
  6928   assert(_collector->_restart_addr == NULL, "Sanity check");
  6929   assert(_span.contains(_finger), "Out of bounds _finger?");
  6930   DEBUG_ONLY(_verifying = verifying;)
  6933 void MarkFromRootsClosure::reset(HeapWord* addr) {
  6934   assert(_markStack->isEmpty(), "would cause duplicates on stack");
  6935   assert(_span.contains(addr), "Out of bounds _finger?");
  6936   _finger = addr;
  6937   _threshold = (HeapWord*)round_to(
  6938                  (intptr_t)_finger, CardTableModRefBS::card_size);
  6941 // Should revisit to see if this should be restructured for
  6942 // greater efficiency.
  6943 bool MarkFromRootsClosure::do_bit(size_t offset) {
  6944   if (_skipBits > 0) {
  6945     _skipBits--;
  6946     return true;
  6948   // convert offset into a HeapWord*
  6949   HeapWord* addr = _bitMap->startWord() + offset;
  6950   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
  6951          "address out of range");
  6952   assert(_bitMap->isMarked(addr), "tautology");
  6953   if (_bitMap->isMarked(addr+1)) {
  6954     // this is an allocated but not yet initialized object
  6955     assert(_skipBits == 0, "tautology");
  6956     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
  6957     oop p = oop(addr);
  6958     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  6959       DEBUG_ONLY(if (!_verifying) {)
  6960         // We re-dirty the cards on which this object lies and increase
  6961         // the _threshold so that we'll come back to scan this object
  6962         // during the preclean or remark phase. (CMSCleanOnEnter)
  6963         if (CMSCleanOnEnter) {
  6964           size_t sz = _collector->block_size_using_printezis_bits(addr);
  6965           HeapWord* end_card_addr   = (HeapWord*)round_to(
  6966                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  6967           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  6968           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  6969           // Bump _threshold to end_card_addr; note that
  6970           // _threshold cannot possibly exceed end_card_addr, anyhow.
  6971           // This prevents future clearing of the card as the scan proceeds
  6972           // to the right.
  6973           assert(_threshold <= end_card_addr,
  6974                  "Because we are just scanning into this object");
  6975           if (_threshold < end_card_addr) {
  6976             _threshold = end_card_addr;
  6978           if (p->klass_or_null() != NULL) {
  6979             // Redirty the range of cards...
  6980             _mut->mark_range(redirty_range);
  6981           } // ...else the setting of klass will dirty the card anyway.
  6983       DEBUG_ONLY(})
  6984       return true;
  6987   scanOopsInOop(addr);
  6988   return true;
  6991 // We take a break if we've been at this for a while,
  6992 // so as to avoid monopolizing the locks involved.
  6993 void MarkFromRootsClosure::do_yield_work() {
  6994   // First give up the locks, then yield, then re-lock
  6995   // We should probably use a constructor/destructor idiom to
  6996   // do this unlock/lock or modify the MutexUnlocker class to
  6997   // serve our purpose. XXX
  6998   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6999          "CMS thread should hold CMS token");
  7000   assert_lock_strong(_bitMap->lock());
  7001   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  7002   _bitMap->lock()->unlock();
  7003   ConcurrentMarkSweepThread::desynchronize(true);
  7004   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7005   _collector->stopTimer();
  7006   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7007   if (PrintCMSStatistics != 0) {
  7008     _collector->incrementYields();
  7010   _collector->icms_wait();
  7012   // See the comment in coordinator_yield()
  7013   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7014                        ConcurrentMarkSweepThread::should_yield() &&
  7015                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7016     os::sleep(Thread::current(), 1, false);
  7017     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7020   ConcurrentMarkSweepThread::synchronize(true);
  7021   _bitMap->lock()->lock_without_safepoint_check();
  7022   _collector->startTimer();
  7025 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
  7026   assert(_bitMap->isMarked(ptr), "expected bit to be set");
  7027   assert(_markStack->isEmpty(),
  7028          "should drain stack to limit stack usage");
  7029   // convert ptr to an oop preparatory to scanning
  7030   oop obj = oop(ptr);
  7031   // Ignore mark word in verification below, since we
  7032   // may be running concurrent with mutators.
  7033   assert(obj->is_oop(true), "should be an oop");
  7034   assert(_finger <= ptr, "_finger runneth ahead");
  7035   // advance the finger to right end of this object
  7036   _finger = ptr + obj->size();
  7037   assert(_finger > ptr, "we just incremented it above");
  7038   // On large heaps, it may take us some time to get through
  7039   // the marking phase (especially if running iCMS). During
  7040   // this time it's possible that a lot of mutations have
  7041   // accumulated in the card table and the mod union table --
  7042   // these mutation records are redundant until we have
  7043   // actually traced into the corresponding card.
  7044   // Here, we check whether advancing the finger would make
  7045   // us cross into a new card, and if so clear corresponding
  7046   // cards in the MUT (preclean them in the card-table in the
  7047   // future).
  7049   DEBUG_ONLY(if (!_verifying) {)
  7050     // The clean-on-enter optimization is disabled by default,
  7051     // until we fix 6178663.
  7052     if (CMSCleanOnEnter && (_finger > _threshold)) {
  7053       // [_threshold, _finger) represents the interval
  7054       // of cards to be cleared  in MUT (or precleaned in card table).
  7055       // The set of cards to be cleared is all those that overlap
  7056       // with the interval [_threshold, _finger); note that
  7057       // _threshold is always kept card-aligned but _finger isn't
  7058       // always card-aligned.
  7059       HeapWord* old_threshold = _threshold;
  7060       assert(old_threshold == (HeapWord*)round_to(
  7061               (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7062              "_threshold should always be card-aligned");
  7063       _threshold = (HeapWord*)round_to(
  7064                      (intptr_t)_finger, CardTableModRefBS::card_size);
  7065       MemRegion mr(old_threshold, _threshold);
  7066       assert(!mr.is_empty(), "Control point invariant");
  7067       assert(_span.contains(mr), "Should clear within span");
  7068       // XXX When _finger crosses from old gen into perm gen
  7069       // we may be doing unnecessary cleaning; do better in the
  7070       // future by detecting that condition and clearing fewer
  7071       // MUT/CT entries.
  7072       _mut->clear_range(mr);
  7074   DEBUG_ONLY(})
  7075   // Note: the finger doesn't advance while we drain
  7076   // the stack below.
  7077   PushOrMarkClosure pushOrMarkClosure(_collector,
  7078                                       _span, _bitMap, _markStack,
  7079                                       _revisitStack,
  7080                                       _finger, this);
  7081   bool res = _markStack->push(obj);
  7082   assert(res, "Empty non-zero size stack should have space for single push");
  7083   while (!_markStack->isEmpty()) {
  7084     oop new_oop = _markStack->pop();
  7085     // Skip verifying header mark word below because we are
  7086     // running concurrent with mutators.
  7087     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7088     // now scan this oop's oops
  7089     new_oop->oop_iterate(&pushOrMarkClosure);
  7090     do_yield_check();
  7092   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
  7095 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
  7096                        CMSCollector* collector, MemRegion span,
  7097                        CMSBitMap* bit_map,
  7098                        OopTaskQueue* work_queue,
  7099                        CMSMarkStack*  overflow_stack,
  7100                        CMSMarkStack*  revisit_stack,
  7101                        bool should_yield):
  7102   _collector(collector),
  7103   _whole_span(collector->_span),
  7104   _span(span),
  7105   _bit_map(bit_map),
  7106   _mut(&collector->_modUnionTable),
  7107   _work_queue(work_queue),
  7108   _overflow_stack(overflow_stack),
  7109   _revisit_stack(revisit_stack),
  7110   _yield(should_yield),
  7111   _skip_bits(0),
  7112   _task(task)
  7114   assert(_work_queue->size() == 0, "work_queue should be empty");
  7115   _finger = span.start();
  7116   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
  7117   assert(_span.contains(_finger), "Out of bounds _finger?");
  7120 // Should revisit to see if this should be restructured for
  7121 // greater efficiency.
  7122 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
  7123   if (_skip_bits > 0) {
  7124     _skip_bits--;
  7125     return true;
  7127   // convert offset into a HeapWord*
  7128   HeapWord* addr = _bit_map->startWord() + offset;
  7129   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
  7130          "address out of range");
  7131   assert(_bit_map->isMarked(addr), "tautology");
  7132   if (_bit_map->isMarked(addr+1)) {
  7133     // this is an allocated object that might not yet be initialized
  7134     assert(_skip_bits == 0, "tautology");
  7135     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
  7136     oop p = oop(addr);
  7137     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  7138       // in the case of Clean-on-Enter optimization, redirty card
  7139       // and avoid clearing card by increasing  the threshold.
  7140       return true;
  7143   scan_oops_in_oop(addr);
  7144   return true;
  7147 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
  7148   assert(_bit_map->isMarked(ptr), "expected bit to be set");
  7149   // Should we assert that our work queue is empty or
  7150   // below some drain limit?
  7151   assert(_work_queue->size() == 0,
  7152          "should drain stack to limit stack usage");
  7153   // convert ptr to an oop preparatory to scanning
  7154   oop obj = oop(ptr);
  7155   // Ignore mark word in verification below, since we
  7156   // may be running concurrent with mutators.
  7157   assert(obj->is_oop(true), "should be an oop");
  7158   assert(_finger <= ptr, "_finger runneth ahead");
  7159   // advance the finger to right end of this object
  7160   _finger = ptr + obj->size();
  7161   assert(_finger > ptr, "we just incremented it above");
  7162   // On large heaps, it may take us some time to get through
  7163   // the marking phase (especially if running iCMS). During
  7164   // this time it's possible that a lot of mutations have
  7165   // accumulated in the card table and the mod union table --
  7166   // these mutation records are redundant until we have
  7167   // actually traced into the corresponding card.
  7168   // Here, we check whether advancing the finger would make
  7169   // us cross into a new card, and if so clear corresponding
  7170   // cards in the MUT (preclean them in the card-table in the
  7171   // future).
  7173   // The clean-on-enter optimization is disabled by default,
  7174   // until we fix 6178663.
  7175   if (CMSCleanOnEnter && (_finger > _threshold)) {
  7176     // [_threshold, _finger) represents the interval
  7177     // of cards to be cleared  in MUT (or precleaned in card table).
  7178     // The set of cards to be cleared is all those that overlap
  7179     // with the interval [_threshold, _finger); note that
  7180     // _threshold is always kept card-aligned but _finger isn't
  7181     // always card-aligned.
