src/share/vm/memory/collectorPolicy.cpp

Sun, 01 Apr 2012 17:04:26 -0400

author
acorn
date
Sun, 01 Apr 2012 17:04:26 -0400
changeset 3686
749b1464aa81
parent 3156
f08d439fab8c
child 4037
da91efe96a93
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/vmGCOperations.hpp"
    29 #include "memory/cardTableRS.hpp"
    30 #include "memory/collectorPolicy.hpp"
    31 #include "memory/gcLocker.inline.hpp"
    32 #include "memory/genCollectedHeap.hpp"
    33 #include "memory/generationSpec.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/universe.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/globals_extension.hpp"
    38 #include "runtime/handles.inline.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/vmThread.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "thread_linux.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_solaris
    45 # include "thread_solaris.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_windows
    48 # include "thread_windows.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_FAMILY_bsd
    51 # include "thread_bsd.inline.hpp"
    52 #endif
    53 #ifndef SERIALGC
    54 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    55 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
    56 #endif
    58 // CollectorPolicy methods.
    60 void CollectorPolicy::initialize_flags() {
    61   if (PermSize > MaxPermSize) {
    62     MaxPermSize = PermSize;
    63   }
    64   PermSize = MAX2(min_alignment(), align_size_down_(PermSize, min_alignment()));
    65   // Don't increase Perm size limit above specified.
    66   MaxPermSize = align_size_down(MaxPermSize, max_alignment());
    67   if (PermSize > MaxPermSize) {
    68     PermSize = MaxPermSize;
    69   }
    71   MinPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MinPermHeapExpansion, min_alignment()));
    72   MaxPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MaxPermHeapExpansion, min_alignment()));
    74   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
    76   SharedReadOnlySize = align_size_up(SharedReadOnlySize, max_alignment());
    77   SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment());
    78   SharedMiscDataSize = align_size_up(SharedMiscDataSize, max_alignment());
    80   assert(PermSize    % min_alignment() == 0, "permanent space alignment");
    81   assert(MaxPermSize % max_alignment() == 0, "maximum permanent space alignment");
    82   assert(SharedReadOnlySize % max_alignment() == 0, "read-only space alignment");
    83   assert(SharedReadWriteSize % max_alignment() == 0, "read-write space alignment");
    84   assert(SharedMiscDataSize % max_alignment() == 0, "misc-data space alignment");
    85   if (PermSize < M) {
    86     vm_exit_during_initialization("Too small initial permanent heap");
    87   }
    88 }
    90 void CollectorPolicy::initialize_size_info() {
    91   // User inputs from -mx and ms are aligned
    92   set_initial_heap_byte_size(InitialHeapSize);
    93   if (initial_heap_byte_size() == 0) {
    94     set_initial_heap_byte_size(NewSize + OldSize);
    95   }
    96   set_initial_heap_byte_size(align_size_up(_initial_heap_byte_size,
    97                                            min_alignment()));
    99   set_min_heap_byte_size(Arguments::min_heap_size());
   100   if (min_heap_byte_size() == 0) {
   101     set_min_heap_byte_size(NewSize + OldSize);
   102   }
   103   set_min_heap_byte_size(align_size_up(_min_heap_byte_size,
   104                                        min_alignment()));
   106   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
   108   // Check heap parameter properties
   109   if (initial_heap_byte_size() < M) {
   110     vm_exit_during_initialization("Too small initial heap");
   111   }
   112   // Check heap parameter properties
   113   if (min_heap_byte_size() < M) {
   114     vm_exit_during_initialization("Too small minimum heap");
   115   }
   116   if (initial_heap_byte_size() <= NewSize) {
   117      // make sure there is at least some room in old space
   118     vm_exit_during_initialization("Too small initial heap for new size specified");
   119   }
   120   if (max_heap_byte_size() < min_heap_byte_size()) {
   121     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
   122   }
   123   if (initial_heap_byte_size() < min_heap_byte_size()) {
   124     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
   125   }
   126   if (max_heap_byte_size() < initial_heap_byte_size()) {
   127     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
   128   }
   130   if (PrintGCDetails && Verbose) {
   131     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
