src/share/vm/runtime/safepoint.cpp

Thu, 10 May 2012 15:44:19 +0200

author
nloodin
date
Thu, 10 May 2012 15:44:19 +0200
changeset 3783
7432b9db36ff
parent 3632
541c4a5e7b88
child 3865
e9140bf80b4a
permissions
-rw-r--r--

7165755: OS Information much longer on linux than other platforms
Reviewed-by: sla, dholmes

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/codeCache.hpp"
    28 #include "code/icBuffer.hpp"
    29 #include "code/nmethod.hpp"
    30 #include "code/pcDesc.hpp"
    31 #include "code/scopeDesc.hpp"
    32 #include "gc_interface/collectedHeap.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "memory/universe.inline.hpp"
    36 #include "oops/oop.inline.hpp"
    37 #include "oops/symbol.hpp"
    38 #include "runtime/compilationPolicy.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/interfaceSupport.hpp"
    42 #include "runtime/mutexLocker.hpp"
    43 #include "runtime/osThread.hpp"
    44 #include "runtime/safepoint.hpp"
    45 #include "runtime/signature.hpp"
    46 #include "runtime/stubCodeGenerator.hpp"
    47 #include "runtime/stubRoutines.hpp"
    48 #include "runtime/sweeper.hpp"
    49 #include "runtime/synchronizer.hpp"
    50 #include "services/runtimeService.hpp"
    51 #include "utilities/events.hpp"
    52 #ifdef TARGET_ARCH_x86
    53 # include "nativeInst_x86.hpp"
    54 # include "vmreg_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_sparc
    57 # include "nativeInst_sparc.hpp"
    58 # include "vmreg_sparc.inline.hpp"
    59 #endif
    60 #ifdef TARGET_ARCH_zero
    61 # include "nativeInst_zero.hpp"
    62 # include "vmreg_zero.inline.hpp"
    63 #endif
    64 #ifdef TARGET_ARCH_arm
    65 # include "nativeInst_arm.hpp"
    66 # include "vmreg_arm.inline.hpp"
    67 #endif
    68 #ifdef TARGET_ARCH_ppc
    69 # include "nativeInst_ppc.hpp"
    70 # include "vmreg_ppc.inline.hpp"
    71 #endif
    72 #ifdef TARGET_OS_FAMILY_linux
    73 # include "thread_linux.inline.hpp"
    74 #endif
    75 #ifdef TARGET_OS_FAMILY_solaris
    76 # include "thread_solaris.inline.hpp"
    77 #endif
    78 #ifdef TARGET_OS_FAMILY_windows
    79 # include "thread_windows.inline.hpp"
    80 #endif
    81 #ifdef TARGET_OS_FAMILY_bsd
    82 # include "thread_bsd.inline.hpp"
    83 #endif
    84 #ifndef SERIALGC
    85 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    86 #include "gc_implementation/shared/concurrentGCThread.hpp"
    87 #endif
    88 #ifdef COMPILER1
    89 #include "c1/c1_globals.hpp"
    90 #endif
    92 // --------------------------------------------------------------------------------------------------
    93 // Implementation of Safepoint begin/end
    95 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
    96 volatile int  SafepointSynchronize::_waiting_to_block = 0;
    97 volatile int SafepointSynchronize::_safepoint_counter = 0;
    98 int SafepointSynchronize::_current_jni_active_count = 0;
    99 long  SafepointSynchronize::_end_of_last_safepoint = 0;
   100 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
   101 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
   102 static bool timeout_error_printed = false;
   104 // Roll all threads forward to a safepoint and suspend them all
   105 void SafepointSynchronize::begin() {
   107   Thread* myThread = Thread::current();
   108   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
   110   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   111     _safepoint_begin_time = os::javaTimeNanos();
   112     _ts_of_current_safepoint = tty->time_stamp().seconds();
   113   }
   115 #ifndef SERIALGC
   116   if (UseConcMarkSweepGC) {
   117     // In the future we should investigate whether CMS can use the
   118     // more-general mechanism below.  DLD (01/05).
   119     ConcurrentMarkSweepThread::synchronize(false);
   120   } else if (UseG1GC) {
   121     ConcurrentGCThread::safepoint_synchronize();
   122   }
   123 #endif // SERIALGC
   125   // By getting the Threads_lock, we assure that no threads are about to start or
   126   // exit. It is released again in SafepointSynchronize::end().
   127   Threads_lock->lock();
   129   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
   131   int nof_threads = Threads::number_of_threads();
   133   if (TraceSafepoint) {
   134     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
   135   }
   137   RuntimeService::record_safepoint_begin();
   139   MutexLocker mu(Safepoint_lock);
   141   // Reset the count of active JNI critical threads
   142   _current_jni_active_count = 0;
   144   // Set number of threads to wait for, before we initiate the callbacks
   145   _waiting_to_block = nof_threads;
   146   TryingToBlock     = 0 ;
   147   int still_running = nof_threads;
   149   // Save the starting time, so that it can be compared to see if this has taken
   150   // too long to complete.
   151   jlong safepoint_limit_time;
   152   timeout_error_printed = false;
   154   // PrintSafepointStatisticsTimeout can be specified separately. When
   155   // specified, PrintSafepointStatistics will be set to true in
   156   // deferred_initialize_stat method. The initialization has to be done
   157   // early enough to avoid any races. See bug 6880029 for details.
   158   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   159     deferred_initialize_stat();
   160   }
   162   // Begin the process of bringing the system to a safepoint.
   163   // Java threads can be in several different states and are
   164   // stopped by different mechanisms:
   165   //
   166   //  1. Running interpreted
   167   //     The interpeter dispatch table is changed to force it to
   168   //     check for a safepoint condition between bytecodes.
