src/cpu/x86/vm/stubGenerator_x86_32.cpp

Thu, 15 Aug 2013 20:04:10 -0400

author
hseigel
date
Thu, 15 Aug 2013 20:04:10 -0400
changeset 5528
740e263c80c6
parent 5400
980532a806a5
child 6312
04d32e7fad07
permissions
-rw-r--r--

8003424: Enable Class Data Sharing for CompressedOops
8016729: ObjectAlignmentInBytes=16 now forces the use of heap based compressed oops
8005933: The -Xshare:auto option is ignored for -server
Summary: Move klass metaspace above the heap and support CDS with compressed klass ptrs.
Reviewed-by: coleenp, kvn, mgerdin, tschatzl, stefank

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "nativeInst_x86.hpp"
    30 #include "oops/instanceOop.hpp"
    31 #include "oops/method.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/frame.inline.hpp"
    36 #include "runtime/handles.inline.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubCodeGenerator.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "runtime/thread.inline.hpp"
    41 #include "utilities/top.hpp"
    42 #ifdef COMPILER2
    43 #include "opto/runtime.hpp"
    44 #endif
    46 // Declaration and definition of StubGenerator (no .hpp file).
    47 // For a more detailed description of the stub routine structure
    48 // see the comment in stubRoutines.hpp
    50 #define __ _masm->
    51 #define a__ ((Assembler*)_masm)->
    53 #ifdef PRODUCT
    54 #define BLOCK_COMMENT(str) /* nothing */
    55 #else
    56 #define BLOCK_COMMENT(str) __ block_comment(str)
    57 #endif
    59 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    61 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
    62 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
    64 // -------------------------------------------------------------------------------------------------------------------------
    65 // Stub Code definitions
    67 static address handle_unsafe_access() {
    68   JavaThread* thread = JavaThread::current();
    69   address pc  = thread->saved_exception_pc();
    70   // pc is the instruction which we must emulate
    71   // doing a no-op is fine:  return garbage from the load
    72   // therefore, compute npc
    73   address npc = Assembler::locate_next_instruction(pc);
    75   // request an async exception
    76   thread->set_pending_unsafe_access_error();
    78   // return address of next instruction to execute
    79   return npc;
    80 }
    82 class StubGenerator: public StubCodeGenerator {
    83  private:
    85 #ifdef PRODUCT
    86 #define inc_counter_np(counter) ((void)0)
    87 #else
    88   void inc_counter_np_(int& counter) {
    89     __ incrementl(ExternalAddress((address)&counter));
    90   }
    91 #define inc_counter_np(counter) \
    92   BLOCK_COMMENT("inc_counter " #counter); \
    93   inc_counter_np_(counter);
    94 #endif //PRODUCT
    96   void inc_copy_counter_np(BasicType t) {
    97 #ifndef PRODUCT
    98     switch (t) {
    99     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
   100     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
   101     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
   102     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
   103     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
   104     }
   105     ShouldNotReachHere();
   106 #endif //PRODUCT
   107   }
   109   //------------------------------------------------------------------------------------------------------------------------
   110   // Call stubs are used to call Java from C
   111   //
   112   //    [ return_from_Java     ] <--- rsp
   113   //    [ argument word n      ]
   114   //      ...
   115   // -N [ argument word 1      ]
   116   // -7 [ Possible padding for stack alignment ]
   117   // -6 [ Possible padding for stack alignment ]
   118   // -5 [ Possible padding for stack alignment ]
   119   // -4 [ mxcsr save           ] <--- rsp_after_call
   120   // -3 [ saved rbx,            ]
   121   // -2 [ saved rsi            ]
   122   // -1 [ saved rdi            ]
   123   //  0 [ saved rbp,            ] <--- rbp,
   124   //  1 [ return address       ]
   125   //  2 [ ptr. to call wrapper ]
   126   //  3 [ result               ]
   127   //  4 [ result_type          ]
   128   //  5 [ method               ]
   129   //  6 [ entry_point          ]
   130   //  7 [ parameters           ]
   131   //  8 [ parameter_size       ]
   132   //  9 [ thread               ]
   135   address generate_call_stub(address& return_address) {
   136     StubCodeMark mark(this, "StubRoutines", "call_stub");
   137     address start = __ pc();
   139     // stub code parameters / addresses
   140     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
   141     bool  sse_save = false;
   142     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
   143     const int     locals_count_in_bytes  (4*wordSize);
   144     const Address mxcsr_save    (rbp, -4 * wordSize);
   145     const Address saved_rbx     (rbp, -3 * wordSize);
   146     const Address saved_rsi     (rbp, -2 * wordSize);
   147     const Address saved_rdi     (rbp, -1 * wordSize);
   148     const Address result        (rbp,  3 * wordSize);
   149     const Address result_type   (rbp,  4 * wordSize);
   150     const Address method        (rbp,  5 * wordSize);
   151     const Address entry_point   (rbp,  6 * wordSize);
   152     const Address parameters    (rbp,  7 * wordSize);
   153     const Address parameter_size(rbp,  8 * wordSize);
   154     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
   155     sse_save =  UseSSE > 0;
   157     // stub code
   158     __ enter();
   159     __ movptr(rcx, parameter_size);              // parameter counter
   160     __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
   161     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
   162     __ subptr(rsp, rcx);
   163     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
   165     // save rdi, rsi, & rbx, according to C calling conventions
   166     __ movptr(saved_rdi, rdi);
   167     __ movptr(saved_rsi, rsi);
   168     __ movptr(saved_rbx, rbx);
   169     // save and initialize %mxcsr
   170     if (sse_save) {
   171       Label skip_ldmx;
   172       __ stmxcsr(mxcsr_save);
   173       __ movl(rax, mxcsr_save);
   174       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   175       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   176       __ cmp32(rax, mxcsr_std);
   177       __ jcc(Assembler::equal, skip_ldmx);
   178       __ ldmxcsr(mxcsr_std);
   179       __ bind(skip_ldmx);
   180     }
   182     // make sure the control word is correct.
   183     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   185 #ifdef ASSERT
   186     // make sure we have no pending exceptions
   187     { Label L;
   188       __ movptr(rcx, thread);
   189       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   190       __ jcc(Assembler::equal, L);
   191       __ stop("StubRoutines::call_stub: entered with pending exception");
   192       __ bind(L);
   193     }
   194 #endif
   196     // pass parameters if any
   197     BLOCK_COMMENT("pass parameters if any");
   198     Label parameters_done;
   199     __ movl(rcx, parameter_size);  // parameter counter
   200     __ testl(rcx, rcx);
   201     __ jcc(Assembler::zero, parameters_done);
   203     // parameter passing loop
   205     Label loop;
   206     // Copy Java parameters in reverse order (receiver last)
   207     // Note that the argument order is inverted in the process
   208     // source is rdx[rcx: N-1..0]
   209     // dest   is rsp[rbx: 0..N-1]
   211     __ movptr(rdx, parameters);          // parameter pointer
   212     __ xorptr(rbx, rbx);
   214     __ BIND(loop);
   216     // get parameter
   217     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
   218     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
   219                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
   220     __ increment(rbx);
   221     __ decrement(rcx);
   222     __ jcc(Assembler::notZero, loop);
   224     // call Java function
   225     __ BIND(parameters_done);
   226     __ movptr(rbx, method);           // get Method*
   227     __ movptr(rax, entry_point);      // get entry_point
   228     __ mov(rsi, rsp);                 // set sender sp
   229     BLOCK_COMMENT("call Java function");
   230     __ call(rax);
   232     BLOCK_COMMENT("call_stub_return_address:");
   233     return_address = __ pc();
   235 #ifdef COMPILER2
   236     {
   237       Label L_skip;
   238       if (UseSSE >= 2) {
   239         __ verify_FPU(0, "call_stub_return");
   240       } else {
   241         for (int i = 1; i < 8; i++) {
   242           __ ffree(i);
   243         }
   245         // UseSSE <= 1 so double result should be left on TOS
   246         __ movl(rsi, result_type);
   247         __ cmpl(rsi, T_DOUBLE);
   248         __ jcc(Assembler::equal, L_skip);
   249         if (UseSSE == 0) {
   250           // UseSSE == 0 so float result should be left on TOS
   251           __ cmpl(rsi, T_FLOAT);
   252           __ jcc(Assembler::equal, L_skip);
   253         }
   254         __ ffree(0);
   255       }
   256       __ BIND(L_skip);
   257     }
   258 #endif // COMPILER2
   260     // store result depending on type
   261     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   262     __ movptr(rdi, result);
   263     Label is_long, is_float, is_double, exit;
   264     __ movl(rsi, result_type);
   265     __ cmpl(rsi, T_LONG);
   266     __ jcc(Assembler::equal, is_long);
   267     __ cmpl(rsi, T_FLOAT);
   268     __ jcc(Assembler::equal, is_float);
   269     __ cmpl(rsi, T_DOUBLE);
   270     __ jcc(Assembler::equal, is_double);
   272     // handle T_INT case
   273     __ movl(Address(rdi, 0), rax);
   274     __ BIND(exit);
   276     // check that FPU stack is empty
   277     __ verify_FPU(0, "generate_call_stub");
   279     // pop parameters
   280     __ lea(rsp, rsp_after_call);
   282     // restore %mxcsr
   283     if (sse_save) {
   284       __ ldmxcsr(mxcsr_save);
   285     }
   287     // restore rdi, rsi and rbx,
   288     __ movptr(rbx, saved_rbx);
   289     __ movptr(rsi, saved_rsi);
   290     __ movptr(rdi, saved_rdi);
   291     __ addptr(rsp, 4*wordSize);
   293     // return
   294     __ pop(rbp);
   295     __ ret(0);
   297     // handle return types different from T_INT
   298     __ BIND(is_long);
   299     __ movl(Address(rdi, 0 * wordSize), rax);
   300     __ movl(Address(rdi, 1 * wordSize), rdx);
   301     __ jmp(exit);
   303     __ BIND(is_float);
   304     // interpreter uses xmm0 for return values
   305     if (UseSSE >= 1) {
   306       __ movflt(Address(rdi, 0), xmm0);
   307     } else {
   308       __ fstp_s(Address(rdi, 0));
   309     }
   310     __ jmp(exit);
   312     __ BIND(is_double);
   313     // interpreter uses xmm0 for return values
   314     if (UseSSE >= 2) {
   315       __ movdbl(Address(rdi, 0), xmm0);
   316     } else {
   317       __ fstp_d(Address(rdi, 0));
   318     }
   319     __ jmp(exit);
   321     return start;
   322   }
   325   //------------------------------------------------------------------------------------------------------------------------
   326   // Return point for a Java call if there's an exception thrown in Java code.
   327   // The exception is caught and transformed into a pending exception stored in
   328   // JavaThread that can be tested from within the VM.
   329   //
   330   // Note: Usually the parameters are removed by the callee. In case of an exception
   331   //       crossing an activation frame boundary, that is not the case if the callee
   332   //       is compiled code => need to setup the rsp.
   333   //
   334   // rax,: exception oop
   336   address generate_catch_exception() {
   337     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   338     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
   339     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
   340     address start = __ pc();
   342     // get thread directly
   343     __ movptr(rcx, thread);
   344 #ifdef ASSERT
   345     // verify that threads correspond
   346     { Label L;
   347       __ get_thread(rbx);
   348       __ cmpptr(rbx, rcx);
   349       __ jcc(Assembler::equal, L);
   350       __ stop("StubRoutines::catch_exception: threads must correspond");
   351       __ bind(L);
   352     }
   353 #endif
   354     // set pending exception
   355     __ verify_oop(rax);
   356     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
   357     __ lea(Address(rcx, Thread::exception_file_offset   ()),
   358            ExternalAddress((address)__FILE__));
   359     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
   360     // complete return to VM
   361     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
   362     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   364     return start;
   365   }
   368   //------------------------------------------------------------------------------------------------------------------------
   369   // Continuation point for runtime calls returning with a pending exception.
   370   // The pending exception check happened in the runtime or native call stub.
   371   // The pending exception in Thread is converted into a Java-level exception.
   372   //
   373   // Contract with Java-level exception handlers:
   374   // rax: exception
   375   // rdx: throwing pc
   376   //
   377   // NOTE: At entry of this stub, exception-pc must be on stack !!
   379   address generate_forward_exception() {
   380     StubCodeMark mark(this, "StubRoutines", "forward exception");
   381     address start = __ pc();
   382     const Register thread = rcx;
   384     // other registers used in this stub
   385     const Register exception_oop = rax;
   386     const Register handler_addr  = rbx;
   387     const Register exception_pc  = rdx;
   389     // Upon entry, the sp points to the return address returning into Java
   390     // (interpreted or compiled) code; i.e., the return address becomes the
   391     // throwing pc.
   392     //
   393     // Arguments pushed before the runtime call are still on the stack but
   394     // the exception handler will reset the stack pointer -> ignore them.
   395     // A potential result in registers can be ignored as well.