  7182     HeapWord* old_threshold = _threshold;
  7183     assert(old_threshold == (HeapWord*)round_to(
  7184             (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7185            "_threshold should always be card-aligned");
  7186     _threshold = (HeapWord*)round_to(
  7187                    (intptr_t)_finger, CardTableModRefBS::card_size);
  7188     MemRegion mr(old_threshold, _threshold);
  7189     assert(!mr.is_empty(), "Control point invariant");
  7190     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
  7191     // XXX When _finger crosses from old gen into perm gen
  7192     // we may be doing unnecessary cleaning; do better in the
  7193     // future by detecting that condition and clearing fewer
  7194     // MUT/CT entries.
  7195     _mut->clear_range(mr);
  7198   // Note: the local finger doesn't advance while we drain
  7199   // the stack below, but the global finger sure can and will.
  7200   HeapWord** gfa = _task->global_finger_addr();
  7201   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
  7202                                       _span, _bit_map,
  7203                                       _work_queue,
  7204                                       _overflow_stack,
  7205                                       _revisit_stack,
  7206                                       _finger,
  7207                                       gfa, this);
  7208   bool res = _work_queue->push(obj);   // overflow could occur here
  7209   assert(res, "Will hold once we use workqueues");
  7210   while (true) {
  7211     oop new_oop;
  7212     if (!_work_queue->pop_local(new_oop)) {
  7213       // We emptied our work_queue; check if there's stuff that can
  7214       // be gotten from the overflow stack.
  7215       if (CMSConcMarkingTask::get_work_from_overflow_stack(
  7216             _overflow_stack, _work_queue)) {
  7217         do_yield_check();
  7218         continue;
  7219       } else {  // done
  7220         break;
  7223     // Skip verifying header mark word below because we are
  7224     // running concurrent with mutators.
  7225     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7226     // now scan this oop's oops
  7227     new_oop->oop_iterate(&pushOrMarkClosure);
  7228     do_yield_check();
  7230   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
  7233 // Yield in response to a request from VM Thread or
  7234 // from mutators.
  7235 void Par_MarkFromRootsClosure::do_yield_work() {
  7236   assert(_task != NULL, "sanity");
  7237   _task->yield();
  7240 // A variant of the above used for verifying CMS marking work.
  7241 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
  7242                         MemRegion span,
  7243                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7244                         CMSMarkStack*  mark_stack):
  7245   _collector(collector),
  7246   _span(span),
  7247   _verification_bm(verification_bm),
  7248   _cms_bm(cms_bm),
  7249   _mark_stack(mark_stack),
  7250   _pam_verify_closure(collector, span, verification_bm, cms_bm,
  7251                       mark_stack)
  7253   assert(_mark_stack->isEmpty(), "stack should be empty");
  7254   _finger = _verification_bm->startWord();
  7255   assert(_collector->_restart_addr == NULL, "Sanity check");
  7256   assert(_span.contains(_finger), "Out of bounds _finger?");
  7259 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
  7260   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
  7261   assert(_span.contains(addr), "Out of bounds _finger?");
  7262   _finger = addr;
  7265 // Should revisit to see if this should be restructured for
  7266 // greater efficiency.
  7267 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
  7268   // convert offset into a HeapWord*
  7269   HeapWord* addr = _verification_bm->startWord() + offset;
  7270   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
  7271          "address out of range");
  7272   assert(_verification_bm->isMarked(addr), "tautology");
  7273   assert(_cms_bm->isMarked(addr), "tautology");
  7275   assert(_mark_stack->isEmpty(),
  7276          "should drain stack to limit stack usage");
  7277   // convert addr to an oop preparatory to scanning
  7278   oop obj = oop(addr);
  7279   assert(obj->is_oop(), "should be an oop");
  7280   assert(_finger <= addr, "_finger runneth ahead");
  7281   // advance the finger to right end of this object
  7282   _finger = addr + obj->size();
  7283   assert(_finger > addr, "we just incremented it above");
  7284   // Note: the finger doesn't advance while we drain
  7285   // the stack below.
  7286   bool res = _mark_stack->push(obj);
  7287   assert(res, "Empty non-zero size stack should have space for single push");
  7288   while (!_mark_stack->isEmpty()) {
  7289     oop new_oop = _mark_stack->pop();
  7290     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
  7291     // now scan this oop's oops
  7292     new_oop->oop_iterate(&_pam_verify_closure);
  7294   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
  7295   return true;
  7298 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
  7299   CMSCollector* collector, MemRegion span,
  7300   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7301   CMSMarkStack*  mark_stack):
  7302   OopClosure(collector->ref_processor()),
  7303   _collector(collector),
  7304   _span(span),
  7305   _verification_bm(verification_bm),
  7306   _cms_bm(cms_bm),
  7307   _mark_stack(mark_stack)
  7308 { }
  7310 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
  7311 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
  7313 // Upon stack overflow, we discard (part of) the stack,
  7314 // remembering the least address amongst those discarded
  7315 // in CMSCollector's _restart_address.
  7316 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
  7317   // Remember the least grey address discarded
  7318   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
  7319   _collector->lower_restart_addr(ra);
  7320   _mark_stack->reset();  // discard stack contents
  7321   _mark_stack->expand(); // expand the stack if possible
  7324 void PushAndMarkVerifyClosure::do_oop(oop obj) {
  7325   assert(obj->is_oop_or_null(), "expected an oop or NULL");
  7326   HeapWord* addr = (HeapWord*)obj;
  7327   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
  7328     // Oop lies in _span and isn't yet grey or black
  7329     _verification_bm->mark(addr);            // now grey
  7330     if (!_cms_bm->isMarked(addr)) {
  7331       oop(addr)->print();
  7332       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
  7333                              addr);
  7334       fatal("... aborting");
  7337     if (!_mark_stack->push(obj)) { // stack overflow
  7338       if (PrintCMSStatistics != 0) {
  7339         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7340                                SIZE_FORMAT, _mark_stack->capacity());
  7342       assert(_mark_stack->isFull(), "Else push should have succeeded");
  7343       handle_stack_overflow(addr);
  7345     // anything including and to the right of _finger
  7346     // will be scanned as we iterate over the remainder of the
  7347     // bit map
  7351 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
  7352                      MemRegion span,
  7353                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
  7354                      CMSMarkStack*  revisitStack,
  7355                      HeapWord* finger, MarkFromRootsClosure* parent) :
  7356   KlassRememberingOopClosure(collector, collector->ref_processor(), revisitStack),
  7357   _span(span),
  7358   _bitMap(bitMap),
  7359   _markStack(markStack),
  7360   _finger(finger),
  7361   _parent(parent)
  7362 { }
  7364 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
  7365                      MemRegion span,
  7366                      CMSBitMap* bit_map,
  7367                      OopTaskQueue* work_queue,
  7368                      CMSMarkStack*  overflow_stack,
  7369                      CMSMarkStack*  revisit_stack,
  7370                      HeapWord* finger,
  7371                      HeapWord** global_finger_addr,
  7372                      Par_MarkFromRootsClosure* parent) :
  7373   Par_KlassRememberingOopClosure(collector,
  7374                             collector->ref_processor(),
  7375                             revisit_stack),
  7376   _whole_span(collector->_span),
  7377   _span(span),
  7378   _bit_map(bit_map),
  7379   _work_queue(work_queue),
  7380   _overflow_stack(overflow_stack),
  7381   _finger(finger),
  7382   _global_finger_addr(global_finger_addr),
  7383   _parent(parent)
  7384 { }
  7386 // Assumes thread-safe access by callers, who are
  7387 // responsible for mutual exclusion.
  7388 void CMSCollector::lower_restart_addr(HeapWord* low) {
  7389   assert(_span.contains(low), "Out of bounds addr");
  7390   if (_restart_addr == NULL) {
  7391     _restart_addr = low;
  7392   } else {
  7393     _restart_addr = MIN2(_restart_addr, low);
  7397 // Upon stack overflow, we discard (part of) the stack,
  7398 // remembering the least address amongst those discarded
  7399 // in CMSCollector's _restart_address.
  7400 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7401   // Remember the least grey address discarded
  7402   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
  7403   _collector->lower_restart_addr(ra);
  7404   _markStack->reset();  // discard stack contents
  7405   _markStack->expand(); // expand the stack if possible
  7408 // Upon stack overflow, we discard (part of) the stack,
  7409 // remembering the least address amongst those discarded
  7410 // in CMSCollector's _restart_address.
  7411 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7412   // We need to do this under a mutex to prevent other
  7413   // workers from interfering with the work done below.
  7414   MutexLockerEx ml(_overflow_stack->par_lock(),
  7415                    Mutex::_no_safepoint_check_flag);
  7416   // Remember the least grey address discarded
  7417   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  7418   _collector->lower_restart_addr(ra);
  7419   _overflow_stack->reset();  // discard stack contents
  7420   _overflow_stack->expand(); // expand the stack if possible
  7423 void PushOrMarkClosure::do_oop(oop obj) {
  7424   // Ignore mark word because we are running concurrent with mutators.
  7425   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7426   HeapWord* addr = (HeapWord*)obj;
  7427   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
  7428     // Oop lies in _span and isn't yet grey or black
  7429     _bitMap->mark(addr);            // now grey
  7430     if (addr < _finger) {
  7431       // the bit map iteration has already either passed, or
  7432       // sampled, this bit in the bit map; we'll need to
  7433       // use the marking stack to scan this oop's oops.
  7434       bool simulate_overflow = false;
  7435       NOT_PRODUCT(
  7436         if (CMSMarkStackOverflowALot &&
  7437             _collector->simulate_overflow()) {
  7438           // simulate a stack overflow
  7439           simulate_overflow = true;
  7442       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
  7443         if (PrintCMSStatistics != 0) {
  7444           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7445                                  SIZE_FORMAT, _markStack->capacity());
  7447         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
  7448         handle_stack_overflow(addr);
  7451     // anything including and to the right of _finger
  7452     // will be scanned as we iterate over the remainder of the
  7453     // bit map
  7454     do_yield_check();
  7458 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
  7459 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
  7461 void Par_PushOrMarkClosure::do_oop(oop obj) {
  7462   // Ignore mark word because we are running concurrent with mutators.
  7463   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7464   HeapWord* addr = (HeapWord*)obj;
  7465   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7466     // Oop lies in _span and isn't yet grey or black
  7467     // We read the global_finger (volatile read) strictly after marking oop
  7468     bool res = _bit_map->par_mark(addr);    // now grey
  7469     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
  7470     // Should we push this marked oop on our stack?
  7471     // -- if someone else marked it, nothing to do
  7472     // -- if target oop is above global finger nothing to do
  7473     // -- if target oop is in chunk and above local finger
  7474     //      then nothing to do
  7475     // -- else push on work queue
  7476     if (   !res       // someone else marked it, they will deal with it
  7477         || (addr >= *gfa)  // will be scanned in a later task
  7478         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
  7479       return;
  7481     // the bit map iteration has already either passed, or
  7482     // sampled, this bit in the bit map; we'll need to
  7483     // use the marking stack to scan this oop's oops.
