src/share/vm/gc_implementation/shared/parGCAllocBuffer.cpp

Thu, 13 Feb 2014 17:44:39 +0100

author
stefank
date
Thu, 13 Feb 2014 17:44:39 +0100
changeset 6971
7426d8d76305
parent 6680
78bbf4d43a14
child 6876
710a3c8b516e
permissions
-rw-r--r--

8034761: Remove the do_code_roots parameter from process_strong_roots
Reviewed-by: tschatzl, mgerdin, jmasa

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
    27 #include "memory/sharedHeap.hpp"
    28 #include "oops/arrayOop.hpp"
    29 #include "oops/oop.inline.hpp"
    31 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    33 ParGCAllocBuffer::ParGCAllocBuffer(size_t desired_plab_sz_) :
    34   _word_sz(desired_plab_sz_), _bottom(NULL), _top(NULL),
    35   _end(NULL), _hard_end(NULL),
    36   _retained(false), _retained_filler(),
    37   _allocated(0), _wasted(0)
    38 {
    39   assert (min_size() > AlignmentReserve, "Inconsistency!");
    40   // arrayOopDesc::header_size depends on command line initialization.
    41   FillerHeaderSize = align_object_size(arrayOopDesc::header_size(T_INT));
    42   AlignmentReserve = oopDesc::header_size() > MinObjAlignment ? FillerHeaderSize : 0;
    43 }
    45 size_t ParGCAllocBuffer::FillerHeaderSize;
    47 // If the minimum object size is greater than MinObjAlignment, we can
    48 // end up with a shard at the end of the buffer that's smaller than
    49 // the smallest object.  We can't allow that because the buffer must
    50 // look like it's full of objects when we retire it, so we make
    51 // sure we have enough space for a filler int array object.
    52 size_t ParGCAllocBuffer::AlignmentReserve;
    54 void ParGCAllocBuffer::retire(bool end_of_gc, bool retain) {
    55   assert(!retain || end_of_gc, "Can only retain at GC end.");
    56   if (_retained) {
    57     // If the buffer had been retained shorten the previous filler object.
    58     assert(_retained_filler.end() <= _top, "INVARIANT");
    59     CollectedHeap::fill_with_object(_retained_filler);
    60     // Wasted space book-keeping, otherwise (normally) done in invalidate()
    61     _wasted += _retained_filler.word_size();
    62     _retained = false;
    63   }
    64   assert(!end_of_gc || !_retained, "At this point, end_of_gc ==> !_retained.");
    65   if (_top < _hard_end) {
    66     CollectedHeap::fill_with_object(_top, _hard_end);
    67     if (!retain) {
    68       invalidate();
    69     } else {
    70       // Is there wasted space we'd like to retain for the next GC?
    71       if (pointer_delta(_end, _top) > FillerHeaderSize) {
    72         _retained = true;
    73         _retained_filler = MemRegion(_top, FillerHeaderSize);
    74         _top = _top + FillerHeaderSize;
    75       } else {
    76         invalidate();
    77       }
    78     }
    79   }
    80 }
    82 void ParGCAllocBuffer::flush_stats(PLABStats* stats) {
    83   assert(ResizePLAB, "Wasted work");
    84   stats->add_allocated(_allocated);
    85   stats->add_wasted(_wasted);
    86   stats->add_unused(pointer_delta(_end, _top));
    87 }
    89 // Compute desired plab size and latch result for later
    90 // use. This should be called once at the end of parallel
    91 // scavenge; it clears the sensor accumulators.
