src/share/vm/gc_implementation/shared/adaptiveSizePolicy.cpp

Thu, 13 Feb 2014 17:44:39 +0100

author
stefank
date
Thu, 13 Feb 2014 17:44:39 +0100
changeset 6971
7426d8d76305
parent 6680
78bbf4d43a14
child 6876
710a3c8b516e
child 8335
83dc7e55f715
permissions
-rw-r--r--

8034761: Remove the do_code_roots parameter from process_strong_roots
Reviewed-by: tschatzl, mgerdin, jmasa

     1 /*
     2  * Copyright (c) 2004, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    27 #include "gc_interface/gcCause.hpp"
    28 #include "memory/collectorPolicy.hpp"
    29 #include "runtime/timer.hpp"
    30 #include "utilities/ostream.hpp"
    31 #include "utilities/workgroup.hpp"
    32 elapsedTimer AdaptiveSizePolicy::_minor_timer;
    33 elapsedTimer AdaptiveSizePolicy::_major_timer;
    34 bool AdaptiveSizePolicy::_debug_perturbation = false;
    36 // The throughput goal is implemented as
    37 //      _throughput_goal = 1 - ( 1 / (1 + gc_cost_ratio))
    38 // gc_cost_ratio is the ratio
    39 //      application cost / gc cost
    40 // For example a gc_cost_ratio of 4 translates into a
    41 // throughput goal of .80
    43 AdaptiveSizePolicy::AdaptiveSizePolicy(size_t init_eden_size,
    44                                        size_t init_promo_size,
    45                                        size_t init_survivor_size,
    46                                        double gc_pause_goal_sec,
    47                                        uint gc_cost_ratio) :
    48     _eden_size(init_eden_size),
    49     _promo_size(init_promo_size),
    50     _survivor_size(init_survivor_size),
    51     _gc_pause_goal_sec(gc_pause_goal_sec),
    52     _throughput_goal(1.0 - double(1.0 / (1.0 + (double) gc_cost_ratio))),
    53     _gc_overhead_limit_exceeded(false),
    54     _print_gc_overhead_limit_would_be_exceeded(false),
    55     _gc_overhead_limit_count(0),
    56     _latest_minor_mutator_interval_seconds(0),
    57     _threshold_tolerance_percent(1.0 + ThresholdTolerance/100.0),
    58     _young_gen_change_for_minor_throughput(0),
    59     _old_gen_change_for_major_throughput(0) {
    60   assert(AdaptiveSizePolicyGCTimeLimitThreshold > 0,
    61     "No opportunity to clear SoftReferences before GC overhead limit");
    62   _avg_minor_pause    =
    63     new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding);
    64   _avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    65   _avg_minor_gc_cost  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    66   _avg_major_gc_cost  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    68   _avg_young_live     = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
    69   _avg_old_live       = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
    70   _avg_eden_live      = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
    72   _avg_survived       = new AdaptivePaddedAverage(AdaptiveSizePolicyWeight,
    73                                                   SurvivorPadding);
    74   _avg_pretenured     = new AdaptivePaddedNoZeroDevAverage(
    75                                                   AdaptiveSizePolicyWeight,
    76                                                   SurvivorPadding);
    78   _minor_pause_old_estimator =
    79     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    80   _minor_pause_young_estimator =
    81     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    82   _minor_collection_estimator =
    83     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    84   _major_collection_estimator =
    85     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
    87   // Start the timers
    88   _minor_timer.start();
    90   _young_gen_policy_is_ready = false;
    91 }
    93 //  If the number of GC threads was set on the command line,
    94 // use it.
    95 //  Else
    96 //    Calculate the number of GC threads based on the number of Java threads.
    97 //    Calculate the number of GC threads based on the size of the heap.
    98 //    Use the larger.
   100 int AdaptiveSizePolicy::calc_default_active_workers(uintx total_workers,
   101                                             const uintx min_workers,
   102                                             uintx active_workers,
   103                                             uintx application_workers) {
   104   // If the user has specifically set the number of
   105   // GC threads, use them.
   107   // If the user has turned off using a dynamic number of GC threads
   108   // or the users has requested a specific number, set the active
   109   // number of workers to all the workers.
