src/cpu/x86/vm/templateTable_x86_64.cpp

Thu, 15 Aug 2013 20:04:10 -0400

author
hseigel
date
Thu, 15 Aug 2013 20:04:10 -0400
changeset 5528
740e263c80c6
parent 4939
9500809ceead
child 5914
d13d7aba8c12
permissions
-rw-r--r--

8003424: Enable Class Data Sharing for CompressedOops
8016729: ObjectAlignmentInBytes=16 now forces the use of heap based compressed oops
8005933: The -Xshare:auto option is ignored for -server
Summary: Move klass metaspace above the heap and support CDS with compressed klass ptrs.
Reviewed-by: coleenp, kvn, mgerdin, tschatzl, stefank

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "interpreter/templateTable.hpp"
    30 #include "memory/universe.inline.hpp"
    31 #include "oops/methodData.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "runtime/synchronizer.hpp"
    38 #include "utilities/macros.hpp"
    40 #ifndef CC_INTERP
    42 #define __ _masm->
    44 // Platform-dependent initialization
    46 void TemplateTable::pd_initialize() {
    47   // No amd64 specific initialization
    48 }
    50 // Address computation: local variables
    52 static inline Address iaddress(int n) {
    53   return Address(r14, Interpreter::local_offset_in_bytes(n));
    54 }
    56 static inline Address laddress(int n) {
    57   return iaddress(n + 1);
    58 }
    60 static inline Address faddress(int n) {
    61   return iaddress(n);
    62 }
    64 static inline Address daddress(int n) {
    65   return laddress(n);
    66 }
    68 static inline Address aaddress(int n) {
    69   return iaddress(n);
    70 }
    72 static inline Address iaddress(Register r) {
    73   return Address(r14, r, Address::times_8);
    74 }
    76 static inline Address laddress(Register r) {
    77   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    78 }
    80 static inline Address faddress(Register r) {
    81   return iaddress(r);
    82 }
    84 static inline Address daddress(Register r) {
    85   return laddress(r);
    86 }
    88 static inline Address aaddress(Register r) {
    89   return iaddress(r);
    90 }
    92 static inline Address at_rsp() {
    93   return Address(rsp, 0);
    94 }
    96 // At top of Java expression stack which may be different than esp().  It
    97 // isn't for category 1 objects.
    98 static inline Address at_tos   () {
    99   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
   100 }
   102 static inline Address at_tos_p1() {
   103   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
   104 }
   106 static inline Address at_tos_p2() {
   107   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
   108 }
   110 static inline Address at_tos_p3() {
   111   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
   112 }
   114 // Condition conversion
   115 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   116   switch (cc) {
   117   case TemplateTable::equal        : return Assembler::notEqual;
   118   case TemplateTable::not_equal    : return Assembler::equal;
   119   case TemplateTable::less         : return Assembler::greaterEqual;
   120   case TemplateTable::less_equal   : return Assembler::greater;
   121   case TemplateTable::greater      : return Assembler::lessEqual;
   122   case TemplateTable::greater_equal: return Assembler::less;
   123   }
   124   ShouldNotReachHere();
   125   return Assembler::zero;
   126 }
   129 // Miscelaneous helper routines
   130 // Store an oop (or NULL) at the address described by obj.
   131 // If val == noreg this means store a NULL
   133 static void do_oop_store(InterpreterMacroAssembler* _masm,
   134                          Address obj,
   135                          Register val,
   136                          BarrierSet::Name barrier,
   137                          bool precise) {
   138   assert(val == noreg || val == rax, "parameter is just for looks");
   139   switch (barrier) {
   140 #if INCLUDE_ALL_GCS
   141     case BarrierSet::G1SATBCT:
   142     case BarrierSet::G1SATBCTLogging:
   143       {
   144         // flatten object address if needed
   145         if (obj.index() == noreg && obj.disp() == 0) {
   146           if (obj.base() != rdx) {
   147             __ movq(rdx, obj.base());
   148           }
   149         } else {
   150           __ leaq(rdx, obj);
   151         }
   152         __ g1_write_barrier_pre(rdx /* obj */,
   153                                 rbx /* pre_val */,
   154                                 r15_thread /* thread */,
   155                                 r8  /* tmp */,
   156                                 val != noreg /* tosca_live */,
   157                                 false /* expand_call */);
   158         if (val == noreg) {
   159           __ store_heap_oop_null(Address(rdx, 0));
   160         } else {
   161           // G1 barrier needs uncompressed oop for region cross check.
   162           Register new_val = val;
   163           if (UseCompressedOops) {
   164             new_val = rbx;
   165             __ movptr(new_val, val);
   166           }
   167           __ store_heap_oop(Address(rdx, 0), val);
   168           __ g1_write_barrier_post(rdx /* store_adr */,
   169                                    new_val /* new_val */,
   170                                    r15_thread /* thread */,
   171                                    r8 /* tmp */,
   172                                    rbx /* tmp2 */);
   173         }
   174       }
   175       break;
   176 #endif // INCLUDE_ALL_GCS
   177     case BarrierSet::CardTableModRef:
   178     case BarrierSet::CardTableExtension:
   179       {
   180         if (val == noreg) {
   181           __ store_heap_oop_null(obj);
   182         } else {
   183           __ store_heap_oop(obj, val);
   184           // flatten object address if needed
   185           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   186             __ store_check(obj.base());
   187           } else {
   188             __ leaq(rdx, obj);
   189             __ store_check(rdx);
   190           }
   191         }
   192       }
   193       break;
   194     case BarrierSet::ModRef:
   195     case BarrierSet::Other:
   196       if (val == noreg) {
   197         __ store_heap_oop_null(obj);
   198       } else {
   199         __ store_heap_oop(obj, val);
   200       }
   201       break;
   202     default      :
   203       ShouldNotReachHere();
   205   }
   206 }
   208 Address TemplateTable::at_bcp(int offset) {
   209   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   210   return Address(r13, offset);
   211 }
   213 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
   214                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
   215                                    int byte_no) {
   216   if (!RewriteBytecodes)  return;
   217   Label L_patch_done;
   219   switch (bc) {
   220   case Bytecodes::_fast_aputfield:
   221   case Bytecodes::_fast_bputfield:
   222   case Bytecodes::_fast_cputfield:
   223   case Bytecodes::_fast_dputfield:
   224   case Bytecodes::_fast_fputfield:
   225   case Bytecodes::_fast_iputfield:
   226   case Bytecodes::_fast_lputfield:
   227   case Bytecodes::_fast_sputfield:
   228     {
   229       // We skip bytecode quickening for putfield instructions when
   230       // the put_code written to the constant pool cache is zero.
   231       // This is required so that every execution of this instruction
   232       // calls out to InterpreterRuntime::resolve_get_put to do
   233       // additional, required work.
   234       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
   235       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
   236       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
   237       __ movl(bc_reg, bc);
   238       __ cmpl(temp_reg, (int) 0);
   239       __ jcc(Assembler::zero, L_patch_done);  // don't patch
   240     }
   241     break;
   242   default:
   243     assert(byte_no == -1, "sanity");
   244     // the pair bytecodes have already done the load.
   245     if (load_bc_into_bc_reg) {
   246       __ movl(bc_reg, bc);
   247     }
   248   }
   250   if (JvmtiExport::can_post_breakpoint()) {
   251     Label L_fast_patch;
   252     // if a breakpoint is present we can't rewrite the stream directly
   253     __ movzbl(temp_reg, at_bcp(0));
   254     __ cmpl(temp_reg, Bytecodes::_breakpoint);
   255     __ jcc(Assembler::notEqual, L_fast_patch);
   256     __ get_method(temp_reg);
   257     // Let breakpoint table handling rewrite to quicker bytecode
   258     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg);
   259 #ifndef ASSERT
   260     __ jmpb(L_patch_done);
   261 #else
   262     __ jmp(L_patch_done);
   263 #endif
   264     __ bind(L_fast_patch);
   265   }
   267 #ifdef ASSERT
   268   Label L_okay;
   269   __ load_unsigned_byte(temp_reg, at_bcp(0));
   270   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
   271   __ jcc(Assembler::equal, L_okay);
   272   __ cmpl(temp_reg, bc_reg);
   273   __ jcc(Assembler::equal, L_okay);
   274   __ stop("patching the wrong bytecode");
   275   __ bind(L_okay);
   276 #endif
   278   // patch bytecode
   279   __ movb(at_bcp(0), bc_reg);
   280   __ bind(L_patch_done);
   281 }
   284 // Individual instructions
   286 void TemplateTable::nop() {
   287   transition(vtos, vtos);
   288   // nothing to do
   289 }
   291 void TemplateTable::shouldnotreachhere() {
   292   transition(vtos, vtos);
   293   __ stop("shouldnotreachhere bytecode");
   294 }
   296 void TemplateTable::aconst_null() {
   297   transition(vtos, atos);
   298   __ xorl(rax, rax);
   299 }
   301 void TemplateTable::iconst(int value) {
   302   transition(vtos, itos);
   303   if (value == 0) {
   304     __ xorl(rax, rax);
   305   } else {
   306     __ movl(rax, value);
   307   }
   308 }
   310 void TemplateTable::lconst(int value) {
   311   transition(vtos, ltos);
   312   if (value == 0) {
   313     __ xorl(rax, rax);
   314   } else {
   315     __ movl(rax, value);
   316   }
   317 }
   319 void TemplateTable::fconst(int value) {
   320   transition(vtos, ftos);
   321   static float one = 1.0f, two = 2.0f;
   322   switch (value) {
   323   case 0:
   324     __ xorps(xmm0, xmm0);
   325     break;
   326   case 1:
   327     __ movflt(xmm0, ExternalAddress((address) &one));
   328     break;
   329   case 2:
   330     __ movflt(xmm0, ExternalAddress((address) &two));
   331     break;
   332   default:
   333     ShouldNotReachHere();
   334     break;
   335   }
   336 }
   338 void TemplateTable::dconst(int value) {
   339   transition(vtos, dtos);
   340   static double one = 1.0;
   341   switch (value) {
   342   case 0:
   343     __ xorpd(xmm0, xmm0);
   344     break;
   345   case 1:
   346     __ movdbl(xmm0, ExternalAddress((address) &one));
   347     break;
   348   default:
   349     ShouldNotReachHere();
   350     break;
   351   }
   352 }
   354 void TemplateTable::bipush() {
   355   transition(vtos, itos);
   356   __ load_signed_byte(rax, at_bcp(1));
   357 }
   359 void TemplateTable::sipush() {
   360   transition(vtos, itos);
   361   __ load_unsigned_short(rax, at_bcp(1));
   362   __ bswapl(rax);
   363   __ sarl(rax, 16);
   364 }
   366 void TemplateTable::ldc(bool wide) {
   367   transition(vtos, vtos);
   368   Label call_ldc, notFloat, notClass, Done;
   370   if (wide) {
   371     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   372   } else {
   373     __ load_unsigned_byte(rbx, at_bcp(1));
   374   }
   376   __ get_cpool_and_tags(rcx, rax);
   377   const int base_offset = ConstantPool::header_size() * wordSize;
   378   const int tags_offset = Array<u1>::base_offset_in_bytes();
   380   // get type
   381   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   383   // unresolved class - get the resolved class
   384   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   385   __ jccb(Assembler::equal, call_ldc);
   387   // unresolved class in error state - call into runtime to throw the error
   388   // from the first resolution attempt
   389   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   390   __ jccb(Assembler::equal, call_ldc);
   392   // resolved class - need to call vm to get java mirror of the class
   393   __ cmpl(rdx, JVM_CONSTANT_Class);
   394   __ jcc(Assembler::notEqual, notClass);
   396   __ bind(call_ldc);
   397   __ movl(c_rarg1, wide);
   398   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   399   __ push_ptr(rax);
   400   __ verify_oop(rax);
   401   __ jmp(Done);
   403   __ bind(notClass);
   404   __ cmpl(rdx, JVM_CONSTANT_Float);
   405   __ jccb(Assembler::notEqual, notFloat);
   406   // ftos
   407   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   408   __ push_f();
   409   __ jmp(Done);
   411   __ bind(notFloat);
   412 #ifdef ASSERT
   413   {
   414     Label L;
   415     __ cmpl(rdx, JVM_CONSTANT_Integer);
   416     __ jcc(Assembler::equal, L);
   417     // String and Object are rewritten to fast_aldc
   418     __ stop("unexpected tag type in ldc");
   419     __ bind(L);
   420   }
   421 #endif
   422   // itos JVM_CONSTANT_Integer only
   423   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   424   __ push_i(rax);
   425   __ bind(Done);
   426 }
   428 // Fast path for caching oop constants.
   429 void TemplateTable::fast_aldc(bool wide) {
   430   transition(vtos, atos);
   432   Register result = rax;
   433   Register tmp = rdx;
   434   int index_size = wide ? sizeof(u2) : sizeof(u1);
   436   Label resolved;
   438   // We are resolved if the resolved reference cache entry contains a
   439   // non-null object (String, MethodType, etc.)
   440   assert_different_registers(result, tmp);
   441   __ get_cache_index_at_bcp(tmp, 1, index_size);
   442   __ load_resolved_reference_at_index(result, tmp);
   443   __ testl(result, result);
   444   __ jcc(Assembler::notZero, resolved);
   446   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
   448   // first time invocation - must resolve first
   449   __ movl(tmp, (int)bytecode());
   450   __ call_VM(result, entry, tmp);
   452   __ bind(resolved);
   454   if (VerifyOops) {
   455     __ verify_oop(result);
   456   }
   457 }
   459 void TemplateTable::ldc2_w() {
   460   transition(vtos, vtos);
   461   Label Long, Done;
   462   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   464   __ get_cpool_and_tags(rcx, rax);
   465   const int base_offset = ConstantPool::header_size() * wordSize;
   466   const int tags_offset = Array<u1>::base_offset_in_bytes();
   468   // get type
   469   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   470           JVM_CONSTANT_Double);
   471   __ jccb(Assembler::notEqual, Long);
   472   // dtos
   473   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   474   __ push_d();
   475   __ jmpb(Done);
   477   __ bind(Long);
   478   // ltos
   479   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   480   __ push_l();
   482   __ bind(Done);
   483 }
   485 void TemplateTable::locals_index(Register reg, int offset) {
   486   __ load_unsigned_byte(reg, at_bcp(offset));
   487   __ negptr(reg);
   488 }
   490 void TemplateTable::iload() {
   491   transition(vtos, itos);
   492   if (RewriteFrequentPairs) {
   493     Label rewrite, done;
   494     const Register bc = c_rarg3;
   495     assert(rbx != bc, "register damaged");
   497     // get next byte
   498     __ load_unsigned_byte(rbx,
   499                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   500     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   501     // last two iloads in a pair.  Comparing against fast_iload means that
   502     // the next bytecode is neither an iload or a caload, and therefore
   503     // an iload pair.