    92 void PLABStats::adjust_desired_plab_sz(uint no_of_gc_workers) {
    93   assert(ResizePLAB, "Not set");
    95   assert(is_object_aligned(max_size()) && min_size() <= max_size(),
    96          "PLAB clipping computation may be incorrect");
    98   if (_allocated == 0) {
    99     assert(_unused == 0,
   100            err_msg("Inconsistency in PLAB stats: "
   101                    "_allocated: "SIZE_FORMAT", "
   102                    "_wasted: "SIZE_FORMAT", "
   103                    "_unused: "SIZE_FORMAT", "
   104                    "_used  : "SIZE_FORMAT,
   105                    _allocated, _wasted, _unused, _used));
   107     _allocated = 1;
   108   }
   109   double wasted_frac    = (double)_unused/(double)_allocated;
   110   size_t target_refills = (size_t)((wasted_frac*TargetSurvivorRatio)/
   111                                    TargetPLABWastePct);
   112   if (target_refills == 0) {
   113     target_refills = 1;
   114   }
   115   _used = _allocated - _wasted - _unused;
   116   size_t plab_sz = _used/(target_refills*no_of_gc_workers);
   117   if (PrintPLAB) gclog_or_tty->print(" (plab_sz = %d ", plab_sz);
   118   // Take historical weighted average
   119   _filter.sample(plab_sz);
   120   // Clip from above and below, and align to object boundary
   121   plab_sz = MAX2(min_size(), (size_t)_filter.average());
   122   plab_sz = MIN2(max_size(), plab_sz);
   123   plab_sz = align_object_size(plab_sz);
   124   // Latch the result
   125   if (PrintPLAB) gclog_or_tty->print(" desired_plab_sz = %d) ", plab_sz);
   126   _desired_plab_sz = plab_sz;
   127   // Now clear the accumulators for next round:
   128   // note this needs to be fixed in the case where we
   129   // are retaining across scavenges. FIX ME !!! XXX
   130   _allocated = 0;
   131   _wasted    = 0;
   132   _unused    = 0;
   133 }
   135 #ifndef PRODUCT
   136 void ParGCAllocBuffer::print() {
   137   gclog_or_tty->print("parGCAllocBuffer: _bottom: %p  _top: %p  _end: %p  _hard_end: %p"
   138              "_retained: %c _retained_filler: [%p,%p)\n",
   139              _bottom, _top, _end, _hard_end,
   140              "FT"[_retained], _retained_filler.start(), _retained_filler.end());
   141 }
   142 #endif // !PRODUCT
   144 const size_t ParGCAllocBufferWithBOT::ChunkSizeInWords =
   145 MIN2(CardTableModRefBS::par_chunk_heapword_alignment(),
   146      ((size_t)Generation::GenGrain)/HeapWordSize);
   147 const size_t ParGCAllocBufferWithBOT::ChunkSizeInBytes =
   148 MIN2(CardTableModRefBS::par_chunk_heapword_alignment() * HeapWordSize,
   149      (size_t)Generation::GenGrain);
   151 ParGCAllocBufferWithBOT::ParGCAllocBufferWithBOT(size_t word_sz,
   152                                                  BlockOffsetSharedArray* bsa) :
   153   ParGCAllocBuffer(word_sz),
   154   _bsa(bsa),
   155   _bt(bsa, MemRegion(_bottom, _hard_end)),
   156   _true_end(_hard_end)
   157 {}
   159 // The buffer comes with its own BOT, with a shared (obviously) underlying
   160 // BlockOffsetSharedArray. We manipulate this BOT in the normal way
   161 // as we would for any contiguous space. However, on accasion we
   162 // need to do some buffer surgery at the extremities before we
   163 // start using the body of the buffer for allocations. Such surgery
   164 // (as explained elsewhere) is to prevent allocation on a card that
   165 // is in the process of being walked concurrently by another GC thread.
   166 // When such surgery happens at a point that is far removed (to the
   167 // right of the current allocation point, top), we use the "contig"
   168 // parameter below to directly manipulate the shared array without
   169 // modifying the _next_threshold state in the BOT.