   169   //  2. Running in native code
   170   //     When returning from the native code, a Java thread must check
   171   //     the safepoint _state to see if we must block.  If the
   172   //     VM thread sees a Java thread in native, it does
   173   //     not wait for this thread to block.  The order of the memory
   174   //     writes and reads of both the safepoint state and the Java
   175   //     threads state is critical.  In order to guarantee that the
   176   //     memory writes are serialized with respect to each other,
   177   //     the VM thread issues a memory barrier instruction
   178   //     (on MP systems).  In order to avoid the overhead of issuing
   179   //     a memory barrier for each Java thread making native calls, each Java
   180   //     thread performs a write to a single memory page after changing
   181   //     the thread state.  The VM thread performs a sequence of
   182   //     mprotect OS calls which forces all previous writes from all
   183   //     Java threads to be serialized.  This is done in the
   184   //     os::serialize_thread_states() call.  This has proven to be
   185   //     much more efficient than executing a membar instruction
   186   //     on every call to native code.
   187   //  3. Running compiled Code
   188   //     Compiled code reads a global (Safepoint Polling) page that
   189   //     is set to fault if we are trying to get to a safepoint.
   190   //  4. Blocked
   191   //     A thread which is blocked will not be allowed to return from the
   192   //     block condition until the safepoint operation is complete.
   193   //  5. In VM or Transitioning between states
   194   //     If a Java thread is currently running in the VM or transitioning
   195   //     between states, the safepointing code will wait for the thread to
   196   //     block itself when it attempts transitions to a new state.
   197   //
   198   _state            = _synchronizing;
   199   OrderAccess::fence();
   201   // Flush all thread states to memory
   202   if (!UseMembar) {
   203     os::serialize_thread_states();
   204   }
   206   // Make interpreter safepoint aware
   207   Interpreter::notice_safepoints();
   209   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
   210     // Make polling safepoint aware
   211     guarantee (PageArmed == 0, "invariant") ;
   212     PageArmed = 1 ;
   213     os::make_polling_page_unreadable();
   214   }
   216   // Consider using active_processor_count() ... but that call is expensive.
   217   int ncpus = os::processor_count() ;
   219 #ifdef ASSERT
   220   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   221     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
   222     // Clear the visited flag to ensure that the critical counts are collected properly.
   223     cur->set_visited_for_critical_count(false);
   224   }
   225 #endif // ASSERT
   227   if (SafepointTimeout)
   228     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
   230   // Iterate through all threads until it have been determined how to stop them all at a safepoint
   231   unsigned int iterations = 0;
   232   int steps = 0 ;
   233   while(still_running > 0) {
   234     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   235       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
   236       ThreadSafepointState *cur_state = cur->safepoint_state();
   237       if (cur_state->is_running()) {
   238         cur_state->examine_state_of_thread();
   239         if (!cur_state->is_running()) {
   240            still_running--;
   241            // consider adjusting steps downward:
   242            //   steps = 0
   243            //   steps -= NNN
   244            //   steps >>= 1
   245            //   steps = MIN(steps, 2000-100)
   246            //   if (iterations != 0) steps -= NNN
   247         }
   248         if (TraceSafepoint && Verbose) cur_state->print();
   249       }
   250     }
   252     if (PrintSafepointStatistics && iterations == 0) {
   253       begin_statistics(nof_threads, still_running);
   254     }
   256     if (still_running > 0) {
   257       // Check for if it takes to long
   258       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
   259         print_safepoint_timeout(_spinning_timeout);
   260       }
   262       // Spin to avoid context switching.
   263       // There's a tension between allowing the mutators to run (and rendezvous)
   264       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
   265       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
   266       // spinning by the VM thread on a saturated system can increase rendezvous latency.
   267       // Blocking or yielding incur their own penalties in the form of context switching
   268       // and the resultant loss of $ residency.
   269       //
   270       // Further complicating matters is that yield() does not work as naively expected
   271       // on many platforms -- yield() does not guarantee that any other ready threads
   272       // will run.   As such we revert yield_all() after some number of iterations.
   273       // Yield_all() is implemented as a short unconditional sleep on some platforms.
   274       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
   275       // can actually increase the time it takes the VM thread to detect that a system-wide
   276       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
   277       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
   278       // In that case the mutators will be stalled waiting for the safepoint to complete and the
   279       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
   280       // will eventually wake up and detect that all mutators are safe, at which point
   281       // we'll again make progress.
   282       //
   283       // Beware too that that the VMThread typically runs at elevated priority.
   284       // Its default priority is higher than the default mutator priority.
   285       // Obviously, this complicates spinning.
   286       //
   287       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
   288       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
   289       //
   290       // See the comments in synchronizer.cpp for additional remarks on spinning.
   291       //
   292       // In the future we might:
   293       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
   294       //    This is tricky as the path used by a thread exiting the JVM (say on
   295       //    on JNI call-out) simply stores into its state field.  The burden
   296       //    is placed on the VM thread, which must poll (spin).
   297       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
   298       //    we might aggressively scan the stacks of threads that are already safe.
   299       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
   300       //    If all the mutators are ONPROC there's no reason to sleep or yield.
   301       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
   302       // 5. Check system saturation.  If the system is not fully saturated then
   303       //    simply spin and avoid sleep/yield.
   304       // 6. As still-running mutators rendezvous they could unpark the sleeping
   305       //    VMthread.  This works well for still-running mutators that become
   306       //    safe.  The VMthread must still poll for mutators that call-out.
   307       // 7. Drive the policy on time-since-begin instead of iterations.
