src/os_cpu/solaris_x86/vm/os_solaris_x86.cpp

Tue, 30 Apr 2013 11:56:52 -0700

author
ccheung
date
Tue, 30 Apr 2013 11:56:52 -0700
changeset 4993
746b070f5022
parent 4325
d2f8c38e543d
child 5237
f2110083203d
permissions
-rw-r--r--

8011661: Insufficient memory message says "malloc" when sometimes it should say "mmap"
Reviewed-by: coleenp, zgu, hseigel

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "asm/macroAssembler.hpp"
    27 #include "classfile/classLoader.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "jvm_solaris.h"
    34 #include "memory/allocation.inline.hpp"
    35 #include "mutex_solaris.inline.hpp"
    36 #include "os_share_solaris.hpp"
    37 #include "prims/jniFastGetField.hpp"
    38 #include "prims/jvm.h"
    39 #include "prims/jvm_misc.hpp"
    40 #include "runtime/arguments.hpp"
    41 #include "runtime/extendedPC.hpp"
    42 #include "runtime/frame.inline.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/java.hpp"
    45 #include "runtime/javaCalls.hpp"
    46 #include "runtime/mutexLocker.hpp"
    47 #include "runtime/osThread.hpp"
    48 #include "runtime/sharedRuntime.hpp"
    49 #include "runtime/stubRoutines.hpp"
    50 #include "runtime/thread.inline.hpp"
    51 #include "runtime/timer.hpp"
    52 #include "utilities/events.hpp"
    53 #include "utilities/vmError.hpp"
    55 // put OS-includes here
    56 # include <sys/types.h>
    57 # include <sys/mman.h>
    58 # include <pthread.h>
    59 # include <signal.h>
    60 # include <setjmp.h>
    61 # include <errno.h>
    62 # include <dlfcn.h>
    63 # include <stdio.h>
    64 # include <unistd.h>
    65 # include <sys/resource.h>
    66 # include <thread.h>
    67 # include <sys/stat.h>
    68 # include <sys/time.h>
    69 # include <sys/filio.h>
    70 # include <sys/utsname.h>
    71 # include <sys/systeminfo.h>
    72 # include <sys/socket.h>
    73 # include <sys/trap.h>
    74 # include <sys/lwp.h>
    75 # include <pwd.h>
    76 # include <poll.h>
    77 # include <sys/lwp.h>
    78 # include <procfs.h>     //  see comment in <sys/procfs.h>
    80 #ifndef AMD64
    81 // QQQ seems useless at this point
    82 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
    83 #endif // AMD64
    84 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
    87 #define MAX_PATH (2 * K)
    89 // Minimum stack size for the VM.  It's easier to document a constant value
    90 // but it's different for x86 and sparc because the page sizes are different.
    91 #ifdef AMD64
    92 size_t os::Solaris::min_stack_allowed = 224*K;
    93 #define REG_SP REG_RSP
    94 #define REG_PC REG_RIP
    95 #define REG_FP REG_RBP
    96 #else
    97 size_t os::Solaris::min_stack_allowed = 64*K;
    98 #define REG_SP UESP
    99 #define REG_PC EIP
   100 #define REG_FP EBP
   101 // 4900493 counter to prevent runaway LDTR refresh attempt
   103 static volatile int ldtr_refresh = 0;
   104 // the libthread instruction that faults because of the stale LDTR
   106 static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
   107                        };
   108 #endif // AMD64
   110 char* os::non_memory_address_word() {
   111   // Must never look like an address returned by reserve_memory,
   112   // even in its subfields (as defined by the CPU immediate fields,
   113   // if the CPU splits constants across multiple instructions).
   114   return (char*) -1;
   115 }
   117 //
   118 // Validate a ucontext retrieved from walking a uc_link of a ucontext.
   119 // There are issues with libthread giving out uc_links for different threads
   120 // on the same uc_link chain and bad or circular links.