   397 #ifdef ASSERT
   398     // make sure this code is only executed if there is a pending exception
   399     { Label L;
   400       __ get_thread(thread);
   401       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   402       __ jcc(Assembler::notEqual, L);
   403       __ stop("StubRoutines::forward exception: no pending exception (1)");
   404       __ bind(L);
   405     }
   406 #endif
   408     // compute exception handler into rbx,
   409     __ get_thread(thread);
   410     __ movptr(exception_pc, Address(rsp, 0));
   411     BLOCK_COMMENT("call exception_handler_for_return_address");
   412     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
   413     __ mov(handler_addr, rax);
   415     // setup rax & rdx, remove return address & clear pending exception
   416     __ get_thread(thread);
   417     __ pop(exception_pc);
   418     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   419     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   421 #ifdef ASSERT
   422     // make sure exception is set
   423     { Label L;
   424       __ testptr(exception_oop, exception_oop);
   425       __ jcc(Assembler::notEqual, L);
   426       __ stop("StubRoutines::forward exception: no pending exception (2)");
   427       __ bind(L);
   428     }
   429 #endif
   431     // Verify that there is really a valid exception in RAX.
   432     __ verify_oop(exception_oop);
   434     // continue at exception handler (return address removed)
   435     // rax: exception
   436     // rbx: exception handler
   437     // rdx: throwing pc
   438     __ jmp(handler_addr);
   440     return start;
   441   }
   444   //----------------------------------------------------------------------------------------------------
   445   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
   446   //
   447   // xchg exists as far back as 8086, lock needed for MP only
   448   // Stack layout immediately after call:
   449   //
   450   // 0 [ret addr ] <--- rsp
   451   // 1 [  ex     ]
   452   // 2 [  dest   ]
   453   //
   454   // Result:   *dest <- ex, return (old *dest)
   455   //
   456   // Note: win32 does not currently use this code
   458   address generate_atomic_xchg() {
   459     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   460     address start = __ pc();
   462     __ push(rdx);
   463     Address exchange(rsp, 2 * wordSize);
   464     Address dest_addr(rsp, 3 * wordSize);
   465     __ movl(rax, exchange);
   466     __ movptr(rdx, dest_addr);
   467     __ xchgl(rax, Address(rdx, 0));
   468     __ pop(rdx);
   469     __ ret(0);
   471     return start;
   472   }
   474   //----------------------------------------------------------------------------------------------------
   475   // Support for void verify_mxcsr()
   476   //
   477   // This routine is used with -Xcheck:jni to verify that native
   478   // JNI code does not return to Java code without restoring the
   479   // MXCSR register to our expected state.
   482   address generate_verify_mxcsr() {
   483     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   484     address start = __ pc();
   486     const Address mxcsr_save(rsp, 0);
   488     if (CheckJNICalls && UseSSE > 0 ) {
   489       Label ok_ret;
   490       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   491       __ push(rax);
   492       __ subptr(rsp, wordSize);      // allocate a temp location
   493       __ stmxcsr(mxcsr_save);
   494       __ movl(rax, mxcsr_save);
   495       __ andl(rax, MXCSR_MASK);
   496       __ cmp32(rax, mxcsr_std);
   497       __ jcc(Assembler::equal, ok_ret);
   499       __ warn("MXCSR changed by native JNI code.");
   501       __ ldmxcsr(mxcsr_std);
   503       __ bind(ok_ret);
   504       __ addptr(rsp, wordSize);
   505       __ pop(rax);
   506     }
   508     __ ret(0);
   510     return start;
   511   }
   514   //---------------------------------------------------------------------------
   515   // Support for void verify_fpu_cntrl_wrd()
   516   //
   517   // This routine is used with -Xcheck:jni to verify that native
   518   // JNI code does not return to Java code without restoring the
   519   // FP control word to our expected state.
   521   address generate_verify_fpu_cntrl_wrd() {
   522     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
   523     address start = __ pc();
   525     const Address fpu_cntrl_wrd_save(rsp, 0);
   527     if (CheckJNICalls) {
   528       Label ok_ret;
   529       __ push(rax);
   530       __ subptr(rsp, wordSize);      // allocate a temp location
   531       __ fnstcw(fpu_cntrl_wrd_save);
   532       __ movl(rax, fpu_cntrl_wrd_save);
   533       __ andl(rax, FPU_CNTRL_WRD_MASK);
   534       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
   535       __ cmp32(rax, fpu_std);
   536       __ jcc(Assembler::equal, ok_ret);
   538       __ warn("Floating point control word changed by native JNI code.");
   540       __ fldcw(fpu_std);
   542       __ bind(ok_ret);
   543       __ addptr(rsp, wordSize);
   544       __ pop(rax);
   545     }
   547     __ ret(0);
   549     return start;
   550   }
   552   //---------------------------------------------------------------------------
   553   // Wrapper for slow-case handling of double-to-integer conversion
   554   // d2i or f2i fast case failed either because it is nan or because
   555   // of under/overflow.
   556   // Input:  FPU TOS: float value
   557   // Output: rax, (rdx): integer (long) result
   559   address generate_d2i_wrapper(BasicType t, address fcn) {
   560     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
   561     address start = __ pc();
   563   // Capture info about frame layout
   564   enum layout { FPUState_off         = 0,
   565                 rbp_off              = FPUStateSizeInWords,
   566                 rdi_off,
   567                 rsi_off,
   568                 rcx_off,
   569                 rbx_off,
   570                 saved_argument_off,
   571                 saved_argument_off2, // 2nd half of double
   572                 framesize
   573   };
   575   assert(FPUStateSizeInWords == 27, "update stack layout");
   577     // Save outgoing argument to stack across push_FPU_state()
   578     __ subptr(rsp, wordSize * 2);
   579     __ fstp_d(Address(rsp, 0));
   581     // Save CPU & FPU state
   582     __ push(rbx);
   583     __ push(rcx);
   584     __ push(rsi);
   585     __ push(rdi);
   586     __ push(rbp);
   587     __ push_FPU_state();
   589     // push_FPU_state() resets the FP top of stack
   590     // Load original double into FP top of stack
   591     __ fld_d(Address(rsp, saved_argument_off * wordSize));
   592     // Store double into stack as outgoing argument
   593     __ subptr(rsp, wordSize*2);
   594     __ fst_d(Address(rsp, 0));
   596     // Prepare FPU for doing math in C-land
   597     __ empty_FPU_stack();
   598     // Call the C code to massage the double.  Result in EAX
   599     if (t == T_INT)
   600       { BLOCK_COMMENT("SharedRuntime::d2i"); }
   601     else if (t == T_LONG)
   602       { BLOCK_COMMENT("SharedRuntime::d2l"); }
   603     __ call_VM_leaf( fcn, 2 );
   605     // Restore CPU & FPU state
   606     __ pop_FPU_state();
   607     __ pop(rbp);
   608     __ pop(rdi);
   609     __ pop(rsi);
   610     __ pop(rcx);
   611     __ pop(rbx);
   612     __ addptr(rsp, wordSize * 2);
   614     __ ret(0);
   616     return start;
   617   }
   620   //---------------------------------------------------------------------------
   621   // The following routine generates a subroutine to throw an asynchronous
   622   // UnknownError when an unsafe access gets a fault that could not be
   623   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   624   address generate_handler_for_unsafe_access() {
   625     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   626     address start = __ pc();
   628     __ push(0);                       // hole for return address-to-be
   629     __ pusha();                       // push registers
   630     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   631     BLOCK_COMMENT("call handle_unsafe_access");
   632     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   633     __ movptr(next_pc, rax);          // stuff next address
   634     __ popa();
   635     __ ret(0);                        // jump to next address
   637     return start;
   638   }
   641   //----------------------------------------------------------------------------------------------------
   642   // Non-destructive plausibility checks for oops
   644   address generate_verify_oop() {
   645     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   646     address start = __ pc();
   648     // Incoming arguments on stack after saving rax,:
   649     //
   650     // [tos    ]: saved rdx
   651     // [tos + 1]: saved EFLAGS
   652     // [tos + 2]: return address
   653     // [tos + 3]: char* error message
   654     // [tos + 4]: oop   object to verify
   655     // [tos + 5]: saved rax, - saved by caller and bashed
   657     Label exit, error;
   658     __ pushf();
   659     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   660     __ push(rdx);                                // save rdx
   661     // make sure object is 'reasonable'
   662     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
   663     __ testptr(rax, rax);
   664     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
   666     // Check if the oop is in the right area of memory
   667     const int oop_mask = Universe::verify_oop_mask();
   668     const int oop_bits = Universe::verify_oop_bits();
   669     __ mov(rdx, rax);
   670     __ andptr(rdx, oop_mask);
   671     __ cmpptr(rdx, oop_bits);
   672     __ jcc(Assembler::notZero, error);
   674     // make sure klass is 'reasonable', which is not zero.
   675     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
   676     __ testptr(rax, rax);
   677     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
   679     // return if everything seems ok
   680     __ bind(exit);
   681     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   682     __ pop(rdx);                                 // restore rdx
   683     __ popf();                                   // restore EFLAGS
   684     __ ret(3 * wordSize);                        // pop arguments
   686     // handle errors
   687     __ bind(error);
   688     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   689     __ pop(rdx);                                 // get saved rdx back
   690     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
   691     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
   692     BLOCK_COMMENT("call MacroAssembler::debug");
   693     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   694     __ popa();
   695     __ ret(3 * wordSize);                        // pop arguments
   696     return start;
   697   }
   699   //
   700   //  Generate pre-barrier for array stores
   701   //
   702   //  Input:
   703   //     start   -  starting address
   704   //     count   -  element count
   705   void  gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
   706     assert_different_registers(start, count);
   707     BarrierSet* bs = Universe::heap()->barrier_set();
   708     switch (bs->kind()) {
   709       case BarrierSet::G1SATBCT:
   710       case BarrierSet::G1SATBCTLogging:
   711         // With G1, don't generate the call if we statically know that the target in uninitialized
   712         if (!uninitialized_target) {
   713            __ pusha();                      // push registers
   714            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
   715                            start, count);
   716            __ popa();
   717          }
   718         break;
   719       case BarrierSet::CardTableModRef:
   720       case BarrierSet::CardTableExtension:
   721       case BarrierSet::ModRef:
   722         break;
   723       default      :
   724         ShouldNotReachHere();
   726     }
   727   }
   730   //
   731   // Generate a post-barrier for an array store
   732   //
   733   //     start    -  starting address
   734   //     count    -  element count
   735   //
   736   //  The two input registers are overwritten.
