src/cpu/x86/vm/macroAssembler_x86.hpp

Thu, 15 Aug 2013 20:04:10 -0400

author
hseigel
date
Thu, 15 Aug 2013 20:04:10 -0400
changeset 5528
740e263c80c6
parent 5353
b800986664f4
child 5914
d13d7aba8c12
permissions
-rw-r--r--

8003424: Enable Class Data Sharing for CompressedOops
8016729: ObjectAlignmentInBytes=16 now forces the use of heap based compressed oops
8005933: The -Xshare:auto option is ignored for -server
Summary: Move klass metaspace above the heap and support CDS with compressed klass ptrs.
Reviewed-by: coleenp, kvn, mgerdin, tschatzl, stefank

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
    26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
    28 #include "asm/assembler.hpp"
    29 #include "utilities/macros.hpp"
    32 // MacroAssembler extends Assembler by frequently used macros.
    33 //
    34 // Instructions for which a 'better' code sequence exists depending
    35 // on arguments should also go in here.
    37 class MacroAssembler: public Assembler {
    38   friend class LIR_Assembler;
    39   friend class Runtime1;      // as_Address()
    41  protected:
    43   Address as_Address(AddressLiteral adr);
    44   Address as_Address(ArrayAddress adr);
    46   // Support for VM calls
    47   //
    48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
    49   // may customize this version by overriding it for its purposes (e.g., to save/restore
    50   // additional registers when doing a VM call).
    51 #ifdef CC_INTERP
    52   // c++ interpreter never wants to use interp_masm version of call_VM
    53   #define VIRTUAL
    54 #else
    55   #define VIRTUAL virtual
    56 #endif
    58   VIRTUAL void call_VM_leaf_base(
    59     address entry_point,               // the entry point
    60     int     number_of_arguments        // the number of arguments to pop after the call
    61   );
    63   // This is the base routine called by the different versions of call_VM. The interpreter
    64   // may customize this version by overriding it for its purposes (e.g., to save/restore
    65   // additional registers when doing a VM call).
    66   //
    67   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
    68   // returns the register which contains the thread upon return. If a thread register has been
    69   // specified, the return value will correspond to that register. If no last_java_sp is specified
    70   // (noreg) than rsp will be used instead.
    71   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
    72     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
    73     Register java_thread,              // the thread if computed before     ; use noreg otherwise
    74     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
    75     address  entry_point,              // the entry point
    76     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
    77     bool     check_exceptions          // whether to check for pending exceptions after return
    78   );
    80   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
    81   // The implementation is only non-empty for the InterpreterMacroAssembler,
    82   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
    83   virtual void check_and_handle_popframe(Register java_thread);
    84   virtual void check_and_handle_earlyret(Register java_thread);
    86   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
    88   // helpers for FPU flag access
    89   // tmp is a temporary register, if none is available use noreg
    90   void save_rax   (Register tmp);
    91   void restore_rax(Register tmp);
    93  public:
    94   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
    96   // Support for NULL-checks
    97   //
    98   // Generates code that causes a NULL OS exception if the content of reg is NULL.
    99   // If the accessed location is M[reg + offset] and the offset is known, provide the
   100   // offset. No explicit code generation is needed if the offset is within a certain
   101   // range (0 <= offset <= page_size).
   103   void null_check(Register reg, int offset = -1);
   104   static bool needs_explicit_null_check(intptr_t offset);
   106   // Required platform-specific helpers for Label::patch_instructions.
   107   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
   108   void pd_patch_instruction(address branch, address target) {
   109     unsigned char op = branch[0];
   110     assert(op == 0xE8 /* call */ ||
   111         op == 0xE9 /* jmp */ ||
   112         op == 0xEB /* short jmp */ ||
   113         (op & 0xF0) == 0x70 /* short jcc */ ||
   114         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */,
   115         "Invalid opcode at patch point");
   117     if (op == 0xEB || (op & 0xF0) == 0x70) {
   118       // short offset operators (jmp and jcc)
   119       char* disp = (char*) &branch[1];
   120       int imm8 = target - (address) &disp[1];
   121       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
   122       *disp = imm8;
   123     } else {
   124       int* disp = (int*) &branch[(op == 0x0F)? 2: 1];
   125       int imm32 = target - (address) &disp[1];
   126       *disp = imm32;
   127     }
   128   }
   130   // The following 4 methods return the offset of the appropriate move instruction
   132   // Support for fast byte/short loading with zero extension (depending on particular CPU)
   133   int load_unsigned_byte(Register dst, Address src);
   134   int load_unsigned_short(Register dst, Address src);
   136   // Support for fast byte/short loading with sign extension (depending on particular CPU)
   137   int load_signed_byte(Register dst, Address src);
   138   int load_signed_short(Register dst, Address src);
   140   // Support for sign-extension (hi:lo = extend_sign(lo))
   141   void extend_sign(Register hi, Register lo);
   143   // Load and store values by size and signed-ness
   144   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
   145   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
   147   // Support for inc/dec with optimal instruction selection depending on value
   149   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
   150   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
   152   void decrementl(Address dst, int value = 1);
   153   void decrementl(Register reg, int value = 1);
   155   void decrementq(Register reg, int value = 1);
   156   void decrementq(Address dst, int value = 1);
   158   void incrementl(Address dst, int value = 1);
   159   void incrementl(Register reg, int value = 1);
   161   void incrementq(Register reg, int value = 1);
   162   void incrementq(Address dst, int value = 1);
   165   // Support optimal SSE move instructions.
