src/share/vm/memory/referenceProcessor.hpp

Tue, 30 Apr 2013 11:56:52 -0700

author
ccheung
date
Tue, 30 Apr 2013 11:56:52 -0700
changeset 4993
746b070f5022
parent 4037
da91efe96a93
child 5237
f2110083203d
permissions
-rw-r--r--

8011661: Insufficient memory message says "malloc" when sometimes it should say "mmap"
Reviewed-by: coleenp, zgu, hseigel

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
    26 #define SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
    28 #include "memory/referencePolicy.hpp"
    29 #include "oops/instanceRefKlass.hpp"
    31 // ReferenceProcessor class encapsulates the per-"collector" processing
    32 // of java.lang.Reference objects for GC. The interface is useful for supporting
    33 // a generational abstraction, in particular when there are multiple
    34 // generations that are being independently collected -- possibly
    35 // concurrently and/or incrementally.  Note, however, that the
    36 // ReferenceProcessor class abstracts away from a generational setting
    37 // by using only a heap interval (called "span" below), thus allowing
    38 // its use in a straightforward manner in a general, non-generational
    39 // setting.
    40 //
    41 // The basic idea is that each ReferenceProcessor object concerns
    42 // itself with ("weak") reference processing in a specific "span"
    43 // of the heap of interest to a specific collector. Currently,
    44 // the span is a convex interval of the heap, but, efficiency
    45 // apart, there seems to be no reason it couldn't be extended
    46 // (with appropriate modifications) to any "non-convex interval".
    48 // forward references
    49 class ReferencePolicy;
    50 class AbstractRefProcTaskExecutor;
    52 // List of discovered references.
    53 class DiscoveredList {
    54 public:
    55   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
    56   oop head() const     {
    57      return UseCompressedOops ?  oopDesc::decode_heap_oop(_compressed_head) :
    58                                 _oop_head;
    59   }
    60   HeapWord* adr_head() {
    61     return UseCompressedOops ? (HeapWord*)&_compressed_head :
    62                                (HeapWord*)&_oop_head;
    63   }
    64   void set_head(oop o) {
    65     if (UseCompressedOops) {
    66       // Must compress the head ptr.
    67       _compressed_head = oopDesc::encode_heap_oop(o);
    68     } else {
    69       _oop_head = o;
    70     }
    71   }
    72   bool   is_empty() const       { return head() == NULL; }
    73   size_t length()               { return _len; }
    74   void   set_length(size_t len) { _len = len;  }
    75   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
    76   void   dec_length(size_t dec) { _len -= dec; }
    77 private:
    78   // Set value depending on UseCompressedOops. This could be a template class
    79   // but then we have to fix all the instantiations and declarations that use this class.
    80   oop       _oop_head;
    81   narrowOop _compressed_head;
    82   size_t _len;
    83 };
    85 // Iterator for the list of discovered references.
    86 class DiscoveredListIterator {
    87 private:
    88   DiscoveredList&    _refs_list;
    89   HeapWord*          _prev_next;
    90   oop                _prev;
    91   oop                _ref;
    92   HeapWord*          _discovered_addr;
    93   oop                _next;
    94   HeapWord*          _referent_addr;
    95   oop                _referent;
    96   OopClosure*        _keep_alive;
    97   BoolObjectClosure* _is_alive;
    99   DEBUG_ONLY(
   100   oop                _first_seen; // cyclic linked list check
   101   )
   103   NOT_PRODUCT(
   104   size_t             _processed;
   105   size_t             _removed;
   106   )
   108 public:
   109   inline DiscoveredListIterator(DiscoveredList&    refs_list,
   110                                 OopClosure*        keep_alive,
   111                                 BoolObjectClosure* is_alive):
   112     _refs_list(refs_list),
   113     _prev_next(refs_list.adr_head()),
   114     _prev(NULL),
   115     _ref(refs_list.head()),
   116 #ifdef ASSERT
   117     _first_seen(refs_list.head()),
   118 #endif
   119 #ifndef PRODUCT
   120     _processed(0),
   121     _removed(0),
   122 #endif
   123     _next(NULL),
   124     _keep_alive(keep_alive),
   125     _is_alive(is_alive)
   126 { }
   128   // End Of List.
   129   inline bool has_next() const { return _ref != NULL; }
   131   // Get oop to the Reference object.