   132       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
   133       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
   134   }
   135 }
   137 void CollectorPolicy::initialize_perm_generation(PermGen::Name pgnm) {
   138   _permanent_generation =
   139     new PermanentGenerationSpec(pgnm, PermSize, MaxPermSize,
   140                                 SharedReadOnlySize,
   141                                 SharedReadWriteSize,
   142                                 SharedMiscDataSize,
   143                                 SharedMiscCodeSize);
   144   if (_permanent_generation == NULL) {
   145     vm_exit_during_initialization("Unable to allocate gen spec");
   146   }
   147 }
   149 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
   150   bool result = _should_clear_all_soft_refs;
   151   set_should_clear_all_soft_refs(false);
   152   return result;
   153 }
   155 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
   156                                            int max_covered_regions) {
   157   switch (rem_set_name()) {
   158   case GenRemSet::CardTable: {
   159     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
   160     return res;
   161   }
   162   default:
   163     guarantee(false, "unrecognized GenRemSet::Name");
   164     return NULL;
   165   }
   166 }
   168 void CollectorPolicy::cleared_all_soft_refs() {
   169   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
   170   // have been cleared in the last collection but if the gc overhear
   171   // limit continues to be near, SoftRefs should still be cleared.
   172   if (size_policy() != NULL) {
   173     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
   174   }
   175   _all_soft_refs_clear = true;
   176 }
   179 // GenCollectorPolicy methods.
   181 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
   182   size_t x = base_size / (NewRatio+1);
   183   size_t new_gen_size = x > min_alignment() ?
   184                      align_size_down(x, min_alignment()) :
   185                      min_alignment();
   186   return new_gen_size;
   187 }
   189 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
   190                                                  size_t maximum_size) {
   191   size_t alignment = min_alignment();
   192   size_t max_minus = maximum_size - alignment;
   193   return desired_size < max_minus ? desired_size : max_minus;
   194 }
   197 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
   198                                                 size_t init_promo_size,
   199                                                 size_t init_survivor_size) {
   200   const double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
   201   _size_policy = new AdaptiveSizePolicy(init_eden_size,
   202                                         init_promo_size,
   203                                         init_survivor_size,
   204                                         max_gc_minor_pause_sec,
   205                                         GCTimeRatio);
   206 }
   208 size_t GenCollectorPolicy::compute_max_alignment() {
   209   // The card marking array and the offset arrays for old generations are
   210   // committed in os pages as well. Make sure they are entirely full (to
   211   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
   212   // byte entry and the os page size is 4096, the maximum heap size should
   213   // be 512*4096 = 2MB aligned.
   214   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
   216   // Parallel GC does its own alignment of the generations to avoid requiring a
   217   // large page (256M on some platforms) for the permanent generation.  The
   218   // other collectors should also be updated to do their own alignment and then
   219   // this use of lcm() should be removed.
   220   if (UseLargePages && !UseParallelGC) {
   221       // in presence of large pages we have to make sure that our
   222       // alignment is large page aware
   223       alignment = lcm(os::large_page_size(), alignment);
   224   }
   226   return alignment;
   227 }
   229 void GenCollectorPolicy::initialize_flags() {
   230   // All sizes must be multiples of the generation granularity.
   231   set_min_alignment((uintx) Generation::GenGrain);
   232   set_max_alignment(compute_max_alignment());
   233   assert(max_alignment() >= min_alignment() &&
   234          max_alignment() % min_alignment() == 0,
   235          "invalid alignment constraints");
   237   CollectorPolicy::initialize_flags();
   239   // All generational heaps have a youngest gen; handle those flags here.
