src/share/vm/opto/graphKit.cpp

Tue, 25 Feb 2014 15:11:18 -0800

author
kvn
date
Tue, 25 Feb 2014 15:11:18 -0800
changeset 6507
752ba2e5f6d0
parent 6503
a9becfeecd1b
parent 6313
de95063c0e34
child 6518
62c54fcc0a35
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    28 #include "gc_implementation/g1/heapRegion.hpp"
    29 #include "gc_interface/collectedHeap.hpp"
    30 #include "memory/barrierSet.hpp"
    31 #include "memory/cardTableModRefBS.hpp"
    32 #include "opto/addnode.hpp"
    33 #include "opto/graphKit.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/locknode.hpp"
    36 #include "opto/machnode.hpp"
    37 #include "opto/parse.hpp"
    38 #include "opto/rootnode.hpp"
    39 #include "opto/runtime.hpp"
    40 #include "runtime/deoptimization.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    43 //----------------------------GraphKit-----------------------------------------
    44 // Main utility constructor.
    45 GraphKit::GraphKit(JVMState* jvms)
    46   : Phase(Phase::Parser),
    47     _env(C->env()),
    48     _gvn(*C->initial_gvn())
    49 {
    50   _exceptions = jvms->map()->next_exception();
    51   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
    52   set_jvms(jvms);
    53 }
    55 // Private constructor for parser.
    56 GraphKit::GraphKit()
    57   : Phase(Phase::Parser),
    58     _env(C->env()),
    59     _gvn(*C->initial_gvn())
    60 {
    61   _exceptions = NULL;
    62   set_map(NULL);
    63   debug_only(_sp = -99);
    64   debug_only(set_bci(-99));
    65 }
    69 //---------------------------clean_stack---------------------------------------
    70 // Clear away rubbish from the stack area of the JVM state.
    71 // This destroys any arguments that may be waiting on the stack.
    72 void GraphKit::clean_stack(int from_sp) {
    73   SafePointNode* map      = this->map();
    74   JVMState*      jvms     = this->jvms();
    75   int            stk_size = jvms->stk_size();
    76   int            stkoff   = jvms->stkoff();
    77   Node*          top      = this->top();
    78   for (int i = from_sp; i < stk_size; i++) {
    79     if (map->in(stkoff + i) != top) {
    80       map->set_req(stkoff + i, top);
    81     }
    82   }
    83 }
    86 //--------------------------------sync_jvms-----------------------------------
    87 // Make sure our current jvms agrees with our parse state.
    88 JVMState* GraphKit::sync_jvms() const {
    89   JVMState* jvms = this->jvms();
    90   jvms->set_bci(bci());       // Record the new bci in the JVMState
    91   jvms->set_sp(sp());         // Record the new sp in the JVMState
    92   assert(jvms_in_sync(), "jvms is now in sync");
    93   return jvms;
    94 }
    96 //--------------------------------sync_jvms_for_reexecute---------------------
    97 // Make sure our current jvms agrees with our parse state.  This version
    98 // uses the reexecute_sp for reexecuting bytecodes.
    99 JVMState* GraphKit::sync_jvms_for_reexecute() {
   100   JVMState* jvms = this->jvms();
   101   jvms->set_bci(bci());          // Record the new bci in the JVMState
   102   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
   103   return jvms;
   104 }
   106 #ifdef ASSERT
   107 bool GraphKit::jvms_in_sync() const {
   108   Parse* parse = is_Parse();
   109   if (parse == NULL) {
   110     if (bci() !=      jvms()->bci())          return false;
   111     if (sp()  != (int)jvms()->sp())           return false;
   112     return true;
   113   }
   114   if (jvms()->method() != parse->method())    return false;
   115   if (jvms()->bci()    != parse->bci())       return false;
   116   int jvms_sp = jvms()->sp();
   117   if (jvms_sp          != parse->sp())        return false;
   118   int jvms_depth = jvms()->depth();
   119   if (jvms_depth       != parse->depth())     return false;
   120   return true;
   121 }
   123 // Local helper checks for special internal merge points
   124 // used to accumulate and merge exception states.
   125 // They are marked by the region's in(0) edge being the map itself.
   126 // Such merge points must never "escape" into the parser at large,
   127 // until they have been handed to gvn.transform.
   128 static bool is_hidden_merge(Node* reg) {
   129   if (reg == NULL)  return false;
   130   if (reg->is_Phi()) {
   131     reg = reg->in(0);
   132     if (reg == NULL)  return false;
   133   }
   134   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
   135 }
   137 void GraphKit::verify_map() const {
   138   if (map() == NULL)  return;  // null map is OK
   139   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
   140   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
   141   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
   142 }
   144 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
   145   assert(ex_map->next_exception() == NULL, "not already part of a chain");
   146   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
   147 }
   148 #endif
   150 //---------------------------stop_and_kill_map---------------------------------
   151 // Set _map to NULL, signalling a stop to further bytecode execution.
   152 // First smash the current map's control to a constant, to mark it dead.
   153 void GraphKit::stop_and_kill_map() {
   154   SafePointNode* dead_map = stop();
   155   if (dead_map != NULL) {
   156     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
   157     assert(dead_map->is_killed(), "must be so marked");
   158   }
   159 }
   162 //--------------------------------stopped--------------------------------------
   163 // Tell if _map is NULL, or control is top.
   164 bool GraphKit::stopped() {
   165   if (map() == NULL)           return true;
   166   else if (control() == top()) return true;
   167   else                         return false;
   168 }
   171 //-----------------------------has_ex_handler----------------------------------
   172 // Tell if this method or any caller method has exception handlers.
   173 bool GraphKit::has_ex_handler() {
   174   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
   175     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
   176       return true;
   177     }
   178   }
   179   return false;
   180 }
   182 //------------------------------save_ex_oop------------------------------------
   183 // Save an exception without blowing stack contents or other JVM state.
   184 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
   185   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
   186   ex_map->add_req(ex_oop);
   187   debug_only(verify_exception_state(ex_map));
   188 }
   190 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
   191   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
   192   Node* ex_oop = ex_map->in(ex_map->req()-1);
   193   if (clear_it)  ex_map->del_req(ex_map->req()-1);
   194   return ex_oop;
   195 }
   197 //-----------------------------saved_ex_oop------------------------------------
   198 // Recover a saved exception from its map.
   199 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
   200   return common_saved_ex_oop(ex_map, false);
   201 }
   203 //--------------------------clear_saved_ex_oop---------------------------------
   204 // Erase a previously saved exception from its map.
   205 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
   206   return common_saved_ex_oop(ex_map, true);
   207 }
   209 #ifdef ASSERT
   210 //---------------------------has_saved_ex_oop----------------------------------
   211 // Erase a previously saved exception from its map.
   212 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
   213   return ex_map->req() == ex_map->jvms()->endoff()+1;
   214 }
   215 #endif
   217 //-------------------------make_exception_state--------------------------------
   218 // Turn the current JVM state into an exception state, appending the ex_oop.
   219 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
   220   sync_jvms();
   221   SafePointNode* ex_map = stop();  // do not manipulate this map any more
   222   set_saved_ex_oop(ex_map, ex_oop);
   223   return ex_map;
   224 }
   227 //--------------------------add_exception_state--------------------------------
   228 // Add an exception to my list of exceptions.
   229 void GraphKit::add_exception_state(SafePointNode* ex_map) {
   230   if (ex_map == NULL || ex_map->control() == top()) {
   231     return;
   232   }
   233 #ifdef ASSERT
   234   verify_exception_state(ex_map);
   235   if (has_exceptions()) {
   236     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
   237   }
   238 #endif
   240   // If there is already an exception of exactly this type, merge with it.
   241   // In particular, null-checks and other low-level exceptions common up here.
   242   Node*       ex_oop  = saved_ex_oop(ex_map);
   243   const Type* ex_type = _gvn.type(ex_oop);
   244   if (ex_oop == top()) {
   245     // No action needed.
   246     return;
   247   }
   248   assert(ex_type->isa_instptr(), "exception must be an instance");
   249   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
   250     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
   251     // We check sp also because call bytecodes can generate exceptions
   252     // both before and after arguments are popped!
   253     if (ex_type2 == ex_type
   254         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
   255       combine_exception_states(ex_map, e2);
   256       return;
   257     }
   258   }
   260   // No pre-existing exception of the same type.  Chain it on the list.
   261   push_exception_state(ex_map);
   262 }
   264 //-----------------------add_exception_states_from-----------------------------
   265 void GraphKit::add_exception_states_from(JVMState* jvms) {
   266   SafePointNode* ex_map = jvms->map()->next_exception();
   267   if (ex_map != NULL) {
   268     jvms->map()->set_next_exception(NULL);
   269     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
   270       next_map = ex_map->next_exception();
   271       ex_map->set_next_exception(NULL);
   272       add_exception_state(ex_map);
   273     }
   274   }
   275 }
   277 //-----------------------transfer_exceptions_into_jvms-------------------------
   278 JVMState* GraphKit::transfer_exceptions_into_jvms() {
   279   if (map() == NULL) {
   280     // We need a JVMS to carry the exceptions, but the map has gone away.
   281     // Create a scratch JVMS, cloned from any of the exception states...
   282     if (has_exceptions()) {
   283       _map = _exceptions;
   284       _map = clone_map();
   285       _map->set_next_exception(NULL);
   286       clear_saved_ex_oop(_map);
   287       debug_only(verify_map());
   288     } else {
   289       // ...or created from scratch
   290       JVMState* jvms = new (C) JVMState(_method, NULL);
   291       jvms->set_bci(_bci);
   292       jvms->set_sp(_sp);
   293       jvms->set_map(new (C) SafePointNode(TypeFunc::Parms, jvms));
   294       set_jvms(jvms);
   295       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
   296       set_all_memory(top());
   297       while (map()->req() < jvms->endoff())  map()->add_req(top());
   298     }
   299     // (This is a kludge, in case you didn't notice.)
   300     set_control(top());
   301   }
   302   JVMState* jvms = sync_jvms();
   303   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
   304   jvms->map()->set_next_exception(_exceptions);
   305   _exceptions = NULL;   // done with this set of exceptions
   306   return jvms;
   307 }
   309 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
   310   assert(is_hidden_merge(dstphi), "must be a special merge node");
   311   assert(is_hidden_merge(srcphi), "must be a special merge node");
   312   uint limit = srcphi->req();
   313   for (uint i = PhiNode::Input; i < limit; i++) {
   314     dstphi->add_req(srcphi->in(i));
   315   }
   316 }
   317 static inline void add_one_req(Node* dstphi, Node* src) {
   318   assert(is_hidden_merge(dstphi), "must be a special merge node");
   319   assert(!is_hidden_merge(src), "must not be a special merge node");
   320   dstphi->add_req(src);
   321 }
   323 //-----------------------combine_exception_states------------------------------
   324 // This helper function combines exception states by building phis on a
   325 // specially marked state-merging region.  These regions and phis are
   326 // untransformed, and can build up gradually.  The region is marked by
   327 // having a control input of its exception map, rather than NULL.  Such
   328 // regions do not appear except in this function, and in use_exception_state.
   329 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
   330   if (failing())  return;  // dying anyway...
   331   JVMState* ex_jvms = ex_map->_jvms;
   332   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
   333   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
   334   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
   335   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
   336   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
   337   assert(ex_map->req() == phi_map->req(), "matching maps");
   338   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
   339   Node*         hidden_merge_mark = root();
   340   Node*         region  = phi_map->control();
   341   MergeMemNode* phi_mem = phi_map->merged_memory();
   342   MergeMemNode* ex_mem  = ex_map->merged_memory();
   343   if (region->in(0) != hidden_merge_mark) {
   344     // The control input is not (yet) a specially-marked region in phi_map.
   345     // Make it so, and build some phis.
   346     region = new (C) RegionNode(2);
   347     _gvn.set_type(region, Type::CONTROL);
   348     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
   349     region->init_req(1, phi_map->control());
   350     phi_map->set_control(region);
   351     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
   352     record_for_igvn(io_phi);
   353     _gvn.set_type(io_phi, Type::ABIO);
   354     phi_map->set_i_o(io_phi);
   355     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
   356       Node* m = mms.memory();
   357       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
   358       record_for_igvn(m_phi);
   359       _gvn.set_type(m_phi, Type::MEMORY);
   360       mms.set_memory(m_phi);
   361     }
   362   }
   364   // Either or both of phi_map and ex_map might already be converted into phis.
   365   Node* ex_control = ex_map->control();
   366   // if there is special marking on ex_map also, we add multiple edges from src
   367   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
   368   // how wide was the destination phi_map, originally?
   369   uint orig_width = region->req();
   371   if (add_multiple) {
   372     add_n_reqs(region, ex_control);
   373     add_n_reqs(phi_map->i_o(), ex_map->i_o());
   374   } else {
   375     // ex_map has no merges, so we just add single edges everywhere
   376     add_one_req(region, ex_control);
   377     add_one_req(phi_map->i_o(), ex_map->i_o());
   378   }
   379   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
   380     if (mms.is_empty()) {
   381       // get a copy of the base memory, and patch some inputs into it
   382       const TypePtr* adr_type = mms.adr_type(C);
   383       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
   384       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
   385       mms.set_memory(phi);
   386       // Prepare to append interesting stuff onto the newly sliced phi:
   387       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
   388     }
   389     // Append stuff from ex_map:
   390     if (add_multiple) {
   391       add_n_reqs(mms.memory(), mms.memory2());
   392     } else {
   393       add_one_req(mms.memory(), mms.memory2());
   394     }
   395   }
   396   uint limit = ex_map->req();
   397   for (uint i = TypeFunc::Parms; i < limit; i++) {
   398     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
   399     if (i == tos)  i = ex_jvms->monoff();
   400     Node* src = ex_map->in(i);
   401     Node* dst = phi_map->in(i);
   402     if (src != dst) {
   403       PhiNode* phi;
   404       if (dst->in(0) != region) {
   405         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
   406         record_for_igvn(phi);
   407         _gvn.set_type(phi, phi->type());
   408         phi_map->set_req(i, dst);
   409         // Prepare to append interesting stuff onto the new phi:
   410         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
   411       } else {
   412         assert(dst->is_Phi(), "nobody else uses a hidden region");
   413         phi = dst->as_Phi();
   414       }
   415       if (add_multiple && src->in(0) == ex_control) {
   416         // Both are phis.
   417         add_n_reqs(dst, src);
   418       } else {
   419         while (dst->req() < region->req())  add_one_req(dst, src);
   420       }
   421       const Type* srctype = _gvn.type(src);
   422       if (phi->type() != srctype) {
   423         const Type* dsttype = phi->type()->meet_speculative(srctype);
   424         if (phi->type() != dsttype) {
   425           phi->set_type(dsttype);
   426           _gvn.set_type(phi, dsttype);
   427         }
   428       }
   429     }
   430   }
   431 }
   433 //--------------------------use_exception_state--------------------------------
   434 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
   435   if (failing()) { stop(); return top(); }
   436   Node* region = phi_map->control();
   437   Node* hidden_merge_mark = root();
   438   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
   439   Node* ex_oop = clear_saved_ex_oop(phi_map);
   440   if (region->in(0) == hidden_merge_mark) {
   441     // Special marking for internal ex-states.  Process the phis now.
   442     region->set_req(0, region);  // now it's an ordinary region
   443     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
   444     // Note: Setting the jvms also sets the bci and sp.
   445     set_control(_gvn.transform(region));
   446     uint tos = jvms()->stkoff() + sp();
   447     for (uint i = 1; i < tos; i++) {
   448       Node* x = phi_map->in(i);
   449       if (x->in(0) == region) {
   450         assert(x->is_Phi(), "expected a special phi");
   451         phi_map->set_req(i, _gvn.transform(x));
   452       }
   453     }
   454     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
   455       Node* x = mms.memory();
   456       if (x->in(0) == region) {
   457         assert(x->is_Phi(), "nobody else uses a hidden region");
   458         mms.set_memory(_gvn.transform(x));
   459       }
   460     }
   461     if (ex_oop->in(0) == region) {
   462       assert(ex_oop->is_Phi(), "expected a special phi");
   463       ex_oop = _gvn.transform(ex_oop);
   464     }
   465   } else {
   466     set_jvms(phi_map->jvms());
   467   }
   469   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
   470   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
   471   return ex_oop;
   472 }
   474 //---------------------------------java_bc-------------------------------------
   475 Bytecodes::Code GraphKit::java_bc() const {
   476   ciMethod* method = this->method();
   477   int       bci    = this->bci();
   478   if (method != NULL && bci != InvocationEntryBci)
   479     return method->java_code_at_bci(bci);
   480   else
   481     return Bytecodes::_illegal;
   482 }
   484 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
   485                                                           bool must_throw) {
   486     // if the exception capability is set, then we will generate code
   487     // to check the JavaThread.should_post_on_exceptions flag to see
   488     // if we actually need to report exception events (for this
   489     // thread).  If we don't need to report exception events, we will
   490     // take the normal fast path provided by add_exception_events.  If
   491     // exception event reporting is enabled for this thread, we will
   492     // take the uncommon_trap in the BuildCutout below.
   494     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
   495     Node* jthread = _gvn.transform(new (C) ThreadLocalNode());
   496     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
   497     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
   499     // Test the should_post_on_exceptions_flag vs. 0
   500     Node* chk = _gvn.transform( new (C) CmpINode(should_post_flag, intcon(0)) );
   501     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
   503     // Branch to slow_path if should_post_on_exceptions_flag was true
   504     { BuildCutout unless(this, tst, PROB_MAX);
   505       // Do not try anything fancy if we're notifying the VM on every throw.
   506       // Cf. case Bytecodes::_athrow in parse2.cpp.
   507       uncommon_trap(reason, Deoptimization::Action_none,
   508                     (ciKlass*)NULL, (char*)NULL, must_throw);
   509     }
   511 }
   513 //------------------------------builtin_throw----------------------------------
   514 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
   515   bool must_throw = true;
   517   if (env()->jvmti_can_post_on_exceptions()) {
   518     // check if we must post exception events, take uncommon trap if so
   519     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
   520     // here if should_post_on_exceptions is false
   521     // continue on with the normal codegen
   522   }
   524   // If this particular condition has not yet happened at this
   525   // bytecode, then use the uncommon trap mechanism, and allow for
   526   // a future recompilation if several traps occur here.
   527   // If the throw is hot, try to use a more complicated inline mechanism
   528   // which keeps execution inside the compiled code.
   529   bool treat_throw_as_hot = false;
   530   ciMethodData* md = method()->method_data();
   532   if (ProfileTraps) {
   533     if (too_many_traps(reason)) {
   534       treat_throw_as_hot = true;
   535     }
   536     // (If there is no MDO at all, assume it is early in
   537     // execution, and that any deopts are part of the
   538     // startup transient, and don't need to be remembered.)