   166   void movflt(XMMRegister dst, XMMRegister src) {
   167     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
   168     else                       { movss (dst, src); return; }
   169   }
   170   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
   171   void movflt(XMMRegister dst, AddressLiteral src);
   172   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
   174   void movdbl(XMMRegister dst, XMMRegister src) {
   175     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
   176     else                       { movsd (dst, src); return; }
   177   }
   179   void movdbl(XMMRegister dst, AddressLiteral src);
   181   void movdbl(XMMRegister dst, Address src) {
   182     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
   183     else                         { movlpd(dst, src); return; }
   184   }
   185   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
   187   void incrementl(AddressLiteral dst);
   188   void incrementl(ArrayAddress dst);
   190   // Alignment
   191   void align(int modulus);
   193   // A 5 byte nop that is safe for patching (see patch_verified_entry)
   194   void fat_nop();
   196   // Stack frame creation/removal
   197   void enter();
   198   void leave();
   200   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
   201   // The pointer will be loaded into the thread register.
   202   void get_thread(Register thread);
   205   // Support for VM calls
   206   //
   207   // It is imperative that all calls into the VM are handled via the call_VM macros.
   208   // They make sure that the stack linkage is setup correctly. call_VM's correspond
   209   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
   212   void call_VM(Register oop_result,
   213                address entry_point,
   214                bool check_exceptions = true);
   215   void call_VM(Register oop_result,
   216                address entry_point,
   217                Register arg_1,
   218                bool check_exceptions = true);
   219   void call_VM(Register oop_result,
   220                address entry_point,
   221                Register arg_1, Register arg_2,
   222                bool check_exceptions = true);
   223   void call_VM(Register oop_result,
   224                address entry_point,
   225                Register arg_1, Register arg_2, Register arg_3,
   226                bool check_exceptions = true);
   228   // Overloadings with last_Java_sp
   229   void call_VM(Register oop_result,
   230                Register last_java_sp,
   231                address entry_point,
   232                int number_of_arguments = 0,
   233                bool check_exceptions = true);
   234   void call_VM(Register oop_result,
   235                Register last_java_sp,
   236                address entry_point,
   237                Register arg_1, bool
   238                check_exceptions = true);
   239   void call_VM(Register oop_result,
   240                Register last_java_sp,
   241                address entry_point,
   242                Register arg_1, Register arg_2,
   243                bool check_exceptions = true);
   244   void call_VM(Register oop_result,
   245                Register last_java_sp,
   246                address entry_point,
   247                Register arg_1, Register arg_2, Register arg_3,
   248                bool check_exceptions = true);
   250   void get_vm_result  (Register oop_result, Register thread);
   251   void get_vm_result_2(Register metadata_result, Register thread);
   253   // These always tightly bind to MacroAssembler::call_VM_base
   254   // bypassing the virtual implementation
   255   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
   256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
   257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
   258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
   259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
   261   void call_VM_leaf(address entry_point,
   262                     int number_of_arguments = 0);
   263   void call_VM_leaf(address entry_point,
   264                     Register arg_1);
   265   void call_VM_leaf(address entry_point,
   266                     Register arg_1, Register arg_2);
   267   void call_VM_leaf(address entry_point,
   268                     Register arg_1, Register arg_2, Register arg_3);
   270   // These always tightly bind to MacroAssembler::call_VM_leaf_base
   271   // bypassing the virtual implementation
   272   void super_call_VM_leaf(address entry_point);
   273   void super_call_VM_leaf(address entry_point, Register arg_1);
   274   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
   275   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
   276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
   278   // last Java Frame (fills frame anchor)
   279   void set_last_Java_frame(Register thread,
   280                            Register last_java_sp,
   281                            Register last_java_fp,
   282                            address last_java_pc);