  7484     bool simulate_overflow = false;
  7485     NOT_PRODUCT(
  7486       if (CMSMarkStackOverflowALot &&
  7487           _collector->simulate_overflow()) {
  7488         // simulate a stack overflow
  7489         simulate_overflow = true;
  7492     if (simulate_overflow ||
  7493         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  7494       // stack overflow
  7495       if (PrintCMSStatistics != 0) {
  7496         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7497                                SIZE_FORMAT, _overflow_stack->capacity());
  7499       // We cannot assert that the overflow stack is full because
  7500       // it may have been emptied since.
  7501       assert(simulate_overflow ||
  7502              _work_queue->size() == _work_queue->max_elems(),
  7503             "Else push should have succeeded");
  7504       handle_stack_overflow(addr);
  7506     do_yield_check();
  7510 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
  7511 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
  7513 KlassRememberingOopClosure::KlassRememberingOopClosure(CMSCollector* collector,
  7514                                              ReferenceProcessor* rp,
  7515                                              CMSMarkStack* revisit_stack) :
  7516   OopClosure(rp),
  7517   _collector(collector),
  7518   _revisit_stack(revisit_stack),
  7519   _should_remember_klasses(collector->should_unload_classes()) {}
  7521 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
  7522                                        MemRegion span,
  7523                                        ReferenceProcessor* rp,
  7524                                        CMSBitMap* bit_map,
  7525                                        CMSBitMap* mod_union_table,
  7526                                        CMSMarkStack*  mark_stack,
  7527                                        CMSMarkStack*  revisit_stack,
  7528                                        bool           concurrent_precleaning):
  7529   KlassRememberingOopClosure(collector, rp, revisit_stack),
  7530   _span(span),
  7531   _bit_map(bit_map),
  7532   _mod_union_table(mod_union_table),
  7533   _mark_stack(mark_stack),
  7534   _concurrent_precleaning(concurrent_precleaning)
  7536   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7539 // Grey object rescan during pre-cleaning and second checkpoint phases --
  7540 // the non-parallel version (the parallel version appears further below.)
  7541 void PushAndMarkClosure::do_oop(oop obj) {
  7542   // Ignore mark word verification. If during concurrent precleaning,
  7543   // the object monitor may be locked. If during the checkpoint
  7544   // phases, the object may already have been reached by a  different
  7545   // path and may be at the end of the global overflow list (so
  7546   // the mark word may be NULL).
  7547   assert(obj->is_oop_or_null(true /* ignore mark word */),
  7548          "expected an oop or NULL");
  7549   HeapWord* addr = (HeapWord*)obj;
  7550   // Check if oop points into the CMS generation
  7551   // and is not marked
  7552   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7553     // a white object ...
  7554     _bit_map->mark(addr);         // ... now grey
  7555     // push on the marking stack (grey set)
  7556     bool simulate_overflow = false;
  7557     NOT_PRODUCT(
  7558       if (CMSMarkStackOverflowALot &&
  7559           _collector->simulate_overflow()) {
  7560         // simulate a stack overflow
  7561         simulate_overflow = true;
  7564     if (simulate_overflow || !_mark_stack->push(obj)) {
  7565       if (_concurrent_precleaning) {
  7566          // During precleaning we can just dirty the appropriate card(s)
  7567          // in the mod union table, thus ensuring that the object remains
  7568          // in the grey set  and continue. In the case of object arrays
  7569          // we need to dirty all of the cards that the object spans,
  7570          // since the rescan of object arrays will be limited to the
  7571          // dirty cards.
  7572          // Note that no one can be intefering with us in this action
  7573          // of dirtying the mod union table, so no locking or atomics
  7574          // are required.
  7575          if (obj->is_objArray()) {
  7576            size_t sz = obj->size();
  7577            HeapWord* end_card_addr = (HeapWord*)round_to(
  7578                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  7579            MemRegion redirty_range = MemRegion(addr, end_card_addr);
  7580            assert(!redirty_range.is_empty(), "Arithmetical tautology");
  7581            _mod_union_table->mark_range(redirty_range);
  7582          } else {
  7583            _mod_union_table->mark(addr);
  7585          _collector->_ser_pmc_preclean_ovflw++;
  7586       } else {
  7587          // During the remark phase, we need to remember this oop
  7588          // in the overflow list.
  7589          _collector->push_on_overflow_list(obj);
  7590          _collector->_ser_pmc_remark_ovflw++;
  7596 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
  7597                                                MemRegion span,
  7598                                                ReferenceProcessor* rp,
  7599                                                CMSBitMap* bit_map,
  7600                                                OopTaskQueue* work_queue,
  7601                                                CMSMarkStack* revisit_stack):
  7602   Par_KlassRememberingOopClosure(collector, rp, revisit_stack),
  7603   _span(span),
  7604   _bit_map(bit_map),
  7605   _work_queue(work_queue)
  7607   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7610 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
  7611 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
  7613 // Grey object rescan during second checkpoint phase --
  7614 // the parallel version.
  7615 void Par_PushAndMarkClosure::do_oop(oop obj) {
  7616   // In the assert below, we ignore the mark word because
  7617   // this oop may point to an already visited object that is
  7618   // on the overflow stack (in which case the mark word has
  7619   // been hijacked for chaining into the overflow stack --
  7620   // if this is the last object in the overflow stack then
  7621   // its mark word will be NULL). Because this object may
  7622   // have been subsequently popped off the global overflow
  7623   // stack, and the mark word possibly restored to the prototypical
  7624   // value, by the time we get to examined this failing assert in
  7625   // the debugger, is_oop_or_null(false) may subsequently start
  7626   // to hold.
  7627   assert(obj->is_oop_or_null(true),
  7628          "expected an oop or NULL");
  7629   HeapWord* addr = (HeapWord*)obj;
  7630   // Check if oop points into the CMS generation
  7631   // and is not marked
  7632   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7633     // a white object ...
  7634     // If we manage to "claim" the object, by being the
  7635     // first thread to mark it, then we push it on our
  7636     // marking stack
  7637     if (_bit_map->par_mark(addr)) {     // ... now grey
  7638       // push on work queue (grey set)
  7639       bool simulate_overflow = false;
  7640       NOT_PRODUCT(
  7641         if (CMSMarkStackOverflowALot &&
  7642             _collector->par_simulate_overflow()) {
  7643           // simulate a stack overflow
  7644           simulate_overflow = true;
  7647       if (simulate_overflow || !_work_queue->push(obj)) {
  7648         _collector->par_push_on_overflow_list(obj);
  7649         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
  7651     } // Else, some other thread got there first
  7655 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
  7656 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
  7658 void PushAndMarkClosure::remember_mdo(DataLayout* v) {
  7659   // TBD
  7662 void Par_PushAndMarkClosure::remember_mdo(DataLayout* v) {
  7663   // TBD
  7666 void CMSPrecleanRefsYieldClosure::do_yield_work() {
  7667   DEBUG_ONLY(RememberKlassesChecker mux(false);)
  7668   Mutex* bml = _collector->bitMapLock();
  7669   assert_lock_strong(bml);
  7670   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7671          "CMS thread should hold CMS token");
  7673   bml->unlock();
  7674   ConcurrentMarkSweepThread::desynchronize(true);
  7676   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7678   _collector->stopTimer();
  7679   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7680   if (PrintCMSStatistics != 0) {
  7681     _collector->incrementYields();
  7683   _collector->icms_wait();
  7685   // See the comment in coordinator_yield()
  7686   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7687                        ConcurrentMarkSweepThread::should_yield() &&
  7688                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7689     os::sleep(Thread::current(), 1, false);
  7690     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7693   ConcurrentMarkSweepThread::synchronize(true);
  7694   bml->lock();
  7696   _collector->startTimer();
  7699 bool CMSPrecleanRefsYieldClosure::should_return() {
  7700   if (ConcurrentMarkSweepThread::should_yield()) {
  7701     do_yield_work();
  7703   return _collector->foregroundGCIsActive();
  7706 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
  7707   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
  7708          "mr should be aligned to start at a card boundary");
  7709   // We'd like to assert:
  7710   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
  7711   //        "mr should be a range of cards");
  7712   // However, that would be too strong in one case -- the last
  7713   // partition ends at _unallocated_block which, in general, can be
  7714   // an arbitrary boundary, not necessarily card aligned.
  7715   if (PrintCMSStatistics != 0) {
  7716     _num_dirty_cards +=
  7717          mr.word_size()/CardTableModRefBS::card_size_in_words;
  7719   _space->object_iterate_mem(mr, &_scan_cl);
  7722 SweepClosure::SweepClosure(CMSCollector* collector,
  7723                            ConcurrentMarkSweepGeneration* g,
  7724                            CMSBitMap* bitMap, bool should_yield) :
  7725   _collector(collector),
  7726   _g(g),
  7727   _sp(g->cmsSpace()),
  7728   _limit(_sp->sweep_limit()),
  7729   _freelistLock(_sp->freelistLock()),
  7730   _bitMap(bitMap),
  7731   _yield(should_yield),
  7732   _inFreeRange(false),           // No free range at beginning of sweep
  7733   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
  7734   _lastFreeRangeCoalesced(false),
  7735   _freeFinger(g->used_region().start())
  7737   NOT_PRODUCT(
  7738     _numObjectsFreed = 0;
  7739     _numWordsFreed   = 0;
  7740     _numObjectsLive = 0;
  7741     _numWordsLive = 0;
  7742     _numObjectsAlreadyFree = 0;
  7743     _numWordsAlreadyFree = 0;
  7744     _last_fc = NULL;
  7746     _sp->initializeIndexedFreeListArrayReturnedBytes();
  7747     _sp->dictionary()->initializeDictReturnedBytes();
  7749   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7750          "sweep _limit out of bounds");
  7751   if (CMSTraceSweeper) {
  7752     gclog_or_tty->print("\n====================\nStarting new sweep\n");
  7756 // We need this destructor to reclaim any space at the end
  7757 // of the space, which do_blk below may not have added back to
  7758 // the free lists. [basically dealing with the "fringe effect"]
  7759 SweepClosure::~SweepClosure() {
  7760   assert_lock_strong(_freelistLock);
  7761   // this should be treated as the end of a free run if any
  7762   // The current free range should be returned to the free lists
  7763   // as one coalesced chunk.