   121 //
   122 bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
   123   if (valid >= suspect ||
   124       valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
   125       valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
   126       valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
   127     DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
   128     return false;
   129   }
   131   if (thread->is_Java_thread()) {
   132     if (!valid_stack_address(thread, (address)suspect)) {
   133       DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
   134       return false;
   135     }
   136     if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
   137       DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
   138       return false;
   139     }
   140   }
   141   return true;
   142 }
   144 // We will only follow one level of uc_link since there are libthread
   145 // issues with ucontext linking and it is better to be safe and just
   146 // let caller retry later.
   147 ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
   148   ucontext_t *uc) {
   150   ucontext_t *retuc = NULL;
   152   if (uc != NULL) {
   153     if (uc->uc_link == NULL) {
   154       // cannot validate without uc_link so accept current ucontext
   155       retuc = uc;
   156     } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
   157       // first ucontext is valid so try the next one
   158       uc = uc->uc_link;
   159       if (uc->uc_link == NULL) {
   160         // cannot validate without uc_link so accept current ucontext
   161         retuc = uc;
   162       } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
   163         // the ucontext one level down is also valid so return it
   164         retuc = uc;
   165       }
   166     }
   167   }
   168   return retuc;
   169 }
   171 // Assumes ucontext is valid
   172 ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
   173   return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
   174 }
   176 // Assumes ucontext is valid
   177 intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
   178   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
   179 }
   181 // Assumes ucontext is valid
   182 intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
   183   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
   184 }
   186 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
   187 // is currently interrupted by SIGPROF.
   188 //
   189 // The difference between this and os::fetch_frame_from_context() is that
   190 // here we try to skip nested signal frames.
   191 ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
   192   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
   194   assert(thread != NULL, "just checking");
   195   assert(ret_sp != NULL, "just checking");
   196   assert(ret_fp != NULL, "just checking");
   198   ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
   199   return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
   200 }
   202 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
   203                     intptr_t** ret_sp, intptr_t** ret_fp) {
   205   ExtendedPC  epc;
   206   ucontext_t *uc = (ucontext_t*)ucVoid;
   208   if (uc != NULL) {
   209     epc = os::Solaris::ucontext_get_ExtendedPC(uc);
   210     if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
   211     if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
   212   } else {
   213     // construct empty ExtendedPC for return value checking
   214     epc = ExtendedPC(NULL);
   215     if (ret_sp) *ret_sp = (intptr_t *)NULL;
   216     if (ret_fp) *ret_fp = (intptr_t *)NULL;
   217   }
   219   return epc;
   220 }
   222 frame os::fetch_frame_from_context(void* ucVoid) {
   223   intptr_t* sp;
   224   intptr_t* fp;
   225   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
   226   return frame(sp, fp, epc.pc());
   227 }
   229 frame os::get_sender_for_C_frame(frame* fr) {
   230   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
   231 }
   233 extern "C" intptr_t *_get_current_sp();  // in .il file
   235 address os::current_stack_pointer() {
   236   return (address)_get_current_sp();
   237 }
   239 extern "C" intptr_t *_get_current_fp();  // in .il file
   241 frame os::current_frame() {
   242   intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
   243   frame myframe((intptr_t*)os::current_stack_pointer(),
   244                 (intptr_t*)fp,
   245                 CAST_FROM_FN_PTR(address, os::current_frame));
   246   if (os::is_first_C_frame(&myframe)) {
   247     // stack is not walkable
   248     frame ret; // This will be a null useless frame
   249     return ret;
   250   } else {
   251     return os::get_sender_for_C_frame(&myframe);
   252   }
   253 }
   255 // This is a simple callback that just fetches a PC for an interrupted thread.
   256 // The thread need not be suspended and the fetched PC is just a hint.
   257 // This one is currently used for profiling the VMThread ONLY!