   284   // thread in the default location (r15_thread on 64bit)
   285   void set_last_Java_frame(Register last_java_sp,
   286                            Register last_java_fp,
   287                            address last_java_pc);
   289   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
   291   // thread in the default location (r15_thread on 64bit)
   292   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
   294   // Stores
   295   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
   296   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
   298 #if INCLUDE_ALL_GCS
   300   void g1_write_barrier_pre(Register obj,
   301                             Register pre_val,
   302                             Register thread,
   303                             Register tmp,
   304                             bool tosca_live,
   305                             bool expand_call);
   307   void g1_write_barrier_post(Register store_addr,
   308                              Register new_val,
   309                              Register thread,
   310                              Register tmp,
   311                              Register tmp2);
   313 #endif // INCLUDE_ALL_GCS
   315   // split store_check(Register obj) to enhance instruction interleaving
   316   void store_check_part_1(Register obj);
   317   void store_check_part_2(Register obj);
   319   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
   320   void c2bool(Register x);
   322   // C++ bool manipulation
   324   void movbool(Register dst, Address src);
   325   void movbool(Address dst, bool boolconst);
   326   void movbool(Address dst, Register src);
   327   void testbool(Register dst);
   329   // oop manipulations
   330   void load_klass(Register dst, Register src);
   331   void store_klass(Register dst, Register src);
   333   void load_heap_oop(Register dst, Address src);
   334   void load_heap_oop_not_null(Register dst, Address src);
   335   void store_heap_oop(Address dst, Register src);
   336   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
   338   // Used for storing NULL. All other oop constants should be
   339   // stored using routines that take a jobject.
   340   void store_heap_oop_null(Address dst);
   342   void load_prototype_header(Register dst, Register src);
   344 #ifdef _LP64
   345   void store_klass_gap(Register dst, Register src);
   347   // This dummy is to prevent a call to store_heap_oop from
   348   // converting a zero (like NULL) into a Register by giving
   349   // the compiler two choices it can't resolve
   351   void store_heap_oop(Address dst, void* dummy);
   353   void encode_heap_oop(Register r);
   354   void decode_heap_oop(Register r);
   355   void encode_heap_oop_not_null(Register r);
   356   void decode_heap_oop_not_null(Register r);
   357   void encode_heap_oop_not_null(Register dst, Register src);
   358   void decode_heap_oop_not_null(Register dst, Register src);
   360   void set_narrow_oop(Register dst, jobject obj);
   361   void set_narrow_oop(Address dst, jobject obj);
   362   void cmp_narrow_oop(Register dst, jobject obj);
   363   void cmp_narrow_oop(Address dst, jobject obj);
   365   void encode_klass_not_null(Register r);
   366   void decode_klass_not_null(Register r);
   367   void encode_klass_not_null(Register dst, Register src);
   368   void decode_klass_not_null(Register dst, Register src);
   369   void set_narrow_klass(Register dst, Klass* k);
   370   void set_narrow_klass(Address dst, Klass* k);
   371   void cmp_narrow_klass(Register dst, Klass* k);
   372   void cmp_narrow_klass(Address dst, Klass* k);
   374   // Returns the byte size of the instructions generated by decode_klass_not_null()
   375   // when compressed klass pointers are being used.
   376   static int instr_size_for_decode_klass_not_null();
   378   // if heap base register is used - reinit it with the correct value
   379   void reinit_heapbase();
   381   DEBUG_ONLY(void verify_heapbase(const char* msg);)
   383 #endif // _LP64
   385   // Int division/remainder for Java
   386   // (as idivl, but checks for special case as described in JVM spec.)
   387   // returns idivl instruction offset for implicit exception handling
   388   int corrected_idivl(Register reg);
   390   // Long division/remainder for Java
   391   // (as idivq, but checks for special case as described in JVM spec.)
   392   // returns idivq instruction offset for implicit exception handling
   393   int corrected_idivq(Register reg);
   395   void int3();
   397   // Long operation macros for a 32bit cpu
   398   // Long negation for Java
   399   void lneg(Register hi, Register lo);
   401   // Long multiplication for Java
   402   // (destroys contents of eax, ebx, ecx and edx)
   403   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
   405   // Long shifts for Java
   406   // (semantics as described in JVM spec.)
   407   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
   408   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
   410   // Long compare for Java
   411   // (semantics as described in JVM spec.)