  7764   if (inFreeRange()) {
  7765     flushCurFreeChunk(freeFinger(),
  7766       pointer_delta(_limit, freeFinger()));
  7767     assert(freeFinger() < _limit, "the finger pointeth off base");
  7768     if (CMSTraceSweeper) {
  7769       gclog_or_tty->print("destructor:");
  7770       gclog_or_tty->print("Sweep:put_free_blk 0x%x ("SIZE_FORMAT") "
  7771                  "[coalesced:"SIZE_FORMAT"]\n",
  7772                  freeFinger(), pointer_delta(_limit, freeFinger()),
  7773                  lastFreeRangeCoalesced());
  7776   NOT_PRODUCT(
  7777     if (Verbose && PrintGC) {
  7778       gclog_or_tty->print("Collected "SIZE_FORMAT" objects, "
  7779                           SIZE_FORMAT " bytes",
  7780                  _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
  7781       gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
  7782                              SIZE_FORMAT" bytes  "
  7783         "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
  7784         _numObjectsLive, _numWordsLive*sizeof(HeapWord),
  7785         _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
  7786       size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) *
  7787         sizeof(HeapWord);
  7788       gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
  7790       if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
  7791         size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
  7792         size_t dictReturnedBytes = _sp->dictionary()->sumDictReturnedBytes();
  7793         size_t returnedBytes = indexListReturnedBytes + dictReturnedBytes;
  7794         gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returnedBytes);
  7795         gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
  7796           indexListReturnedBytes);
  7797         gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
  7798           dictReturnedBytes);
  7802   // Now, in debug mode, just null out the sweep_limit
  7803   NOT_PRODUCT(_sp->clear_sweep_limit();)
  7804   if (CMSTraceSweeper) {
  7805     gclog_or_tty->print("end of sweep\n================\n");
  7809 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
  7810     bool freeRangeInFreeLists) {
  7811   if (CMSTraceSweeper) {
  7812     gclog_or_tty->print("---- Start free range 0x%x with free block [%d] (%d)\n",
  7813                freeFinger, _sp->block_size(freeFinger),
  7814                freeRangeInFreeLists);
  7816   assert(!inFreeRange(), "Trampling existing free range");
  7817   set_inFreeRange(true);
  7818   set_lastFreeRangeCoalesced(false);
  7820   set_freeFinger(freeFinger);
  7821   set_freeRangeInFreeLists(freeRangeInFreeLists);
  7822   if (CMSTestInFreeList) {
  7823     if (freeRangeInFreeLists) {
  7824       FreeChunk* fc = (FreeChunk*) freeFinger;
  7825       assert(fc->isFree(), "A chunk on the free list should be free.");
  7826       assert(fc->size() > 0, "Free range should have a size");
  7827       assert(_sp->verifyChunkInFreeLists(fc), "Chunk is not in free lists");
  7832 // Note that the sweeper runs concurrently with mutators. Thus,
  7833 // it is possible for direct allocation in this generation to happen
  7834 // in the middle of the sweep. Note that the sweeper also coalesces
  7835 // contiguous free blocks. Thus, unless the sweeper and the allocator
  7836 // synchronize appropriately freshly allocated blocks may get swept up.
  7837 // This is accomplished by the sweeper locking the free lists while
  7838 // it is sweeping. Thus blocks that are determined to be free are
  7839 // indeed free. There is however one additional complication:
  7840 // blocks that have been allocated since the final checkpoint and
  7841 // mark, will not have been marked and so would be treated as
  7842 // unreachable and swept up. To prevent this, the allocator marks
  7843 // the bit map when allocating during the sweep phase. This leads,
  7844 // however, to a further complication -- objects may have been allocated
  7845 // but not yet initialized -- in the sense that the header isn't yet
  7846 // installed. The sweeper can not then determine the size of the block
  7847 // in order to skip over it. To deal with this case, we use a technique
  7848 // (due to Printezis) to encode such uninitialized block sizes in the
  7849 // bit map. Since the bit map uses a bit per every HeapWord, but the
  7850 // CMS generation has a minimum object size of 3 HeapWords, it follows
  7851 // that "normal marks" won't be adjacent in the bit map (there will
  7852 // always be at least two 0 bits between successive 1 bits). We make use
  7853 // of these "unused" bits to represent uninitialized blocks -- the bit
  7854 // corresponding to the start of the uninitialized object and the next
  7855 // bit are both set. Finally, a 1 bit marks the end of the object that
  7856 // started with the two consecutive 1 bits to indicate its potentially
  7857 // uninitialized state.
  7859 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
  7860   FreeChunk* fc = (FreeChunk*)addr;
  7861   size_t res;
  7863   // check if we are done sweepinrg
  7864   if (addr == _limit) { // we have swept up to the limit, do nothing more
  7865     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7866            "sweep _limit out of bounds");
  7867     // help the closure application finish
  7868     return pointer_delta(_sp->end(), _limit);
  7870   assert(addr <= _limit, "sweep invariant");
  7872   // check if we should yield
  7873   do_yield_check(addr);
  7874   if (fc->isFree()) {
  7875     // Chunk that is already free
  7876     res = fc->size();
  7877     doAlreadyFreeChunk(fc);
  7878     debug_only(_sp->verifyFreeLists());
  7879     assert(res == fc->size(), "Don't expect the size to change");
  7880     NOT_PRODUCT(
  7881       _numObjectsAlreadyFree++;
  7882       _numWordsAlreadyFree += res;
  7884     NOT_PRODUCT(_last_fc = fc;)
  7885   } else if (!_bitMap->isMarked(addr)) {
  7886     // Chunk is fresh garbage
  7887     res = doGarbageChunk(fc);
  7888     debug_only(_sp->verifyFreeLists());
  7889     NOT_PRODUCT(
  7890       _numObjectsFreed++;
  7891       _numWordsFreed += res;
  7893   } else {
  7894     // Chunk that is alive.
  7895     res = doLiveChunk(fc);
  7896     debug_only(_sp->verifyFreeLists());
  7897     NOT_PRODUCT(
  7898         _numObjectsLive++;
  7899         _numWordsLive += res;
  7902   return res;
  7905 // For the smart allocation, record following
  7906 //  split deaths - a free chunk is removed from its free list because
  7907 //      it is being split into two or more chunks.
  7908 //  split birth - a free chunk is being added to its free list because
  7909 //      a larger free chunk has been split and resulted in this free chunk.
  7910 //  coal death - a free chunk is being removed from its free list because
  7911 //      it is being coalesced into a large free chunk.
  7912 //  coal birth - a free chunk is being added to its free list because
  7913 //      it was created when two or more free chunks where coalesced into
  7914 //      this free chunk.
  7915 //
  7916 // These statistics are used to determine the desired number of free
  7917 // chunks of a given size.  The desired number is chosen to be relative
  7918 // to the end of a CMS sweep.  The desired number at the end of a sweep
  7919 // is the
  7920 //      count-at-end-of-previous-sweep (an amount that was enough)
  7921 //              - count-at-beginning-of-current-sweep  (the excess)
  7922 //              + split-births  (gains in this size during interval)
  7923 //              - split-deaths  (demands on this size during interval)
  7924 // where the interval is from the end of one sweep to the end of the
  7925 // next.
  7926 //
  7927 // When sweeping the sweeper maintains an accumulated chunk which is
  7928 // the chunk that is made up of chunks that have been coalesced.  That
  7929 // will be termed the left-hand chunk.  A new chunk of garbage that
  7930 // is being considered for coalescing will be referred to as the
  7931 // right-hand chunk.
  7932 //
  7933 // When making a decision on whether to coalesce a right-hand chunk with
  7934 // the current left-hand chunk, the current count vs. the desired count
  7935 // of the left-hand chunk is considered.  Also if the right-hand chunk
  7936 // is near the large chunk at the end of the heap (see
  7937 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
  7938 // left-hand chunk is coalesced.
  7939 //
  7940 // When making a decision about whether to split a chunk, the desired count
  7941 // vs. the current count of the candidate to be split is also considered.
  7942 // If the candidate is underpopulated (currently fewer chunks than desired)
  7943 // a chunk of an overpopulated (currently more chunks than desired) size may
  7944 // be chosen.  The "hint" associated with a free list, if non-null, points
  7945 // to a free list which may be overpopulated.
  7946 //
  7948 void SweepClosure::doAlreadyFreeChunk(FreeChunk* fc) {
  7949   size_t size = fc->size();
  7950   // Chunks that cannot be coalesced are not in the
  7951   // free lists.
  7952   if (CMSTestInFreeList && !fc->cantCoalesce()) {
  7953     assert(_sp->verifyChunkInFreeLists(fc),
  7954       "free chunk should be in free lists");
  7956   // a chunk that is already free, should not have been
  7957   // marked in the bit map
  7958   HeapWord* addr = (HeapWord*) fc;
  7959   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
  7960   // Verify that the bit map has no bits marked between
  7961   // addr and purported end of this block.
  7962   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7964   // Some chunks cannot be coalesced in under any circumstances.
  7965   // See the definition of cantCoalesce().
  7966   if (!fc->cantCoalesce()) {
  7967     // This chunk can potentially be coalesced.
  7968     if (_sp->adaptive_freelists()) {
  7969       // All the work is done in
  7970       doPostIsFreeOrGarbageChunk(fc, size);
  7971     } else {  // Not adaptive free lists
  7972       // this is a free chunk that can potentially be coalesced by the sweeper;
  7973       if (!inFreeRange()) {
  7974         // if the next chunk is a free block that can't be coalesced
  7975         // it doesn't make sense to remove this chunk from the free lists
  7976         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
  7977         assert((HeapWord*)nextChunk <= _limit, "sweep invariant");
  7978         if ((HeapWord*)nextChunk < _limit  &&    // there's a next chunk...
  7979             nextChunk->isFree()    &&            // which is free...
  7980             nextChunk->cantCoalesce()) {         // ... but cant be coalesced
  7981           // nothing to do
  7982         } else {
  7983           // Potentially the start of a new free range:
  7984           // Don't eagerly remove it from the free lists.
  7985           // No need to remove it if it will just be put
  7986           // back again.  (Also from a pragmatic point of view
  7987           // if it is a free block in a region that is beyond
  7988           // any allocated blocks, an assertion will fail)
  7989           // Remember the start of a free run.
  7990           initialize_free_range(addr, true);
  7991           // end - can coalesce with next chunk
  7993       } else {
  7994         // the midst of a free range, we are coalescing
  7995         debug_only(record_free_block_coalesced(fc);)
  7996         if (CMSTraceSweeper) {
  7997           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
  7999         // remove it from the free lists
  8000         _sp->removeFreeChunkFromFreeLists(fc);
  8001         set_lastFreeRangeCoalesced(true);
  8002         // If the chunk is being coalesced and the current free range is
  8003         // in the free lists, remove the current free range so that it
  8004         // will be returned to the free lists in its entirety - all
  8005         // the coalesced pieces included.