   132   inline oop obj() const { return _ref; }
   134   // Get oop to the referent object.
   135   inline oop referent() const { return _referent; }
   137   // Returns true if referent is alive.
   138   inline bool is_referent_alive() const {
   139     return _is_alive->do_object_b(_referent);
   140   }
   142   // Loads data for the current reference.
   143   // The "allow_null_referent" argument tells us to allow for the possibility
   144   // of a NULL referent in the discovered Reference object. This typically
   145   // happens in the case of concurrent collectors that may have done the
   146   // discovery concurrently, or interleaved, with mutator execution.
   147   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
   149   // Move to the next discovered reference.
   150   inline void next() {
   151     _prev_next = _discovered_addr;
   152     _prev = _ref;
   153     move_to_next();
   154   }
   156   // Remove the current reference from the list
   157   void remove();
   159   // Make the Reference object active again.
   160   void make_active();
   162   // Make the referent alive.
   163   inline void make_referent_alive() {
   164     if (UseCompressedOops) {
   165       _keep_alive->do_oop((narrowOop*)_referent_addr);
   166     } else {
   167       _keep_alive->do_oop((oop*)_referent_addr);
   168     }
   169   }
   171   // Update the discovered field.
   172   inline void update_discovered() {
   173     // First _prev_next ref actually points into DiscoveredList (gross).
   174     if (UseCompressedOops) {
   175       if (!oopDesc::is_null(*(narrowOop*)_prev_next)) {
   176         _keep_alive->do_oop((narrowOop*)_prev_next);
   177       }
   178     } else {
   179       if (!oopDesc::is_null(*(oop*)_prev_next)) {
   180         _keep_alive->do_oop((oop*)_prev_next);
   181       }
   182     }
   183   }
   185   // NULL out referent pointer.
   186   void clear_referent();
   188   // Statistics
   189   NOT_PRODUCT(
   190   inline size_t processed() const { return _processed; }
   191   inline size_t removed() const   { return _removed; }
   192   )
   194   inline void move_to_next() {
   195     if (_ref == _next) {
   196       // End of the list.
   197       _ref = NULL;
   198     } else {
   199       _ref = _next;
   200     }
   201     assert(_ref != _first_seen, "cyclic ref_list found");
   202     NOT_PRODUCT(_processed++);
   203   }
   204 };
   206 class ReferenceProcessor : public CHeapObj<mtGC> {
   207  protected:
   208   // Compatibility with pre-4965777 JDK's
   209   static bool _pending_list_uses_discovered_field;
   211   // The SoftReference master timestamp clock
   212   static jlong _soft_ref_timestamp_clock;
   214   MemRegion   _span;                    // (right-open) interval of heap
   215                                         // subject to wkref discovery
   217   bool        _discovering_refs;        // true when discovery enabled
   218   bool        _discovery_is_atomic;     // if discovery is atomic wrt
   219                                         // other collectors in configuration
   220   bool        _discovery_is_mt;         // true if reference discovery is MT.
   222   // If true, setting "next" field of a discovered refs list requires
   223   // write barrier(s).  (Must be true if used in a collector in which
   224   // elements of a discovered list may be moved during discovery: for
   225   // example, a collector like Garbage-First that moves objects during a
   226   // long-term concurrent marking phase that does weak reference
   227   // discovery.)
   228   bool        _discovered_list_needs_barrier;
   230   BarrierSet* _bs;                      // Cached copy of BarrierSet.
   231   bool        _enqueuing_is_done;       // true if all weak references enqueued
   232   bool        _processing_is_mt;        // true during phases when
   233                                         // reference processing is MT.
   234   uint        _next_id;                 // round-robin mod _num_q counter in
   235                                         // support of work distribution
   237   // For collectors that do not keep GC liveness information
   238   // in the object header, this field holds a closure that
   239   // helps the reference processor determine the reachability
   240   // of an oop. It is currently initialized to NULL for all
   241   // collectors except for CMS and G1.