   111   uintx new_active_workers = total_workers;
   112   uintx prev_active_workers = active_workers;
   113   uintx active_workers_by_JT = 0;
   114   uintx active_workers_by_heap_size = 0;
   116   // Always use at least min_workers but use up to
   117   // GCThreadsPerJavaThreads * application threads.
   118   active_workers_by_JT =
   119     MAX2((uintx) GCWorkersPerJavaThread * application_workers,
   120          min_workers);
   122   // Choose a number of GC threads based on the current size
   123   // of the heap.  This may be complicated because the size of
   124   // the heap depends on factors such as the thoughput goal.
   125   // Still a large heap should be collected by more GC threads.
   126   active_workers_by_heap_size =
   127       MAX2((size_t) 2U, Universe::heap()->capacity() / HeapSizePerGCThread);
   129   uintx max_active_workers =
   130     MAX2(active_workers_by_JT, active_workers_by_heap_size);
   132   // Limit the number of workers to the the number created,
   133   // (workers()).
   134   new_active_workers = MIN2(max_active_workers,
   135                                 (uintx) total_workers);
   137   // Increase GC workers instantly but decrease them more
   138   // slowly.
   139   if (new_active_workers < prev_active_workers) {
   140     new_active_workers =
   141       MAX2(min_workers, (prev_active_workers + new_active_workers) / 2);
   142   }
   144   // Check once more that the number of workers is within the limits.
   145   assert(min_workers <= total_workers, "Minimum workers not consistent with total workers");
   146   assert(new_active_workers >= min_workers, "Minimum workers not observed");
   147   assert(new_active_workers <= total_workers, "Total workers not observed");
   149   if (ForceDynamicNumberOfGCThreads) {
   150     // Assume this is debugging and jiggle the number of GC threads.
   151     if (new_active_workers == prev_active_workers) {
   152       if (new_active_workers < total_workers) {
   153         new_active_workers++;
   154       } else if (new_active_workers > min_workers) {
   155         new_active_workers--;
   156       }
   157     }
   158     if (new_active_workers == total_workers) {
   159       if (_debug_perturbation) {
   160         new_active_workers =  min_workers;
   161       }
   162       _debug_perturbation = !_debug_perturbation;
   163     }
   164     assert((new_active_workers <= (uintx) ParallelGCThreads) &&
   165            (new_active_workers >= min_workers),
   166       "Jiggled active workers too much");
   167   }
   169   if (TraceDynamicGCThreads) {
   170      gclog_or_tty->print_cr("GCTaskManager::calc_default_active_workers() : "
   171        "active_workers(): %d  new_acitve_workers: %d  "
   172        "prev_active_workers: %d\n"
   173        " active_workers_by_JT: %d  active_workers_by_heap_size: %d",
   174        (int) active_workers, (int) new_active_workers, (int) prev_active_workers,
   175        (int) active_workers_by_JT, (int) active_workers_by_heap_size);
   176   }
   177   assert(new_active_workers > 0, "Always need at least 1");
   178   return new_active_workers;
   179 }
   181 int AdaptiveSizePolicy::calc_active_workers(uintx total_workers,
   182                                             uintx active_workers,
   183                                             uintx application_workers) {
   184   // If the user has specifically set the number of
   185   // GC threads, use them.
   187   // If the user has turned off using a dynamic number of GC threads
   188   // or the users has requested a specific number, set the active
   189   // number of workers to all the workers.