   308       // 8. Consider making the spin duration a function of the # of CPUs:
   309       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
   310       //    Alternately, instead of counting iterations of the outer loop
   311       //    we could count the # of threads visited in the inner loop, above.
   312       // 9. On windows consider using the return value from SwitchThreadTo()
   313       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
   315       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
   316          guarantee (PageArmed == 0, "invariant") ;
   317          PageArmed = 1 ;
   318          os::make_polling_page_unreadable();
   319       }
   321       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
   322       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
   323       ++steps ;
   324       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
   325         SpinPause() ;     // MP-Polite spin
   326       } else
   327       if (steps < DeferThrSuspendLoopCount) {
   328         os::NakedYield() ;
   329       } else {
   330         os::yield_all(steps) ;
   331         // Alternately, the VM thread could transiently depress its scheduling priority or
   332         // transiently increase the priority of the tardy mutator(s).
   333       }
   335       iterations ++ ;
   336     }
   337     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
   338   }
   339   assert(still_running == 0, "sanity check");
   341   if (PrintSafepointStatistics) {
   342     update_statistics_on_spin_end();
   343   }
   345   // wait until all threads are stopped
   346   while (_waiting_to_block > 0) {
   347     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
   348     if (!SafepointTimeout || timeout_error_printed) {
   349       Safepoint_lock->wait(true);  // true, means with no safepoint checks
   350     } else {
   351       // Compute remaining time
   352       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
   354       // If there is no remaining time, then there is an error
   355       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
   356         print_safepoint_timeout(_blocking_timeout);
   357       }
   358     }
   359   }
   360   assert(_waiting_to_block == 0, "sanity check");
   362 #ifndef PRODUCT
   363   if (SafepointTimeout) {
   364     jlong current_time = os::javaTimeNanos();
   365     if (safepoint_limit_time < current_time) {
   366       tty->print_cr("# SafepointSynchronize: Finished after "
   367                     INT64_FORMAT_W(6) " ms",
   368                     ((current_time - safepoint_limit_time) / MICROUNITS +
   369                      SafepointTimeoutDelay));
   370     }
   371   }
   372 #endif
   374   assert((_safepoint_counter & 0x1) == 0, "must be even");
   375   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   376   _safepoint_counter ++;
   378   // Record state
   379   _state = _synchronized;
   381   OrderAccess::fence();
   383 #ifdef ASSERT
   384   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   385     // make sure all the threads were visited
   386     assert(cur->was_visited_for_critical_count(), "missed a thread");
   387   }
   388 #endif // ASSERT
   390   // Update the count of active JNI critical regions
   391   GC_locker::set_jni_lock_count(_current_jni_active_count);
   393   if (TraceSafepoint) {
   394     VM_Operation *op = VMThread::vm_operation();
   395     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
   396   }
   398   RuntimeService::record_safepoint_synchronized();
   399   if (PrintSafepointStatistics) {
   400     update_statistics_on_sync_end(os::javaTimeNanos());
   401   }
   403   // Call stuff that needs to be run when a safepoint is just about to be completed
   404   do_cleanup_tasks();
   406   if (PrintSafepointStatistics) {
   407     // Record how much time spend on the above cleanup tasks
   408     update_statistics_on_cleanup_end(os::javaTimeNanos());
   409   }
   410 }
   412 // Wake up all threads, so they are ready to resume execution after the safepoint
   413 // operation has been carried out
   414 void SafepointSynchronize::end() {
   416   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   417   assert((_safepoint_counter & 0x1) == 1, "must be odd");
   418   _safepoint_counter ++;
   419   // memory fence isn't required here since an odd _safepoint_counter
   420   // value can do no harm and a fence is issued below anyway.
   422   DEBUG_ONLY(Thread* myThread = Thread::current();)
   423   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
   425   if (PrintSafepointStatistics) {
   426     end_statistics(os::javaTimeNanos());
   427   }
   429 #ifdef ASSERT
   430   // A pending_exception cannot be installed during a safepoint.  The threads
   431   // may install an async exception after they come back from a safepoint into
   432   // pending_exception after they unblock.  But that should happen later.
   433   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
   434     assert (!(cur->has_pending_exception() &&
   435               cur->safepoint_state()->is_at_poll_safepoint()),
   436             "safepoint installed a pending exception");
   437   }
   438 #endif // ASSERT
   440   if (PageArmed) {
   441     // Make polling safepoint aware
   442     os::make_polling_page_readable();
   443     PageArmed = 0 ;
   444   }
   446   // Remove safepoint check from interpreter
   447   Interpreter::ignore_safepoints();
   449   {
   450     MutexLocker mu(Safepoint_lock);
   452     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
   454     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
   455     // when they get restarted.
   456     _state = _not_synchronized;
   457     OrderAccess::fence();
   459     if (TraceSafepoint) {
   460        tty->print_cr("Leaving safepoint region");
   461     }
   463     // Start suspended threads
   464     for(JavaThread *current = Threads::first(); current; current = current->next()) {
   465       // A problem occurring on Solaris is when attempting to restart threads
   466       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
   467       // to the next one (since it has been running the longest).  We then have
   468       // to wait for a cpu to become available before we can continue restarting
   469       // threads.
   470       // FIXME: This causes the performance of the VM to degrade when active and with
   471       // large numbers of threads.  Apparently this is due to the synchronous nature
   472       // of suspending threads.
   473       //
   474       // TODO-FIXME: the comments above are vestigial and no longer apply.
