src/share/vm/utilities/globalDefinitions.hpp

Tue, 25 Feb 2014 15:11:18 -0800

author
kvn
date
Tue, 25 Feb 2014 15:11:18 -0800
changeset 6507
752ba2e5f6d0
parent 6502
3514ee402842
child 6518
62c54fcc0a35
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    28 #ifndef __STDC_FORMAT_MACROS
    29 #define __STDC_FORMAT_MACROS
    30 #endif
    32 #ifdef TARGET_COMPILER_gcc
    33 # include "utilities/globalDefinitions_gcc.hpp"
    34 #endif
    35 #ifdef TARGET_COMPILER_visCPP
    36 # include "utilities/globalDefinitions_visCPP.hpp"
    37 #endif
    38 #ifdef TARGET_COMPILER_sparcWorks
    39 # include "utilities/globalDefinitions_sparcWorks.hpp"
    40 #endif
    41 #ifdef TARGET_COMPILER_xlc
    42 # include "utilities/globalDefinitions_xlc.hpp"
    43 #endif
    45 #include "utilities/macros.hpp"
    47 // This file holds all globally used constants & types, class (forward)
    48 // declarations and a few frequently used utility functions.
    50 //----------------------------------------------------------------------------------------------------
    51 // Constants
    53 const int LogBytesPerShort   = 1;
    54 const int LogBytesPerInt     = 2;
    55 #ifdef _LP64
    56 const int LogBytesPerWord    = 3;
    57 #else
    58 const int LogBytesPerWord    = 2;
    59 #endif
    60 const int LogBytesPerLong    = 3;
    62 const int BytesPerShort      = 1 << LogBytesPerShort;
    63 const int BytesPerInt        = 1 << LogBytesPerInt;
    64 const int BytesPerWord       = 1 << LogBytesPerWord;
    65 const int BytesPerLong       = 1 << LogBytesPerLong;
    67 const int LogBitsPerByte     = 3;
    68 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
    69 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
    70 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
    71 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
    73 const int BitsPerByte        = 1 << LogBitsPerByte;
    74 const int BitsPerShort       = 1 << LogBitsPerShort;
    75 const int BitsPerInt         = 1 << LogBitsPerInt;
    76 const int BitsPerWord        = 1 << LogBitsPerWord;
    77 const int BitsPerLong        = 1 << LogBitsPerLong;
    79 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
    80 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
    82 const int WordsPerLong       = 2;       // Number of stack entries for longs
    84 const int oopSize            = sizeof(char*); // Full-width oop
    85 extern int heapOopSize;                       // Oop within a java object
    86 const int wordSize           = sizeof(char*);
    87 const int longSize           = sizeof(jlong);
    88 const int jintSize           = sizeof(jint);
    89 const int size_tSize         = sizeof(size_t);
    91 const int BytesPerOop        = BytesPerWord;  // Full-width oop
    93 extern int LogBytesPerHeapOop;                // Oop within a java object
    94 extern int LogBitsPerHeapOop;
    95 extern int BytesPerHeapOop;
    96 extern int BitsPerHeapOop;
    98 // Oop encoding heap max
    99 extern uint64_t OopEncodingHeapMax;
   101 const int BitsPerJavaInteger = 32;
   102 const int BitsPerJavaLong    = 64;
   103 const int BitsPerSize_t      = size_tSize * BitsPerByte;
   105 // Size of a char[] needed to represent a jint as a string in decimal.
   106 const int jintAsStringSize = 12;
   108 // In fact this should be
   109 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
   110 // see os::set_memory_serialize_page()
   111 #ifdef _LP64
   112 const int SerializePageShiftCount = 4;
   113 #else
   114 const int SerializePageShiftCount = 3;
   115 #endif
   117 // An opaque struct of heap-word width, so that HeapWord* can be a generic
   118 // pointer into the heap.  We require that object sizes be measured in
   119 // units of heap words, so that that
   120 //   HeapWord* hw;
   121 //   hw += oop(hw)->foo();
   122 // works, where foo is a method (like size or scavenge) that returns the
   123 // object size.
   124 class HeapWord {
   125   friend class VMStructs;
   126  private:
   127   char* i;
   128 #ifndef PRODUCT
   129  public:
   130   char* value() { return i; }
   131 #endif
   132 };
   134 // Analogous opaque struct for metadata allocated from
   135 // metaspaces.
   136 class MetaWord {
   137   friend class VMStructs;
   138  private:
   139   char* i;
   140 };
   142 // HeapWordSize must be 2^LogHeapWordSize.
   143 const int HeapWordSize        = sizeof(HeapWord);
   144 #ifdef _LP64
   145 const int LogHeapWordSize     = 3;
   146 #else
   147 const int LogHeapWordSize     = 2;
   148 #endif
   149 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
   150 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
   152 // The larger HeapWordSize for 64bit requires larger heaps
   153 // for the same application running in 64bit.  See bug 4967770.
   154 // The minimum alignment to a heap word size is done.  Other
   155 // parts of the memory system may required additional alignment
   156 // and are responsible for those alignments.