   242   BoolObjectClosure* _is_alive_non_header;
   244   // Soft ref clearing policies
   245   // . the default policy
   246   static ReferencePolicy*   _default_soft_ref_policy;
   247   // . the "clear all" policy
   248   static ReferencePolicy*   _always_clear_soft_ref_policy;
   249   // . the current policy below is either one of the above
   250   ReferencePolicy*          _current_soft_ref_policy;
   252   // The discovered ref lists themselves
   254   // The active MT'ness degree of the queues below
   255   uint             _num_q;
   256   // The maximum MT'ness degree of the queues below
   257   uint             _max_num_q;
   259   // Master array of discovered oops
   260   DiscoveredList* _discovered_refs;
   262   // Arrays of lists of oops, one per thread (pointers into master array above)
   263   DiscoveredList* _discoveredSoftRefs;
   264   DiscoveredList* _discoveredWeakRefs;
   265   DiscoveredList* _discoveredFinalRefs;
   266   DiscoveredList* _discoveredPhantomRefs;
   268  public:
   269   static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
   271   uint num_q()                             { return _num_q; }
   272   uint max_num_q()                         { return _max_num_q; }
   273   void set_active_mt_degree(uint v)        { _num_q = v; }
   275   DiscoveredList* discovered_refs()        { return _discovered_refs; }
   277   ReferencePolicy* setup_policy(bool always_clear) {
   278     _current_soft_ref_policy = always_clear ?
   279       _always_clear_soft_ref_policy : _default_soft_ref_policy;
   280     _current_soft_ref_policy->setup();   // snapshot the policy threshold
   281     return _current_soft_ref_policy;
   282   }
   284   // Process references with a certain reachability level.
   285   void process_discovered_reflist(DiscoveredList               refs_lists[],
   286                                   ReferencePolicy*             policy,
   287                                   bool                         clear_referent,
   288                                   BoolObjectClosure*           is_alive,
   289                                   OopClosure*                  keep_alive,
   290                                   VoidClosure*                 complete_gc,
   291                                   AbstractRefProcTaskExecutor* task_executor);
   293   void process_phaseJNI(BoolObjectClosure* is_alive,
   294                         OopClosure*        keep_alive,
   295                         VoidClosure*       complete_gc);
   297   // Work methods used by the method process_discovered_reflist
   298   // Phase1: keep alive all those referents that are otherwise
   299   // dead but which must be kept alive by policy (and their closure).
   300   void process_phase1(DiscoveredList&     refs_list,
   301                       ReferencePolicy*    policy,
   302                       BoolObjectClosure*  is_alive,
   303                       OopClosure*         keep_alive,
   304                       VoidClosure*        complete_gc);
   305   // Phase2: remove all those references whose referents are
   306   // reachable.
   307   inline void process_phase2(DiscoveredList&    refs_list,
   308                              BoolObjectClosure* is_alive,
   309                              OopClosure*        keep_alive,
   310                              VoidClosure*       complete_gc) {
   311     if (discovery_is_atomic()) {
   312       // complete_gc is ignored in this case for this phase
   313       pp2_work(refs_list, is_alive, keep_alive);
   314     } else {
   315       assert(complete_gc != NULL, "Error");
   316       pp2_work_concurrent_discovery(refs_list, is_alive,
   317                                     keep_alive, complete_gc);
   318     }
   319   }
   320   // Work methods in support of process_phase2
   321   void pp2_work(DiscoveredList&    refs_list,
   322                 BoolObjectClosure* is_alive,
   323                 OopClosure*        keep_alive);
   324   void pp2_work_concurrent_discovery(
   325                 DiscoveredList&    refs_list,
   326                 BoolObjectClosure* is_alive,
   327                 OopClosure*        keep_alive,
   328                 VoidClosure*       complete_gc);
   329   // Phase3: process the referents by either clearing them
   330   // or keeping them alive (and their closure)
   331   void process_phase3(DiscoveredList&    refs_list,
   332                       bool               clear_referent,
   333                       BoolObjectClosure* is_alive,
   334                       OopClosure*        keep_alive,
   335                       VoidClosure*       complete_gc);
   337   // Enqueue references with a certain reachability level
   338   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
   340   // "Preclean" all the discovered reference lists
   341   // by removing references with strongly reachable referents.
   342   // The first argument is a predicate on an oop that indicates
   343   // its (strong) reachability and the second is a closure that
   344   // may be used to incrementalize or abort the precleaning process.
   345   // The caller is responsible for taking care of potential
   346   // interference with concurrent operations on these lists
   347   // (or predicates involved) by other threads. Currently
   348   // only used by the CMS collector.