   540     // Also, if there is a local exception handler, treat all throws
   541     // as hot if there has been at least one in this method.
   542     if (C->trap_count(reason) != 0
   543         && method()->method_data()->trap_count(reason) != 0
   544         && has_ex_handler()) {
   545         treat_throw_as_hot = true;
   546     }
   547   }
   549   // If this throw happens frequently, an uncommon trap might cause
   550   // a performance pothole.  If there is a local exception handler,
   551   // and if this particular bytecode appears to be deoptimizing often,
   552   // let us handle the throw inline, with a preconstructed instance.
   553   // Note:   If the deopt count has blown up, the uncommon trap
   554   // runtime is going to flush this nmethod, not matter what.
   555   if (treat_throw_as_hot
   556       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
   557     // If the throw is local, we use a pre-existing instance and
   558     // punt on the backtrace.  This would lead to a missing backtrace
   559     // (a repeat of 4292742) if the backtrace object is ever asked
   560     // for its backtrace.
   561     // Fixing this remaining case of 4292742 requires some flavor of
   562     // escape analysis.  Leave that for the future.
   563     ciInstance* ex_obj = NULL;
   564     switch (reason) {
   565     case Deoptimization::Reason_null_check:
   566       ex_obj = env()->NullPointerException_instance();
   567       break;
   568     case Deoptimization::Reason_div0_check:
   569       ex_obj = env()->ArithmeticException_instance();
   570       break;
   571     case Deoptimization::Reason_range_check:
   572       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
   573       break;
   574     case Deoptimization::Reason_class_check:
   575       if (java_bc() == Bytecodes::_aastore) {
   576         ex_obj = env()->ArrayStoreException_instance();
   577       } else {
   578         ex_obj = env()->ClassCastException_instance();
   579       }
   580       break;
   581     }
   582     if (failing()) { stop(); return; }  // exception allocation might fail
   583     if (ex_obj != NULL) {
   584       // Cheat with a preallocated exception object.
   585       if (C->log() != NULL)
   586         C->log()->elem("hot_throw preallocated='1' reason='%s'",
   587                        Deoptimization::trap_reason_name(reason));
   588       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
   589       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
   591       // Clear the detail message of the preallocated exception object.
   592       // Weblogic sometimes mutates the detail message of exceptions
   593       // using reflection.
   594       int offset = java_lang_Throwable::get_detailMessage_offset();
   595       const TypePtr* adr_typ = ex_con->add_offset(offset);
   597       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
   598       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
   599       // Conservatively release stores of object references.
   600       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);
   602       add_exception_state(make_exception_state(ex_node));
   603       return;
   604     }
   605   }
   607   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
   608   // It won't be much cheaper than bailing to the interp., since we'll
   609   // have to pass up all the debug-info, and the runtime will have to
   610   // create the stack trace.
   612   // Usual case:  Bail to interpreter.
   613   // Reserve the right to recompile if we haven't seen anything yet.
   615   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
   616   if (treat_throw_as_hot
   617       && (method()->method_data()->trap_recompiled_at(bci())
   618           || C->too_many_traps(reason))) {
   619     // We cannot afford to take more traps here.  Suffer in the interpreter.
   620     if (C->log() != NULL)
   621       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
   622                      Deoptimization::trap_reason_name(reason),
   623                      C->trap_count(reason));
   624     action = Deoptimization::Action_none;
   625   }
   627   // "must_throw" prunes the JVM state to include only the stack, if there
   628   // are no local exception handlers.  This should cut down on register
   629   // allocation time and code size, by drastically reducing the number
   630   // of in-edges on the call to the uncommon trap.
   632   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
   633 }
   636 //----------------------------PreserveJVMState---------------------------------
   637 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
   638   debug_only(kit->verify_map());
   639   _kit    = kit;
   640   _map    = kit->map();   // preserve the map
   641   _sp     = kit->sp();
   642   kit->set_map(clone_map ? kit->clone_map() : NULL);
   643   Compile::current()->inc_preserve_jvm_state();
   644 #ifdef ASSERT
   645   _bci    = kit->bci();
   646   Parse* parser = kit->is_Parse();
   647   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
   648   _block  = block;
   649 #endif
   650 }
   651 PreserveJVMState::~PreserveJVMState() {
   652   GraphKit* kit = _kit;
   653 #ifdef ASSERT
   654   assert(kit->bci() == _bci, "bci must not shift");
   655   Parse* parser = kit->is_Parse();
   656   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
   657   assert(block == _block,    "block must not shift");
   658 #endif
   659   kit->set_map(_map);
   660   kit->set_sp(_sp);
   661   Compile::current()->dec_preserve_jvm_state();
   662 }
   665 //-----------------------------BuildCutout-------------------------------------
   666 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
   667   : PreserveJVMState(kit)
   668 {
   669   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
   670   SafePointNode* outer_map = _map;   // preserved map is caller's
   671   SafePointNode* inner_map = kit->map();
   672   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
   673   outer_map->set_control(kit->gvn().transform( new (kit->C) IfTrueNode(iff) ));
   674   inner_map->set_control(kit->gvn().transform( new (kit->C) IfFalseNode(iff) ));
   675 }
   676 BuildCutout::~BuildCutout() {
   677   GraphKit* kit = _kit;
   678   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
   679 }
   681 //---------------------------PreserveReexecuteState----------------------------
   682 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
   683   assert(!kit->stopped(), "must call stopped() before");
   684   _kit    =    kit;
   685   _sp     =    kit->sp();
   686   _reexecute = kit->jvms()->_reexecute;
   687 }
   688 PreserveReexecuteState::~PreserveReexecuteState() {
   689   if (_kit->stopped()) return;
   690   _kit->jvms()->_reexecute = _reexecute;
   691   _kit->set_sp(_sp);
   692 }
   694 //------------------------------clone_map--------------------------------------
   695 // Implementation of PreserveJVMState
   696 //
   697 // Only clone_map(...) here. If this function is only used in the
   698 // PreserveJVMState class we may want to get rid of this extra
   699 // function eventually and do it all there.
   701 SafePointNode* GraphKit::clone_map() {
   702   if (map() == NULL)  return NULL;
   704   // Clone the memory edge first
   705   Node* mem = MergeMemNode::make(C, map()->memory());
   706   gvn().set_type_bottom(mem);
   708   SafePointNode *clonemap = (SafePointNode*)map()->clone();
   709   JVMState* jvms = this->jvms();
   710   JVMState* clonejvms = jvms->clone_shallow(C);
   711   clonemap->set_memory(mem);
   712   clonemap->set_jvms(clonejvms);
   713   clonejvms->set_map(clonemap);
   714   record_for_igvn(clonemap);
   715   gvn().set_type_bottom(clonemap);
   716   return clonemap;
   717 }
   720 //-----------------------------set_map_clone-----------------------------------
   721 void GraphKit::set_map_clone(SafePointNode* m) {
   722   _map = m;
   723   _map = clone_map();
   724   _map->set_next_exception(NULL);
   725   debug_only(verify_map());
   726 }
   729 //----------------------------kill_dead_locals---------------------------------
   730 // Detect any locals which are known to be dead, and force them to top.
   731 void GraphKit::kill_dead_locals() {
   732   // Consult the liveness information for the locals.  If any
   733   // of them are unused, then they can be replaced by top().  This
   734   // should help register allocation time and cut down on the size
   735   // of the deoptimization information.
   737   // This call is made from many of the bytecode handling
   738   // subroutines called from the Big Switch in do_one_bytecode.
   739   // Every bytecode which might include a slow path is responsible
   740   // for killing its dead locals.  The more consistent we
   741   // are about killing deads, the fewer useless phis will be
   742   // constructed for them at various merge points.
   744   // bci can be -1 (InvocationEntryBci).  We return the entry
   745   // liveness for the method.
   747   if (method() == NULL || method()->code_size() == 0) {
   748     // We are building a graph for a call to a native method.
   749     // All locals are live.
   750     return;
   751   }
   753   ResourceMark rm;
   755   // Consult the liveness information for the locals.  If any
   756   // of them are unused, then they can be replaced by top().  This
   757   // should help register allocation time and cut down on the size
   758   // of the deoptimization information.
   759   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
   761   int len = (int)live_locals.size();
   762   assert(len <= jvms()->loc_size(), "too many live locals");
   763   for (int local = 0; local < len; local++) {
   764     if (!live_locals.at(local)) {
   765       set_local(local, top());
   766     }
   767   }
   768 }
   770 #ifdef ASSERT
   771 //-------------------------dead_locals_are_killed------------------------------
   772 // Return true if all dead locals are set to top in the map.
   773 // Used to assert "clean" debug info at various points.
   774 bool GraphKit::dead_locals_are_killed() {
   775   if (method() == NULL || method()->code_size() == 0) {
   776     // No locals need to be dead, so all is as it should be.
   777     return true;
   778   }
   780   // Make sure somebody called kill_dead_locals upstream.
   781   ResourceMark rm;
   782   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
   783     if (jvms->loc_size() == 0)  continue;  // no locals to consult
   784     SafePointNode* map = jvms->map();
   785     ciMethod* method = jvms->method();
   786     int       bci    = jvms->bci();
   787     if (jvms == this->jvms()) {
   788       bci = this->bci();  // it might not yet be synched
   789     }
   790     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
   791     int len = (int)live_locals.size();
   792     if (!live_locals.is_valid() || len == 0)
   793       // This method is trivial, or is poisoned by a breakpoint.
   794       return true;
   795     assert(len == jvms->loc_size(), "live map consistent with locals map");
   796     for (int local = 0; local < len; local++) {
   797       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
   798         if (PrintMiscellaneous && (Verbose || WizardMode)) {
   799           tty->print_cr("Zombie local %d: ", local);
   800           jvms->dump();
   801         }
   802         return false;
   803       }
   804     }
   805   }
   806   return true;
   807 }
   809 #endif //ASSERT
   811 // Helper function for enforcing certain bytecodes to reexecute if
   812 // deoptimization happens
   813 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
   814   ciMethod* cur_method = jvms->method();
   815   int       cur_bci   = jvms->bci();
   816   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
   817     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
   818     return Interpreter::bytecode_should_reexecute(code) ||
   819            is_anewarray && code == Bytecodes::_multianewarray;
   820     // Reexecute _multianewarray bytecode which was replaced with
   821     // sequence of [a]newarray. See Parse::do_multianewarray().
   822     //
   823     // Note: interpreter should not have it set since this optimization
   824     // is limited by dimensions and guarded by flag so in some cases
   825     // multianewarray() runtime calls will be generated and
   826     // the bytecode should not be reexecutes (stack will not be reset).
   827   } else
   828     return false;
   829 }
   831 // Helper function for adding JVMState and debug information to node
   832 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
   833   // Add the safepoint edges to the call (or other safepoint).
   835   // Make sure dead locals are set to top.  This
   836   // should help register allocation time and cut down on the size
   837   // of the deoptimization information.
   838   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
   840   // Walk the inline list to fill in the correct set of JVMState's
   841   // Also fill in the associated edges for each JVMState.
   843   // If the bytecode needs to be reexecuted we need to put
   844   // the arguments back on the stack.
   845   const bool should_reexecute = jvms()->should_reexecute();
   846   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
   848   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
   849   // undefined if the bci is different.  This is normal for Parse but it
   850   // should not happen for LibraryCallKit because only one bci is processed.
   851   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
   852          "in LibraryCallKit the reexecute bit should not change");
   854   // If we are guaranteed to throw, we can prune everything but the
   855   // input to the current bytecode.
   856   bool can_prune_locals = false;
   857   uint stack_slots_not_pruned = 0;
   858   int inputs = 0, depth = 0;
   859   if (must_throw) {
   860     assert(method() == youngest_jvms->method(), "sanity");
   861     if (compute_stack_effects(inputs, depth)) {
   862       can_prune_locals = true;
   863       stack_slots_not_pruned = inputs;
   864     }
   865   }
   867   if (env()->jvmti_can_access_local_variables()) {
   868     // At any safepoint, this method can get breakpointed, which would
   869     // then require an immediate deoptimization.
   870     can_prune_locals = false;  // do not prune locals
   871     stack_slots_not_pruned = 0;
   872   }
   874   // do not scribble on the input jvms
   875   JVMState* out_jvms = youngest_jvms->clone_deep(C);
   876   call->set_jvms(out_jvms); // Start jvms list for call node
   878   // For a known set of bytecodes, the interpreter should reexecute them if
   879   // deoptimization happens. We set the reexecute state for them here
   880   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
   881       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
   882     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
   883   }
   885   // Presize the call:
   886   DEBUG_ONLY(uint non_debug_edges = call->req());
   887   call->add_req_batch(top(), youngest_jvms->debug_depth());
   888   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
   890   // Set up edges so that the call looks like this:
   891   //  Call [state:] ctl io mem fptr retadr
   892   //       [parms:] parm0 ... parmN
   893   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
   894   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
   895   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
   896   // Note that caller debug info precedes callee debug info.
   898   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
   899   uint debug_ptr = call->req();
   901   // Loop over the map input edges associated with jvms, add them
   902   // to the call node, & reset all offsets to match call node array.
   903   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
   904     uint debug_end   = debug_ptr;
   905     uint debug_start = debug_ptr - in_jvms->debug_size();
   906     debug_ptr = debug_start;  // back up the ptr
   908     uint p = debug_start;  // walks forward in [debug_start, debug_end)
   909     uint j, k, l;
   910     SafePointNode* in_map = in_jvms->map();
   911     out_jvms->set_map(call);
   913     if (can_prune_locals) {
   914       assert(in_jvms->method() == out_jvms->method(), "sanity");
   915       // If the current throw can reach an exception handler in this JVMS,
   916       // then we must keep everything live that can reach that handler.
   917       // As a quick and dirty approximation, we look for any handlers at all.
   918       if (in_jvms->method()->has_exception_handlers()) {
   919         can_prune_locals = false;
   920       }
   921     }
   923     // Add the Locals
   924     k = in_jvms->locoff();
   925     l = in_jvms->loc_size();
   926     out_jvms->set_locoff(p);
   927     if (!can_prune_locals) {
   928       for (j = 0; j < l; j++)
   929         call->set_req(p++, in_map->in(k+j));
   930     } else {
   931       p += l;  // already set to top above by add_req_batch
   932     }
   934     // Add the Expression Stack
   935     k = in_jvms->stkoff();
   936     l = in_jvms->sp();
   937     out_jvms->set_stkoff(p);
   938     if (!can_prune_locals) {
   939       for (j = 0; j < l; j++)
   940         call->set_req(p++, in_map->in(k+j));
   941     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
   942       // Divide stack into {S0,...,S1}, where S0 is set to top.
   943       uint s1 = stack_slots_not_pruned;
   944       stack_slots_not_pruned = 0;  // for next iteration
   945       if (s1 > l)  s1 = l;
   946       uint s0 = l - s1;
   947       p += s0;  // skip the tops preinstalled by add_req_batch
   948       for (j = s0; j < l; j++)
   949         call->set_req(p++, in_map->in(k+j));
   950     } else {
   951       p += l;  // already set to top above by add_req_batch
   952     }
   954     // Add the Monitors
   955     k = in_jvms->monoff();
   956     l = in_jvms->mon_size();
   957     out_jvms->set_monoff(p);
   958     for (j = 0; j < l; j++)
   959       call->set_req(p++, in_map->in(k+j));
   961     // Copy any scalar object fields.
   962     k = in_jvms->scloff();
   963     l = in_jvms->scl_size();
   964     out_jvms->set_scloff(p);
   965     for (j = 0; j < l; j++)
   966       call->set_req(p++, in_map->in(k+j));
   968     // Finish the new jvms.
   969     out_jvms->set_endoff(p);
   971     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
   972     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
   973     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
   974     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
   975     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
   976     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
   978     // Update the two tail pointers in parallel.
   979     out_jvms = out_jvms->caller();
   980     in_jvms  = in_jvms->caller();
   981   }
   983   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
   985   // Test the correctness of JVMState::debug_xxx accessors:
   986   assert(call->jvms()->debug_start() == non_debug_edges, "");
   987   assert(call->jvms()->debug_end()   == call->req(), "");
   988   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
   989 }
   991 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
   992   Bytecodes::Code code = java_bc();
   993   if (code == Bytecodes::_wide) {
   994     code = method()->java_code_at_bci(bci() + 1);
   995   }
   997   BasicType rtype = T_ILLEGAL;
   998   int       rsize = 0;
  1000   if (code != Bytecodes::_illegal) {
  1001     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
  1002     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
  1003     if (rtype < T_CONFLICT)
  1004       rsize = type2size[rtype];
  1007   switch (code) {
  1008   case Bytecodes::_illegal:
  1009     return false;
  1011   case Bytecodes::_ldc:
  1012   case Bytecodes::_ldc_w:
  1013   case Bytecodes::_ldc2_w:
  1014     inputs = 0;
  1015     break;
  1017   case Bytecodes::_dup:         inputs = 1;  break;
  1018   case Bytecodes::_dup_x1:      inputs = 2;  break;
  1019   case Bytecodes::_dup_x2:      inputs = 3;  break;
  1020   case Bytecodes::_dup2:        inputs = 2;  break;
  1021   case Bytecodes::_dup2_x1:     inputs = 3;  break;
  1022   case Bytecodes::_dup2_x2:     inputs = 4;  break;
  1023   case Bytecodes::_swap:        inputs = 2;  break;
  1024   case Bytecodes::_arraylength: inputs = 1;  break;
  1026   case Bytecodes::_getstatic:
  1027   case Bytecodes::_putstatic:
  1028   case Bytecodes::_getfield:
  1029   case Bytecodes::_putfield:
  1031       bool ignored_will_link;
  1032       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
  1033       int      size  = field->type()->size();
  1034       bool is_get = (depth >= 0), is_static = (depth & 1);
  1035       inputs = (is_static ? 0 : 1);
  1036       if (is_get) {
  1037         depth = size - inputs;
  1038       } else {
  1039         inputs += size;        // putxxx pops the value from the stack
  1040         depth = - inputs;
  1043     break;
  1045   case Bytecodes::_invokevirtual:
  1046   case Bytecodes::_invokespecial:
  1047   case Bytecodes::_invokestatic:
  1048   case Bytecodes::_invokedynamic:
  1049   case Bytecodes::_invokeinterface:
  1051       bool ignored_will_link;
  1052       ciSignature* declared_signature = NULL;
  1053       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  1054       assert(declared_signature != NULL, "cannot be null");
  1055       inputs   = declared_signature->arg_size_for_bc(code);
  1056       int size = declared_signature->return_type()->size();
  1057       depth = size - inputs;
  1059     break;
  1061   case Bytecodes::_multianewarray:
  1063       ciBytecodeStream iter(method());
  1064       iter.reset_to_bci(bci());
  1065       iter.next();
  1066       inputs = iter.get_dimensions();
  1067       assert(rsize == 1, "");
  1068       depth = rsize - inputs;
  1070     break;
  1072   case Bytecodes::_ireturn:
  1073   case Bytecodes::_lreturn:
  1074   case Bytecodes::_freturn:
  1075   case Bytecodes::_dreturn:
  1076   case Bytecodes::_areturn:
  1077     assert(rsize = -depth, "");
  1078     inputs = rsize;
  1079     break;
  1081   case Bytecodes::_jsr:
  1082   case Bytecodes::_jsr_w:
  1083     inputs = 0;
  1084     depth  = 1;                  // S.B. depth=1, not zero
  1085     break;
  1087   default:
  1088     // bytecode produces a typed result
  1089     inputs = rsize - depth;
  1090     assert(inputs >= 0, "");
  1091     break;
  1094 #ifdef ASSERT
  1095   // spot check
  1096   int outputs = depth + inputs;
  1097   assert(outputs >= 0, "sanity");
  1098   switch (code) {
  1099   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
  1100   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
  1101   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
  1102   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
  1103   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
  1105 #endif //ASSERT
  1107   return true;
  1112 //------------------------------basic_plus_adr---------------------------------
  1113 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
  1114   // short-circuit a common case
  1115   if (offset == intcon(0))  return ptr;
  1116   return _gvn.transform( new (C) AddPNode(base, ptr, offset) );
  1119 Node* GraphKit::ConvI2L(Node* offset) {
  1120   // short-circuit a common case
  1121   jint offset_con = find_int_con(offset, Type::OffsetBot);
  1122   if (offset_con != Type::OffsetBot) {
  1123     return longcon((jlong) offset_con);
  1125   return _gvn.transform( new (C) ConvI2LNode(offset));
  1127 Node* GraphKit::ConvL2I(Node* offset) {
  1128   // short-circuit a common case
  1129   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
  1130   if (offset_con != (jlong)Type::OffsetBot) {
  1131     return intcon((int) offset_con);
  1133   return _gvn.transform( new (C) ConvL2INode(offset));
  1136 //-------------------------load_object_klass-----------------------------------
  1137 Node* GraphKit::load_object_klass(Node* obj) {
  1138   // Special-case a fresh allocation to avoid building nodes:
  1139   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
  1140   if (akls != NULL)  return akls;
  1141   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  1142   return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
  1145 //-------------------------load_array_length-----------------------------------
  1146 Node* GraphKit::load_array_length(Node* array) {
  1147   // Special-case a fresh allocation to avoid building nodes:
  1148   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
  1149   Node *alen;
  1150   if (alloc == NULL) {
  1151     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
  1152     alen = _gvn.transform( new (C) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
  1153   } else {
  1154     alen = alloc->Ideal_length();
  1155     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
  1156     if (ccast != alen) {
  1157       alen = _gvn.transform(ccast);
  1160   return alen;
  1163 //------------------------------do_null_check----------------------------------
  1164 // Helper function to do a NULL pointer check.  Returned value is
  1165 // the incoming address with NULL casted away.  You are allowed to use the
  1166 // not-null value only if you are control dependent on the test.
  1167 extern int explicit_null_checks_inserted,
  1168            explicit_null_checks_elided;
  1169 Node* GraphKit::null_check_common(Node* value, BasicType type,
  1170                                   // optional arguments for variations:
  1171                                   bool assert_null,
  1172                                   Node* *null_control) {
  1173   assert(!assert_null || null_control == NULL, "not both at once");
  1174   if (stopped())  return top();
  1175   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
  1176     // For some performance testing, we may wish to suppress null checking.
  1177     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
  1178     return value;
  1180   explicit_null_checks_inserted++;
  1182   // Construct NULL check
  1183   Node *chk = NULL;
  1184   switch(type) {
  1185     case T_LONG   : chk = new (C) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
  1186     case T_INT    : chk = new (C) CmpINode(value, _gvn.intcon(0)); break;
  1187     case T_ARRAY  : // fall through
  1188       type = T_OBJECT;  // simplify further tests
  1189     case T_OBJECT : {
  1190       const Type *t = _gvn.type( value );
  1192       const TypeOopPtr* tp = t->isa_oopptr();
  1193       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
  1194           // Only for do_null_check, not any of its siblings:
  1195           && !assert_null && null_control == NULL) {
  1196         // Usually, any field access or invocation on an unloaded oop type
  1197         // will simply fail to link, since the statically linked class is
  1198         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
  1199         // the static class is loaded but the sharper oop type is not.
  1200         // Rather than checking for this obscure case in lots of places,
  1201         // we simply observe that a null check on an unloaded class
  1202         // will always be followed by a nonsense operation, so we
  1203         // can just issue the uncommon trap here.
  1204         // Our access to the unloaded class will only be correct
  1205         // after it has been loaded and initialized, which requires
  1206         // a trip through the interpreter.
  1207 #ifndef PRODUCT
  1208         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
  1209 #endif
  1210         uncommon_trap(Deoptimization::Reason_unloaded,
  1211                       Deoptimization::Action_reinterpret,
  1212                       tp->klass(), "!loaded");
  1213         return top();
  1216       if (assert_null) {
  1217         // See if the type is contained in NULL_PTR.
  1218         // If so, then the value is already null.
  1219         if (t->higher_equal(TypePtr::NULL_PTR)) {
  1220           explicit_null_checks_elided++;
  1221           return value;           // Elided null assert quickly!
  1223       } else {
  1224         // See if mixing in the NULL pointer changes type.
  1225         // If so, then the NULL pointer was not allowed in the original
  1226         // type.  In other words, "value" was not-null.
  1227         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
  1228           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
  1229           explicit_null_checks_elided++;
  1230           return value;           // Elided null check quickly!
  1233       chk = new (C) CmpPNode( value, null() );
  1234       break;
  1237     default:
  1238       fatal(err_msg_res("unexpected type: %s", type2name(type)));
  1240   assert(chk != NULL, "sanity check");
  1241   chk = _gvn.transform(chk);
  1243   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
  1244   BoolNode *btst = new (C) BoolNode( chk, btest);
  1245   Node   *tst = _gvn.transform( btst );
  1247   //-----------
  1248   // if peephole optimizations occurred, a prior test existed.
  1249   // If a prior test existed, maybe it dominates as we can avoid this test.
  1250   if (tst != btst && type == T_OBJECT) {
  1251     // At this point we want to scan up the CFG to see if we can
  1252     // find an identical test (and so avoid this test altogether).
  1253     Node *cfg = control();
  1254     int depth = 0;
  1255     while( depth < 16 ) {       // Limit search depth for speed
  1256       if( cfg->Opcode() == Op_IfTrue &&
  1257           cfg->in(0)->in(1) == tst ) {
  1258         // Found prior test.  Use "cast_not_null" to construct an identical
  1259         // CastPP (and hence hash to) as already exists for the prior test.
  1260         // Return that casted value.
  1261         if (assert_null) {
  1262           replace_in_map(value, null());
  1263           return null();  // do not issue the redundant test
  1265         Node *oldcontrol = control();
  1266         set_control(cfg);
  1267         Node *res = cast_not_null(value);
  1268         set_control(oldcontrol);
  1269         explicit_null_checks_elided++;
  1270         return res;
  1272       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
  1273       if (cfg == NULL)  break;  // Quit at region nodes
  1274       depth++;
  1278   //-----------
  1279   // Branch to failure if null
  1280   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
  1281   Deoptimization::DeoptReason reason;
  1282   if (assert_null)
  1283     reason = Deoptimization::Reason_null_assert;
  1284   else if (type == T_OBJECT)
  1285     reason = Deoptimization::Reason_null_check;
  1286   else
  1287     reason = Deoptimization::Reason_div0_check;
  1289   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
  1290   // ciMethodData::has_trap_at will return a conservative -1 if any
  1291   // must-be-null assertion has failed.  This could cause performance
  1292   // problems for a method after its first do_null_assert failure.
  1293   // Consider using 'Reason_class_check' instead?
  1295   // To cause an implicit null check, we set the not-null probability
  1296   // to the maximum (PROB_MAX).  For an explicit check the probability
  1297   // is set to a smaller value.
  1298   if (null_control != NULL || too_many_traps(reason)) {
  1299     // probability is less likely
  1300     ok_prob =  PROB_LIKELY_MAG(3);
  1301   } else if (!assert_null &&
  1302              (ImplicitNullCheckThreshold > 0) &&
  1303              method() != NULL &&
  1304              (method()->method_data()->trap_count(reason)
  1305               >= (uint)ImplicitNullCheckThreshold)) {
  1306     ok_prob =  PROB_LIKELY_MAG(3);
  1309   if (null_control != NULL) {
  1310     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
  1311     Node* null_true = _gvn.transform( new (C) IfFalseNode(iff));
  1312     set_control(      _gvn.transform( new (C) IfTrueNode(iff)));
  1313     if (null_true == top())
  1314       explicit_null_checks_elided++;
  1315     (*null_control) = null_true;
  1316   } else {
  1317     BuildCutout unless(this, tst, ok_prob);
  1318     // Check for optimizer eliding test at parse time
  1319     if (stopped()) {
  1320       // Failure not possible; do not bother making uncommon trap.
  1321       explicit_null_checks_elided++;
  1322     } else if (assert_null) {
  1323       uncommon_trap(reason,
  1324                     Deoptimization::Action_make_not_entrant,
  1325                     NULL, "assert_null");
  1326     } else {
  1327       replace_in_map(value, zerocon(type));
  1328       builtin_throw(reason);
  1332   // Must throw exception, fall-thru not possible?
  1333   if (stopped()) {
  1334     return top();               // No result
  1337   if (assert_null) {
  1338     // Cast obj to null on this path.
  1339     replace_in_map(value, zerocon(type));
  1340     return zerocon(type);
  1343   // Cast obj to not-null on this path, if there is no null_control.
  1344   // (If there is a null_control, a non-null value may come back to haunt us.)
  1345   if (type == T_OBJECT) {
  1346     Node* cast = cast_not_null(value, false);
  1347     if (null_control == NULL || (*null_control) == top())
  1348       replace_in_map(value, cast);
  1349     value = cast;
  1352   return value;
  1356 //------------------------------cast_not_null----------------------------------
  1357 // Cast obj to not-null on this path
  1358 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
  1359   const Type *t = _gvn.type(obj);
  1360   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
  1361   // Object is already not-null?
  1362   if( t == t_not_null ) return obj;
  1364   Node *cast = new (C) CastPPNode(obj,t_not_null);
  1365   cast->init_req(0, control());
  1366   cast = _gvn.transform( cast );
  1368   // Scan for instances of 'obj' in the current JVM mapping.
  1369   // These instances are known to be not-null after the test.
  1370   if (do_replace_in_map)
  1371     replace_in_map(obj, cast);
  1373   return cast;                  // Return casted value
  1377 //--------------------------replace_in_map-------------------------------------
  1378 void GraphKit::replace_in_map(Node* old, Node* neww) {
  1379   if (old == neww) {
  1380     return;
  1383   map()->replace_edge(old, neww);
  1385   // Note: This operation potentially replaces any edge
  1386   // on the map.  This includes locals, stack, and monitors
  1387   // of the current (innermost) JVM state.
  1389   if (!ReplaceInParentMaps) {
  1390     return;
  1393   // PreserveJVMState doesn't do a deep copy so we can't modify
  1394   // parents
  1395   if (Compile::current()->has_preserve_jvm_state()) {
  1396     return;
  1399   Parse* parser = is_Parse();
  1400   bool progress = true;
  1401   Node* ctrl = map()->in(0);
  1402   // Follow the chain of parsers and see whether the update can be
  1403   // done in the map of callers. We can do the replace for a caller if
  1404   // the current control post dominates the control of a caller.
  1405   while (parser != NULL && parser->caller() != NULL && progress) {
  1406     progress = false;
  1407     Node* parent_map = parser->caller()->map();
  1408     assert(parser->exits().map()->jvms()->depth() == parser->caller()->depth(), "map mismatch");
  1410     Node* parent_ctrl = parent_map->in(0);
  1412     while (parent_ctrl->is_Region()) {
  1413       Node* n = parent_ctrl->as_Region()->is_copy();
  1414       if (n == NULL) {
  1415         break;
  1417       parent_ctrl = n;
  1420     for (;;) {
  1421       if (ctrl == parent_ctrl) {
  1422         // update the map of the exits which is the one that will be
  1423         // used when compilation resume after inlining
  1424         parser->exits().map()->replace_edge(old, neww);
  1425         progress = true;
  1426         break;
  1428       if (ctrl->is_Proj() && ctrl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
  1429         ctrl = ctrl->in(0)->in(0);
  1430       } else if (ctrl->is_Region()) {
  1431         Node* n = ctrl->as_Region()->is_copy();
  1432         if (n == NULL) {
  1433           break;
  1435         ctrl = n;
  1436       } else {
  1437         break;
  1441     parser = parser->parent_parser();
  1446 //=============================================================================
  1447 //--------------------------------memory---------------------------------------
  1448 Node* GraphKit::memory(uint alias_idx) {
  1449   MergeMemNode* mem = merged_memory();
  1450   Node* p = mem->memory_at(alias_idx);
  1451   _gvn.set_type(p, Type::MEMORY);  // must be mapped
  1452   return p;
  1455 //-----------------------------reset_memory------------------------------------
  1456 Node* GraphKit::reset_memory() {
  1457   Node* mem = map()->memory();
  1458   // do not use this node for any more parsing!
  1459   debug_only( map()->set_memory((Node*)NULL) );
  1460   return _gvn.transform( mem );
  1463 //------------------------------set_all_memory---------------------------------
  1464 void GraphKit::set_all_memory(Node* newmem) {
  1465   Node* mergemem = MergeMemNode::make(C, newmem);
  1466   gvn().set_type_bottom(mergemem);
  1467   map()->set_memory(mergemem);
  1470 //------------------------------set_all_memory_call----------------------------
  1471 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
  1472   Node* newmem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
  1473   set_all_memory(newmem);
  1476 //=============================================================================
  1477 //
  1478 // parser factory methods for MemNodes
  1479 //
  1480 // These are layered on top of the factory methods in LoadNode and StoreNode,
  1481 // and integrate with the parser's memory state and _gvn engine.
  1482 //
  1484 // factory methods in "int adr_idx"
  1485 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
  1486                           int adr_idx,
  1487                           MemNode::MemOrd mo, bool require_atomic_access) {
  1488   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
  1489   const TypePtr* adr_type = NULL; // debug-mode-only argument
  1490   debug_only(adr_type = C->get_adr_type(adr_idx));
  1491   Node* mem = memory(adr_idx);
  1492   Node* ld;
  1493   if (require_atomic_access && bt == T_LONG) {
  1494     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t, mo);
  1495   } else {
  1496     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo);
  1498   ld = _gvn.transform(ld);
  1499   if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) {
  1500     // Improve graph before escape analysis and boxing elimination.
  1501     record_for_igvn(ld);
  1503   return ld;
  1506 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
  1507                                 int adr_idx,
  1508                                 MemNode::MemOrd mo,
  1509                                 bool require_atomic_access) {
  1510   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
  1511   const TypePtr* adr_type = NULL;
  1512   debug_only(adr_type = C->get_adr_type(adr_idx));
  1513   Node *mem = memory(adr_idx);
  1514   Node* st;
  1515   if (require_atomic_access && bt == T_LONG) {
  1516     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val, mo);
  1517   } else {
  1518     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
  1520   st = _gvn.transform(st);
  1521   set_memory(st, adr_idx);
  1522   // Back-to-back stores can only remove intermediate store with DU info
  1523   // so push on worklist for optimizer.
  1524   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
  1525     record_for_igvn(st);
  1527   return st;
  1531 void GraphKit::pre_barrier(bool do_load,
  1532                            Node* ctl,
  1533                            Node* obj,
  1534                            Node* adr,
  1535                            uint  adr_idx,
  1536                            Node* val,
  1537                            const TypeOopPtr* val_type,
  1538                            Node* pre_val,
  1539                            BasicType bt) {
  1541   BarrierSet* bs = Universe::heap()->barrier_set();
  1542   set_control(ctl);
  1543   switch (bs->kind()) {
  1544     case BarrierSet::G1SATBCT:
  1545     case BarrierSet::G1SATBCTLogging:
  1546       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
  1547       break;
  1549     case BarrierSet::CardTableModRef:
  1550     case BarrierSet::CardTableExtension:
  1551     case BarrierSet::ModRef:
  1552       break;
  1554     case BarrierSet::Other:
  1555     default      :
  1556       ShouldNotReachHere();
  1561 bool GraphKit::can_move_pre_barrier() const {
  1562   BarrierSet* bs = Universe::heap()->barrier_set();
  1563   switch (bs->kind()) {
  1564     case BarrierSet::G1SATBCT:
  1565     case BarrierSet::G1SATBCTLogging:
  1566       return true; // Can move it if no safepoint
  1568     case BarrierSet::CardTableModRef:
  1569     case BarrierSet::CardTableExtension:
  1570     case BarrierSet::ModRef:
  1571       return true; // There is no pre-barrier
  1573     case BarrierSet::Other:
  1574     default      :
  1575       ShouldNotReachHere();
  1577   return false;
  1580 void GraphKit::post_barrier(Node* ctl,
  1581                             Node* store,
  1582                             Node* obj,
  1583                             Node* adr,
  1584                             uint  adr_idx,
  1585                             Node* val,
  1586                             BasicType bt,
  1587                             bool use_precise) {
  1588   BarrierSet* bs = Universe::heap()->barrier_set();
  1589   set_control(ctl);
  1590   switch (bs->kind()) {
  1591     case BarrierSet::G1SATBCT:
  1592     case BarrierSet::G1SATBCTLogging:
  1593       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
  1594       break;
  1596     case BarrierSet::CardTableModRef:
  1597     case BarrierSet::CardTableExtension:
  1598       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
  1599       break;
  1601     case BarrierSet::ModRef:
  1602       break;
  1604     case BarrierSet::Other:
  1605     default      :
  1606       ShouldNotReachHere();
  1611 Node* GraphKit::store_oop(Node* ctl,
  1612                           Node* obj,
  1613                           Node* adr,
  1614                           const TypePtr* adr_type,
  1615                           Node* val,
  1616                           const TypeOopPtr* val_type,
  1617                           BasicType bt,
  1618                           bool use_precise,
  1619                           MemNode::MemOrd mo) {
  1620   // Transformation of a value which could be NULL pointer (CastPP #NULL)
  1621   // could be delayed during Parse (for example, in adjust_map_after_if()).
  1622   // Execute transformation here to avoid barrier generation in such case.
  1623   if (_gvn.type(val) == TypePtr::NULL_PTR)
  1624     val = _gvn.makecon(TypePtr::NULL_PTR);
  1626   set_control(ctl);
  1627   if (stopped()) return top(); // Dead path ?
  1629   assert(bt == T_OBJECT, "sanity");
  1630   assert(val != NULL, "not dead path");
  1631   uint adr_idx = C->get_alias_index(adr_type);
  1632   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
  1634   pre_barrier(true /* do_load */,
  1635               control(), obj, adr, adr_idx, val, val_type,
  1636               NULL /* pre_val */,
  1637               bt);
  1639   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo);
  1640   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
  1641   return store;
  1644 // Could be an array or object we don't know at compile time (unsafe ref.)
  1645 Node* GraphKit::store_oop_to_unknown(Node* ctl,
  1646                              Node* obj,   // containing obj
  1647                              Node* adr,  // actual adress to store val at
  1648                              const TypePtr* adr_type,
  1649                              Node* val,
  1650                              BasicType bt,
  1651                              MemNode::MemOrd mo) {
  1652   Compile::AliasType* at = C->alias_type(adr_type);
  1653   const TypeOopPtr* val_type = NULL;
  1654   if (adr_type->isa_instptr()) {
  1655     if (at->field() != NULL) {
  1656       // known field.  This code is a copy of the do_put_xxx logic.
  1657       ciField* field = at->field();
  1658       if (!field->type()->is_loaded()) {
  1659         val_type = TypeInstPtr::BOTTOM;
  1660       } else {
  1661         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
  1664   } else if (adr_type->isa_aryptr()) {
  1665     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
  1667   if (val_type == NULL) {
  1668     val_type = TypeInstPtr::BOTTOM;
  1670   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo);
  1674 //-------------------------array_element_address-------------------------
  1675 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
  1676                                       const TypeInt* sizetype) {
  1677   uint shift  = exact_log2(type2aelembytes(elembt));
  1678   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
  1680   // short-circuit a common case (saves lots of confusing waste motion)
  1681   jint idx_con = find_int_con(idx, -1);
  1682   if (idx_con >= 0) {
  1683     intptr_t offset = header + ((intptr_t)idx_con << shift);
  1684     return basic_plus_adr(ary, offset);
  1687   // must be correct type for alignment purposes
  1688   Node* base  = basic_plus_adr(ary, header);
  1689 #ifdef _LP64
  1690   // The scaled index operand to AddP must be a clean 64-bit value.
  1691   // Java allows a 32-bit int to be incremented to a negative
  1692   // value, which appears in a 64-bit register as a large
  1693   // positive number.  Using that large positive number as an
  1694   // operand in pointer arithmetic has bad consequences.
  1695   // On the other hand, 32-bit overflow is rare, and the possibility
  1696   // can often be excluded, if we annotate the ConvI2L node with
  1697   // a type assertion that its value is known to be a small positive
  1698   // number.  (The prior range check has ensured this.)
  1699   // This assertion is used by ConvI2LNode::Ideal.
  1700   int index_max = max_jint - 1;  // array size is max_jint, index is one less
  1701   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
  1702   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
  1703   idx = _gvn.transform( new (C) ConvI2LNode(idx, lidxtype) );
  1704 #endif
  1705   Node* scale = _gvn.transform( new (C) LShiftXNode(idx, intcon(shift)) );
  1706   return basic_plus_adr(ary, base, scale);
  1709 //-------------------------load_array_element-------------------------
  1710 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
  1711   const Type* elemtype = arytype->elem();
  1712   BasicType elembt = elemtype->array_element_basic_type();
  1713   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
  1714   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
  1715   return ld;
  1718 //-------------------------set_arguments_for_java_call-------------------------
  1719 // Arguments (pre-popped from the stack) are taken from the JVMS.
  1720 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
  1721   // Add the call arguments:
  1722   uint nargs = call->method()->arg_size();
  1723   for (uint i = 0; i < nargs; i++) {
  1724     Node* arg = argument(i);
  1725     call->init_req(i + TypeFunc::Parms, arg);
  1729 //---------------------------set_edges_for_java_call---------------------------
  1730 // Connect a newly created call into the current JVMS.
  1731 // A return value node (if any) is returned from set_edges_for_java_call.
  1732 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
  1734   // Add the predefined inputs:
  1735   call->init_req( TypeFunc::Control, control() );
  1736   call->init_req( TypeFunc::I_O    , i_o() );
  1737   call->init_req( TypeFunc::Memory , reset_memory() );
  1738   call->init_req( TypeFunc::FramePtr, frameptr() );
  1739   call->init_req( TypeFunc::ReturnAdr, top() );
  1741   add_safepoint_edges(call, must_throw);
  1743   Node* xcall = _gvn.transform(call);
  1745   if (xcall == top()) {
  1746     set_control(top());
  1747     return;
  1749   assert(xcall == call, "call identity is stable");
  1751   // Re-use the current map to produce the result.
  1753   set_control(_gvn.transform(new (C) ProjNode(call, TypeFunc::Control)));
  1754   set_i_o(    _gvn.transform(new (C) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
  1755   set_all_memory_call(xcall, separate_io_proj);
  1757   //return xcall;   // no need, caller already has it
  1760 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
  1761   if (stopped())  return top();  // maybe the call folded up?
  1763   // Capture the return value, if any.
  1764   Node* ret;
  1765   if (call->method() == NULL ||
  1766       call->method()->return_type()->basic_type() == T_VOID)
  1767         ret = top();
  1768   else  ret = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1770   // Note:  Since any out-of-line call can produce an exception,
  1771   // we always insert an I_O projection from the call into the result.
  1773   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
  1775   if (separate_io_proj) {
  1776     // The caller requested separate projections be used by the fall
  1777     // through and exceptional paths, so replace the projections for
  1778     // the fall through path.
  1779     set_i_o(_gvn.transform( new (C) ProjNode(call, TypeFunc::I_O) ));
  1780     set_all_memory(_gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) ));
  1782   return ret;
  1785 //--------------------set_predefined_input_for_runtime_call--------------------
  1786 // Reading and setting the memory state is way conservative here.
  1787 // The real problem is that I am not doing real Type analysis on memory,
  1788 // so I cannot distinguish card mark stores from other stores.  Across a GC
  1789 // point the Store Barrier and the card mark memory has to agree.  I cannot
  1790 // have a card mark store and its barrier split across the GC point from
  1791 // either above or below.  Here I get that to happen by reading ALL of memory.
  1792 // A better answer would be to separate out card marks from other memory.
  1793 // For now, return the input memory state, so that it can be reused
  1794 // after the call, if this call has restricted memory effects.
  1795 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
  1796   // Set fixed predefined input arguments
  1797   Node* memory = reset_memory();
  1798   call->init_req( TypeFunc::Control,   control()  );
  1799   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
  1800   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
  1801   call->init_req( TypeFunc::FramePtr,  frameptr() );
  1802   call->init_req( TypeFunc::ReturnAdr, top()      );
  1803   return memory;
  1806 //-------------------set_predefined_output_for_runtime_call--------------------
  1807 // Set control and memory (not i_o) from the call.
  1808 // If keep_mem is not NULL, use it for the output state,
  1809 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
  1810 // If hook_mem is NULL, this call produces no memory effects at all.
  1811 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
  1812 // then only that memory slice is taken from the call.
  1813 // In the last case, we must put an appropriate memory barrier before
  1814 // the call, so as to create the correct anti-dependencies on loads
  1815 // preceding the call.
  1816 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
  1817                                                       Node* keep_mem,
  1818                                                       const TypePtr* hook_mem) {
  1819   // no i/o
  1820   set_control(_gvn.transform( new (C) ProjNode(call,TypeFunc::Control) ));
  1821   if (keep_mem) {
  1822     // First clone the existing memory state
  1823     set_all_memory(keep_mem);
  1824     if (hook_mem != NULL) {
  1825       // Make memory for the call
  1826       Node* mem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) );
  1827       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
  1828       // We also use hook_mem to extract specific effects from arraycopy stubs.
  1829       set_memory(mem, hook_mem);
  1831     // ...else the call has NO memory effects.
  1833     // Make sure the call advertises its memory effects precisely.
  1834     // This lets us build accurate anti-dependences in gcm.cpp.
  1835     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
  1836            "call node must be constructed correctly");
  1837   } else {
  1838     assert(hook_mem == NULL, "");
  1839     // This is not a "slow path" call; all memory comes from the call.
  1840     set_all_memory_call(call);
  1845 // Replace the call with the current state of the kit.
  1846 void GraphKit::replace_call(CallNode* call, Node* result) {
  1847   JVMState* ejvms = NULL;
  1848   if (has_exceptions()) {
  1849     ejvms = transfer_exceptions_into_jvms();
  1852   SafePointNode* final_state = stop();
  1854   // Find all the needed outputs of this call
  1855   CallProjections callprojs;
  1856   call->extract_projections(&callprojs, true);
  1858   Node* init_mem = call->in(TypeFunc::Memory);
  1859   Node* final_mem = final_state->in(TypeFunc::Memory);
  1860   Node* final_ctl = final_state->in(TypeFunc::Control);
  1861   Node* final_io = final_state->in(TypeFunc::I_O);
  1863   // Replace all the old call edges with the edges from the inlining result
  1864   if (callprojs.fallthrough_catchproj != NULL) {
  1865     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
  1867   if (callprojs.fallthrough_memproj != NULL) {
  1868     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
  1870   if (callprojs.fallthrough_ioproj != NULL) {
  1871     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
  1874   // Replace the result with the new result if it exists and is used
  1875   if (callprojs.resproj != NULL && result != NULL) {
  1876     C->gvn_replace_by(callprojs.resproj, result);
  1879   if (ejvms == NULL) {
  1880     // No exception edges to simply kill off those paths
  1881     if (callprojs.catchall_catchproj != NULL) {
  1882       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
  1884     if (callprojs.catchall_memproj != NULL) {
  1885       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
  1887     if (callprojs.catchall_ioproj != NULL) {
  1888       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
  1890     // Replace the old exception object with top
  1891     if (callprojs.exobj != NULL) {
  1892       C->gvn_replace_by(callprojs.exobj, C->top());
  1894   } else {
  1895     GraphKit ekit(ejvms);
  1897     // Load my combined exception state into the kit, with all phis transformed:
  1898     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
  1900     Node* ex_oop = ekit.use_exception_state(ex_map);
  1901     if (callprojs.catchall_catchproj != NULL) {
  1902       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
  1904     if (callprojs.catchall_memproj != NULL) {
  1905       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
  1907     if (callprojs.catchall_ioproj != NULL) {
  1908       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
  1911     // Replace the old exception object with the newly created one
  1912     if (callprojs.exobj != NULL) {
  1913       C->gvn_replace_by(callprojs.exobj, ex_oop);
  1917   // Disconnect the call from the graph
  1918   call->disconnect_inputs(NULL, C);
  1919   C->gvn_replace_by(call, C->top());
  1921   // Clean up any MergeMems that feed other MergeMems since the
  1922   // optimizer doesn't like that.
  1923   if (final_mem->is_MergeMem()) {
  1924     Node_List wl;
  1925     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
  1926       Node* m = i.get();
  1927       if (m->is_MergeMem() && !wl.contains(m)) {
  1928         wl.push(m);
  1931     while (wl.size()  > 0) {
  1932       _gvn.transform(wl.pop());
  1938 //------------------------------increment_counter------------------------------
  1939 // for statistics: increment a VM counter by 1
  1941 void GraphKit::increment_counter(address counter_addr) {
  1942   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
  1943   increment_counter(adr1);
  1946 void GraphKit::increment_counter(Node* counter_addr) {
  1947   int adr_type = Compile::AliasIdxRaw;
  1948   Node* ctrl = control();
  1949   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
  1950   Node* incr = _gvn.transform(new (C) AddINode(cnt, _gvn.intcon(1)));
  1951   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
  1955 //------------------------------uncommon_trap----------------------------------
  1956 // Bail out to the interpreter in mid-method.  Implemented by calling the
  1957 // uncommon_trap blob.  This helper function inserts a runtime call with the
  1958 // right debug info.
  1959 void GraphKit::uncommon_trap(int trap_request,
  1960                              ciKlass* klass, const char* comment,
  1961                              bool must_throw,
  1962                              bool keep_exact_action) {
  1963   if (failing())  stop();
  1964   if (stopped())  return; // trap reachable?
  1966   // Note:  If ProfileTraps is true, and if a deopt. actually
  1967   // occurs here, the runtime will make sure an MDO exists.  There is
  1968   // no need to call method()->ensure_method_data() at this point.
  1970   // Set the stack pointer to the right value for reexecution:
  1971   set_sp(reexecute_sp());
  1973 #ifdef ASSERT
  1974   if (!must_throw) {
  1975     // Make sure the stack has at least enough depth to execute
  1976     // the current bytecode.
  1977     int inputs, ignored_depth;
  1978     if (compute_stack_effects(inputs, ignored_depth)) {
  1979       assert(sp() >= inputs, err_msg_res("must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
  1980              Bytecodes::name(java_bc()), sp(), inputs));
  1983 #endif
  1985   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
  1986   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
  1988   switch (action) {
  1989   case Deoptimization::Action_maybe_recompile:
  1990   case Deoptimization::Action_reinterpret:
  1991     // Temporary fix for 6529811 to allow virtual calls to be sure they
  1992     // get the chance to go from mono->bi->mega
  1993     if (!keep_exact_action &&
  1994         Deoptimization::trap_request_index(trap_request) < 0 &&
  1995         too_many_recompiles(reason)) {
  1996       // This BCI is causing too many recompilations.
  1997       action = Deoptimization::Action_none;
  1998       trap_request = Deoptimization::make_trap_request(reason, action);
  1999     } else {
  2000       C->set_trap_can_recompile(true);
  2002     break;
  2003   case Deoptimization::Action_make_not_entrant:
  2004     C->set_trap_can_recompile(true);
  2005     break;
  2006 #ifdef ASSERT
  2007   case Deoptimization::Action_none:
  2008   case Deoptimization::Action_make_not_compilable:
  2009     break;
  2010   default:
  2011     fatal(err_msg_res("unknown action %d: %s", action, Deoptimization::trap_action_name(action)));
  2012     break;
  2013 #endif
  2016   if (TraceOptoParse) {
  2017     char buf[100];
  2018     tty->print_cr("Uncommon trap %s at bci:%d",
  2019                   Deoptimization::format_trap_request(buf, sizeof(buf),
  2020                                                       trap_request), bci());
  2023   CompileLog* log = C->log();
  2024   if (log != NULL) {
  2025     int kid = (klass == NULL)? -1: log->identify(klass);
  2026     log->begin_elem("uncommon_trap bci='%d'", bci());
  2027     char buf[100];
  2028     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
  2029                                                           trap_request));
  2030     if (kid >= 0)         log->print(" klass='%d'", kid);
  2031     if (comment != NULL)  log->print(" comment='%s'", comment);
  2032     log->end_elem();
  2035   // Make sure any guarding test views this path as very unlikely
  2036   Node *i0 = control()->in(0);
  2037   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
  2038     IfNode *iff = i0->as_If();
  2039     float f = iff->_prob;   // Get prob
  2040     if (control()->Opcode() == Op_IfTrue) {
  2041       if (f > PROB_UNLIKELY_MAG(4))
  2042         iff->_prob = PROB_MIN;
  2043     } else {
  2044       if (f < PROB_LIKELY_MAG(4))
  2045         iff->_prob = PROB_MAX;
  2049   // Clear out dead values from the debug info.
  2050   kill_dead_locals();
  2052   // Now insert the uncommon trap subroutine call
  2053   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
  2054   const TypePtr* no_memory_effects = NULL;
  2055   // Pass the index of the class to be loaded
  2056   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
  2057                                  (must_throw ? RC_MUST_THROW : 0),
  2058                                  OptoRuntime::uncommon_trap_Type(),
  2059                                  call_addr, "uncommon_trap", no_memory_effects,
  2060                                  intcon(trap_request));
  2061   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
  2062          "must extract request correctly from the graph");
  2063   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
  2065   call->set_req(TypeFunc::ReturnAdr, returnadr());
  2066   // The debug info is the only real input to this call.
  2068   // Halt-and-catch fire here.  The above call should never return!
  2069   HaltNode* halt = new(C) HaltNode(control(), frameptr());
  2070   _gvn.set_type_bottom(halt);
  2071   root()->add_req(halt);
  2073   stop_and_kill_map();
  2077 //--------------------------just_allocated_object------------------------------
  2078 // Report the object that was just allocated.
  2079 // It must be the case that there are no intervening safepoints.
  2080 // We use this to determine if an object is so "fresh" that
  2081 // it does not require card marks.
  2082 Node* GraphKit::just_allocated_object(Node* current_control) {
  2083   if (C->recent_alloc_ctl() == current_control)
  2084     return C->recent_alloc_obj();
  2085   return NULL;
  2089 void GraphKit::round_double_arguments(ciMethod* dest_method) {
  2090   // (Note:  TypeFunc::make has a cache that makes this fast.)
  2091   const TypeFunc* tf    = TypeFunc::make(dest_method);
  2092   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
  2093   for (int j = 0; j < nargs; j++) {
  2094     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
  2095     if( targ->basic_type() == T_DOUBLE ) {
  2096       // If any parameters are doubles, they must be rounded before
  2097       // the call, dstore_rounding does gvn.transform
  2098       Node *arg = argument(j);
  2099       arg = dstore_rounding(arg);
  2100       set_argument(j, arg);
  2105 /**
  2106  * Record profiling data exact_kls for Node n with the type system so
  2107  * that it can propagate it (speculation)
  2109  * @param n          node that the type applies to
  2110  * @param exact_kls  type from profiling
  2112  * @return           node with improved type
  2113  */
  2114 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls) {
  2115   const TypeOopPtr* current_type = _gvn.type(n)->isa_oopptr();
  2116   assert(UseTypeSpeculation, "type speculation must be on");
  2117   if (exact_kls != NULL &&
  2118       // nothing to improve if type is already exact
  2119       (current_type == NULL ||
  2120        (!current_type->klass_is_exact() &&
  2121         (current_type->speculative() == NULL ||
  2122          !current_type->speculative()->klass_is_exact())))) {
  2123     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
  2124     const TypeOopPtr* xtype = tklass->as_instance_type();
  2125     assert(xtype->klass_is_exact(), "Should be exact");
  2127     // Build a type with a speculative type (what we think we know
  2128     // about the type but will need a guard when we use it)
  2129     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, xtype);
  2130     // We're changing the type, we need a new cast node to carry the
  2131     // new type. The new type depends on the control: what profiling
  2132     // tells us is only valid from here as far as we can tell.
  2133     Node* cast = new(C) CastPPNode(n, spec_type);
  2134     cast->init_req(0, control());
  2135     cast = _gvn.transform(cast);
  2136     replace_in_map(n, cast);
  2137     n = cast;
  2139   return n;
  2142 /**
  2143  * Record profiling data from receiver profiling at an invoke with the
  2144  * type system so that it can propagate it (speculation)
  2146  * @param n  receiver node
  2148  * @return           node with improved type
  2149  */
  2150 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
  2151   if (!UseTypeSpeculation) {
  2152     return n;
  2154   ciKlass* exact_kls = profile_has_unique_klass();
  2155   return record_profile_for_speculation(n, exact_kls);
  2158 /**
  2159  * Record profiling data from argument profiling at an invoke with the
  2160  * type system so that it can propagate it (speculation)
  2162  * @param dest_method  target method for the call
  2163  * @param bc           what invoke bytecode is this?
  2164  */
  2165 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
  2166   if (!UseTypeSpeculation) {
  2167     return;
  2169   const TypeFunc* tf    = TypeFunc::make(dest_method);
  2170   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
  2171   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
  2172   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
  2173     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
  2174     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
  2175       ciKlass* better_type = method()->argument_profiled_type(bci(), i);
  2176       if (better_type != NULL) {
  2177         record_profile_for_speculation(argument(j), better_type);
  2179       i++;
  2184 /**
  2185  * Record profiling data from parameter profiling at an invoke with
  2186  * the type system so that it can propagate it (speculation)
  2187  */
  2188 void GraphKit::record_profiled_parameters_for_speculation() {
  2189   if (!UseTypeSpeculation) {
  2190     return;
  2192   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
  2193     if (_gvn.type(local(i))->isa_oopptr()) {
  2194       ciKlass* better_type = method()->parameter_profiled_type(j);
  2195       if (better_type != NULL) {
  2196         record_profile_for_speculation(local(i), better_type);
  2198       j++;
  2203 void GraphKit::round_double_result(ciMethod* dest_method) {
  2204   // A non-strict method may return a double value which has an extended
  2205   // exponent, but this must not be visible in a caller which is 'strict'
  2206   // If a strict caller invokes a non-strict callee, round a double result
  2208   BasicType result_type = dest_method->return_type()->basic_type();
  2209   assert( method() != NULL, "must have caller context");
  2210   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
  2211     // Destination method's return value is on top of stack
  2212     // dstore_rounding() does gvn.transform
  2213     Node *result = pop_pair();
  2214     result = dstore_rounding(result);
  2215     push_pair(result);
  2219 // rounding for strict float precision conformance
  2220 Node* GraphKit::precision_rounding(Node* n) {
  2221   return UseStrictFP && _method->flags().is_strict()
  2222     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
  2223     ? _gvn.transform( new (C) RoundFloatNode(0, n) )
  2224     : n;
  2227 // rounding for strict double precision conformance
  2228 Node* GraphKit::dprecision_rounding(Node *n) {
  2229   return UseStrictFP && _method->flags().is_strict()
  2230     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
  2231     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
  2232     : n;
  2235 // rounding for non-strict double stores
  2236 Node* GraphKit::dstore_rounding(Node* n) {
  2237   return Matcher::strict_fp_requires_explicit_rounding
  2238     && UseSSE <= 1
  2239     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
  2240     : n;
  2243 //=============================================================================
  2244 // Generate a fast path/slow path idiom.  Graph looks like:
  2245 // [foo] indicates that 'foo' is a parameter
  2246 //
  2247 //              [in]     NULL
  2248 //                 \    /
  2249 //                  CmpP
  2250 //                  Bool ne
  2251 //                   If
  2252 //                  /  \
  2253 //              True    False-<2>
  2254 //              / |
  2255 //             /  cast_not_null
  2256 //           Load  |    |   ^
  2257 //        [fast_test]   |   |
  2258 // gvn to   opt_test    |   |
  2259 //          /    \      |  <1>
  2260 //      True     False  |
  2261 //        |         \\  |
  2262 //   [slow_call]     \[fast_result]
  2263 //    Ctl   Val       \      \
  2264 //     |               \      \
  2265 //    Catch       <1>   \      \
  2266 //   /    \        ^     \      \
  2267 //  Ex    No_Ex    |      \      \
  2268 //  |       \   \  |       \ <2>  \
  2269 //  ...      \  [slow_res] |  |    \   [null_result]
  2270 //            \         \--+--+---  |  |
  2271 //             \           | /    \ | /
  2272 //              --------Region     Phi
  2273 //
  2274 //=============================================================================
  2275 // Code is structured as a series of driver functions all called 'do_XXX' that
  2276 // call a set of helper functions.  Helper functions first, then drivers.
  2278 //------------------------------null_check_oop---------------------------------
  2279 // Null check oop.  Set null-path control into Region in slot 3.
  2280 // Make a cast-not-nullness use the other not-null control.  Return cast.
  2281 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
  2282                                bool never_see_null, bool safe_for_replace) {
  2283   // Initial NULL check taken path
  2284   (*null_control) = top();
  2285   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
  2287   // Generate uncommon_trap:
  2288   if (never_see_null && (*null_control) != top()) {
  2289     // If we see an unexpected null at a check-cast we record it and force a
  2290     // recompile; the offending check-cast will be compiled to handle NULLs.
  2291     // If we see more than one offending BCI, then all checkcasts in the
  2292     // method will be compiled to handle NULLs.
  2293     PreserveJVMState pjvms(this);
  2294     set_control(*null_control);
  2295     replace_in_map(value, null());
  2296     uncommon_trap(Deoptimization::Reason_null_check,
  2297                   Deoptimization::Action_make_not_entrant);
  2298     (*null_control) = top();    // NULL path is dead
  2300   if ((*null_control) == top() && safe_for_replace) {
  2301     replace_in_map(value, cast);
  2304   // Cast away null-ness on the result
  2305   return cast;
  2308 //------------------------------opt_iff----------------------------------------
  2309 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
  2310 // Return slow-path control.
  2311 Node* GraphKit::opt_iff(Node* region, Node* iff) {
  2312   IfNode *opt_iff = _gvn.transform(iff)->as_If();
  2314   // Fast path taken; set region slot 2
  2315   Node *fast_taken = _gvn.transform( new (C) IfFalseNode(opt_iff) );
  2316   region->init_req(2,fast_taken); // Capture fast-control
  2318   // Fast path not-taken, i.e. slow path
  2319   Node *slow_taken = _gvn.transform( new (C) IfTrueNode(opt_iff) );
  2320   return slow_taken;
  2323 //-----------------------------make_runtime_call-------------------------------
  2324 Node* GraphKit::make_runtime_call(int flags,
  2325                                   const TypeFunc* call_type, address call_addr,
  2326                                   const char* call_name,
  2327                                   const TypePtr* adr_type,
  2328                                   // The following parms are all optional.
  2329                                   // The first NULL ends the list.
  2330                                   Node* parm0, Node* parm1,
  2331                                   Node* parm2, Node* parm3,
  2332                                   Node* parm4, Node* parm5,
  2333                                   Node* parm6, Node* parm7) {
  2334   // Slow-path call
  2335   bool is_leaf = !(flags & RC_NO_LEAF);
  2336   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
  2337   if (call_name == NULL) {
  2338     assert(!is_leaf, "must supply name for leaf");
  2339     call_name = OptoRuntime::stub_name(call_addr);
  2341   CallNode* call;
  2342   if (!is_leaf) {
  2343     call = new(C) CallStaticJavaNode(call_type, call_addr, call_name,
  2344                                            bci(), adr_type);
  2345   } else if (flags & RC_NO_FP) {
  2346     call = new(C) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
  2347   } else {
  2348     call = new(C) CallLeafNode(call_type, call_addr, call_name, adr_type);
  2351   // The following is similar to set_edges_for_java_call,
  2352   // except that the memory effects of the call are restricted to AliasIdxRaw.
  2354   // Slow path call has no side-effects, uses few values
  2355   bool wide_in  = !(flags & RC_NARROW_MEM);
  2356   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
  2358   Node* prev_mem = NULL;
  2359   if (wide_in) {
  2360     prev_mem = set_predefined_input_for_runtime_call(call);
  2361   } else {
  2362     assert(!wide_out, "narrow in => narrow out");
  2363     Node* narrow_mem = memory(adr_type);
  2364     prev_mem = reset_memory();
  2365     map()->set_memory(narrow_mem);
  2366     set_predefined_input_for_runtime_call(call);
  2369   // Hook each parm in order.  Stop looking at the first NULL.
  2370   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
  2371   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
  2372   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
  2373   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
  2374   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
  2375   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
  2376   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
  2377   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
  2378     /* close each nested if ===> */  } } } } } } } }
  2379   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
  2381   if (!is_leaf) {
  2382     // Non-leaves can block and take safepoints:
  2383     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
  2385   // Non-leaves can throw exceptions:
  2386   if (has_io) {
  2387     call->set_req(TypeFunc::I_O, i_o());
  2390   if (flags & RC_UNCOMMON) {
  2391     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
  2392     // (An "if" probability corresponds roughly to an unconditional count.
  2393     // Sort of.)
  2394     call->set_cnt(PROB_UNLIKELY_MAG(4));
  2397   Node* c = _gvn.transform(call);
  2398   assert(c == call, "cannot disappear");
  2400   if (wide_out) {
  2401     // Slow path call has full side-effects.
  2402     set_predefined_output_for_runtime_call(call);
  2403   } else {
  2404     // Slow path call has few side-effects, and/or sets few values.
  2405     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
  2408   if (has_io) {
  2409     set_i_o(_gvn.transform(new (C) ProjNode(call, TypeFunc::I_O)));
  2411   return call;
  2415 //------------------------------merge_memory-----------------------------------
  2416 // Merge memory from one path into the current memory state.
  2417 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
  2418   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
  2419     Node* old_slice = mms.force_memory();
  2420     Node* new_slice = mms.memory2();
  2421     if (old_slice != new_slice) {
  2422       PhiNode* phi;
  2423       if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
  2424         phi = new_slice->as_Phi();
  2425         #ifdef ASSERT
  2426         if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
  2427           old_slice = old_slice->in(new_path);
  2428         // Caller is responsible for ensuring that any pre-existing
  2429         // phis are already aware of old memory.
  2430         int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
  2431         assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
  2432         #endif
  2433         mms.set_memory(phi);
  2434       } else {
  2435         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
  2436         _gvn.set_type(phi, Type::MEMORY);
  2437         phi->set_req(new_path, new_slice);
  2438         mms.set_memory(_gvn.transform(phi));  // assume it is complete
  2444 //------------------------------make_slow_call_ex------------------------------
  2445 // Make the exception handler hookups for the slow call
  2446 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
  2447   if (stopped())  return;
  2449   // Make a catch node with just two handlers:  fall-through and catch-all
  2450   Node* i_o  = _gvn.transform( new (C) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
  2451   Node* catc = _gvn.transform( new (C) CatchNode(control(), i_o, 2) );
  2452   Node* norm = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
  2453   Node* excp = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
  2455   { PreserveJVMState pjvms(this);
  2456     set_control(excp);
  2457     set_i_o(i_o);
  2459     if (excp != top()) {
  2460       // Create an exception state also.
  2461       // Use an exact type if the caller has specified a specific exception.
  2462       const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
  2463       Node*       ex_oop  = new (C) CreateExNode(ex_type, control(), i_o);
  2464       add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
  2468   // Get the no-exception control from the CatchNode.
  2469   set_control(norm);
  2473 //-------------------------------gen_subtype_check-----------------------------
  2474 // Generate a subtyping check.  Takes as input the subtype and supertype.
  2475 // Returns 2 values: sets the default control() to the true path and returns
  2476 // the false path.  Only reads invariant memory; sets no (visible) memory.
  2477 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
  2478 // but that's not exposed to the optimizer.  This call also doesn't take in an
  2479 // Object; if you wish to check an Object you need to load the Object's class
  2480 // prior to coming here.
  2481 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
  2482   // Fast check for identical types, perhaps identical constants.
  2483   // The types can even be identical non-constants, in cases
  2484   // involving Array.newInstance, Object.clone, etc.
  2485   if (subklass == superklass)
  2486     return top();             // false path is dead; no test needed.
  2488   if (_gvn.type(superklass)->singleton()) {
  2489     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
  2490     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
  2492     // In the common case of an exact superklass, try to fold up the
  2493     // test before generating code.  You may ask, why not just generate
  2494     // the code and then let it fold up?  The answer is that the generated
  2495     // code will necessarily include null checks, which do not always
  2496     // completely fold away.  If they are also needless, then they turn
  2497     // into a performance loss.  Example:
  2498     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
  2499     // Here, the type of 'fa' is often exact, so the store check
  2500     // of fa[1]=x will fold up, without testing the nullness of x.
  2501     switch (static_subtype_check(superk, subk)) {
  2502     case SSC_always_false:
  2504         Node* always_fail = control();
  2505         set_control(top());
  2506         return always_fail;
  2508     case SSC_always_true:
  2509       return top();
  2510     case SSC_easy_test:
  2512         // Just do a direct pointer compare and be done.
  2513         Node* cmp = _gvn.transform( new(C) CmpPNode(subklass, superklass) );
  2514         Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
  2515         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  2516         set_control( _gvn.transform( new(C) IfTrueNode (iff) ) );
  2517         return       _gvn.transform( new(C) IfFalseNode(iff) );
  2519     case SSC_full_test:
  2520       break;
  2521     default:
  2522       ShouldNotReachHere();
  2526   // %%% Possible further optimization:  Even if the superklass is not exact,
  2527   // if the subklass is the unique subtype of the superklass, the check
  2528   // will always succeed.  We could leave a dependency behind to ensure this.
  2530   // First load the super-klass's check-offset
  2531   Node *p1 = basic_plus_adr( superklass, superklass, in_bytes(Klass::super_check_offset_offset()) );
  2532   Node *chk_off = _gvn.transform(new (C) LoadINode(NULL, memory(p1), p1, _gvn.type(p1)->is_ptr(),
  2533                                                    TypeInt::INT, MemNode::unordered));
  2534   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
  2535   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
  2537   // Load from the sub-klass's super-class display list, or a 1-word cache of
  2538   // the secondary superclass list, or a failing value with a sentinel offset
  2539   // if the super-klass is an interface or exceptionally deep in the Java
  2540   // hierarchy and we have to scan the secondary superclass list the hard way.
  2541   // Worst-case type is a little odd: NULL is allowed as a result (usually
  2542   // klass loads can never produce a NULL).
  2543   Node *chk_off_X = ConvI2X(chk_off);
  2544   Node *p2 = _gvn.transform( new (C) AddPNode(subklass,subklass,chk_off_X) );
  2545   // For some types like interfaces the following loadKlass is from a 1-word
  2546   // cache which is mutable so can't use immutable memory.  Other
  2547   // types load from the super-class display table which is immutable.
  2548   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
  2549   Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
  2551   // Compile speed common case: ARE a subtype and we canNOT fail
  2552   if( superklass == nkls )
  2553     return top();             // false path is dead; no test needed.
  2555   // See if we get an immediate positive hit.  Happens roughly 83% of the
  2556   // time.  Test to see if the value loaded just previously from the subklass
  2557   // is exactly the superklass.
  2558   Node *cmp1 = _gvn.transform( new (C) CmpPNode( superklass, nkls ) );
  2559   Node *bol1 = _gvn.transform( new (C) BoolNode( cmp1, BoolTest::eq ) );
  2560   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
  2561   Node *iftrue1 = _gvn.transform( new (C) IfTrueNode ( iff1 ) );
  2562   set_control(    _gvn.transform( new (C) IfFalseNode( iff1 ) ) );
  2564   // Compile speed common case: Check for being deterministic right now.  If
  2565   // chk_off is a constant and not equal to cacheoff then we are NOT a
  2566   // subklass.  In this case we need exactly the 1 test above and we can
  2567   // return those results immediately.
  2568   if (!might_be_cache) {
  2569     Node* not_subtype_ctrl = control();
  2570     set_control(iftrue1); // We need exactly the 1 test above
  2571     return not_subtype_ctrl;
  2574   // Gather the various success & failures here
  2575   RegionNode *r_ok_subtype = new (C) RegionNode(4);
  2576   record_for_igvn(r_ok_subtype);
  2577   RegionNode *r_not_subtype = new (C) RegionNode(3);
  2578   record_for_igvn(r_not_subtype);
  2580   r_ok_subtype->init_req(1, iftrue1);
  2582   // Check for immediate negative hit.  Happens roughly 11% of the time (which
  2583   // is roughly 63% of the remaining cases).  Test to see if the loaded
  2584   // check-offset points into the subklass display list or the 1-element
  2585   // cache.  If it points to the display (and NOT the cache) and the display
  2586   // missed then it's not a subtype.
  2587   Node *cacheoff = _gvn.intcon(cacheoff_con);
  2588   Node *cmp2 = _gvn.transform( new (C) CmpINode( chk_off, cacheoff ) );
  2589   Node *bol2 = _gvn.transform( new (C) BoolNode( cmp2, BoolTest::ne ) );
  2590   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
  2591   r_not_subtype->init_req(1, _gvn.transform( new (C) IfTrueNode (iff2) ) );
  2592   set_control(                _gvn.transform( new (C) IfFalseNode(iff2) ) );
  2594   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
  2595   // No performance impact (too rare) but allows sharing of secondary arrays
  2596   // which has some footprint reduction.
  2597   Node *cmp3 = _gvn.transform( new (C) CmpPNode( subklass, superklass ) );
  2598   Node *bol3 = _gvn.transform( new (C) BoolNode( cmp3, BoolTest::eq ) );
  2599   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
  2600   r_ok_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode ( iff3 ) ) );
  2601   set_control(               _gvn.transform( new (C) IfFalseNode( iff3 ) ) );
  2603   // -- Roads not taken here: --
  2604   // We could also have chosen to perform the self-check at the beginning
  2605   // of this code sequence, as the assembler does.  This would not pay off
  2606   // the same way, since the optimizer, unlike the assembler, can perform
  2607   // static type analysis to fold away many successful self-checks.
  2608   // Non-foldable self checks work better here in second position, because
  2609   // the initial primary superclass check subsumes a self-check for most
  2610   // types.  An exception would be a secondary type like array-of-interface,
  2611   // which does not appear in its own primary supertype display.
  2612   // Finally, we could have chosen to move the self-check into the
  2613   // PartialSubtypeCheckNode, and from there out-of-line in a platform
  2614   // dependent manner.  But it is worthwhile to have the check here,
  2615   // where it can be perhaps be optimized.  The cost in code space is
  2616   // small (register compare, branch).
  2618   // Now do a linear scan of the secondary super-klass array.  Again, no real
  2619   // performance impact (too rare) but it's gotta be done.
  2620   // Since the code is rarely used, there is no penalty for moving it
  2621   // out of line, and it can only improve I-cache density.
  2622   // The decision to inline or out-of-line this final check is platform
  2623   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
  2624   Node* psc = _gvn.transform(
  2625     new (C) PartialSubtypeCheckNode(control(), subklass, superklass) );
  2627   Node *cmp4 = _gvn.transform( new (C) CmpPNode( psc, null() ) );
  2628   Node *bol4 = _gvn.transform( new (C) BoolNode( cmp4, BoolTest::ne ) );
  2629   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
  2630   r_not_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode (iff4) ) );
  2631   r_ok_subtype ->init_req(3, _gvn.transform( new (C) IfFalseNode(iff4) ) );
  2633   // Return false path; set default control to true path.
  2634   set_control( _gvn.transform(r_ok_subtype) );
  2635   return _gvn.transform(r_not_subtype);
  2638 //----------------------------static_subtype_check-----------------------------
  2639 // Shortcut important common cases when superklass is exact:
  2640 // (0) superklass is java.lang.Object (can occur in reflective code)
  2641 // (1) subklass is already limited to a subtype of superklass => always ok
  2642 // (2) subklass does not overlap with superklass => always fail
  2643 // (3) superklass has NO subtypes and we can check with a simple compare.
  2644 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
  2645   if (StressReflectiveCode) {
  2646     return SSC_full_test;       // Let caller generate the general case.
  2649   if (superk == env()->Object_klass()) {
  2650     return SSC_always_true;     // (0) this test cannot fail
  2653   ciType* superelem = superk;
  2654   if (superelem->is_array_klass())
  2655     superelem = superelem->as_array_klass()->base_element_type();
  2657   if (!subk->is_interface()) {  // cannot trust static interface types yet
  2658     if (subk->is_subtype_of(superk)) {
  2659       return SSC_always_true;   // (1) false path dead; no dynamic test needed
  2661     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
  2662         !superk->is_subtype_of(subk)) {
  2663       return SSC_always_false;
  2667   // If casting to an instance klass, it must have no subtypes
  2668   if (superk->is_interface()) {
  2669     // Cannot trust interfaces yet.
  2670     // %%% S.B. superk->nof_implementors() == 1
  2671   } else if (superelem->is_instance_klass()) {
  2672     ciInstanceKlass* ik = superelem->as_instance_klass();
  2673     if (!ik->has_subklass() && !ik->is_interface()) {
  2674       if (!ik->is_final()) {
  2675         // Add a dependency if there is a chance of a later subclass.
  2676         C->dependencies()->assert_leaf_type(ik);
  2678       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
  2680   } else {
  2681     // A primitive array type has no subtypes.
  2682     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
  2685   return SSC_full_test;
  2688 // Profile-driven exact type check:
  2689 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
  2690                                     float prob,
  2691                                     Node* *casted_receiver) {
  2692   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
  2693   Node* recv_klass = load_object_klass(receiver);
  2694   Node* want_klass = makecon(tklass);
  2695   Node* cmp = _gvn.transform( new(C) CmpPNode(recv_klass, want_klass) );
  2696   Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
  2697   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
  2698   set_control( _gvn.transform( new(C) IfTrueNode (iff) ));
  2699   Node* fail = _gvn.transform( new(C) IfFalseNode(iff) );
  2701   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
  2702   assert(recv_xtype->klass_is_exact(), "");
  2704   // Subsume downstream occurrences of receiver with a cast to
  2705   // recv_xtype, since now we know what the type will be.
  2706   Node* cast = new(C) CheckCastPPNode(control(), receiver, recv_xtype);
  2707   (*casted_receiver) = _gvn.transform(cast);
  2708   // (User must make the replace_in_map call.)
  2710   return fail;
  2714 //------------------------------seems_never_null-------------------------------
  2715 // Use null_seen information if it is available from the profile.
  2716 // If we see an unexpected null at a type check we record it and force a
  2717 // recompile; the offending check will be recompiled to handle NULLs.
  2718 // If we see several offending BCIs, then all checks in the
  2719 // method will be recompiled.
  2720 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data) {
  2721   if (UncommonNullCast               // Cutout for this technique
  2722       && obj != null()               // And not the -Xcomp stupid case?
  2723       && !too_many_traps(Deoptimization::Reason_null_check)
  2724       ) {
  2725     if (data == NULL)
  2726       // Edge case:  no mature data.  Be optimistic here.
  2727       return true;
  2728     // If the profile has not seen a null, assume it won't happen.
  2729     assert(java_bc() == Bytecodes::_checkcast ||
  2730            java_bc() == Bytecodes::_instanceof ||
  2731            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
  2732     return !data->as_BitData()->null_seen();
  2734   return false;
  2737 //------------------------maybe_cast_profiled_receiver-------------------------
  2738 // If the profile has seen exactly one type, narrow to exactly that type.
  2739 // Subsequent type checks will always fold up.
  2740 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
  2741                                              ciKlass* require_klass,
  2742                                             ciKlass* spec_klass,
  2743                                              bool safe_for_replace) {
  2744   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
  2746   // Make sure we haven't already deoptimized from this tactic.
  2747   if (too_many_traps(Deoptimization::Reason_class_check))
  2748     return NULL;
  2750   // (No, this isn't a call, but it's enough like a virtual call
  2751   // to use the same ciMethod accessor to get the profile info...)
  2752   // If we have a speculative type use it instead of profiling (which
  2753   // may not help us)
  2754   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
  2755   if (exact_kls != NULL) {// no cast failures here
  2756     if (require_klass == NULL ||
  2757         static_subtype_check(require_klass, exact_kls) == SSC_always_true) {
  2758       // If we narrow the type to match what the type profile sees or
  2759       // the speculative type, we can then remove the rest of the
  2760       // cast.
  2761       // This is a win, even if the exact_kls is very specific,
  2762       // because downstream operations, such as method calls,
  2763       // will often benefit from the sharper type.
  2764       Node* exact_obj = not_null_obj; // will get updated in place...
  2765       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
  2766                                             &exact_obj);
  2767       { PreserveJVMState pjvms(this);
  2768         set_control(slow_ctl);
  2769         uncommon_trap(Deoptimization::Reason_class_check,
  2770                       Deoptimization::Action_maybe_recompile);
  2772       if (safe_for_replace) {
  2773         replace_in_map(not_null_obj, exact_obj);
  2775       return exact_obj;
  2777     // assert(ssc == SSC_always_true)... except maybe the profile lied to us.
  2780   return NULL;
  2783 /**
  2784  * Cast obj to type and emit guard unless we had too many traps here
  2785  * already
  2787  * @param obj       node being casted
  2788  * @param type      type to cast the node to
  2789  * @param not_null  true if we know node cannot be null
  2790  */
  2791 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
  2792                                         ciKlass* type,
  2793                                         bool not_null) {
  2794   // type == NULL if profiling tells us this object is always null
  2795   if (type != NULL) {
  2796     if (!too_many_traps(Deoptimization::Reason_null_check) &&
  2797         !too_many_traps(Deoptimization::Reason_class_check)) {
  2798       Node* not_null_obj = NULL;
  2799       // not_null is true if we know the object is not null and
  2800       // there's no need for a null check
  2801       if (!not_null) {
  2802         Node* null_ctl = top();
  2803         not_null_obj = null_check_oop(obj, &null_ctl, true, true);
  2804         assert(null_ctl->is_top(), "no null control here");
  2805       } else {
  2806         not_null_obj = obj;
  2809       Node* exact_obj = not_null_obj;
  2810       ciKlass* exact_kls = type;
  2811       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
  2812                                             &exact_obj);
  2814         PreserveJVMState pjvms(this);
  2815         set_control(slow_ctl);
  2816         uncommon_trap(Deoptimization::Reason_class_check,
  2817                       Deoptimization::Action_maybe_recompile);
  2819       replace_in_map(not_null_obj, exact_obj);
  2820       obj = exact_obj;
  2822   } else {
  2823     if (!too_many_traps(Deoptimization::Reason_null_assert)) {
  2824       Node* exact_obj = null_assert(obj);
  2825       replace_in_map(obj, exact_obj);
  2826       obj = exact_obj;
  2829   return obj;
  2832 //-------------------------------gen_instanceof--------------------------------
  2833 // Generate an instance-of idiom.  Used by both the instance-of bytecode
  2834 // and the reflective instance-of call.
  2835 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
  2836   kill_dead_locals();           // Benefit all the uncommon traps
  2837   assert( !stopped(), "dead parse path should be checked in callers" );
  2838   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
  2839          "must check for not-null not-dead klass in callers");
  2841   // Make the merge point
  2842   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
  2843   RegionNode* region = new(C) RegionNode(PATH_LIMIT);
  2844   Node*       phi    = new(C) PhiNode(region, TypeInt::BOOL);
  2845   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2847   ciProfileData* data = NULL;
  2848   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
  2849     data = method()->method_data()->bci_to_data(bci());
  2851   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
  2852                          && seems_never_null(obj, data));
  2854   // Null check; get casted pointer; set region slot 3
  2855   Node* null_ctl = top();
  2856   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
  2858   // If not_null_obj is dead, only null-path is taken
  2859   if (stopped()) {              // Doing instance-of on a NULL?
  2860     set_control(null_ctl);
  2861     return intcon(0);
  2863   region->init_req(_null_path, null_ctl);
  2864   phi   ->init_req(_null_path, intcon(0)); // Set null path value
  2865   if (null_ctl == top()) {
  2866     // Do this eagerly, so that pattern matches like is_diamond_phi
  2867     // will work even during parsing.
  2868     assert(_null_path == PATH_LIMIT-1, "delete last");
  2869     region->del_req(_null_path);
  2870     phi   ->del_req(_null_path);
  2873   // Do we know the type check always succeed?
  2874   bool known_statically = false;
  2875   if (_gvn.type(superklass)->singleton()) {
  2876     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
  2877     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
  2878     if (subk != NULL && subk->is_loaded()) {
  2879       int static_res = static_subtype_check(superk, subk);
  2880       known_statically = (static_res == SSC_always_true || static_res == SSC_always_false);
  2884   if (known_statically && UseTypeSpeculation) {
  2885     // If we know the type check always succeed then we don't use the
  2886     // profiling data at this bytecode. Don't lose it, feed it to the
  2887     // type system as a speculative type.
  2888     not_null_obj = record_profiled_receiver_for_speculation(not_null_obj);
  2889   } else {
  2890     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
  2891     // We may not have profiling here or it may not help us. If we
  2892     // have a speculative type use it to perform an exact cast.
  2893     ciKlass* spec_obj_type = obj_type->speculative_type();
  2894     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
  2895       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
  2896       if (stopped()) {            // Profile disagrees with this path.
  2897         set_control(null_ctl);    // Null is the only remaining possibility.
  2898         return intcon(0);
  2900       if (cast_obj != NULL) {
  2901         not_null_obj = cast_obj;
  2906   // Load the object's klass
  2907   Node* obj_klass = load_object_klass(not_null_obj);
  2909   // Generate the subtype check
  2910   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
  2912   // Plug in the success path to the general merge in slot 1.
  2913   region->init_req(_obj_path, control());
  2914   phi   ->init_req(_obj_path, intcon(1));
  2916   // Plug in the failing path to the general merge in slot 2.
  2917   region->init_req(_fail_path, not_subtype_ctrl);
  2918   phi   ->init_req(_fail_path, intcon(0));
  2920   // Return final merged results
  2921   set_control( _gvn.transform(region) );
  2922   record_for_igvn(region);
  2923   return _gvn.transform(phi);
  2926 //-------------------------------gen_checkcast---------------------------------
  2927 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
  2928 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
  2929 // uncommon-trap paths work.  Adjust stack after this call.
  2930 // If failure_control is supplied and not null, it is filled in with
  2931 // the control edge for the cast failure.  Otherwise, an appropriate
  2932 // uncommon trap or exception is thrown.
  2933 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
  2934                               Node* *failure_control) {
  2935   kill_dead_locals();           // Benefit all the uncommon traps
  2936   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
  2937   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
  2939   // Fast cutout:  Check the case that the cast is vacuously true.
  2940   // This detects the common cases where the test will short-circuit
  2941   // away completely.  We do this before we perform the null check,
  2942   // because if the test is going to turn into zero code, we don't
  2943   // want a residual null check left around.  (Causes a slowdown,
  2944   // for example, in some objArray manipulations, such as a[i]=a[j].)
  2945   if (tk->singleton()) {
  2946     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
  2947     if (objtp != NULL && objtp->klass() != NULL) {
  2948       switch (static_subtype_check(tk->klass(), objtp->klass())) {
  2949       case SSC_always_true:
  2950         // If we know the type check always succeed then we don't use
  2951         // the profiling data at this bytecode. Don't lose it, feed it
  2952         // to the type system as a speculative type.
  2953         return record_profiled_receiver_for_speculation(obj);
  2954       case SSC_always_false:
  2955         // It needs a null check because a null will *pass* the cast check.
  2956         // A non-null value will always produce an exception.
  2957         return null_assert(obj);
  2962   ciProfileData* data = NULL;
  2963   bool safe_for_replace = false;
  2964   if (failure_control == NULL) {        // use MDO in regular case only
  2965     assert(java_bc() == Bytecodes::_aastore ||
  2966            java_bc() == Bytecodes::_checkcast,
  2967            "interpreter profiles type checks only for these BCs");
  2968     data = method()->method_data()->bci_to_data(bci());
  2969     safe_for_replace = true;
  2972   // Make the merge point
  2973   enum { _obj_path = 1, _null_path, PATH_LIMIT };
  2974   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  2975   Node*       phi    = new (C) PhiNode(region, toop);
  2976   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2978   // Use null-cast information if it is available
  2979   bool never_see_null = ((failure_control == NULL)  // regular case only
  2980                          && seems_never_null(obj, data));
  2982   // Null check; get casted pointer; set region slot 3
  2983   Node* null_ctl = top();
  2984   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
  2986   // If not_null_obj is dead, only null-path is taken
  2987   if (stopped()) {              // Doing instance-of on a NULL?
  2988     set_control(null_ctl);
  2989     return null();
  2991   region->init_req(_null_path, null_ctl);
  2992   phi   ->init_req(_null_path, null());  // Set null path value
  2993   if (null_ctl == top()) {
  2994     // Do this eagerly, so that pattern matches like is_diamond_phi
  2995     // will work even during parsing.
  2996     assert(_null_path == PATH_LIMIT-1, "delete last");
  2997     region->del_req(_null_path);
  2998     phi   ->del_req(_null_path);
  3001   Node* cast_obj = NULL;
  3002   const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
  3003   // We may not have profiling here or it may not help us. If we have
  3004   // a speculative type use it to perform an exact cast.
  3005   ciKlass* spec_obj_type = obj_type->speculative_type();
  3006   if (spec_obj_type != NULL ||
  3007       (data != NULL &&
  3008        // Counter has never been decremented (due to cast failure).
  3009        // ...This is a reasonable thing to expect.  It is true of
  3010        // all casts inserted by javac to implement generic types.
  3011        data->as_CounterData()->count() >= 0)) {
  3012     cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
  3013     if (cast_obj != NULL) {
  3014       if (failure_control != NULL) // failure is now impossible
  3015         (*failure_control) = top();
  3016       // adjust the type of the phi to the exact klass:
  3017       phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
  3021   if (cast_obj == NULL) {
  3022     // Load the object's klass
  3023     Node* obj_klass = load_object_klass(not_null_obj);
  3025     // Generate the subtype check
  3026     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
  3028     // Plug in success path into the merge
  3029     cast_obj = _gvn.transform(new (C) CheckCastPPNode(control(),
  3030                                                          not_null_obj, toop));
  3031     // Failure path ends in uncommon trap (or may be dead - failure impossible)
  3032     if (failure_control == NULL) {
  3033       if (not_subtype_ctrl != top()) { // If failure is possible
  3034         PreserveJVMState pjvms(this);
  3035         set_control(not_subtype_ctrl);
  3036         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
  3038     } else {
  3039       (*failure_control) = not_subtype_ctrl;
  3043   region->init_req(_obj_path, control());
  3044   phi   ->init_req(_obj_path, cast_obj);
  3046   // A merge of NULL or Casted-NotNull obj
  3047   Node* res = _gvn.transform(phi);
  3049   // Note I do NOT always 'replace_in_map(obj,result)' here.
  3050   //  if( tk->klass()->can_be_primary_super()  )
  3051     // This means that if I successfully store an Object into an array-of-String
  3052     // I 'forget' that the Object is really now known to be a String.  I have to
  3053     // do this because we don't have true union types for interfaces - if I store
  3054     // a Baz into an array-of-Interface and then tell the optimizer it's an
  3055     // Interface, I forget that it's also a Baz and cannot do Baz-like field
  3056     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
  3057   //  replace_in_map( obj, res );
  3059   // Return final merged results
  3060   set_control( _gvn.transform(region) );
  3061   record_for_igvn(region);
  3062   return res;
  3065 //------------------------------next_monitor-----------------------------------
  3066 // What number should be given to the next monitor?
  3067 int GraphKit::next_monitor() {
  3068   int current = jvms()->monitor_depth()* C->sync_stack_slots();
  3069   int next = current + C->sync_stack_slots();
  3070   // Keep the toplevel high water mark current:
  3071   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
  3072   return current;
  3075 //------------------------------insert_mem_bar---------------------------------
  3076 // Memory barrier to avoid floating things around
  3077 // The membar serves as a pinch point between both control and all memory slices.
  3078 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
  3079   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
  3080   mb->init_req(TypeFunc::Control, control());
  3081   mb->init_req(TypeFunc::Memory,  reset_memory());
  3082   Node* membar = _gvn.transform(mb);
  3083   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
  3084   set_all_memory_call(membar);
  3085   return membar;
  3088 //-------------------------insert_mem_bar_volatile----------------------------
  3089 // Memory barrier to avoid floating things around
  3090 // The membar serves as a pinch point between both control and memory(alias_idx).
  3091 // If you want to make a pinch point on all memory slices, do not use this
  3092 // function (even with AliasIdxBot); use insert_mem_bar() instead.
  3093 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
  3094   // When Parse::do_put_xxx updates a volatile field, it appends a series
  3095   // of MemBarVolatile nodes, one for *each* volatile field alias category.
  3096   // The first membar is on the same memory slice as the field store opcode.
  3097   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
  3098   // All the other membars (for other volatile slices, including AliasIdxBot,
  3099   // which stands for all unknown volatile slices) are control-dependent
  3100   // on the first membar.  This prevents later volatile loads or stores
  3101   // from sliding up past the just-emitted store.
  3103   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
  3104   mb->set_req(TypeFunc::Control,control());
  3105   if (alias_idx == Compile::AliasIdxBot) {
  3106     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
  3107   } else {
  3108     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
  3109     mb->set_req(TypeFunc::Memory, memory(alias_idx));
  3111   Node* membar = _gvn.transform(mb);
  3112   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
  3113   if (alias_idx == Compile::AliasIdxBot) {
  3114     merged_memory()->set_base_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)));
  3115   } else {
  3116     set_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)),alias_idx);
  3118   return membar;
  3121 //------------------------------shared_lock------------------------------------
  3122 // Emit locking code.
  3123 FastLockNode* GraphKit::shared_lock(Node* obj) {
  3124   // bci is either a monitorenter bc or InvocationEntryBci
  3125   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
  3126   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
  3128   if( !GenerateSynchronizationCode )
  3129     return NULL;                // Not locking things?
  3130   if (stopped())                // Dead monitor?
  3131     return NULL;
  3133   assert(dead_locals_are_killed(), "should kill locals before sync. point");
  3135   // Box the stack location
  3136   Node* box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
  3137   Node* mem = reset_memory();
  3139   FastLockNode * flock = _gvn.transform(new (C) FastLockNode(0, obj, box) )->as_FastLock();
  3140   if (PrintPreciseBiasedLockingStatistics) {
  3141     // Create the counters for this fast lock.
  3142     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
  3144   // Add monitor to debug info for the slow path.  If we block inside the
  3145   // slow path and de-opt, we need the monitor hanging around
  3146   map()->push_monitor( flock );
  3148   const TypeFunc *tf = LockNode::lock_type();
  3149   LockNode *lock = new (C) LockNode(C, tf);
  3151   lock->init_req( TypeFunc::Control, control() );
  3152   lock->init_req( TypeFunc::Memory , mem );
  3153   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  3154   lock->init_req( TypeFunc::FramePtr, frameptr() );
  3155   lock->init_req( TypeFunc::ReturnAdr, top() );
  3157   lock->init_req(TypeFunc::Parms + 0, obj);
  3158   lock->init_req(TypeFunc::Parms + 1, box);
  3159   lock->init_req(TypeFunc::Parms + 2, flock);
  3160   add_safepoint_edges(lock);
  3162   lock = _gvn.transform( lock )->as_Lock();
  3164   // lock has no side-effects, sets few values
  3165   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
  3167   insert_mem_bar(Op_MemBarAcquireLock);
  3169   // Add this to the worklist so that the lock can be eliminated
  3170   record_for_igvn(lock);
  3172 #ifndef PRODUCT
  3173   if (PrintLockStatistics) {
  3174     // Update the counter for this lock.  Don't bother using an atomic
  3175     // operation since we don't require absolute accuracy.
  3176     lock->create_lock_counter(map()->jvms());
  3177     increment_counter(lock->counter()->addr());
  3179 #endif
  3181   return flock;
  3185 //------------------------------shared_unlock----------------------------------
  3186 // Emit unlocking code.
  3187 void GraphKit::shared_unlock(Node* box, Node* obj) {
  3188   // bci is either a monitorenter bc or InvocationEntryBci
  3189   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
  3190   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
  3192   if( !GenerateSynchronizationCode )
  3193     return;
  3194   if (stopped()) {               // Dead monitor?
  3195     map()->pop_monitor();        // Kill monitor from debug info
  3196     return;
  3199   // Memory barrier to avoid floating things down past the locked region
  3200   insert_mem_bar(Op_MemBarReleaseLock);
  3202   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
  3203   UnlockNode *unlock = new (C) UnlockNode(C, tf);
  3204   uint raw_idx = Compile::AliasIdxRaw;
  3205   unlock->init_req( TypeFunc::Control, control() );
  3206   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
  3207   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  3208   unlock->init_req( TypeFunc::FramePtr, frameptr() );
  3209   unlock->init_req( TypeFunc::ReturnAdr, top() );
  3211   unlock->init_req(TypeFunc::Parms + 0, obj);
  3212   unlock->init_req(TypeFunc::Parms + 1, box);
  3213   unlock = _gvn.transform(unlock)->as_Unlock();
  3215   Node* mem = reset_memory();
  3217   // unlock has no side-effects, sets few values
  3218   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
  3220   // Kill monitor from debug info
  3221   map()->pop_monitor( );
  3224 //-------------------------------get_layout_helper-----------------------------
  3225 // If the given klass is a constant or known to be an array,
  3226 // fetch the constant layout helper value into constant_value
  3227 // and return (Node*)NULL.  Otherwise, load the non-constant
  3228 // layout helper value, and return the node which represents it.
  3229 // This two-faced routine is useful because allocation sites
  3230 // almost always feature constant types.
  3231 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
  3232   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
  3233   if (!StressReflectiveCode && inst_klass != NULL) {
  3234     ciKlass* klass = inst_klass->klass();
  3235     bool    xklass = inst_klass->klass_is_exact();
  3236     if (xklass || klass->is_array_klass()) {
  3237       jint lhelper = klass->layout_helper();
  3238       if (lhelper != Klass::_lh_neutral_value) {
  3239         constant_value = lhelper;
  3240         return (Node*) NULL;
  3244   constant_value = Klass::_lh_neutral_value;  // put in a known value
  3245   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
  3246   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
  3249 // We just put in an allocate/initialize with a big raw-memory effect.
  3250 // Hook selected additional alias categories on the initialization.
  3251 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
  3252                                 MergeMemNode* init_in_merge,
  3253                                 Node* init_out_raw) {
  3254   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
  3255   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
  3257   Node* prevmem = kit.memory(alias_idx);
  3258   init_in_merge->set_memory_at(alias_idx, prevmem);
  3259   kit.set_memory(init_out_raw, alias_idx);
  3262 //---------------------------set_output_for_allocation-------------------------
  3263 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
  3264                                           const TypeOopPtr* oop_type) {
  3265   int rawidx = Compile::AliasIdxRaw;
  3266   alloc->set_req( TypeFunc::FramePtr, frameptr() );
  3267   add_safepoint_edges(alloc);
  3268   Node* allocx = _gvn.transform(alloc);
  3269   set_control( _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Control) ) );
  3270   // create memory projection for i_o
  3271   set_memory ( _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
  3272   make_slow_call_ex(allocx, env()->Throwable_klass(), true);
  3274   // create a memory projection as for the normal control path
  3275   Node* malloc = _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Memory));
  3276   set_memory(malloc, rawidx);
  3278   // a normal slow-call doesn't change i_o, but an allocation does
  3279   // we create a separate i_o projection for the normal control path
  3280   set_i_o(_gvn.transform( new (C) ProjNode(allocx, TypeFunc::I_O, false) ) );
  3281   Node* rawoop = _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Parms) );
  3283   // put in an initialization barrier
  3284   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
  3285                                                  rawoop)->as_Initialize();
  3286   assert(alloc->initialization() == init,  "2-way macro link must work");
  3287   assert(init ->allocation()     == alloc, "2-way macro link must work");
  3289     // Extract memory strands which may participate in the new object's
  3290     // initialization, and source them from the new InitializeNode.
  3291     // This will allow us to observe initializations when they occur,
  3292     // and link them properly (as a group) to the InitializeNode.
  3293     assert(init->in(InitializeNode::Memory) == malloc, "");
  3294     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
  3295     init->set_req(InitializeNode::Memory, minit_in);
  3296     record_for_igvn(minit_in); // fold it up later, if possible
  3297     Node* minit_out = memory(rawidx);
  3298     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
  3299     if (oop_type->isa_aryptr()) {
  3300       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
  3301       int            elemidx  = C->get_alias_index(telemref);
  3302       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
  3303     } else if (oop_type->isa_instptr()) {
  3304       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
  3305       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
  3306         ciField* field = ik->nonstatic_field_at(i);
  3307         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
  3308           continue;  // do not bother to track really large numbers of fields
  3309         // Find (or create) the alias category for this field:
  3310         int fieldidx = C->alias_type(field)->index();
  3311         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
  3316   // Cast raw oop to the real thing...
  3317   Node* javaoop = new (C) CheckCastPPNode(control(), rawoop, oop_type);
  3318   javaoop = _gvn.transform(javaoop);
  3319   C->set_recent_alloc(control(), javaoop);
  3320   assert(just_allocated_object(control()) == javaoop, "just allocated");
  3322 #ifdef ASSERT
  3323   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
  3324     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
  3325            "Ideal_allocation works");
  3326     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
  3327            "Ideal_allocation works");
  3328     if (alloc->is_AllocateArray()) {
  3329       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
  3330              "Ideal_allocation works");
  3331       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
  3332              "Ideal_allocation works");
  3333     } else {
  3334       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
  3337 #endif //ASSERT
  3339   return javaoop;
  3342 //---------------------------new_instance--------------------------------------
  3343 // This routine takes a klass_node which may be constant (for a static type)
  3344 // or may be non-constant (for reflective code).  It will work equally well
  3345 // for either, and the graph will fold nicely if the optimizer later reduces
  3346 // the type to a constant.
  3347 // The optional arguments are for specialized use by intrinsics:
  3348 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
  3349 //  - If 'return_size_val', report the the total object size to the caller.
  3350 Node* GraphKit::new_instance(Node* klass_node,
  3351                              Node* extra_slow_test,
  3352                              Node* *return_size_val) {
  3353   // Compute size in doublewords
  3354   // The size is always an integral number of doublewords, represented
  3355   // as a positive bytewise size stored in the klass's layout_helper.
  3356   // The layout_helper also encodes (in a low bit) the need for a slow path.
  3357   jint  layout_con = Klass::_lh_neutral_value;
  3358   Node* layout_val = get_layout_helper(klass_node, layout_con);
  3359   int   layout_is_con = (layout_val == NULL);
  3361   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
  3362   // Generate the initial go-slow test.  It's either ALWAYS (return a
  3363   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
  3364   // case) a computed value derived from the layout_helper.
  3365   Node* initial_slow_test = NULL;
  3366   if (layout_is_con) {
  3367     assert(!StressReflectiveCode, "stress mode does not use these paths");
  3368     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
  3369     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
  3371   } else {   // reflective case
  3372     // This reflective path is used by Unsafe.allocateInstance.
  3373     // (It may be stress-tested by specifying StressReflectiveCode.)
  3374     // Basically, we want to get into the VM is there's an illegal argument.
  3375     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
  3376     initial_slow_test = _gvn.transform( new (C) AndINode(layout_val, bit) );
  3377     if (extra_slow_test != intcon(0)) {
  3378       initial_slow_test = _gvn.transform( new (C) OrINode(initial_slow_test, extra_slow_test) );
  3380     // (Macro-expander will further convert this to a Bool, if necessary.)
  3383   // Find the size in bytes.  This is easy; it's the layout_helper.
  3384   // The size value must be valid even if the slow path is taken.
  3385   Node* size = NULL;
  3386   if (layout_is_con) {
  3387     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
  3388   } else {   // reflective case
  3389     // This reflective path is used by clone and Unsafe.allocateInstance.
  3390     size = ConvI2X(layout_val);
  3392     // Clear the low bits to extract layout_helper_size_in_bytes:
  3393     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
  3394     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
  3395     size = _gvn.transform( new (C) AndXNode(size, mask) );
  3397   if (return_size_val != NULL) {
  3398     (*return_size_val) = size;
  3401   // This is a precise notnull oop of the klass.
  3402   // (Actually, it need not be precise if this is a reflective allocation.)
  3403   // It's what we cast the result to.
  3404   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
  3405   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
  3406   const TypeOopPtr* oop_type = tklass->as_instance_type();
  3408   // Now generate allocation code
  3410   // The entire memory state is needed for slow path of the allocation
  3411   // since GC and deoptimization can happened.
  3412   Node *mem = reset_memory();
  3413   set_all_memory(mem); // Create new memory state
  3415   AllocateNode* alloc
  3416     = new (C) AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
  3417                            control(), mem, i_o(),
  3418                            size, klass_node,
  3419                            initial_slow_test);
  3421   return set_output_for_allocation(alloc, oop_type);
  3424 //-------------------------------new_array-------------------------------------
  3425 // helper for both newarray and anewarray
  3426 // The 'length' parameter is (obviously) the length of the array.
  3427 // See comments on new_instance for the meaning of the other arguments.
  3428 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
  3429                           Node* length,         // number of array elements
  3430                           int   nargs,          // number of arguments to push back for uncommon trap
  3431                           Node* *return_size_val) {
  3432   jint  layout_con = Klass::_lh_neutral_value;
  3433   Node* layout_val = get_layout_helper(klass_node, layout_con);
  3434   int   layout_is_con = (layout_val == NULL);
  3436   if (!layout_is_con && !StressReflectiveCode &&
  3437       !too_many_traps(Deoptimization::Reason_class_check)) {
  3438     // This is a reflective array creation site.
  3439     // Optimistically assume that it is a subtype of Object[],
  3440     // so that we can fold up all the address arithmetic.
  3441     layout_con = Klass::array_layout_helper(T_OBJECT);
  3442     Node* cmp_lh = _gvn.transform( new(C) CmpINode(layout_val, intcon(layout_con)) );
  3443     Node* bol_lh = _gvn.transform( new(C) BoolNode(cmp_lh, BoolTest::eq) );
  3444     { BuildCutout unless(this, bol_lh, PROB_MAX);
  3445       inc_sp(nargs);
  3446       uncommon_trap(Deoptimization::Reason_class_check,
  3447                     Deoptimization::Action_maybe_recompile);
  3449     layout_val = NULL;
  3450     layout_is_con = true;
  3453   // Generate the initial go-slow test.  Make sure we do not overflow
  3454   // if length is huge (near 2Gig) or negative!  We do not need
  3455   // exact double-words here, just a close approximation of needed
  3456   // double-words.  We can't add any offset or rounding bits, lest we
  3457   // take a size -1 of bytes and make it positive.  Use an unsigned
  3458   // compare, so negative sizes look hugely positive.
  3459   int fast_size_limit = FastAllocateSizeLimit;
  3460   if (layout_is_con) {
  3461     assert(!StressReflectiveCode, "stress mode does not use these paths");
  3462     // Increase the size limit if we have exact knowledge of array type.
  3463     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
  3464     fast_size_limit <<= (LogBytesPerLong - log2_esize);
  3467   Node* initial_slow_cmp  = _gvn.transform( new (C) CmpUNode( length, intcon( fast_size_limit ) ) );
  3468   Node* initial_slow_test = _gvn.transform( new (C) BoolNode( initial_slow_cmp, BoolTest::gt ) );
  3469   if (initial_slow_test->is_Bool()) {
  3470     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
  3471     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
  3474   // --- Size Computation ---
  3475   // array_size = round_to_heap(array_header + (length << elem_shift));
  3476   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
  3477   // and round_to(x, y) == ((x + y-1) & ~(y-1))
  3478   // The rounding mask is strength-reduced, if possible.
  3479   int round_mask = MinObjAlignmentInBytes - 1;
  3480   Node* header_size = NULL;
  3481   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  3482   // (T_BYTE has the weakest alignment and size restrictions...)
  3483   if (layout_is_con) {
  3484     int       hsize  = Klass::layout_helper_header_size(layout_con);
  3485     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
  3486     BasicType etype  = Klass::layout_helper_element_type(layout_con);
  3487     if ((round_mask & ~right_n_bits(eshift)) == 0)
  3488       round_mask = 0;  // strength-reduce it if it goes away completely
  3489     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
  3490     assert(header_size_min <= hsize, "generic minimum is smallest");
  3491     header_size_min = hsize;
  3492     header_size = intcon(hsize + round_mask);
  3493   } else {
  3494     Node* hss   = intcon(Klass::_lh_header_size_shift);
  3495     Node* hsm   = intcon(Klass::_lh_header_size_mask);
  3496     Node* hsize = _gvn.transform( new(C) URShiftINode(layout_val, hss) );
  3497     hsize       = _gvn.transform( new(C) AndINode(hsize, hsm) );
  3498     Node* mask  = intcon(round_mask);
  3499     header_size = _gvn.transform( new(C) AddINode(hsize, mask) );
  3502   Node* elem_shift = NULL;
  3503   if (layout_is_con) {
  3504     int eshift = Klass::layout_helper_log2_element_size(layout_con);
  3505     if (eshift != 0)
  3506       elem_shift = intcon(eshift);
  3507   } else {
  3508     // There is no need to mask or shift this value.
  3509     // The semantics of LShiftINode include an implicit mask to 0x1F.
  3510     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
  3511     elem_shift = layout_val;
  3514   // Transition to native address size for all offset calculations:
  3515   Node* lengthx = ConvI2X(length);
  3516   Node* headerx = ConvI2X(header_size);
  3517 #ifdef _LP64
  3518   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
  3519     if (tllen != NULL && tllen->_lo < 0) {
  3520       // Add a manual constraint to a positive range.  Cf. array_element_address.
  3521       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
  3522       if (size_max > tllen->_hi)  size_max = tllen->_hi;
  3523       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
  3524       lengthx = _gvn.transform( new (C) ConvI2LNode(length, tlcon));
  3527 #endif
  3529   // Combine header size (plus rounding) and body size.  Then round down.
  3530   // This computation cannot overflow, because it is used only in two
  3531   // places, one where the length is sharply limited, and the other
  3532   // after a successful allocation.
  3533   Node* abody = lengthx;
  3534   if (elem_shift != NULL)
  3535     abody     = _gvn.transform( new(C) LShiftXNode(lengthx, elem_shift) );
  3536   Node* size  = _gvn.transform( new(C) AddXNode(headerx, abody) );
  3537   if (round_mask != 0) {
  3538     Node* mask = MakeConX(~round_mask);
  3539     size       = _gvn.transform( new(C) AndXNode(size, mask) );
  3541   // else if round_mask == 0, the size computation is self-rounding
  3543   if (return_size_val != NULL) {
  3544     // This is the size
  3545     (*return_size_val) = size;
  3548   // Now generate allocation code
  3550   // The entire memory state is needed for slow path of the allocation
  3551   // since GC and deoptimization can happened.
  3552   Node *mem = reset_memory();
  3553   set_all_memory(mem); // Create new memory state
  3555   // Create the AllocateArrayNode and its result projections
  3556   AllocateArrayNode* alloc
  3557     = new (C) AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
  3558                                 control(), mem, i_o(),
  3559                                 size, klass_node,
  3560                                 initial_slow_test,
  3561                                 length);
  3563   // Cast to correct type.  Note that the klass_node may be constant or not,
  3564   // and in the latter case the actual array type will be inexact also.