   412   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
   415   // misc
   417   // Sign extension
   418   void sign_extend_short(Register reg);
   419   void sign_extend_byte(Register reg);
   421   // Division by power of 2, rounding towards 0
   422   void division_with_shift(Register reg, int shift_value);
   424   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
   425   //
   426   // CF (corresponds to C0) if x < y
   427   // PF (corresponds to C2) if unordered
   428   // ZF (corresponds to C3) if x = y
   429   //
   430   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
   431   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
   432   void fcmp(Register tmp);
   433   // Variant of the above which allows y to be further down the stack
   434   // and which only pops x and y if specified. If pop_right is
   435   // specified then pop_left must also be specified.
   436   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
   438   // Floating-point comparison for Java
   439   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
   440   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
   441   // (semantics as described in JVM spec.)
   442   void fcmp2int(Register dst, bool unordered_is_less);
   443   // Variant of the above which allows y to be further down the stack
   444   // and which only pops x and y if specified. If pop_right is
   445   // specified then pop_left must also be specified.
   446   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
   448   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
   449   // tmp is a temporary register, if none is available use noreg
   450   void fremr(Register tmp);
   453   // same as fcmp2int, but using SSE2
   454   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
   455   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
   457   // Inlined sin/cos generator for Java; must not use CPU instruction
   458   // directly on Intel as it does not have high enough precision
   459   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
   460   // number of FPU stack slots in use; all but the topmost will
   461   // require saving if a slow case is necessary. Assumes argument is
   462   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
   463   // this code.
   464   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
   466   // branch to L if FPU flag C2 is set/not set
   467   // tmp is a temporary register, if none is available use noreg
   468   void jC2 (Register tmp, Label& L);
   469   void jnC2(Register tmp, Label& L);
   471   // Pop ST (ffree & fincstp combined)
   472   void fpop();
   474   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
   475   void push_fTOS();
   477   // pops double TOS element from CPU stack and pushes on FPU stack
   478   void pop_fTOS();
   480   void empty_FPU_stack();
   482   void push_IU_state();
   483   void pop_IU_state();
   485   void push_FPU_state();
   486   void pop_FPU_state();
   488   void push_CPU_state();
   489   void pop_CPU_state();
   491   // Round up to a power of two
   492   void round_to(Register reg, int modulus);
   494   // Callee saved registers handling
   495   void push_callee_saved_registers();
   496   void pop_callee_saved_registers();
   498   // allocation
   499   void eden_allocate(
   500     Register obj,                      // result: pointer to object after successful allocation
   501     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
   502     int      con_size_in_bytes,        // object size in bytes if   known at compile time
   503     Register t1,                       // temp register
   504     Label&   slow_case                 // continuation point if fast allocation fails
   505   );
   506   void tlab_allocate(
   507     Register obj,                      // result: pointer to object after successful allocation
   508     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
   509     int      con_size_in_bytes,        // object size in bytes if   known at compile time
   510     Register t1,                       // temp register
   511     Register t2,                       // temp register
   512     Label&   slow_case                 // continuation point if fast allocation fails
   513   );
   514   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
   515   void incr_allocated_bytes(Register thread,
   516                             Register var_size_in_bytes, int con_size_in_bytes,
   517                             Register t1 = noreg);
   519   // interface method calling
   520   void lookup_interface_method(Register recv_klass,
   521                                Register intf_klass,
   522                                RegisterOrConstant itable_index,
   523                                Register method_result,
   524                                Register scan_temp,
   525                                Label& no_such_interface);
   527   // virtual method calling
   528   void lookup_virtual_method(Register recv_klass,
   529                              RegisterOrConstant vtable_index,
   530                              Register method_result);
   532   // Test sub_klass against super_klass, with fast and slow paths.
   534   // The fast path produces a tri-state answer: yes / no / maybe-slow.
   535   // One of the three labels can be NULL, meaning take the fall-through.
   536   // If super_check_offset is -1, the value is loaded up from super_klass.
   537   // No registers are killed, except temp_reg.
   538   void check_klass_subtype_fast_path(Register sub_klass,
   539                                      Register super_klass,
   540                                      Register temp_reg,
   541                                      Label* L_success,
   542                                      Label* L_failure,
   543                                      Label* L_slow_path,
   544                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
   546   // The rest of the type check; must be wired to a corresponding fast path.
   547   // It does not repeat the fast path logic, so don't use it standalone.
   548   // The temp_reg and temp2_reg can be noreg, if no temps are available.
   549   // Updates the sub's secondary super cache as necessary.