   504     __ cmpl(rbx, Bytecodes::_iload);
   505     __ jcc(Assembler::equal, done);
   507     __ cmpl(rbx, Bytecodes::_fast_iload);
   508     __ movl(bc, Bytecodes::_fast_iload2);
   509     __ jccb(Assembler::equal, rewrite);
   511     // if _caload, rewrite to fast_icaload
   512     __ cmpl(rbx, Bytecodes::_caload);
   513     __ movl(bc, Bytecodes::_fast_icaload);
   514     __ jccb(Assembler::equal, rewrite);
   516     // rewrite so iload doesn't check again.
   517     __ movl(bc, Bytecodes::_fast_iload);
   519     // rewrite
   520     // bc: fast bytecode
   521     __ bind(rewrite);
   522     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   523     __ bind(done);
   524   }
   526   // Get the local value into tos
   527   locals_index(rbx);
   528   __ movl(rax, iaddress(rbx));
   529 }
   531 void TemplateTable::fast_iload2() {
   532   transition(vtos, itos);
   533   locals_index(rbx);
   534   __ movl(rax, iaddress(rbx));
   535   __ push(itos);
   536   locals_index(rbx, 3);
   537   __ movl(rax, iaddress(rbx));
   538 }
   540 void TemplateTable::fast_iload() {
   541   transition(vtos, itos);
   542   locals_index(rbx);
   543   __ movl(rax, iaddress(rbx));
   544 }
   546 void TemplateTable::lload() {
   547   transition(vtos, ltos);
   548   locals_index(rbx);
   549   __ movq(rax, laddress(rbx));
   550 }
   552 void TemplateTable::fload() {
   553   transition(vtos, ftos);
   554   locals_index(rbx);
   555   __ movflt(xmm0, faddress(rbx));
   556 }
   558 void TemplateTable::dload() {
   559   transition(vtos, dtos);
   560   locals_index(rbx);
   561   __ movdbl(xmm0, daddress(rbx));
   562 }
   564 void TemplateTable::aload() {
   565   transition(vtos, atos);
   566   locals_index(rbx);
   567   __ movptr(rax, aaddress(rbx));
   568 }
   570 void TemplateTable::locals_index_wide(Register reg) {
   571   __ movl(reg, at_bcp(2));
   572   __ bswapl(reg);
   573   __ shrl(reg, 16);
   574   __ negptr(reg);
   575 }
   577 void TemplateTable::wide_iload() {
   578   transition(vtos, itos);
   579   locals_index_wide(rbx);
   580   __ movl(rax, iaddress(rbx));
   581 }
   583 void TemplateTable::wide_lload() {
   584   transition(vtos, ltos);
   585   locals_index_wide(rbx);
   586   __ movq(rax, laddress(rbx));
   587 }
   589 void TemplateTable::wide_fload() {
   590   transition(vtos, ftos);
   591   locals_index_wide(rbx);
   592   __ movflt(xmm0, faddress(rbx));
   593 }
   595 void TemplateTable::wide_dload() {
   596   transition(vtos, dtos);
   597   locals_index_wide(rbx);
   598   __ movdbl(xmm0, daddress(rbx));
   599 }
   601 void TemplateTable::wide_aload() {
   602   transition(vtos, atos);
   603   locals_index_wide(rbx);
   604   __ movptr(rax, aaddress(rbx));
   605 }
   607 void TemplateTable::index_check(Register array, Register index) {
   608   // destroys rbx
   609   // check array
   610   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   611   // sign extend index for use by indexed load
   612   __ movl2ptr(index, index);
   613   // check index
   614   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   615   if (index != rbx) {
   616     // ??? convention: move aberrant index into ebx for exception message
   617     assert(rbx != array, "different registers");
   618     __ movl(rbx, index);
   619   }
   620   __ jump_cc(Assembler::aboveEqual,
   621              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   622 }
   624 void TemplateTable::iaload() {
   625   transition(itos, itos);
   626   __ pop_ptr(rdx);
   627   // eax: index
   628   // rdx: array
   629   index_check(rdx, rax); // kills rbx
   630   __ movl(rax, Address(rdx, rax,
   631                        Address::times_4,
   632                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   633 }
   635 void TemplateTable::laload() {
   636   transition(itos, ltos);
   637   __ pop_ptr(rdx);
   638   // eax: index
   639   // rdx: array
   640   index_check(rdx, rax); // kills rbx
   641   __ movq(rax, Address(rdx, rbx,
   642                        Address::times_8,
   643                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   644 }
   646 void TemplateTable::faload() {
   647   transition(itos, ftos);
   648   __ pop_ptr(rdx);
   649   // eax: index
   650   // rdx: array
   651   index_check(rdx, rax); // kills rbx
   652   __ movflt(xmm0, Address(rdx, rax,
   653                          Address::times_4,
   654                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   655 }
   657 void TemplateTable::daload() {
   658   transition(itos, dtos);
   659   __ pop_ptr(rdx);
   660   // eax: index
   661   // rdx: array
   662   index_check(rdx, rax); // kills rbx
   663   __ movdbl(xmm0, Address(rdx, rax,
   664                           Address::times_8,
   665                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   666 }
   668 void TemplateTable::aaload() {
   669   transition(itos, atos);
   670   __ pop_ptr(rdx);
   671   // eax: index
   672   // rdx: array
   673   index_check(rdx, rax); // kills rbx
   674   __ load_heap_oop(rax, Address(rdx, rax,
   675                                 UseCompressedOops ? Address::times_4 : Address::times_8,
   676                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   677 }
   679 void TemplateTable::baload() {
   680   transition(itos, itos);
   681   __ pop_ptr(rdx);
   682   // eax: index
   683   // rdx: array
   684   index_check(rdx, rax); // kills rbx
   685   __ load_signed_byte(rax,
   686                       Address(rdx, rax,
   687                               Address::times_1,
   688                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   689 }
   691 void TemplateTable::caload() {
   692   transition(itos, itos);
   693   __ pop_ptr(rdx);
   694   // eax: index
   695   // rdx: array
   696   index_check(rdx, rax); // kills rbx
   697   __ load_unsigned_short(rax,
   698                          Address(rdx, rax,
   699                                  Address::times_2,
   700                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   701 }
   703 // iload followed by caload frequent pair
   704 void TemplateTable::fast_icaload() {
   705   transition(vtos, itos);
   706   // load index out of locals
   707   locals_index(rbx);
   708   __ movl(rax, iaddress(rbx));
   710   // eax: index
   711   // rdx: array
   712   __ pop_ptr(rdx);
   713   index_check(rdx, rax); // kills rbx
   714   __ load_unsigned_short(rax,
   715                          Address(rdx, rax,
   716                                  Address::times_2,
   717                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   718 }
   720 void TemplateTable::saload() {
   721   transition(itos, itos);
   722   __ pop_ptr(rdx);
   723   // eax: index
   724   // rdx: array
   725   index_check(rdx, rax); // kills rbx
   726   __ load_signed_short(rax,
   727                        Address(rdx, rax,
   728                                Address::times_2,
   729                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   730 }
   732 void TemplateTable::iload(int n) {
   733   transition(vtos, itos);
   734   __ movl(rax, iaddress(n));
   735 }
   737 void TemplateTable::lload(int n) {
   738   transition(vtos, ltos);
   739   __ movq(rax, laddress(n));
   740 }
   742 void TemplateTable::fload(int n) {
   743   transition(vtos, ftos);
   744   __ movflt(xmm0, faddress(n));
   745 }
   747 void TemplateTable::dload(int n) {
   748   transition(vtos, dtos);
   749   __ movdbl(xmm0, daddress(n));
   750 }
   752 void TemplateTable::aload(int n) {
   753   transition(vtos, atos);
   754   __ movptr(rax, aaddress(n));
   755 }
   757 void TemplateTable::aload_0() {
   758   transition(vtos, atos);
   759   // According to bytecode histograms, the pairs:
   760   //
   761   // _aload_0, _fast_igetfield
   762   // _aload_0, _fast_agetfield
   763   // _aload_0, _fast_fgetfield
   764   //
   765   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   766   // _aload_0 bytecode checks if the next bytecode is either
   767   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   768   // rewrites the current bytecode into a pair bytecode; otherwise it
   769   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   770   // the pair check anymore.
   771   //
   772   // Note: If the next bytecode is _getfield, the rewrite must be
   773   //       delayed, otherwise we may miss an opportunity for a pair.
   774   //
   775   // Also rewrite frequent pairs
   776   //   aload_0, aload_1
   777   //   aload_0, iload_1
   778   // These bytecodes with a small amount of code are most profitable
   779   // to rewrite
   780   if (RewriteFrequentPairs) {
   781     Label rewrite, done;
   782     const Register bc = c_rarg3;
   783     assert(rbx != bc, "register damaged");
   784     // get next byte
   785     __ load_unsigned_byte(rbx,
   786                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   788     // do actual aload_0
   789     aload(0);
   791     // if _getfield then wait with rewrite
   792     __ cmpl(rbx, Bytecodes::_getfield);
   793     __ jcc(Assembler::equal, done);
   795     // if _igetfield then reqrite to _fast_iaccess_0
   796     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   797            Bytecodes::_aload_0,
   798            "fix bytecode definition");
   799     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   800     __ movl(bc, Bytecodes::_fast_iaccess_0);
   801     __ jccb(Assembler::equal, rewrite);
   803     // if _agetfield then reqrite to _fast_aaccess_0
   804     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   805            Bytecodes::_aload_0,
   806            "fix bytecode definition");
   807     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   808     __ movl(bc, Bytecodes::_fast_aaccess_0);
   809     __ jccb(Assembler::equal, rewrite);
   811     // if _fgetfield then reqrite to _fast_faccess_0
   812     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   813            Bytecodes::_aload_0,
   814            "fix bytecode definition");
   815     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   816     __ movl(bc, Bytecodes::_fast_faccess_0);
   817     __ jccb(Assembler::equal, rewrite);
   819     // else rewrite to _fast_aload0
   820     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   821            Bytecodes::_aload_0,
   822            "fix bytecode definition");
   823     __ movl(bc, Bytecodes::_fast_aload_0);
   825     // rewrite
   826     // bc: fast bytecode
   827     __ bind(rewrite);
   828     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   830     __ bind(done);
   831   } else {
   832     aload(0);
   833   }
   834 }
   836 void TemplateTable::istore() {
   837   transition(itos, vtos);
   838   locals_index(rbx);
   839   __ movl(iaddress(rbx), rax);
   840 }
   842 void TemplateTable::lstore() {
   843   transition(ltos, vtos);
   844   locals_index(rbx);
   845   __ movq(laddress(rbx), rax);
   846 }
   848 void TemplateTable::fstore() {
   849   transition(ftos, vtos);
   850   locals_index(rbx);
   851   __ movflt(faddress(rbx), xmm0);
   852 }
   854 void TemplateTable::dstore() {
   855   transition(dtos, vtos);
   856   locals_index(rbx);
   857   __ movdbl(daddress(rbx), xmm0);
   858 }
   860 void TemplateTable::astore() {
   861   transition(vtos, vtos);
   862   __ pop_ptr(rax);
   863   locals_index(rbx);
   864   __ movptr(aaddress(rbx), rax);
   865 }
   867 void TemplateTable::wide_istore() {
   868   transition(vtos, vtos);
   869   __ pop_i();
   870   locals_index_wide(rbx);
   871   __ movl(iaddress(rbx), rax);
   872 }
   874 void TemplateTable::wide_lstore() {
   875   transition(vtos, vtos);
   876   __ pop_l();
   877   locals_index_wide(rbx);
   878   __ movq(laddress(rbx), rax);
   879 }
   881 void TemplateTable::wide_fstore() {
   882   transition(vtos, vtos);
   883   __ pop_f();
   884   locals_index_wide(rbx);
   885   __ movflt(faddress(rbx), xmm0);
   886 }
   888 void TemplateTable::wide_dstore() {
   889   transition(vtos, vtos);
   890   __ pop_d();
   891   locals_index_wide(rbx);
   892   __ movdbl(daddress(rbx), xmm0);
   893 }
   895 void TemplateTable::wide_astore() {
   896   transition(vtos, vtos);
   897   __ pop_ptr(rax);
   898   locals_index_wide(rbx);
   899   __ movptr(aaddress(rbx), rax);
   900 }
   902 void TemplateTable::iastore() {
   903   transition(itos, vtos);
   904   __ pop_i(rbx);
   905   __ pop_ptr(rdx);
   906   // eax: value
   907   // ebx: index
   908   // rdx: array
   909   index_check(rdx, rbx); // prefer index in ebx
   910   __ movl(Address(rdx, rbx,
   911                   Address::times_4,
   912                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   913           rax);
   914 }
   916 void TemplateTable::lastore() {
   917   transition(ltos, vtos);
   918   __ pop_i(rbx);
   919   __ pop_ptr(rdx);
   920   // rax: value
   921   // ebx: index
   922   // rdx: array
   923   index_check(rdx, rbx); // prefer index in ebx
   924   __ movq(Address(rdx, rbx,
   925                   Address::times_8,
   926                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   927           rax);
   928 }
   930 void TemplateTable::fastore() {
   931   transition(ftos, vtos);
   932   __ pop_i(rbx);
   933   __ pop_ptr(rdx);
   934   // xmm0: value
   935   // ebx:  index
   936   // rdx:  array
   937   index_check(rdx, rbx); // prefer index in ebx
   938   __ movflt(Address(rdx, rbx,
   939                    Address::times_4,
   940                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   941            xmm0);
   942 }
   944 void TemplateTable::dastore() {
   945   transition(dtos, vtos);
   946   __ pop_i(rbx);
   947   __ pop_ptr(rdx);
   948   // xmm0: value
   949   // ebx:  index
   950   // rdx:  array
   951   index_check(rdx, rbx); // prefer index in ebx
   952   __ movdbl(Address(rdx, rbx,
   953                    Address::times_8,
   954                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   955            xmm0);
   956 }
   958 void TemplateTable::aastore() {
   959   Label is_null, ok_is_subtype, done;
   960   transition(vtos, vtos);
   961   // stack: ..., array, index, value
   962   __ movptr(rax, at_tos());    // value
   963   __ movl(rcx, at_tos_p1()); // index
   964   __ movptr(rdx, at_tos_p2()); // array
   966   Address element_address(rdx, rcx,
   967                           UseCompressedOops? Address::times_4 : Address::times_8,
   968                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   970   index_check(rdx, rcx);     // kills rbx
   971   // do array store check - check for NULL value first
   972   __ testptr(rax, rax);
   973   __ jcc(Assembler::zero, is_null);
   975   // Move subklass into rbx
   976   __ load_klass(rbx, rax);
   977   // Move superklass into rax
   978   __ load_klass(rax, rdx);
   979   __ movptr(rax, Address(rax,
   980                          ObjArrayKlass::element_klass_offset()));
   981   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
   982   __ lea(rdx, element_address);
   984   // Generate subtype check.  Blows rcx, rdi
   985   // Superklass in rax.  Subklass in rbx.