   737   //
   738   void  gen_write_ref_array_post_barrier(Register start, Register count) {
   739     BarrierSet* bs = Universe::heap()->barrier_set();
   740     assert_different_registers(start, count);
   741     switch (bs->kind()) {
   742       case BarrierSet::G1SATBCT:
   743       case BarrierSet::G1SATBCTLogging:
   744         {
   745           __ pusha();                      // push registers
   746           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
   747                           start, count);
   748           __ popa();
   749         }
   750         break;
   752       case BarrierSet::CardTableModRef:
   753       case BarrierSet::CardTableExtension:
   754         {
   755           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
   756           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
   758           Label L_loop;
   759           const Register end = count;  // elements count; end == start+count-1
   760           assert_different_registers(start, end);
   762           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
   763           __ shrptr(start, CardTableModRefBS::card_shift);
   764           __ shrptr(end,   CardTableModRefBS::card_shift);
   765           __ subptr(end, start); // end --> count
   766         __ BIND(L_loop);
   767           intptr_t disp = (intptr_t) ct->byte_map_base;
   768           Address cardtable(start, count, Address::times_1, disp);
   769           __ movb(cardtable, 0);
   770           __ decrement(count);
   771           __ jcc(Assembler::greaterEqual, L_loop);
   772         }
   773         break;
   774       case BarrierSet::ModRef:
   775         break;
   776       default      :
   777         ShouldNotReachHere();
   779     }
   780   }
   783   // Copy 64 bytes chunks
   784   //
   785   // Inputs:
   786   //   from        - source array address
   787   //   to_from     - destination array address - from
   788   //   qword_count - 8-bytes element count, negative
   789   //
   790   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
   791     assert( UseSSE >= 2, "supported cpu only" );
   792     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   793     // Copy 64-byte chunks
   794     __ jmpb(L_copy_64_bytes);
   795     __ align(OptoLoopAlignment);
   796   __ BIND(L_copy_64_bytes_loop);
   798     if (UseUnalignedLoadStores) {
   799       if (UseAVX >= 2) {
   800         __ vmovdqu(xmm0, Address(from,  0));
   801         __ vmovdqu(Address(from, to_from, Address::times_1,  0), xmm0);
   802         __ vmovdqu(xmm1, Address(from, 32));
   803         __ vmovdqu(Address(from, to_from, Address::times_1, 32), xmm1);
   804       } else {
   805         __ movdqu(xmm0, Address(from, 0));
   806         __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
   807         __ movdqu(xmm1, Address(from, 16));
   808         __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
   809         __ movdqu(xmm2, Address(from, 32));
   810         __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
   811         __ movdqu(xmm3, Address(from, 48));
   812         __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
   813       }
   814     } else {
   815       __ movq(xmm0, Address(from, 0));
   816       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
   817       __ movq(xmm1, Address(from, 8));
   818       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
   819       __ movq(xmm2, Address(from, 16));
   820       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
   821       __ movq(xmm3, Address(from, 24));
   822       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
   823       __ movq(xmm4, Address(from, 32));
   824       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
   825       __ movq(xmm5, Address(from, 40));
   826       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
   827       __ movq(xmm6, Address(from, 48));
   828       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
   829       __ movq(xmm7, Address(from, 56));
   830       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
   831     }
   833     __ addl(from, 64);
   834   __ BIND(L_copy_64_bytes);
   835     __ subl(qword_count, 8);
   836     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   838     if (UseUnalignedLoadStores && (UseAVX >= 2)) {
   839       // clean upper bits of YMM registers
   840       __ vzeroupper();
   841     }
   842     __ addl(qword_count, 8);
   843     __ jccb(Assembler::zero, L_exit);
   844     //
   845     // length is too short, just copy qwords
   846     //
   847   __ BIND(L_copy_8_bytes);
   848     __ movq(xmm0, Address(from, 0));
   849     __ movq(Address(from, to_from, Address::times_1), xmm0);
   850     __ addl(from, 8);
   851     __ decrement(qword_count);
   852     __ jcc(Assembler::greater, L_copy_8_bytes);
   853   __ BIND(L_exit);
   854   }
   856   // Copy 64 bytes chunks
   857   //
   858   // Inputs:
   859   //   from        - source array address
   860   //   to_from     - destination array address - from
   861   //   qword_count - 8-bytes element count, negative
   862   //
   863   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
   864     assert( VM_Version::supports_mmx(), "supported cpu only" );
   865     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   866     // Copy 64-byte chunks
   867     __ jmpb(L_copy_64_bytes);
   868     __ align(OptoLoopAlignment);
   869   __ BIND(L_copy_64_bytes_loop);
   870     __ movq(mmx0, Address(from, 0));
   871     __ movq(mmx1, Address(from, 8));
   872     __ movq(mmx2, Address(from, 16));
   873     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
   874     __ movq(mmx3, Address(from, 24));
   875     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
   876     __ movq(mmx4, Address(from, 32));
   877     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
   878     __ movq(mmx5, Address(from, 40));
   879     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
   880     __ movq(mmx6, Address(from, 48));
   881     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
   882     __ movq(mmx7, Address(from, 56));
   883     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
   884     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
   885     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
   886     __ addptr(from, 64);
   887   __ BIND(L_copy_64_bytes);
   888     __ subl(qword_count, 8);
   889     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   890     __ addl(qword_count, 8);
   891     __ jccb(Assembler::zero, L_exit);
   892     //
   893     // length is too short, just copy qwords
   894     //
   895   __ BIND(L_copy_8_bytes);
   896     __ movq(mmx0, Address(from, 0));
   897     __ movq(Address(from, to_from, Address::times_1), mmx0);
   898     __ addptr(from, 8);
   899     __ decrement(qword_count);
   900     __ jcc(Assembler::greater, L_copy_8_bytes);
   901   __ BIND(L_exit);
   902     __ emms();
   903   }
   905   address generate_disjoint_copy(BasicType t, bool aligned,
   906                                  Address::ScaleFactor sf,
   907                                  address* entry, const char *name,
   908                                  bool dest_uninitialized = false) {
   909     __ align(CodeEntryAlignment);
   910     StubCodeMark mark(this, "StubRoutines", name);
   911     address start = __ pc();
   913     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
   914     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
   916     int shift = Address::times_ptr - sf;
   918     const Register from     = rsi;  // source array address
   919     const Register to       = rdi;  // destination array address
   920     const Register count    = rcx;  // elements count
   921     const Register to_from  = to;   // (to - from)
   922     const Register saved_to = rdx;  // saved destination array address
   924     __ enter(); // required for proper stackwalking of RuntimeStub frame
   925     __ push(rsi);
   926     __ push(rdi);
   927     __ movptr(from , Address(rsp, 12+ 4));
   928     __ movptr(to   , Address(rsp, 12+ 8));
   929     __ movl(count, Address(rsp, 12+ 12));
   931     if (entry != NULL) {
   932       *entry = __ pc(); // Entry point from conjoint arraycopy stub.
   933       BLOCK_COMMENT("Entry:");
   934     }
   936     if (t == T_OBJECT) {
   937       __ testl(count, count);
   938       __ jcc(Assembler::zero, L_0_count);
   939       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
   940       __ mov(saved_to, to);          // save 'to'
   941     }
   943     __ subptr(to, from); // to --> to_from
   944     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
   945     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
   946     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
   947       // align source address at 4 bytes address boundary
   948       if (t == T_BYTE) {
   949         // One byte misalignment happens only for byte arrays
   950         __ testl(from, 1);
   951         __ jccb(Assembler::zero, L_skip_align1);
   952         __ movb(rax, Address(from, 0));
   953         __ movb(Address(from, to_from, Address::times_1, 0), rax);
   954         __ increment(from);
   955         __ decrement(count);
   956       __ BIND(L_skip_align1);
   957       }
   958       // Two bytes misalignment happens only for byte and short (char) arrays
   959       __ testl(from, 2);
   960       __ jccb(Assembler::zero, L_skip_align2);
   961       __ movw(rax, Address(from, 0));
   962       __ movw(Address(from, to_from, Address::times_1, 0), rax);
   963       __ addptr(from, 2);
   964       __ subl(count, 1<<(shift-1));
   965     __ BIND(L_skip_align2);
   966     }
   967     if (!VM_Version::supports_mmx()) {
   968       __ mov(rax, count);      // save 'count'
   969       __ shrl(count, shift); // bytes count
   970       __ addptr(to_from, from);// restore 'to'
   971       __ rep_mov();
   972       __ subptr(to_from, from);// restore 'to_from'
   973       __ mov(count, rax);      // restore 'count'
   974       __ jmpb(L_copy_2_bytes); // all dwords were copied
   975     } else {
   976       if (!UseUnalignedLoadStores) {
   977         // align to 8 bytes, we know we are 4 byte aligned to start
   978         __ testptr(from, 4);
   979         __ jccb(Assembler::zero, L_copy_64_bytes);
   980         __ movl(rax, Address(from, 0));
   981         __ movl(Address(from, to_from, Address::times_1, 0), rax);
   982         __ addptr(from, 4);
   983         __ subl(count, 1<<shift);
   984       }
   985     __ BIND(L_copy_64_bytes);
   986       __ mov(rax, count);
   987       __ shrl(rax, shift+1);  // 8 bytes chunk count
   988       //
   989       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
   990       //
   991       if (UseXMMForArrayCopy) {
   992         xmm_copy_forward(from, to_from, rax);
   993       } else {
   994         mmx_copy_forward(from, to_from, rax);
   995       }
   996     }
   997     // copy tailing dword
   998   __ BIND(L_copy_4_bytes);
   999     __ testl(count, 1<<shift);
  1000     __ jccb(Assembler::zero, L_copy_2_bytes);
  1001     __ movl(rax, Address(from, 0));
  1002     __ movl(Address(from, to_from, Address::times_1, 0), rax);
  1003     if (t == T_BYTE || t == T_SHORT) {
  1004       __ addptr(from, 4);
  1005     __ BIND(L_copy_2_bytes);
  1006       // copy tailing word
  1007       __ testl(count, 1<<(shift-1));
  1008       __ jccb(Assembler::zero, L_copy_byte);
  1009       __ movw(rax, Address(from, 0));
  1010       __ movw(Address(from, to_from, Address::times_1, 0), rax);
  1011       if (t == T_BYTE) {
  1012         __ addptr(from, 2);
  1013       __ BIND(L_copy_byte);
  1014         // copy tailing byte
  1015         __ testl(count, 1);
  1016         __ jccb(Assembler::zero, L_exit);
  1017         __ movb(rax, Address(from, 0));
  1018         __ movb(Address(from, to_from, Address::times_1, 0), rax);
  1019       __ BIND(L_exit);
  1020       } else {
  1021       __ BIND(L_copy_byte);
  1023     } else {
  1024     __ BIND(L_copy_2_bytes);
  1027     if (t == T_OBJECT) {
  1028       __ movl(count, Address(rsp, 12+12)); // reread 'count'
  1029       __ mov(to, saved_to); // restore 'to'
  1030       gen_write_ref_array_post_barrier(to, count);
  1031     __ BIND(L_0_count);
  1033     inc_copy_counter_np(t);
  1034     __ pop(rdi);
  1035     __ pop(rsi);
  1036     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1037     __ xorptr(rax, rax); // return 0
  1038     __ ret(0);
  1039     return start;
  1043   address generate_fill(BasicType t, bool aligned, const char *name) {
  1044     __ align(CodeEntryAlignment);
  1045     StubCodeMark mark(this, "StubRoutines", name);
  1046     address start = __ pc();
  1048     BLOCK_COMMENT("Entry:");
  1050     const Register to       = rdi;  // source array address
  1051     const Register value    = rdx;  // value
  1052     const Register count    = rsi;  // elements count
  1054     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1055     __ push(rsi);
  1056     __ push(rdi);
  1057     __ movptr(to   , Address(rsp, 12+ 4));
  1058     __ movl(value, Address(rsp, 12+ 8));
  1059     __ movl(count, Address(rsp, 12+ 12));
  1061     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
  1063     __ pop(rdi);
  1064     __ pop(rsi);
  1065     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1066     __ ret(0);
  1067     return start;
  1070   address generate_conjoint_copy(BasicType t, bool aligned,
  1071                                  Address::ScaleFactor sf,
  1072                                  address nooverlap_target,
  1073                                  address* entry, const char *name,
  1074                                  bool dest_uninitialized = false) {
  1075     __ align(CodeEntryAlignment);
  1076     StubCodeMark mark(this, "StubRoutines", name);
  1077     address start = __ pc();
  1079     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
  1080     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
  1082     int shift = Address::times_ptr - sf;
  1084     const Register src   = rax;  // source array address
  1085     const Register dst   = rdx;  // destination array address
  1086     const Register from  = rsi;  // source array address
  1087     const Register to    = rdi;  // destination array address
  1088     const Register count = rcx;  // elements count
  1089     const Register end   = rax;  // array end address
  1091     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1092     __ push(rsi);
  1093     __ push(rdi);
  1094     __ movptr(src  , Address(rsp, 12+ 4));   // from
  1095     __ movptr(dst  , Address(rsp, 12+ 8));   // to
  1096     __ movl2ptr(count, Address(rsp, 12+12)); // count
  1098     if (entry != NULL) {
  1099       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1100       BLOCK_COMMENT("Entry:");
  1103     // nooverlap_target expects arguments in rsi and rdi.
  1104     __ mov(from, src);
  1105     __ mov(to  , dst);
  1107     // arrays overlap test: dispatch to disjoint stub if necessary.