  8006         if (freeRangeInFreeLists()) {
  8007           FreeChunk* ffc = (FreeChunk*) freeFinger();
  8008           assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8009             "Size of free range is inconsistent with chunk size.");
  8010           if (CMSTestInFreeList) {
  8011             assert(_sp->verifyChunkInFreeLists(ffc),
  8012               "free range is not in free lists");
  8014           _sp->removeFreeChunkFromFreeLists(ffc);
  8015           set_freeRangeInFreeLists(false);
  8019   } else {
  8020     // Code path common to both original and adaptive free lists.
  8022     // cant coalesce with previous block; this should be treated
  8023     // as the end of a free run if any
  8024     if (inFreeRange()) {
  8025       // we kicked some butt; time to pick up the garbage
  8026       assert(freeFinger() < addr, "the finger pointeth off base");
  8027       flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8029     // else, nothing to do, just continue
  8033 size_t SweepClosure::doGarbageChunk(FreeChunk* fc) {
  8034   // This is a chunk of garbage.  It is not in any free list.
  8035   // Add it to a free list or let it possibly be coalesced into
  8036   // a larger chunk.
  8037   HeapWord* addr = (HeapWord*) fc;
  8038   size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8040   if (_sp->adaptive_freelists()) {
  8041     // Verify that the bit map has no bits marked between
  8042     // addr and purported end of just dead object.
  8043     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8045     doPostIsFreeOrGarbageChunk(fc, size);
  8046   } else {
  8047     if (!inFreeRange()) {
  8048       // start of a new free range
  8049       assert(size > 0, "A free range should have a size");
  8050       initialize_free_range(addr, false);
  8052     } else {
  8053       // this will be swept up when we hit the end of the
  8054       // free range
  8055       if (CMSTraceSweeper) {
  8056         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
  8058       // If the chunk is being coalesced and the current free range is
  8059       // in the free lists, remove the current free range so that it
  8060       // will be returned to the free lists in its entirety - all
  8061       // the coalesced pieces included.
  8062       if (freeRangeInFreeLists()) {
  8063         FreeChunk* ffc = (FreeChunk*)freeFinger();
  8064         assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8065           "Size of free range is inconsistent with chunk size.");
  8066         if (CMSTestInFreeList) {
  8067           assert(_sp->verifyChunkInFreeLists(ffc),
  8068             "free range is not in free lists");
  8070         _sp->removeFreeChunkFromFreeLists(ffc);
  8071         set_freeRangeInFreeLists(false);
  8073       set_lastFreeRangeCoalesced(true);
  8075     // this will be swept up when we hit the end of the free range
  8077     // Verify that the bit map has no bits marked between
  8078     // addr and purported end of just dead object.
  8079     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8081   return size;
  8084 size_t SweepClosure::doLiveChunk(FreeChunk* fc) {
  8085   HeapWord* addr = (HeapWord*) fc;
  8086   // The sweeper has just found a live object. Return any accumulated
  8087   // left hand chunk to the free lists.
  8088   if (inFreeRange()) {
  8089     if (_sp->adaptive_freelists()) {
  8090       flushCurFreeChunk(freeFinger(),
  8091                         pointer_delta(addr, freeFinger()));
  8092     } else { // not adaptive freelists
  8093       set_inFreeRange(false);
  8094       // Add the free range back to the free list if it is not already
  8095       // there.
  8096       if (!freeRangeInFreeLists()) {
  8097         assert(freeFinger() < addr, "the finger pointeth off base");
  8098         if (CMSTraceSweeper) {
  8099           gclog_or_tty->print("Sweep:put_free_blk 0x%x (%d) "
  8100             "[coalesced:%d]\n",
  8101             freeFinger(), pointer_delta(addr, freeFinger()),
  8102             lastFreeRangeCoalesced());
  8104         _sp->addChunkAndRepairOffsetTable(freeFinger(),
  8105           pointer_delta(addr, freeFinger()), lastFreeRangeCoalesced());
  8110   // Common code path for original and adaptive free lists.
  8112   // this object is live: we'd normally expect this to be
  8113   // an oop, and like to assert the following:
  8114   // assert(oop(addr)->is_oop(), "live block should be an oop");
  8115   // However, as we commented above, this may be an object whose
  8116   // header hasn't yet been initialized.
  8117   size_t size;
  8118   assert(_bitMap->isMarked(addr), "Tautology for this control point");
  8119   if (_bitMap->isMarked(addr + 1)) {
  8120     // Determine the size from the bit map, rather than trying to
  8121     // compute it from the object header.
  8122     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  8123     size = pointer_delta(nextOneAddr + 1, addr);
  8124     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  8125            "alignment problem");
  8127     #ifdef DEBUG
  8128       if (oop(addr)->klass_or_null() != NULL &&
  8129           (   !_collector->should_unload_classes()
  8130            || (oop(addr)->is_parsable()) &&
  8131                oop(addr)->is_conc_safe())) {
  8132         // Ignore mark word because we are running concurrent with mutators
  8133         assert(oop(addr)->is_oop(true), "live block should be an oop");
  8134         // is_conc_safe is checked before performing this assertion
  8135         // because an object that is not is_conc_safe may yet have
  8136         // the return from size() correct.
  8137         assert(size ==
  8138                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
  8139                "P-mark and computed size do not agree");
  8141     #endif
  8143   } else {
  8144     // This should be an initialized object that's alive.
  8145     assert(oop(addr)->klass_or_null() != NULL &&
  8146            (!_collector->should_unload_classes()
  8147             || oop(addr)->is_parsable()),
  8148            "Should be an initialized object");
  8149     // Note that there are objects used during class redefinition
  8150     // (e.g., merge_cp in VM_RedefineClasses::merge_cp_and_rewrite()
  8151     // which are discarded with their is_conc_safe state still
  8152     // false.  These object may be floating garbage so may be
  8153     // seen here.  If they are floating garbage their size
  8154     // should be attainable from their klass.  Do not that
  8155     // is_conc_safe() is true for oop(addr).
  8156     // Ignore mark word because we are running concurrent with mutators
  8157     assert(oop(addr)->is_oop(true), "live block should be an oop");
  8158     // Verify that the bit map has no bits marked between
  8159     // addr and purported end of this block.
  8160     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8161     assert(size >= 3, "Necessary for Printezis marks to work");
  8162     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
  8163     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
  8165   return size;
  8168 void SweepClosure::doPostIsFreeOrGarbageChunk(FreeChunk* fc,
  8169                                             size_t chunkSize) {
  8170   // doPostIsFreeOrGarbageChunk() should only be called in the smart allocation
  8171   // scheme.
  8172   bool fcInFreeLists = fc->isFree();
  8173   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
  8174   assert((HeapWord*)fc <= _limit, "sweep invariant");
  8175   if (CMSTestInFreeList && fcInFreeLists) {
  8176     assert(_sp->verifyChunkInFreeLists(fc),
  8177       "free chunk is not in free lists");
  8181   if (CMSTraceSweeper) {
  8182     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
  8185   HeapWord* addr = (HeapWord*) fc;
  8187   bool coalesce;
  8188   size_t left  = pointer_delta(addr, freeFinger());
  8189   size_t right = chunkSize;
  8190   switch (FLSCoalescePolicy) {
  8191     // numeric value forms a coalition aggressiveness metric
  8192     case 0:  { // never coalesce
  8193       coalesce = false;
  8194       break;
  8196     case 1: { // coalesce if left & right chunks on overpopulated lists
  8197       coalesce = _sp->coalOverPopulated(left) &&
  8198                  _sp->coalOverPopulated(right);
  8199       break;
  8201     case 2: { // coalesce if left chunk on overpopulated list (default)
  8202       coalesce = _sp->coalOverPopulated(left);
  8203       break;
  8205     case 3: { // coalesce if left OR right chunk on overpopulated list
  8206       coalesce = _sp->coalOverPopulated(left) ||
  8207                  _sp->coalOverPopulated(right);
  8208       break;
  8210     case 4: { // always coalesce
  8211       coalesce = true;
  8212       break;
  8214     default:
  8215      ShouldNotReachHere();
  8218   // Should the current free range be coalesced?
  8219   // If the chunk is in a free range and either we decided to coalesce above
  8220   // or the chunk is near the large block at the end of the heap
  8221   // (isNearLargestChunk() returns true), then coalesce this chunk.
  8222   bool doCoalesce = inFreeRange() &&
  8223     (coalesce || _g->isNearLargestChunk((HeapWord*)fc));
  8224   if (doCoalesce) {
  8225     // Coalesce the current free range on the left with the new
  8226     // chunk on the right.  If either is on a free list,
  8227     // it must be removed from the list and stashed in the closure.
  8228     if (freeRangeInFreeLists()) {
  8229       FreeChunk* ffc = (FreeChunk*)freeFinger();
  8230       assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8231         "Size of free range is inconsistent with chunk size.");
  8232       if (CMSTestInFreeList) {
  8233         assert(_sp->verifyChunkInFreeLists(ffc),
  8234           "Chunk is not in free lists");
  8236       _sp->coalDeath(ffc->size());
  8237       _sp->removeFreeChunkFromFreeLists(ffc);
  8238       set_freeRangeInFreeLists(false);
  8240     if (fcInFreeLists) {
  8241       _sp->coalDeath(chunkSize);
  8242       assert(fc->size() == chunkSize,
  8243         "The chunk has the wrong size or is not in the free lists");
  8244       _sp->removeFreeChunkFromFreeLists(fc);
  8246     set_lastFreeRangeCoalesced(true);
  8247   } else {  // not in a free range and/or should not coalesce
  8248     // Return the current free range and start a new one.
  8249     if (inFreeRange()) {
  8250       // In a free range but cannot coalesce with the right hand chunk.
  8251       // Put the current free range into the free lists.
  8252       flushCurFreeChunk(freeFinger(),
  8253         pointer_delta(addr, freeFinger()));
  8255     // Set up for new free range.  Pass along whether the right hand
  8256     // chunk is in the free lists.
  8257     initialize_free_range((HeapWord*)fc, fcInFreeLists);
  8260 void SweepClosure::flushCurFreeChunk(HeapWord* chunk, size_t size) {
  8261   assert(inFreeRange(), "Should only be called if currently in a free range.");
  8262   assert(size > 0,
  8263     "A zero sized chunk cannot be added to the free lists.");
  8264   if (!freeRangeInFreeLists()) {
  8265     if(CMSTestInFreeList) {
  8266       FreeChunk* fc = (FreeChunk*) chunk;
  8267       fc->setSize(size);
  8268       assert(!_sp->verifyChunkInFreeLists(fc),
  8269         "chunk should not be in free lists yet");
  8271     if (CMSTraceSweeper) {
  8272       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
  8273                     chunk, size);
  8275     // A new free range is going to be starting.  The current
  8276     // free range has not been added to the free lists yet or
  8277     // was removed so add it back.