   259 // Must be synchronous
   260 void GetThreadPC_Callback::execute(OSThread::InterruptArguments *args) {
   261   Thread*     thread = args->thread();
   262   ucontext_t* uc     = args->ucontext();
   263   intptr_t* sp;
   265   assert(ProfileVM && thread->is_VM_thread(), "just checking");
   267   ExtendedPC new_addr((address)uc->uc_mcontext.gregs[REG_PC]);
   268   _addr = new_addr;
   269 }
   271 static int threadgetstate(thread_t tid, int *flags, lwpid_t *lwp, stack_t *ss, gregset_t rs, lwpstatus_t *lwpstatus) {
   272   char lwpstatusfile[PROCFILE_LENGTH];
   273   int lwpfd, err;
   275   if (err = os::Solaris::thr_getstate(tid, flags, lwp, ss, rs))
   276     return (err);
   277   if (*flags == TRS_LWPID) {
   278     sprintf(lwpstatusfile, "/proc/%d/lwp/%d/lwpstatus", getpid(),
   279             *lwp);
   280     if ((lwpfd = open(lwpstatusfile, O_RDONLY)) < 0) {
   281       perror("thr_mutator_status: open lwpstatus");
   282       return (EINVAL);
   283     }
   284     if (pread(lwpfd, lwpstatus, sizeof (lwpstatus_t), (off_t)0) !=
   285         sizeof (lwpstatus_t)) {
   286       perror("thr_mutator_status: read lwpstatus");
   287       (void) close(lwpfd);
   288       return (EINVAL);
   289     }
   290     (void) close(lwpfd);
   291   }
   292   return (0);
   293 }
   295 #ifndef AMD64
   297 // Detecting SSE support by OS
   298 // From solaris_i486.s
   299 extern "C" bool sse_check();
   300 extern "C" bool sse_unavailable();
   302 enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
   303 static int sse_status = SSE_UNKNOWN;
   306 static void  check_for_sse_support() {
   307   if (!VM_Version::supports_sse()) {
   308     sse_status = SSE_NOT_SUPPORTED;
   309     return;
   310   }
   311   // looking for _sse_hw in libc.so, if it does not exist or
   312   // the value (int) is 0, OS has no support for SSE
   313   int *sse_hwp;
   314   void *h;
   316   if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
   317     //open failed, presume no support for SSE
   318     sse_status = SSE_NOT_SUPPORTED;
   319     return;
   320   }
   321   if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
   322     sse_status = SSE_NOT_SUPPORTED;
   323   } else if (*sse_hwp == 0) {
   324     sse_status = SSE_NOT_SUPPORTED;
   325   }
   326   dlclose(h);
   328   if (sse_status == SSE_UNKNOWN) {
   329     bool (*try_sse)() = (bool (*)())sse_check;
   330     sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
   331   }
   333 }
   335 #endif // AMD64
   337 bool os::supports_sse() {
   338 #ifdef AMD64
   339   return true;
   340 #else
   341   if (sse_status == SSE_UNKNOWN)
   342     check_for_sse_support();
   343   return sse_status == SSE_SUPPORTED;
   344 #endif // AMD64
   345 }
   347 bool os::is_allocatable(size_t bytes) {
   348 #ifdef AMD64
   349   return true;
   350 #else
   352   if (bytes < 2 * G) {
   353     return true;
   354   }
   356   char* addr = reserve_memory(bytes, NULL);
   358   if (addr != NULL) {
   359     release_memory(addr, bytes);
   360   }
   362   return addr != NULL;
   363 #endif // AMD64
   365 }
   367 extern "C" void Fetch32PFI () ;
   368 extern "C" void Fetch32Resume () ;
   369 #ifdef AMD64
   370 extern "C" void FetchNPFI () ;
   371 extern "C" void FetchNResume () ;
   372 #endif // AMD64
   374 extern "C" JNIEXPORT int
   375 JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
   376                           int abort_if_unrecognized) {
   377   ucontext_t* uc = (ucontext_t*) ucVoid;
   379 #ifndef AMD64
   380   if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
   381     // the SSE instruction faulted. supports_sse() need return false.