   986   __ gen_subtype_check(rbx, ok_is_subtype);
   988   // Come here on failure
   989   // object is at TOS
   990   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   992   // Come here on success
   993   __ bind(ok_is_subtype);
   995   // Get the value we will store
   996   __ movptr(rax, at_tos());
   997   // Now store using the appropriate barrier
   998   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   999   __ jmp(done);
  1001   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
  1002   __ bind(is_null);
  1003   __ profile_null_seen(rbx);
  1005   // Store a NULL
  1006   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
  1008   // Pop stack arguments
  1009   __ bind(done);
  1010   __ addptr(rsp, 3 * Interpreter::stackElementSize);
  1013 void TemplateTable::bastore() {
  1014   transition(itos, vtos);
  1015   __ pop_i(rbx);
  1016   __ pop_ptr(rdx);
  1017   // eax: value
  1018   // ebx: index
  1019   // rdx: array
  1020   index_check(rdx, rbx); // prefer index in ebx
  1021   __ movb(Address(rdx, rbx,
  1022                   Address::times_1,
  1023                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
  1024           rax);
  1027 void TemplateTable::castore() {
  1028   transition(itos, vtos);
  1029   __ pop_i(rbx);
  1030   __ pop_ptr(rdx);
  1031   // eax: value
  1032   // ebx: index
  1033   // rdx: array
  1034   index_check(rdx, rbx);  // prefer index in ebx
  1035   __ movw(Address(rdx, rbx,
  1036                   Address::times_2,
  1037                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
  1038           rax);
  1041 void TemplateTable::sastore() {
  1042   castore();
  1045 void TemplateTable::istore(int n) {
  1046   transition(itos, vtos);
  1047   __ movl(iaddress(n), rax);
  1050 void TemplateTable::lstore(int n) {
  1051   transition(ltos, vtos);
  1052   __ movq(laddress(n), rax);
  1055 void TemplateTable::fstore(int n) {
  1056   transition(ftos, vtos);
  1057   __ movflt(faddress(n), xmm0);
  1060 void TemplateTable::dstore(int n) {
  1061   transition(dtos, vtos);
  1062   __ movdbl(daddress(n), xmm0);
  1065 void TemplateTable::astore(int n) {
  1066   transition(vtos, vtos);
  1067   __ pop_ptr(rax);
  1068   __ movptr(aaddress(n), rax);
  1071 void TemplateTable::pop() {
  1072   transition(vtos, vtos);
  1073   __ addptr(rsp, Interpreter::stackElementSize);
  1076 void TemplateTable::pop2() {
  1077   transition(vtos, vtos);
  1078   __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1081 void TemplateTable::dup() {
  1082   transition(vtos, vtos);
  1083   __ load_ptr(0, rax);
  1084   __ push_ptr(rax);
  1085   // stack: ..., a, a
  1088 void TemplateTable::dup_x1() {
  1089   transition(vtos, vtos);
  1090   // stack: ..., a, b
  1091   __ load_ptr( 0, rax);  // load b
  1092   __ load_ptr( 1, rcx);  // load a
  1093   __ store_ptr(1, rax);  // store b
  1094   __ store_ptr(0, rcx);  // store a
  1095   __ push_ptr(rax);      // push b
  1096   // stack: ..., b, a, b
  1099 void TemplateTable::dup_x2() {
  1100   transition(vtos, vtos);
  1101   // stack: ..., a, b, c
  1102   __ load_ptr( 0, rax);  // load c
  1103   __ load_ptr( 2, rcx);  // load a
  1104   __ store_ptr(2, rax);  // store c in a
  1105   __ push_ptr(rax);      // push c
  1106   // stack: ..., c, b, c, c
  1107   __ load_ptr( 2, rax);  // load b
  1108   __ store_ptr(2, rcx);  // store a in b
  1109   // stack: ..., c, a, c, c
  1110   __ store_ptr(1, rax);  // store b in c
  1111   // stack: ..., c, a, b, c
  1114 void TemplateTable::dup2() {
  1115   transition(vtos, vtos);
  1116   // stack: ..., a, b
  1117   __ load_ptr(1, rax);  // load a
  1118   __ push_ptr(rax);     // push a
  1119   __ load_ptr(1, rax);  // load b
  1120   __ push_ptr(rax);     // push b
  1121   // stack: ..., a, b, a, b
  1124 void TemplateTable::dup2_x1() {
  1125   transition(vtos, vtos);
  1126   // stack: ..., a, b, c
  1127   __ load_ptr( 0, rcx);  // load c
  1128   __ load_ptr( 1, rax);  // load b
  1129   __ push_ptr(rax);      // push b
  1130   __ push_ptr(rcx);      // push c
  1131   // stack: ..., a, b, c, b, c
  1132   __ store_ptr(3, rcx);  // store c in b
  1133   // stack: ..., a, c, c, b, c
  1134   __ load_ptr( 4, rcx);  // load a
  1135   __ store_ptr(2, rcx);  // store a in 2nd c
  1136   // stack: ..., a, c, a, b, c
  1137   __ store_ptr(4, rax);  // store b in a
  1138   // stack: ..., b, c, a, b, c
  1141 void TemplateTable::dup2_x2() {
  1142   transition(vtos, vtos);
  1143   // stack: ..., a, b, c, d
  1144   __ load_ptr( 0, rcx);  // load d
  1145   __ load_ptr( 1, rax);  // load c
  1146   __ push_ptr(rax);      // push c
  1147   __ push_ptr(rcx);      // push d
  1148   // stack: ..., a, b, c, d, c, d
  1149   __ load_ptr( 4, rax);  // load b
  1150   __ store_ptr(2, rax);  // store b in d
  1151   __ store_ptr(4, rcx);  // store d in b
  1152   // stack: ..., a, d, c, b, c, d
  1153   __ load_ptr( 5, rcx);  // load a
  1154   __ load_ptr( 3, rax);  // load c
  1155   __ store_ptr(3, rcx);  // store a in c
  1156   __ store_ptr(5, rax);  // store c in a
  1157   // stack: ..., c, d, a, b, c, d
  1160 void TemplateTable::swap() {
  1161   transition(vtos, vtos);
  1162   // stack: ..., a, b
  1163   __ load_ptr( 1, rcx);  // load a
  1164   __ load_ptr( 0, rax);  // load b
  1165   __ store_ptr(0, rcx);  // store a in b
  1166   __ store_ptr(1, rax);  // store b in a
  1167   // stack: ..., b, a
  1170 void TemplateTable::iop2(Operation op) {
  1171   transition(itos, itos);
  1172   switch (op) {
  1173   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1174   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1175   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1176   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1177   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1178   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1179   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1180   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1181   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1182   default   : ShouldNotReachHere();
  1186 void TemplateTable::lop2(Operation op) {
  1187   transition(ltos, ltos);
  1188   switch (op) {
  1189   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
  1190   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
  1191   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
  1192   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
  1193   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
  1194   default   : ShouldNotReachHere();
  1198 void TemplateTable::idiv() {
  1199   transition(itos, itos);
  1200   __ movl(rcx, rax);
  1201   __ pop_i(rax);
  1202   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1203   //       they are not equal, one could do a normal division (no correction
  1204   //       needed), which may speed up this implementation for the common case.
  1205   //       (see also JVM spec., p.243 & p.271)
  1206   __ corrected_idivl(rcx);
  1209 void TemplateTable::irem() {
  1210   transition(itos, itos);
  1211   __ movl(rcx, rax);
  1212   __ pop_i(rax);
  1213   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1214   //       they are not equal, one could do a normal division (no correction
  1215   //       needed), which may speed up this implementation for the common case.
  1216   //       (see also JVM spec., p.243 & p.271)
  1217   __ corrected_idivl(rcx);
  1218   __ movl(rax, rdx);
  1221 void TemplateTable::lmul() {
  1222   transition(ltos, ltos);
  1223   __ pop_l(rdx);
  1224   __ imulq(rax, rdx);
  1227 void TemplateTable::ldiv() {
  1228   transition(ltos, ltos);
  1229   __ mov(rcx, rax);
  1230   __ pop_l(rax);
  1231   // generate explicit div0 check
  1232   __ testq(rcx, rcx);
  1233   __ jump_cc(Assembler::zero,
  1234              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1235   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1236   //       they are not equal, one could do a normal division (no correction
  1237   //       needed), which may speed up this implementation for the common case.
  1238   //       (see also JVM spec., p.243 & p.271)
  1239   __ corrected_idivq(rcx); // kills rbx
  1242 void TemplateTable::lrem() {
  1243   transition(ltos, ltos);
  1244   __ mov(rcx, rax);
  1245   __ pop_l(rax);
  1246   __ testq(rcx, rcx);
  1247   __ jump_cc(Assembler::zero,
  1248              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1249   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1250   //       they are not equal, one could do a normal division (no correction
  1251   //       needed), which may speed up this implementation for the common case.
  1252   //       (see also JVM spec., p.243 & p.271)
  1253   __ corrected_idivq(rcx); // kills rbx
  1254   __ mov(rax, rdx);
  1257 void TemplateTable::lshl() {
  1258   transition(itos, ltos);
  1259   __ movl(rcx, rax);                             // get shift count
  1260   __ pop_l(rax);                                 // get shift value
  1261   __ shlq(rax);
  1264 void TemplateTable::lshr() {
  1265   transition(itos, ltos);
  1266   __ movl(rcx, rax);                             // get shift count
  1267   __ pop_l(rax);                                 // get shift value
  1268   __ sarq(rax);
  1271 void TemplateTable::lushr() {
  1272   transition(itos, ltos);
  1273   __ movl(rcx, rax);                             // get shift count
  1274   __ pop_l(rax);                                 // get shift value
  1275   __ shrq(rax);
  1278 void TemplateTable::fop2(Operation op) {
  1279   transition(ftos, ftos);
  1280   switch (op) {
  1281   case add:
  1282     __ addss(xmm0, at_rsp());
  1283     __ addptr(rsp, Interpreter::stackElementSize);
  1284     break;
  1285   case sub:
  1286     __ movflt(xmm1, xmm0);
  1287     __ pop_f(xmm0);
  1288     __ subss(xmm0, xmm1);
  1289     break;
  1290   case mul:
  1291     __ mulss(xmm0, at_rsp());
  1292     __ addptr(rsp, Interpreter::stackElementSize);
  1293     break;
  1294   case div:
  1295     __ movflt(xmm1, xmm0);
  1296     __ pop_f(xmm0);
  1297     __ divss(xmm0, xmm1);
  1298     break;
  1299   case rem:
  1300     __ movflt(xmm1, xmm0);
  1301     __ pop_f(xmm0);
  1302     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1303     break;
  1304   default:
  1305     ShouldNotReachHere();
  1306     break;
  1310 void TemplateTable::dop2(Operation op) {
  1311   transition(dtos, dtos);
  1312   switch (op) {
  1313   case add:
  1314     __ addsd(xmm0, at_rsp());
  1315     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1316     break;
  1317   case sub:
  1318     __ movdbl(xmm1, xmm0);
  1319     __ pop_d(xmm0);
  1320     __ subsd(xmm0, xmm1);
  1321     break;
  1322   case mul:
  1323     __ mulsd(xmm0, at_rsp());
  1324     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1325     break;
  1326   case div:
  1327     __ movdbl(xmm1, xmm0);
  1328     __ pop_d(xmm0);
  1329     __ divsd(xmm0, xmm1);
  1330     break;
  1331   case rem:
  1332     __ movdbl(xmm1, xmm0);
  1333     __ pop_d(xmm0);
  1334     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1335     break;
  1336   default:
  1337     ShouldNotReachHere();
  1338     break;
  1342 void TemplateTable::ineg() {
  1343   transition(itos, itos);
  1344   __ negl(rax);
  1347 void TemplateTable::lneg() {
  1348   transition(ltos, ltos);
  1349   __ negq(rax);
  1352 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1353 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1354   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1355   // of 128-bits operands for SSE instructions.
  1356   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1357   // Store the value to a 128-bits operand.
  1358   operand[0] = lo;
  1359   operand[1] = hi;
  1360   return operand;
  1363 // Buffer for 128-bits masks used by SSE instructions.
  1364 static jlong float_signflip_pool[2*2];
  1365 static jlong double_signflip_pool[2*2];
  1367 void TemplateTable::fneg() {
  1368   transition(ftos, ftos);
  1369   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1370   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1373 void TemplateTable::dneg() {
  1374   transition(dtos, dtos);
  1375   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1376   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1379 void TemplateTable::iinc() {
  1380   transition(vtos, vtos);
  1381   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1382   locals_index(rbx);
  1383   __ addl(iaddress(rbx), rdx);
  1386 void TemplateTable::wide_iinc() {
  1387   transition(vtos, vtos);
  1388   __ movl(rdx, at_bcp(4)); // get constant
  1389   locals_index_wide(rbx);
  1390   __ bswapl(rdx); // swap bytes & sign-extend constant
  1391   __ sarl(rdx, 16);
  1392   __ addl(iaddress(rbx), rdx);
  1393   // Note: should probably use only one movl to get both
  1394   //       the index and the constant -> fix this
  1397 void TemplateTable::convert() {
  1398   // Checking
  1399 #ifdef ASSERT
  1401     TosState tos_in  = ilgl;
  1402     TosState tos_out = ilgl;
  1403     switch (bytecode()) {
  1404     case Bytecodes::_i2l: // fall through
  1405     case Bytecodes::_i2f: // fall through
  1406     case Bytecodes::_i2d: // fall through
  1407     case Bytecodes::_i2b: // fall through
  1408     case Bytecodes::_i2c: // fall through
  1409     case Bytecodes::_i2s: tos_in = itos; break;
  1410     case Bytecodes::_l2i: // fall through
  1411     case Bytecodes::_l2f: // fall through
  1412     case Bytecodes::_l2d: tos_in = ltos; break;
  1413     case Bytecodes::_f2i: // fall through
  1414     case Bytecodes::_f2l: // fall through
  1415     case Bytecodes::_f2d: tos_in = ftos; break;
  1416     case Bytecodes::_d2i: // fall through
  1417     case Bytecodes::_d2l: // fall through
  1418     case Bytecodes::_d2f: tos_in = dtos; break;
  1419     default             : ShouldNotReachHere();
  1421     switch (bytecode()) {
  1422     case Bytecodes::_l2i: // fall through
  1423     case Bytecodes::_f2i: // fall through
  1424     case Bytecodes::_d2i: // fall through
  1425     case Bytecodes::_i2b: // fall through
  1426     case Bytecodes::_i2c: // fall through
  1427     case Bytecodes::_i2s: tos_out = itos; break;
  1428     case Bytecodes::_i2l: // fall through
  1429     case Bytecodes::_f2l: // fall through
  1430     case Bytecodes::_d2l: tos_out = ltos; break;
  1431     case Bytecodes::_i2f: // fall through
  1432     case Bytecodes::_l2f: // fall through
  1433     case Bytecodes::_d2f: tos_out = ftos; break;
  1434     case Bytecodes::_i2d: // fall through
  1435     case Bytecodes::_l2d: // fall through
  1436     case Bytecodes::_f2d: tos_out = dtos; break;
  1437     default             : ShouldNotReachHere();
  1439     transition(tos_in, tos_out);
  1441 #endif // ASSERT
  1443   static const int64_t is_nan = 0x8000000000000000L;
  1445   // Conversion
  1446   switch (bytecode()) {
  1447   case Bytecodes::_i2l:
  1448     __ movslq(rax, rax);
  1449     break;
  1450   case Bytecodes::_i2f:
  1451     __ cvtsi2ssl(xmm0, rax);
  1452     break;
  1453   case Bytecodes::_i2d:
  1454     __ cvtsi2sdl(xmm0, rax);
  1455     break;
  1456   case Bytecodes::_i2b:
  1457     __ movsbl(rax, rax);
  1458     break;
  1459   case Bytecodes::_i2c:
  1460     __ movzwl(rax, rax);
  1461     break;
  1462   case Bytecodes::_i2s:
  1463     __ movswl(rax, rax);
  1464     break;
  1465   case Bytecodes::_l2i:
  1466     __ movl(rax, rax);
  1467     break;
  1468   case Bytecodes::_l2f:
  1469     __ cvtsi2ssq(xmm0, rax);
  1470     break;
  1471   case Bytecodes::_l2d:
  1472     __ cvtsi2sdq(xmm0, rax);
  1473     break;
  1474   case Bytecodes::_f2i:
  1476     Label L;
  1477     __ cvttss2sil(rax, xmm0);
  1478     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1479     __ jcc(Assembler::notEqual, L);
  1480     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1481     __ bind(L);
  1483     break;
  1484   case Bytecodes::_f2l:
  1486     Label L;
  1487     __ cvttss2siq(rax, xmm0);
  1488     // NaN or overflow/underflow?