  8278     // If the current free range was coalesced, then the death
  8279     // of the free range was recorded.  Record a birth now.
  8280     if (lastFreeRangeCoalesced()) {
  8281       _sp->coalBirth(size);
  8283     _sp->addChunkAndRepairOffsetTable(chunk, size,
  8284             lastFreeRangeCoalesced());
  8286   set_inFreeRange(false);
  8287   set_freeRangeInFreeLists(false);
  8290 // We take a break if we've been at this for a while,
  8291 // so as to avoid monopolizing the locks involved.
  8292 void SweepClosure::do_yield_work(HeapWord* addr) {
  8293   // Return current free chunk being used for coalescing (if any)
  8294   // to the appropriate freelist.  After yielding, the next
  8295   // free block encountered will start a coalescing range of
  8296   // free blocks.  If the next free block is adjacent to the
  8297   // chunk just flushed, they will need to wait for the next
  8298   // sweep to be coalesced.
  8299   if (inFreeRange()) {
  8300     flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8303   // First give up the locks, then yield, then re-lock.
  8304   // We should probably use a constructor/destructor idiom to
  8305   // do this unlock/lock or modify the MutexUnlocker class to
  8306   // serve our purpose. XXX
  8307   assert_lock_strong(_bitMap->lock());
  8308   assert_lock_strong(_freelistLock);
  8309   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  8310          "CMS thread should hold CMS token");
  8311   _bitMap->lock()->unlock();
  8312   _freelistLock->unlock();
  8313   ConcurrentMarkSweepThread::desynchronize(true);
  8314   ConcurrentMarkSweepThread::acknowledge_yield_request();
  8315   _collector->stopTimer();
  8316   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  8317   if (PrintCMSStatistics != 0) {
  8318     _collector->incrementYields();
  8320   _collector->icms_wait();
  8322   // See the comment in coordinator_yield()
  8323   for (unsigned i = 0; i < CMSYieldSleepCount &&
  8324                        ConcurrentMarkSweepThread::should_yield() &&
  8325                        !CMSCollector::foregroundGCIsActive(); ++i) {
  8326     os::sleep(Thread::current(), 1, false);
  8327     ConcurrentMarkSweepThread::acknowledge_yield_request();
  8330   ConcurrentMarkSweepThread::synchronize(true);
  8331   _freelistLock->lock();
  8332   _bitMap->lock()->lock_without_safepoint_check();
  8333   _collector->startTimer();
  8336 #ifndef PRODUCT
  8337 // This is actually very useful in a product build if it can
  8338 // be called from the debugger.  Compile it into the product
  8339 // as needed.
  8340 bool debug_verifyChunkInFreeLists(FreeChunk* fc) {
  8341   return debug_cms_space->verifyChunkInFreeLists(fc);
  8344 void SweepClosure::record_free_block_coalesced(FreeChunk* fc) const {
  8345   if (CMSTraceSweeper) {
  8346     gclog_or_tty->print("Sweep:coal_free_blk 0x%x (%d)\n", fc, fc->size());
  8349 #endif
  8351 // CMSIsAliveClosure
  8352 bool CMSIsAliveClosure::do_object_b(oop obj) {
  8353   HeapWord* addr = (HeapWord*)obj;
  8354   return addr != NULL &&
  8355          (!_span.contains(addr) || _bit_map->isMarked(addr));
  8358 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
  8359                       MemRegion span,
  8360                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
  8361                       CMSMarkStack* revisit_stack, bool cpc):
  8362   KlassRememberingOopClosure(collector, NULL, revisit_stack),
  8363   _span(span),
  8364   _bit_map(bit_map),
  8365   _mark_stack(mark_stack),
  8366   _concurrent_precleaning(cpc) {
  8367   assert(!_span.is_empty(), "Empty span could spell trouble");
  8371 // CMSKeepAliveClosure: the serial version
  8372 void CMSKeepAliveClosure::do_oop(oop obj) {
  8373   HeapWord* addr = (HeapWord*)obj;
  8374   if (_span.contains(addr) &&
  8375       !_bit_map->isMarked(addr)) {
  8376     _bit_map->mark(addr);
  8377     bool simulate_overflow = false;
  8378     NOT_PRODUCT(
  8379       if (CMSMarkStackOverflowALot &&
  8380           _collector->simulate_overflow()) {
  8381         // simulate a stack overflow
  8382         simulate_overflow = true;
  8385     if (simulate_overflow || !_mark_stack->push(obj)) {
  8386       if (_concurrent_precleaning) {
  8387         // We dirty the overflown object and let the remark
  8388         // phase deal with it.
  8389         assert(_collector->overflow_list_is_empty(), "Error");
  8390         // In the case of object arrays, we need to dirty all of
  8391         // the cards that the object spans. No locking or atomics
  8392         // are needed since no one else can be mutating the mod union
  8393         // table.
  8394         if (obj->is_objArray()) {
  8395           size_t sz = obj->size();
  8396           HeapWord* end_card_addr =
  8397             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
  8398           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  8399           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  8400           _collector->_modUnionTable.mark_range(redirty_range);
  8401         } else {
  8402           _collector->_modUnionTable.mark(addr);
  8404         _collector->_ser_kac_preclean_ovflw++;
  8405       } else {
  8406         _collector->push_on_overflow_list(obj);
  8407         _collector->_ser_kac_ovflw++;
  8413 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
  8414 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
  8416 // CMSParKeepAliveClosure: a parallel version of the above.
  8417 // The work queues are private to each closure (thread),
  8418 // but (may be) available for stealing by other threads.
  8419 void CMSParKeepAliveClosure::do_oop(oop obj) {
  8420   HeapWord* addr = (HeapWord*)obj;
  8421   if (_span.contains(addr) &&
  8422       !_bit_map->isMarked(addr)) {
  8423     // In general, during recursive tracing, several threads
  8424     // may be concurrently getting here; the first one to
  8425     // "tag" it, claims it.
  8426     if (_bit_map->par_mark(addr)) {
  8427       bool res = _work_queue->push(obj);
  8428       assert(res, "Low water mark should be much less than capacity");
  8429       // Do a recursive trim in the hope that this will keep
  8430       // stack usage lower, but leave some oops for potential stealers
  8431       trim_queue(_low_water_mark);
  8432     } // Else, another thread got there first
  8436 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
  8437 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
  8439 void CMSParKeepAliveClosure::trim_queue(uint max) {
  8440   while (_work_queue->size() > max) {
  8441     oop new_oop;
  8442     if (_work_queue->pop_local(new_oop)) {
  8443       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  8444       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8445              "no white objects on this stack!");
  8446       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8447       // iterate over the oops in this oop, marking and pushing
  8448       // the ones in CMS heap (i.e. in _span).
  8449       new_oop->oop_iterate(&_mark_and_push);
  8454 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
  8455                                 CMSCollector* collector,
  8456                                 MemRegion span, CMSBitMap* bit_map,
  8457                                 CMSMarkStack* revisit_stack,
  8458                                 OopTaskQueue* work_queue):
  8459   Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
  8460   _span(span),
  8461   _bit_map(bit_map),
  8462   _work_queue(work_queue) { }
  8464 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
  8465   HeapWord* addr = (HeapWord*)obj;
  8466   if (_span.contains(addr) &&
  8467       !_bit_map->isMarked(addr)) {
  8468     if (_bit_map->par_mark(addr)) {
  8469       bool simulate_overflow = false;
  8470       NOT_PRODUCT(
  8471         if (CMSMarkStackOverflowALot &&
  8472             _collector->par_simulate_overflow()) {
  8473           // simulate a stack overflow
  8474           simulate_overflow = true;
  8477       if (simulate_overflow || !_work_queue->push(obj)) {
  8478         _collector->par_push_on_overflow_list(obj);
  8479         _collector->_par_kac_ovflw++;
  8481     } // Else another thread got there already
  8485 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8486 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8488 //////////////////////////////////////////////////////////////////
  8489 //  CMSExpansionCause                /////////////////////////////
  8490 //////////////////////////////////////////////////////////////////
  8491 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
  8492   switch (cause) {
  8493     case _no_expansion:
  8494       return "No expansion";
  8495     case _satisfy_free_ratio:
  8496       return "Free ratio";
  8497     case _satisfy_promotion:
  8498       return "Satisfy promotion";
  8499     case _satisfy_allocation:
  8500       return "allocation";
  8501     case _allocate_par_lab:
  8502       return "Par LAB";
  8503     case _allocate_par_spooling_space:
  8504       return "Par Spooling Space";
  8505     case _adaptive_size_policy:
  8506       return "Ergonomics";
  8507     default:
  8508       return "unknown";
  8512 void CMSDrainMarkingStackClosure::do_void() {
  8513   // the max number to take from overflow list at a time
  8514   const size_t num = _mark_stack->capacity()/4;
  8515   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
  8516          "Overflow list should be NULL during concurrent phases");
  8517   while (!_mark_stack->isEmpty() ||
  8518          // if stack is empty, check the overflow list
  8519          _collector->take_from_overflow_list(num, _mark_stack)) {
  8520     oop obj = _mark_stack->pop();
  8521     HeapWord* addr = (HeapWord*)obj;
  8522     assert(_span.contains(addr), "Should be within span");
  8523     assert(_bit_map->isMarked(addr), "Should be marked");
  8524     assert(obj->is_oop(), "Should be an oop");
  8525     obj->oop_iterate(_keep_alive);
  8529 void CMSParDrainMarkingStackClosure::do_void() {
  8530   // drain queue
  8531   trim_queue(0);
  8534 // Trim our work_queue so its length is below max at return
  8535 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
  8536   while (_work_queue->size() > max) {
  8537     oop new_oop;
  8538     if (_work_queue->pop_local(new_oop)) {
  8539       assert(new_oop->is_oop(), "Expected an oop");
  8540       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8541              "no white objects on this stack!");
  8542       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8543       // iterate over the oops in this oop, marking and pushing
  8544       // the ones in CMS heap (i.e. in _span).
  8545       new_oop->oop_iterate(&_mark_and_push);
  8550 ////////////////////////////////////////////////////////////////////
  8551 // Support for Marking Stack Overflow list handling and related code
  8552 ////////////////////////////////////////////////////////////////////
  8553 // Much of the following code is similar in shape and spirit to the
  8554 // code used in ParNewGC. We should try and share that code
  8555 // as much as possible in the future.
  8557 #ifndef PRODUCT
  8558 // Debugging support for CMSStackOverflowALot
  8560 // It's OK to call this multi-threaded;  the worst thing
  8561 // that can happen is that we'll get a bunch of closely
  8562 // spaced simulated oveflows, but that's OK, in fact
  8563 // probably good as it would exercise the overflow code
  8564 // under contention.