  1108     RuntimeAddress nooverlap(nooverlap_target);
  1109     __ cmpptr(dst, src);
  1110     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
  1111     __ jump_cc(Assembler::belowEqual, nooverlap);
  1112     __ cmpptr(dst, end);
  1113     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1115     if (t == T_OBJECT) {
  1116       __ testl(count, count);
  1117       __ jcc(Assembler::zero, L_0_count);
  1118       gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
  1121     // copy from high to low
  1122     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1123     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
  1124     if (t == T_BYTE || t == T_SHORT) {
  1125       // Align the end of destination array at 4 bytes address boundary
  1126       __ lea(end, Address(dst, count, sf, 0));
  1127       if (t == T_BYTE) {
  1128         // One byte misalignment happens only for byte arrays
  1129         __ testl(end, 1);
  1130         __ jccb(Assembler::zero, L_skip_align1);
  1131         __ decrement(count);
  1132         __ movb(rdx, Address(from, count, sf, 0));
  1133         __ movb(Address(to, count, sf, 0), rdx);
  1134       __ BIND(L_skip_align1);
  1136       // Two bytes misalignment happens only for byte and short (char) arrays
  1137       __ testl(end, 2);
  1138       __ jccb(Assembler::zero, L_skip_align2);
  1139       __ subptr(count, 1<<(shift-1));
  1140       __ movw(rdx, Address(from, count, sf, 0));
  1141       __ movw(Address(to, count, sf, 0), rdx);
  1142     __ BIND(L_skip_align2);
  1143       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1144       __ jcc(Assembler::below, L_copy_4_bytes);
  1147     if (!VM_Version::supports_mmx()) {
  1148       __ std();
  1149       __ mov(rax, count); // Save 'count'
  1150       __ mov(rdx, to);    // Save 'to'
  1151       __ lea(rsi, Address(from, count, sf, -4));
  1152       __ lea(rdi, Address(to  , count, sf, -4));
  1153       __ shrptr(count, shift); // bytes count
  1154       __ rep_mov();
  1155       __ cld();
  1156       __ mov(count, rax); // restore 'count'
  1157       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
  1158       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
  1159       __ mov(to, rdx);   // restore 'to'
  1160       __ jmpb(L_copy_2_bytes); // all dword were copied
  1161    } else {
  1162       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
  1163       __ testptr(end, 4);
  1164       __ jccb(Assembler::zero, L_copy_8_bytes);
  1165       __ subl(count, 1<<shift);
  1166       __ movl(rdx, Address(from, count, sf, 0));
  1167       __ movl(Address(to, count, sf, 0), rdx);
  1168       __ jmpb(L_copy_8_bytes);
  1170       __ align(OptoLoopAlignment);
  1171       // Move 8 bytes
  1172     __ BIND(L_copy_8_bytes_loop);
  1173       if (UseXMMForArrayCopy) {
  1174         __ movq(xmm0, Address(from, count, sf, 0));
  1175         __ movq(Address(to, count, sf, 0), xmm0);
  1176       } else {
  1177         __ movq(mmx0, Address(from, count, sf, 0));
  1178         __ movq(Address(to, count, sf, 0), mmx0);
  1180     __ BIND(L_copy_8_bytes);
  1181       __ subl(count, 2<<shift);
  1182       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1183       __ addl(count, 2<<shift);
  1184       if (!UseXMMForArrayCopy) {
  1185         __ emms();
  1188   __ BIND(L_copy_4_bytes);
  1189     // copy prefix qword
  1190     __ testl(count, 1<<shift);
  1191     __ jccb(Assembler::zero, L_copy_2_bytes);
  1192     __ movl(rdx, Address(from, count, sf, -4));
  1193     __ movl(Address(to, count, sf, -4), rdx);
  1195     if (t == T_BYTE || t == T_SHORT) {
  1196         __ subl(count, (1<<shift));
  1197       __ BIND(L_copy_2_bytes);
  1198         // copy prefix dword
  1199         __ testl(count, 1<<(shift-1));
  1200         __ jccb(Assembler::zero, L_copy_byte);
  1201         __ movw(rdx, Address(from, count, sf, -2));
  1202         __ movw(Address(to, count, sf, -2), rdx);
  1203         if (t == T_BYTE) {
  1204           __ subl(count, 1<<(shift-1));
  1205         __ BIND(L_copy_byte);
  1206           // copy prefix byte
  1207           __ testl(count, 1);
  1208           __ jccb(Assembler::zero, L_exit);
  1209           __ movb(rdx, Address(from, 0));
  1210           __ movb(Address(to, 0), rdx);
  1211         __ BIND(L_exit);
  1212         } else {
  1213         __ BIND(L_copy_byte);
  1215     } else {
  1216     __ BIND(L_copy_2_bytes);
  1218     if (t == T_OBJECT) {
  1219       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
  1220       gen_write_ref_array_post_barrier(to, count);
  1221     __ BIND(L_0_count);
  1223     inc_copy_counter_np(t);
  1224     __ pop(rdi);
  1225     __ pop(rsi);
  1226     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1227     __ xorptr(rax, rax); // return 0
  1228     __ ret(0);
  1229     return start;
  1233   address generate_disjoint_long_copy(address* entry, const char *name) {
  1234     __ align(CodeEntryAlignment);
  1235     StubCodeMark mark(this, "StubRoutines", name);
  1236     address start = __ pc();
  1238     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1239     const Register from       = rax;  // source array address
  1240     const Register to         = rdx;  // destination array address
  1241     const Register count      = rcx;  // elements count
  1242     const Register to_from    = rdx;  // (to - from)
  1244     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1245     __ movptr(from , Address(rsp, 8+0));       // from
  1246     __ movptr(to   , Address(rsp, 8+4));       // to
  1247     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1249     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
  1250     BLOCK_COMMENT("Entry:");
  1252     __ subptr(to, from); // to --> to_from
  1253     if (VM_Version::supports_mmx()) {
  1254       if (UseXMMForArrayCopy) {
  1255         xmm_copy_forward(from, to_from, count);
  1256       } else {
  1257         mmx_copy_forward(from, to_from, count);
  1259     } else {
  1260       __ jmpb(L_copy_8_bytes);
  1261       __ align(OptoLoopAlignment);
  1262     __ BIND(L_copy_8_bytes_loop);
  1263       __ fild_d(Address(from, 0));
  1264       __ fistp_d(Address(from, to_from, Address::times_1));
  1265       __ addptr(from, 8);
  1266     __ BIND(L_copy_8_bytes);
  1267       __ decrement(count);
  1268       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1270     inc_copy_counter_np(T_LONG);
  1271     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1272     __ xorptr(rax, rax); // return 0
  1273     __ ret(0);
  1274     return start;
  1277   address generate_conjoint_long_copy(address nooverlap_target,
  1278                                       address* entry, const char *name) {
  1279     __ align(CodeEntryAlignment);
  1280     StubCodeMark mark(this, "StubRoutines", name);
  1281     address start = __ pc();
  1283     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1284     const Register from       = rax;  // source array address
  1285     const Register to         = rdx;  // destination array address
  1286     const Register count      = rcx;  // elements count
  1287     const Register end_from   = rax;  // source array end address
  1289     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1290     __ movptr(from , Address(rsp, 8+0));       // from
  1291     __ movptr(to   , Address(rsp, 8+4));       // to
  1292     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1294     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1295     BLOCK_COMMENT("Entry:");
  1297     // arrays overlap test
  1298     __ cmpptr(to, from);
  1299     RuntimeAddress nooverlap(nooverlap_target);
  1300     __ jump_cc(Assembler::belowEqual, nooverlap);
  1301     __ lea(end_from, Address(from, count, Address::times_8, 0));
  1302     __ cmpptr(to, end_from);
  1303     __ movptr(from, Address(rsp, 8));  // from
  1304     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1306     __ jmpb(L_copy_8_bytes);
  1308     __ align(OptoLoopAlignment);
  1309   __ BIND(L_copy_8_bytes_loop);
  1310     if (VM_Version::supports_mmx()) {
  1311       if (UseXMMForArrayCopy) {
  1312         __ movq(xmm0, Address(from, count, Address::times_8));
  1313         __ movq(Address(to, count, Address::times_8), xmm0);
  1314       } else {
  1315         __ movq(mmx0, Address(from, count, Address::times_8));
  1316         __ movq(Address(to, count, Address::times_8), mmx0);
  1318     } else {
  1319       __ fild_d(Address(from, count, Address::times_8));
  1320       __ fistp_d(Address(to, count, Address::times_8));
  1322   __ BIND(L_copy_8_bytes);
  1323     __ decrement(count);
  1324     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1326     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
  1327       __ emms();
  1329     inc_copy_counter_np(T_LONG);
  1330     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1331     __ xorptr(rax, rax); // return 0
  1332     __ ret(0);
  1333     return start;
  1337   // Helper for generating a dynamic type check.
  1338   // The sub_klass must be one of {rbx, rdx, rsi}.
  1339   // The temp is killed.
  1340   void generate_type_check(Register sub_klass,
  1341                            Address& super_check_offset_addr,
  1342                            Address& super_klass_addr,
  1343                            Register temp,
  1344                            Label* L_success, Label* L_failure) {
  1345     BLOCK_COMMENT("type_check:");
  1347     Label L_fallthrough;
  1348 #define LOCAL_JCC(assembler_con, label_ptr)                             \
  1349     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
  1350     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
  1352     // The following is a strange variation of the fast path which requires
  1353     // one less register, because needed values are on the argument stack.
  1354     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
  1355     //                                  L_success, L_failure, NULL);
  1356     assert_different_registers(sub_klass, temp);
  1358     int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  1360     // if the pointers are equal, we are done (e.g., String[] elements)
  1361     __ cmpptr(sub_klass, super_klass_addr);
  1362     LOCAL_JCC(Assembler::equal, L_success);
  1364     // check the supertype display:
  1365     __ movl2ptr(temp, super_check_offset_addr);
  1366     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
  1367     __ movptr(temp, super_check_addr); // load displayed supertype
  1368     __ cmpptr(temp, super_klass_addr); // test the super type
  1369     LOCAL_JCC(Assembler::equal, L_success);
  1371     // if it was a primary super, we can just fail immediately
  1372     __ cmpl(super_check_offset_addr, sc_offset);
  1373     LOCAL_JCC(Assembler::notEqual, L_failure);
  1375     // The repne_scan instruction uses fixed registers, which will get spilled.
  1376     // We happen to know this works best when super_klass is in rax.
  1377     Register super_klass = temp;
  1378     __ movptr(super_klass, super_klass_addr);
  1379     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
  1380                                      L_success, L_failure);
  1382     __ bind(L_fallthrough);
  1384     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
  1385     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
  1387 #undef LOCAL_JCC
  1390   //
  1391   //  Generate checkcasting array copy stub
  1392   //
  1393   //  Input:
  1394   //    4(rsp)   - source array address
  1395   //    8(rsp)   - destination array address
  1396   //   12(rsp)   - element count, can be zero
  1397   //   16(rsp)   - size_t ckoff (super_check_offset)
  1398   //   20(rsp)   - oop ckval (super_klass)
  1399   //
  1400   //  Output:
  1401   //    rax, ==  0  -  success
  1402   //    rax, == -1^K - failure, where K is partial transfer count
  1403   //
  1404   address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
  1405     __ align(CodeEntryAlignment);
  1406     StubCodeMark mark(this, "StubRoutines", name);
  1407     address start = __ pc();
  1409     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  1411     // register use:
  1412     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
  1413     //  rdi, rsi      -- element access (oop, klass)
  1414     //  rbx,           -- temp
  1415     const Register from       = rax;    // source array address
  1416     const Register to         = rdx;    // destination array address
  1417     const Register length     = rcx;    // elements count
  1418     const Register elem       = rdi;    // each oop copied
  1419     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
  1420     const Register temp       = rbx;    // lone remaining temp
  1422     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1424     __ push(rsi);
  1425     __ push(rdi);
  1426     __ push(rbx);
  1428     Address   from_arg(rsp, 16+ 4);     // from
  1429     Address     to_arg(rsp, 16+ 8);     // to
  1430     Address length_arg(rsp, 16+12);     // elements count
  1431     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
  1432     Address  ckval_arg(rsp, 16+20);     // super_klass
  1434     // Load up:
  1435     __ movptr(from,     from_arg);
  1436     __ movptr(to,         to_arg);
  1437     __ movl2ptr(length, length_arg);
  1439     if (entry != NULL) {
  1440       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1441       BLOCK_COMMENT("Entry:");
  1444     //---------------------------------------------------------------
  1445     // Assembler stub will be used for this call to arraycopy
  1446     // if the two arrays are subtypes of Object[] but the
  1447     // destination array type is not equal to or a supertype
  1448     // of the source type.  Each element must be separately
  1449     // checked.
  1451     // Loop-invariant addresses.  They are exclusive end pointers.
  1452     Address end_from_addr(from, length, Address::times_ptr, 0);
  1453     Address   end_to_addr(to,   length, Address::times_ptr, 0);
  1455     Register end_from = from;           // re-use
  1456     Register end_to   = to;             // re-use
  1457     Register count    = length;         // re-use
  1459     // Loop-variant addresses.  They assume post-incremented count < 0.
  1460     Address from_element_addr(end_from, count, Address::times_ptr, 0);
  1461     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
  1462     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
  1464     // Copy from low to high addresses, indexed from the end of each array.
  1465     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
  1466     __ lea(end_from, end_from_addr);
  1467     __ lea(end_to,   end_to_addr);
  1468     assert(length == count, "");        // else fix next line:
  1469     __ negptr(count);                   // negate and test the length
  1470     __ jccb(Assembler::notZero, L_load_element);
  1472     // Empty array:  Nothing to do.
  1473     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  1474     __ jmp(L_done);
  1476     // ======== begin loop ========
  1477     // (Loop is rotated; its entry is L_load_element.)
  1478     // Loop control:
  1479     //   for (count = -count; count != 0; count++)
  1480     // Base pointers src, dst are biased by 8*count,to last element.
  1481     __ align(OptoLoopAlignment);
  1483     __ BIND(L_store_element);
  1484     __ movptr(to_element_addr, elem);     // store the oop
  1485     __ increment(count);                // increment the count toward zero
  1486     __ jccb(Assembler::zero, L_do_card_marks);
  1488     // ======== loop entry is here ========
  1489     __ BIND(L_load_element);
  1490     __ movptr(elem, from_element_addr);   // load the oop
  1491     __ testptr(elem, elem);
  1492     __ jccb(Assembler::zero, L_store_element);
  1494     // (Could do a trick here:  Remember last successful non-null
  1495     // element stored and make a quick oop equality check on it.)
  1497     __ movptr(elem_klass, elem_klass_addr); // query the object klass
  1498     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
  1499                         &L_store_element, NULL);
  1500     // (On fall-through, we have failed the element type check.)
  1501     // ======== end loop ========
  1503     // It was a real error; we must depend on the caller to finish the job.
  1504     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
  1505     // Emit GC store barriers for the oops we have copied (length_arg + count),
  1506     // and report their number to the caller.