  1489     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1490     __ jcc(Assembler::notEqual, L);
  1491     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1492     __ bind(L);
  1494     break;
  1495   case Bytecodes::_f2d:
  1496     __ cvtss2sd(xmm0, xmm0);
  1497     break;
  1498   case Bytecodes::_d2i:
  1500     Label L;
  1501     __ cvttsd2sil(rax, xmm0);
  1502     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1503     __ jcc(Assembler::notEqual, L);
  1504     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1505     __ bind(L);
  1507     break;
  1508   case Bytecodes::_d2l:
  1510     Label L;
  1511     __ cvttsd2siq(rax, xmm0);
  1512     // NaN or overflow/underflow?
  1513     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1514     __ jcc(Assembler::notEqual, L);
  1515     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1516     __ bind(L);
  1518     break;
  1519   case Bytecodes::_d2f:
  1520     __ cvtsd2ss(xmm0, xmm0);
  1521     break;
  1522   default:
  1523     ShouldNotReachHere();
  1527 void TemplateTable::lcmp() {
  1528   transition(ltos, itos);
  1529   Label done;
  1530   __ pop_l(rdx);
  1531   __ cmpq(rdx, rax);
  1532   __ movl(rax, -1);
  1533   __ jccb(Assembler::less, done);
  1534   __ setb(Assembler::notEqual, rax);
  1535   __ movzbl(rax, rax);
  1536   __ bind(done);
  1539 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1540   Label done;
  1541   if (is_float) {
  1542     // XXX get rid of pop here, use ... reg, mem32
  1543     __ pop_f(xmm1);
  1544     __ ucomiss(xmm1, xmm0);
  1545   } else {
  1546     // XXX get rid of pop here, use ... reg, mem64
  1547     __ pop_d(xmm1);
  1548     __ ucomisd(xmm1, xmm0);
  1550   if (unordered_result < 0) {
  1551     __ movl(rax, -1);
  1552     __ jccb(Assembler::parity, done);
  1553     __ jccb(Assembler::below, done);
  1554     __ setb(Assembler::notEqual, rdx);
  1555     __ movzbl(rax, rdx);
  1556   } else {
  1557     __ movl(rax, 1);
  1558     __ jccb(Assembler::parity, done);
  1559     __ jccb(Assembler::above, done);
  1560     __ movl(rax, 0);
  1561     __ jccb(Assembler::equal, done);
  1562     __ decrementl(rax);
  1564   __ bind(done);
  1567 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1568   __ get_method(rcx); // rcx holds method
  1569   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1570                                      // holds bumped taken count
  1572   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
  1573                              InvocationCounter::counter_offset();
  1574   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
  1575                               InvocationCounter::counter_offset();
  1577   // Load up edx with the branch displacement
  1578   __ movl(rdx, at_bcp(1));
  1579   __ bswapl(rdx);
  1581   if (!is_wide) {
  1582     __ sarl(rdx, 16);
  1584   __ movl2ptr(rdx, rdx);
  1586   // Handle all the JSR stuff here, then exit.
  1587   // It's much shorter and cleaner than intermingling with the non-JSR
  1588   // normal-branch stuff occurring below.
  1589   if (is_jsr) {
  1590     // Pre-load the next target bytecode into rbx
  1591     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1593     // compute return address as bci in rax
  1594     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
  1595                         in_bytes(ConstMethod::codes_offset())));
  1596     __ subptr(rax, Address(rcx, Method::const_offset()));
  1597     // Adjust the bcp in r13 by the displacement in rdx
  1598     __ addptr(r13, rdx);
  1599     // jsr returns atos that is not an oop
  1600     __ push_i(rax);
  1601     __ dispatch_only(vtos);
  1602     return;
  1605   // Normal (non-jsr) branch handling
  1607   // Adjust the bcp in r13 by the displacement in rdx
  1608   __ addptr(r13, rdx);
  1610   assert(UseLoopCounter || !UseOnStackReplacement,
  1611          "on-stack-replacement requires loop counters");
  1612   Label backedge_counter_overflow;
  1613   Label profile_method;
  1614   Label dispatch;
  1615   if (UseLoopCounter) {
  1616     // increment backedge counter for backward branches
  1617     // rax: MDO
  1618     // ebx: MDO bumped taken-count
  1619     // rcx: method
  1620     // rdx: target offset
  1621     // r13: target bcp
  1622     // r14: locals pointer
  1623     __ testl(rdx, rdx);             // check if forward or backward branch
  1624     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1626     // check if MethodCounters exists
  1627     Label has_counters;
  1628     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
  1629     __ testptr(rax, rax);
  1630     __ jcc(Assembler::notZero, has_counters);
  1631     __ push(rdx);
  1632     __ push(rcx);
  1633     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
  1634                rcx);
  1635     __ pop(rcx);
  1636     __ pop(rdx);
  1637     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
  1638     __ jcc(Assembler::zero, dispatch);
  1639     __ bind(has_counters);
  1641     if (TieredCompilation) {
  1642       Label no_mdo;
  1643       int increment = InvocationCounter::count_increment;
  1644       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1645       if (ProfileInterpreter) {
  1646         // Are we profiling?
  1647         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
  1648         __ testptr(rbx, rbx);
  1649         __ jccb(Assembler::zero, no_mdo);
  1650         // Increment the MDO backedge counter
  1651         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
  1652                                            in_bytes(InvocationCounter::counter_offset()));
  1653         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1654                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1655         __ jmp(dispatch);
  1657       __ bind(no_mdo);
  1658       // Increment backedge counter in MethodCounters*
  1659       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
  1660       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1661                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1662     } else {
  1663       // increment counter
  1664       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
  1665       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1666       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1667       __ movl(Address(rcx, be_offset), rax);        // store counter
  1669       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1671       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1672       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1674       if (ProfileInterpreter) {
  1675         // Test to see if we should create a method data oop
  1676         __ cmp32(rax,
  1677                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1678         __ jcc(Assembler::less, dispatch);
  1680         // if no method data exists, go to profile method
  1681         __ test_method_data_pointer(rax, profile_method);
  1683         if (UseOnStackReplacement) {
  1684           // check for overflow against ebx which is the MDO taken count
  1685           __ cmp32(rbx,
  1686                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1687           __ jcc(Assembler::below, dispatch);
  1689           // When ProfileInterpreter is on, the backedge_count comes
  1690           // from the MethodData*, which value does not get reset on
  1691           // the call to frequency_counter_overflow().  To avoid
  1692           // excessive calls to the overflow routine while the method is
  1693           // being compiled, add a second test to make sure the overflow
  1694           // function is called only once every overflow_frequency.
  1695           const int overflow_frequency = 1024;
  1696           __ andl(rbx, overflow_frequency - 1);
  1697           __ jcc(Assembler::zero, backedge_counter_overflow);
  1700       } else {
  1701         if (UseOnStackReplacement) {
  1702           // check for overflow against eax, which is the sum of the
  1703           // counters
  1704           __ cmp32(rax,
  1705                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1706           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1711     __ bind(dispatch);
  1714   // Pre-load the next target bytecode into rbx
  1715   __ load_unsigned_byte(rbx, Address(r13, 0));
  1717   // continue with the bytecode @ target
  1718   // eax: return bci for jsr's, unused otherwise
  1719   // ebx: target bytecode
  1720   // r13: target bcp
  1721   __ dispatch_only(vtos);
  1723   if (UseLoopCounter) {
  1724     if (ProfileInterpreter) {
  1725       // Out-of-line code to allocate method data oop.
  1726       __ bind(profile_method);
  1727       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1728       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1729       __ set_method_data_pointer_for_bcp();
  1730       __ jmp(dispatch);
  1733     if (UseOnStackReplacement) {
  1734       // invocation counter overflow
  1735       __ bind(backedge_counter_overflow);
  1736       __ negptr(rdx);
  1737       __ addptr(rdx, r13); // branch bcp
  1738       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1739       __ call_VM(noreg,
  1740                  CAST_FROM_FN_PTR(address,
  1741                                   InterpreterRuntime::frequency_counter_overflow),
  1742                  rdx);
  1743       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1745       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1746       // ebx: target bytecode
  1747       // rdx: scratch
  1748       // r14: locals pointer
  1749       // r13: bcp
  1750       __ testptr(rax, rax);                        // test result
  1751       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1752       // nmethod may have been invalidated (VM may block upon call_VM return)
  1753       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1754       __ cmpl(rcx, InvalidOSREntryBci);
  1755       __ jcc(Assembler::equal, dispatch);
  1757       // We have the address of an on stack replacement routine in eax
  1758       // We need to prepare to execute the OSR method. First we must
  1759       // migrate the locals and monitors off of the stack.
  1761       __ mov(r13, rax);                             // save the nmethod
  1763       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1765       // eax is OSR buffer, move it to expected parameter location
  1766       __ mov(j_rarg0, rax);
  1768       // We use j_rarg definitions here so that registers don't conflict as parameter
  1769       // registers change across platforms as we are in the midst of a calling
  1770       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1772       const Register retaddr = j_rarg2;
  1773       const Register sender_sp = j_rarg1;
  1775       // pop the interpreter frame
  1776       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1777       __ leave();                                // remove frame anchor
  1778       __ pop(retaddr);                           // get return address
  1779       __ mov(rsp, sender_sp);                   // set sp to sender sp
  1780       // Ensure compiled code always sees stack at proper alignment
  1781       __ andptr(rsp, -(StackAlignmentInBytes));
  1783       // unlike x86 we need no specialized return from compiled code
  1784       // to the interpreter or the call stub.
  1786       // push the return address
  1787       __ push(retaddr);
  1789       // and begin the OSR nmethod
  1790       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1796 void TemplateTable::if_0cmp(Condition cc) {
  1797   transition(itos, vtos);
  1798   // assume branch is more often taken than not (loops use backward branches)
  1799   Label not_taken;
  1800   __ testl(rax, rax);
  1801   __ jcc(j_not(cc), not_taken);
  1802   branch(false, false);
  1803   __ bind(not_taken);
  1804   __ profile_not_taken_branch(rax);
  1807 void TemplateTable::if_icmp(Condition cc) {
  1808   transition(itos, vtos);
  1809   // assume branch is more often taken than not (loops use backward branches)
  1810   Label not_taken;
  1811   __ pop_i(rdx);
  1812   __ cmpl(rdx, rax);
  1813   __ jcc(j_not(cc), not_taken);
  1814   branch(false, false);
  1815   __ bind(not_taken);
  1816   __ profile_not_taken_branch(rax);
  1819 void TemplateTable::if_nullcmp(Condition cc) {
  1820   transition(atos, vtos);
  1821   // assume branch is more often taken than not (loops use backward branches)
  1822   Label not_taken;
  1823   __ testptr(rax, rax);
  1824   __ jcc(j_not(cc), not_taken);
  1825   branch(false, false);
  1826   __ bind(not_taken);
  1827   __ profile_not_taken_branch(rax);
  1830 void TemplateTable::if_acmp(Condition cc) {
  1831   transition(atos, vtos);
  1832   // assume branch is more often taken than not (loops use backward branches)
  1833   Label not_taken;
  1834   __ pop_ptr(rdx);
  1835   __ cmpptr(rdx, rax);
  1836   __ jcc(j_not(cc), not_taken);
  1837   branch(false, false);
  1838   __ bind(not_taken);
  1839   __ profile_not_taken_branch(rax);
  1842 void TemplateTable::ret() {
  1843   transition(vtos, vtos);
  1844   locals_index(rbx);
  1845   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
  1846   __ profile_ret(rbx, rcx);
  1847   __ get_method(rax);
  1848   __ movptr(r13, Address(rax, Method::const_offset()));
  1849   __ lea(r13, Address(r13, rbx, Address::times_1,
  1850                       ConstMethod::codes_offset()));
  1851   __ dispatch_next(vtos);
  1854 void TemplateTable::wide_ret() {
  1855   transition(vtos, vtos);
  1856   locals_index_wide(rbx);
  1857   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1858   __ profile_ret(rbx, rcx);
  1859   __ get_method(rax);
  1860   __ movptr(r13, Address(rax, Method::const_offset()));
  1861   __ lea(r13, Address(r13, rbx, Address::times_1, ConstMethod::codes_offset()));
  1862   __ dispatch_next(vtos);
  1865 void TemplateTable::tableswitch() {
  1866   Label default_case, continue_execution;
  1867   transition(itos, vtos);
  1868   // align r13
  1869   __ lea(rbx, at_bcp(BytesPerInt));
  1870   __ andptr(rbx, -BytesPerInt);
  1871   // load lo & hi
  1872   __ movl(rcx, Address(rbx, BytesPerInt));
  1873   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1874   __ bswapl(rcx);
  1875   __ bswapl(rdx);
  1876   // check against lo & hi
  1877   __ cmpl(rax, rcx);
  1878   __ jcc(Assembler::less, default_case);
  1879   __ cmpl(rax, rdx);
  1880   __ jcc(Assembler::greater, default_case);
  1881   // lookup dispatch offset
  1882   __ subl(rax, rcx);
  1883   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1884   __ profile_switch_case(rax, rbx, rcx);
  1885   // continue execution
  1886   __ bind(continue_execution);
  1887   __ bswapl(rdx);
  1888   __ movl2ptr(rdx, rdx);
  1889   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1890   __ addptr(r13, rdx);
  1891   __ dispatch_only(vtos);
  1892   // handle default
  1893   __ bind(default_case);
  1894   __ profile_switch_default(rax);
  1895   __ movl(rdx, Address(rbx, 0));
  1896   __ jmp(continue_execution);
  1899 void TemplateTable::lookupswitch() {
  1900   transition(itos, itos);
  1901   __ stop("lookupswitch bytecode should have been rewritten");
  1904 void TemplateTable::fast_linearswitch() {
  1905   transition(itos, vtos);
  1906   Label loop_entry, loop, found, continue_execution;
  1907   // bswap rax so we can avoid bswapping the table entries
  1908   __ bswapl(rax);
  1909   // align r13
  1910   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1911                                     // this instruction (change offsets
  1912                                     // below)
  1913   __ andptr(rbx, -BytesPerInt);
  1914   // set counter
  1915   __ movl(rcx, Address(rbx, BytesPerInt));
  1916   __ bswapl(rcx);
  1917   __ jmpb(loop_entry);
  1918   // table search
  1919   __ bind(loop);
  1920   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1921   __ jcc(Assembler::equal, found);
  1922   __ bind(loop_entry);
  1923   __ decrementl(rcx);
  1924   __ jcc(Assembler::greaterEqual, loop);
  1925   // default case
  1926   __ profile_switch_default(rax);
  1927   __ movl(rdx, Address(rbx, 0));
  1928   __ jmp(continue_execution);
  1929   // entry found -> get offset
  1930   __ bind(found);
  1931   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1932   __ profile_switch_case(rcx, rax, rbx);
  1933   // continue execution
  1934   __ bind(continue_execution);
  1935   __ bswapl(rdx);
  1936   __ movl2ptr(rdx, rdx);
  1937   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1938   __ addptr(r13, rdx);
  1939   __ dispatch_only(vtos);
  1942 void TemplateTable::fast_binaryswitch() {
  1943   transition(itos, vtos);
  1944   // Implementation using the following core algorithm:
  1945   //
  1946   // int binary_search(int key, LookupswitchPair* array, int n) {
  1947   //   // Binary search according to "Methodik des Programmierens" by
  1948   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1949   //   int i = 0;
  1950   //   int j = n;
  1951   //   while (i+1 < j) {
  1952   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1953   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1954   //     // where a stands for the array and assuming that the (inexisting)
  1955   //     // element a[n] is infinitely big.