   475       // Furthermore, using solaris' schedctl in this particular context confers no benefit
   476       if (VMThreadHintNoPreempt) {
   477         os::hint_no_preempt();
   478       }
   479       ThreadSafepointState* cur_state = current->safepoint_state();
   480       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
   481       cur_state->restart();
   482       assert(cur_state->is_running(), "safepoint state has not been reset");
   483     }
   485     RuntimeService::record_safepoint_end();
   487     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
   488     // blocked in signal_thread_blocked
   489     Threads_lock->unlock();
   491   }
   492 #ifndef SERIALGC
   493   // If there are any concurrent GC threads resume them.
   494   if (UseConcMarkSweepGC) {
   495     ConcurrentMarkSweepThread::desynchronize(false);
   496   } else if (UseG1GC) {
   497     ConcurrentGCThread::safepoint_desynchronize();
   498   }
   499 #endif // SERIALGC
   500   // record this time so VMThread can keep track how much time has elasped
   501   // since last safepoint.
   502   _end_of_last_safepoint = os::javaTimeMillis();
   503 }
   505 bool SafepointSynchronize::is_cleanup_needed() {
   506   // Need a safepoint if some inline cache buffers is non-empty
   507   if (!InlineCacheBuffer::is_empty()) return true;
   508   return false;
   509 }
   513 // Various cleaning tasks that should be done periodically at safepoints
   514 void SafepointSynchronize::do_cleanup_tasks() {
   515   {
   516     TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
   517     ObjectSynchronizer::deflate_idle_monitors();
   518   }
   520   {
   521     TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
   522     InlineCacheBuffer::update_inline_caches();
   523   }
   524   {
   525     TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
   526     CompilationPolicy::policy()->do_safepoint_work();
   527   }
   529   TraceTime t4("sweeping nmethods", TraceSafepointCleanupTime);
   530   NMethodSweeper::scan_stacks();
   532   // rotate log files?
   533   if (UseGCLogFileRotation) {
   534     gclog_or_tty->rotate_log();
   535   }
   536 }
   539 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
   540   switch(state) {
   541   case _thread_in_native:
   542     // native threads are safe if they have no java stack or have walkable stack
   543     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
   545    // blocked threads should have already have walkable stack
   546   case _thread_blocked:
   547     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
   548     return true;
   550   default:
   551     return false;
   552   }
   553 }
   556 // See if the thread is running inside a lazy critical native and
   557 // update the thread critical count if so.  Also set a suspend flag to
   558 // cause the native wrapper to return into the JVM to do the unlock
   559 // once the native finishes.
   560 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
   561   if (state == _thread_in_native &&
   562       thread->has_last_Java_frame() &&
   563       thread->frame_anchor()->walkable()) {
   564     // This thread might be in a critical native nmethod so look at
   565     // the top of the stack and increment the critical count if it
   566     // is.
   567     frame wrapper_frame = thread->last_frame();
   568     CodeBlob* stub_cb = wrapper_frame.cb();
   569     if (stub_cb != NULL &&
   570         stub_cb->is_nmethod() &&
   571         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
   572       // A thread could potentially be in a critical native across
   573       // more than one safepoint, so only update the critical state on
   574       // the first one.  When it returns it will perform the unlock.
   575       if (!thread->do_critical_native_unlock()) {
   576 #ifdef ASSERT
   577         if (!thread->in_critical()) {
   578           GC_locker::increment_debug_jni_lock_count();
   579         }
   580 #endif
   581         thread->enter_critical();
   582         // Make sure the native wrapper calls back on return to
   583         // perform the needed critical unlock.
   584         thread->set_critical_native_unlock();
   585       }
   586     }
   587   }
   588 }
   592 // -------------------------------------------------------------------------------------------------------
   593 // Implementation of Safepoint callback point
   595 void SafepointSynchronize::block(JavaThread *thread) {
   596   assert(thread != NULL, "thread must be set");
   597   assert(thread->is_Java_thread(), "not a Java thread");
   599   // Threads shouldn't block if they are in the middle of printing, but...
   600   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
   602   // Only bail from the block() call if the thread is gone from the
   603   // thread list; starting to exit should still block.
   604   if (thread->is_terminated()) {
   605      // block current thread if we come here from native code when VM is gone
   606      thread->block_if_vm_exited();
   608      // otherwise do nothing
   609      return;
   610   }
   612   JavaThreadState state = thread->thread_state();
   613   thread->frame_anchor()->make_walkable(thread);
   615   // Check that we have a valid thread_state at this point
   616   switch(state) {
   617     case _thread_in_vm_trans:
   618     case _thread_in_Java:        // From compiled code
   620       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
   621       // we pretend we are still in the VM.
   622       thread->set_thread_state(_thread_in_vm);
   624       if (is_synchronizing()) {
   625          Atomic::inc (&TryingToBlock) ;
   626       }
   628       // We will always be holding the Safepoint_lock when we are examine the state
   629       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
   630       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
   631       Safepoint_lock->lock_without_safepoint_check();
   632       if (is_synchronizing()) {
   633         // Decrement the number of threads to wait for and signal vm thread
   634         assert(_waiting_to_block > 0, "sanity check");
   635         _waiting_to_block--;
   636         thread->safepoint_state()->set_has_called_back(true);
   638         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
   639         if (thread->in_critical()) {
   640           // Notice that this thread is in a critical section
   641           increment_jni_active_count();
   642         }
   644         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
   645         if (_waiting_to_block == 0) {
   646           Safepoint_lock->notify_all();
   647         }
   648       }
   650       // We transition the thread to state _thread_blocked here, but
   651       // we can't do our usual check for external suspension and then
   652       // self-suspend after the lock_without_safepoint_check() call
   653       // below because we are often called during transitions while
   654       // we hold different locks. That would leave us suspended while
   655       // holding a resource which results in deadlocks.