   157 #ifdef _LP64
   158 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
   159 #else
   160 #define ScaleForWordSize(x) (x)
   161 #endif
   163 // The minimum number of native machine words necessary to contain "byte_size"
   164 // bytes.
   165 inline size_t heap_word_size(size_t byte_size) {
   166   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
   167 }
   170 const size_t K                  = 1024;
   171 const size_t M                  = K*K;
   172 const size_t G                  = M*K;
   173 const size_t HWperKB            = K / sizeof(HeapWord);
   175 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
   176 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
   178 // Constants for converting from a base unit to milli-base units.  For
   179 // example from seconds to milliseconds and microseconds
   181 const int MILLIUNITS    = 1000;         // milli units per base unit
   182 const int MICROUNITS    = 1000000;      // micro units per base unit
   183 const int NANOUNITS     = 1000000000;   // nano units per base unit
   185 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
   186 const jint  NANOSECS_PER_MILLISEC = 1000000;
   188 inline const char* proper_unit_for_byte_size(size_t s) {
   189 #ifdef _LP64
   190   if (s >= 10*G) {
   191     return "G";
   192   }
   193 #endif
   194   if (s >= 10*M) {
   195     return "M";
   196   } else if (s >= 10*K) {
   197     return "K";
   198   } else {
   199     return "B";
   200   }
   201 }
   203 template <class T>
   204 inline T byte_size_in_proper_unit(T s) {
   205 #ifdef _LP64
   206   if (s >= 10*G) {
   207     return (T)(s/G);
   208   }
   209 #endif
   210   if (s >= 10*M) {
   211     return (T)(s/M);
   212   } else if (s >= 10*K) {
   213     return (T)(s/K);
   214   } else {
   215     return s;
   216   }
   217 }
   219 //----------------------------------------------------------------------------------------------------
   220 // VM type definitions
   222 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
   223 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
   225 typedef intptr_t  intx;
   226 typedef uintptr_t uintx;
   228 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
   229 const intx  max_intx  = (uintx)min_intx - 1;
   230 const uintx max_uintx = (uintx)-1;
   232 // Table of values:
   233 //      sizeof intx         4               8
   234 // min_intx             0x80000000      0x8000000000000000
   235 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
   236 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
   238 typedef unsigned int uint;   NEEDS_CLEANUP
   241 //----------------------------------------------------------------------------------------------------
   242 // Java type definitions
   244 // All kinds of 'plain' byte addresses
   245 typedef   signed char s_char;
   246 typedef unsigned char u_char;
   247 typedef u_char*       address;
   248 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
   249                                     // except for some implementations of a C++
   250                                     // linkage pointer to function. Should never
   251                                     // need one of those to be placed in this
   252                                     // type anyway.
   254 //  Utility functions to "portably" (?) bit twiddle pointers
   255 //  Where portable means keep ANSI C++ compilers quiet
   257 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
   258 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
   260 //  Utility functions to "portably" make cast to/from function pointers.
   262 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
   263 inline address_word  castable_address(address x)              { return address_word(x) ; }
   264 inline address_word  castable_address(void* x)                { return address_word(x) ; }
   266 // Pointer subtraction.
   267 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
   268 // the range we might need to find differences from one end of the heap
   269 // to the other.
   270 // A typical use might be:
   271 //     if (pointer_delta(end(), top()) >= size) {
   272 //       // enough room for an object of size
   273 //       ...
   274 // and then additions like
   275 //       ... top() + size ...
   276 // are safe because we know that top() is at least size below end().
   277 inline size_t pointer_delta(const void* left,
   278                             const void* right,
   279                             size_t element_size) {
   280   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
   281 }
   282 // A version specialized for HeapWord*'s.
   283 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
   284   return pointer_delta(left, right, sizeof(HeapWord));
   285 }
   286 // A version specialized for MetaWord*'s.
   287 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
   288   return pointer_delta(left, right, sizeof(MetaWord));
   289 }
   291 //
   292 // ANSI C++ does not allow casting from one pointer type to a function pointer
   293 // directly without at best a warning. This macro accomplishes it silently
   294 // In every case that is present at this point the value be cast is a pointer
   295 // to a C linkage function. In somecase the type used for the cast reflects
   296 // that linkage and a picky compiler would not complain. In other cases because
   297 // there is no convenient place to place a typedef with extern C linkage (i.e
   298 // a platform dependent header file) it doesn't. At this point no compiler seems
   299 // picky enough to catch these instances (which are few). It is possible that
   300 // using templates could fix these for all cases. This use of templates is likely
   301 // so far from the middle of the road that it is likely to be problematic in
   302 // many C++ compilers.
   303 //
   304 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
   305 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
   307 // Unsigned byte types for os and stream.hpp
   309 // Unsigned one, two, four and eigth byte quantities used for describing
   310 // the .class file format. See JVM book chapter 4.