   191   int new_active_workers;
   192   if (!UseDynamicNumberOfGCThreads ||
   193      (!FLAG_IS_DEFAULT(ParallelGCThreads) && !ForceDynamicNumberOfGCThreads)) {
   194     new_active_workers = total_workers;
   195   } else {
   196     new_active_workers = calc_default_active_workers(total_workers,
   197                                                      2, /* Minimum number of workers */
   198                                                      active_workers,
   199                                                      application_workers);
   200   }
   201   assert(new_active_workers > 0, "Always need at least 1");
   202   return new_active_workers;
   203 }
   205 int AdaptiveSizePolicy::calc_active_conc_workers(uintx total_workers,
   206                                                  uintx active_workers,
   207                                                  uintx application_workers) {
   208   if (!UseDynamicNumberOfGCThreads ||
   209      (!FLAG_IS_DEFAULT(ConcGCThreads) && !ForceDynamicNumberOfGCThreads)) {
   210     return ConcGCThreads;
   211   } else {
   212     int no_of_gc_threads = calc_default_active_workers(
   213                              total_workers,
   214                              1, /* Minimum number of workers */
   215                              active_workers,
   216                              application_workers);
   217     return no_of_gc_threads;
   218   }
   219 }
   221 bool AdaptiveSizePolicy::tenuring_threshold_change() const {
   222   return decrement_tenuring_threshold_for_gc_cost() ||
   223          increment_tenuring_threshold_for_gc_cost() ||
   224          decrement_tenuring_threshold_for_survivor_limit();
   225 }
   227 void AdaptiveSizePolicy::minor_collection_begin() {
   228   // Update the interval time
   229   _minor_timer.stop();
   230   // Save most recent collection time
   231   _latest_minor_mutator_interval_seconds = _minor_timer.seconds();
   232   _minor_timer.reset();
   233   _minor_timer.start();
   234 }
   236 void AdaptiveSizePolicy::update_minor_pause_young_estimator(
   237     double minor_pause_in_ms) {
   238   double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
   239   _minor_pause_young_estimator->update(eden_size_in_mbytes,
   240     minor_pause_in_ms);
   241 }
   243 void AdaptiveSizePolicy::minor_collection_end(GCCause::Cause gc_cause) {
   244   // Update the pause time.
   245   _minor_timer.stop();
   247   if (gc_cause != GCCause::_java_lang_system_gc ||
   248       UseAdaptiveSizePolicyWithSystemGC) {
   249     double minor_pause_in_seconds = _minor_timer.seconds();
   250     double minor_pause_in_ms = minor_pause_in_seconds * MILLIUNITS;
   252     // Sample for performance counter
   253     _avg_minor_pause->sample(minor_pause_in_seconds);
   255     // Cost of collection (unit-less)
   256     double collection_cost = 0.0;
   257     if ((_latest_minor_mutator_interval_seconds > 0.0) &&
   258         (minor_pause_in_seconds > 0.0)) {
   259       double interval_in_seconds =
   260         _latest_minor_mutator_interval_seconds + minor_pause_in_seconds;
   261       collection_cost =
   262         minor_pause_in_seconds / interval_in_seconds;
   263       _avg_minor_gc_cost->sample(collection_cost);
   264       // Sample for performance counter
   265       _avg_minor_interval->sample(interval_in_seconds);
   266     }
   268     // The policy does not have enough data until at least some
   269     // minor collections have been done.
   270     _young_gen_policy_is_ready =
   271       (_avg_minor_gc_cost->count() >= AdaptiveSizePolicyReadyThreshold);
   273     // Calculate variables used to estimate pause time vs. gen sizes
   274     double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
   275     update_minor_pause_young_estimator(minor_pause_in_ms);
   276     update_minor_pause_old_estimator(minor_pause_in_ms);
   278     if (PrintAdaptiveSizePolicy && Verbose) {
   279       gclog_or_tty->print("AdaptiveSizePolicy::minor_collection_end: "
   280         "minor gc cost: %f  average: %f", collection_cost,
   281         _avg_minor_gc_cost->average());
   282       gclog_or_tty->print_cr("  minor pause: %f minor period %f",
   283         minor_pause_in_ms,
   284         _latest_minor_mutator_interval_seconds * MILLIUNITS);
   285     }
   287     // Calculate variable used to estimate collection cost vs. gen sizes
   288     assert(collection_cost >= 0.0, "Expected to be non-negative");
   289     _minor_collection_estimator->update(eden_size_in_mbytes, collection_cost);
   290   }
   292   // Interval times use this timer to measure the mutator time.
   293   // Reset the timer after the GC pause.