   656       thread->set_thread_state(_thread_blocked);
   657       Safepoint_lock->unlock();
   659       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
   660       // the entire safepoint, the threads will all line up here during the safepoint.
   661       Threads_lock->lock_without_safepoint_check();
   662       // restore original state. This is important if the thread comes from compiled code, so it
   663       // will continue to execute with the _thread_in_Java state.
   664       thread->set_thread_state(state);
   665       Threads_lock->unlock();
   666       break;
   668     case _thread_in_native_trans:
   669     case _thread_blocked_trans:
   670     case _thread_new_trans:
   671       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
   672         thread->print_thread_state();
   673         fatal("Deadlock in safepoint code.  "
   674               "Should have called back to the VM before blocking.");
   675       }
   677       // We transition the thread to state _thread_blocked here, but
   678       // we can't do our usual check for external suspension and then
   679       // self-suspend after the lock_without_safepoint_check() call
   680       // below because we are often called during transitions while
   681       // we hold different locks. That would leave us suspended while
   682       // holding a resource which results in deadlocks.
   683       thread->set_thread_state(_thread_blocked);
   685       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
   686       // the safepoint code might still be waiting for it to block. We need to change the state here,
   687       // so it can see that it is at a safepoint.
   689       // Block until the safepoint operation is completed.
   690       Threads_lock->lock_without_safepoint_check();
   692       // Restore state
   693       thread->set_thread_state(state);
   695       Threads_lock->unlock();
   696       break;
   698     default:
   699      fatal(err_msg("Illegal threadstate encountered: %d", state));
   700   }
   702   // Check for pending. async. exceptions or suspends - except if the
   703   // thread was blocked inside the VM. has_special_runtime_exit_condition()
   704   // is called last since it grabs a lock and we only want to do that when
   705   // we must.
   706   //
   707   // Note: we never deliver an async exception at a polling point as the
   708   // compiler may not have an exception handler for it. The polling
   709   // code will notice the async and deoptimize and the exception will
   710   // be delivered. (Polling at a return point is ok though). Sure is
   711   // a lot of bother for a deprecated feature...
   712   //
   713   // We don't deliver an async exception if the thread state is
   714   // _thread_in_native_trans so JNI functions won't be called with
   715   // a surprising pending exception. If the thread state is going back to java,
   716   // async exception is checked in check_special_condition_for_native_trans().
   718   if (state != _thread_blocked_trans &&
   719       state != _thread_in_vm_trans &&
   720       thread->has_special_runtime_exit_condition()) {
   721     thread->handle_special_runtime_exit_condition(
   722       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
   723   }
   724 }
   726 // ------------------------------------------------------------------------------------------------------
   727 // Exception handlers
   729 #ifndef PRODUCT
   730 #ifdef _LP64
   731 #define PTR_PAD ""
   732 #else
   733 #define PTR_PAD "        "
   734 #endif
   736 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
   737   bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
   738   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
   739                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   740                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   741 }
   743 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
   744   bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
   745   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
   746                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   747                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   748 }
   750 #ifdef SPARC
   751 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
   752 #ifdef _LP64
   753   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
   754   const int incr = 1;           // Increment to skip a long, in units of intptr_t
   755 #else
   756   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
   757   const int incr = 2;           // Increment to skip a long, in units of intptr_t
   758 #endif
   759   tty->print_cr("---SP---|");
   760   for( int i=0; i<16; i++ ) {
   761     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   762   tty->print_cr("--------|");
   763   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
   764     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   765   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
   766   tty->print_cr("--------|");
   767   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   768   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   769   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   770   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   771   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
   772   old_sp += incr; new_sp += incr; was_oops += incr;
   773   // Skip the floats
   774   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
   775   tty->print_cr("---FP---|");
   776   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
   777   for( int i2=0; i2<16; i2++ ) {
   778     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   779   tty->print_cr("");
   780 }
   781 #endif  // SPARC
   782 #endif  // PRODUCT
   785 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
   786   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
   787   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
   788   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
   790   // Uncomment this to get some serious before/after printing of the
   791   // Sparc safepoint-blob frame structure.
   792   /*
   793   intptr_t* sp = thread->last_Java_sp();
   794   intptr_t stack_copy[150];
   795   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
   796   bool was_oops[150];
   797   for( int i=0; i<150; i++ )
   798     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
   799   */
   801   if (ShowSafepointMsgs) {
   802     tty->print("handle_polling_page_exception: ");
   803   }
   805   if (PrintSafepointStatistics) {
   806     inc_page_trap_count();
   807   }
   809   ThreadSafepointState* state = thread->safepoint_state();
   811   state->handle_polling_page_exception();
   812   // print_me(sp,stack_copy,was_oops);
   813 }
   816 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
   817   if (!timeout_error_printed) {
   818     timeout_error_printed = true;
   819     // Print out the thread infor which didn't reach the safepoint for debugging
   820     // purposes (useful when there are lots of threads in the debugger).
   821     tty->print_cr("");
   822     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
   823     if (reason ==  _spinning_timeout) {
   824       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
   825     } else if (reason == _blocking_timeout) {
   826       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
   827     }
   829     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
   830     ThreadSafepointState *cur_state;
   831     ResourceMark rm;
   832     for(JavaThread *cur_thread = Threads::first(); cur_thread;
   833         cur_thread = cur_thread->next()) {
   834       cur_state = cur_thread->safepoint_state();
   836       if (cur_thread->thread_state() != _thread_blocked &&
   837           ((reason == _spinning_timeout && cur_state->is_running()) ||
   838            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
   839         tty->print("# ");
   840         cur_thread->print();
   841         tty->print_cr("");
   842       }
   843     }
   844     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
   845   }
   847   // To debug the long safepoint, specify both DieOnSafepointTimeout &
   848   // ShowMessageBoxOnError.