  1507     assert_different_registers(to, count, rax);
  1508     Label L_post_barrier;
  1509     __ addl(count, length_arg);         // transfers = (length - remaining)
  1510     __ movl2ptr(rax, count);            // save the value
  1511     __ notptr(rax);                     // report (-1^K) to caller (does not affect flags)
  1512     __ jccb(Assembler::notZero, L_post_barrier);
  1513     __ jmp(L_done); // K == 0, nothing was copied, skip post barrier
  1515     // Come here on success only.
  1516     __ BIND(L_do_card_marks);
  1517     __ xorptr(rax, rax);                // return 0 on success
  1518     __ movl2ptr(count, length_arg);
  1520     __ BIND(L_post_barrier);
  1521     __ movptr(to, to_arg);              // reload
  1522     gen_write_ref_array_post_barrier(to, count);
  1524     // Common exit point (success or failure).
  1525     __ BIND(L_done);
  1526     __ pop(rbx);
  1527     __ pop(rdi);
  1528     __ pop(rsi);
  1529     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  1530     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1531     __ ret(0);
  1533     return start;
  1536   //
  1537   //  Generate 'unsafe' array copy stub
  1538   //  Though just as safe as the other stubs, it takes an unscaled
  1539   //  size_t argument instead of an element count.
  1540   //
  1541   //  Input:
  1542   //    4(rsp)   - source array address
  1543   //    8(rsp)   - destination array address
  1544   //   12(rsp)   - byte count, can be zero
  1545   //
  1546   //  Output:
  1547   //    rax, ==  0  -  success
  1548   //    rax, == -1  -  need to call System.arraycopy
  1549   //
  1550   // Examines the alignment of the operands and dispatches
  1551   // to a long, int, short, or byte copy loop.
  1552   //
  1553   address generate_unsafe_copy(const char *name,
  1554                                address byte_copy_entry,
  1555                                address short_copy_entry,
  1556                                address int_copy_entry,
  1557                                address long_copy_entry) {
  1559     Label L_long_aligned, L_int_aligned, L_short_aligned;
  1561     __ align(CodeEntryAlignment);
  1562     StubCodeMark mark(this, "StubRoutines", name);
  1563     address start = __ pc();
  1565     const Register from       = rax;  // source array address
  1566     const Register to         = rdx;  // destination array address
  1567     const Register count      = rcx;  // elements count
  1569     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1570     __ push(rsi);
  1571     __ push(rdi);
  1572     Address  from_arg(rsp, 12+ 4);      // from
  1573     Address    to_arg(rsp, 12+ 8);      // to
  1574     Address count_arg(rsp, 12+12);      // byte count
  1576     // Load up:
  1577     __ movptr(from ,  from_arg);
  1578     __ movptr(to   ,    to_arg);
  1579     __ movl2ptr(count, count_arg);
  1581     // bump this on entry, not on exit:
  1582     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  1584     const Register bits = rsi;
  1585     __ mov(bits, from);
  1586     __ orptr(bits, to);
  1587     __ orptr(bits, count);
  1589     __ testl(bits, BytesPerLong-1);
  1590     __ jccb(Assembler::zero, L_long_aligned);
  1592     __ testl(bits, BytesPerInt-1);
  1593     __ jccb(Assembler::zero, L_int_aligned);
  1595     __ testl(bits, BytesPerShort-1);
  1596     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  1598     __ BIND(L_short_aligned);
  1599     __ shrptr(count, LogBytesPerShort); // size => short_count
  1600     __ movl(count_arg, count);          // update 'count'
  1601     __ jump(RuntimeAddress(short_copy_entry));
  1603     __ BIND(L_int_aligned);
  1604     __ shrptr(count, LogBytesPerInt); // size => int_count
  1605     __ movl(count_arg, count);          // update 'count'
  1606     __ jump(RuntimeAddress(int_copy_entry));
  1608     __ BIND(L_long_aligned);
  1609     __ shrptr(count, LogBytesPerLong); // size => qword_count
  1610     __ movl(count_arg, count);          // update 'count'
  1611     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1612     __ pop(rsi);
  1613     __ jump(RuntimeAddress(long_copy_entry));
  1615     return start;
  1619   // Perform range checks on the proposed arraycopy.
  1620   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
  1621   void arraycopy_range_checks(Register src,
  1622                               Register src_pos,
  1623                               Register dst,
  1624                               Register dst_pos,
  1625                               Address& length,
  1626                               Label& L_failed) {
  1627     BLOCK_COMMENT("arraycopy_range_checks:");
  1628     const Register src_end = src_pos;   // source array end position
  1629     const Register dst_end = dst_pos;   // destination array end position
  1630     __ addl(src_end, length); // src_pos + length
  1631     __ addl(dst_end, length); // dst_pos + length
  1633     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  1634     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
  1635     __ jcc(Assembler::above, L_failed);
  1637     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  1638     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  1639     __ jcc(Assembler::above, L_failed);
  1641     BLOCK_COMMENT("arraycopy_range_checks done");
  1645   //
  1646   //  Generate generic array copy stubs
  1647   //
  1648   //  Input:
  1649   //     4(rsp)    -  src oop
  1650   //     8(rsp)    -  src_pos
  1651   //    12(rsp)    -  dst oop
  1652   //    16(rsp)    -  dst_pos
  1653   //    20(rsp)    -  element count
  1654   //
  1655   //  Output:
  1656   //    rax, ==  0  -  success
  1657   //    rax, == -1^K - failure, where K is partial transfer count
  1658   //
  1659   address generate_generic_copy(const char *name,
  1660                                 address entry_jbyte_arraycopy,
  1661                                 address entry_jshort_arraycopy,
  1662                                 address entry_jint_arraycopy,
  1663                                 address entry_oop_arraycopy,
  1664                                 address entry_jlong_arraycopy,
  1665                                 address entry_checkcast_arraycopy) {
  1666     Label L_failed, L_failed_0, L_objArray;
  1668     { int modulus = CodeEntryAlignment;
  1669       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  1670       int advance = target - (__ offset() % modulus);
  1671       if (advance < 0)  advance += modulus;
  1672       if (advance > 0)  __ nop(advance);
  1674     StubCodeMark mark(this, "StubRoutines", name);
  1676     // Short-hop target to L_failed.  Makes for denser prologue code.
  1677     __ BIND(L_failed_0);
  1678     __ jmp(L_failed);
  1679     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  1681     __ align(CodeEntryAlignment);
  1682     address start = __ pc();
  1684     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1685     __ push(rsi);
  1686     __ push(rdi);
  1688     // bump this on entry, not on exit:
  1689     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  1691     // Input values
  1692     Address SRC     (rsp, 12+ 4);
  1693     Address SRC_POS (rsp, 12+ 8);
  1694     Address DST     (rsp, 12+12);
  1695     Address DST_POS (rsp, 12+16);
  1696     Address LENGTH  (rsp, 12+20);
  1698     //-----------------------------------------------------------------------
  1699     // Assembler stub will be used for this call to arraycopy
  1700     // if the following conditions are met:
  1701     //
  1702     // (1) src and dst must not be null.
  1703     // (2) src_pos must not be negative.
  1704     // (3) dst_pos must not be negative.
  1705     // (4) length  must not be negative.
  1706     // (5) src klass and dst klass should be the same and not NULL.
  1707     // (6) src and dst should be arrays.
  1708     // (7) src_pos + length must not exceed length of src.
  1709     // (8) dst_pos + length must not exceed length of dst.
  1710     //
  1712     const Register src     = rax;       // source array oop
  1713     const Register src_pos = rsi;
  1714     const Register dst     = rdx;       // destination array oop
  1715     const Register dst_pos = rdi;
  1716     const Register length  = rcx;       // transfer count
  1718     //  if (src == NULL) return -1;
  1719     __ movptr(src, SRC);      // src oop
  1720     __ testptr(src, src);
  1721     __ jccb(Assembler::zero, L_failed_0);
  1723     //  if (src_pos < 0) return -1;
  1724     __ movl2ptr(src_pos, SRC_POS);  // src_pos
  1725     __ testl(src_pos, src_pos);
  1726     __ jccb(Assembler::negative, L_failed_0);
  1728     //  if (dst == NULL) return -1;
  1729     __ movptr(dst, DST);      // dst oop
  1730     __ testptr(dst, dst);
  1731     __ jccb(Assembler::zero, L_failed_0);
  1733     //  if (dst_pos < 0) return -1;
  1734     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
  1735     __ testl(dst_pos, dst_pos);
  1736     __ jccb(Assembler::negative, L_failed_0);
  1738     //  if (length < 0) return -1;
  1739     __ movl2ptr(length, LENGTH);   // length
  1740     __ testl(length, length);
  1741     __ jccb(Assembler::negative, L_failed_0);
  1743     //  if (src->klass() == NULL) return -1;
  1744     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
  1745     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
  1746     const Register rcx_src_klass = rcx;    // array klass
  1747     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
  1749 #ifdef ASSERT
  1750     //  assert(src->klass() != NULL);
  1751     BLOCK_COMMENT("assert klasses not null");
  1752     { Label L1, L2;
  1753       __ testptr(rcx_src_klass, rcx_src_klass);
  1754       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
  1755       __ bind(L1);
  1756       __ stop("broken null klass");
  1757       __ bind(L2);
  1758       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
  1759       __ jccb(Assembler::equal, L1);      // this would be broken also
  1760       BLOCK_COMMENT("assert done");
  1762 #endif //ASSERT
  1764     // Load layout helper (32-bits)
  1765     //
  1766     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  1767     // 32        30    24            16              8     2                 0
  1768     //
  1769     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  1770     //
  1772     int lh_offset = in_bytes(Klass::layout_helper_offset());
  1773     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
  1775     // Handle objArrays completely differently...
  1776     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  1777     __ cmpl(src_klass_lh_addr, objArray_lh);
  1778     __ jcc(Assembler::equal, L_objArray);
  1780     //  if (src->klass() != dst->klass()) return -1;
  1781     __ cmpptr(rcx_src_klass, dst_klass_addr);
  1782     __ jccb(Assembler::notEqual, L_failed_0);
  1784     const Register rcx_lh = rcx;  // layout helper
  1785     assert(rcx_lh == rcx_src_klass, "known alias");
  1786     __ movl(rcx_lh, src_klass_lh_addr);
  1788     //  if (!src->is_Array()) return -1;
  1789     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
  1790     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
  1792     // At this point, it is known to be a typeArray (array_tag 0x3).
  1793 #ifdef ASSERT
  1794     { Label L;
  1795       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  1796       __ jcc(Assembler::greaterEqual, L); // signed cmp
  1797       __ stop("must be a primitive array");
  1798       __ bind(L);
  1800 #endif
  1802     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
  1803     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1805     // TypeArrayKlass
  1806     //
  1807     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  1808     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  1809     //
  1810     const Register rsi_offset = rsi; // array offset
  1811     const Register src_array  = src; // src array offset
  1812     const Register dst_array  = dst; // dst array offset
  1813     const Register rdi_elsize = rdi; // log2 element size
  1815     __ mov(rsi_offset, rcx_lh);
  1816     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
  1817     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
  1818     __ addptr(src_array, rsi_offset);  // src array offset
  1819     __ addptr(dst_array, rsi_offset);  // dst array offset
  1820     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
  1822     // next registers should be set before the jump to corresponding stub
  1823     const Register from       = src; // source array address
  1824     const Register to         = dst; // destination array address
  1825     const Register count      = rcx; // elements count
  1826     // some of them should be duplicated on stack
  1827 #define FROM   Address(rsp, 12+ 4)
  1828 #define TO     Address(rsp, 12+ 8)   // Not used now
  1829 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
  1831     BLOCK_COMMENT("scale indexes to element size");
  1832     __ movl2ptr(rsi, SRC_POS);  // src_pos
  1833     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
  1834     assert(src_array == from, "");
  1835     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
  1836     __ movl2ptr(rdi, DST_POS);  // dst_pos
  1837     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
  1838     assert(dst_array == to, "");
  1839     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
  1840     __ movptr(FROM, from);      // src_addr
  1841     __ mov(rdi_elsize, rcx_lh); // log2 elsize
  1842     __ movl2ptr(count, LENGTH); // elements count
  1844     BLOCK_COMMENT("choose copy loop based on element size");
  1845     __ cmpl(rdi_elsize, 0);
  1847     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
  1848     __ cmpl(rdi_elsize, LogBytesPerShort);
  1849     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
  1850     __ cmpl(rdi_elsize, LogBytesPerInt);
  1851     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
  1852 #ifdef ASSERT
  1853     __ cmpl(rdi_elsize, LogBytesPerLong);
  1854     __ jccb(Assembler::notEqual, L_failed);
  1855 #endif
  1856     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1857     __ pop(rsi);
  1858     __ jump(RuntimeAddress(entry_jlong_arraycopy));
  1860   __ BIND(L_failed);
  1861     __ xorptr(rax, rax);
  1862     __ notptr(rax); // return -1
  1863     __ pop(rdi);
  1864     __ pop(rsi);
  1865     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1866     __ ret(0);
  1868     // ObjArrayKlass
  1869   __ BIND(L_objArray);
  1870     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
  1872     Label L_plain_copy, L_checkcast_copy;
  1873     //  test array classes for subtyping
  1874     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
  1875     __ jccb(Assembler::notEqual, L_checkcast_copy);
  1877     // Identically typed arrays can be copied without element-wise checks.