   294   _minor_timer.reset();
   295   _minor_timer.start();
   296 }
   298 size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden,
   299                                             uint percent_change) {
   300   size_t eden_heap_delta;
   301   eden_heap_delta = cur_eden / 100 * percent_change;
   302   return eden_heap_delta;
   303 }
   305 size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden) {
   306   return eden_increment(cur_eden, YoungGenerationSizeIncrement);
   307 }
   309 size_t AdaptiveSizePolicy::eden_decrement(size_t cur_eden) {
   310   size_t eden_heap_delta = eden_increment(cur_eden) /
   311     AdaptiveSizeDecrementScaleFactor;
   312   return eden_heap_delta;
   313 }
   315 size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo,
   316                                              uint percent_change) {
   317   size_t promo_heap_delta;
   318   promo_heap_delta = cur_promo / 100 * percent_change;
   319   return promo_heap_delta;
   320 }
   322 size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo) {
   323   return promo_increment(cur_promo, TenuredGenerationSizeIncrement);
   324 }
   326 size_t AdaptiveSizePolicy::promo_decrement(size_t cur_promo) {
   327   size_t promo_heap_delta = promo_increment(cur_promo);
   328   promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor;
   329   return promo_heap_delta;
   330 }
   332 double AdaptiveSizePolicy::time_since_major_gc() const {
   333   _major_timer.stop();
   334   double result = _major_timer.seconds();
   335   _major_timer.start();
   336   return result;
   337 }
   339 // Linear decay of major gc cost
   340 double AdaptiveSizePolicy::decaying_major_gc_cost() const {
   341   double major_interval = major_gc_interval_average_for_decay();
   342   double major_gc_cost_average = major_gc_cost();
   343   double decayed_major_gc_cost = major_gc_cost_average;
   344   if(time_since_major_gc() > 0.0) {
   345     decayed_major_gc_cost = major_gc_cost() *
   346       (((double) AdaptiveSizeMajorGCDecayTimeScale) * major_interval)
   347       / time_since_major_gc();
   348   }
   350   // The decayed cost should always be smaller than the
   351   // average cost but the vagaries of finite arithmetic could
   352   // produce a larger value in decayed_major_gc_cost so protect
   353   // against that.
   354   return MIN2(major_gc_cost_average, decayed_major_gc_cost);
   355 }
   357 // Use a value of the major gc cost that has been decayed
   358 // by the factor
   359 //
   360 //      average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale /
   361 //        time-since-last-major-gc
   362 //
   363 // if the average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale
   364 // is less than time-since-last-major-gc.
   365 //
   366 // In cases where there are initial major gc's that
   367 // are of a relatively high cost but no later major
   368 // gc's, the total gc cost can remain high because
   369 // the major gc cost remains unchanged (since there are no major
   370 // gc's).  In such a situation the value of the unchanging
   371 // major gc cost can keep the mutator throughput below
   372 // the goal when in fact the major gc cost is becoming diminishingly
   373 // small.  Use the decaying gc cost only to decide whether to
   374 // adjust for throughput.  Using it also to determine the adjustment
   375 // to be made for throughput also seems reasonable but there is
   376 // no test case to use to decide if it is the right thing to do
   377 // don't do it yet.
   379 double AdaptiveSizePolicy::decaying_gc_cost() const {
   380   double decayed_major_gc_cost = major_gc_cost();
   381   double avg_major_interval = major_gc_interval_average_for_decay();
   382   if (UseAdaptiveSizeDecayMajorGCCost &&
   383       (AdaptiveSizeMajorGCDecayTimeScale > 0) &&
   384       (avg_major_interval > 0.00)) {
   385     double time_since_last_major_gc = time_since_major_gc();
   387     // Decay the major gc cost?