   312 typedef jubyte  u1;
   313 typedef jushort u2;
   314 typedef juint   u4;
   315 typedef julong  u8;
   317 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
   318 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
   319 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
   320 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
   322 typedef jbyte  s1;
   323 typedef jshort s2;
   324 typedef jint   s4;
   325 typedef jlong  s8;
   327 //----------------------------------------------------------------------------------------------------
   328 // JVM spec restrictions
   330 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
   332 // Default ProtectionDomainCacheSize values
   334 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
   336 //----------------------------------------------------------------------------------------------------
   337 // Default and minimum StringTableSize values
   339 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
   340 const int minimumStringTableSize = 1009;
   342 const int defaultSymbolTableSize = 20011;
   343 const int minimumSymbolTableSize = 1009;
   346 //----------------------------------------------------------------------------------------------------
   347 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
   348 //
   349 // Determines whether on-the-fly class replacement and frame popping are enabled.
   351 #define HOTSWAP
   353 //----------------------------------------------------------------------------------------------------
   354 // Object alignment, in units of HeapWords.
   355 //
   356 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
   357 // reference fields can be naturally aligned.
   359 extern int MinObjAlignment;
   360 extern int MinObjAlignmentInBytes;
   361 extern int MinObjAlignmentInBytesMask;
   363 extern int LogMinObjAlignment;
   364 extern int LogMinObjAlignmentInBytes;
   366 const int LogKlassAlignmentInBytes = 3;
   367 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
   368 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
   369 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
   371 // Klass encoding metaspace max size
   372 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
   374 // Machine dependent stuff
   376 #ifdef TARGET_ARCH_x86
   377 # include "globalDefinitions_x86.hpp"
   378 #endif
   379 #ifdef TARGET_ARCH_sparc
   380 # include "globalDefinitions_sparc.hpp"
   381 #endif
   382 #ifdef TARGET_ARCH_zero
   383 # include "globalDefinitions_zero.hpp"
   384 #endif
   385 #ifdef TARGET_ARCH_arm
   386 # include "globalDefinitions_arm.hpp"
   387 #endif
   388 #ifdef TARGET_ARCH_ppc
   389 # include "globalDefinitions_ppc.hpp"
   390 #endif
   392 /*
   393  * If a platform does not support native stack walking
   394  * the platform specific globalDefinitions (above)
   395  * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
   396  */
   397 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
   398 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
   399 #endif
   401 // To assure the IRIW property on processors that are not multiple copy
   402 // atomic, sync instructions must be issued between volatile reads to
   403 // assure their ordering, instead of after volatile stores.
   404 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
   405 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
   406 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
   407 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
   408 #else
   409 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
   410 #endif
   412 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
   413 // Note: this value must be a power of 2
   415 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
   417 // Signed variants of alignment helpers.  There are two versions of each, a macro
   418 // for use in places like enum definitions that require compile-time constant
   419 // expressions and a function for all other places so as to get type checking.
   421 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
   423 inline bool is_size_aligned(size_t size, size_t alignment) {
   424   return align_size_up_(size, alignment) == size;
   425 }
   427 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
   428   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
   429 }
   431 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
   432   return align_size_up_(size, alignment);
   433 }
   435 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
   437 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
   438   return align_size_down_(size, alignment);
   439 }
   441 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
   443 inline void* align_ptr_up(void* ptr, size_t alignment) {
   444   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
   445 }
   447 inline void* align_ptr_down(void* ptr, size_t alignment) {
   448   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
   449 }
   451 // Align objects by rounding up their size, in HeapWord units.
   453 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
   455 inline intptr_t align_object_size(intptr_t size) {
   456   return align_size_up(size, MinObjAlignment);
   457 }
   459 inline bool is_object_aligned(intptr_t addr) {
   460   return addr == align_object_size(addr);
   461 }
   463 // Pad out certain offsets to jlong alignment, in HeapWord units.
   465 inline intptr_t align_object_offset(intptr_t offset) {
   466   return align_size_up(offset, HeapWordsPerLong);
   467 }
   469 inline void* align_pointer_up(const void* addr, size_t size) {
   470   return (void*) align_size_up_((uintptr_t)addr, size);
   471 }
   473 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
   475 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
   476   size_t aligned_size = align_size_down_(size, alignment);
   477   return aligned_size > 0 ? aligned_size : alignment;
   478 }
   480 // Clamp an address to be within a specific page
   481 // 1. If addr is on the page it is returned as is
   482 // 2. If addr is above the page_address the start of the *next* page will be returned
   483 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
   484 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
   485   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
   486     // address is in the specified page, just return it as is
   487     return addr;
   488   } else if (addr > page_address) {
   489     // address is above specified page, return start of next page
   490     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
   491   } else {
   492     // address is below specified page, return start of page
   493     return (address)align_size_down(intptr_t(page_address), page_size);
   494   }
   495 }
   498 // The expected size in bytes of a cache line, used to pad data structures.
   499 #define DEFAULT_CACHE_LINE_SIZE 64
   502 //----------------------------------------------------------------------------------------------------
   503 // Utility macros for compilers
   504 // used to silence compiler warnings
   506 #define Unused_Variable(var) var
   509 //----------------------------------------------------------------------------------------------------
   510 // Miscellaneous
   512 // 6302670 Eliminate Hotspot __fabsf dependency
   513 // All fabs() callers should call this function instead, which will implicitly
   514 // convert the operand to double, avoiding a dependency on __fabsf which
   515 // doesn't exist in early versions of Solaris 8.