   849   if (DieOnSafepointTimeout) {
   850     char msg[1024];
   851     VM_Operation *op = VMThread::vm_operation();
   852     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
   853             SafepointTimeoutDelay,
   854             op != NULL ? op->name() : "no vm operation");
   855     fatal(msg);
   856   }
   857 }
   860 // -------------------------------------------------------------------------------------------------------
   861 // Implementation of ThreadSafepointState
   863 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
   864   _thread = thread;
   865   _type   = _running;
   866   _has_called_back = false;
   867   _at_poll_safepoint = false;
   868 }
   870 void ThreadSafepointState::create(JavaThread *thread) {
   871   ThreadSafepointState *state = new ThreadSafepointState(thread);
   872   thread->set_safepoint_state(state);
   873 }
   875 void ThreadSafepointState::destroy(JavaThread *thread) {
   876   if (thread->safepoint_state()) {
   877     delete(thread->safepoint_state());
   878     thread->set_safepoint_state(NULL);
   879   }
   880 }
   882 void ThreadSafepointState::examine_state_of_thread() {
   883   assert(is_running(), "better be running or just have hit safepoint poll");
   885   JavaThreadState state = _thread->thread_state();
   887   // Save the state at the start of safepoint processing.
   888   _orig_thread_state = state;
   890   // Check for a thread that is suspended. Note that thread resume tries
   891   // to grab the Threads_lock which we own here, so a thread cannot be
   892   // resumed during safepoint synchronization.
   894   // We check to see if this thread is suspended without locking to
   895   // avoid deadlocking with a third thread that is waiting for this
   896   // thread to be suspended. The third thread can notice the safepoint
   897   // that we're trying to start at the beginning of its SR_lock->wait()
   898   // call. If that happens, then the third thread will block on the
   899   // safepoint while still holding the underlying SR_lock. We won't be
   900   // able to get the SR_lock and we'll deadlock.
   901   //
   902   // We don't need to grab the SR_lock here for two reasons:
   903   // 1) The suspend flags are both volatile and are set with an
   904   //    Atomic::cmpxchg() call so we should see the suspended
   905   //    state right away.
   906   // 2) We're being called from the safepoint polling loop; if
   907   //    we don't see the suspended state on this iteration, then
   908   //    we'll come around again.
   909   //
   910   bool is_suspended = _thread->is_ext_suspended();
   911   if (is_suspended) {
   912     roll_forward(_at_safepoint);
   913     return;
   914   }
   916   // Some JavaThread states have an initial safepoint state of
   917   // running, but are actually at a safepoint. We will happily
   918   // agree and update the safepoint state here.
   919   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
   920     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
   921     roll_forward(_at_safepoint);
   922     return;
   923   }
   925   if (state == _thread_in_vm) {
   926     roll_forward(_call_back);
   927     return;
   928   }
   930   // All other thread states will continue to run until they
   931   // transition and self-block in state _blocked
   932   // Safepoint polling in compiled code causes the Java threads to do the same.
   933   // Note: new threads may require a malloc so they must be allowed to finish
   935   assert(is_running(), "examine_state_of_thread on non-running thread");
   936   return;
   937 }
   939 // Returns true is thread could not be rolled forward at present position.
   940 void ThreadSafepointState::roll_forward(suspend_type type) {
   941   _type = type;
   943   switch(_type) {
   944     case _at_safepoint:
   945       SafepointSynchronize::signal_thread_at_safepoint();
   946       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
   947       if (_thread->in_critical()) {
   948         // Notice that this thread is in a critical section
   949         SafepointSynchronize::increment_jni_active_count();
   950       }
   951       break;
   953     case _call_back:
   954       set_has_called_back(false);
   955       break;
   957     case _running:
   958     default:
   959       ShouldNotReachHere();
   960   }
   961 }
   963 void ThreadSafepointState::restart() {
   964   switch(type()) {
   965     case _at_safepoint:
   966     case _call_back:
   967       break;
   969     case _running:
   970     default:
   971        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
   972                       _thread, _type);
   973        _thread->print();
   974       ShouldNotReachHere();
   975   }
   976   _type = _running;
   977   set_has_called_back(false);
   978 }
   981 void ThreadSafepointState::print_on(outputStream *st) const {
   982   const char *s;
   984   switch(_type) {
   985     case _running                : s = "_running";              break;
   986     case _at_safepoint           : s = "_at_safepoint";         break;
   987     case _call_back              : s = "_call_back";            break;
   988     default:
   989       ShouldNotReachHere();
   990   }
   992   st->print_cr("Thread: " INTPTR_FORMAT
   993               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
   994                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
   995                _at_poll_safepoint);
   997   _thread->print_thread_state_on(st);
   998 }
  1001 // ---------------------------------------------------------------------------------------------------------------------
  1003 // Block the thread at the safepoint poll or poll return.
  1004 void ThreadSafepointState::handle_polling_page_exception() {
  1006   // Check state.  block() will set thread state to thread_in_vm which will
  1007   // cause the safepoint state _type to become _call_back.
  1008   assert(type() == ThreadSafepointState::_running,
  1009          "polling page exception on thread not running state");
  1011   // Step 1: Find the nmethod from the return address
  1012   if (ShowSafepointMsgs && Verbose) {
  1013     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
  1015   address real_return_addr = thread()->saved_exception_pc();
  1017   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
  1018   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
  1019   nmethod* nm = (nmethod*)cb;
  1021   // Find frame of caller
  1022   frame stub_fr = thread()->last_frame();
  1023   CodeBlob* stub_cb = stub_fr.cb();
  1024   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
  1025   RegisterMap map(thread(), true);
  1026   frame caller_fr = stub_fr.sender(&map);
  1028   // Should only be poll_return or poll
  1029   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
  1031   // This is a poll immediately before a return. The exception handling code
  1032   // has already had the effect of causing the return to occur, so the execution
  1033   // will continue immediately after the call. In addition, the oopmap at the
  1034   // return point does not mark the return value as an oop (if it is), so
  1035   // it needs a handle here to be updated.