   241   // Adjust max size parameters
   242   if (NewSize > MaxNewSize) {
   243     MaxNewSize = NewSize;
   244   }
   245   NewSize = align_size_down(NewSize, min_alignment());
   246   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
   248   // Check validity of heap flags
   249   assert(NewSize     % min_alignment() == 0, "eden space alignment");
   250   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
   252   if (NewSize < 3*min_alignment()) {
   253      // make sure there room for eden and two survivor spaces
   254     vm_exit_during_initialization("Too small new size specified");
   255   }
   256   if (SurvivorRatio < 1 || NewRatio < 1) {
   257     vm_exit_during_initialization("Invalid heap ratio specified");
   258   }
   259 }
   261 void TwoGenerationCollectorPolicy::initialize_flags() {
   262   GenCollectorPolicy::initialize_flags();
   264   OldSize = align_size_down(OldSize, min_alignment());
   265   if (NewSize + OldSize > MaxHeapSize) {
   266     MaxHeapSize = NewSize + OldSize;
   267   }
   268   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
   270   always_do_update_barrier = UseConcMarkSweepGC;
   272   // Check validity of heap flags
   273   assert(OldSize     % min_alignment() == 0, "old space alignment");
   274   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
   275 }
   277 // Values set on the command line win over any ergonomically
   278 // set command line parameters.
   279 // Ergonomic choice of parameters are done before this
   280 // method is called.  Values for command line parameters such as NewSize
   281 // and MaxNewSize feed those ergonomic choices into this method.
   282 // This method makes the final generation sizings consistent with
   283 // themselves and with overall heap sizings.
   284 // In the absence of explicitly set command line flags, policies
   285 // such as the use of NewRatio are used to size the generation.
   286 void GenCollectorPolicy::initialize_size_info() {
   287   CollectorPolicy::initialize_size_info();
   289   // min_alignment() is used for alignment within a generation.
   290   // There is additional alignment done down stream for some
   291   // collectors that sometimes causes unwanted rounding up of
   292   // generations sizes.
   294   // Determine maximum size of gen0
   296   size_t max_new_size = 0;
   297   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
   298     if (MaxNewSize < min_alignment()) {
   299       max_new_size = min_alignment();
   300     }
   301     if (MaxNewSize >= max_heap_byte_size()) {
   302       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
   303                                      min_alignment());
   304       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
   305         "greater than the entire heap (" SIZE_FORMAT "k).  A "
   306         "new generation size of " SIZE_FORMAT "k will be used.",
   307         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
   308     } else {
   309       max_new_size = align_size_down(MaxNewSize, min_alignment());
   310     }
   312   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
   313   // specially at this point to just use an ergonomically set
   314   // MaxNewSize to set max_new_size.  For cases with small
   315   // heaps such a policy often did not work because the MaxNewSize
   316   // was larger than the entire heap.  The interpretation given
   317   // to ergonomically set flags is that the flags are set
   318   // by different collectors for their own special needs but
   319   // are not allowed to badly shape the heap.  This allows the
   320   // different collectors to decide what's best for themselves
   321   // without having to factor in the overall heap shape.  It
   322   // can be the case in the future that the collectors would
   323   // only make "wise" ergonomics choices and this policy could
   324   // just accept those choices.  The choices currently made are
   325   // not always "wise".
   326   } else {
   327     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
   328     // Bound the maximum size by NewSize below (since it historically
   329     // would have been NewSize and because the NewRatio calculation could
   330     // yield a size that is too small) and bound it by MaxNewSize above.
   331     // Ergonomics plays here by previously calculating the desired
   332     // NewSize and MaxNewSize.
   333     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
   334   }
   335   assert(max_new_size > 0, "All paths should set max_new_size");
   337   // Given the maximum gen0 size, determine the initial and
   338   // minimum gen0 sizes.
   340   if (max_heap_byte_size() == min_heap_byte_size()) {
   341     // The maximum and minimum heap sizes are the same so
   342     // the generations minimum and initial must be the
   343     // same as its maximum.
   344     set_min_gen0_size(max_new_size);
   345     set_initial_gen0_size(max_new_size);
   346     set_max_gen0_size(max_new_size);
   347   } else {
   348     size_t desired_new_size = 0;
   349     if (!FLAG_IS_DEFAULT(NewSize)) {
   350       // If NewSize is set ergonomically (for example by cms), it
   351       // would make sense to use it.  If it is used, also use it
   352       // to set the initial size.  Although there is no reason
   353       // the minimum size and the initial size have to be the same,
   354       // the current implementation gets into trouble during the calculation
   355       // of the tenured generation sizes if they are different.