   388     if (time_since_last_major_gc >
   389         ((double) AdaptiveSizeMajorGCDecayTimeScale) * avg_major_interval) {
   391       // Decay using the time-since-last-major-gc
   392       decayed_major_gc_cost = decaying_major_gc_cost();
   393       if (PrintGCDetails && Verbose) {
   394         gclog_or_tty->print_cr("\ndecaying_gc_cost: major interval average:"
   395           " %f  time since last major gc: %f",
   396           avg_major_interval, time_since_last_major_gc);
   397         gclog_or_tty->print_cr("  major gc cost: %f  decayed major gc cost: %f",
   398           major_gc_cost(), decayed_major_gc_cost);
   399       }
   400     }
   401   }
   402   double result = MIN2(1.0, decayed_major_gc_cost + minor_gc_cost());
   403   return result;
   404 }
   407 void AdaptiveSizePolicy::clear_generation_free_space_flags() {
   408   set_change_young_gen_for_min_pauses(0);
   409   set_change_old_gen_for_maj_pauses(0);
   411   set_change_old_gen_for_throughput(0);
   412   set_change_young_gen_for_throughput(0);
   413   set_decrease_for_footprint(0);
   414   set_decide_at_full_gc(0);
   415 }
   417 void AdaptiveSizePolicy::check_gc_overhead_limit(
   418                                           size_t young_live,
   419                                           size_t eden_live,
   420                                           size_t max_old_gen_size,
   421                                           size_t max_eden_size,
   422                                           bool   is_full_gc,
   423                                           GCCause::Cause gc_cause,
   424                                           CollectorPolicy* collector_policy) {
   426   // Ignore explicit GC's.  Exiting here does not set the flag and
   427   // does not reset the count.  Updating of the averages for system
   428   // GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
   429   if (GCCause::is_user_requested_gc(gc_cause) ||
   430       GCCause::is_serviceability_requested_gc(gc_cause)) {
   431     return;
   432   }
   433   // eden_limit is the upper limit on the size of eden based on
   434   // the maximum size of the young generation and the sizes
   435   // of the survivor space.
   436   // The question being asked is whether the gc costs are high
   437   // and the space being recovered by a collection is low.
   438   // free_in_young_gen is the free space in the young generation
   439   // after a collection and promo_live is the free space in the old
   440   // generation after a collection.
   441   //
   442   // Use the minimum of the current value of the live in the
   443   // young gen or the average of the live in the young gen.
   444   // If the current value drops quickly, that should be taken
   445   // into account (i.e., don't trigger if the amount of free
   446   // space has suddenly jumped up).  If the current is much
   447   // higher than the average, use the average since it represents
   448   // the longer term behavor.
   449   const size_t live_in_eden =
   450     MIN2(eden_live, (size_t) avg_eden_live()->average());
   451   const size_t free_in_eden = max_eden_size > live_in_eden ?
   452     max_eden_size - live_in_eden : 0;
   453   const size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
   454   const size_t total_free_limit = free_in_old_gen + free_in_eden;
   455   const size_t total_mem = max_old_gen_size + max_eden_size;
   456   const double mem_free_limit = total_mem * (GCHeapFreeLimit/100.0);
   457   const double mem_free_old_limit = max_old_gen_size * (GCHeapFreeLimit/100.0);
   458   const double mem_free_eden_limit = max_eden_size * (GCHeapFreeLimit/100.0);
   459   const double gc_cost_limit = GCTimeLimit/100.0;
   460   size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average());
   461   // But don't force a promo size below the current promo size. Otherwise,
   462   // the promo size will shrink for no good reason.
   463   promo_limit = MAX2(promo_limit, _promo_size);
   466   if (PrintAdaptiveSizePolicy && (Verbose ||
   467       (free_in_old_gen < (size_t) mem_free_old_limit &&
   468        free_in_eden < (size_t) mem_free_eden_limit))) {
   469     gclog_or_tty->print_cr(
   470           "PSAdaptiveSizePolicy::check_gc_overhead_limit:"
   471           " promo_limit: " SIZE_FORMAT
   472           " max_eden_size: " SIZE_FORMAT
   473           " total_free_limit: " SIZE_FORMAT
   474           " max_old_gen_size: " SIZE_FORMAT
   475           " max_eden_size: " SIZE_FORMAT
   476           " mem_free_limit: " SIZE_FORMAT,
   477           promo_limit, max_eden_size, total_free_limit,
   478           max_old_gen_size, max_eden_size,
   479           (size_t) mem_free_limit);
   480   }
   482   bool print_gc_overhead_limit_would_be_exceeded = false;
   483   if (is_full_gc) {
   484     if (gc_cost() > gc_cost_limit &&
   485       free_in_old_gen < (size_t) mem_free_old_limit &&
   486       free_in_eden < (size_t) mem_free_eden_limit) {
   487       // Collections, on average, are taking too much time, and
   488       //      gc_cost() > gc_cost_limit
   489       // we have too little space available after a full gc.