   382     uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
   383     return true;
   384   }
   385 #endif // !AMD64
   387   Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
   389   SignalHandlerMark shm(t);
   391   if(sig == SIGPIPE || sig == SIGXFSZ) {
   392     if (os::Solaris::chained_handler(sig, info, ucVoid)) {
   393       return true;
   394     } else {
   395       if (PrintMiscellaneous && (WizardMode || Verbose)) {
   396         char buf[64];
   397         warning("Ignoring %s - see 4229104 or 6499219",
   398                 os::exception_name(sig, buf, sizeof(buf)));
   400       }
   401       return true;
   402     }
   403   }
   405   JavaThread* thread = NULL;
   406   VMThread* vmthread = NULL;
   408   if (os::Solaris::signal_handlers_are_installed) {
   409     if (t != NULL ){
   410       if(t->is_Java_thread()) {
   411         thread = (JavaThread*)t;
   412       }
   413       else if(t->is_VM_thread()){
   414         vmthread = (VMThread *)t;
   415       }
   416     }
   417   }
   419   guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
   421   if (sig == os::Solaris::SIGasync()) {
   422     if(thread){
   423       OSThread::InterruptArguments args(thread, uc);
   424       thread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
   425       return true;
   426     }
   427     else if(vmthread){
   428       OSThread::InterruptArguments args(vmthread, uc);
   429       vmthread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
   430       return true;
   431     } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
   432       return true;
   433     } else {
   434       // If os::Solaris::SIGasync not chained, and this is a non-vm and
   435       // non-java thread
   436       return true;
   437     }
   438   }
   440   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
   441     // can't decode this kind of signal
   442     info = NULL;
   443   } else {
   444     assert(sig == info->si_signo, "bad siginfo");
   445   }
   447   // decide if this trap can be handled by a stub
   448   address stub = NULL;
   450   address pc          = NULL;
   452   //%note os_trap_1
   453   if (info != NULL && uc != NULL && thread != NULL) {
   454     // factor me: getPCfromContext
   455     pc = (address) uc->uc_mcontext.gregs[REG_PC];
   457     // SafeFetch32() support
   458     if (pc == (address) Fetch32PFI) {
   459       uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
   460       return true ;
   461     }
   462 #ifdef AMD64
   463     if (pc == (address) FetchNPFI) {
   464        uc->uc_mcontext.gregs [REG_PC] = intptr_t(FetchNResume) ;
   465        return true ;
   466     }
   467 #endif // AMD64
   469     // Handle ALL stack overflow variations here
   470     if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
   471       address addr = (address) info->si_addr;
   472       if (thread->in_stack_yellow_zone(addr)) {
   473         thread->disable_stack_yellow_zone();
   474         if (thread->thread_state() == _thread_in_Java) {
   475           // Throw a stack overflow exception.  Guard pages will be reenabled
   476           // while unwinding the stack.
   477           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
   478         } else {
   479           // Thread was in the vm or native code.  Return and try to finish.
   480           return true;
   481         }
   482       } else if (thread->in_stack_red_zone(addr)) {
   483         // Fatal red zone violation.  Disable the guard pages and fall through
   484         // to handle_unexpected_exception way down below.
   485         thread->disable_stack_red_zone();
   486         tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
   487       }
   488     }
   490     if (thread->thread_state() == _thread_in_vm) {
   491       if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
   492         stub = StubRoutines::handler_for_unsafe_access();
   493       }
   494     }
   496     if (thread->thread_state() == _thread_in_Java) {
   497       // Support Safepoint Polling
   498       if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
   499         stub = SharedRuntime::get_poll_stub(pc);
   500       }
   501       else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
   502         // BugId 4454115: A read from a MappedByteBuffer can fault
   503         // here if the underlying file has been truncated.
   504         // Do not crash the VM in such a case.
   505         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
   506         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
   507         if (nm != NULL && nm->has_unsafe_access()) {
   508           stub = StubRoutines::handler_for_unsafe_access();
   509         }
   510       }
   511       else
   512       if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
   513         // integer divide by zero
   514         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   515       }
   516 #ifndef AMD64
   517       else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
   518         // floating-point divide by zero
   519         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   520       }
   521       else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
   522         // The encoding of D2I in i486.ad can cause an exception prior
   523         // to the fist instruction if there was an invalid operation
   524         // pending. We want to dismiss that exception. From the win_32
   525         // side it also seems that if it really was the fist causing
   526         // the exception that we do the d2i by hand with different
   527         // rounding. Seems kind of weird. QQQ TODO
   528         // Note that we take the exception at the NEXT floating point instruction.