  1956   //     int h = (i + j) >> 1;
  1957   //     // i < h < j
  1958   //     if (key < array[h].fast_match()) {
  1959   //       j = h;
  1960   //     } else {
  1961   //       i = h;
  1962   //     }
  1963   //   }
  1964   //   // R: a[i] <= key < a[i+1] or Q
  1965   //   // (i.e., if key is within array, i is the correct index)
  1966   //   return i;
  1967   // }
  1969   // Register allocation
  1970   const Register key   = rax; // already set (tosca)
  1971   const Register array = rbx;
  1972   const Register i     = rcx;
  1973   const Register j     = rdx;
  1974   const Register h     = rdi;
  1975   const Register temp  = rsi;
  1977   // Find array start
  1978   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1979                                           // get rid of this
  1980                                           // instruction (change
  1981                                           // offsets below)
  1982   __ andptr(array, -BytesPerInt);
  1984   // Initialize i & j
  1985   __ xorl(i, i);                            // i = 0;
  1986   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  1988   // Convert j into native byteordering
  1989   __ bswapl(j);
  1991   // And start
  1992   Label entry;
  1993   __ jmp(entry);
  1995   // binary search loop
  1997     Label loop;
  1998     __ bind(loop);
  1999     // int h = (i + j) >> 1;
  2000     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  2001     __ sarl(h, 1);                               // h = (i + j) >> 1;
  2002     // if (key < array[h].fast_match()) {
  2003     //   j = h;
  2004     // } else {
  2005     //   i = h;
  2006     // }
  2007     // Convert array[h].match to native byte-ordering before compare
  2008     __ movl(temp, Address(array, h, Address::times_8));
  2009     __ bswapl(temp);
  2010     __ cmpl(key, temp);
  2011     // j = h if (key <  array[h].fast_match())
  2012     __ cmovl(Assembler::less, j, h);
  2013     // i = h if (key >= array[h].fast_match())
  2014     __ cmovl(Assembler::greaterEqual, i, h);
  2015     // while (i+1 < j)
  2016     __ bind(entry);
  2017     __ leal(h, Address(i, 1)); // i+1
  2018     __ cmpl(h, j);             // i+1 < j
  2019     __ jcc(Assembler::less, loop);
  2022   // end of binary search, result index is i (must check again!)
  2023   Label default_case;
  2024   // Convert array[i].match to native byte-ordering before compare
  2025   __ movl(temp, Address(array, i, Address::times_8));
  2026   __ bswapl(temp);
  2027   __ cmpl(key, temp);
  2028   __ jcc(Assembler::notEqual, default_case);
  2030   // entry found -> j = offset
  2031   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  2032   __ profile_switch_case(i, key, array);
  2033   __ bswapl(j);
  2034   __ movl2ptr(j, j);
  2035   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2036   __ addptr(r13, j);
  2037   __ dispatch_only(vtos);
  2039   // default case -> j = default offset
  2040   __ bind(default_case);
  2041   __ profile_switch_default(i);
  2042   __ movl(j, Address(array, -2 * BytesPerInt));
  2043   __ bswapl(j);
  2044   __ movl2ptr(j, j);
  2045   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2046   __ addptr(r13, j);
  2047   __ dispatch_only(vtos);
  2051 void TemplateTable::_return(TosState state) {
  2052   transition(state, state);
  2053   assert(_desc->calls_vm(),
  2054          "inconsistent calls_vm information"); // call in remove_activation
  2056   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2057     assert(state == vtos, "only valid state");
  2058     __ movptr(c_rarg1, aaddress(0));
  2059     __ load_klass(rdi, c_rarg1);
  2060     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
  2061     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2062     Label skip_register_finalizer;
  2063     __ jcc(Assembler::zero, skip_register_finalizer);
  2065     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  2067     __ bind(skip_register_finalizer);
  2070   __ remove_activation(state, r13);
  2071   __ jmp(r13);
  2074 // ----------------------------------------------------------------------------
  2075 // Volatile variables demand their effects be made known to all CPU's
  2076 // in order.  Store buffers on most chips allow reads & writes to
  2077 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  2078 // without some kind of memory barrier (i.e., it's not sufficient that
  2079 // the interpreter does not reorder volatile references, the hardware
  2080 // also must not reorder them).
  2081 //
  2082 // According to the new Java Memory Model (JMM):
  2083 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  2084 //     writes act as aquire & release, so:
  2085 // (2) A read cannot let unrelated NON-volatile memory refs that
  2086 //     happen after the read float up to before the read.  It's OK for
  2087 //     non-volatile memory refs that happen before the volatile read to
  2088 //     float down below it.
  2089 // (3) Similar a volatile write cannot let unrelated NON-volatile
  2090 //     memory refs that happen BEFORE the write float down to after the
  2091 //     write.  It's OK for non-volatile memory refs that happen after the
  2092 //     volatile write to float up before it.
  2093 //
  2094 // We only put in barriers around volatile refs (they are expensive),
  2095 // not _between_ memory refs (that would require us to track the
  2096 // flavor of the previous memory refs).  Requirements (2) and (3)
  2097 // require some barriers before volatile stores and after volatile
  2098 // loads.  These nearly cover requirement (1) but miss the
  2099 // volatile-store-volatile-load case.  This final case is placed after
  2100 // volatile-stores although it could just as well go before
  2101 // volatile-loads.
  2102 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  2103                                      order_constraint) {
  2104   // Helper function to insert a is-volatile test and memory barrier
  2105   if (os::is_MP()) { // Not needed on single CPU
  2106     __ membar(order_constraint);
  2110 void TemplateTable::resolve_cache_and_index(int byte_no,
  2111                                             Register Rcache,
  2112                                             Register index,
  2113                                             size_t index_size) {
  2114   const Register temp = rbx;
  2115   assert_different_registers(Rcache, index, temp);
  2117   Label resolved;
  2118     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2119     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
  2120     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
  2121     __ jcc(Assembler::equal, resolved);
  2123   // resolve first time through
  2124   address entry;
  2125   switch (bytecode()) {
  2126   case Bytecodes::_getstatic:
  2127   case Bytecodes::_putstatic:
  2128   case Bytecodes::_getfield:
  2129   case Bytecodes::_putfield:
  2130     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2131     break;
  2132   case Bytecodes::_invokevirtual:
  2133   case Bytecodes::_invokespecial:
  2134   case Bytecodes::_invokestatic:
  2135   case Bytecodes::_invokeinterface:
  2136     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2137     break;
  2138   case Bytecodes::_invokehandle:
  2139     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);
  2140     break;
  2141   case Bytecodes::_invokedynamic:
  2142     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
  2143     break;
  2144   default:
  2145     fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
  2146     break;
  2148   __ movl(temp, (int) bytecode());
  2149   __ call_VM(noreg, entry, temp);
  2151   // Update registers with resolved info
  2152   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2153   __ bind(resolved);
  2156 // The cache and index registers must be set before call
  2157 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2158                                               Register cache,
  2159                                               Register index,
  2160                                               Register off,
  2161                                               Register flags,
  2162                                               bool is_static = false) {
  2163   assert_different_registers(cache, index, flags, off);
  2165   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2166   // Field offset
  2167   __ movptr(off, Address(cache, index, Address::times_ptr,
  2168                          in_bytes(cp_base_offset +
  2169                                   ConstantPoolCacheEntry::f2_offset())));
  2170   // Flags
  2171   __ movl(flags, Address(cache, index, Address::times_ptr,
  2172                          in_bytes(cp_base_offset +
  2173                                   ConstantPoolCacheEntry::flags_offset())));
  2175   // klass overwrite register
  2176   if (is_static) {
  2177     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2178                            in_bytes(cp_base_offset +
  2179                                     ConstantPoolCacheEntry::f1_offset())));
  2180     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  2181     __ movptr(obj, Address(obj, mirror_offset));
  2185 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2186                                                Register method,
  2187                                                Register itable_index,
  2188                                                Register flags,
  2189                                                bool is_invokevirtual,
  2190                                                bool is_invokevfinal, /*unused*/
  2191                                                bool is_invokedynamic) {
  2192   // setup registers
  2193   const Register cache = rcx;
  2194   const Register index = rdx;
  2195   assert_different_registers(method, flags);
  2196   assert_different_registers(method, cache, index);
  2197   assert_different_registers(itable_index, flags);
  2198   assert_different_registers(itable_index, cache, index);
  2199   // determine constant pool cache field offsets
  2200   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
  2201   const int method_offset = in_bytes(
  2202     ConstantPoolCache::base_offset() +
  2203       ((byte_no == f2_byte)
  2204        ? ConstantPoolCacheEntry::f2_offset()
  2205        : ConstantPoolCacheEntry::f1_offset()));
  2206   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
  2207                                     ConstantPoolCacheEntry::flags_offset());
  2208   // access constant pool cache fields
  2209   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
  2210                                     ConstantPoolCacheEntry::f2_offset());
  2212   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
  2213   resolve_cache_and_index(byte_no, cache, index, index_size);
  2214     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2216   if (itable_index != noreg) {
  2217     // pick up itable or appendix index from f2 also:
  2218     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2220   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2223 // Correct values of the cache and index registers are preserved.
  2224 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2225                                             bool is_static, bool has_tos) {
  2226   // do the JVMTI work here to avoid disturbing the register state below
  2227   // We use c_rarg registers here because we want to use the register used in
  2228   // the call to the VM
  2229   if (JvmtiExport::can_post_field_access()) {
  2230     // Check to see if a field access watch has been set before we
  2231     // take the time to call into the VM.
  2232     Label L1;
  2233     assert_different_registers(cache, index, rax);
  2234     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2235     __ testl(rax, rax);
  2236     __ jcc(Assembler::zero, L1);
  2238     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2240     // cache entry pointer
  2241     __ addptr(c_rarg2, in_bytes(ConstantPoolCache::base_offset()));
  2242     __ shll(c_rarg3, LogBytesPerWord);
  2243     __ addptr(c_rarg2, c_rarg3);
  2244     if (is_static) {
  2245       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2246     } else {
  2247       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
  2248       __ verify_oop(c_rarg1);
  2250     // c_rarg1: object pointer or NULL
  2251     // c_rarg2: cache entry pointer
  2252     // c_rarg3: jvalue object on the stack
  2253     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2254                                        InterpreterRuntime::post_field_access),
  2255                c_rarg1, c_rarg2, c_rarg3);
  2256     __ get_cache_and_index_at_bcp(cache, index, 1);
  2257     __ bind(L1);
  2261 void TemplateTable::pop_and_check_object(Register r) {
  2262   __ pop_ptr(r);
  2263   __ null_check(r);  // for field access must check obj.