  1036   if( nm->is_at_poll_return(real_return_addr) ) {
  1037     // See if return type is an oop.
  1038     bool return_oop = nm->method()->is_returning_oop();
  1039     Handle return_value;
  1040     if (return_oop) {
  1041       // The oop result has been saved on the stack together with all
  1042       // the other registers. In order to preserve it over GCs we need
  1043       // to keep it in a handle.
  1044       oop result = caller_fr.saved_oop_result(&map);
  1045       assert(result == NULL || result->is_oop(), "must be oop");
  1046       return_value = Handle(thread(), result);
  1047       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
  1050     // Block the thread
  1051     SafepointSynchronize::block(thread());
  1053     // restore oop result, if any
  1054     if (return_oop) {
  1055       caller_fr.set_saved_oop_result(&map, return_value());
  1059   // This is a safepoint poll. Verify the return address and block.
  1060   else {
  1061     set_at_poll_safepoint(true);
  1063     // verify the blob built the "return address" correctly
  1064     assert(real_return_addr == caller_fr.pc(), "must match");
  1066     // Block the thread
  1067     SafepointSynchronize::block(thread());
  1068     set_at_poll_safepoint(false);
  1070     // If we have a pending async exception deoptimize the frame
  1071     // as otherwise we may never deliver it.
  1072     if (thread()->has_async_condition()) {
  1073       ThreadInVMfromJavaNoAsyncException __tiv(thread());
  1074       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
  1077     // If an exception has been installed we must check for a pending deoptimization
  1078     // Deoptimize frame if exception has been thrown.
  1080     if (thread()->has_pending_exception() ) {
  1081       RegisterMap map(thread(), true);
  1082       frame caller_fr = stub_fr.sender(&map);
  1083       if (caller_fr.is_deoptimized_frame()) {
  1084         // The exception patch will destroy registers that are still
  1085         // live and will be needed during deoptimization. Defer the
  1086         // Async exception should have defered the exception until the
  1087         // next safepoint which will be detected when we get into
  1088         // the interpreter so if we have an exception now things
  1089         // are messed up.
  1091         fatal("Exception installed and deoptimization is pending");
  1098 //
  1099 //                     Statistics & Instrumentations
  1100 //
  1101 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
  1102 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
  1103 int    SafepointSynchronize::_cur_stat_index = 0;
  1104 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
  1105 julong SafepointSynchronize::_coalesced_vmop_count = 0;
  1106 jlong  SafepointSynchronize::_max_sync_time = 0;
  1107 jlong  SafepointSynchronize::_max_vmop_time = 0;
  1108 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
  1110 static jlong  cleanup_end_time = 0;
  1111 static bool   need_to_track_page_armed_status = false;
  1112 static bool   init_done = false;
  1114 // Helper method to print the header.
  1115 static void print_header() {
  1116   tty->print("         vmop                    "
  1117              "[threads: total initially_running wait_to_block]    ");
  1118   tty->print("[time: spin block sync cleanup vmop] ");
  1120   // no page armed status printed out if it is always armed.
  1121   if (need_to_track_page_armed_status) {
  1122     tty->print("page_armed ");
  1125   tty->print_cr("page_trap_count");
  1128 void SafepointSynchronize::deferred_initialize_stat() {
  1129   if (init_done) return;
  1131   if (PrintSafepointStatisticsCount <= 0) {
  1132     fatal("Wrong PrintSafepointStatisticsCount");
  1135   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
  1136   // be printed right away, in which case, _safepoint_stats will regress to
  1137   // a single element array. Otherwise, it is a circular ring buffer with default
  1138   // size of PrintSafepointStatisticsCount.
  1139   int stats_array_size;
  1140   if (PrintSafepointStatisticsTimeout > 0) {
  1141     stats_array_size = 1;
  1142     PrintSafepointStatistics = true;
  1143   } else {
  1144     stats_array_size = PrintSafepointStatisticsCount;
  1146   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
  1147                                                  * sizeof(SafepointStats));
  1148   guarantee(_safepoint_stats != NULL,
  1149             "not enough memory for safepoint instrumentation data");
  1151   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
  1152     need_to_track_page_armed_status = true;
  1154   init_done = true;
  1157 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
  1158   assert(init_done, "safepoint statistics array hasn't been initialized");
  1159   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1161   spstat->_time_stamp = _ts_of_current_safepoint;
  1163   VM_Operation *op = VMThread::vm_operation();
  1164   spstat->_vmop_type = (op != NULL ? op->type() : -1);
  1165   if (op != NULL) {
  1166     _safepoint_reasons[spstat->_vmop_type]++;
  1169   spstat->_nof_total_threads = nof_threads;
  1170   spstat->_nof_initial_running_threads = nof_running;
  1171   spstat->_nof_threads_hit_page_trap = 0;
  1173   // Records the start time of spinning. The real time spent on spinning
  1174   // will be adjusted when spin is done. Same trick is applied for time
  1175   // spent on waiting for threads to block.