   550   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
   551   void check_klass_subtype_slow_path(Register sub_klass,
   552                                      Register super_klass,
   553                                      Register temp_reg,
   554                                      Register temp2_reg,
   555                                      Label* L_success,
   556                                      Label* L_failure,
   557                                      bool set_cond_codes = false);
   559   // Simplified, combined version, good for typical uses.
   560   // Falls through on failure.
   561   void check_klass_subtype(Register sub_klass,
   562                            Register super_klass,
   563                            Register temp_reg,
   564                            Label& L_success);
   566   // method handles (JSR 292)
   567   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
   569   //----
   570   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
   572   // Debugging
   574   // only if +VerifyOops
   575   // TODO: Make these macros with file and line like sparc version!
   576   void verify_oop(Register reg, const char* s = "broken oop");
   577   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
   579   // TODO: verify method and klass metadata (compare against vptr?)
   580   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
   581   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
   583 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
   584 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
   586   // only if +VerifyFPU
   587   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
   589   // Verify or restore cpu control state after JNI call
   590   void restore_cpu_control_state_after_jni();
   592   // prints msg, dumps registers and stops execution
   593   void stop(const char* msg);
   595   // prints msg and continues
   596   void warn(const char* msg);
   598   // dumps registers and other state
   599   void print_state();
   601   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
   602   static void debug64(char* msg, int64_t pc, int64_t regs[]);
   603   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
   604   static void print_state64(int64_t pc, int64_t regs[]);
   606   void os_breakpoint();
   608   void untested()                                { stop("untested"); }
   610   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
   612   void should_not_reach_here()                   { stop("should not reach here"); }
   614   void print_CPU_state();
   616   // Stack overflow checking
   617   void bang_stack_with_offset(int offset) {
   618     // stack grows down, caller passes positive offset
   619     assert(offset > 0, "must bang with negative offset");
   620     movl(Address(rsp, (-offset)), rax);
   621   }
   623   // Writes to stack successive pages until offset reached to check for
   624   // stack overflow + shadow pages.  Also, clobbers tmp
   625   void bang_stack_size(Register size, Register tmp);
   627   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
   628                                                 Register tmp,
   629                                                 int offset);
   631   // Support for serializing memory accesses between threads
   632   void serialize_memory(Register thread, Register tmp);
   634   void verify_tlab();
   636   // Biased locking support
   637   // lock_reg and obj_reg must be loaded up with the appropriate values.
   638   // swap_reg must be rax, and is killed.
   639   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
   640   // be killed; if not supplied, push/pop will be used internally to
   641   // allocate a temporary (inefficient, avoid if possible).
   642   // Optional slow case is for implementations (interpreter and C1) which branch to
   643   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
   644   // Returns offset of first potentially-faulting instruction for null
   645   // check info (currently consumed only by C1). If
   646   // swap_reg_contains_mark is true then returns -1 as it is assumed
   647   // the calling code has already passed any potential faults.
   648   int biased_locking_enter(Register lock_reg, Register obj_reg,
   649                            Register swap_reg, Register tmp_reg,
   650                            bool swap_reg_contains_mark,
   651                            Label& done, Label* slow_case = NULL,
   652                            BiasedLockingCounters* counters = NULL);
   653   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
   656   Condition negate_condition(Condition cond);
   658   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
   659   // operands. In general the names are modified to avoid hiding the instruction in Assembler
   660   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
   661   // here in MacroAssembler. The major exception to this rule is call
   663   // Arithmetics
   666   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
   667   void addptr(Address dst, Register src);
   669   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
   670   void addptr(Register dst, int32_t src);
   671   void addptr(Register dst, Register src);
   672   void addptr(Register dst, RegisterOrConstant src) {
   673     if (src.is_constant()) addptr(dst, (int) src.as_constant());
   674     else                   addptr(dst,       src.as_register());
   675   }
   677   void andptr(Register dst, int32_t src);
   678   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
   680   void cmp8(AddressLiteral src1, int imm);
   682   // renamed to drag out the casting of address to int32_t/intptr_t
   683   void cmp32(Register src1, int32_t imm);
   685   void cmp32(AddressLiteral src1, int32_t imm);
   686   // compare reg - mem, or reg - &mem
   687   void cmp32(Register src1, AddressLiteral src2);
   689   void cmp32(Register src1, Address src2);
   691 #ifndef _LP64
   692   void cmpklass(Address dst, Metadata* obj);
   693   void cmpklass(Register dst, Metadata* obj);
   694   void cmpoop(Address dst, jobject obj);
   695   void cmpoop(Register dst, jobject obj);
   696 #endif // _LP64
   698   // NOTE src2 must be the lval. This is NOT an mem-mem compare
   699   void cmpptr(Address src1, AddressLiteral src2);
   701   void cmpptr(Register src1, AddressLiteral src2);
   703   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   704   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   705   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   707   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   708   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   710   // cmp64 to avoild hiding cmpq
   711   void cmp64(Register src1, AddressLiteral src);
   713   void cmpxchgptr(Register reg, Address adr);
   715   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
   718   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
   721   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
   723   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
   725   void shlptr(Register dst, int32_t shift);
   726   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
   728   void shrptr(Register dst, int32_t shift);
   729   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
   731   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
   732   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
   734   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
   736   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
   737   void subptr(Register dst, int32_t src);
   738   // Force generation of a 4 byte immediate value even if it fits into 8bit
   739   void subptr_imm32(Register dst, int32_t src);
   740   void subptr(Register dst, Register src);
   741   void subptr(Register dst, RegisterOrConstant src) {
   742     if (src.is_constant()) subptr(dst, (int) src.as_constant());
   743     else                   subptr(dst,       src.as_register());
   744   }
   746   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
   747   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
   749   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
   750   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
   752   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
   756   // Helper functions for statistics gathering.