   529         if (pc[0] == 0xDB) {
   530             assert(pc[0] == 0xDB, "not a FIST opcode");
   531             assert(pc[1] == 0x14, "not a FIST opcode");
   532             assert(pc[2] == 0x24, "not a FIST opcode");
   533             return true;
   534         } else {
   535             assert(pc[-3] == 0xDB, "not an flt invalid opcode");
   536             assert(pc[-2] == 0x14, "not an flt invalid opcode");
   537             assert(pc[-1] == 0x24, "not an flt invalid opcode");
   538         }
   539       }
   540       else if (sig == SIGFPE ) {
   541         tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
   542       }
   543 #endif // !AMD64
   545         // QQQ It doesn't seem that we need to do this on x86 because we should be able
   546         // to return properly from the handler without this extra stuff on the back side.
   548       else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
   549         // Determination of interpreter/vtable stub/compiled code null exception
   550         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
   551       }
   552     }
   554     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
   555     // and the heap gets shrunk before the field access.
   556     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
   557       address addr = JNI_FastGetField::find_slowcase_pc(pc);
   558       if (addr != (address)-1) {
   559         stub = addr;
   560       }
   561     }
   563     // Check to see if we caught the safepoint code in the
   564     // process of write protecting the memory serialization page.
   565     // It write enables the page immediately after protecting it
   566     // so we can just return to retry the write.
   567     if ((sig == SIGSEGV) &&
   568         os::is_memory_serialize_page(thread, (address)info->si_addr)) {
   569       // Block current thread until the memory serialize page permission restored.
   570       os::block_on_serialize_page_trap();
   571       return true;
   572     }
   573   }
   575   // Execution protection violation
   576   //
   577   // Preventative code for future versions of Solaris which may
   578   // enable execution protection when running the 32-bit VM on AMD64.
   579   //
   580   // This should be kept as the last step in the triage.  We don't
   581   // have a dedicated trap number for a no-execute fault, so be
   582   // conservative and allow other handlers the first shot.
   583   //
   584   // Note: We don't test that info->si_code == SEGV_ACCERR here.
   585   // this si_code is so generic that it is almost meaningless; and
   586   // the si_code for this condition may change in the future.
   587   // Furthermore, a false-positive should be harmless.
   588   if (UnguardOnExecutionViolation > 0 &&
   589       (sig == SIGSEGV || sig == SIGBUS) &&
   590       uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
   591     int page_size = os::vm_page_size();
   592     address addr = (address) info->si_addr;
   593     address pc = (address) uc->uc_mcontext.gregs[REG_PC];
   594     // Make sure the pc and the faulting address are sane.
   595     //
   596     // If an instruction spans a page boundary, and the page containing
   597     // the beginning of the instruction is executable but the following
   598     // page is not, the pc and the faulting address might be slightly
   599     // different - we still want to unguard the 2nd page in this case.
   600     //
   601     // 15 bytes seems to be a (very) safe value for max instruction size.
   602     bool pc_is_near_addr =
   603       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
   604     bool instr_spans_page_boundary =
   605       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
   606                        (intptr_t) page_size) > 0);
   608     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
   609       static volatile address last_addr =
   610         (address) os::non_memory_address_word();
   612       // In conservative mode, don't unguard unless the address is in the VM
   613       if (addr != last_addr &&
   614           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
   616         // Make memory rwx and retry
   617         address page_start =
   618           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
   619         bool res = os::protect_memory((char*) page_start, page_size,
   620                                       os::MEM_PROT_RWX);
   622         if (PrintMiscellaneous && Verbose) {
   623           char buf[256];
   624           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
   625                        "at " INTPTR_FORMAT
   626                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
   627                        page_start, (res ? "success" : "failed"), errno);
   628           tty->print_raw_cr(buf);
   629         }
   630         stub = pc;
   632         // Set last_addr so if we fault again at the same address, we don't end
   633         // up in an endless loop.
   634         //
   635         // There are two potential complications here.  Two threads trapping at
   636         // the same address at the same time could cause one of the threads to
   637         // think it already unguarded, and abort the VM.  Likely very rare.
   638         //
   639         // The other race involves two threads alternately trapping at
   640         // different addresses and failing to unguard the page, resulting in
   641         // an endless loop.  This condition is probably even more unlikely than
   642         // the first.