  1176   if (nof_running != 0) {
  1177     spstat->_time_to_spin = os::javaTimeNanos();
  1178   }  else {
  1179     spstat->_time_to_spin = 0;
  1183 void SafepointSynchronize::update_statistics_on_spin_end() {
  1184   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1186   jlong cur_time = os::javaTimeNanos();
  1188   spstat->_nof_threads_wait_to_block = _waiting_to_block;
  1189   if (spstat->_nof_initial_running_threads != 0) {
  1190     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
  1193   if (need_to_track_page_armed_status) {
  1194     spstat->_page_armed = (PageArmed == 1);
  1197   // Records the start time of waiting for to block. Updated when block is done.
  1198   if (_waiting_to_block != 0) {
  1199     spstat->_time_to_wait_to_block = cur_time;
  1200   } else {
  1201     spstat->_time_to_wait_to_block = 0;
  1205 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
  1206   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1208   if (spstat->_nof_threads_wait_to_block != 0) {
  1209     spstat->_time_to_wait_to_block = end_time -
  1210       spstat->_time_to_wait_to_block;
  1213   // Records the end time of sync which will be used to calculate the total
  1214   // vm operation time. Again, the real time spending in syncing will be deducted
  1215   // from the start of the sync time later when end_statistics is called.
  1216   spstat->_time_to_sync = end_time - _safepoint_begin_time;
  1217   if (spstat->_time_to_sync > _max_sync_time) {
  1218     _max_sync_time = spstat->_time_to_sync;
  1221   spstat->_time_to_do_cleanups = end_time;
  1224 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
  1225   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1227   // Record how long spent in cleanup tasks.
  1228   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
  1230   cleanup_end_time = end_time;
  1233 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
  1234   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1236   // Update the vm operation time.
  1237   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
  1238   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
  1239     _max_vmop_time = spstat->_time_to_exec_vmop;
  1241   // Only the sync time longer than the specified
  1242   // PrintSafepointStatisticsTimeout will be printed out right away.
  1243   // By default, it is -1 meaning all samples will be put into the list.
  1244   if ( PrintSafepointStatisticsTimeout > 0) {
  1245     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1246       print_statistics();
  1248   } else {
  1249     // The safepoint statistics will be printed out when the _safepoin_stats
  1250     // array fills up.
  1251     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
  1252       print_statistics();
  1253       _cur_stat_index = 0;
  1254     } else {
  1255       _cur_stat_index++;
  1260 void SafepointSynchronize::print_statistics() {
  1261   SafepointStats* sstats = _safepoint_stats;
  1263   for (int index = 0; index <= _cur_stat_index; index++) {
  1264     if (index % 30 == 0) {
  1265       print_header();
  1267     sstats = &_safepoint_stats[index];
  1268     tty->print("%.3f: ", sstats->_time_stamp);
  1269     tty->print("%-26s       ["
  1270                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
  1271                "    ]    ",
  1272                sstats->_vmop_type == -1 ? "no vm operation" :
  1273                VM_Operation::name(sstats->_vmop_type),
  1274                sstats->_nof_total_threads,
  1275                sstats->_nof_initial_running_threads,
  1276                sstats->_nof_threads_wait_to_block);
  1277     // "/ MICROUNITS " is to convert the unit from nanos to millis.
  1278     tty->print("  ["
  1279                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1280                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1281                INT64_FORMAT_W(6)"    ]  ",
  1282                sstats->_time_to_spin / MICROUNITS,
  1283                sstats->_time_to_wait_to_block / MICROUNITS,
  1284                sstats->_time_to_sync / MICROUNITS,
  1285                sstats->_time_to_do_cleanups / MICROUNITS,
  1286                sstats->_time_to_exec_vmop / MICROUNITS);
  1288     if (need_to_track_page_armed_status) {
  1289       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
  1291     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
  1295 // This method will be called when VM exits. It will first call
  1296 // print_statistics to print out the rest of the sampling.  Then
  1297 // it tries to summarize the sampling.
  1298 void SafepointSynchronize::print_stat_on_exit() {
  1299   if (_safepoint_stats == NULL) return;
  1301   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1303   // During VM exit, end_statistics may not get called and in that
  1304   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
  1305   // don't print it out.
  1306   // Approximate the vm op time.
  1307   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
  1308     os::javaTimeNanos() - cleanup_end_time;
  1310   if ( PrintSafepointStatisticsTimeout < 0 ||
  1311        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1312     print_statistics();
  1314   tty->print_cr("");
  1316   // Print out polling page sampling status.
  1317   if (!need_to_track_page_armed_status) {
  1318     if (UseCompilerSafepoints) {
  1319       tty->print_cr("Polling page always armed");
  1321   } else {
  1322     tty->print_cr("Defer polling page loop count = %d\n",
  1323                  DeferPollingPageLoopCount);
  1326   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
  1327     if (_safepoint_reasons[index] != 0) {
  1328       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
  1329                     _safepoint_reasons[index]);
  1333   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
  1334                 _coalesced_vmop_count);
  1335   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
  1336                 _max_sync_time / MICROUNITS);
  1337   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
  1338                 INT64_FORMAT_W(5)" ms",
  1339                 _max_vmop_time / MICROUNITS);
  1342 // ------------------------------------------------------------------------------------------------
  1343 // Non-product code
  1345 #ifndef PRODUCT
  1347 void SafepointSynchronize::print_state() {
  1348   if (_state == _not_synchronized) {
  1349     tty->print_cr("not synchronized");
  1350   } else if (_state == _synchronizing || _state == _synchronized) {
  1351     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
  1352                   "synchronized");
  1354     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
  1355        cur->safepoint_state()->print();
  1360 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
  1361   if (ShowSafepointMsgs) {
  1362     va_list ap;
  1363     va_start(ap, format);
  1364     tty->vprint_cr(format, ap);
  1365     va_end(ap);
  1369 #endif // !PRODUCT

mercurial