   356       // Note that this makes the initial size and the minimum size
   357       // generally small compared to the NewRatio calculation.
   358       _min_gen0_size = NewSize;
   359       desired_new_size = NewSize;
   360       max_new_size = MAX2(max_new_size, NewSize);
   361     } else {
   362       // For the case where NewSize is the default, use NewRatio
   363       // to size the minimum and initial generation sizes.
   364       // Use the default NewSize as the floor for these values.  If
   365       // NewRatio is overly large, the resulting sizes can be too
   366       // small.
   367       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
   368                           NewSize);
   369       desired_new_size =
   370         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
   371              NewSize);
   372     }
   374     assert(_min_gen0_size > 0, "Sanity check");
   375     set_initial_gen0_size(desired_new_size);
   376     set_max_gen0_size(max_new_size);
   378     // At this point the desirable initial and minimum sizes have been
   379     // determined without regard to the maximum sizes.
   381     // Bound the sizes by the corresponding overall heap sizes.
   382     set_min_gen0_size(
   383       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
   384     set_initial_gen0_size(
   385       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
   386     set_max_gen0_size(
   387       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
   389     // At this point all three sizes have been checked against the
   390     // maximum sizes but have not been checked for consistency
   391     // among the three.
   393     // Final check min <= initial <= max
   394     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
   395     set_initial_gen0_size(
   396       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
   397     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
   398   }
   400   if (PrintGCDetails && Verbose) {
   401     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   402       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   403       min_gen0_size(), initial_gen0_size(), max_gen0_size());
   404   }
   405 }
   407 // Call this method during the sizing of the gen1 to make
   408 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
   409 // the most freedom in sizing because it is done before the
   410 // policy for gen1 is applied.  Once gen1 policies have been applied,
   411 // there may be conflicts in the shape of the heap and this method
   412 // is used to make the needed adjustments.  The application of the
   413 // policies could be more sophisticated (iterative for example) but
   414 // keeping it simple also seems a worthwhile goal.
   415 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
   416                                                      size_t* gen1_size_ptr,
   417                                                      size_t heap_size,
   418                                                      size_t min_gen0_size) {
   419   bool result = false;
   420   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
   421     if (((*gen0_size_ptr + OldSize) > heap_size) &&
   422        (heap_size - min_gen0_size) >= min_alignment()) {
   423       // Adjust gen0 down to accomodate OldSize
   424       *gen0_size_ptr = heap_size - min_gen0_size;
   425       *gen0_size_ptr =
   426         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
   427              min_alignment());
   428       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
   429       result = true;
   430     } else {
   431       *gen1_size_ptr = heap_size - *gen0_size_ptr;
   432       *gen1_size_ptr =
   433         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
   434                        min_alignment());
   435     }
   436   }
   437   return result;
   438 }
   440 // Minimum sizes of the generations may be different than
   441 // the initial sizes.  An inconsistently is permitted here
   442 // in the total size that can be specified explicitly by
   443 // command line specification of OldSize and NewSize and
   444 // also a command line specification of -Xms.  Issue a warning
   445 // but allow the values to pass.
   447 void TwoGenerationCollectorPolicy::initialize_size_info() {
   448   GenCollectorPolicy::initialize_size_info();
   450   // At this point the minimum, initial and maximum sizes
   451   // of the overall heap and of gen0 have been determined.
   452   // The maximum gen1 size can be determined from the maximum gen0
   453   // and maximum heap size since no explicit flags exits
   454   // for setting the gen1 maximum.
   455   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
   456   _max_gen1_size =
   457     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
   458          min_alignment());
   459   // If no explicit command line flag has been set for the
   460   // gen1 size, use what is left for gen1.
   461   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
   462     // The user has not specified any value or ergonomics
   463     // has chosen a value (which may or may not be consistent
   464     // with the overall heap size).  In either case make
   465     // the minimum, maximum and initial sizes consistent
   466     // with the gen0 sizes and the overall heap sizes.