   757   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
   758   void cond_inc32(Condition cond, AddressLiteral counter_addr);
   759   // Unconditional atomic increment.
   760   void atomic_incl(AddressLiteral counter_addr);
   762   void lea(Register dst, AddressLiteral adr);
   763   void lea(Address dst, AddressLiteral adr);
   764   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
   766   void leal32(Register dst, Address src) { leal(dst, src); }
   768   // Import other testl() methods from the parent class or else
   769   // they will be hidden by the following overriding declaration.
   770   using Assembler::testl;
   771   void testl(Register dst, AddressLiteral src);
   773   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
   774   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
   775   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
   777   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
   778   void testptr(Register src1, Register src2);
   780   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
   781   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
   783   // Calls
   785   void call(Label& L, relocInfo::relocType rtype);
   786   void call(Register entry);
   788   // NOTE: this call tranfers to the effective address of entry NOT
   789   // the address contained by entry. This is because this is more natural
   790   // for jumps/calls.
   791   void call(AddressLiteral entry);
   793   // Emit the CompiledIC call idiom
   794   void ic_call(address entry);
   796   // Jumps
   798   // NOTE: these jumps tranfer to the effective address of dst NOT
   799   // the address contained by dst. This is because this is more natural
   800   // for jumps/calls.
   801   void jump(AddressLiteral dst);
   802   void jump_cc(Condition cc, AddressLiteral dst);
   804   // 32bit can do a case table jump in one instruction but we no longer allow the base
   805   // to be installed in the Address class. This jump will tranfers to the address
   806   // contained in the location described by entry (not the address of entry)
   807   void jump(ArrayAddress entry);
   809   // Floating
   811   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
   812   void andpd(XMMRegister dst, AddressLiteral src);
   814   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
   815   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
   816   void andps(XMMRegister dst, AddressLiteral src);
   818   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
   819   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
   820   void comiss(XMMRegister dst, AddressLiteral src);
   822   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
   823   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
   824   void comisd(XMMRegister dst, AddressLiteral src);
   826   void fadd_s(Address src)        { Assembler::fadd_s(src); }
   827   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
   829   void fldcw(Address src) { Assembler::fldcw(src); }
   830   void fldcw(AddressLiteral src);
   832   void fld_s(int index)   { Assembler::fld_s(index); }
   833   void fld_s(Address src) { Assembler::fld_s(src); }
   834   void fld_s(AddressLiteral src);
   836   void fld_d(Address src) { Assembler::fld_d(src); }
   837   void fld_d(AddressLiteral src);
   839   void fld_x(Address src) { Assembler::fld_x(src); }
   840   void fld_x(AddressLiteral src);
   842   void fmul_s(Address src)        { Assembler::fmul_s(src); }
   843   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
   845   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
   846   void ldmxcsr(AddressLiteral src);
   848   // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
   849   // all corner cases and may result in NaN and require fallback to a
   850   // runtime call.
   851   void fast_pow();
   852   void fast_exp();
   853   void increase_precision();
   854   void restore_precision();
   856   // computes exp(x). Fallback to runtime call included.
   857   void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
   858   // computes pow(x,y). Fallback to runtime call included.
   859   void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
   861 private:
   863   // call runtime as a fallback for trig functions and pow/exp.
   864   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
   866   // computes 2^(Ylog2X); Ylog2X in ST(0)
   867   void pow_exp_core_encoding();
   869   // computes pow(x,y) or exp(x). Fallback to runtime call included.