   643         //
   644         // Although both cases could be avoided by using locks or thread local
   645         // last_addr, these solutions are unnecessary complication: this
   646         // handler is a best-effort safety net, not a complete solution.  It is
   647         // disabled by default and should only be used as a workaround in case
   648         // we missed any no-execute-unsafe VM code.
   650         last_addr = addr;
   651       }
   652     }
   653   }
   655   if (stub != NULL) {
   656     // save all thread context in case we need to restore it
   658     if (thread != NULL) thread->set_saved_exception_pc(pc);
   659     // 12/02/99: On Sparc it appears that the full context is also saved
   660     // but as yet, no one looks at or restores that saved context
   661     // factor me: setPC
   662     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
   663     return true;
   664   }
   666   // signal-chaining
   667   if (os::Solaris::chained_handler(sig, info, ucVoid)) {
   668     return true;
   669   }
   671 #ifndef AMD64
   672   // Workaround (bug 4900493) for Solaris kernel bug 4966651.
   673   // Handle an undefined selector caused by an attempt to assign
   674   // fs in libthread getipriptr(). With the current libthread design every 512
   675   // thread creations the LDT for a private thread data structure is extended
   676   // and thre is a hazard that and another thread attempting a thread creation
   677   // will use a stale LDTR that doesn't reflect the structure's growth,
   678   // causing a GP fault.
   679   // Enforce the probable limit of passes through here to guard against an
   680   // infinite loop if some other move to fs caused the GP fault. Note that
   681   // this loop counter is ultimately a heuristic as it is possible for
   682   // more than one thread to generate this fault at a time in an MP system.
   683   // In the case of the loop count being exceeded or if the poll fails
   684   // just fall through to a fatal error.
   685   // If there is some other source of T_GPFLT traps and the text at EIP is
   686   // unreadable this code will loop infinitely until the stack is exausted.
   687   // The key to diagnosis in this case is to look for the bottom signal handler
   688   // frame.
   690   if(! IgnoreLibthreadGPFault) {
   691     if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
   692       const unsigned char *p =
   693                         (unsigned const char *) uc->uc_mcontext.gregs[EIP];
   695       // Expected instruction?
   697       if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
   699         Atomic::inc(&ldtr_refresh);
   701         // Infinite loop?
   703         if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
   705           // No, force scheduling to get a fresh view of the LDTR
   707           if(poll(NULL, 0, 10) == 0) {
   709             // Retry the move
   711             return false;
   712           }
   713         }
   714       }
   715     }
   716   }
   717 #endif // !AMD64
   719   if (!abort_if_unrecognized) {
   720     // caller wants another chance, so give it to him
   721     return false;
   722   }
   724   if (!os::Solaris::libjsig_is_loaded) {
   725     struct sigaction oldAct;
   726     sigaction(sig, (struct sigaction *)0, &oldAct);
   727     if (oldAct.sa_sigaction != signalHandler) {
   728       void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
   729                                           : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
   730       warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
   731     }
   732   }
   734   if (pc == NULL && uc != NULL) {
   735     pc = (address) uc->uc_mcontext.gregs[REG_PC];
   736   }
   738   // unmask current signal
   739   sigset_t newset;
   740   sigemptyset(&newset);
   741   sigaddset(&newset, sig);
   742   sigprocmask(SIG_UNBLOCK, &newset, NULL);
   744   // Determine which sort of error to throw.  Out of swap may signal
   745   // on the thread stack, which could get a mapping error when touched.
   746   address addr = (address) info->si_addr;
   747   if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
   748     vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
   749   }
   751   VMError err(t, sig, pc, info, ucVoid);
   752   err.report_and_die();
   754   ShouldNotReachHere();
   755 }
   757 void os::print_context(outputStream *st, void *context) {
   758   if (context == NULL) return;
   760   ucontext_t *uc = (ucontext_t*)context;
   761   st->print_cr("Registers:");
   762 #ifdef AMD64
   763   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
   764   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
   765   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
   766   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
   767   st->cr();
   768   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
   769   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
   770   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
   771   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
   772   st->cr();
   773   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
   774   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
   775   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
   776   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
   777   st->cr();
   778   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
   779   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
   780   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
   781   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
   782   st->cr();
   783   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
   784   st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
   785 #else
   786   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
   787   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
   788   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
   789   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
   790   st->cr();
   791   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
   792   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
   793   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
   794   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
   795   st->cr();
   796   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
   797   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
   798 #endif // AMD64
   799   st->cr();
   800   st->cr();
   802   intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
   803   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
   804   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
   805   st->cr();
   807   // Note: it may be unsafe to inspect memory near pc. For example, pc may
   808   // point to garbage if entry point in an nmethod is corrupted. Leave
   809   // this at the end, and hope for the best.