   516 inline double fabsd(double value) {
   517   return fabs(value);
   518 }
   520 inline jint low (jlong value)                    { return jint(value); }
   521 inline jint high(jlong value)                    { return jint(value >> 32); }
   523 // the fancy casts are a hopefully portable way
   524 // to do unsigned 32 to 64 bit type conversion
   525 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
   526                                                    *value |= (jlong)(julong)(juint)low; }
   528 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
   529                                                    *value |= (jlong)high       << 32; }
   531 inline jlong jlong_from(jint h, jint l) {
   532   jlong result = 0; // initialization to avoid warning
   533   set_high(&result, h);
   534   set_low(&result,  l);
   535   return result;
   536 }
   538 union jlong_accessor {
   539   jint  words[2];
   540   jlong long_value;
   541 };
   543 void basic_types_init(); // cannot define here; uses assert
   546 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   547 enum BasicType {
   548   T_BOOLEAN     =  4,
   549   T_CHAR        =  5,
   550   T_FLOAT       =  6,
   551   T_DOUBLE      =  7,
   552   T_BYTE        =  8,
   553   T_SHORT       =  9,
   554   T_INT         = 10,
   555   T_LONG        = 11,
   556   T_OBJECT      = 12,
   557   T_ARRAY       = 13,
   558   T_VOID        = 14,
   559   T_ADDRESS     = 15,
   560   T_NARROWOOP   = 16,
   561   T_METADATA    = 17,
   562   T_NARROWKLASS = 18,
   563   T_CONFLICT    = 19, // for stack value type with conflicting contents
   564   T_ILLEGAL     = 99
   565 };
   567 inline bool is_java_primitive(BasicType t) {
   568   return T_BOOLEAN <= t && t <= T_LONG;
   569 }
   571 inline bool is_subword_type(BasicType t) {
   572   // these guys are processed exactly like T_INT in calling sequences:
   573   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
   574 }
   576 inline bool is_signed_subword_type(BasicType t) {
   577   return (t == T_BYTE || t == T_SHORT);
   578 }
   580 // Convert a char from a classfile signature to a BasicType
   581 inline BasicType char2type(char c) {
   582   switch( c ) {
   583   case 'B': return T_BYTE;
   584   case 'C': return T_CHAR;
   585   case 'D': return T_DOUBLE;
   586   case 'F': return T_FLOAT;
   587   case 'I': return T_INT;
   588   case 'J': return T_LONG;
   589   case 'S': return T_SHORT;
   590   case 'Z': return T_BOOLEAN;
   591   case 'V': return T_VOID;
   592   case 'L': return T_OBJECT;
   593   case '[': return T_ARRAY;
   594   }
   595   return T_ILLEGAL;
   596 }
   598 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   599 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
   600 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
   601 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   602 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
   603 extern BasicType name2type(const char* name);
   605 // Auxilary math routines
   606 // least common multiple
   607 extern size_t lcm(size_t a, size_t b);
   610 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   611 enum BasicTypeSize {
   612   T_BOOLEAN_size     = 1,
   613   T_CHAR_size        = 1,
   614   T_FLOAT_size       = 1,
   615   T_DOUBLE_size      = 2,
   616   T_BYTE_size        = 1,
   617   T_SHORT_size       = 1,
   618   T_INT_size         = 1,
   619   T_LONG_size        = 2,
   620   T_OBJECT_size      = 1,
   621   T_ARRAY_size       = 1,
   622   T_NARROWOOP_size   = 1,
   623   T_NARROWKLASS_size = 1,
   624   T_VOID_size        = 0
   625 };
   628 // maps a BasicType to its instance field storage type:
   629 // all sub-word integral types are widened to T_INT
   630 extern BasicType type2field[T_CONFLICT+1];
   631 extern BasicType type2wfield[T_CONFLICT+1];
   634 // size in bytes
   635 enum ArrayElementSize {
   636   T_BOOLEAN_aelem_bytes     = 1,
   637   T_CHAR_aelem_bytes        = 2,
   638   T_FLOAT_aelem_bytes       = 4,
   639   T_DOUBLE_aelem_bytes      = 8,
   640   T_BYTE_aelem_bytes        = 1,
   641   T_SHORT_aelem_bytes       = 2,
   642   T_INT_aelem_bytes         = 4,
   643   T_LONG_aelem_bytes        = 8,
   644 #ifdef _LP64
   645   T_OBJECT_aelem_bytes      = 8,
   646   T_ARRAY_aelem_bytes       = 8,
   647 #else
   648   T_OBJECT_aelem_bytes      = 4,
   649   T_ARRAY_aelem_bytes       = 4,
   650 #endif
   651   T_NARROWOOP_aelem_bytes   = 4,
   652   T_NARROWKLASS_aelem_bytes = 4,
   653   T_VOID_aelem_bytes        = 0
   654 };
   656 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
   657 #ifdef ASSERT
   658 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
   659 #else
   660 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
   661 #endif
   664 // JavaValue serves as a container for arbitrary Java values.