   490       //      total_free_limit < mem_free_limit
   491       // where
   492       //   total_free_limit is the free space available in
   493       //     both generations
   494       //   total_mem is the total space available for allocation
   495       //     in both generations (survivor spaces are not included
   496       //     just as they are not included in eden_limit).
   497       //   mem_free_limit is a fraction of total_mem judged to be an
   498       //     acceptable amount that is still unused.
   499       // The heap can ask for the value of this variable when deciding
   500       // whether to thrown an OutOfMemory error.
   501       // Note that the gc time limit test only works for the collections
   502       // of the young gen + tenured gen and not for collections of the
   503       // permanent gen.  That is because the calculation of the space
   504       // freed by the collection is the free space in the young gen +
   505       // tenured gen.
   506       // At this point the GC overhead limit is being exceeded.
   507       inc_gc_overhead_limit_count();
   508       if (UseGCOverheadLimit) {
   509         if (gc_overhead_limit_count() >=
   510             AdaptiveSizePolicyGCTimeLimitThreshold){
   511           // All conditions have been met for throwing an out-of-memory
   512           set_gc_overhead_limit_exceeded(true);
   513           // Avoid consecutive OOM due to the gc time limit by resetting
   514           // the counter.
   515           reset_gc_overhead_limit_count();
   516         } else {
   517           // The required consecutive collections which exceed the
   518           // GC time limit may or may not have been reached. We
   519           // are approaching that condition and so as not to
   520           // throw an out-of-memory before all SoftRef's have been
   521           // cleared, set _should_clear_all_soft_refs in CollectorPolicy.
   522           // The clearing will be done on the next GC.
   523           bool near_limit = gc_overhead_limit_near();
   524           if (near_limit) {
   525             collector_policy->set_should_clear_all_soft_refs(true);
   526             if (PrintGCDetails && Verbose) {
   527               gclog_or_tty->print_cr("  Nearing GC overhead limit, "
   528                 "will be clearing all SoftReference");
   529             }
   530           }
   531         }
   532       }
   533       // Set this even when the overhead limit will not
   534       // cause an out-of-memory.  Diagnostic message indicating
   535       // that the overhead limit is being exceeded is sometimes
   536       // printed.
   537       print_gc_overhead_limit_would_be_exceeded = true;
   539     } else {
   540       // Did not exceed overhead limits
   541       reset_gc_overhead_limit_count();
   542     }
   543   }
   545   if (UseGCOverheadLimit && PrintGCDetails && Verbose) {
   546     if (gc_overhead_limit_exceeded()) {
   547       gclog_or_tty->print_cr("      GC is exceeding overhead limit "
   548         "of %d%%", (int) GCTimeLimit);
   549       reset_gc_overhead_limit_count();
   550     } else if (print_gc_overhead_limit_would_be_exceeded) {
   551       assert(gc_overhead_limit_count() > 0, "Should not be printing");
   552       gclog_or_tty->print_cr("      GC would exceed overhead limit "
   553         "of %d%% %d consecutive time(s)",
   554         (int) GCTimeLimit, gc_overhead_limit_count());
   555     }
   556   }
   557 }
   558 // Printing
   560 bool AdaptiveSizePolicy::print_adaptive_size_policy_on(outputStream* st) const {
   562   //  Should only be used with adaptive size policy turned on.
   563   // Otherwise, there may be variables that are undefined.
   564   if (!UseAdaptiveSizePolicy) return false;
   566   // Print goal for which action is needed.