  2264   __ verify_oop(r);
  2267 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2268   transition(vtos, vtos);
  2270   const Register cache = rcx;
  2271   const Register index = rdx;
  2272   const Register obj   = c_rarg3;
  2273   const Register off   = rbx;
  2274   const Register flags = rax;
  2275   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2277   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2278   jvmti_post_field_access(cache, index, is_static, false);
  2279   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2281   if (!is_static) {
  2282     // obj is on the stack
  2283     pop_and_check_object(obj);
  2286   const Address field(obj, off, Address::times_1);
  2288   Label Done, notByte, notInt, notShort, notChar,
  2289               notLong, notFloat, notObj, notDouble;
  2291   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2292   // Make sure we don't need to mask edx after the above shift
  2293   assert(btos == 0, "change code, btos != 0");
  2295   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
  2296   __ jcc(Assembler::notZero, notByte);
  2297   // btos
  2298   __ load_signed_byte(rax, field);
  2299   __ push(btos);
  2300   // Rewrite bytecode to be faster
  2301   if (!is_static) {
  2302     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2304   __ jmp(Done);
  2306   __ bind(notByte);
  2307   __ cmpl(flags, atos);
  2308   __ jcc(Assembler::notEqual, notObj);
  2309   // atos
  2310   __ load_heap_oop(rax, field);
  2311   __ push(atos);
  2312   if (!is_static) {
  2313     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2315   __ jmp(Done);
  2317   __ bind(notObj);
  2318   __ cmpl(flags, itos);
  2319   __ jcc(Assembler::notEqual, notInt);
  2320   // itos
  2321   __ movl(rax, field);
  2322   __ push(itos);
  2323   // Rewrite bytecode to be faster
  2324   if (!is_static) {
  2325     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2327   __ jmp(Done);
  2329   __ bind(notInt);
  2330   __ cmpl(flags, ctos);
  2331   __ jcc(Assembler::notEqual, notChar);
  2332   // ctos
  2333   __ load_unsigned_short(rax, field);
  2334   __ push(ctos);
  2335   // Rewrite bytecode to be faster
  2336   if (!is_static) {
  2337     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2339   __ jmp(Done);
  2341   __ bind(notChar);
  2342   __ cmpl(flags, stos);
  2343   __ jcc(Assembler::notEqual, notShort);
  2344   // stos
  2345   __ load_signed_short(rax, field);
  2346   __ push(stos);
  2347   // Rewrite bytecode to be faster
  2348   if (!is_static) {
  2349     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2351   __ jmp(Done);
  2353   __ bind(notShort);
  2354   __ cmpl(flags, ltos);
  2355   __ jcc(Assembler::notEqual, notLong);
  2356   // ltos
  2357   __ movq(rax, field);
  2358   __ push(ltos);
  2359   // Rewrite bytecode to be faster
  2360   if (!is_static) {
  2361     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2363   __ jmp(Done);
  2365   __ bind(notLong);
  2366   __ cmpl(flags, ftos);
  2367   __ jcc(Assembler::notEqual, notFloat);
  2368   // ftos
  2369   __ movflt(xmm0, field);
  2370   __ push(ftos);
  2371   // Rewrite bytecode to be faster
  2372   if (!is_static) {
  2373     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2375   __ jmp(Done);
  2377   __ bind(notFloat);
  2378 #ifdef ASSERT
  2379   __ cmpl(flags, dtos);
  2380   __ jcc(Assembler::notEqual, notDouble);
  2381 #endif
  2382   // dtos
  2383   __ movdbl(xmm0, field);
  2384   __ push(dtos);
  2385   // Rewrite bytecode to be faster
  2386   if (!is_static) {
  2387     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2389 #ifdef ASSERT
  2390   __ jmp(Done);
  2392   __ bind(notDouble);
  2393   __ stop("Bad state");
  2394 #endif
  2396   __ bind(Done);
  2397   // [jk] not needed currently
  2398   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2399   //                                              Assembler::LoadStore));
  2403 void TemplateTable::getfield(int byte_no) {
  2404   getfield_or_static(byte_no, false);
  2407 void TemplateTable::getstatic(int byte_no) {
  2408   getfield_or_static(byte_no, true);
  2411 // The registers cache and index expected to be set before call.
  2412 // The function may destroy various registers, just not the cache and index registers.
  2413 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2414   transition(vtos, vtos);
  2416   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  2418   if (JvmtiExport::can_post_field_modification()) {
  2419     // Check to see if a field modification watch has been set before
  2420     // we take the time to call into the VM.
  2421     Label L1;
  2422     assert_different_registers(cache, index, rax);
  2423     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2424     __ testl(rax, rax);
  2425     __ jcc(Assembler::zero, L1);
  2427     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2429     if (is_static) {
  2430       // Life is simple.  Null out the object pointer.
  2431       __ xorl(c_rarg1, c_rarg1);
  2432     } else {
  2433       // Life is harder. The stack holds the value on top, followed by
  2434       // the object.  We don't know the size of the value, though; it
  2435       // could be one or two words depending on its type. As a result,
  2436       // we must find the type to determine where the object is.
  2437       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2438                            Address::times_8,
  2439                            in_bytes(cp_base_offset +
  2440                                      ConstantPoolCacheEntry::flags_offset())));
  2441       __ shrl(c_rarg3, ConstantPoolCacheEntry::tos_state_shift);
  2442       // Make sure we don't need to mask rcx after the above shift
  2443       ConstantPoolCacheEntry::verify_tos_state_shift();
  2444       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2445       __ cmpl(c_rarg3, ltos);
  2446       __ cmovptr(Assembler::equal,
  2447                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2448       __ cmpl(c_rarg3, dtos);
  2449       __ cmovptr(Assembler::equal,
  2450                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2452     // cache entry pointer
  2453     __ addptr(c_rarg2, in_bytes(cp_base_offset));
  2454     __ shll(rscratch1, LogBytesPerWord);
  2455     __ addptr(c_rarg2, rscratch1);
  2456     // object (tos)
  2457     __ mov(c_rarg3, rsp);
  2458     // c_rarg1: object pointer set up above (NULL if static)
  2459     // c_rarg2: cache entry pointer
  2460     // c_rarg3: jvalue object on the stack
  2461     __ call_VM(noreg,
  2462                CAST_FROM_FN_PTR(address,
  2463                                 InterpreterRuntime::post_field_modification),
  2464                c_rarg1, c_rarg2, c_rarg3);
  2465     __ get_cache_and_index_at_bcp(cache, index, 1);
  2466     __ bind(L1);
  2470 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2471   transition(vtos, vtos);
  2473   const Register cache = rcx;
  2474   const Register index = rdx;
  2475   const Register obj   = rcx;
  2476   const Register off   = rbx;
  2477   const Register flags = rax;
  2478   const Register bc    = c_rarg3;
  2480   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
  2481   jvmti_post_field_mod(cache, index, is_static);
  2482   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2484   // [jk] not needed currently
  2485   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2486   //                                              Assembler::StoreStore));
  2488   Label notVolatile, Done;
  2489   __ movl(rdx, flags);
  2490   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2491   __ andl(rdx, 0x1);
  2493   // field address
  2494   const Address field(obj, off, Address::times_1);
  2496   Label notByte, notInt, notShort, notChar,
  2497         notLong, notFloat, notObj, notDouble;
  2499   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2501   assert(btos == 0, "change code, btos != 0");
  2502   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
  2503   __ jcc(Assembler::notZero, notByte);
  2505   // btos
  2507     __ pop(btos);
  2508     if (!is_static) pop_and_check_object(obj);
  2509     __ movb(field, rax);
  2510     if (!is_static) {
  2511       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
  2513     __ jmp(Done);
  2516   __ bind(notByte);
  2517   __ cmpl(flags, atos);
  2518   __ jcc(Assembler::notEqual, notObj);
  2520   // atos
  2522     __ pop(atos);
  2523     if (!is_static) pop_and_check_object(obj);
  2524     // Store into the field
  2525     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2526     if (!is_static) {
  2527       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
  2529     __ jmp(Done);
  2532   __ bind(notObj);
  2533   __ cmpl(flags, itos);
  2534   __ jcc(Assembler::notEqual, notInt);
  2536   // itos
  2538     __ pop(itos);
  2539     if (!is_static) pop_and_check_object(obj);
  2540     __ movl(field, rax);
  2541     if (!is_static) {
  2542       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
  2544     __ jmp(Done);
  2547   __ bind(notInt);
  2548   __ cmpl(flags, ctos);
  2549   __ jcc(Assembler::notEqual, notChar);
  2551   // ctos
  2553     __ pop(ctos);
  2554     if (!is_static) pop_and_check_object(obj);
  2555     __ movw(field, rax);
  2556     if (!is_static) {
  2557       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
  2559     __ jmp(Done);
  2562   __ bind(notChar);
  2563   __ cmpl(flags, stos);
  2564   __ jcc(Assembler::notEqual, notShort);
  2566   // stos
  2568     __ pop(stos);
  2569     if (!is_static) pop_and_check_object(obj);
  2570     __ movw(field, rax);
  2571     if (!is_static) {
  2572       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
  2574     __ jmp(Done);
  2577   __ bind(notShort);
  2578   __ cmpl(flags, ltos);
  2579   __ jcc(Assembler::notEqual, notLong);
  2581   // ltos
  2583     __ pop(ltos);
  2584     if (!is_static) pop_and_check_object(obj);
  2585     __ movq(field, rax);
  2586     if (!is_static) {
  2587       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
  2589     __ jmp(Done);
  2592   __ bind(notLong);
  2593   __ cmpl(flags, ftos);
  2594   __ jcc(Assembler::notEqual, notFloat);
  2596   // ftos
  2598     __ pop(ftos);
  2599     if (!is_static) pop_and_check_object(obj);
  2600     __ movflt(field, xmm0);
  2601     if (!is_static) {
  2602       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
  2604     __ jmp(Done);
  2607   __ bind(notFloat);
  2608 #ifdef ASSERT
  2609   __ cmpl(flags, dtos);
  2610   __ jcc(Assembler::notEqual, notDouble);
  2611 #endif
  2613   // dtos
  2615     __ pop(dtos);
  2616     if (!is_static) pop_and_check_object(obj);
  2617     __ movdbl(field, xmm0);
  2618     if (!is_static) {
  2619       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
  2623 #ifdef ASSERT
  2624   __ jmp(Done);
  2626   __ bind(notDouble);
  2627   __ stop("Bad state");
  2628 #endif
  2630   __ bind(Done);
  2632   // Check for volatile store
  2633   __ testl(rdx, rdx);
  2634   __ jcc(Assembler::zero, notVolatile);
  2635   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2636                                                Assembler::StoreStore));
  2637   __ bind(notVolatile);
  2640 void TemplateTable::putfield(int byte_no) {
  2641   putfield_or_static(byte_no, false);
  2644 void TemplateTable::putstatic(int byte_no) {
  2645   putfield_or_static(byte_no, true);
  2648 void TemplateTable::jvmti_post_fast_field_mod() {
  2649   if (JvmtiExport::can_post_field_modification()) {
  2650     // Check to see if a field modification watch has been set before
  2651     // we take the time to call into the VM.
  2652     Label L2;
  2653     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2654     __ testl(c_rarg3, c_rarg3);
  2655     __ jcc(Assembler::zero, L2);
  2656     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2657     __ verify_oop(rbx);
  2658     __ push_ptr(rbx);                 // put the object pointer back on tos
  2659     // Save tos values before call_VM() clobbers them. Since we have
  2660     // to do it for every data type, we use the saved values as the
  2661     // jvalue object.
  2662     switch (bytecode()) {          // load values into the jvalue object
  2663     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
  2664     case Bytecodes::_fast_bputfield: // fall through
  2665     case Bytecodes::_fast_sputfield: // fall through
  2666     case Bytecodes::_fast_cputfield: // fall through
  2667     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
  2668     case Bytecodes::_fast_dputfield: __ push_d(); break;
  2669     case Bytecodes::_fast_fputfield: __ push_f(); break;
  2670     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
  2672     default:
  2673       ShouldNotReachHere();
  2675     __ mov(c_rarg3, rsp);             // points to jvalue on the stack
  2676     // access constant pool cache entry
  2677     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2678     __ verify_oop(rbx);
  2679     // rbx: object pointer copied above
  2680     // c_rarg2: cache entry pointer
  2681     // c_rarg3: jvalue object on the stack
  2682     __ call_VM(noreg,
  2683                CAST_FROM_FN_PTR(address,
  2684                                 InterpreterRuntime::post_field_modification),
  2685                rbx, c_rarg2, c_rarg3);
  2687     switch (bytecode()) {             // restore tos values
  2688     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
  2689     case Bytecodes::_fast_bputfield: // fall through
  2690     case Bytecodes::_fast_sputfield: // fall through
  2691     case Bytecodes::_fast_cputfield: // fall through
  2692     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
  2693     case Bytecodes::_fast_dputfield: __ pop_d(); break;
  2694     case Bytecodes::_fast_fputfield: __ pop_f(); break;
  2695     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
  2697     __ bind(L2);
  2701 void TemplateTable::fast_storefield(TosState state) {
  2702   transition(state, vtos);
  2704   ByteSize base = ConstantPoolCache::base_offset();
  2706   jvmti_post_fast_field_mod();
  2708   // access constant pool cache
  2709   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2711   // test for volatile with rdx
  2712   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2713                        in_bytes(base +
  2714                                 ConstantPoolCacheEntry::flags_offset())));
  2716   // replace index with field offset from cache entry
  2717   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2718                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2720   // [jk] not needed currently
  2721   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2722   //                                              Assembler::StoreStore));
  2724   Label notVolatile;
  2725   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2726   __ andl(rdx, 0x1);
  2728   // Get object from stack
  2729   pop_and_check_object(rcx);
  2731   // field address
  2732   const Address field(rcx, rbx, Address::times_1);
  2734   // access field
  2735   switch (bytecode()) {
  2736   case Bytecodes::_fast_aputfield:
  2737     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2738     break;
  2739   case Bytecodes::_fast_lputfield:
  2740     __ movq(field, rax);
  2741     break;
  2742   case Bytecodes::_fast_iputfield:
  2743     __ movl(field, rax);
  2744     break;
  2745   case Bytecodes::_fast_bputfield:
  2746     __ movb(field, rax);
  2747     break;
  2748   case Bytecodes::_fast_sputfield:
  2749     // fall through
  2750   case Bytecodes::_fast_cputfield:
  2751     __ movw(field, rax);
  2752     break;
  2753   case Bytecodes::_fast_fputfield:
  2754     __ movflt(field, xmm0);
  2755     break;
  2756   case Bytecodes::_fast_dputfield:
  2757     __ movdbl(field, xmm0);
  2758     break;
  2759   default:
  2760     ShouldNotReachHere();
  2763   // Check for volatile store
  2764   __ testl(rdx, rdx);
  2765   __ jcc(Assembler::zero, notVolatile);
  2766   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2767                                                Assembler::StoreStore));
  2768   __ bind(notVolatile);
  2772 void TemplateTable::fast_accessfield(TosState state) {
  2773   transition(atos, state);
  2775   // Do the JVMTI work here to avoid disturbing the register state below
  2776   if (JvmtiExport::can_post_field_access()) {
  2777     // Check to see if a field access watch has been set before we
  2778     // take the time to call into the VM.