  1878     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
  1879     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1881   __ BIND(L_plain_copy);
  1882     __ movl2ptr(count, LENGTH); // elements count
  1883     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
  1884     __ lea(from, Address(src, src_pos, Address::times_ptr,
  1885                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  1886     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
  1887     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
  1888                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  1889     __ movptr(FROM,  from);   // src_addr
  1890     __ movptr(TO,    to);     // dst_addr
  1891     __ movl(COUNT, count);  // count
  1892     __ jump(RuntimeAddress(entry_oop_arraycopy));
  1894   __ BIND(L_checkcast_copy);
  1895     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
  1897       // Handy offsets:
  1898       int  ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  1899       int sco_offset = in_bytes(Klass::super_check_offset_offset());
  1901       Register rsi_dst_klass = rsi;
  1902       Register rdi_temp      = rdi;
  1903       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
  1904       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
  1905       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
  1907       // Before looking at dst.length, make sure dst is also an objArray.
  1908       __ movptr(rsi_dst_klass, dst_klass_addr);
  1909       __ cmpl(dst_klass_lh_addr, objArray_lh);
  1910       __ jccb(Assembler::notEqual, L_failed);
  1912       // It is safe to examine both src.length and dst.length.
  1913       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
  1914       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1915       // (Now src_pos and dst_pos are killed, but not src and dst.)
  1917       // We'll need this temp (don't forget to pop it after the type check).
  1918       __ push(rbx);
  1919       Register rbx_src_klass = rbx;
  1921       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
  1922       __ movptr(rsi_dst_klass, dst_klass_addr);
  1923       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
  1924       Label L_fail_array_check;
  1925       generate_type_check(rbx_src_klass,
  1926                           super_check_offset_addr, dst_klass_addr,
  1927                           rdi_temp, NULL, &L_fail_array_check);
  1928       // (On fall-through, we have passed the array type check.)
  1929       __ pop(rbx);
  1930       __ jmp(L_plain_copy);
  1932       __ BIND(L_fail_array_check);
  1933       // Reshuffle arguments so we can call checkcast_arraycopy:
  1935       // match initial saves for checkcast_arraycopy
  1936       // push(rsi);    // already done; see above
  1937       // push(rdi);    // already done; see above
  1938       // push(rbx);    // already done; see above
  1940       // Marshal outgoing arguments now, freeing registers.
  1941       Address   from_arg(rsp, 16+ 4);   // from
  1942       Address     to_arg(rsp, 16+ 8);   // to
  1943       Address length_arg(rsp, 16+12);   // elements count
  1944       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
  1945       Address  ckval_arg(rsp, 16+20);   // super_klass
  1947       Address SRC_POS_arg(rsp, 16+ 8);
  1948       Address DST_POS_arg(rsp, 16+16);
  1949       Address  LENGTH_arg(rsp, 16+20);
  1950       // push rbx, changed the incoming offsets (why not just use rbp,??)
  1951       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
  1953       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
  1954       __ movl2ptr(length, LENGTH_arg);    // reload elements count
  1955       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
  1956       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
  1958       __ movptr(ckval_arg, rbx);          // destination element type
  1959       __ movl(rbx, Address(rbx, sco_offset));
  1960       __ movl(ckoff_arg, rbx);          // corresponding class check offset
  1962       __ movl(length_arg, length);      // outgoing length argument
  1964       __ lea(from, Address(src, src_pos, Address::times_ptr,
  1965                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1966       __ movptr(from_arg, from);
  1968       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
  1969                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1970       __ movptr(to_arg, to);
  1971       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
  1974     return start;
  1977   void generate_arraycopy_stubs() {
  1978     address entry;
  1979     address entry_jbyte_arraycopy;
  1980     address entry_jshort_arraycopy;
  1981     address entry_jint_arraycopy;
  1982     address entry_oop_arraycopy;
  1983     address entry_jlong_arraycopy;
  1984     address entry_checkcast_arraycopy;
  1986     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
  1987         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
  1988                                "arrayof_jbyte_disjoint_arraycopy");
  1989     StubRoutines::_arrayof_jbyte_arraycopy =
  1990         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
  1991                                NULL, "arrayof_jbyte_arraycopy");
  1992     StubRoutines::_jbyte_disjoint_arraycopy =
  1993         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
  1994                                "jbyte_disjoint_arraycopy");
  1995     StubRoutines::_jbyte_arraycopy =
  1996         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
  1997                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
  1999     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
  2000         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
  2001                                "arrayof_jshort_disjoint_arraycopy");
  2002     StubRoutines::_arrayof_jshort_arraycopy =
  2003         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
  2004                                NULL, "arrayof_jshort_arraycopy");
  2005     StubRoutines::_jshort_disjoint_arraycopy =
  2006         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
  2007                                "jshort_disjoint_arraycopy");
  2008     StubRoutines::_jshort_arraycopy =
  2009         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
  2010                                &entry_jshort_arraycopy, "jshort_arraycopy");
  2012     // Next arrays are always aligned on 4 bytes at least.
  2013     StubRoutines::_jint_disjoint_arraycopy =
  2014         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
  2015                                "jint_disjoint_arraycopy");
  2016     StubRoutines::_jint_arraycopy =
  2017         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
  2018                                &entry_jint_arraycopy, "jint_arraycopy");
  2020     StubRoutines::_oop_disjoint_arraycopy =
  2021         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  2022                                "oop_disjoint_arraycopy");
  2023     StubRoutines::_oop_arraycopy =
  2024         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  2025                                &entry_oop_arraycopy, "oop_arraycopy");
  2027     StubRoutines::_oop_disjoint_arraycopy_uninit =
  2028         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  2029                                "oop_disjoint_arraycopy_uninit",
  2030                                /*dest_uninitialized*/true);
  2031     StubRoutines::_oop_arraycopy_uninit =
  2032         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  2033                                NULL, "oop_arraycopy_uninit",
  2034                                /*dest_uninitialized*/true);
  2036     StubRoutines::_jlong_disjoint_arraycopy =
  2037         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
  2038     StubRoutines::_jlong_arraycopy =
  2039         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
  2040                                     "jlong_arraycopy");
  2042     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  2043     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  2044     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  2045     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  2046     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  2047     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  2049     StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
  2050     StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
  2051     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
  2052     StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;
  2054     StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
  2055     StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
  2056     StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
  2057     StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;
  2059     StubRoutines::_checkcast_arraycopy =
  2060         generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
  2061     StubRoutines::_checkcast_arraycopy_uninit =
  2062         generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
  2064     StubRoutines::_unsafe_arraycopy =
  2065         generate_unsafe_copy("unsafe_arraycopy",
  2066                                entry_jbyte_arraycopy,
  2067                                entry_jshort_arraycopy,
  2068                                entry_jint_arraycopy,
  2069                                entry_jlong_arraycopy);
  2071     StubRoutines::_generic_arraycopy =
  2072         generate_generic_copy("generic_arraycopy",
  2073                                entry_jbyte_arraycopy,
  2074                                entry_jshort_arraycopy,
  2075                                entry_jint_arraycopy,
  2076                                entry_oop_arraycopy,
  2077                                entry_jlong_arraycopy,
  2078                                entry_checkcast_arraycopy);
  2081   void generate_math_stubs() {
  2083       StubCodeMark mark(this, "StubRoutines", "log");
  2084       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2086       __ fld_d(Address(rsp, 4));
  2087       __ flog();
  2088       __ ret(0);
  2091       StubCodeMark mark(this, "StubRoutines", "log10");
  2092       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2094       __ fld_d(Address(rsp, 4));
  2095       __ flog10();
  2096       __ ret(0);
  2099       StubCodeMark mark(this, "StubRoutines", "sin");
  2100       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
  2102       __ fld_d(Address(rsp, 4));
  2103       __ trigfunc('s');
  2104       __ ret(0);
  2107       StubCodeMark mark(this, "StubRoutines", "cos");
  2108       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2110       __ fld_d(Address(rsp, 4));
  2111       __ trigfunc('c');
  2112       __ ret(0);
  2115       StubCodeMark mark(this, "StubRoutines", "tan");
  2116       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2118       __ fld_d(Address(rsp, 4));
  2119       __ trigfunc('t');
  2120       __ ret(0);
  2123       StubCodeMark mark(this, "StubRoutines", "exp");
  2124       StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
  2126       __ fld_d(Address(rsp, 4));
  2127       __ exp_with_fallback(0);
  2128       __ ret(0);
  2131       StubCodeMark mark(this, "StubRoutines", "pow");
  2132       StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
  2134       __ fld_d(Address(rsp, 12));
  2135       __ fld_d(Address(rsp, 4));
  2136       __ pow_with_fallback(0);
  2137       __ ret(0);
  2141   // AES intrinsic stubs
  2142   enum {AESBlockSize = 16};
  2144   address generate_key_shuffle_mask() {
  2145     __ align(16);
  2146     StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
  2147     address start = __ pc();
  2148     __ emit_data(0x00010203, relocInfo::none, 0 );
  2149     __ emit_data(0x04050607, relocInfo::none, 0 );
  2150     __ emit_data(0x08090a0b, relocInfo::none, 0 );
  2151     __ emit_data(0x0c0d0e0f, relocInfo::none, 0 );
  2152     return start;
  2155   // Utility routine for loading a 128-bit key word in little endian format
  2156   // can optionally specify that the shuffle mask is already in an xmmregister
  2157   void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
  2158     __ movdqu(xmmdst, Address(key, offset));
  2159     if (xmm_shuf_mask != NULL) {
  2160       __ pshufb(xmmdst, xmm_shuf_mask);
  2161     } else {
  2162       __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
  2166   // aesenc using specified key+offset
  2167   // can optionally specify that the shuffle mask is already in an xmmregister
  2168   void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
  2169     load_key(xmmtmp, key, offset, xmm_shuf_mask);
  2170     __ aesenc(xmmdst, xmmtmp);
  2173   // aesdec using specified key+offset
  2174   // can optionally specify that the shuffle mask is already in an xmmregister
  2175   void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
  2176     load_key(xmmtmp, key, offset, xmm_shuf_mask);
  2177     __ aesdec(xmmdst, xmmtmp);
  2181   // Arguments:
  2182   //
  2183   // Inputs:
  2184   //   c_rarg0   - source byte array address
  2185   //   c_rarg1   - destination byte array address
  2186   //   c_rarg2   - K (key) in little endian int array
  2187   //
  2188   address generate_aescrypt_encryptBlock() {
  2189     assert(UseAES, "need AES instructions and misaligned SSE support");
  2190     __ align(CodeEntryAlignment);
  2191     StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
  2192     Label L_doLast;
  2193     address start = __ pc();
  2195     const Register from        = rdx;      // source array address
  2196     const Register to          = rdx;      // destination array address
  2197     const Register key         = rcx;      // key array address
  2198     const Register keylen      = rax;
  2199     const Address  from_param(rbp, 8+0);
  2200     const Address  to_param  (rbp, 8+4);
  2201     const Address  key_param (rbp, 8+8);
  2203     const XMMRegister xmm_result = xmm0;
  2204     const XMMRegister xmm_key_shuf_mask = xmm1;
  2205     const XMMRegister xmm_temp1  = xmm2;
  2206     const XMMRegister xmm_temp2  = xmm3;
  2207     const XMMRegister xmm_temp3  = xmm4;
  2208     const XMMRegister xmm_temp4  = xmm5;
  2210     __ enter();   // required for proper stackwalking of RuntimeStub frame
  2211     __ movptr(from, from_param);
  2212     __ movptr(key, key_param);
  2214     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
  2215     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
  2217     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
  2218     __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input
  2219     __ movptr(to, to_param);
  2221     // For encryption, the java expanded key ordering is just what we need
  2223     load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
  2224     __ pxor(xmm_result, xmm_temp1);
  2226     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
  2227     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
  2228     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
  2229     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
  2231     __ aesenc(xmm_result, xmm_temp1);
  2232     __ aesenc(xmm_result, xmm_temp2);
  2233     __ aesenc(xmm_result, xmm_temp3);
  2234     __ aesenc(xmm_result, xmm_temp4);
  2236     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
  2237     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
  2238     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
  2239     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
  2241     __ aesenc(xmm_result, xmm_temp1);
  2242     __ aesenc(xmm_result, xmm_temp2);