   567   char* action = NULL;
   568   bool change_for_pause = false;
   569   if ((change_old_gen_for_maj_pauses() ==
   570          decrease_old_gen_for_maj_pauses_true) ||
   571       (change_young_gen_for_min_pauses() ==
   572          decrease_young_gen_for_min_pauses_true)) {
   573     action = (char*) " *** pause time goal ***";
   574     change_for_pause = true;
   575   } else if ((change_old_gen_for_throughput() ==
   576                increase_old_gen_for_throughput_true) ||
   577             (change_young_gen_for_throughput() ==
   578                increase_young_gen_for_througput_true)) {
   579     action = (char*) " *** throughput goal ***";
   580   } else if (decrease_for_footprint()) {
   581     action = (char*) " *** reduced footprint ***";
   582   } else {
   583     // No actions were taken.  This can legitimately be the
   584     // situation if not enough data has been gathered to make
   585     // decisions.
   586     return false;
   587   }
   589   // Pauses
   590   // Currently the size of the old gen is only adjusted to
   591   // change the major pause times.
   592   char* young_gen_action = NULL;
   593   char* tenured_gen_action = NULL;
   595   char* shrink_msg = (char*) "(attempted to shrink)";
   596   char* grow_msg = (char*) "(attempted to grow)";
   597   char* no_change_msg = (char*) "(no change)";
   598   if (change_young_gen_for_min_pauses() ==
   599       decrease_young_gen_for_min_pauses_true) {
   600     young_gen_action = shrink_msg;
   601   } else if (change_for_pause) {
   602     young_gen_action = no_change_msg;
   603   }
   605   if (change_old_gen_for_maj_pauses() == decrease_old_gen_for_maj_pauses_true) {
   606     tenured_gen_action = shrink_msg;
   607   } else if (change_for_pause) {
   608     tenured_gen_action = no_change_msg;
   609   }
   611   // Throughput
   612   if (change_old_gen_for_throughput() == increase_old_gen_for_throughput_true) {
   613     assert(change_young_gen_for_throughput() ==
   614            increase_young_gen_for_througput_true,
   615            "Both generations should be growing");
   616     young_gen_action = grow_msg;
   617     tenured_gen_action = grow_msg;
   618   } else if (change_young_gen_for_throughput() ==
   619              increase_young_gen_for_througput_true) {
   620     // Only the young generation may grow at start up (before
   621     // enough full collections have been done to grow the old generation).
   622     young_gen_action = grow_msg;
   623     tenured_gen_action = no_change_msg;
   624   }
   626   // Minimum footprint
   627   if (decrease_for_footprint() != 0) {
   628     young_gen_action = shrink_msg;
   629     tenured_gen_action = shrink_msg;
   630   }
   632   st->print_cr("    UseAdaptiveSizePolicy actions to meet %s", action);
   633   st->print_cr("                       GC overhead (%%)");
   634   st->print_cr("    Young generation:     %7.2f\t  %s",
   635     100.0 * avg_minor_gc_cost()->average(),
   636     young_gen_action);
   637   st->print_cr("    Tenured generation:   %7.2f\t  %s",
   638     100.0 * avg_major_gc_cost()->average(),
   639     tenured_gen_action);
   640   return true;
   641 }
   643 bool AdaptiveSizePolicy::print_adaptive_size_policy_on(
   644                                             outputStream* st,
   645                                             uint tenuring_threshold_arg) const {
   646   if (!AdaptiveSizePolicy::print_adaptive_size_policy_on(st)) {
   647     return false;
   648   }
   650   // Tenuring threshold
   651   bool tenuring_threshold_changed = true;
   652   if (decrement_tenuring_threshold_for_survivor_limit()) {
   653     st->print("    Tenuring threshold:    (attempted to decrease to avoid"
   654               " survivor space overflow) = ");
   655   } else if (decrement_tenuring_threshold_for_gc_cost()) {
   656     st->print("    Tenuring threshold:    (attempted to decrease to balance"
   657               " GC costs) = ");
   658   } else if (increment_tenuring_threshold_for_gc_cost()) {
   659     st->print("    Tenuring threshold:    (attempted to increase to balance"
   660               " GC costs) = ");
   661   } else {
   662     tenuring_threshold_changed = false;
   663     assert(!tenuring_threshold_change(), "(no change was attempted)");
   664   }
   665   if (tenuring_threshold_changed) {
   666     st->print_cr("%u", tenuring_threshold_arg);
   667   }
   668   return true;
   669 }

mercurial