  2779     Label L1;
  2780     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2781     __ testl(rcx, rcx);
  2782     __ jcc(Assembler::zero, L1);
  2783     // access constant pool cache entry
  2784     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2785     __ verify_oop(rax);
  2786     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2787     __ mov(c_rarg1, rax);
  2788     // c_rarg1: object pointer copied above
  2789     // c_rarg2: cache entry pointer
  2790     __ call_VM(noreg,
  2791                CAST_FROM_FN_PTR(address,
  2792                                 InterpreterRuntime::post_field_access),
  2793                c_rarg1, c_rarg2);
  2794     __ pop_ptr(rax); // restore object pointer
  2795     __ bind(L1);
  2798   // access constant pool cache
  2799   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2800   // replace index with field offset from cache entry
  2801   // [jk] not needed currently
  2802   // if (os::is_MP()) {
  2803   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2804   //                        in_bytes(ConstantPoolCache::base_offset() +
  2805   //                                 ConstantPoolCacheEntry::flags_offset())));
  2806   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2807   //   __ andl(rdx, 0x1);
  2808   // }
  2809   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2810                          in_bytes(ConstantPoolCache::base_offset() +
  2811                                   ConstantPoolCacheEntry::f2_offset())));
  2813   // rax: object
  2814   __ verify_oop(rax);
  2815   __ null_check(rax);
  2816   Address field(rax, rbx, Address::times_1);
  2818   // access field
  2819   switch (bytecode()) {
  2820   case Bytecodes::_fast_agetfield:
  2821     __ load_heap_oop(rax, field);
  2822     __ verify_oop(rax);
  2823     break;
  2824   case Bytecodes::_fast_lgetfield:
  2825     __ movq(rax, field);
  2826     break;
  2827   case Bytecodes::_fast_igetfield:
  2828     __ movl(rax, field);
  2829     break;
  2830   case Bytecodes::_fast_bgetfield:
  2831     __ movsbl(rax, field);
  2832     break;
  2833   case Bytecodes::_fast_sgetfield:
  2834     __ load_signed_short(rax, field);
  2835     break;
  2836   case Bytecodes::_fast_cgetfield:
  2837     __ load_unsigned_short(rax, field);
  2838     break;
  2839   case Bytecodes::_fast_fgetfield:
  2840     __ movflt(xmm0, field);
  2841     break;
  2842   case Bytecodes::_fast_dgetfield:
  2843     __ movdbl(xmm0, field);
  2844     break;
  2845   default:
  2846     ShouldNotReachHere();
  2848   // [jk] not needed currently
  2849   // if (os::is_MP()) {
  2850   //   Label notVolatile;
  2851   //   __ testl(rdx, rdx);
  2852   //   __ jcc(Assembler::zero, notVolatile);
  2853   //   __ membar(Assembler::LoadLoad);
  2854   //   __ bind(notVolatile);
  2855   //};
  2858 void TemplateTable::fast_xaccess(TosState state) {
  2859   transition(vtos, state);
  2861   // get receiver
  2862   __ movptr(rax, aaddress(0));
  2863   // access constant pool cache
  2864   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2865   __ movptr(rbx,
  2866             Address(rcx, rdx, Address::times_8,
  2867                     in_bytes(ConstantPoolCache::base_offset() +
  2868                              ConstantPoolCacheEntry::f2_offset())));
  2869   // make sure exception is reported in correct bcp range (getfield is
  2870   // next instruction)
  2871   __ increment(r13);
  2872   __ null_check(rax);
  2873   switch (state) {
  2874   case itos:
  2875     __ movl(rax, Address(rax, rbx, Address::times_1));
  2876     break;
  2877   case atos:
  2878     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
  2879     __ verify_oop(rax);
  2880     break;
  2881   case ftos:
  2882     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2883     break;
  2884   default:
  2885     ShouldNotReachHere();
  2888   // [jk] not needed currently
  2889   // if (os::is_MP()) {
  2890   //   Label notVolatile;
  2891   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2892   //                        in_bytes(ConstantPoolCache::base_offset() +
  2893   //                                 ConstantPoolCacheEntry::flags_offset())));
  2894   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2895   //   __ testl(rdx, 0x1);
  2896   //   __ jcc(Assembler::zero, notVolatile);
  2897   //   __ membar(Assembler::LoadLoad);
  2898   //   __ bind(notVolatile);
  2899   // }
  2901   __ decrement(r13);
  2906 //-----------------------------------------------------------------------------
  2907 // Calls
  2909 void TemplateTable::count_calls(Register method, Register temp) {
  2910   // implemented elsewhere
  2911   ShouldNotReachHere();
  2914 void TemplateTable::prepare_invoke(int byte_no,
  2915                                    Register method,  // linked method (or i-klass)
  2916                                    Register index,   // itable index, MethodType, etc.
  2917                                    Register recv,    // if caller wants to see it
  2918                                    Register flags    // if caller wants to test it
  2919                                    ) {
  2920   // determine flags
  2921   const Bytecodes::Code code = bytecode();
  2922   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2923   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2924   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
  2925   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2926   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2927   const bool load_receiver       = (recv  != noreg);
  2928   const bool save_flags          = (flags != noreg);
  2929   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
  2930   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
  2931   assert(flags == noreg || flags == rdx, "");
  2932   assert(recv  == noreg || recv  == rcx, "");
  2934   // setup registers & access constant pool cache
  2935   if (recv  == noreg)  recv  = rcx;
  2936   if (flags == noreg)  flags = rdx;
  2937   assert_different_registers(method, index, recv, flags);
  2939   // save 'interpreter return address'
  2940   __ save_bcp();
  2942   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2944   // maybe push appendix to arguments (just before return address)
  2945   if (is_invokedynamic || is_invokehandle) {
  2946     Label L_no_push;
  2947     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
  2948     __ jcc(Assembler::zero, L_no_push);
  2949     // Push the appendix as a trailing parameter.
  2950     // This must be done before we get the receiver,
  2951     // since the parameter_size includes it.
  2952     __ push(rbx);
  2953     __ mov(rbx, index);
  2954     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
  2955     __ load_resolved_reference_at_index(index, rbx);
  2956     __ pop(rbx);
  2957     __ push(index);  // push appendix (MethodType, CallSite, etc.)
  2958     __ bind(L_no_push);
  2961   // load receiver if needed (after appendix is pushed so parameter size is correct)
  2962   // Note: no return address pushed yet
  2963   if (load_receiver) {
  2964     __ movl(recv, flags);
  2965     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
  2966     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
  2967     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
  2968     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
  2969     __ movptr(recv, recv_addr);
  2970     __ verify_oop(recv);
  2973   if (save_flags) {
  2974     __ movl(r13, flags);
  2977   // compute return type
  2978   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2979   // Make sure we don't need to mask flags after the above shift
  2980   ConstantPoolCacheEntry::verify_tos_state_shift();
  2981   // load return address
  2983     const address table_addr = (is_invokeinterface || is_invokedynamic) ?
  2984         (address)Interpreter::return_5_addrs_by_index_table() :
  2985         (address)Interpreter::return_3_addrs_by_index_table();
  2986     ExternalAddress table(table_addr);
  2987     __ lea(rscratch1, table);
  2988     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
  2991   // push return address
  2992   __ push(flags);
  2994   // Restore flags value from the constant pool cache, and restore rsi
  2995   // for later null checks.  r13 is the bytecode pointer
  2996   if (save_flags) {
  2997     __ movl(flags, r13);
  2998     __ restore_bcp();
  3003 void TemplateTable::invokevirtual_helper(Register index,
  3004                                          Register recv,
  3005                                          Register flags) {
  3006   // Uses temporary registers rax, rdx
  3007   assert_different_registers(index, recv, rax, rdx);
  3008   assert(index == rbx, "");
  3009   assert(recv  == rcx, "");
  3011   // Test for an invoke of a final method
  3012   Label notFinal;
  3013   __ movl(rax, flags);
  3014   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
  3015   __ jcc(Assembler::zero, notFinal);
  3017   const Register method = index;  // method must be rbx
  3018   assert(method == rbx,
  3019          "Method* must be rbx for interpreter calling convention");
  3021   // do the call - the index is actually the method to call
  3022   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
  3024   // It's final, need a null check here!
  3025   __ null_check(recv);
  3027   // profile this call
  3028   __ profile_final_call(rax);
  3030   __ jump_from_interpreted(method, rax);
  3032   __ bind(notFinal);
  3034   // get receiver klass
  3035   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  3036   __ load_klass(rax, recv);
  3038   // profile this call
  3039   __ profile_virtual_call(rax, r14, rdx);
  3041   // get target Method* & entry point
  3042   __ lookup_virtual_method(rax, index, method);
  3043   __ jump_from_interpreted(method, rdx);
  3047 void TemplateTable::invokevirtual(int byte_no) {
  3048   transition(vtos, vtos);
  3049   assert(byte_no == f2_byte, "use this argument");
  3050   prepare_invoke(byte_no,
  3051                  rbx,    // method or vtable index
  3052                  noreg,  // unused itable index
  3053                  rcx, rdx); // recv, flags
  3055   // rbx: index
  3056   // rcx: receiver
  3057   // rdx: flags
  3059   invokevirtual_helper(rbx, rcx, rdx);
  3063 void TemplateTable::invokespecial(int byte_no) {
  3064   transition(vtos, vtos);
  3065   assert(byte_no == f1_byte, "use this argument");
  3066   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
  3067                  rcx);  // get receiver also for null check
  3068   __ verify_oop(rcx);
  3069   __ null_check(rcx);
  3070   // do the call
  3071   __ profile_call(rax);
  3072   __ jump_from_interpreted(rbx, rax);
  3076 void TemplateTable::invokestatic(int byte_no) {
  3077   transition(vtos, vtos);
  3078   assert(byte_no == f1_byte, "use this argument");
  3079   prepare_invoke(byte_no, rbx);  // get f1 Method*
  3080   // do the call
  3081   __ profile_call(rax);
  3082   __ jump_from_interpreted(rbx, rax);
  3085 void TemplateTable::fast_invokevfinal(int byte_no) {
  3086   transition(vtos, vtos);
  3087   assert(byte_no == f2_byte, "use this argument");
  3088   __ stop("fast_invokevfinal not used on amd64");
  3091 void TemplateTable::invokeinterface(int byte_no) {
  3092   transition(vtos, vtos);
  3093   assert(byte_no == f1_byte, "use this argument");
  3094   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 itable index
  3095                  rcx, rdx); // recv, flags
  3097   // rax: interface klass (from f1)
  3098   // rbx: itable index (from f2)
  3099   // rcx: receiver
  3100   // rdx: flags
  3102   // Special case of invokeinterface called for virtual method of
  3103   // java.lang.Object.  See cpCacheOop.cpp for details.
  3104   // This code isn't produced by javac, but could be produced by
  3105   // another compliant java compiler.
  3106   Label notMethod;
  3107   __ movl(r14, rdx);
  3108   __ andl(r14, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
  3109   __ jcc(Assembler::zero, notMethod);
  3111   invokevirtual_helper(rbx, rcx, rdx);
  3112   __ bind(notMethod);
  3114   // Get receiver klass into rdx - also a null check
  3115   __ restore_locals();  // restore r14
  3116   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
  3117   __ load_klass(rdx, rcx);
  3119   // profile this call
  3120   __ profile_virtual_call(rdx, r13, r14);
  3122   Label no_such_interface, no_such_method;
  3124   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3125                              rdx, rax, rbx,
  3126                              // outputs: method, scan temp. reg
  3127                              rbx, r13,
  3128                              no_such_interface);
  3130   // rbx: Method* to call
  3131   // rcx: receiver
  3132   // Check for abstract method error
  3133   // Note: This should be done more efficiently via a throw_abstract_method_error
  3134   //       interpreter entry point and a conditional jump to it in case of a null
  3135   //       method.
  3136   __ testptr(rbx, rbx);
  3137   __ jcc(Assembler::zero, no_such_method);
  3139   // do the call
  3140   // rcx: receiver
  3141   // rbx,: Method*
  3142   __ jump_from_interpreted(rbx, rdx);
  3143   __ should_not_reach_here();
  3145   // exception handling code follows...
  3146   // note: must restore interpreter registers to canonical
  3147   //       state for exception handling to work correctly!
  3149   __ bind(no_such_method);
  3150   // throw exception
  3151   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3152   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3153   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3154   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3155   // the call_VM checks for exception, so we should never return here.
  3156   __ should_not_reach_here();
  3158   __ bind(no_such_interface);
  3159   // throw exception
  3160   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3161   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3162   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3163   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3164                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3165   // the call_VM checks for exception, so we should never return here.
  3166   __ should_not_reach_here();
  3170 void TemplateTable::invokehandle(int byte_no) {
  3171   transition(vtos, vtos);
  3172   assert(byte_no == f1_byte, "use this argument");
  3173   const Register rbx_method = rbx;
  3174   const Register rax_mtype  = rax;
  3175   const Register rcx_recv   = rcx;
  3176   const Register rdx_flags  = rdx;
  3178   if (!EnableInvokeDynamic) {
  3179     // rewriter does not generate this bytecode
  3180     __ should_not_reach_here();
  3181     return;
  3184   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
  3185   __ verify_method_ptr(rbx_method);
  3186   __ verify_oop(rcx_recv);
  3187   __ null_check(rcx_recv);
  3189   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
  3190   // rbx: MH.invokeExact_MT method (from f2)
  3192   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
  3194   // FIXME: profile the LambdaForm also
  3195   __ profile_final_call(rax);
  3197   __ jump_from_interpreted(rbx_method, rdx);
  3201 void TemplateTable::invokedynamic(int byte_no) {
  3202   transition(vtos, vtos);
  3203   assert(byte_no == f1_byte, "use this argument");
  3205   if (!EnableInvokeDynamic) {
  3206     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3207     // The verifier will stop it.  However, if we get past the verifier,
  3208     // this will stop the thread in a reasonable way, without crashing the JVM.
  3209     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3210                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3211     // the call_VM checks for exception, so we should never return here.
  3212     __ should_not_reach_here();
  3213     return;
  3216   const Register rbx_method   = rbx;
  3217   const Register rax_callsite = rax;
  3219   prepare_invoke(byte_no, rbx_method, rax_callsite);
  3221   // rax: CallSite object (from cpool->resolved_references[f1])
  3222   // rbx: MH.linkToCallSite method (from f2)
  3224   // Note:  rax_callsite is already pushed by prepare_invoke
  3226   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3227   // profile this call
  3228   __ profile_call(r13);
  3230   __ verify_oop(rax_callsite);
  3232   __ jump_from_interpreted(rbx_method, rdx);
  3236 //-----------------------------------------------------------------------------
  3237 // Allocation
  3239 void TemplateTable::_new() {
  3240   transition(vtos, atos);
  3241   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3242   Label slow_case;
  3243   Label done;
  3244   Label initialize_header;
  3245   Label initialize_object; // including clearing the fields
  3246   Label allocate_shared;
  3248   __ get_cpool_and_tags(rsi, rax);
  3249   // Make sure the class we're about to instantiate has been resolved.