  2243     __ aesenc(xmm_result, xmm_temp3);
  2244     __ aesenc(xmm_result, xmm_temp4);
  2246     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
  2247     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
  2249     __ cmpl(keylen, 44);
  2250     __ jccb(Assembler::equal, L_doLast);
  2252     __ aesenc(xmm_result, xmm_temp1);
  2253     __ aesenc(xmm_result, xmm_temp2);
  2255     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
  2256     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
  2258     __ cmpl(keylen, 52);
  2259     __ jccb(Assembler::equal, L_doLast);
  2261     __ aesenc(xmm_result, xmm_temp1);
  2262     __ aesenc(xmm_result, xmm_temp2);
  2264     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
  2265     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
  2267     __ BIND(L_doLast);
  2268     __ aesenc(xmm_result, xmm_temp1);
  2269     __ aesenclast(xmm_result, xmm_temp2);
  2270     __ movdqu(Address(to, 0), xmm_result);        // store the result
  2271     __ xorptr(rax, rax); // return 0
  2272     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2273     __ ret(0);
  2275     return start;
  2279   // Arguments:
  2280   //
  2281   // Inputs:
  2282   //   c_rarg0   - source byte array address
  2283   //   c_rarg1   - destination byte array address
  2284   //   c_rarg2   - K (key) in little endian int array
  2285   //
  2286   address generate_aescrypt_decryptBlock() {
  2287     assert(UseAES, "need AES instructions and misaligned SSE support");
  2288     __ align(CodeEntryAlignment);
  2289     StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
  2290     Label L_doLast;
  2291     address start = __ pc();
  2293     const Register from        = rdx;      // source array address
  2294     const Register to          = rdx;      // destination array address
  2295     const Register key         = rcx;      // key array address
  2296     const Register keylen      = rax;
  2297     const Address  from_param(rbp, 8+0);
  2298     const Address  to_param  (rbp, 8+4);
  2299     const Address  key_param (rbp, 8+8);
  2301     const XMMRegister xmm_result = xmm0;
  2302     const XMMRegister xmm_key_shuf_mask = xmm1;
  2303     const XMMRegister xmm_temp1  = xmm2;
  2304     const XMMRegister xmm_temp2  = xmm3;
  2305     const XMMRegister xmm_temp3  = xmm4;
  2306     const XMMRegister xmm_temp4  = xmm5;
  2308     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2309     __ movptr(from, from_param);
  2310     __ movptr(key, key_param);
  2312     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
  2313     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
  2315     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
  2316     __ movdqu(xmm_result, Address(from, 0));
  2317     __ movptr(to, to_param);
  2319     // for decryption java expanded key ordering is rotated one position from what we want
  2320     // so we start from 0x10 here and hit 0x00 last
  2321     // we don't know if the key is aligned, hence not using load-execute form
  2322     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
  2323     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
  2324     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
  2325     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
  2327     __ pxor  (xmm_result, xmm_temp1);
  2328     __ aesdec(xmm_result, xmm_temp2);
  2329     __ aesdec(xmm_result, xmm_temp3);
  2330     __ aesdec(xmm_result, xmm_temp4);
  2332     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
  2333     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
  2334     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
  2335     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
  2337     __ aesdec(xmm_result, xmm_temp1);
  2338     __ aesdec(xmm_result, xmm_temp2);
  2339     __ aesdec(xmm_result, xmm_temp3);
  2340     __ aesdec(xmm_result, xmm_temp4);
  2342     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
  2343     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
  2344     load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
  2346     __ cmpl(keylen, 44);
  2347     __ jccb(Assembler::equal, L_doLast);
  2349     __ aesdec(xmm_result, xmm_temp1);
  2350     __ aesdec(xmm_result, xmm_temp2);
  2352     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
  2353     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
  2355     __ cmpl(keylen, 52);
  2356     __ jccb(Assembler::equal, L_doLast);
  2358     __ aesdec(xmm_result, xmm_temp1);
  2359     __ aesdec(xmm_result, xmm_temp2);
  2361     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
  2362     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
  2364     __ BIND(L_doLast);
  2365     __ aesdec(xmm_result, xmm_temp1);
  2366     __ aesdec(xmm_result, xmm_temp2);
  2368     // for decryption the aesdeclast operation is always on key+0x00
  2369     __ aesdeclast(xmm_result, xmm_temp3);
  2370     __ movdqu(Address(to, 0), xmm_result);  // store the result
  2371     __ xorptr(rax, rax); // return 0
  2372     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2373     __ ret(0);
  2375     return start;
  2378   void handleSOERegisters(bool saving) {
  2379     const int saveFrameSizeInBytes = 4 * wordSize;
  2380     const Address saved_rbx     (rbp, -3 * wordSize);
  2381     const Address saved_rsi     (rbp, -2 * wordSize);
  2382     const Address saved_rdi     (rbp, -1 * wordSize);
  2384     if (saving) {
  2385       __ subptr(rsp, saveFrameSizeInBytes);
  2386       __ movptr(saved_rsi, rsi);
  2387       __ movptr(saved_rdi, rdi);
  2388       __ movptr(saved_rbx, rbx);
  2389     } else {
  2390       // restoring
  2391       __ movptr(rsi, saved_rsi);
  2392       __ movptr(rdi, saved_rdi);
  2393       __ movptr(rbx, saved_rbx);
  2397   // Arguments:
  2398   //
  2399   // Inputs:
  2400   //   c_rarg0   - source byte array address
  2401   //   c_rarg1   - destination byte array address
  2402   //   c_rarg2   - K (key) in little endian int array
  2403   //   c_rarg3   - r vector byte array address
  2404   //   c_rarg4   - input length
  2405   //
  2406   address generate_cipherBlockChaining_encryptAESCrypt() {
  2407     assert(UseAES, "need AES instructions and misaligned SSE support");
  2408     __ align(CodeEntryAlignment);
  2409     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
  2410     address start = __ pc();
  2412     Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
  2413     const Register from        = rsi;      // source array address
  2414     const Register to          = rdx;      // destination array address
  2415     const Register key         = rcx;      // key array address
  2416     const Register rvec        = rdi;      // r byte array initialized from initvector array address
  2417                                            // and left with the results of the last encryption block
  2418     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
  2419     const Register pos         = rax;
  2421     // xmm register assignments for the loops below
  2422     const XMMRegister xmm_result = xmm0;
  2423     const XMMRegister xmm_temp   = xmm1;
  2424     // first 6 keys preloaded into xmm2-xmm7
  2425     const int XMM_REG_NUM_KEY_FIRST = 2;
  2426     const int XMM_REG_NUM_KEY_LAST  = 7;
  2427     const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
  2429     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2430     handleSOERegisters(true /*saving*/);
  2432     // load registers from incoming parameters
  2433     const Address  from_param(rbp, 8+0);
  2434     const Address  to_param  (rbp, 8+4);
  2435     const Address  key_param (rbp, 8+8);
  2436     const Address  rvec_param (rbp, 8+12);
  2437     const Address  len_param  (rbp, 8+16);
  2438     __ movptr(from , from_param);
  2439     __ movptr(to   , to_param);
  2440     __ movptr(key  , key_param);
  2441     __ movptr(rvec , rvec_param);
  2442     __ movptr(len_reg , len_param);
  2444     const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
  2445     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
  2446     // load up xmm regs 2 thru 7 with keys 0-5
  2447     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  2448       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
  2449       offset += 0x10;
  2452     __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec
  2454     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
  2455     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
  2456     __ cmpl(rax, 44);
  2457     __ jcc(Assembler::notEqual, L_key_192_256);
  2459     // 128 bit code follows here
  2460     __ movl(pos, 0);
  2461     __ align(OptoLoopAlignment);
  2462     __ BIND(L_loopTop_128);
  2463     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
  2464     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
  2466     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
  2467     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  2468       __ aesenc(xmm_result, as_XMMRegister(rnum));
  2470     for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) {
  2471       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
  2473     load_key(xmm_temp, key, 0xa0);
  2474     __ aesenclast(xmm_result, xmm_temp);
  2476     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
  2477     // no need to store r to memory until we exit
  2478     __ addptr(pos, AESBlockSize);
  2479     __ subptr(len_reg, AESBlockSize);
  2480     __ jcc(Assembler::notEqual, L_loopTop_128);
  2482     __ BIND(L_exit);
  2483     __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object
  2485     handleSOERegisters(false /*restoring*/);
  2486     __ movl(rax, 0);                             // return 0 (why?)
  2487     __ leave();                                  // required for proper stackwalking of RuntimeStub frame
  2488     __ ret(0);
  2490     __ BIND(L_key_192_256);
  2491     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
  2492     __ cmpl(rax, 52);
  2493     __ jcc(Assembler::notEqual, L_key_256);
  2495     // 192-bit code follows here (could be changed to use more xmm registers)
  2496     __ movl(pos, 0);
  2497     __ align(OptoLoopAlignment);
  2498     __ BIND(L_loopTop_192);
  2499     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
  2500     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
  2502     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
  2503     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  2504       __ aesenc(xmm_result, as_XMMRegister(rnum));
  2506     for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) {
  2507       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
  2509     load_key(xmm_temp, key, 0xc0);
  2510     __ aesenclast(xmm_result, xmm_temp);
  2512     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
  2513     // no need to store r to memory until we exit
  2514     __ addptr(pos, AESBlockSize);
  2515     __ subptr(len_reg, AESBlockSize);
  2516     __ jcc(Assembler::notEqual, L_loopTop_192);
  2517     __ jmp(L_exit);
  2519     __ BIND(L_key_256);
  2520     // 256-bit code follows here (could be changed to use more xmm registers)
  2521     __ movl(pos, 0);
  2522     __ align(OptoLoopAlignment);
  2523     __ BIND(L_loopTop_256);
  2524     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
  2525     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
  2527     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
  2528     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  2529       __ aesenc(xmm_result, as_XMMRegister(rnum));
  2531     for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) {
  2532       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
  2534     load_key(xmm_temp, key, 0xe0);
  2535     __ aesenclast(xmm_result, xmm_temp);
  2537     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
  2538     // no need to store r to memory until we exit
  2539     __ addptr(pos, AESBlockSize);
  2540     __ subptr(len_reg, AESBlockSize);
  2541     __ jcc(Assembler::notEqual, L_loopTop_256);
  2542     __ jmp(L_exit);
  2544     return start;
  2548   // CBC AES Decryption.
  2549   // In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time.
  2550   //
  2551   // Arguments:
  2552   //
  2553   // Inputs:
  2554   //   c_rarg0   - source byte array address
  2555   //   c_rarg1   - destination byte array address
  2556   //   c_rarg2   - K (key) in little endian int array
  2557   //   c_rarg3   - r vector byte array address
  2558   //   c_rarg4   - input length
  2559   //
  2561   address generate_cipherBlockChaining_decryptAESCrypt() {
  2562     assert(UseAES, "need AES instructions and misaligned SSE support");
  2563     __ align(CodeEntryAlignment);
  2564     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
  2565     address start = __ pc();
  2567     Label L_exit, L_key_192_256, L_key_256;
  2568     Label L_singleBlock_loopTop_128;
  2569     Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
  2570     const Register from        = rsi;      // source array address
  2571     const Register to          = rdx;      // destination array address
  2572     const Register key         = rcx;      // key array address
  2573     const Register rvec        = rdi;      // r byte array initialized from initvector array address
  2574                                            // and left with the results of the last encryption block
  2575     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
  2576     const Register pos         = rax;
  2578     // xmm register assignments for the loops below
  2579     const XMMRegister xmm_result = xmm0;
  2580     const XMMRegister xmm_temp   = xmm1;
  2581     // first 6 keys preloaded into xmm2-xmm7
  2582     const int XMM_REG_NUM_KEY_FIRST = 2;
  2583     const int XMM_REG_NUM_KEY_LAST  = 7;
  2584     const int FIRST_NON_REG_KEY_offset = 0x70;
  2585     const XMMRegister xmm_key_first   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
  2587     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2588     handleSOERegisters(true /*saving*/);
  2590     // load registers from incoming parameters
  2591     const Address  from_param(rbp, 8+0);
  2592     const Address  to_param  (rbp, 8+4);
  2593     const Address  key_param (rbp, 8+8);
  2594     const Address  rvec_param (rbp, 8+12);
  2595     const Address  len_param  (rbp, 8+16);
  2596     __ movptr(from , from_param);
  2597     __ movptr(to   , to_param);
  2598     __ movptr(key  , key_param);
  2599     __ movptr(rvec , rvec_param);
  2600     __ movptr(len_reg , len_param);
  2602     // the java expanded key ordering is rotated one position from what we want
  2603     // so we start from 0x10 here and hit 0x00 last
  2604     const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
  2605     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
  2606     // load up xmm regs 2 thru 6 with first 5 keys
  2607     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  2608       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
  2609       offset += 0x10;
  2612     // inside here, use the rvec register to point to previous block cipher
  2613     // with which we xor at the end of each newly decrypted block
  2614     const Register  prev_block_cipher_ptr = rvec;
  2616     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
  2617     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
  2618     __ cmpl(rax, 44);
  2619     __ jcc(Assembler::notEqual, L_key_192_256);
  2622     // 128-bit code follows here, parallelized
  2623     __ movl(pos, 0);
  2624     __ align(OptoLoopAlignment);
  2625     __ BIND(L_singleBlock_loopTop_128);
  2626     __ cmpptr(len_reg, 0);           // any blocks left??