   349   void preclean_discovered_references(BoolObjectClosure* is_alive,
   350                                       OopClosure*        keep_alive,
   351                                       VoidClosure*       complete_gc,
   352                                       YieldClosure*      yield);
   354   // Delete entries in the discovered lists that have
   355   // either a null referent or are not active. Such
   356   // Reference objects can result from the clearing
   357   // or enqueueing of Reference objects concurrent
   358   // with their discovery by a (concurrent) collector.
   359   // For a definition of "active" see java.lang.ref.Reference;
   360   // Refs are born active, become inactive when enqueued,
   361   // and never become active again. The state of being
   362   // active is encoded as follows: A Ref is active
   363   // if and only if its "next" field is NULL.
   364   void clean_up_discovered_references();
   365   void clean_up_discovered_reflist(DiscoveredList& refs_list);
   367   // Returns the name of the discovered reference list
   368   // occupying the i / _num_q slot.
   369   const char* list_name(uint i);
   371   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
   373  protected:
   374   // Set the 'discovered' field of the given reference to
   375   // the given value - emitting barriers depending upon
   376   // the value of _discovered_list_needs_barrier.
   377   void set_discovered(oop ref, oop value);
   379   // "Preclean" the given discovered reference list
   380   // by removing references with strongly reachable referents.
   381   // Currently used in support of CMS only.
   382   void preclean_discovered_reflist(DiscoveredList&    refs_list,
   383                                    BoolObjectClosure* is_alive,
   384                                    OopClosure*        keep_alive,
   385                                    VoidClosure*       complete_gc,
   386                                    YieldClosure*      yield);
   388   // round-robin mod _num_q (not: _not_ mode _max_num_q)
   389   uint next_id() {
   390     uint id = _next_id;
   391     if (++_next_id == _num_q) {
   392       _next_id = 0;
   393     }
   394     return id;
   395   }
   396   DiscoveredList* get_discovered_list(ReferenceType rt);
   397   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
   398                                         HeapWord* discovered_addr);
   399   void verify_ok_to_handle_reflists() PRODUCT_RETURN;
   401   void clear_discovered_references(DiscoveredList& refs_list);
   402   void abandon_partial_discovered_list(DiscoveredList& refs_list);
   404   // Calculate the number of jni handles.
   405   unsigned int count_jni_refs();
   407   // Balances reference queues.
   408   void balance_queues(DiscoveredList ref_lists[]);
   410   // Update (advance) the soft ref master clock field.
   411   void update_soft_ref_master_clock();
   413  public:
   414   // constructor
   415   ReferenceProcessor():
   416     _span((HeapWord*)NULL, (HeapWord*)NULL),
   417     _discovered_refs(NULL),
   418     _discoveredSoftRefs(NULL),  _discoveredWeakRefs(NULL),
   419     _discoveredFinalRefs(NULL), _discoveredPhantomRefs(NULL),
   420     _discovering_refs(false),
   421     _discovery_is_atomic(true),
   422     _enqueuing_is_done(false),
   423     _discovery_is_mt(false),
   424     _discovered_list_needs_barrier(false),
   425     _bs(NULL),
   426     _is_alive_non_header(NULL),
   427     _num_q(0),
   428     _max_num_q(0),
   429     _processing_is_mt(false),
   430     _next_id(0)
   431   { }
   433   // Default parameters give you a vanilla reference processor.
   434   ReferenceProcessor(MemRegion span,
   435                      bool mt_processing = false, uint mt_processing_degree = 1,
   436                      bool mt_discovery  = false, uint mt_discovery_degree  = 1,
   437                      bool atomic_discovery = true,
   438                      BoolObjectClosure* is_alive_non_header = NULL,
   439                      bool discovered_list_needs_barrier = false);
   441   // RefDiscoveryPolicy values
   442   enum DiscoveryPolicy {
   443     ReferenceBasedDiscovery = 0,
   444     ReferentBasedDiscovery  = 1,
   445     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
   446     DiscoveryPolicyMax      = ReferentBasedDiscovery
   447   };
   449   static void init_statics();
   451  public:
   452   // get and set "is_alive_non_header" field
   453   BoolObjectClosure* is_alive_non_header() {
   454     return _is_alive_non_header;
   455   }
   456   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
   457     _is_alive_non_header = is_alive_non_header;
   458   }
   460   // get and set span
   461   MemRegion span()                   { return _span; }
   462   void      set_span(MemRegion span) { _span = span; }
   464   // start and stop weak ref discovery
   465   void enable_discovery(bool verify_disabled, bool check_no_refs);
   466   void disable_discovery()  { _discovering_refs = false; }
   467   bool discovery_enabled()  { return _discovering_refs;  }
   469   // whether discovery is atomic wrt other collectors
   470   bool discovery_is_atomic() const { return _discovery_is_atomic; }
   471   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
   473   // whether the JDK in which we are embedded is a pre-4965777 JDK,
   474   // and thus whether or not it uses the discovered field to chain
   475   // the entries in the pending list.