   870   void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
   872   // these are private because users should be doing movflt/movdbl
   874   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
   875   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
   876   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
   877   void movss(XMMRegister dst, AddressLiteral src);
   879   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
   880   void movlpd(XMMRegister dst, AddressLiteral src);
   882 public:
   884   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
   885   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
   886   void addsd(XMMRegister dst, AddressLiteral src);
   888   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
   889   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
   890   void addss(XMMRegister dst, AddressLiteral src);
   892   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
   893   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
   894   void divsd(XMMRegister dst, AddressLiteral src);
   896   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
   897   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
   898   void divss(XMMRegister dst, AddressLiteral src);
   900   // Move Unaligned Double Quadword
   901   void movdqu(Address     dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
   902   void movdqu(XMMRegister dst, Address src)       { Assembler::movdqu(dst, src); }
   903   void movdqu(XMMRegister dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
   904   void movdqu(XMMRegister dst, AddressLiteral src);
   906   // Move Aligned Double Quadword
   907   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
   908   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
   909   void movdqa(XMMRegister dst, AddressLiteral src);
   911   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
   912   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
   913   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
   914   void movsd(XMMRegister dst, AddressLiteral src);
   916   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
   917   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
   918   void mulsd(XMMRegister dst, AddressLiteral src);
   920   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
   921   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
   922   void mulss(XMMRegister dst, AddressLiteral src);
   924   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
   925   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
   926   void sqrtsd(XMMRegister dst, AddressLiteral src);
   928   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
   929   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
   930   void sqrtss(XMMRegister dst, AddressLiteral src);
   932   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
   933   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
   934   void subsd(XMMRegister dst, AddressLiteral src);
   936   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
   937   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
   938   void subss(XMMRegister dst, AddressLiteral src);
   940   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
   941   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
   942   void ucomiss(XMMRegister dst, AddressLiteral src);
   944   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
   945   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
   946   void ucomisd(XMMRegister dst, AddressLiteral src);
   948   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
   949   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
   950   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
   951   void xorpd(XMMRegister dst, AddressLiteral src);
   953   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
   954   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
   955   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
   956   void xorps(XMMRegister dst, AddressLiteral src);
   958   // Shuffle Bytes
   959   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
   960   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
   961   void pshufb(XMMRegister dst, AddressLiteral src);
   962   // AVX 3-operands instructions
   964   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
   965   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
   966   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   968   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
   969   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
   970   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   972   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
   973   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandpd(dst, nds, src, vector256); }
   974   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
   976   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
   977   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandps(dst, nds, src, vector256); }
   978   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
   980   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
   981   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
   982   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   984   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
   985   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
   986   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   988   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
   989   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
   990   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   992   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
   993   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
   994   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
   996   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
   997   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
   998   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1000   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
  1001   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
  1002   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1004   // AVX Vector instructions
  1006   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
  1007   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
  1008   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  1010   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
  1011   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
  1012   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  1014   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  1015     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
  1016       Assembler::vpxor(dst, nds, src, vector256);
  1017     else
  1018       Assembler::vxorpd(dst, nds, src, vector256);
  1020   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  1021     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
  1022       Assembler::vpxor(dst, nds, src, vector256);
  1023     else
  1024       Assembler::vxorpd(dst, nds, src, vector256);
  1027   // Simple version for AVX2 256bit vectors
  1028   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
  1029   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
  1031   // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
  1032   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  1033     if (UseAVX > 1) // vinserti128h is available only in AVX2
  1034       Assembler::vinserti128h(dst, nds, src);
  1035     else
  1036       Assembler::vinsertf128h(dst, nds, src);
  1039   // Carry-Less Multiplication Quadword
  1040   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  1041     // 0x00 - multiply lower 64 bits [0:63]
  1042     Assembler::vpclmulqdq(dst, nds, src, 0x00);
  1044   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  1045     // 0x11 - multiply upper 64 bits [64:127]
  1046     Assembler::vpclmulqdq(dst, nds, src, 0x11);
  1049   // Data
  1051   void cmov32( Condition cc, Register dst, Address  src);
  1052   void cmov32( Condition cc, Register dst, Register src);
  1054   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
  1056   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  1057   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  1059   void movoop(Register dst, jobject obj);
  1060   void movoop(Address dst, jobject obj);
  1062   void mov_metadata(Register dst, Metadata* obj);
  1063   void mov_metadata(Address dst, Metadata* obj);
  1065   void movptr(ArrayAddress dst, Register src);
  1066   // can this do an lea?