   666 class JavaValue {
   668  public:
   669   typedef union JavaCallValue {
   670     jfloat   f;
   671     jdouble  d;
   672     jint     i;
   673     jlong    l;
   674     jobject  h;
   675   } JavaCallValue;
   677  private:
   678   BasicType _type;
   679   JavaCallValue _value;
   681  public:
   682   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
   684   JavaValue(jfloat value) {
   685     _type    = T_FLOAT;
   686     _value.f = value;
   687   }
   689   JavaValue(jdouble value) {
   690     _type    = T_DOUBLE;
   691     _value.d = value;
   692   }
   694  jfloat get_jfloat() const { return _value.f; }
   695  jdouble get_jdouble() const { return _value.d; }
   696  jint get_jint() const { return _value.i; }
   697  jlong get_jlong() const { return _value.l; }
   698  jobject get_jobject() const { return _value.h; }
   699  JavaCallValue* get_value_addr() { return &_value; }
   700  BasicType get_type() const { return _type; }
   702  void set_jfloat(jfloat f) { _value.f = f;}
   703  void set_jdouble(jdouble d) { _value.d = d;}
   704  void set_jint(jint i) { _value.i = i;}
   705  void set_jlong(jlong l) { _value.l = l;}
   706  void set_jobject(jobject h) { _value.h = h;}
   707  void set_type(BasicType t) { _type = t; }
   709  jboolean get_jboolean() const { return (jboolean) (_value.i);}
   710  jbyte get_jbyte() const { return (jbyte) (_value.i);}
   711  jchar get_jchar() const { return (jchar) (_value.i);}
   712  jshort get_jshort() const { return (jshort) (_value.i);}
   714 };
   717 #define STACK_BIAS      0
   718 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
   719 // in order to extend the reach of the stack pointer.
   720 #if defined(SPARC) && defined(_LP64)
   721 #undef STACK_BIAS
   722 #define STACK_BIAS      0x7ff
   723 #endif
   726 // TosState describes the top-of-stack state before and after the execution of
   727 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
   728 // registers. The TosState corresponds to the 'machine represention' of this cached
   729 // value. There's 4 states corresponding to the JAVA types int, long, float & double
   730 // as well as a 5th state in case the top-of-stack value is actually on the top
   731 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
   732 // state when it comes to machine representation but is used separately for (oop)
   733 // type specific operations (e.g. verification code).
   735 enum TosState {         // describes the tos cache contents
   736   btos = 0,             // byte, bool tos cached
   737   ctos = 1,             // char tos cached
   738   stos = 2,             // short tos cached
   739   itos = 3,             // int tos cached
   740   ltos = 4,             // long tos cached
   741   ftos = 5,             // float tos cached
   742   dtos = 6,             // double tos cached
   743   atos = 7,             // object cached
   744   vtos = 8,             // tos not cached
   745   number_of_states,
   746   ilgl                  // illegal state: should not occur
   747 };
   750 inline TosState as_TosState(BasicType type) {
   751   switch (type) {
   752     case T_BYTE   : return btos;
   753     case T_BOOLEAN: return btos; // FIXME: Add ztos
   754     case T_CHAR   : return ctos;
   755     case T_SHORT  : return stos;
   756     case T_INT    : return itos;
   757     case T_LONG   : return ltos;
   758     case T_FLOAT  : return ftos;
   759     case T_DOUBLE : return dtos;
   760     case T_VOID   : return vtos;
   761     case T_ARRAY  : // fall through
   762     case T_OBJECT : return atos;
   763   }
   764   return ilgl;
   765 }
   767 inline BasicType as_BasicType(TosState state) {
   768   switch (state) {
   769     //case ztos: return T_BOOLEAN;//FIXME
   770     case btos : return T_BYTE;
   771     case ctos : return T_CHAR;
   772     case stos : return T_SHORT;
   773     case itos : return T_INT;
   774     case ltos : return T_LONG;
   775     case ftos : return T_FLOAT;
   776     case dtos : return T_DOUBLE;
   777     case atos : return T_OBJECT;
   778     case vtos : return T_VOID;
   779   }
   780   return T_ILLEGAL;
   781 }
   784 // Helper function to convert BasicType info into TosState
   785 // Note: Cannot define here as it uses global constant at the time being.
   786 TosState as_TosState(BasicType type);
   789 // JavaThreadState keeps track of which part of the code a thread is executing in. This
   790 // information is needed by the safepoint code.
   791 //
   792 // There are 4 essential states:
   793 //
   794 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
   795 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
   796 //  _thread_in_vm       : Executing in the vm
   797 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
   798 //
   799 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
   800 // a transition from one state to another. These extra states makes it possible for the safepoint code to
   801 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
   802 //
   803 // Given a state, the xxx_trans state can always be found by adding 1.
   804 //
   805 enum JavaThreadState {
   806   _thread_uninitialized     =  0, // should never happen (missing initialization)
   807   _thread_new               =  2, // just starting up, i.e., in process of being initialized
   808   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
   809   _thread_in_native         =  4, // running in native code
   810   _thread_in_native_trans   =  5, // corresponding transition state
   811   _thread_in_vm             =  6, // running in VM
   812   _thread_in_vm_trans       =  7, // corresponding transition state
   813   _thread_in_Java           =  8, // running in Java or in stub code
   814   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
   815   _thread_blocked           = 10, // blocked in vm
   816   _thread_blocked_trans     = 11, // corresponding transition state
   817   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
   818 };
   821 // Handy constants for deciding which compiler mode to use.