   476   static bool pending_list_uses_discovered_field() {
   477     return _pending_list_uses_discovered_field;
   478   }
   480   // whether discovery is done by multiple threads same-old-timeously
   481   bool discovery_is_mt() const { return _discovery_is_mt; }
   482   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
   484   // Whether we are in a phase when _processing_ is MT.
   485   bool processing_is_mt() const { return _processing_is_mt; }
   486   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
   488   // whether all enqueuing of weak references is complete
   489   bool enqueuing_is_done()  { return _enqueuing_is_done; }
   490   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
   492   // iterate over oops
   493   void weak_oops_do(OopClosure* f);       // weak roots
   495   // Balance each of the discovered lists.
   496   void balance_all_queues();
   497   void verify_list(DiscoveredList& ref_list);
   499   // Discover a Reference object, using appropriate discovery criteria
   500   bool discover_reference(oop obj, ReferenceType rt);
   502   // Process references found during GC (called by the garbage collector)
   503   void process_discovered_references(BoolObjectClosure*           is_alive,
   504                                      OopClosure*                  keep_alive,
   505                                      VoidClosure*                 complete_gc,
   506                                      AbstractRefProcTaskExecutor* task_executor);
   508  public:
   509   // Enqueue references at end of GC (called by the garbage collector)
   510   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
   512   // If a discovery is in process that is being superceded, abandon it: all
   513   // the discovered lists will be empty, and all the objects on them will
   514   // have NULL discovered fields.  Must be called only at a safepoint.
   515   void abandon_partial_discovery();
   517   // debugging
   518   void verify_no_references_recorded() PRODUCT_RETURN;
   519   void verify_referent(oop obj)        PRODUCT_RETURN;
   521   // clear the discovered lists (unlinking each entry).
   522   void clear_discovered_references() PRODUCT_RETURN;
   523 };
   525 // A utility class to disable reference discovery in
   526 // the scope which contains it, for given ReferenceProcessor.
   527 class NoRefDiscovery: StackObj {
   528  private:
   529   ReferenceProcessor* _rp;
   530   bool _was_discovering_refs;
   531  public:
   532   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
   533     _was_discovering_refs = _rp->discovery_enabled();
   534     if (_was_discovering_refs) {
   535       _rp->disable_discovery();
   536     }
   537   }
   539   ~NoRefDiscovery() {
   540     if (_was_discovering_refs) {
   541       _rp->enable_discovery(true /*verify_disabled*/, false /*check_no_refs*/);
   542     }
   543   }
   544 };
   547 // A utility class to temporarily mutate the span of the
   548 // given ReferenceProcessor in the scope that contains it.
   549 class ReferenceProcessorSpanMutator: StackObj {
   550  private:
   551   ReferenceProcessor* _rp;
   552   MemRegion           _saved_span;
   554  public:
   555   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
   556                                 MemRegion span):
   557     _rp(rp) {
   558     _saved_span = _rp->span();
   559     _rp->set_span(span);
   560   }
   562   ~ReferenceProcessorSpanMutator() {
   563     _rp->set_span(_saved_span);
   564   }
   565 };
   567 // A utility class to temporarily change the MT'ness of
   568 // reference discovery for the given ReferenceProcessor
   569 // in the scope that contains it.
   570 class ReferenceProcessorMTDiscoveryMutator: StackObj {
   571  private:
   572   ReferenceProcessor* _rp;
   573   bool                _saved_mt;
   575  public:
   576   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
   577                                        bool mt):
   578     _rp(rp) {
   579     _saved_mt = _rp->discovery_is_mt();
   580     _rp->set_mt_discovery(mt);
   581   }
   583   ~ReferenceProcessorMTDiscoveryMutator() {
   584     _rp->set_mt_discovery(_saved_mt);
   585   }
   586 };
   589 // A utility class to temporarily change the disposition
   590 // of the "is_alive_non_header" closure field of the
   591 // given ReferenceProcessor in the scope that contains it.