  8565 bool CMSCollector::simulate_overflow() {
  8566   if (_overflow_counter-- <= 0) { // just being defensive
  8567     _overflow_counter = CMSMarkStackOverflowInterval;
  8568     return true;
  8569   } else {
  8570     return false;
  8574 bool CMSCollector::par_simulate_overflow() {
  8575   return simulate_overflow();
  8577 #endif
  8579 // Single-threaded
  8580 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
  8581   assert(stack->isEmpty(), "Expected precondition");
  8582   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
  8583   size_t i = num;
  8584   oop  cur = _overflow_list;
  8585   const markOop proto = markOopDesc::prototype();
  8586   NOT_PRODUCT(ssize_t n = 0;)
  8587   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
  8588     next = oop(cur->mark());
  8589     cur->set_mark(proto);   // until proven otherwise
  8590     assert(cur->is_oop(), "Should be an oop");
  8591     bool res = stack->push(cur);
  8592     assert(res, "Bit off more than can chew?");
  8593     NOT_PRODUCT(n++;)
  8595   _overflow_list = cur;
  8596 #ifndef PRODUCT
  8597   assert(_num_par_pushes >= n, "Too many pops?");
  8598   _num_par_pushes -=n;
  8599 #endif
  8600   return !stack->isEmpty();
  8603 #define BUSY  (oop(0x1aff1aff))
  8604 // (MT-safe) Get a prefix of at most "num" from the list.
  8605 // The overflow list is chained through the mark word of
  8606 // each object in the list. We fetch the entire list,
  8607 // break off a prefix of the right size and return the
  8608 // remainder. If other threads try to take objects from
  8609 // the overflow list at that time, they will wait for
  8610 // some time to see if data becomes available. If (and
  8611 // only if) another thread places one or more object(s)
  8612 // on the global list before we have returned the suffix
  8613 // to the global list, we will walk down our local list
  8614 // to find its end and append the global list to
  8615 // our suffix before returning it. This suffix walk can
  8616 // prove to be expensive (quadratic in the amount of traffic)
  8617 // when there are many objects in the overflow list and
  8618 // there is much producer-consumer contention on the list.
  8619 // *NOTE*: The overflow list manipulation code here and
  8620 // in ParNewGeneration:: are very similar in shape,
  8621 // except that in the ParNew case we use the old (from/eden)
  8622 // copy of the object to thread the list via its klass word.
  8623 // Because of the common code, if you make any changes in
  8624 // the code below, please check the ParNew version to see if
  8625 // similar changes might be needed.
  8626 // CR 6797058 has been filed to consolidate the common code.
  8627 bool CMSCollector::par_take_from_overflow_list(size_t num,
  8628                                                OopTaskQueue* work_q) {
  8629   assert(work_q->size() == 0, "First empty local work queue");
  8630   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
  8631   if (_overflow_list == NULL) {
  8632     return false;
  8634   // Grab the entire list; we'll put back a suffix
  8635   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
  8636   Thread* tid = Thread::current();
  8637   size_t CMSOverflowSpinCount = (size_t)ParallelGCThreads;
  8638   size_t sleep_time_millis = MAX2((size_t)1, num/100);
  8639   // If the list is busy, we spin for a short while,
  8640   // sleeping between attempts to get the list.
  8641   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
  8642     os::sleep(tid, sleep_time_millis, false);
  8643     if (_overflow_list == NULL) {
  8644       // Nothing left to take
  8645       return false;
  8646     } else if (_overflow_list != BUSY) {
  8647       // Try and grab the prefix
  8648       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
  8651   // If the list was found to be empty, or we spun long
  8652   // enough, we give up and return empty-handed. If we leave
  8653   // the list in the BUSY state below, it must be the case that
  8654   // some other thread holds the overflow list and will set it
  8655   // to a non-BUSY state in the future.
  8656   if (prefix == NULL || prefix == BUSY) {
  8657      // Nothing to take or waited long enough
  8658      if (prefix == NULL) {
  8659        // Write back the NULL in case we overwrote it with BUSY above
  8660        // and it is still the same value.
  8661        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  8663      return false;
  8665   assert(prefix != NULL && prefix != BUSY, "Error");
  8666   size_t i = num;
  8667   oop cur = prefix;
  8668   // Walk down the first "num" objects, unless we reach the end.
  8669   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
  8670   if (cur->mark() == NULL) {
  8671     // We have "num" or fewer elements in the list, so there
  8672     // is nothing to return to the global list.
  8673     // Write back the NULL in lieu of the BUSY we wrote
  8674     // above, if it is still the same value.
  8675     if (_overflow_list == BUSY) {
  8676       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  8678   } else {
  8679     // Chop off the suffix and rerturn it to the global list.
  8680     assert(cur->mark() != BUSY, "Error");
  8681     oop suffix_head = cur->mark(); // suffix will be put back on global list
  8682     cur->set_mark(NULL);           // break off suffix
  8683     // It's possible that the list is still in the empty(busy) state
  8684     // we left it in a short while ago; in that case we may be
  8685     // able to place back the suffix without incurring the cost
  8686     // of a walk down the list.
  8687     oop observed_overflow_list = _overflow_list;
  8688     oop cur_overflow_list = observed_overflow_list;
  8689     bool attached = false;
  8690     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
  8691       observed_overflow_list =
  8692         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
  8693       if (cur_overflow_list == observed_overflow_list) {
  8694         attached = true;
  8695         break;
  8696       } else cur_overflow_list = observed_overflow_list;
  8698     if (!attached) {
  8699       // Too bad, someone else sneaked in (at least) an element; we'll need
  8700       // to do a splice. Find tail of suffix so we can prepend suffix to global
  8701       // list.
  8702       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
  8703       oop suffix_tail = cur;
  8704       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
  8705              "Tautology");
  8706       observed_overflow_list = _overflow_list;
  8707       do {
  8708         cur_overflow_list = observed_overflow_list;
  8709         if (cur_overflow_list != BUSY) {
  8710           // Do the splice ...
  8711           suffix_tail->set_mark(markOop(cur_overflow_list));
  8712         } else { // cur_overflow_list == BUSY
  8713           suffix_tail->set_mark(NULL);
  8715         // ... and try to place spliced list back on overflow_list ...
  8716         observed_overflow_list =
  8717           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
  8718       } while (cur_overflow_list != observed_overflow_list);
  8719       // ... until we have succeeded in doing so.
  8723   // Push the prefix elements on work_q
  8724   assert(prefix != NULL, "control point invariant");
  8725   const markOop proto = markOopDesc::prototype();
  8726   oop next;
  8727   NOT_PRODUCT(ssize_t n = 0;)
  8728   for (cur = prefix; cur != NULL; cur = next) {
  8729     next = oop(cur->mark());
  8730     cur->set_mark(proto);   // until proven otherwise
  8731     assert(cur->is_oop(), "Should be an oop");
  8732     bool res = work_q->push(cur);
  8733     assert(res, "Bit off more than we can chew?");
  8734     NOT_PRODUCT(n++;)
  8736 #ifndef PRODUCT
  8737   assert(_num_par_pushes >= n, "Too many pops?");
  8738   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  8739 #endif
  8740   return true;
  8743 // Single-threaded
  8744 void CMSCollector::push_on_overflow_list(oop p) {
  8745   NOT_PRODUCT(_num_par_pushes++;)
  8746   assert(p->is_oop(), "Not an oop");
  8747   preserve_mark_if_necessary(p);
  8748   p->set_mark((markOop)_overflow_list);
  8749   _overflow_list = p;
  8752 // Multi-threaded; use CAS to prepend to overflow list
  8753 void CMSCollector::par_push_on_overflow_list(oop p) {
  8754   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
  8755   assert(p->is_oop(), "Not an oop");
  8756   par_preserve_mark_if_necessary(p);
  8757   oop observed_overflow_list = _overflow_list;
  8758   oop cur_overflow_list;
  8759   do {
  8760     cur_overflow_list = observed_overflow_list;
  8761     if (cur_overflow_list != BUSY) {
  8762       p->set_mark(markOop(cur_overflow_list));
  8763     } else {
  8764       p->set_mark(NULL);
  8766     observed_overflow_list =
  8767       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
  8768   } while (cur_overflow_list != observed_overflow_list);
  8770 #undef BUSY
  8772 // Single threaded
  8773 // General Note on GrowableArray: pushes may silently fail
  8774 // because we are (temporarily) out of C-heap for expanding
  8775 // the stack. The problem is quite ubiquitous and affects
  8776 // a lot of code in the JVM. The prudent thing for GrowableArray
  8777 // to do (for now) is to exit with an error. However, that may
  8778 // be too draconian in some cases because the caller may be
  8779 // able to recover without much harm. For such cases, we
  8780 // should probably introduce a "soft_push" method which returns
  8781 // an indication of success or failure with the assumption that
  8782 // the caller may be able to recover from a failure; code in
  8783 // the VM can then be changed, incrementally, to deal with such
  8784 // failures where possible, thus, incrementally hardening the VM
  8785 // in such low resource situations.
  8786 void CMSCollector::preserve_mark_work(oop p, markOop m) {
  8787   if (_preserved_oop_stack == NULL) {
  8788     assert(_preserved_mark_stack == NULL,
  8789            "bijection with preserved_oop_stack");
  8790     // Allocate the stacks
  8791     _preserved_oop_stack  = new (ResourceObj::C_HEAP)
  8792       GrowableArray<oop>(PreserveMarkStackSize, true);
  8793     _preserved_mark_stack = new (ResourceObj::C_HEAP)
  8794       GrowableArray<markOop>(PreserveMarkStackSize, true);
  8795     if (_preserved_oop_stack == NULL || _preserved_mark_stack == NULL) {
  8796       vm_exit_out_of_memory(2* PreserveMarkStackSize * sizeof(oop) /* punt */,
  8797                             "Preserved Mark/Oop Stack for CMS (C-heap)");
  8800   _preserved_oop_stack->push(p);
  8801   _preserved_mark_stack->push(m);
  8802   assert(m == p->mark(), "Mark word changed");
  8803   assert(_preserved_oop_stack->length() == _preserved_mark_stack->length(),
  8804          "bijection");
  8807 // Single threaded
  8808 void CMSCollector::preserve_mark_if_necessary(oop p) {
  8809   markOop m = p->mark();
  8810   if (m->must_be_preserved(p)) {
  8811     preserve_mark_work(p, m);
  8815 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
  8816   markOop m = p->mark();
  8817   if (m->must_be_preserved(p)) {
  8818     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  8819     // Even though we read the mark word without holding
  8820     // the lock, we are assured that it will not change
  8821     // because we "own" this oop, so no other thread can
  8822     // be trying to push it on the overflow list; see
  8823     // the assertion in preserve_mark_work() that checks
  8824     // that m == p->mark().