   822 enum MethodCompilation {
   823   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
   824   InvalidOSREntryBci = -2
   825 };
   827 // Enumeration to distinguish tiers of compilation
   828 enum CompLevel {
   829   CompLevel_any               = -1,
   830   CompLevel_all               = -1,
   831   CompLevel_none              = 0,         // Interpreter
   832   CompLevel_simple            = 1,         // C1
   833   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
   834   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
   835   CompLevel_full_optimization = 4,         // C2 or Shark
   837 #if defined(COMPILER2) || defined(SHARK)
   838   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
   839 #elif defined(COMPILER1)
   840   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
   841 #else
   842   CompLevel_highest_tier      = CompLevel_none,
   843 #endif
   845 #if defined(TIERED)
   846   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
   847 #elif defined(COMPILER1)
   848   CompLevel_initial_compile   = CompLevel_simple              // pure C1
   849 #elif defined(COMPILER2) || defined(SHARK)
   850   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
   851 #else
   852   CompLevel_initial_compile   = CompLevel_none
   853 #endif
   854 };
   856 inline bool is_c1_compile(int comp_level) {
   857   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
   858 }
   860 inline bool is_c2_compile(int comp_level) {
   861   return comp_level == CompLevel_full_optimization;
   862 }
   864 inline bool is_highest_tier_compile(int comp_level) {
   865   return comp_level == CompLevel_highest_tier;
   866 }
   868 inline bool is_compile(int comp_level) {
   869   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
   870 }
   872 //----------------------------------------------------------------------------------------------------
   873 // 'Forward' declarations of frequently used classes
   874 // (in order to reduce interface dependencies & reduce
   875 // number of unnecessary compilations after changes)
   877 class symbolTable;
   878 class ClassFileStream;
   880 class Event;
   882 class Thread;
   883 class  VMThread;
   884 class  JavaThread;
   885 class Threads;
   887 class VM_Operation;
   888 class VMOperationQueue;
   890 class CodeBlob;
   891 class  nmethod;
   892 class  OSRAdapter;
   893 class  I2CAdapter;
   894 class  C2IAdapter;
   895 class CompiledIC;
   896 class relocInfo;
   897 class ScopeDesc;
   898 class PcDesc;
   900 class Recompiler;
   901 class Recompilee;
   902 class RecompilationPolicy;
   903 class RFrame;
   904 class  CompiledRFrame;
   905 class  InterpretedRFrame;
   907 class frame;
   909 class vframe;
   910 class   javaVFrame;
   911 class     interpretedVFrame;
   912 class     compiledVFrame;
   913 class     deoptimizedVFrame;
   914 class   externalVFrame;
   915 class     entryVFrame;
   917 class RegisterMap;
   919 class Mutex;
   920 class Monitor;
   921 class BasicLock;
   922 class BasicObjectLock;
   924 class PeriodicTask;
   926 class JavaCallWrapper;
   928 class   oopDesc;
   929 class   metaDataOopDesc;
   931 class NativeCall;
   933 class zone;
   935 class StubQueue;
   937 class outputStream;
   939 class ResourceArea;
   941 class DebugInformationRecorder;
   942 class ScopeValue;
   943 class CompressedStream;
   944 class   DebugInfoReadStream;
   945 class   DebugInfoWriteStream;
   946 class LocationValue;
   947 class ConstantValue;
   948 class IllegalValue;
   950 class PrivilegedElement;
   951 class MonitorArray;
   953 class MonitorInfo;
   955 class OffsetClosure;
   956 class OopMapCache;
   957 class InterpreterOopMap;
   958 class OopMapCacheEntry;
   959 class OSThread;
   961 typedef int (*OSThreadStartFunc)(void*);
   963 class Space;
   965 class JavaValue;
   966 class methodHandle;
   967 class JavaCallArguments;
   969 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
   971 extern void basic_fatal(const char* msg);
   974 //----------------------------------------------------------------------------------------------------
   975 // Special constants for debugging
   977 const jint     badInt           = -3;                       // generic "bad int" value
   978 const long     badAddressVal    = -2;                       // generic "bad address" value
   979 const long     badOopVal        = -1;                       // generic "bad oop" value
   980 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
   981 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
   982 const int      badResourceValue = 0xAB;                     // value used to zap resource area
   983 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
   984 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
   985 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
   986 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
   987 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
   988 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
   989 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
   992 // (These must be implemented as #defines because C++ compilers are
   993 // not obligated to inline non-integral constants!)