  1067   void movptr(Register dst, ArrayAddress src);
  1069   void movptr(Register dst, Address src);
  1071   void movptr(Register dst, AddressLiteral src);
  1073   void movptr(Register dst, intptr_t src);
  1074   void movptr(Register dst, Register src);
  1075   void movptr(Address dst, intptr_t src);
  1077   void movptr(Address dst, Register src);
  1079   void movptr(Register dst, RegisterOrConstant src) {
  1080     if (src.is_constant()) movptr(dst, src.as_constant());
  1081     else                   movptr(dst, src.as_register());
  1084 #ifdef _LP64
  1085   // Generally the next two are only used for moving NULL
  1086   // Although there are situations in initializing the mark word where
  1087   // they could be used. They are dangerous.
  1089   // They only exist on LP64 so that int32_t and intptr_t are not the same
  1090   // and we have ambiguous declarations.
  1092   void movptr(Address dst, int32_t imm32);
  1093   void movptr(Register dst, int32_t imm32);
  1094 #endif // _LP64
  1096   // to avoid hiding movl
  1097   void mov32(AddressLiteral dst, Register src);
  1098   void mov32(Register dst, AddressLiteral src);
  1100   // to avoid hiding movb
  1101   void movbyte(ArrayAddress dst, int src);
  1103   // Import other mov() methods from the parent class or else
  1104   // they will be hidden by the following overriding declaration.
  1105   using Assembler::movdl;
  1106   using Assembler::movq;
  1107   void movdl(XMMRegister dst, AddressLiteral src);
  1108   void movq(XMMRegister dst, AddressLiteral src);
  1110   // Can push value or effective address
  1111   void pushptr(AddressLiteral src);
  1113   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  1114   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
  1116   void pushoop(jobject obj);
  1117   void pushklass(Metadata* obj);
  1119   // sign extend as need a l to ptr sized element
  1120   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  1121   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
  1123   // C2 compiled method's prolog code.
  1124   void verified_entry(int framesize, bool stack_bang, bool fp_mode_24b);
  1126   // clear memory of size 'cnt' qwords, starting at 'base'.
  1127   void clear_mem(Register base, Register cnt, Register rtmp);
  1129   // IndexOf strings.
  1130   // Small strings are loaded through stack if they cross page boundary.
  1131   void string_indexof(Register str1, Register str2,
  1132                       Register cnt1, Register cnt2,
  1133                       int int_cnt2,  Register result,
  1134                       XMMRegister vec, Register tmp);
  1136   // IndexOf for constant substrings with size >= 8 elements
  1137   // which don't need to be loaded through stack.
  1138   void string_indexofC8(Register str1, Register str2,
  1139                       Register cnt1, Register cnt2,
  1140                       int int_cnt2,  Register result,
  1141                       XMMRegister vec, Register tmp);
  1143     // Smallest code: we don't need to load through stack,
  1144     // check string tail.
  1146   // Compare strings.
  1147   void string_compare(Register str1, Register str2,
  1148                       Register cnt1, Register cnt2, Register result,
  1149                       XMMRegister vec1);
  1151   // Compare char[] arrays.
  1152   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  1153                           Register limit, Register result, Register chr,
  1154                           XMMRegister vec1, XMMRegister vec2);
  1156   // Fill primitive arrays
  1157   void generate_fill(BasicType t, bool aligned,
  1158                      Register to, Register value, Register count,
  1159                      Register rtmp, XMMRegister xtmp);
  1161   void encode_iso_array(Register src, Register dst, Register len,
  1162                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
  1163                         XMMRegister tmp4, Register tmp5, Register result);
  1165   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
  1166   void update_byte_crc32(Register crc, Register val, Register table);
  1167   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
  1168   // Fold 128-bit data chunk
  1169   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
  1170   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
  1171   // Fold 8-bit data
  1172   void fold_8bit_crc32(Register crc, Register table, Register tmp);
  1173   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
  1175 #undef VIRTUAL
  1177 };
  1179 /**
  1180  * class SkipIfEqual:
  1182  * Instantiating this class will result in assembly code being output that will
  1183  * jump around any code emitted between the creation of the instance and it's
  1184  * automatic destruction at the end of a scope block, depending on the value of
  1185  * the flag passed to the constructor, which will be checked at run-time.
  1186  */
  1187 class SkipIfEqual {
  1188  private:
  1189   MacroAssembler* _masm;
  1190   Label _label;
  1192  public:
  1193    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
  1194    ~SkipIfEqual();
  1195 };
  1197 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP

mercurial