  2627     __ jcc(Assembler::equal, L_exit);
  2628     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
  2629     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
  2630     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  2631       __ aesdec(xmm_result, as_XMMRegister(rnum));
  2633     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xa0; key_offset += 0x10) {   // 128-bit runs up to key offset a0
  2634       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
  2636     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
  2637     __ aesdeclast(xmm_result, xmm_temp);
  2638     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
  2639     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
  2640     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
  2641     // no need to store r to memory until we exit
  2642     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
  2643     __ addptr(pos, AESBlockSize);
  2644     __ subptr(len_reg, AESBlockSize);
  2645     __ jmp(L_singleBlock_loopTop_128);
  2648     __ BIND(L_exit);
  2649     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
  2650     __ movptr(rvec , rvec_param);                                     // restore this since used in loop
  2651     __ movdqu(Address(rvec, 0), xmm_temp);                            // final value of r stored in rvec of CipherBlockChaining object
  2652     handleSOERegisters(false /*restoring*/);
  2653     __ movl(rax, 0);                                                  // return 0 (why?)
  2654     __ leave();                                                       // required for proper stackwalking of RuntimeStub frame
  2655     __ ret(0);
  2658     __ BIND(L_key_192_256);
  2659     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
  2660     __ cmpl(rax, 52);
  2661     __ jcc(Assembler::notEqual, L_key_256);
  2663     // 192-bit code follows here (could be optimized to use parallelism)
  2664     __ movl(pos, 0);
  2665     __ align(OptoLoopAlignment);
  2666     __ BIND(L_singleBlock_loopTop_192);
  2667     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
  2668     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
  2669     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
  2670       __ aesdec(xmm_result, as_XMMRegister(rnum));
  2672     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xc0; key_offset += 0x10) {   // 192-bit runs up to key offset c0
  2673       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
  2675     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
  2676     __ aesdeclast(xmm_result, xmm_temp);
  2677     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
  2678     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
  2679     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
  2680     // no need to store r to memory until we exit
  2681     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
  2682     __ addptr(pos, AESBlockSize);
  2683     __ subptr(len_reg, AESBlockSize);
  2684     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
  2685     __ jmp(L_exit);
  2687     __ BIND(L_key_256);
  2688     // 256-bit code follows here (could be optimized to use parallelism)
  2689     __ movl(pos, 0);
  2690     __ align(OptoLoopAlignment);
  2691     __ BIND(L_singleBlock_loopTop_256);
  2692     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
  2693     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
  2694     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
  2695       __ aesdec(xmm_result, as_XMMRegister(rnum));
  2697     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xe0; key_offset += 0x10) {   // 256-bit runs up to key offset e0
  2698       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
  2700     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
  2701     __ aesdeclast(xmm_result, xmm_temp);
  2702     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
  2703     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
  2704     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
  2705     // no need to store r to memory until we exit
  2706     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
  2707     __ addptr(pos, AESBlockSize);
  2708     __ subptr(len_reg, AESBlockSize);
  2709     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
  2710     __ jmp(L_exit);
  2712     return start;
  2715   /**
  2716    *  Arguments:
  2718    * Inputs:
  2719    *   rsp(4)   - int crc
  2720    *   rsp(8)   - byte* buf
  2721    *   rsp(12)  - int length
  2723    * Ouput:
  2724    *       rax   - int crc result
  2725    */
  2726   address generate_updateBytesCRC32() {
  2727     assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
  2729     __ align(CodeEntryAlignment);
  2730     StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
  2732     address start = __ pc();
  2734     const Register crc   = rdx;  // crc
  2735     const Register buf   = rsi;  // source java byte array address
  2736     const Register len   = rcx;  // length
  2737     const Register table = rdi;  // crc_table address (reuse register)
  2738     const Register tmp   = rbx;
  2739     assert_different_registers(crc, buf, len, table, tmp, rax);
  2741     BLOCK_COMMENT("Entry:");
  2742     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2743     __ push(rsi);
  2744     __ push(rdi);
  2745     __ push(rbx);
  2747     Address crc_arg(rbp, 8 + 0);
  2748     Address buf_arg(rbp, 8 + 4);
  2749     Address len_arg(rbp, 8 + 8);
  2751     // Load up:
  2752     __ movl(crc,   crc_arg);
  2753     __ movptr(buf, buf_arg);
  2754     __ movl(len,   len_arg);
  2756     __ kernel_crc32(crc, buf, len, table, tmp);
  2758     __ movl(rax, crc);
  2759     __ pop(rbx);
  2760     __ pop(rdi);
  2761     __ pop(rsi);
  2762     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2763     __ ret(0);
  2765     return start;
  2768   // Safefetch stubs.
  2769   void generate_safefetch(const char* name, int size, address* entry,
  2770                           address* fault_pc, address* continuation_pc) {
  2771     // safefetch signatures:
  2772     //   int      SafeFetch32(int*      adr, int      errValue);
  2773     //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
  2775     StubCodeMark mark(this, "StubRoutines", name);
  2777     // Entry point, pc or function descriptor.
  2778     *entry = __ pc();
  2780     __ movl(rax, Address(rsp, 0x8));
  2781     __ movl(rcx, Address(rsp, 0x4));
  2782     // Load *adr into eax, may fault.
  2783     *fault_pc = __ pc();
  2784     switch (size) {
  2785       case 4:
  2786         // int32_t
  2787         __ movl(rax, Address(rcx, 0));
  2788         break;
  2789       case 8:
  2790         // int64_t
  2791         Unimplemented();
  2792         break;
  2793       default:
  2794         ShouldNotReachHere();
  2797     // Return errValue or *adr.
  2798     *continuation_pc = __ pc();
  2799     __ ret(0);
  2802  public:
  2803   // Information about frame layout at time of blocking runtime call.
  2804   // Note that we only have to preserve callee-saved registers since
  2805   // the compilers are responsible for supplying a continuation point
  2806   // if they expect all registers to be preserved.
  2807   enum layout {
  2808     thread_off,    // last_java_sp
  2809     arg1_off,
  2810     arg2_off,
  2811     rbp_off,       // callee saved register
  2812     ret_pc,
  2813     framesize
  2814   };
  2816  private:
  2818 #undef  __
  2819 #define __ masm->
  2821   //------------------------------------------------------------------------------------------------------------------------
  2822   // Continuation point for throwing of implicit exceptions that are not handled in
  2823   // the current activation. Fabricates an exception oop and initiates normal
  2824   // exception dispatching in this frame.
  2825   //
  2826   // Previously the compiler (c2) allowed for callee save registers on Java calls.
  2827   // This is no longer true after adapter frames were removed but could possibly
  2828   // be brought back in the future if the interpreter code was reworked and it
  2829   // was deemed worthwhile. The comment below was left to describe what must
  2830   // happen here if callee saves were resurrected. As it stands now this stub
  2831   // could actually be a vanilla BufferBlob and have now oopMap at all.
  2832   // Since it doesn't make much difference we've chosen to leave it the
  2833   // way it was in the callee save days and keep the comment.
  2835   // If we need to preserve callee-saved values we need a callee-saved oop map and
  2836   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
  2837   // If the compiler needs all registers to be preserved between the fault
  2838   // point and the exception handler then it must assume responsibility for that in
  2839   // AbstractCompiler::continuation_for_implicit_null_exception or
  2840   // continuation_for_implicit_division_by_zero_exception. All other implicit
  2841   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  2842   // either at call sites or otherwise assume that stack unwinding will be initiated,
  2843   // so caller saved registers were assumed volatile in the compiler.
  2844   address generate_throw_exception(const char* name, address runtime_entry,
  2845                                    Register arg1 = noreg, Register arg2 = noreg) {
  2847     int insts_size = 256;
  2848     int locs_size  = 32;
  2850     CodeBuffer code(name, insts_size, locs_size);
  2851     OopMapSet* oop_maps  = new OopMapSet();
  2852     MacroAssembler* masm = new MacroAssembler(&code);
  2854     address start = __ pc();
  2856     // This is an inlined and slightly modified version of call_VM
  2857     // which has the ability to fetch the return PC out of
  2858     // thread-local storage and also sets up last_Java_sp slightly
  2859     // differently than the real call_VM
  2860     Register java_thread = rbx;
  2861     __ get_thread(java_thread);
  2863     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2865     // pc and rbp, already pushed
  2866     __ subptr(rsp, (framesize-2) * wordSize); // prolog
  2868     // Frame is now completed as far as size and linkage.
  2870     int frame_complete = __ pc() - start;
  2872     // push java thread (becomes first argument of C function)
  2873     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
  2874     if (arg1 != noreg) {
  2875       __ movptr(Address(rsp, arg1_off * wordSize), arg1);
  2877     if (arg2 != noreg) {
  2878       assert(arg1 != noreg, "missing reg arg");
  2879       __ movptr(Address(rsp, arg2_off * wordSize), arg2);
  2882     // Set up last_Java_sp and last_Java_fp
  2883     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
  2885     // Call runtime
  2886     BLOCK_COMMENT("call runtime_entry");
  2887     __ call(RuntimeAddress(runtime_entry));
  2888     // Generate oop map
  2889     OopMap* map =  new OopMap(framesize, 0);
  2890     oop_maps->add_gc_map(__ pc() - start, map);
  2892     // restore the thread (cannot use the pushed argument since arguments
  2893     // may be overwritten by C code generated by an optimizing compiler);
  2894     // however can use the register value directly if it is callee saved.
  2895     __ get_thread(java_thread);
  2897     __ reset_last_Java_frame(java_thread, true, false);
  2899     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2901     // check for pending exceptions
  2902 #ifdef ASSERT
  2903     Label L;
  2904     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2905     __ jcc(Assembler::notEqual, L);
  2906     __ should_not_reach_here();
  2907     __ bind(L);
  2908 #endif /* ASSERT */
  2909     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2912     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
  2913     return stub->entry_point();
  2917   void create_control_words() {
  2918     // Round to nearest, 53-bit mode, exceptions masked
  2919     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
  2920     // Round to zero, 53-bit mode, exception mased
  2921     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
  2922     // Round to nearest, 24-bit mode, exceptions masked
  2923     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
  2924     // Round to nearest, 64-bit mode, exceptions masked
  2925     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
  2926     // Round to nearest, 64-bit mode, exceptions masked
  2927     StubRoutines::_mxcsr_std           = 0x1F80;
  2928     // Note: the following two constants are 80-bit values
  2929     //       layout is critical for correct loading by FPU.
  2930     // Bias for strict fp multiply/divide
  2931     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
  2932     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
  2933     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
  2934     // Un-Bias for strict fp multiply/divide
  2935     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
  2936     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
  2937     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
  2940   //---------------------------------------------------------------------------
  2941   // Initialization
  2943   void generate_initial() {
  2944     // Generates all stubs and initializes the entry points
  2946     //------------------------------------------------------------------------------------------------------------------------
  2947     // entry points that exist in all platforms
  2948     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  2949     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  2950     StubRoutines::_forward_exception_entry      = generate_forward_exception();
  2952     StubRoutines::_call_stub_entry              =
  2953       generate_call_stub(StubRoutines::_call_stub_return_address);
  2954     // is referenced by megamorphic call
  2955     StubRoutines::_catch_exception_entry        = generate_catch_exception();
  2957     // These are currently used by Solaris/Intel
  2958     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
  2960     StubRoutines::_handler_for_unsafe_access_entry =
  2961       generate_handler_for_unsafe_access();
  2963     // platform dependent
  2964     create_control_words();
  2966     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
  2967     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
  2968     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
  2969                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
  2970     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
  2971                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  2973     // Build this early so it's available for the interpreter
  2974     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
  2976     if (UseCRC32Intrinsics) {
  2977       // set table address before stub generation which use it
  2978       StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
  2979       StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
  2984   void generate_all() {
  2985     // Generates all stubs and initializes the entry points
  2987     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  2988     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
  2989     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
  2990     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
  2991     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
  2993     //------------------------------------------------------------------------------------------------------------------------
  2994     // entry points that are platform specific
  2996     // support for verify_oop (must happen after universe_init)
  2997     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
  2999     // arraycopy stubs used by compilers
  3000     generate_arraycopy_stubs();
  3002     generate_math_stubs();
  3004     // don't bother generating these AES intrinsic stubs unless global flag is set
  3005     if (UseAESIntrinsics) {
  3006       StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // might be needed by the others
  3008       StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
  3009       StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
  3010       StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
  3011       StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
  3014     // Safefetch stubs.
  3015     generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
  3016                                                    &StubRoutines::_safefetch32_fault_pc,
  3017                                                    &StubRoutines::_safefetch32_continuation_pc);
  3018     StubRoutines::_safefetchN_entry           = StubRoutines::_safefetch32_entry;
  3019     StubRoutines::_safefetchN_fault_pc        = StubRoutines::_safefetch32_fault_pc;
  3020     StubRoutines::_safefetchN_continuation_pc = StubRoutines::_safefetch32_continuation_pc;
  3024  public:
  3025   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  3026     if (all) {
  3027       generate_all();
  3028     } else {
  3029       generate_initial();
  3032 }; // end class declaration
  3035 void StubGenerator_generate(CodeBuffer* code, bool all) {
  3036   StubGenerator g(code, all);

mercurial