   592 class ReferenceProcessorIsAliveMutator: StackObj {
   593  private:
   594   ReferenceProcessor* _rp;
   595   BoolObjectClosure*  _saved_cl;
   597  public:
   598   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
   599                                    BoolObjectClosure*  cl):
   600     _rp(rp) {
   601     _saved_cl = _rp->is_alive_non_header();
   602     _rp->set_is_alive_non_header(cl);
   603   }
   605   ~ReferenceProcessorIsAliveMutator() {
   606     _rp->set_is_alive_non_header(_saved_cl);
   607   }
   608 };
   610 // A utility class to temporarily change the disposition
   611 // of the "discovery_is_atomic" field of the
   612 // given ReferenceProcessor in the scope that contains it.
   613 class ReferenceProcessorAtomicMutator: StackObj {
   614  private:
   615   ReferenceProcessor* _rp;
   616   bool                _saved_atomic_discovery;
   618  public:
   619   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
   620                                   bool atomic):
   621     _rp(rp) {
   622     _saved_atomic_discovery = _rp->discovery_is_atomic();
   623     _rp->set_atomic_discovery(atomic);
   624   }
   626   ~ReferenceProcessorAtomicMutator() {
   627     _rp->set_atomic_discovery(_saved_atomic_discovery);
   628   }
   629 };
   632 // A utility class to temporarily change the MT processing
   633 // disposition of the given ReferenceProcessor instance
   634 // in the scope that contains it.
   635 class ReferenceProcessorMTProcMutator: StackObj {
   636  private:
   637   ReferenceProcessor* _rp;
   638   bool  _saved_mt;
   640  public:
   641   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
   642                                   bool mt):
   643     _rp(rp) {
   644     _saved_mt = _rp->processing_is_mt();
   645     _rp->set_mt_processing(mt);
   646   }
   648   ~ReferenceProcessorMTProcMutator() {
   649     _rp->set_mt_processing(_saved_mt);
   650   }
   651 };
   654 // This class is an interface used to implement task execution for the
   655 // reference processing.
   656 class AbstractRefProcTaskExecutor {
   657 public:
   659   // Abstract tasks to execute.
   660   class ProcessTask;
   661   class EnqueueTask;
   663   // Executes a task using worker threads.
   664   virtual void execute(ProcessTask& task) = 0;
   665   virtual void execute(EnqueueTask& task) = 0;
   667   // Switch to single threaded mode.
   668   virtual void set_single_threaded_mode() { };
   669 };
   671 // Abstract reference processing task to execute.
   672 class AbstractRefProcTaskExecutor::ProcessTask {
   673 protected:
   674   ProcessTask(ReferenceProcessor& ref_processor,
   675               DiscoveredList      refs_lists[],
   676               bool                marks_oops_alive)
   677     : _ref_processor(ref_processor),
   678       _refs_lists(refs_lists),
   679       _marks_oops_alive(marks_oops_alive)
   680   { }
   682 public:
   683   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
   684                     OopClosure& keep_alive,
   685                     VoidClosure& complete_gc) = 0;
   687   // Returns true if a task marks some oops as alive.
   688   bool marks_oops_alive() const
   689   { return _marks_oops_alive; }
   691 protected:
   692   ReferenceProcessor& _ref_processor;
   693   DiscoveredList*     _refs_lists;
   694   const bool          _marks_oops_alive;
   695 };
   697 // Abstract reference processing task to execute.
   698 class AbstractRefProcTaskExecutor::EnqueueTask {
   699 protected:
   700   EnqueueTask(ReferenceProcessor& ref_processor,
   701               DiscoveredList      refs_lists[],
   702               HeapWord*           pending_list_addr,
   703               int                 n_queues)
   704     : _ref_processor(ref_processor),
   705       _refs_lists(refs_lists),
   706       _pending_list_addr(pending_list_addr),
   707       _n_queues(n_queues)
   708   { }
   710 public:
   711   virtual void work(unsigned int work_id) = 0;
   713 protected:
   714   ReferenceProcessor& _ref_processor;
   715   DiscoveredList*     _refs_lists;
   716   HeapWord*           _pending_list_addr;
   717   int                 _n_queues;
   718 };
   720 #endif // SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP

mercurial