   170 void ParGCAllocBufferWithBOT::fill_region_with_block(MemRegion mr,
   171                                                      bool contig) {
   172   CollectedHeap::fill_with_object(mr);
   173   if (contig) {
   174     _bt.alloc_block(mr.start(), mr.end());
   175   } else {
   176     _bt.BlockOffsetArray::alloc_block(mr.start(), mr.end());
   177   }
   178 }
   180 HeapWord* ParGCAllocBufferWithBOT::allocate_slow(size_t word_sz) {
   181   HeapWord* res = NULL;
   182   if (_true_end > _hard_end) {
   183     assert((HeapWord*)align_size_down(intptr_t(_hard_end),
   184                                       ChunkSizeInBytes) == _hard_end,
   185            "or else _true_end should be equal to _hard_end");
   186     assert(_retained, "or else _true_end should be equal to _hard_end");
   187     assert(_retained_filler.end() <= _top, "INVARIANT");
   188     CollectedHeap::fill_with_object(_retained_filler);
   189     if (_top < _hard_end) {
   190       fill_region_with_block(MemRegion(_top, _hard_end), true);
   191     }
   192     HeapWord* next_hard_end = MIN2(_true_end, _hard_end + ChunkSizeInWords);
   193     _retained_filler = MemRegion(_hard_end, FillerHeaderSize);
   194     _bt.alloc_block(_retained_filler.start(), _retained_filler.word_size());
   195     _top      = _retained_filler.end();
   196     _hard_end = next_hard_end;
   197     _end      = _hard_end - AlignmentReserve;
   198     res       = ParGCAllocBuffer::allocate(word_sz);
   199     if (res != NULL) {
   200       _bt.alloc_block(res, word_sz);
   201     }
   202   }
   203   return res;
   204 }
   206 void
   207 ParGCAllocBufferWithBOT::undo_allocation(HeapWord* obj, size_t word_sz) {
   208   ParGCAllocBuffer::undo_allocation(obj, word_sz);
   209   // This may back us up beyond the previous threshold, so reset.
   210   _bt.set_region(MemRegion(_top, _hard_end));
   211   _bt.initialize_threshold();
   212 }
   214 void ParGCAllocBufferWithBOT::retire(bool end_of_gc, bool retain) {
   215   assert(!retain || end_of_gc, "Can only retain at GC end.");
   216   if (_retained) {
   217     // We're about to make the retained_filler into a block.
   218     _bt.BlockOffsetArray::alloc_block(_retained_filler.start(),
   219                                       _retained_filler.end());
   220   }
   221   // Reset _hard_end to _true_end (and update _end)
   222   if (retain && _hard_end != NULL) {
   223     assert(_hard_end <= _true_end, "Invariant.");
   224     _hard_end = _true_end;
   225     _end      = MAX2(_top, _hard_end - AlignmentReserve);
   226     assert(_end <= _hard_end, "Invariant.");
   227   }
   228   _true_end = _hard_end;
   229   HeapWord* pre_top = _top;
   231   ParGCAllocBuffer::retire(end_of_gc, retain);
   232   // Now any old _retained_filler is cut back to size, the free part is
   233   // filled with a filler object, and top is past the header of that
   234   // object.
   236   if (retain && _top < _end) {
   237     assert(end_of_gc && retain, "Or else retain should be false.");
   238     // If the lab does not start on a card boundary, we don't want to
   239     // allocate onto that card, since that might lead to concurrent
   240     // allocation and card scanning, which we don't support.  So we fill
   241     // the first card with a garbage object.
   242     size_t first_card_index = _bsa->index_for(pre_top);
   243     HeapWord* first_card_start = _bsa->address_for_index(first_card_index);
   244     if (first_card_start < pre_top) {
   245       HeapWord* second_card_start =
   246         _bsa->inc_by_region_size(first_card_start);
   248       // Ensure enough room to fill with the smallest block
   249       second_card_start = MAX2(second_card_start, pre_top + AlignmentReserve);
   251       // If the end is already in the first card, don't go beyond it!
   252       // Or if the remainder is too small for a filler object, gobble it up.
   253       if (_hard_end < second_card_start ||
   254           pointer_delta(_hard_end, second_card_start) < AlignmentReserve) {
   255         second_card_start = _hard_end;
   256       }
   257       if (pre_top < second_card_start) {
   258         MemRegion first_card_suffix(pre_top, second_card_start);
   259         fill_region_with_block(first_card_suffix, true);
   260       }
   261       pre_top = second_card_start;
   262       _top = pre_top;
   263       _end = MAX2(_top, _hard_end - AlignmentReserve);
   264     }
   266     // If the lab does not end on a card boundary, we don't want to
   267     // allocate onto that card, since that might lead to concurrent
   268     // allocation and card scanning, which we don't support.  So we fill
   269     // the last card with a garbage object.