   994 #define       badAddress        ((address)::badAddressVal)
   995 #define       badOop            (cast_to_oop(::badOopVal))
   996 #define       badHeapWord       (::badHeapWordVal)
   997 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
   999 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
  1000 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
  1002 //----------------------------------------------------------------------------------------------------
  1003 // Utility functions for bitfield manipulations
  1005 const intptr_t AllBits    = ~0; // all bits set in a word
  1006 const intptr_t NoBits     =  0; // no bits set in a word
  1007 const jlong    NoLongBits =  0; // no bits set in a long
  1008 const intptr_t OneBit     =  1; // only right_most bit set in a word
  1010 // get a word with the n.th or the right-most or left-most n bits set
  1011 // (note: #define used only so that they can be used in enum constant definitions)
  1012 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
  1013 #define right_n_bits(n)   (nth_bit(n) - 1)
  1014 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
  1016 // bit-operations using a mask m
  1017 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
  1018 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
  1019 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
  1020 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
  1021 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
  1023 // bit-operations using the n.th bit
  1024 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
  1025 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
  1026 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
  1028 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
  1029 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
  1030   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
  1034 //----------------------------------------------------------------------------------------------------
  1035 // Utility functions for integers
  1037 // Avoid use of global min/max macros which may cause unwanted double
  1038 // evaluation of arguments.
  1039 #ifdef max
  1040 #undef max
  1041 #endif
  1043 #ifdef min
  1044 #undef min
  1045 #endif
  1047 #define max(a,b) Do_not_use_max_use_MAX2_instead
  1048 #define min(a,b) Do_not_use_min_use_MIN2_instead
  1050 // It is necessary to use templates here. Having normal overloaded
  1051 // functions does not work because it is necessary to provide both 32-
  1052 // and 64-bit overloaded functions, which does not work, and having
  1053 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
  1054 // will be even more error-prone than macros.
  1055 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
  1056 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
  1057 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
  1058 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
  1059 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
  1060 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
  1062 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
  1064 // true if x is a power of 2, false otherwise
  1065 inline bool is_power_of_2(intptr_t x) {
  1066   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
  1069 // long version of is_power_of_2
  1070 inline bool is_power_of_2_long(jlong x) {
  1071   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
  1074 //* largest i such that 2^i <= x
  1075 //  A negative value of 'x' will return '31'
  1076 inline int log2_intptr(intptr_t x) {
  1077   int i = -1;
  1078   uintptr_t p =  1;
  1079   while (p != 0 && p <= (uintptr_t)x) {
  1080     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
  1081     i++; p *= 2;
  1083   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1084   // (if p = 0 then overflow occurred and i = 31)
  1085   return i;
  1088 //* largest i such that 2^i <= x
  1089 //  A negative value of 'x' will return '63'
  1090 inline int log2_long(jlong x) {
  1091   int i = -1;
  1092   julong p =  1;
  1093   while (p != 0 && p <= (julong)x) {
  1094     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
  1095     i++; p *= 2;
  1097   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1098   // (if p = 0 then overflow occurred and i = 63)
  1099   return i;
  1102 //* the argument must be exactly a power of 2
  1103 inline int exact_log2(intptr_t x) {
  1104   #ifdef ASSERT
  1105     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
  1106   #endif
  1107   return log2_intptr(x);
  1110 //* the argument must be exactly a power of 2
  1111 inline int exact_log2_long(jlong x) {
  1112   #ifdef ASSERT
  1113     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
  1114   #endif
  1115   return log2_long(x);
  1119 // returns integer round-up to the nearest multiple of s (s must be a power of two)
  1120 inline intptr_t round_to(intptr_t x, uintx s) {
  1121   #ifdef ASSERT
  1122     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1123   #endif
  1124   const uintx m = s - 1;
  1125   return mask_bits(x + m, ~m);
  1128 // returns integer round-down to the nearest multiple of s (s must be a power of two)
  1129 inline intptr_t round_down(intptr_t x, uintx s) {
  1130   #ifdef ASSERT
  1131     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1132   #endif
  1133   const uintx m = s - 1;
  1134   return mask_bits(x, ~m);
  1138 inline bool is_odd (intx x) { return x & 1;      }
  1139 inline bool is_even(intx x) { return !is_odd(x); }
  1141 // "to" should be greater than "from."
  1142 inline intx byte_size(void* from, void* to) {
  1143   return (address)to - (address)from;
  1146 //----------------------------------------------------------------------------------------------------
  1147 // Avoid non-portable casts with these routines (DEPRECATED)
  1149 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
  1150 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
  1152 // Given sequence of four bytes, build into a 32-bit word
  1153 // following the conventions used in class files.
  1154 // On the 386, this could be realized with a simple address cast.