   810   ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
   811   address pc = epc.pc();
   812   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
   813   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
   814 }
   816 void os::print_register_info(outputStream *st, void *context) {
   817   if (context == NULL) return;
   819   ucontext_t *uc = (ucontext_t*)context;
   821   st->print_cr("Register to memory mapping:");
   822   st->cr();
   824   // this is horrendously verbose but the layout of the registers in the
   825   // context does not match how we defined our abstract Register set, so
   826   // we can't just iterate through the gregs area
   828   // this is only for the "general purpose" registers
   830 #ifdef AMD64
   831   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
   832   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
   833   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
   834   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
   835   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
   836   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
   837   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
   838   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
   839   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
   840   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
   841   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
   842   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
   843   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
   844   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
   845   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
   846   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
   847 #else
   848   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
   849   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
   850   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
   851   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
   852   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
   853   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
   854   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
   855   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
   856 #endif
   858   st->cr();
   859 }
   862 #ifdef AMD64
   863 void os::Solaris::init_thread_fpu_state(void) {
   864   // Nothing to do
   865 }
   866 #else
   867 // From solaris_i486.s
   868 extern "C" void fixcw();
   870 void os::Solaris::init_thread_fpu_state(void) {
   871   // Set fpu to 53 bit precision. This happens too early to use a stub.
   872   fixcw();
   873 }
   875 // These routines are the initial value of atomic_xchg_entry(),
   876 // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
   877 // until initialization is complete.
   878 // TODO - replace with .il implementation when compiler supports it.
   880 typedef jint  xchg_func_t        (jint,  volatile jint*);
   881 typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
   882 typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
   883 typedef jint  add_func_t         (jint,  volatile jint*);
   885 jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
   886   // try to use the stub:
   887   xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
   889   if (func != NULL) {
   890     os::atomic_xchg_func = func;
   891     return (*func)(exchange_value, dest);
   892   }
   893   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   895   jint old_value = *dest;
   896   *dest = exchange_value;
   897   return old_value;
   898 }
   900 jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
   901   // try to use the stub:
   902   cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
   904   if (func != NULL) {
   905     os::atomic_cmpxchg_func = func;
   906     return (*func)(exchange_value, dest, compare_value);
   907   }
   908   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   910   jint old_value = *dest;
   911   if (old_value == compare_value)
   912     *dest = exchange_value;
   913   return old_value;
   914 }
   916 jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
   917   // try to use the stub:
   918   cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
   920   if (func != NULL) {
   921     os::atomic_cmpxchg_long_func = func;
   922     return (*func)(exchange_value, dest, compare_value);
   923   }
   924   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   926   jlong old_value = *dest;
   927   if (old_value == compare_value)
   928     *dest = exchange_value;
   929   return old_value;
   930 }
   932 jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
   933   // try to use the stub:
   934   add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
   936   if (func != NULL) {
   937     os::atomic_add_func = func;
   938     return (*func)(add_value, dest);
   939   }
   940   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   942   return (*dest) += add_value;
   943 }
   945 xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
   946 cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
   947 cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
   948 add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
   950 extern "C" void _solaris_raw_setup_fpu(address ptr);
   951 void os::setup_fpu() {
   952   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
   953   _solaris_raw_setup_fpu(fpu_cntrl);
   954 }
   955 #endif // AMD64
   957 #ifndef PRODUCT
   958 void os::verify_stack_alignment() {
   959 #ifdef AMD64
   960   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
   961 #endif
   962 }
   963 #endif

mercurial