  8825     preserve_mark_work(p, m);
  8829 // We should be able to do this multi-threaded,
  8830 // a chunk of stack being a task (this is
  8831 // correct because each oop only ever appears
  8832 // once in the overflow list. However, it's
  8833 // not very easy to completely overlap this with
  8834 // other operations, so will generally not be done
  8835 // until all work's been completed. Because we
  8836 // expect the preserved oop stack (set) to be small,
  8837 // it's probably fine to do this single-threaded.
  8838 // We can explore cleverer concurrent/overlapped/parallel
  8839 // processing of preserved marks if we feel the
  8840 // need for this in the future. Stack overflow should
  8841 // be so rare in practice and, when it happens, its
  8842 // effect on performance so great that this will
  8843 // likely just be in the noise anyway.
  8844 void CMSCollector::restore_preserved_marks_if_any() {
  8845   if (_preserved_oop_stack == NULL) {
  8846     assert(_preserved_mark_stack == NULL,
  8847            "bijection with preserved_oop_stack");
  8848     return;
  8851   assert(SafepointSynchronize::is_at_safepoint(),
  8852          "world should be stopped");
  8853   assert(Thread::current()->is_ConcurrentGC_thread() ||
  8854          Thread::current()->is_VM_thread(),
  8855          "should be single-threaded");
  8857   int length = _preserved_oop_stack->length();
  8858   assert(_preserved_mark_stack->length() == length, "bijection");
  8859   for (int i = 0; i < length; i++) {
  8860     oop p = _preserved_oop_stack->at(i);
  8861     assert(p->is_oop(), "Should be an oop");
  8862     assert(_span.contains(p), "oop should be in _span");
  8863     assert(p->mark() == markOopDesc::prototype(),
  8864            "Set when taken from overflow list");
  8865     markOop m = _preserved_mark_stack->at(i);
  8866     p->set_mark(m);
  8868   _preserved_mark_stack->clear();
  8869   _preserved_oop_stack->clear();
  8870   assert(_preserved_mark_stack->is_empty() &&
  8871          _preserved_oop_stack->is_empty(),
  8872          "stacks were cleared above");
  8875 #ifndef PRODUCT
  8876 bool CMSCollector::no_preserved_marks() const {
  8877   return (   (   _preserved_mark_stack == NULL
  8878               && _preserved_oop_stack == NULL)
  8879           || (   _preserved_mark_stack->is_empty()
  8880               && _preserved_oop_stack->is_empty()));
  8882 #endif
  8884 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
  8886   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8887   CMSAdaptiveSizePolicy* size_policy =
  8888     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
  8889   assert(size_policy->is_gc_cms_adaptive_size_policy(),
  8890     "Wrong type for size policy");
  8891   return size_policy;
  8894 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
  8895                                            size_t desired_promo_size) {
  8896   if (cur_promo_size < desired_promo_size) {
  8897     size_t expand_bytes = desired_promo_size - cur_promo_size;
  8898     if (PrintAdaptiveSizePolicy && Verbose) {
  8899       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  8900         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
  8901         expand_bytes);
  8903     expand(expand_bytes,
  8904            MinHeapDeltaBytes,
  8905            CMSExpansionCause::_adaptive_size_policy);
  8906   } else if (desired_promo_size < cur_promo_size) {
  8907     size_t shrink_bytes = cur_promo_size - desired_promo_size;
  8908     if (PrintAdaptiveSizePolicy && Verbose) {
  8909       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  8910         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
  8911         shrink_bytes);
  8913     shrink(shrink_bytes);
  8917 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
  8918   GenCollectedHeap* gch = GenCollectedHeap::heap();
  8919   CMSGCAdaptivePolicyCounters* counters =
  8920     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
  8921   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
  8922     "Wrong kind of counters");
  8923   return counters;
  8927 void ASConcurrentMarkSweepGeneration::update_counters() {
  8928   if (UsePerfData) {
  8929     _space_counters->update_all();
  8930     _gen_counters->update_all();
  8931     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8932     GenCollectedHeap* gch = GenCollectedHeap::heap();
  8933     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  8934     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  8935       "Wrong gc statistics type");
  8936     counters->update_counters(gc_stats_l);
  8940 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
  8941   if (UsePerfData) {
  8942     _space_counters->update_used(used);
  8943     _space_counters->update_capacity();
  8944     _gen_counters->update_all();
  8946     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8947     GenCollectedHeap* gch = GenCollectedHeap::heap();
  8948     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  8949     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  8950       "Wrong gc statistics type");
  8951     counters->update_counters(gc_stats_l);
  8955 // The desired expansion delta is computed so that:
  8956 // . desired free percentage or greater is used
  8957 void ASConcurrentMarkSweepGeneration::compute_new_size() {
  8958   assert_locked_or_safepoint(Heap_lock);
  8960   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8962   // If incremental collection failed, we just want to expand
  8963   // to the limit.
  8964   if (incremental_collection_failed()) {
  8965     clear_incremental_collection_failed();
  8966     grow_to_reserved();
  8967     return;
  8970   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
  8972   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  8973     "Wrong type of heap");
  8974   int prev_level = level() - 1;
  8975   assert(prev_level >= 0, "The cms generation is the lowest generation");
  8976   Generation* prev_gen = gch->get_gen(prev_level);
  8977   assert(prev_gen->kind() == Generation::ASParNew,
  8978     "Wrong type of young generation");
  8979   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
  8980   size_t cur_eden = younger_gen->eden()->capacity();
  8981   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
  8982   size_t cur_promo = free();
  8983   size_policy->compute_tenured_generation_free_space(cur_promo,
  8984                                                        max_available(),
  8985                                                        cur_eden);
  8986   resize(cur_promo, size_policy->promo_size());
  8988   // Record the new size of the space in the cms generation
  8989   // that is available for promotions.  This is temporary.
  8990   // It should be the desired promo size.
  8991   size_policy->avg_cms_promo()->sample(free());
  8992   size_policy->avg_old_live()->sample(used());
  8994   if (UsePerfData) {
  8995     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8996     counters->update_cms_capacity_counter(capacity());
  9000 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
  9001   assert_locked_or_safepoint(Heap_lock);
  9002   assert_lock_strong(freelistLock());
  9003   HeapWord* old_end = _cmsSpace->end();
  9004   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
  9005   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
  9006   FreeChunk* chunk_at_end = find_chunk_at_end();
  9007   if (chunk_at_end == NULL) {
  9008     // No room to shrink
  9009     if (PrintGCDetails && Verbose) {
  9010       gclog_or_tty->print_cr("No room to shrink: old_end  "
  9011         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
  9012         " chunk_at_end  " PTR_FORMAT,
  9013         old_end, unallocated_start, chunk_at_end);
  9015     return;
  9016   } else {
  9018     // Find the chunk at the end of the space and determine
  9019     // how much it can be shrunk.
  9020     size_t shrinkable_size_in_bytes = chunk_at_end->size();
  9021     size_t aligned_shrinkable_size_in_bytes =
  9022       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
  9023     assert(unallocated_start <= chunk_at_end->end(),
  9024       "Inconsistent chunk at end of space");
  9025     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
  9026     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
  9028     // Shrink the underlying space
  9029     _virtual_space.shrink_by(bytes);
  9030     if (PrintGCDetails && Verbose) {
  9031       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
  9032         " desired_bytes " SIZE_FORMAT
  9033         " shrinkable_size_in_bytes " SIZE_FORMAT
  9034         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
  9035         "  bytes  " SIZE_FORMAT,
  9036         desired_bytes, shrinkable_size_in_bytes,
  9037         aligned_shrinkable_size_in_bytes, bytes);
  9038       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
  9039         "  unallocated_start  " SIZE_FORMAT,
  9040         old_end, unallocated_start);
  9043     // If the space did shrink (shrinking is not guaranteed),
  9044     // shrink the chunk at the end by the appropriate amount.
  9045     if (((HeapWord*)_virtual_space.high()) < old_end) {
  9046       size_t new_word_size =
  9047         heap_word_size(_virtual_space.committed_size());
  9049       // Have to remove the chunk from the dictionary because it is changing
  9050       // size and might be someplace elsewhere in the dictionary.
  9052       // Get the chunk at end, shrink it, and put it
  9053       // back.
  9054       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
  9055       size_t word_size_change = word_size_before - new_word_size;
  9056       size_t chunk_at_end_old_size = chunk_at_end->size();
  9057       assert(chunk_at_end_old_size >= word_size_change,
  9058         "Shrink is too large");
  9059       chunk_at_end->setSize(chunk_at_end_old_size -
  9060                           word_size_change);
  9061       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
  9062         word_size_change);
  9064       _cmsSpace->returnChunkToDictionary(chunk_at_end);
  9066       MemRegion mr(_cmsSpace->bottom(), new_word_size);
  9067       _bts->resize(new_word_size);  // resize the block offset shared array
  9068       Universe::heap()->barrier_set()->resize_covered_region(mr);
  9069       _cmsSpace->assert_locked();
  9070       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  9072       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
  9074       // update the space and generation capacity counters
  9075       if (UsePerfData) {
  9076         _space_counters->update_capacity();
  9077         _gen_counters->update_all();
  9080       if (Verbose && PrintGCDetails) {
  9081         size_t new_mem_size = _virtual_space.committed_size();
  9082         size_t old_mem_size = new_mem_size + bytes;
  9083         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
  9084                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
  9088     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
  9089       "Inconsistency at end of space");
  9090     assert(chunk_at_end->end() == _cmsSpace->end(),
  9091       "Shrinking is inconsistent");
  9092     return;
  9096 // Transfer some number of overflown objects to usual marking
  9097 // stack. Return true if some objects were transferred.
  9098 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
  9099   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
  9100                     (size_t)ParGCDesiredObjsFromOverflowList);
  9102   bool res = _collector->take_from_overflow_list(num, _mark_stack);
  9103   assert(_collector->overflow_list_is_empty() || res,
  9104          "If list is not empty, we should have taken something");
  9105   assert(!res || !_mark_stack->isEmpty(),
  9106          "If we took something, it should now be on our stack");
  9107   return res;
  9110 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
  9111   size_t res = _sp->block_size_no_stall(addr, _collector);
  9112   assert(res != 0, "Should always be able to compute a size");
  9113   if (_sp->block_is_obj(addr)) {
  9114     if (_live_bit_map->isMarked(addr)) {
  9115       // It can't have been dead in a previous cycle
  9116       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
  9117     } else {
  9118       _dead_bit_map->mark(addr);      // mark the dead object
  9121   return res;

mercurial