  1155 //
  1157 // This routine takes eight bytes:
  1158 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1159   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
  1160        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
  1161        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
  1162        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
  1163        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
  1164        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
  1165        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
  1166        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
  1169 // This routine takes four bytes:
  1170 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1171   return  (( u4(c1) << 24 )  &  0xff000000)
  1172        |  (( u4(c2) << 16 )  &  0x00ff0000)
  1173        |  (( u4(c3) <<  8 )  &  0x0000ff00)
  1174        |  (( u4(c4) <<  0 )  &  0x000000ff);
  1177 // And this one works if the four bytes are contiguous in memory:
  1178 inline u4 build_u4_from( u1* p ) {
  1179   return  build_u4_from( p[0], p[1], p[2], p[3] );
  1182 // Ditto for two-byte ints:
  1183 inline u2 build_u2_from( u1 c1, u1 c2 ) {
  1184   return  u2((( u2(c1) <<  8 )  &  0xff00)
  1185           |  (( u2(c2) <<  0 )  &  0x00ff));
  1188 // And this one works if the two bytes are contiguous in memory:
  1189 inline u2 build_u2_from( u1* p ) {
  1190   return  build_u2_from( p[0], p[1] );
  1193 // Ditto for floats:
  1194 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1195   u4 u = build_u4_from( c1, c2, c3, c4 );
  1196   return  *(jfloat*)&u;
  1199 inline jfloat build_float_from( u1* p ) {
  1200   u4 u = build_u4_from( p );
  1201   return  *(jfloat*)&u;
  1205 // now (64-bit) longs
  1207 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1208   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
  1209        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
  1210        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
  1211        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
  1212        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
  1213        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
  1214        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
  1215        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
  1218 inline jlong build_long_from( u1* p ) {
  1219   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
  1223 // Doubles, too!
  1224 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1225   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
  1226   return  *(jdouble*)&u;
  1229 inline jdouble build_double_from( u1* p ) {
  1230   jlong u = build_long_from( p );
  1231   return  *(jdouble*)&u;
  1235 // Portable routines to go the other way:
  1237 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
  1238   c1 = u1(x >> 8);
  1239   c2 = u1(x);
  1242 inline void explode_short_to( u2 x, u1* p ) {
  1243   explode_short_to( x, p[0], p[1]);
  1246 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
  1247   c1 = u1(x >> 24);
  1248   c2 = u1(x >> 16);
  1249   c3 = u1(x >>  8);
  1250   c4 = u1(x);
  1253 inline void explode_int_to( u4 x, u1* p ) {
  1254   explode_int_to( x, p[0], p[1], p[2], p[3]);
  1258 // Pack and extract shorts to/from ints:
  1260 inline int extract_low_short_from_int(jint x) {
  1261   return x & 0xffff;
  1264 inline int extract_high_short_from_int(jint x) {
  1265   return (x >> 16) & 0xffff;
  1268 inline int build_int_from_shorts( jushort low, jushort high ) {
  1269   return ((int)((unsigned int)high << 16) | (unsigned int)low);
  1272 // Printf-style formatters for fixed- and variable-width types as pointers and
  1273 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  1274 // doesn't provide appropriate definitions, they should be provided in
  1275 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  1277 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  1279 // Format 32-bit quantities.
  1280 #define INT32_FORMAT           "%" PRId32
  1281 #define UINT32_FORMAT          "%" PRIu32
  1282 #define INT32_FORMAT_W(width)  "%" #width PRId32
  1283 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  1285 #define PTR32_FORMAT           "0x%08" PRIx32
  1287 // Format 64-bit quantities.
  1288 #define INT64_FORMAT           "%" PRId64
  1289 #define UINT64_FORMAT          "%" PRIu64
  1290 #define INT64_FORMAT_W(width)  "%" #width PRId64
  1291 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  1293 #define PTR64_FORMAT           "0x%016" PRIx64
  1295 // Format jlong, if necessary
  1296 #ifndef JLONG_FORMAT
  1297 #define JLONG_FORMAT           INT64_FORMAT
  1298 #endif
  1299 #ifndef JULONG_FORMAT
  1300 #define JULONG_FORMAT          UINT64_FORMAT
  1301 #endif
  1303 // Format pointers which change size between 32- and 64-bit.
  1304 #ifdef  _LP64
  1305 #define INTPTR_FORMAT "0x%016" PRIxPTR
  1306 #define PTR_FORMAT    "0x%016" PRIxPTR
  1307 #else   // !_LP64
  1308 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  1309 #define PTR_FORMAT    "0x%08"  PRIxPTR
  1310 #endif  // _LP64
  1312 #define SSIZE_FORMAT          "%" PRIdPTR
  1313 #define SIZE_FORMAT           "%" PRIuPTR
  1314 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
  1315 #define SIZE_FORMAT_W(width)  "%" #width PRIuPTR
  1317 #define INTX_FORMAT           "%" PRIdPTR
  1318 #define UINTX_FORMAT          "%" PRIuPTR
  1319 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
  1320 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
  1323 // Enable zap-a-lot if in debug version.
  1325 # ifdef ASSERT
  1326 # ifdef COMPILER2
  1327 #   define ENABLE_ZAP_DEAD_LOCALS
  1328 #endif /* COMPILER2 */
  1329 # endif /* ASSERT */
  1331 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
  1333 // Dereference vptr
  1334 // All C++ compilers that we know of have the vtbl pointer in the first
  1335 // word.  If there are exceptions, this function needs to be made compiler
  1336 // specific.
  1337 static inline void* dereference_vptr(void* addr) {
  1338   return *(void**)addr;
  1342 #ifndef PRODUCT
  1344 // For unit testing only
  1345 class GlobalDefinitions {
  1346 public:
  1347   static void test_globals();
  1348 };
  1350 #endif // PRODUCT
  1352 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial