src/share/vm/memory/generation.hpp

Sun, 01 Apr 2012 17:04:26 -0400

author
acorn
date
Sun, 01 Apr 2012 17:04:26 -0400
changeset 3686
749b1464aa81
parent 3339
e7dead7e90af
child 3711
b632e80fc9dc
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_GENERATION_HPP
    26 #define SHARE_VM_MEMORY_GENERATION_HPP
    28 #include "gc_implementation/shared/collectorCounters.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "memory/memRegion.hpp"
    31 #include "memory/referenceProcessor.hpp"
    32 #include "memory/universe.hpp"
    33 #include "memory/watermark.hpp"
    34 #include "runtime/mutex.hpp"
    35 #include "runtime/perfData.hpp"
    36 #include "runtime/virtualspace.hpp"
    38 // A Generation models a heap area for similarly-aged objects.
    39 // It will contain one ore more spaces holding the actual objects.
    40 //
    41 // The Generation class hierarchy:
    42 //
    43 // Generation                      - abstract base class
    44 // - DefNewGeneration              - allocation area (copy collected)
    45 //   - ParNewGeneration            - a DefNewGeneration that is collected by
    46 //                                   several threads
    47 // - CardGeneration                 - abstract class adding offset array behavior
    48 //   - OneContigSpaceCardGeneration - abstract class holding a single
    49 //                                    contiguous space with card marking
    50 //     - TenuredGeneration         - tenured (old object) space (markSweepCompact)
    51 //     - CompactingPermGenGen      - reflective object area (klasses, methods, symbols, ...)
    52 //   - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation
    53 //                                       (Detlefs-Printezis refinement of
    54 //                                       Boehm-Demers-Schenker)
    55 //
    56 // The system configurations currently allowed are:
    57 //
    58 //   DefNewGeneration + TenuredGeneration + PermGeneration
    59 //   DefNewGeneration + ConcurrentMarkSweepGeneration + ConcurrentMarkSweepPermGen
    60 //
    61 //   ParNewGeneration + TenuredGeneration + PermGeneration
    62 //   ParNewGeneration + ConcurrentMarkSweepGeneration + ConcurrentMarkSweepPermGen
    63 //
    65 class DefNewGeneration;
    66 class GenerationSpec;
    67 class CompactibleSpace;
    68 class ContiguousSpace;
    69 class CompactPoint;
    70 class OopsInGenClosure;
    71 class OopClosure;
    72 class ScanClosure;
    73 class FastScanClosure;
    74 class GenCollectedHeap;
    75 class GenRemSet;
    76 class GCStats;
    78 // A "ScratchBlock" represents a block of memory in one generation usable by
    79 // another.  It represents "num_words" free words, starting at and including
    80 // the address of "this".
    81 struct ScratchBlock {
    82   ScratchBlock* next;
    83   size_t num_words;
    84   HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
    85                               // first two fields are word-sized.)
    86 };
    89 class Generation: public CHeapObj {
    90   friend class VMStructs;
    91  private:
    92   jlong _time_of_last_gc; // time when last gc on this generation happened (ms)
    93   MemRegion _prev_used_region; // for collectors that want to "remember" a value for
    94                                // used region at some specific point during collection.
    96  protected:
    97   // Minimum and maximum addresses for memory reserved (not necessarily
    98   // committed) for generation.
    99   // Used by card marking code. Must not overlap with address ranges of
   100   // other generations.
   101   MemRegion _reserved;
   103   // Memory area reserved for generation
   104   VirtualSpace _virtual_space;
   106   // Level in the generation hierarchy.
   107   int _level;
   109   // ("Weak") Reference processing support
   110   ReferenceProcessor* _ref_processor;
   112   // Performance Counters
   113   CollectorCounters* _gc_counters;
   115   // Statistics for garbage collection
   116   GCStats* _gc_stats;
   118   // Returns the next generation in the configuration, or else NULL if this
   119   // is the highest generation.
   120   Generation* next_gen() const;
   122   // Initialize the generation.
   123   Generation(ReservedSpace rs, size_t initial_byte_size, int level);
   125   // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
   126   // "sp" that point into younger generations.
   127   // The iteration is only over objects allocated at the start of the
   128   // iterations; objects allocated as a result of applying the closure are
   129   // not included.
   130   void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl);
   132  public:
   133   // The set of possible generation kinds.
   134   enum Name {
   135     ASParNew,
   136     ASConcurrentMarkSweep,
   137     DefNew,
   138     ParNew,
   139     MarkSweepCompact,
   140     ConcurrentMarkSweep,
   141     Other
   142   };
   144   enum SomePublicConstants {
   145     // Generations are GenGrain-aligned and have size that are multiples of
   146     // GenGrain.
   147     // Note: on ARM we add 1 bit for card_table_base to be properly aligned
   148     // (we expect its low byte to be zero - see implementation of post_barrier)
   149     LogOfGenGrain = 16 ARM_ONLY(+1),
   150     GenGrain = 1 << LogOfGenGrain
   151   };
   153   // allocate and initialize ("weak") refs processing support
   154   virtual void ref_processor_init();
   155   void set_ref_processor(ReferenceProcessor* rp) {
   156     assert(_ref_processor == NULL, "clobbering existing _ref_processor");
   157     _ref_processor = rp;
   158   }
   160   virtual Generation::Name kind() { return Generation::Other; }
   161   GenerationSpec* spec();
   163   // This properly belongs in the collector, but for now this
   164   // will do.
   165   virtual bool refs_discovery_is_atomic() const { return true;  }
   166   virtual bool refs_discovery_is_mt()     const { return false; }
   168   // Space enquiries (results in bytes)
   169   virtual size_t capacity() const = 0;  // The maximum number of object bytes the
   170                                         // generation can currently hold.
   171   virtual size_t used() const = 0;      // The number of used bytes in the gen.
   172   virtual size_t free() const = 0;      // The number of free bytes in the gen.
   174   // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
   175   // Returns the total number of bytes  available in a generation
   176   // for the allocation of objects.
   177   virtual size_t max_capacity() const;
   179   // If this is a young generation, the maximum number of bytes that can be
   180   // allocated in this generation before a GC is triggered.
   181   virtual size_t capacity_before_gc() const { return 0; }
   183   // The largest number of contiguous free bytes in the generation,
   184   // including expansion  (Assumes called at a safepoint.)
   185   virtual size_t contiguous_available() const = 0;
   186   // The largest number of contiguous free bytes in this or any higher generation.
   187   virtual size_t max_contiguous_available() const;
   189   // Returns true if promotions of the specified amount are
   190   // likely to succeed without a promotion failure.
   191   // Promotion of the full amount is not guaranteed but
   192   // might be attempted in the worst case.
   193   virtual bool promotion_attempt_is_safe(size_t max_promotion_in_bytes) const;
   195   // For a non-young generation, this interface can be used to inform a
   196   // generation that a promotion attempt into that generation failed.
   197   // Typically used to enable diagnostic output for post-mortem analysis,
   198   // but other uses of the interface are not ruled out.
   199   virtual void promotion_failure_occurred() { /* does nothing */ }
   201   // Return an estimate of the maximum allocation that could be performed
   202   // in the generation without triggering any collection or expansion
   203   // activity.  It is "unsafe" because no locks are taken; the result
   204   // should be treated as an approximation, not a guarantee, for use in
   205   // heuristic resizing decisions.
   206   virtual size_t unsafe_max_alloc_nogc() const = 0;
   208   // Returns true if this generation cannot be expanded further
   209   // without a GC. Override as appropriate.
   210   virtual bool is_maximal_no_gc() const {
   211     return _virtual_space.uncommitted_size() == 0;
   212   }
   214   MemRegion reserved() const { return _reserved; }
   216   // Returns a region guaranteed to contain all the objects in the
   217   // generation.
   218   virtual MemRegion used_region() const { return _reserved; }
   220   MemRegion prev_used_region() const { return _prev_used_region; }
   221   virtual void  save_used_region()   { _prev_used_region = used_region(); }
   223   // Returns "TRUE" iff "p" points into the committed areas in the generation.
   224   // For some kinds of generations, this may be an expensive operation.
   225   // To avoid performance problems stemming from its inadvertent use in
   226   // product jvm's, we restrict its use to assertion checking or
   227   // verification only.
   228   virtual bool is_in(const void* p) const;
   230   /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
   231   bool is_in_reserved(const void* p) const {
   232     return _reserved.contains(p);
   233   }
   235   // Check that the generation kind is DefNewGeneration or a sub
   236   // class of DefNewGeneration and return a DefNewGeneration*
   237   DefNewGeneration*  as_DefNewGeneration();
   239   // If some space in the generation contains the given "addr", return a
   240   // pointer to that space, else return "NULL".
   241   virtual Space* space_containing(const void* addr) const;
   243   // Iteration - do not use for time critical operations
   244   virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
   246   // Returns the first space, if any, in the generation that can participate
   247   // in compaction, or else "NULL".
   248   virtual CompactibleSpace* first_compaction_space() const = 0;
   250   // Returns "true" iff this generation should be used to allocate an
   251   // object of the given size.  Young generations might
   252   // wish to exclude very large objects, for example, since, if allocated
   253   // often, they would greatly increase the frequency of young-gen
   254   // collection.
   255   virtual bool should_allocate(size_t word_size, bool is_tlab) {
   256     bool result = false;
   257     size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
   258     if (!is_tlab || supports_tlab_allocation()) {
   259       result = (word_size > 0) && (word_size < overflow_limit);
   260     }
   261     return result;
   262   }
   264   // Allocate and returns a block of the requested size, or returns "NULL".
   265   // Assumes the caller has done any necessary locking.
   266   virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
   268   // Like "allocate", but performs any necessary locking internally.
   269   virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
   271   // A 'younger' gen has reached an allocation limit, and uses this to notify
   272   // the next older gen.  The return value is a new limit, or NULL if none.  The
   273   // caller must do the necessary locking.
   274   virtual HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
   275                                              size_t word_size) {
   276     return NULL;
   277   }
   279   // Some generation may offer a region for shared, contiguous allocation,
   280   // via inlined code (by exporting the address of the top and end fields
   281   // defining the extent of the contiguous allocation region.)
   283   // This function returns "true" iff the heap supports this kind of
   284   // allocation.  (More precisely, this means the style of allocation that
   285   // increments *top_addr()" with a CAS.) (Default is "no".)
   286   // A generation that supports this allocation style must use lock-free
   287   // allocation for *all* allocation, since there are times when lock free
   288   // allocation will be concurrent with plain "allocate" calls.
   289   virtual bool supports_inline_contig_alloc() const { return false; }
   291   // These functions return the addresses of the fields that define the
   292   // boundaries of the contiguous allocation area.  (These fields should be
   293   // physicall near to one another.)
   294   virtual HeapWord** top_addr() const { return NULL; }
   295   virtual HeapWord** end_addr() const { return NULL; }
   297   // Thread-local allocation buffers
   298   virtual bool supports_tlab_allocation() const { return false; }
   299   virtual size_t tlab_capacity() const {
   300     guarantee(false, "Generation doesn't support thread local allocation buffers");
   301     return 0;
   302   }
   303   virtual size_t unsafe_max_tlab_alloc() const {
   304     guarantee(false, "Generation doesn't support thread local allocation buffers");
   305     return 0;
   306   }
   308   // "obj" is the address of an object in a younger generation.  Allocate space
   309   // for "obj" in the current (or some higher) generation, and copy "obj" into
   310   // the newly allocated space, if possible, returning the result (or NULL if
   311   // the allocation failed).
   312   //
   313   // The "obj_size" argument is just obj->size(), passed along so the caller can
   314   // avoid repeating the virtual call to retrieve it.
   315   virtual oop promote(oop obj, size_t obj_size);
   317   // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
   318   // object "obj", whose original mark word was "m", and whose size is
   319   // "word_sz".  If possible, allocate space for "obj", copy obj into it
   320   // (taking care to copy "m" into the mark word when done, since the mark
   321   // word of "obj" may have been overwritten with a forwarding pointer, and
   322   // also taking care to copy the klass pointer *last*.  Returns the new
   323   // object if successful, or else NULL.
   324   virtual oop par_promote(int thread_num,
   325                           oop obj, markOop m, size_t word_sz);
   327   // Undo, if possible, the most recent par_promote_alloc allocation by
   328   // "thread_num" ("obj", of "word_sz").
   329   virtual void par_promote_alloc_undo(int thread_num,
   330                                       HeapWord* obj, size_t word_sz);
   332   // Informs the current generation that all par_promote_alloc's in the
   333   // collection have been completed; any supporting data structures can be
   334   // reset.  Default is to do nothing.
   335   virtual void par_promote_alloc_done(int thread_num) {}
   337   // Informs the current generation that all oop_since_save_marks_iterates
   338   // performed by "thread_num" in the current collection, if any, have been
   339   // completed; any supporting data structures can be reset.  Default is to
   340   // do nothing.
   341   virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
   343   // This generation will collect all younger generations
   344   // during a full collection.
   345   virtual bool full_collects_younger_generations() const { return false; }
   347   // This generation does in-place marking, meaning that mark words
   348   // are mutated during the marking phase and presumably reinitialized
   349   // to a canonical value after the GC. This is currently used by the
   350   // biased locking implementation to determine whether additional
   351   // work is required during the GC prologue and epilogue.
   352   virtual bool performs_in_place_marking() const { return true; }
   354   // Returns "true" iff collect() should subsequently be called on this
   355   // this generation. See comment below.
   356   // This is a generic implementation which can be overridden.
   357   //
   358   // Note: in the current (1.4) implementation, when genCollectedHeap's
   359   // incremental_collection_will_fail flag is set, all allocations are
   360   // slow path (the only fast-path place to allocate is DefNew, which
   361   // will be full if the flag is set).
   362   // Thus, older generations which collect younger generations should
   363   // test this flag and collect if it is set.
   364   virtual bool should_collect(bool   full,
   365                               size_t word_size,
   366                               bool   is_tlab) {
   367     return (full || should_allocate(word_size, is_tlab));
   368   }
   370   // Returns true if the collection is likely to be safely
   371   // completed. Even if this method returns true, a collection
   372   // may not be guaranteed to succeed, and the system should be
   373   // able to safely unwind and recover from that failure, albeit
   374   // at some additional cost.
   375   virtual bool collection_attempt_is_safe() {
   376     guarantee(false, "Are you sure you want to call this method?");
   377     return true;
   378   }
   380   // Perform a garbage collection.
   381   // If full is true attempt a full garbage collection of this generation.
   382   // Otherwise, attempting to (at least) free enough space to support an
   383   // allocation of the given "word_size".
   384   virtual void collect(bool   full,
   385                        bool   clear_all_soft_refs,
   386                        size_t word_size,
   387                        bool   is_tlab) = 0;
   389   // Perform a heap collection, attempting to create (at least) enough
   390   // space to support an allocation of the given "word_size".  If
   391   // successful, perform the allocation and return the resulting
   392   // "oop" (initializing the allocated block). If the allocation is
   393   // still unsuccessful, return "NULL".
   394   virtual HeapWord* expand_and_allocate(size_t word_size,
   395                                         bool is_tlab,
   396                                         bool parallel = false) = 0;
   398   // Some generations may require some cleanup or preparation actions before
   399   // allowing a collection.  The default is to do nothing.
   400   virtual void gc_prologue(bool full) {};
   402   // Some generations may require some cleanup actions after a collection.
   403   // The default is to do nothing.
   404   virtual void gc_epilogue(bool full) {};
   406   // Save the high water marks for the used space in a generation.
   407   virtual void record_spaces_top() {};
   409   // Some generations may need to be "fixed-up" after some allocation
   410   // activity to make them parsable again. The default is to do nothing.
   411   virtual void ensure_parsability() {};
   413   // Time (in ms) when we were last collected or now if a collection is
   414   // in progress.
   415   virtual jlong time_of_last_gc(jlong now) {
   416     // Both _time_of_last_gc and now are set using a time source
   417     // that guarantees monotonically non-decreasing values provided
   418     // the underlying platform provides such a source. So we still
   419     // have to guard against non-monotonicity.
   420     NOT_PRODUCT(
   421       if (now < _time_of_last_gc) {
   422         warning("time warp: "INT64_FORMAT" to "INT64_FORMAT, _time_of_last_gc, now);
   423       }
   424     )
   425     return _time_of_last_gc;
   426   }
   428   virtual void update_time_of_last_gc(jlong now)  {
   429     _time_of_last_gc = now;
   430   }
   432   // Generations may keep statistics about collection.  This
   433   // method updates those statistics.  current_level is
   434   // the level of the collection that has most recently
   435   // occurred.  This allows the generation to decide what
   436   // statistics are valid to collect.  For example, the
   437   // generation can decide to gather the amount of promoted data
   438   // if the collection of the younger generations has completed.
   439   GCStats* gc_stats() const { return _gc_stats; }
   440   virtual void update_gc_stats(int current_level, bool full) {}
   442   // Mark sweep support phase2
   443   virtual void prepare_for_compaction(CompactPoint* cp);
   444   // Mark sweep support phase3
   445   virtual void pre_adjust_pointers() {ShouldNotReachHere();}
   446   virtual void adjust_pointers();
   447   // Mark sweep support phase4
   448   virtual void compact();
   449   virtual void post_compact() {ShouldNotReachHere();}
   451   // Support for CMS's rescan. In this general form we return a pointer
   452   // to an abstract object that can be used, based on specific previously
   453   // decided protocols, to exchange information between generations,
   454   // information that may be useful for speeding up certain types of
   455   // garbage collectors. A NULL value indicates to the client that
   456   // no data recording is expected by the provider. The data-recorder is
   457   // expected to be GC worker thread-local, with the worker index
   458   // indicated by "thr_num".
   459   virtual void* get_data_recorder(int thr_num) { return NULL; }
   461   // Some generations may require some cleanup actions before allowing
   462   // a verification.
   463   virtual void prepare_for_verify() {};
   465   // Accessing "marks".
   467   // This function gives a generation a chance to note a point between
   468   // collections.  For example, a contiguous generation might note the
   469   // beginning allocation point post-collection, which might allow some later
   470   // operations to be optimized.
   471   virtual void save_marks() {}
   473   // This function allows generations to initialize any "saved marks".  That
   474   // is, should only be called when the generation is empty.
   475   virtual void reset_saved_marks() {}
   477   // This function is "true" iff any no allocations have occurred in the
   478   // generation since the last call to "save_marks".
   479   virtual bool no_allocs_since_save_marks() = 0;
   481   // Apply "cl->apply" to (the addresses of) all reference fields in objects
   482   // allocated in the current generation since the last call to "save_marks".
   483   // If more objects are allocated in this generation as a result of applying
   484   // the closure, iterates over reference fields in those objects as well.
   485   // Calls "save_marks" at the end of the iteration.
   486   // General signature...
   487   virtual void oop_since_save_marks_iterate_v(OopsInGenClosure* cl) = 0;
   488   // ...and specializations for de-virtualization.  (The general
   489   // implemention of the _nv versions call the virtual version.
   490   // Note that the _nv suffix is not really semantically necessary,
   491   // but it avoids some not-so-useful warnings on Solaris.)
   492 #define Generation_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)             \
   493   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {    \
   494     oop_since_save_marks_iterate_v((OopsInGenClosure*)cl);                      \
   495   }
   496   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(Generation_SINCE_SAVE_MARKS_DECL)
   498 #undef Generation_SINCE_SAVE_MARKS_DECL
   500   // The "requestor" generation is performing some garbage collection
   501   // action for which it would be useful to have scratch space.  If
   502   // the target is not the requestor, no gc actions will be required
   503   // of the target.  The requestor promises to allocate no more than
   504   // "max_alloc_words" in the target generation (via promotion say,
   505   // if the requestor is a young generation and the target is older).
   506   // If the target generation can provide any scratch space, it adds
   507   // it to "list", leaving "list" pointing to the head of the
   508   // augmented list.  The default is to offer no space.
   509   virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
   510                                   size_t max_alloc_words) {}
   512   // Give each generation an opportunity to do clean up for any
   513   // contributed scratch.
   514   virtual void reset_scratch() {};
   516   // When an older generation has been collected, and perhaps resized,
   517   // this method will be invoked on all younger generations (from older to
   518   // younger), allowing them to resize themselves as appropriate.
   519   virtual void compute_new_size() = 0;
   521   // Printing
   522   virtual const char* name() const = 0;
   523   virtual const char* short_name() const = 0;
   525   int level() const { return _level; }
   527   // Attributes
   529   // True iff the given generation may only be the youngest generation.
   530   virtual bool must_be_youngest() const = 0;
   531   // True iff the given generation may only be the oldest generation.
   532   virtual bool must_be_oldest() const = 0;
   534   // Reference Processing accessor
   535   ReferenceProcessor* const ref_processor() { return _ref_processor; }
   537   // Iteration.
   539   // Iterate over all the ref-containing fields of all objects in the
   540   // generation, calling "cl.do_oop" on each.
   541   virtual void oop_iterate(OopClosure* cl);
   543   // Same as above, restricted to the intersection of a memory region and
   544   // the generation.
   545   virtual void oop_iterate(MemRegion mr, OopClosure* cl);
   547   // Iterate over all objects in the generation, calling "cl.do_object" on
   548   // each.
   549   virtual void object_iterate(ObjectClosure* cl);
   551   // Iterate over all safe objects in the generation, calling "cl.do_object" on
   552   // each.  An object is safe if its references point to other objects in
   553   // the heap.  This defaults to object_iterate() unless overridden.
   554   virtual void safe_object_iterate(ObjectClosure* cl);
   556   // Iterate over all objects allocated in the generation since the last
   557   // collection, calling "cl.do_object" on each.  The generation must have
   558   // been initialized properly to support this function, or else this call
   559   // will fail.
   560   virtual void object_iterate_since_last_GC(ObjectClosure* cl) = 0;
   562   // Apply "cl->do_oop" to (the address of) all and only all the ref fields
   563   // in the current generation that contain pointers to objects in younger
   564   // generations. Objects allocated since the last "save_marks" call are
   565   // excluded.
   566   virtual void younger_refs_iterate(OopsInGenClosure* cl) = 0;
   568   // Inform a generation that it longer contains references to objects
   569   // in any younger generation.    [e.g. Because younger gens are empty,
   570   // clear the card table.]
   571   virtual void clear_remembered_set() { }
   573   // Inform a generation that some of its objects have moved.  [e.g. The
   574   // generation's spaces were compacted, invalidating the card table.]
   575   virtual void invalidate_remembered_set() { }
   577   // Block abstraction.
   579   // Returns the address of the start of the "block" that contains the
   580   // address "addr".  We say "blocks" instead of "object" since some heaps
   581   // may not pack objects densely; a chunk may either be an object or a
   582   // non-object.
   583   virtual HeapWord* block_start(const void* addr) const;
   585   // Requires "addr" to be the start of a chunk, and returns its size.
   586   // "addr + size" is required to be the start of a new chunk, or the end
   587   // of the active area of the heap.
   588   virtual size_t block_size(const HeapWord* addr) const ;
   590   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   591   // the block is an object.
   592   virtual bool block_is_obj(const HeapWord* addr) const;
   595   // PrintGC, PrintGCDetails support
   596   void print_heap_change(size_t prev_used) const;
   598   // PrintHeapAtGC support
   599   virtual void print() const;
   600   virtual void print_on(outputStream* st) const;
   602   virtual void verify(bool allow_dirty) = 0;
   604   struct StatRecord {
   605     int invocations;
   606     elapsedTimer accumulated_time;
   607     StatRecord() :
   608       invocations(0),
   609       accumulated_time(elapsedTimer()) {}
   610   };
   611 private:
   612   StatRecord _stat_record;
   613 public:
   614   StatRecord* stat_record() { return &_stat_record; }
   616   virtual void print_summary_info();
   617   virtual void print_summary_info_on(outputStream* st);
   619   // Performance Counter support
   620   virtual void update_counters() = 0;
   621   virtual CollectorCounters* counters() { return _gc_counters; }
   622 };
   624 // Class CardGeneration is a generation that is covered by a card table,
   625 // and uses a card-size block-offset array to implement block_start.
   627 // class BlockOffsetArray;
   628 // class BlockOffsetArrayContigSpace;
   629 class BlockOffsetSharedArray;
   631 class CardGeneration: public Generation {
   632   friend class VMStructs;
   633  protected:
   634   // This is shared with other generations.
   635   GenRemSet* _rs;
   636   // This is local to this generation.
   637   BlockOffsetSharedArray* _bts;
   639   CardGeneration(ReservedSpace rs, size_t initial_byte_size, int level,
   640                  GenRemSet* remset);
   642  public:
   644   // Attempt to expand the generation by "bytes".  Expand by at a
   645   // minimum "expand_bytes".  Return true if some amount (not
   646   // necessarily the full "bytes") was done.