   467     assert(min_heap_byte_size() > _min_gen0_size,
   468       "gen0 has an unexpected minimum size");
   469     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
   470     set_min_gen1_size(
   471       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
   472            min_alignment()));
   473     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
   474     set_initial_gen1_size(
   475       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
   476            min_alignment()));
   478   } else {
   479     // It's been explicitly set on the command line.  Use the
   480     // OldSize and then determine the consequences.
   481     set_min_gen1_size(OldSize);
   482     set_initial_gen1_size(OldSize);
   484     // If the user has explicitly set an OldSize that is inconsistent
   485     // with other command line flags, issue a warning.
   486     // The generation minimums and the overall heap mimimum should
   487     // be within one heap alignment.
   488     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
   489            min_heap_byte_size()) {
   490       warning("Inconsistency between minimum heap size and minimum "
   491           "generation sizes: using minimum heap = " SIZE_FORMAT,
   492           min_heap_byte_size());
   493     }
   494     if ((OldSize > _max_gen1_size)) {
   495       warning("Inconsistency between maximum heap size and maximum "
   496           "generation sizes: using maximum heap = " SIZE_FORMAT
   497           " -XX:OldSize flag is being ignored",
   498           max_heap_byte_size());
   499     }
   500     // If there is an inconsistency between the OldSize and the minimum and/or
   501     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
   502     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
   503                           min_heap_byte_size(), OldSize)) {
   504       if (PrintGCDetails && Verbose) {
   505         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   506               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   507               min_gen0_size(), initial_gen0_size(), max_gen0_size());
   508       }
   509     }
   510     // Initial size
   511     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
   512                          initial_heap_byte_size(), OldSize)) {
   513       if (PrintGCDetails && Verbose) {
   514         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   515           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   516           min_gen0_size(), initial_gen0_size(), max_gen0_size());
   517       }
   518     }
   519   }
   520   // Enforce the maximum gen1 size.
   521   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
   523   // Check that min gen1 <= initial gen1 <= max gen1
   524   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
   525   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
   527   if (PrintGCDetails && Verbose) {
   528     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
   529       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
   530       min_gen1_size(), initial_gen1_size(), max_gen1_size());
   531   }
   532 }
   534 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
   535                                         bool is_tlab,
   536                                         bool* gc_overhead_limit_was_exceeded) {
   537   GenCollectedHeap *gch = GenCollectedHeap::heap();
   539   debug_only(gch->check_for_valid_allocation_state());
   540   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
   542   // In general gc_overhead_limit_was_exceeded should be false so
   543   // set it so here and reset it to true only if the gc time
   544   // limit is being exceeded as checked below.
   545   *gc_overhead_limit_was_exceeded = false;
   547   HeapWord* result = NULL;
   549   // Loop until the allocation is satisified,
   550   // or unsatisfied after GC.
   551   for (int try_count = 1; /* return or throw */; try_count += 1) {
   552     HandleMark hm; // discard any handles allocated in each iteration
   554     // First allocation attempt is lock-free.
   555     Generation *gen0 = gch->get_gen(0);
   556     assert(gen0->supports_inline_contig_alloc(),
   557       "Otherwise, must do alloc within heap lock");
   558     if (gen0->should_allocate(size, is_tlab)) {
   559       result = gen0->par_allocate(size, is_tlab);
   560       if (result != NULL) {
   561         assert(gch->is_in_reserved(result), "result not in heap");
   562         return result;
   563       }
   564     }
   565     unsigned int gc_count_before;  // read inside the Heap_lock locked region
   566     {
   567       MutexLocker ml(Heap_lock);
   568       if (PrintGC && Verbose) {
   569         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
   570                       " attempting locked slow path allocation");
   571       }
   572       // Note that only large objects get a shot at being
   573       // allocated in later generations.