  3250   // This is done before loading InstanceKlass to be consistent with the order
  3251   // how Constant Pool is updated (see ConstantPool::klass_at_put)
  3252   const int tags_offset = Array<u1>::base_offset_in_bytes();
  3253   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3254           JVM_CONSTANT_Class);
  3255   __ jcc(Assembler::notEqual, slow_case);
  3257   // get InstanceKlass
  3258   __ movptr(rsi, Address(rsi, rdx,
  3259             Address::times_8, sizeof(ConstantPool)));
  3261   // make sure klass is initialized & doesn't have finalizer
  3262   // make sure klass is fully initialized
  3263   __ cmpb(Address(rsi,
  3264                   InstanceKlass::init_state_offset()),
  3265           InstanceKlass::fully_initialized);
  3266   __ jcc(Assembler::notEqual, slow_case);
  3268   // get instance_size in InstanceKlass (scaled to a count of bytes)
  3269   __ movl(rdx,
  3270           Address(rsi,
  3271                   Klass::layout_helper_offset()));
  3272   // test to see if it has a finalizer or is malformed in some way
  3273   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3274   __ jcc(Assembler::notZero, slow_case);
  3276   // Allocate the instance
  3277   // 1) Try to allocate in the TLAB
  3278   // 2) if fail and the object is large allocate in the shared Eden
  3279   // 3) if the above fails (or is not applicable), go to a slow case
  3280   // (creates a new TLAB, etc.)
  3282   const bool allow_shared_alloc =
  3283     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3285   if (UseTLAB) {
  3286     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3287     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3288     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3289     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3290     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3291     if (ZeroTLAB) {
  3292       // the fields have been already cleared
  3293       __ jmp(initialize_header);
  3294     } else {
  3295       // initialize both the header and fields
  3296       __ jmp(initialize_object);
  3300   // Allocation in the shared Eden, if allowed.
  3301   //
  3302   // rdx: instance size in bytes
  3303   if (allow_shared_alloc) {
  3304     __ bind(allocate_shared);
  3306     ExternalAddress top((address)Universe::heap()->top_addr());
  3307     ExternalAddress end((address)Universe::heap()->end_addr());
  3309     const Register RtopAddr = rscratch1;
  3310     const Register RendAddr = rscratch2;
  3312     __ lea(RtopAddr, top);
  3313     __ lea(RendAddr, end);
  3314     __ movptr(rax, Address(RtopAddr, 0));
  3316     // For retries rax gets set by cmpxchgq
  3317     Label retry;
  3318     __ bind(retry);
  3319     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3320     __ cmpptr(rbx, Address(RendAddr, 0));
  3321     __ jcc(Assembler::above, slow_case);
  3323     // Compare rax with the top addr, and if still equal, store the new
  3324     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3325     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3326     //
  3327     // rax: object begin
  3328     // rbx: object end
  3329     // rdx: instance size in bytes
  3330     if (os::is_MP()) {
  3331       __ lock();
  3333     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
  3335     // if someone beat us on the allocation, try again, otherwise continue
  3336     __ jcc(Assembler::notEqual, retry);
  3338     __ incr_allocated_bytes(r15_thread, rdx, 0);
  3341   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3342     // The object is initialized before the header.  If the object size is
  3343     // zero, go directly to the header initialization.
  3344     __ bind(initialize_object);
  3345     __ decrementl(rdx, sizeof(oopDesc));
  3346     __ jcc(Assembler::zero, initialize_header);
  3348     // Initialize object fields
  3349     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3350     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3352       Label loop;
  3353       __ bind(loop);
  3354       __ movq(Address(rax, rdx, Address::times_8,
  3355                       sizeof(oopDesc) - oopSize),
  3356               rcx);
  3357       __ decrementl(rdx);
  3358       __ jcc(Assembler::notZero, loop);
  3361     // initialize object header only.
  3362     __ bind(initialize_header);
  3363     if (UseBiasedLocking) {
  3364       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset()));
  3365       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3366     } else {
  3367       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3368                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3370     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3371     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
  3372     __ store_klass(rax, rsi);      // store klass last
  3375       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3376       // Trigger dtrace event for fastpath
  3377       __ push(atos); // save the return value
  3378       __ call_VM_leaf(
  3379            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3380       __ pop(atos); // restore the return value
  3383     __ jmp(done);
  3387   // slow case
  3388   __ bind(slow_case);
  3389   __ get_constant_pool(c_rarg1);
  3390   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3391   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3392   __ verify_oop(rax);
  3394   // continue
  3395   __ bind(done);
  3398 void TemplateTable::newarray() {
  3399   transition(itos, atos);
  3400   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3401   __ movl(c_rarg2, rax);
  3402   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3403           c_rarg1, c_rarg2);
  3406 void TemplateTable::anewarray() {
  3407   transition(itos, atos);
  3408   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3409   __ get_constant_pool(c_rarg1);
  3410   __ movl(c_rarg3, rax);
  3411   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3412           c_rarg1, c_rarg2, c_rarg3);
  3415 void TemplateTable::arraylength() {
  3416   transition(atos, itos);
  3417   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3418   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3421 void TemplateTable::checkcast() {
  3422   transition(atos, atos);
  3423   Label done, is_null, ok_is_subtype, quicked, resolved;
  3424   __ testptr(rax, rax); // object is in rax
  3425   __ jcc(Assembler::zero, is_null);
  3427   // Get cpool & tags index
  3428   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3429   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3430   // See if bytecode has already been quicked
  3431   __ cmpb(Address(rdx, rbx,
  3432                   Address::times_1,
  3433                   Array<u1>::base_offset_in_bytes()),
  3434           JVM_CONSTANT_Class);
  3435   __ jcc(Assembler::equal, quicked);
  3436   __ push(atos); // save receiver for result, and for GC
  3437   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3438   // vm_result_2 has metadata result
  3439   __ get_vm_result_2(rax, r15_thread);
  3440   __ pop_ptr(rdx); // restore receiver
  3441   __ jmpb(resolved);
  3443   // Get superklass in rax and subklass in rbx
  3444   __ bind(quicked);
  3445   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
  3446   __ movptr(rax, Address(rcx, rbx,
  3447                        Address::times_8, sizeof(ConstantPool)));
  3449   __ bind(resolved);
  3450   __ load_klass(rbx, rdx);
  3452   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3453   // Superklass in rax.  Subklass in rbx.
  3454   __ gen_subtype_check(rbx, ok_is_subtype);
  3456   // Come here on failure
  3457   __ push_ptr(rdx);
  3458   // object is at TOS
  3459   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3461   // Come here on success
  3462   __ bind(ok_is_subtype);
  3463   __ mov(rax, rdx); // Restore object in rdx
  3465   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3466   if (ProfileInterpreter) {
  3467     __ jmp(done);
  3468     __ bind(is_null);
  3469     __ profile_null_seen(rcx);
  3470   } else {
  3471     __ bind(is_null);   // same as 'done'
  3473   __ bind(done);
  3476 void TemplateTable::instanceof() {
  3477   transition(atos, itos);
  3478   Label done, is_null, ok_is_subtype, quicked, resolved;
  3479   __ testptr(rax, rax);
  3480   __ jcc(Assembler::zero, is_null);
  3482   // Get cpool & tags index
  3483   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3484   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3485   // See if bytecode has already been quicked
  3486   __ cmpb(Address(rdx, rbx,
  3487                   Address::times_1,
  3488                   Array<u1>::base_offset_in_bytes()),
  3489           JVM_CONSTANT_Class);
  3490   __ jcc(Assembler::equal, quicked);
  3492   __ push(atos); // save receiver for result, and for GC
  3493   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3494   // vm_result_2 has metadata result
  3495   __ get_vm_result_2(rax, r15_thread);
  3496   __ pop_ptr(rdx); // restore receiver
  3497   __ verify_oop(rdx);
  3498   __ load_klass(rdx, rdx);
  3499   __ jmpb(resolved);
  3501   // Get superklass in rax and subklass in rdx
  3502   __ bind(quicked);
  3503   __ load_klass(rdx, rax);
  3504   __ movptr(rax, Address(rcx, rbx,
  3505                          Address::times_8, sizeof(ConstantPool)));
  3507   __ bind(resolved);
  3509   // Generate subtype check.  Blows rcx, rdi
  3510   // Superklass in rax.  Subklass in rdx.
  3511   __ gen_subtype_check(rdx, ok_is_subtype);
  3513   // Come here on failure
  3514   __ xorl(rax, rax);
  3515   __ jmpb(done);
  3516   // Come here on success
  3517   __ bind(ok_is_subtype);
  3518   __ movl(rax, 1);
  3520   // Collect counts on whether this test sees NULLs a lot or not.
  3521   if (ProfileInterpreter) {
  3522     __ jmp(done);
  3523     __ bind(is_null);
  3524     __ profile_null_seen(rcx);
  3525   } else {
  3526     __ bind(is_null);   // same as 'done'
  3528   __ bind(done);
  3529   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3530   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3533 //-----------------------------------------------------------------------------
  3534 // Breakpoints
  3535 void TemplateTable::_breakpoint() {
  3536   // Note: We get here even if we are single stepping..
  3537   // jbug inists on setting breakpoints at every bytecode
  3538   // even if we are in single step mode.
  3540   transition(vtos, vtos);
  3542   // get the unpatched byte code
  3543   __ get_method(c_rarg1);
  3544   __ call_VM(noreg,
  3545              CAST_FROM_FN_PTR(address,
  3546                               InterpreterRuntime::get_original_bytecode_at),
  3547              c_rarg1, r13);
  3548   __ mov(rbx, rax);
  3550   // post the breakpoint event
  3551   __ get_method(c_rarg1);
  3552   __ call_VM(noreg,
  3553              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3554              c_rarg1, r13);
  3556   // complete the execution of original bytecode
  3557   __ dispatch_only_normal(vtos);
  3560 //-----------------------------------------------------------------------------
  3561 // Exceptions
  3563 void TemplateTable::athrow() {
  3564   transition(atos, vtos);
  3565   __ null_check(rax);
  3566   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3569 //-----------------------------------------------------------------------------
  3570 // Synchronization
  3571 //
  3572 // Note: monitorenter & exit are symmetric routines; which is reflected
  3573 //       in the assembly code structure as well
  3574 //
  3575 // Stack layout:
  3576 //
  3577 // [expressions  ] <--- rsp               = expression stack top
  3578 // ..
  3579 // [expressions  ]
  3580 // [monitor entry] <--- monitor block top = expression stack bot
  3581 // ..
  3582 // [monitor entry]
  3583 // [frame data   ] <--- monitor block bot
  3584 // ...
  3585 // [saved rbp    ] <--- rbp
  3586 void TemplateTable::monitorenter() {
  3587   transition(atos, vtos);
  3589   // check for NULL object
  3590   __ null_check(rax);
  3592   const Address monitor_block_top(
  3593         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3594   const Address monitor_block_bot(
  3595         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3596   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3598   Label allocated;
  3600   // initialize entry pointer
  3601   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3603   // find a free slot in the monitor block (result in c_rarg1)
  3605     Label entry, loop, exit;
  3606     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
  3607                                      // starting with top-most entry
  3608     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3609                                      // of monitor block
  3610     __ jmpb(entry);
  3612     __ bind(loop);
  3613     // check if current entry is used
  3614     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  3615     // if not used then remember entry in c_rarg1
  3616     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
  3617     // check if current entry is for same object
  3618     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3619     // if same object then stop searching
  3620     __ jccb(Assembler::equal, exit);
  3621     // otherwise advance to next entry
  3622     __ addptr(c_rarg3, entry_size);
  3623     __ bind(entry);
  3624     // check if bottom reached
  3625     __ cmpptr(c_rarg3, c_rarg2);
  3626     // if not at bottom then check this entry
  3627     __ jcc(Assembler::notEqual, loop);
  3628     __ bind(exit);
  3631   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
  3632   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3634   // allocate one if there's no free slot
  3636     Label entry, loop;
  3637     // 1. compute new pointers             // rsp: old expression stack top
  3638     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3639     __ subptr(rsp, entry_size);            // move expression stack top
  3640     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
  3641     __ mov(c_rarg3, rsp);                  // set start value for copy loop
  3642     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3643     __ jmp(entry);
  3644     // 2. move expression stack contents
  3645     __ bind(loop);
  3646     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3647                                                       // word from old location
  3648     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
  3649     __ addptr(c_rarg3, wordSize);                     // advance to next word
  3650     __ bind(entry);
  3651     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
  3652     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3653                                             // copy next word
  3656   // call run-time routine
  3657   // c_rarg1: points to monitor entry
  3658   __ bind(allocated);
  3660   // Increment bcp to point to the next bytecode, so exception
  3661   // handling for async. exceptions work correctly.
  3662   // The object has already been poped from the stack, so the
  3663   // expression stack looks correct.
  3664   __ increment(r13);
  3666   // store object
  3667   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3668   __ lock_object(c_rarg1);
  3670   // check to make sure this monitor doesn't cause stack overflow after locking
  3671   __ save_bcp();  // in case of exception
  3672   __ generate_stack_overflow_check(0);
  3674   // The bcp has already been incremented. Just need to dispatch to
  3675   // next instruction.
  3676   __ dispatch_next(vtos);
  3680 void TemplateTable::monitorexit() {
  3681   transition(atos, vtos);
  3683   // check for NULL object
  3684   __ null_check(rax);
  3686   const Address monitor_block_top(
  3687         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3688   const Address monitor_block_bot(
  3689         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3690   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3692   Label found;
  3694   // find matching slot
  3696     Label entry, loop;
  3697     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
  3698                                      // starting with top-most entry
  3699     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3700                                      // of monitor block
  3701     __ jmpb(entry);
  3703     __ bind(loop);
  3704     // check if current entry is for same object
  3705     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3706     // if same object then stop searching
  3707     __ jcc(Assembler::equal, found);
  3708     // otherwise advance to next entry
  3709     __ addptr(c_rarg1, entry_size);
  3710     __ bind(entry);
  3711     // check if bottom reached
  3712     __ cmpptr(c_rarg1, c_rarg2);
  3713     // if not at bottom then check this entry
  3714     __ jcc(Assembler::notEqual, loop);
  3717   // error handling. Unlocking was not block-structured
  3718   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3719                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3720   __ should_not_reach_here();
  3722   // call run-time routine
  3723   // rsi: points to monitor entry
  3724   __ bind(found);
  3725   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3726   __ unlock_object(c_rarg1);
  3727   __ pop_ptr(rax); // discard object
  3731 // Wide instructions
  3732 void TemplateTable::wide() {
  3733   transition(vtos, vtos);
  3734   __ load_unsigned_byte(rbx, at_bcp(1));
  3735   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3736   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3737   // Note: the r13 increment step is part of the individual wide
  3738   // bytecode implementations
  3742 // Multi arrays
  3743 void TemplateTable::multianewarray() {
  3744   transition(vtos, atos);
  3745   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3746   // last dim is on top of stack; we want address of first one:
  3747   // first_addr = last_addr + (ndims - 1) * wordSize
  3748   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3749   call_VM(rax,
  3750           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3751           c_rarg1);
  3752   __ load_unsigned_byte(rbx, at_bcp(3));
  3753   __ lea(rsp, Address(rsp, rbx, Address::times_8));
  3755 #endif // !CC_INTERP

mercurial