  3565   // (This happens via a non-constant argument to inline_native_newArray.)
  3566   // In any case, the value of klass_node provides the desired array type.
  3567   const TypeInt* length_type = _gvn.find_int_type(length);
  3568   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
  3569   if (ary_type->isa_aryptr() && length_type != NULL) {
  3570     // Try to get a better type than POS for the size
  3571     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
  3574   Node* javaoop = set_output_for_allocation(alloc, ary_type);
  3576   // Cast length on remaining path to be as narrow as possible
  3577   if (map()->find_edge(length) >= 0) {
  3578     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
  3579     if (ccast != length) {
  3580       _gvn.set_type_bottom(ccast);
  3581       record_for_igvn(ccast);
  3582       replace_in_map(length, ccast);
  3586   return javaoop;
  3589 // The following "Ideal_foo" functions are placed here because they recognize
  3590 // the graph shapes created by the functions immediately above.
  3592 //---------------------------Ideal_allocation----------------------------------
  3593 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
  3594 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
  3595   if (ptr == NULL) {     // reduce dumb test in callers
  3596     return NULL;
  3598   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
  3599     ptr = ptr->in(1);
  3600     if (ptr == NULL) return NULL;
  3602   // Return NULL for allocations with several casts:
  3603   //   j.l.reflect.Array.newInstance(jobject, jint)
  3604   //   Object.clone()
  3605   // to keep more precise type from last cast.
  3606   if (ptr->is_Proj()) {
  3607     Node* allo = ptr->in(0);
  3608     if (allo != NULL && allo->is_Allocate()) {
  3609       return allo->as_Allocate();
  3612   // Report failure to match.
  3613   return NULL;
  3616 // Fancy version which also strips off an offset (and reports it to caller).
  3617 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
  3618                                              intptr_t& offset) {
  3619   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
  3620   if (base == NULL)  return NULL;
  3621   return Ideal_allocation(base, phase);
  3624 // Trace Initialize <- Proj[Parm] <- Allocate
  3625 AllocateNode* InitializeNode::allocation() {
  3626   Node* rawoop = in(InitializeNode::RawAddress);
  3627   if (rawoop->is_Proj()) {
  3628     Node* alloc = rawoop->in(0);
  3629     if (alloc->is_Allocate()) {
  3630       return alloc->as_Allocate();
  3633   return NULL;
  3636 // Trace Allocate -> Proj[Parm] -> Initialize
  3637 InitializeNode* AllocateNode::initialization() {
  3638   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
  3639   if (rawoop == NULL)  return NULL;
  3640   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
  3641     Node* init = rawoop->fast_out(i);
  3642     if (init->is_Initialize()) {
  3643       assert(init->as_Initialize()->allocation() == this, "2-way link");
  3644       return init->as_Initialize();
  3647   return NULL;
  3650 //----------------------------- loop predicates ---------------------------
  3652 //------------------------------add_predicate_impl----------------------------
  3653 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
  3654   // Too many traps seen?
  3655   if (too_many_traps(reason)) {
  3656 #ifdef ASSERT
  3657     if (TraceLoopPredicate) {
  3658       int tc = C->trap_count(reason);
  3659       tty->print("too many traps=%s tcount=%d in ",
  3660                     Deoptimization::trap_reason_name(reason), tc);
  3661       method()->print(); // which method has too many predicate traps
  3662       tty->cr();
  3664 #endif
  3665     // We cannot afford to take more traps here,
  3666     // do not generate predicate.
  3667     return;
  3670   Node *cont    = _gvn.intcon(1);
  3671   Node* opq     = _gvn.transform(new (C) Opaque1Node(C, cont));
  3672   Node *bol     = _gvn.transform(new (C) Conv2BNode(opq));
  3673   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  3674   Node* iffalse = _gvn.transform(new (C) IfFalseNode(iff));
  3675   C->add_predicate_opaq(opq);
  3677     PreserveJVMState pjvms(this);
  3678     set_control(iffalse);
  3679     inc_sp(nargs);
  3680     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
  3682   Node* iftrue = _gvn.transform(new (C) IfTrueNode(iff));
  3683   set_control(iftrue);
  3686 //------------------------------add_predicate---------------------------------
  3687 void GraphKit::add_predicate(int nargs) {
  3688   if (UseLoopPredicate) {
  3689     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
  3691   // loop's limit check predicate should be near the loop.
  3692   if (LoopLimitCheck) {
  3693     add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
  3697 //----------------------------- store barriers ----------------------------
  3698 #define __ ideal.
  3700 void GraphKit::sync_kit(IdealKit& ideal) {
  3701   set_all_memory(__ merged_memory());
  3702   set_i_o(__ i_o());
  3703   set_control(__ ctrl());
  3706 void GraphKit::final_sync(IdealKit& ideal) {
  3707   // Final sync IdealKit and graphKit.
  3708   sync_kit(ideal);
  3711 // vanilla/CMS post barrier
  3712 // Insert a write-barrier store.  This is to let generational GC work; we have
  3713 // to flag all oop-stores before the next GC point.
  3714 void GraphKit::write_barrier_post(Node* oop_store,
  3715                                   Node* obj,
  3716                                   Node* adr,
  3717                                   uint  adr_idx,
  3718                                   Node* val,
  3719                                   bool use_precise) {
  3720   // No store check needed if we're storing a NULL or an old object
  3721   // (latter case is probably a string constant). The concurrent
  3722   // mark sweep garbage collector, however, needs to have all nonNull
  3723   // oop updates flagged via card-marks.
  3724   if (val != NULL && val->is_Con()) {
  3725     // must be either an oop or NULL
  3726     const Type* t = val->bottom_type();
  3727     if (t == TypePtr::NULL_PTR || t == Type::TOP)
  3728       // stores of null never (?) need barriers
  3729       return;
  3732   if (use_ReduceInitialCardMarks()
  3733       && obj == just_allocated_object(control())) {
  3734     // We can skip marks on a freshly-allocated object in Eden.
  3735     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
  3736     // That routine informs GC to take appropriate compensating steps,
  3737     // upon a slow-path allocation, so as to make this card-mark
  3738     // elision safe.
  3739     return;
  3742   if (!use_precise) {
  3743     // All card marks for a (non-array) instance are in one place:
  3744     adr = obj;
  3746   // (Else it's an array (or unknown), and we want more precise card marks.)
  3747   assert(adr != NULL, "");
  3749   IdealKit ideal(this, true);
  3751   // Convert the pointer to an int prior to doing math on it
  3752   Node* cast = __ CastPX(__ ctrl(), adr);
  3754   // Divide by card size
  3755   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
  3756          "Only one we handle so far.");
  3757   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
  3759   // Combine card table base and card offset
  3760   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
  3762   // Get the alias_index for raw card-mark memory
  3763   int adr_type = Compile::AliasIdxRaw;
  3764   Node*   zero = __ ConI(0); // Dirty card value
  3765   BasicType bt = T_BYTE;
  3767   if (UseCondCardMark) {
  3768     // The classic GC reference write barrier is typically implemented
  3769     // as a store into the global card mark table.  Unfortunately
  3770     // unconditional stores can result in false sharing and excessive
  3771     // coherence traffic as well as false transactional aborts.
  3772     // UseCondCardMark enables MP "polite" conditional card mark
  3773     // stores.  In theory we could relax the load from ctrl() to
  3774     // no_ctrl, but that doesn't buy much latitude.
  3775     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
  3776     __ if_then(card_val, BoolTest::ne, zero);
  3779   // Smash zero into card
  3780   if( !UseConcMarkSweepGC ) {
  3781     __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::release);
  3782   } else {
  3783     // Specialized path for CM store barrier
  3784     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
  3787   if (UseCondCardMark) {
  3788     __ end_if();
  3791   // Final sync IdealKit and GraphKit.
  3792   final_sync(ideal);
  3795 // G1 pre/post barriers
  3796 void GraphKit::g1_write_barrier_pre(bool do_load,
  3797                                     Node* obj,
  3798                                     Node* adr,
  3799                                     uint alias_idx,
  3800                                     Node* val,
  3801                                     const TypeOopPtr* val_type,
  3802                                     Node* pre_val,
  3803                                     BasicType bt) {
  3805   // Some sanity checks
  3806   // Note: val is unused in this routine.
  3808   if (do_load) {
  3809     // We need to generate the load of the previous value
  3810     assert(obj != NULL, "must have a base");
  3811     assert(adr != NULL, "where are loading from?");
  3812     assert(pre_val == NULL, "loaded already?");
  3813     assert(val_type != NULL, "need a type");
  3814   } else {
  3815     // In this case both val_type and alias_idx are unused.
  3816     assert(pre_val != NULL, "must be loaded already");
  3817     // Nothing to be done if pre_val is null.
  3818     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
  3819     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
  3821   assert(bt == T_OBJECT, "or we shouldn't be here");
  3823   IdealKit ideal(this, true);
  3825   Node* tls = __ thread(); // ThreadLocalStorage
  3827   Node* no_ctrl = NULL;
  3828   Node* no_base = __ top();
  3829   Node* zero  = __ ConI(0);
  3830   Node* zeroX = __ ConX(0);
  3832   float likely  = PROB_LIKELY(0.999);
  3833   float unlikely  = PROB_UNLIKELY(0.999);
  3835   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
  3836   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
  3838   // Offsets into the thread
  3839   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
  3840                                           PtrQueue::byte_offset_of_active());
  3841   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
  3842                                           PtrQueue::byte_offset_of_index());
  3843   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
  3844                                           PtrQueue::byte_offset_of_buf());
  3846   // Now the actual pointers into the thread
  3847   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
  3848   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
  3849   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
  3851   // Now some of the values
  3852   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
  3854   // if (!marking)
  3855   __ if_then(marking, BoolTest::ne, zero, unlikely); {
  3856     BasicType index_bt = TypeX_X->basic_type();
  3857     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 PtrQueue::_index with wrong size.");
  3858     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
  3860     if (do_load) {
  3861       // load original value
  3862       // alias_idx correct??
  3863       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
  3866     // if (pre_val != NULL)
  3867     __ if_then(pre_val, BoolTest::ne, null()); {
  3868       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
  3870       // is the queue for this thread full?
  3871       __ if_then(index, BoolTest::ne, zeroX, likely); {
  3873         // decrement the index
  3874         Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
  3876         // Now get the buffer location we will log the previous value into and store it
  3877         Node *log_addr = __ AddP(no_base, buffer, next_index);
  3878         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
  3879         // update the index
  3880         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
  3882       } __ else_(); {
  3884         // logging buffer is full, call the runtime
  3885         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
  3886         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
  3887       } __ end_if();  // (!index)
  3888     } __ end_if();  // (pre_val != NULL)
  3889   } __ end_if();  // (!marking)
  3891   // Final sync IdealKit and GraphKit.
  3892   final_sync(ideal);
  3895 //
  3896 // Update the card table and add card address to the queue
  3897 //
  3898 void GraphKit::g1_mark_card(IdealKit& ideal,
  3899                             Node* card_adr,
  3900                             Node* oop_store,
  3901                             uint oop_alias_idx,
  3902                             Node* index,
  3903                             Node* index_adr,
  3904                             Node* buffer,
  3905                             const TypeFunc* tf) {
  3907   Node* zero  = __ ConI(0);
  3908   Node* zeroX = __ ConX(0);
  3909   Node* no_base = __ top();
  3910   BasicType card_bt = T_BYTE;
  3911   // Smash zero into card. MUST BE ORDERED WRT TO STORE
  3912   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
  3914   //  Now do the queue work
  3915   __ if_then(index, BoolTest::ne, zeroX); {
  3917     Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
  3918     Node* log_addr = __ AddP(no_base, buffer, next_index);
  3920     // Order, see storeCM.
  3921     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
  3922     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
  3924   } __ else_(); {
  3925     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
  3926   } __ end_if();
  3930 void GraphKit::g1_write_barrier_post(Node* oop_store,
  3931                                      Node* obj,
  3932                                      Node* adr,
  3933                                      uint alias_idx,
  3934                                      Node* val,
  3935                                      BasicType bt,
  3936                                      bool use_precise) {
  3937   // If we are writing a NULL then we need no post barrier
  3939   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
  3940     // Must be NULL
  3941     const Type* t = val->bottom_type();
  3942     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
  3943     // No post barrier if writing NULLx
  3944     return;
  3947   if (!use_precise) {
  3948     // All card marks for a (non-array) instance are in one place:
  3949     adr = obj;
  3951   // (Else it's an array (or unknown), and we want more precise card marks.)
  3952   assert(adr != NULL, "");
  3954   IdealKit ideal(this, true);
  3956   Node* tls = __ thread(); // ThreadLocalStorage
  3958   Node* no_base = __ top();
  3959   float likely  = PROB_LIKELY(0.999);
  3960   float unlikely  = PROB_UNLIKELY(0.999);
  3961   Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
  3962   Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
  3963   Node* zeroX = __ ConX(0);
  3965   // Get the alias_index for raw card-mark memory
  3966   const TypePtr* card_type = TypeRawPtr::BOTTOM;
  3968   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
  3970   // Offsets into the thread
  3971   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
  3972                                      PtrQueue::byte_offset_of_index());
  3973   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
  3974                                      PtrQueue::byte_offset_of_buf());
  3976   // Pointers into the thread
  3978   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
  3979   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
  3981   // Now some values
  3982   // Use ctrl to avoid hoisting these values past a safepoint, which could
  3983   // potentially reset these fields in the JavaThread.
  3984   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
  3985   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
  3987   // Convert the store obj pointer to an int prior to doing math on it
  3988   // Must use ctrl to prevent "integerized oop" existing across safepoint
  3989   Node* cast =  __ CastPX(__ ctrl(), adr);
  3991   // Divide pointer by card size
  3992   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
  3994   // Combine card table base and card offset
  3995   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
  3997   // If we know the value being stored does it cross regions?
  3999   if (val != NULL) {
  4000     // Does the store cause us to cross regions?
  4002     // Should be able to do an unsigned compare of region_size instead of
  4003     // and extra shift. Do we have an unsigned compare??
  4004     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
  4005     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
  4007     // if (xor_res == 0) same region so skip
  4008     __ if_then(xor_res, BoolTest::ne, zeroX); {
  4010       // No barrier if we are storing a NULL
  4011       __ if_then(val, BoolTest::ne, null(), unlikely); {
  4013         // Ok must mark the card if not already dirty
  4015         // load the original value of the card
  4016         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
  4018         __ if_then(card_val, BoolTest::ne, young_card); {
  4019           sync_kit(ideal);
  4020           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
  4021           insert_mem_bar(Op_MemBarVolatile, oop_store);
  4022           __ sync_kit(this);
  4024           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
  4025           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
  4026             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
  4027           } __ end_if();
  4028         } __ end_if();
  4029       } __ end_if();
  4030     } __ end_if();
  4031   } else {
  4032     // Object.clone() instrinsic uses this path.
  4033     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
  4036   // Final sync IdealKit and GraphKit.
  4037   final_sync(ideal);
  4039 #undef __
  4043 Node* GraphKit::load_String_offset(Node* ctrl, Node* str) {
  4044   if (java_lang_String::has_offset_field()) {
  4045     int offset_offset = java_lang_String::offset_offset_in_bytes();
  4046     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
  4047                                                        false, NULL, 0);
  4048     const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
  4049     int offset_field_idx = C->get_alias_index(offset_field_type);
  4050     return make_load(ctrl,
  4051                      basic_plus_adr(str, str, offset_offset),
  4052                      TypeInt::INT, T_INT, offset_field_idx, MemNode::unordered);
  4053   } else {
  4054     return intcon(0);
  4058 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
  4059   if (java_lang_String::has_count_field()) {
  4060     int count_offset = java_lang_String::count_offset_in_bytes();
  4061     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
  4062                                                        false, NULL, 0);
  4063     const TypePtr* count_field_type = string_type->add_offset(count_offset);
  4064     int count_field_idx = C->get_alias_index(count_field_type);
  4065     return make_load(ctrl,
  4066                      basic_plus_adr(str, str, count_offset),
  4067                      TypeInt::INT, T_INT, count_field_idx, MemNode::unordered);
  4068   } else {
  4069     return load_array_length(load_String_value(ctrl, str));
  4073 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
  4074   int value_offset = java_lang_String::value_offset_in_bytes();
  4075   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
  4076                                                      false, NULL, 0);
  4077   const TypePtr* value_field_type = string_type->add_offset(value_offset);
  4078   const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
  4079                                                    TypeAry::make(TypeInt::CHAR,TypeInt::POS),
  4080                                                    ciTypeArrayKlass::make(T_CHAR), true, 0);
  4081   int value_field_idx = C->get_alias_index(value_field_type);
  4082   Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
  4083                          value_type, T_OBJECT, value_field_idx, MemNode::unordered);
  4084   // String.value field is known to be @Stable.
  4085   if (UseImplicitStableValues) {
  4086     load = cast_array_to_stable(load, value_type);
  4088   return load;
  4091 void GraphKit::store_String_offset(Node* ctrl, Node* str, Node* value) {
  4092   int offset_offset = java_lang_String::offset_offset_in_bytes();
  4093   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
  4094                                                      false, NULL, 0);
  4095   const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
  4096   int offset_field_idx = C->get_alias_index(offset_field_type);
  4097   store_to_memory(ctrl, basic_plus_adr(str, offset_offset),
  4098                   value, T_INT, offset_field_idx, MemNode::unordered);
  4101 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
  4102   int value_offset = java_lang_String::value_offset_in_bytes();
  4103   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
  4104                                                      false, NULL, 0);
  4105   const TypePtr* value_field_type = string_type->add_offset(value_offset);
  4107   store_oop_to_object(ctrl, str,  basic_plus_adr(str, value_offset), value_field_type,
  4108       value, TypeAryPtr::CHARS, T_OBJECT, MemNode::unordered);
  4111 void GraphKit::store_String_length(Node* ctrl, Node* str, Node* value) {
  4112   int count_offset = java_lang_String::count_offset_in_bytes();
  4113   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
  4114                                                      false, NULL, 0);
  4115   const TypePtr* count_field_type = string_type->add_offset(count_offset);
  4116   int count_field_idx = C->get_alias_index(count_field_type);
  4117   store_to_memory(ctrl, basic_plus_adr(str, count_offset),
  4118                   value, T_INT, count_field_idx, MemNode::unordered);
  4121 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
  4122   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
  4123   // assumption of CCP analysis.
  4124   return _gvn.transform(new(C) CastPPNode(ary, ary_type->cast_to_stable(true)));

mercurial