   574       bool first_only = ! should_try_older_generation_allocation(size);
   576       result = gch->attempt_allocation(size, is_tlab, first_only);
   577       if (result != NULL) {
   578         assert(gch->is_in_reserved(result), "result not in heap");
   579         return result;
   580       }
   582       if (GC_locker::is_active_and_needs_gc()) {
   583         if (is_tlab) {
   584           return NULL;  // Caller will retry allocating individual object
   585         }
   586         if (!gch->is_maximal_no_gc()) {
   587           // Try and expand heap to satisfy request
   588           result = expand_heap_and_allocate(size, is_tlab);
   589           // result could be null if we are out of space
   590           if (result != NULL) {
   591             return result;
   592           }
   593         }
   595         // If this thread is not in a jni critical section, we stall
   596         // the requestor until the critical section has cleared and
   597         // GC allowed. When the critical section clears, a GC is
   598         // initiated by the last thread exiting the critical section; so
   599         // we retry the allocation sequence from the beginning of the loop,
   600         // rather than causing more, now probably unnecessary, GC attempts.
   601         JavaThread* jthr = JavaThread::current();
   602         if (!jthr->in_critical()) {
   603           MutexUnlocker mul(Heap_lock);
   604           // Wait for JNI critical section to be exited
   605           GC_locker::stall_until_clear();
   606           continue;
   607         } else {
   608           if (CheckJNICalls) {
   609             fatal("Possible deadlock due to allocating while"
   610                   " in jni critical section");
   611           }
   612           return NULL;
   613         }
   614       }
   616       // Read the gc count while the heap lock is held.
   617       gc_count_before = Universe::heap()->total_collections();
   618     }
   620     VM_GenCollectForAllocation op(size,
   621                                   is_tlab,
   622                                   gc_count_before);
   623     VMThread::execute(&op);
   624     if (op.prologue_succeeded()) {
   625       result = op.result();
   626       if (op.gc_locked()) {
   627          assert(result == NULL, "must be NULL if gc_locked() is true");
   628          continue;  // retry and/or stall as necessary
   629       }
   631       // Allocation has failed and a collection
   632       // has been done.  If the gc time limit was exceeded the
   633       // this time, return NULL so that an out-of-memory
   634       // will be thrown.  Clear gc_overhead_limit_exceeded
   635       // so that the overhead exceeded does not persist.
   637       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   638       const bool softrefs_clear = all_soft_refs_clear();
   639       assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
   640       if (limit_exceeded && softrefs_clear) {
   641         *gc_overhead_limit_was_exceeded = true;
   642         size_policy()->set_gc_overhead_limit_exceeded(false);
   643         if (op.result() != NULL) {
   644           CollectedHeap::fill_with_object(op.result(), size);
   645         }
   646         return NULL;
   647       }
   648       assert(result == NULL || gch->is_in_reserved(result),
   649              "result not in heap");
   650       return result;
   651     }
   653     // Give a warning if we seem to be looping forever.
   654     if ((QueuedAllocationWarningCount > 0) &&
   655         (try_count % QueuedAllocationWarningCount == 0)) {
   656           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
   657                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
   658     }
   659   }
   660 }
   662 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
   663                                                        bool   is_tlab) {
   664   GenCollectedHeap *gch = GenCollectedHeap::heap();
   665   HeapWord* result = NULL;
   666   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
   667     Generation *gen = gch->get_gen(i);
   668     if (gen->should_allocate(size, is_tlab)) {
   669       result = gen->expand_and_allocate(size, is_tlab);
   670     }
   671   }
   672   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
   673   return result;
   674 }
   676 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
   677                                                         bool   is_tlab) {
   678   GenCollectedHeap *gch = GenCollectedHeap::heap();
   679   GCCauseSetter x(gch, GCCause::_allocation_failure);
   680   HeapWord* result = NULL;
   682   assert(size != 0, "Precondition violated");
   683   if (GC_locker::is_active_and_needs_gc()) {
   684     // GC locker is active; instead of a collection we will attempt
   685     // to expand the heap, if there's room for expansion.