   647   virtual bool expand(size_t bytes, size_t expand_bytes);
   649   virtual void clear_remembered_set();
   651   virtual void invalidate_remembered_set();
   653   virtual void prepare_for_verify();
   655   // Grow generation with specified size (returns false if unable to grow)
   656   virtual bool grow_by(size_t bytes) = 0;
   657   // Grow generation to reserved size.
   658   virtual bool grow_to_reserved() = 0;
   659 };
   661 // OneContigSpaceCardGeneration models a heap of old objects contained in a single
   662 // contiguous space.
   663 //
   664 // Garbage collection is performed using mark-compact.
   666 class OneContigSpaceCardGeneration: public CardGeneration {
   667   friend class VMStructs;
   668   // Abstractly, this is a subtype that gets access to protected fields.
   669   friend class CompactingPermGen;
   670   friend class VM_PopulateDumpSharedSpace;
   672  protected:
   673   size_t     _min_heap_delta_bytes;   // Minimum amount to expand.
   674   ContiguousSpace*  _the_space;       // actual space holding objects
   675   WaterMark  _last_gc;                // watermark between objects allocated before
   676                                       // and after last GC.
   678   // Grow generation with specified size (returns false if unable to grow)
   679   virtual bool grow_by(size_t bytes);
   680   // Grow generation to reserved size.
   681   virtual bool grow_to_reserved();
   682   // Shrink generation with specified size (returns false if unable to shrink)
   683   void shrink_by(size_t bytes);
   685   // Allocation failure
   686   virtual bool expand(size_t bytes, size_t expand_bytes);
   687   void shrink(size_t bytes);
   689   // Accessing spaces
   690   ContiguousSpace* the_space() const { return _the_space; }
   692  public:
   693   OneContigSpaceCardGeneration(ReservedSpace rs, size_t initial_byte_size,
   694                                size_t min_heap_delta_bytes,
   695                                int level, GenRemSet* remset,
   696                                ContiguousSpace* space) :
   697     CardGeneration(rs, initial_byte_size, level, remset),
   698     _the_space(space), _min_heap_delta_bytes(min_heap_delta_bytes)
   699   {}
   701   inline bool is_in(const void* p) const;
   703   // Space enquiries
   704   size_t capacity() const;
   705   size_t used() const;
   706   size_t free() const;
   708   MemRegion used_region() const;
   710   size_t unsafe_max_alloc_nogc() const;
   711   size_t contiguous_available() const;
   713   // Iteration
   714   void object_iterate(ObjectClosure* blk);
   715   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
   716   void object_iterate_since_last_GC(ObjectClosure* cl);
   718   void younger_refs_iterate(OopsInGenClosure* blk);
   720   inline CompactibleSpace* first_compaction_space() const;
   722   virtual inline HeapWord* allocate(size_t word_size, bool is_tlab);
   723   virtual inline HeapWord* par_allocate(size_t word_size, bool is_tlab);
   725   // Accessing marks
   726   inline WaterMark top_mark();
   727   inline WaterMark bottom_mark();
   729 #define OneContig_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)      \
   730   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   731   OneContig_SINCE_SAVE_MARKS_DECL(OopsInGenClosure,_v)
   732   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_DECL)
   734   void save_marks();
   735   void reset_saved_marks();
   736   bool no_allocs_since_save_marks();
   738   inline size_t block_size(const HeapWord* addr) const;
   740   inline bool block_is_obj(const HeapWord* addr) const;
   742   virtual void collect(bool full,
   743                        bool clear_all_soft_refs,
   744                        size_t size,
   745                        bool is_tlab);
   746   HeapWord* expand_and_allocate(size_t size,
   747                                 bool is_tlab,
   748                                 bool parallel = false);
   750   virtual void prepare_for_verify();
   752   virtual void gc_epilogue(bool full);
   754   virtual void record_spaces_top();
   756   virtual void verify(bool allow_dirty);
   757   virtual void print_on(outputStream* st) const;
   758 };
   760 #endif // SHARE_VM_MEMORY_GENERATION_HPP

mercurial