   270     size_t last_card_index = _bsa->index_for(_hard_end);
   271     HeapWord* last_card_start = _bsa->address_for_index(last_card_index);
   272     if (last_card_start < _hard_end) {
   274       // Ensure enough room to fill with the smallest block
   275       last_card_start = MIN2(last_card_start, _hard_end - AlignmentReserve);
   277       // If the top is already in the last card, don't go back beyond it!
   278       // Or if the remainder is too small for a filler object, gobble it up.
   279       if (_top > last_card_start ||
   280           pointer_delta(last_card_start, _top) < AlignmentReserve) {
   281         last_card_start = _top;
   282       }
   283       if (last_card_start < _hard_end) {
   284         MemRegion last_card_prefix(last_card_start, _hard_end);
   285         fill_region_with_block(last_card_prefix, false);
   286       }
   287       _hard_end = last_card_start;
   288       _end      = MAX2(_top, _hard_end - AlignmentReserve);
   289       _true_end = _hard_end;
   290       assert(_end <= _hard_end, "Invariant.");
   291     }
   293     // At this point:
   294     //   1) we had a filler object from the original top to hard_end.
   295     //   2) We've filled in any partial cards at the front and back.
   296     if (pre_top < _hard_end) {
   297       // Now we can reset the _bt to do allocation in the given area.
   298       MemRegion new_filler(pre_top, _hard_end);
   299       fill_region_with_block(new_filler, false);
   300       _top = pre_top + ParGCAllocBuffer::FillerHeaderSize;
   301       // If there's no space left, don't retain.
   302       if (_top >= _end) {
   303         _retained = false;
   304         invalidate();
   305         return;
   306       }
   307       _retained_filler = MemRegion(pre_top, _top);
   308       _bt.set_region(MemRegion(_top, _hard_end));
   309       _bt.initialize_threshold();
   310       assert(_bt.threshold() > _top, "initialize_threshold failed!");
   312       // There may be other reasons for queries into the middle of the
   313       // filler object.  When such queries are done in parallel with
   314       // allocation, bad things can happen, if the query involves object
   315       // iteration.  So we ensure that such queries do not involve object
   316       // iteration, by putting another filler object on the boundaries of
   317       // such queries.  One such is the object spanning a parallel card
   318       // chunk boundary.
   320       // "chunk_boundary" is the address of the first chunk boundary less
   321       // than "hard_end".
   322       HeapWord* chunk_boundary =
   323         (HeapWord*)align_size_down(intptr_t(_hard_end-1), ChunkSizeInBytes);
   324       assert(chunk_boundary < _hard_end, "Or else above did not work.");
   325       assert(pointer_delta(_true_end, chunk_boundary) >= AlignmentReserve,
   326              "Consequence of last card handling above.");
   328       if (_top <= chunk_boundary) {
   329         assert(_true_end == _hard_end, "Invariant.");
   330         while (_top <= chunk_boundary) {
   331           assert(pointer_delta(_hard_end, chunk_boundary) >= AlignmentReserve,
   332                  "Consequence of last card handling above.");
   333           _bt.BlockOffsetArray::alloc_block(chunk_boundary, _hard_end);
   334           CollectedHeap::fill_with_object(chunk_boundary, _hard_end);
   335           _hard_end = chunk_boundary;
   336           chunk_boundary -= ChunkSizeInWords;
   337         }
   338         _end = _hard_end - AlignmentReserve;
   339         assert(_top <= _end, "Invariant.");
   340         // Now reset the initial filler chunk so it doesn't overlap with
   341         // the one(s) inserted above.
   342         MemRegion new_filler(pre_top, _hard_end);
   343         fill_region_with_block(new_filler, false);
   344       }
   345     } else {
   346       _retained = false;
   347       invalidate();
   348     }
   349   } else {
   350     assert(!end_of_gc ||
   351            (!_retained && _true_end == _hard_end), "Checking.");
   352   }
   353   assert(_end <= _hard_end, "Invariant.");
   354   assert(_top < _end || _top == _hard_end, "Invariant");
   355 }

mercurial