   686     if (!gch->is_maximal_no_gc()) {
   687       result = expand_heap_and_allocate(size, is_tlab);
   688     }
   689     return result;   // could be null if we are out of space
   690   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
   691     // Do an incremental collection.
   692     gch->do_collection(false            /* full */,
   693                        false            /* clear_all_soft_refs */,
   694                        size             /* size */,
   695                        is_tlab          /* is_tlab */,
   696                        number_of_generations() - 1 /* max_level */);
   697   } else {
   698     if (Verbose && PrintGCDetails) {
   699       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
   700     }
   701     // Try a full collection; see delta for bug id 6266275
   702     // for the original code and why this has been simplified
   703     // with from-space allocation criteria modified and
   704     // such allocation moved out of the safepoint path.
   705     gch->do_collection(true             /* full */,
   706                        false            /* clear_all_soft_refs */,
   707                        size             /* size */,
   708                        is_tlab          /* is_tlab */,
   709                        number_of_generations() - 1 /* max_level */);
   710   }
   712   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
   714   if (result != NULL) {
   715     assert(gch->is_in_reserved(result), "result not in heap");
   716     return result;
   717   }
   719   // OK, collection failed, try expansion.
   720   result = expand_heap_and_allocate(size, is_tlab);
   721   if (result != NULL) {
   722     return result;
   723   }
   725   // If we reach this point, we're really out of memory. Try every trick
   726   // we can to reclaim memory. Force collection of soft references. Force
   727   // a complete compaction of the heap. Any additional methods for finding
   728   // free memory should be here, especially if they are expensive. If this
   729   // attempt fails, an OOM exception will be thrown.
   730   {
   731     IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
   733     gch->do_collection(true             /* full */,
   734                        true             /* clear_all_soft_refs */,
   735                        size             /* size */,
   736                        is_tlab          /* is_tlab */,
   737                        number_of_generations() - 1 /* max_level */);
   738   }
   740   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
   741   if (result != NULL) {
   742     assert(gch->is_in_reserved(result), "result not in heap");
   743     return result;
   744   }
   746   assert(!should_clear_all_soft_refs(),
   747     "Flag should have been handled and cleared prior to this point");
   749   // What else?  We might try synchronous finalization later.  If the total
   750   // space available is large enough for the allocation, then a more
   751   // complete compaction phase than we've tried so far might be
   752   // appropriate.
   753   return NULL;
   754 }
   756 // Return true if any of the following is true:
   757 // . the allocation won't fit into the current young gen heap
   758 // . gc locker is occupied (jni critical section)
   759 // . heap memory is tight -- the most recent previous collection
   760 //   was a full collection because a partial collection (would
   761 //   have) failed and is likely to fail again
   762 bool GenCollectorPolicy::should_try_older_generation_allocation(
   763         size_t word_size) const {
   764   GenCollectedHeap* gch = GenCollectedHeap::heap();
   765   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
   766   return    (word_size > heap_word_size(gen0_capacity))
   767          || GC_locker::is_active_and_needs_gc()
   768          || gch->incremental_collection_failed();
   769 }
   772 //
   773 // MarkSweepPolicy methods
   774 //
   776 MarkSweepPolicy::MarkSweepPolicy() {
   777   initialize_all();
   778 }
   780 void MarkSweepPolicy::initialize_generations() {
   781   initialize_perm_generation(PermGen::MarkSweepCompact);
   782   _generations = new GenerationSpecPtr[number_of_generations()];
   783   if (_generations == NULL)
   784     vm_exit_during_initialization("Unable to allocate gen spec");
   786   if (UseParNewGC && ParallelGCThreads > 0) {
   787     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
   788   } else {
   789     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
   790   }
   791   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
   793   if (_generations[0] == NULL || _generations[1] == NULL)
   794     vm_exit_during_initialization("Unable to allocate gen spec");
   795 }
   797 void MarkSweepPolicy::initialize_gc_policy_counters() {
   798   // initialize the policy counters - 2 collectors, 3 generations
   799   if (UseParNewGC && ParallelGCThreads > 0) {
   800     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
   801   }
   802   else {
   803     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
   804   }
   805 }

mercurial